The international curriculum in the early childhood and foundation phase encourages play-based pedagogy in teaching and learning mathematics. Furthermore, the South African curriculum stresses integrating African culture and using technologies in the foundation phase. This study explored the use of Africanised play-based pedagogy in the online teaching of mental mathematics to Foundation Phase learners. Ethnomathematics and Vygotsky’s sociocultural theories underpin the study. The study employed hermeneutic phenomenology research design in qualitative research. Semi-structured interviews, document analysis and non-participant observations were used to elicit the educators’ lived experiences using Africanised play-based pedagogy in the online teaching of mental mathematics to foundation-phase learners. Twelve foundation-phase educators from four public primary schools in Capricorn South District, Limpopo, participated. Three data sets were analysed using NVivo software version 14 through interpretative phenomenological analysis. The findings indicated that educators use Africanised play-based pedagogy in the online teaching of mental mathematics to develop problem-solving, mathematical thinking and counting skills. However, educators need more understanding of the use of Africanised play-based pedagogy, they have challenges of minimal African play-based activities, a limited legislative framework, and a lack of strategies for using Africanised play-based pedagogy in the online teaching of mental mathematics to foundation-phase educators. In light of these findings, guided by the theoretical framework, the literature review, and the study’s findings, the study suggested strategies for educators to incorporate Africanised play-based pedagogy in the online teaching of mental mathematics to foundation-phase learners. These strategies include the use of theoretical components, lesson planning and implementation, assessments and parental involvement in the use of Africanised play-based pedagogy in the online teaching of mental mathematics in the foundation phase.
Lenaneothuto la boditshabatshaba mo karolong ya bobjana le ya motheo le hlohleletsa thuto yeo e theilwego go thaloko mo go ruteng le go ithuteng dipalo. Gape lenaneothuto la Afrika Borwa le gatelela go kopanya setso sa Afrika le go somisa ditheknolotsi mo karolong ya motheo. Mo karolong ya motheo, barutisi ba sa hloka go somisa mesongwana ye e theilwego go thaloko ba kopanya setso le theknolotsi, kudu mo go ruteng dipalo tsa monagano. Kamano gare ga dipalo, setso le diteori tsa leago tsa Vygotsky le Ethnomathematics (setso sa dipalo) di thekga nyakisiso. Nyakisiso e somisitse mokgwa wa nyakisiso wa fenomelotsi ya hemaniteki ka go nyakisiso ya boleng go utolla tshomiso ya thuto yeo e theilwego go thaloko ya Seafrika mo go ruteng ga mmetse wa monagano ka onlaene go barutwana ba karolo ya motheo. Dipotsiso tseo di sa latelego mokgwa wa go swana, tshekatsheko ya tokumente le ditekolo tsa bao ba sa kgathego tema di somisitswe go hwetsa maitemogelo a barutisi a thwii ba somisa thuto yeo e theilwego go Seafrika mo go ruteng ka onlaene ga dipalo tsa monagano go barutwana ba karolo ya motheo. Barutisi ba 12 ba karolo ya motheo go tswa go dikolo tsa praemari ka Seleteng sa Borwa sa Capricorn, Limpopo, ba kgathile tema. Dihlopha tse tharo tsa data di sekasekilwe go somiswa kgatiso ya 14 ya softwere ya NVivo ka go sekaseka fenomelotsi ya hlathollo. Dikutollo di bontshitshe gore barutwana ba somisa thuto yeo e theilwego go thaloko mo go ruteng ka onlaene go dipalo tsa monagano go godisa go rarolla mathata, go nagana ka mokgwa wa dipalo le go bala mabokgoni. Gape, go hweditswe gape gore barutisi ba hloka kwesiso ye ntsi ya tshomiso ya thuto yeo e theilwego go thaloko ya Seafrika, ba na le ditlhohlo tse dinnyane tsa mesongwana ya dithaloko tseo di theilwego go Seafrika, tlhako ya molao ye nnyane, le go hloka mekgwa ya go somisa thuto yeo e theilwego go thaloko ya Seafrika mo go ruteng ka onlaene ga dipalo tsa monagano go barutisi ba karolo ya motheo. Go lebeletswe dikutollo tse, nyakisiso e sisintse mekgwa go barutisi go kopanya thuto yeo e theilwego go thaloko mo go ruteng ka onlaene ga dipalo tsa monagano go barutisi ba karolo ya motheo. Tlhako ya teori, tshekatsheko ya dingwalwa, le dikutollo tsa nyakisiso di tsebisa mekgwa ye.
Kha kharikhulamu ya dzitshaka kha vhuhana thangeli na vhuimo ha fhasi hu tutuwedzwa pfunzo yo disendekaho nga u tamba kha u funza na u guda mbalo. zwiṅwe hafhu, kharikhulamu ya Afrika Tshipembe I khwathisedza mvelele ya Afrika na u shumisa thekhinolodzhi kha vhuimo ha fhasi. Kha vhuimo ha fhasi vhadededzi vha kha di toda thuso ya u shumisa nyito dzo disendekaho nga u tamba dzi elanaho na mvelele na thekhinolodzhi nga maanda kha u funza mbalo dza murekanyo. Mbalo dza ethno na thyeori dza mvelele na matshilisano dza Vygotsky ndi mutheo wa ngudo. Ngudo dzo shumisa nyolo ya thodiso ya tshibveleli ya hemeneuthiki nga ngomu ha thodisiso dza khwalithethivi u itela u sedzulusa pfunzo yo disendekaho nga u tamba ya Afrika kha u funza ha kha lubuvhisia ha mbalo dza murekanyo kha vhagudi vha vhuimo ha fhasi. Inthaviwu dzo dzudzanywaho zwituku, musaukanyo wa maṅwalwa na mbono dza u sa dzhenelela zwo shumiswa u wana tshenzhelo vhukuma dza vhadededzi nga u shumisa pfunzo yo disendekaho nga u tamba ya Afrika kha u funza nga kha lubuvhisia ha mbalo dza murekanyo kha vhagudi vha vhuimo ha fhasi. Vhadededzi vha vhuimo ha fhasi vha fumimbili u bva kha zwikolo zwa phuraimari zwa nnyi na nnyi kha Tshitiriki tsha Capricorn South, Limpopo, vho dzhenela. Sethe dza data tharu dzo lavhelelwaho dzo saukanywa nga u shumisa NVivo software vesheni ya 14 nga kha musaukanyo wa tshibveleli. Mawanwa o sumbedza uri vhadededzi vho shumisa pfunzo yo disendekaho nga u tamba ya Afrika kha u funza mbalo dza murekanyo kha lubuvhisia na u bveledza u tandulula thaidzo, kuhumbulele kwa mbalo na zwikili zwa u vhalela. Zwiṅwe hafhu, zwo wanala uri vhadededzi vha toda u pfesesa vhukuma kha kushumiselwe kwa pfunzo yo disendekaho nga u tamba ya Afrika, vha na khaedu dza nyito dzi si gathi dza nga u tamba ho disendekaho nga zwa Afrika, muhanga wa kushumele wa theo ya mulayo wo fhimiwaho, na u shaya zwitirathedzhi zwa u shumisa pfunzo yo disendekaho nga zwa Afrika kha u funza kha lubuvhisia ha mbalo dza murekanyo kha vhadededzi vhuimo ha fhasi. Ho sedzwa mawanwa aya, ngudo dzo dzinginya zwitirathedzhi zwine vhadededzi vha nga zwi dzhenisa zwa pfunzo yo disendekaho nga u tamba ya Afrika kha mbalo dza murekanyo dza kha lubuvhisia u itela vhadededzi vha vhuimo ha fhasi. Muhanga wa kushumele ya thyeori, tsedzuluso dza maṅwalwa na mawanwa a ngudo dzo tikedza zwitirathedzhi izwi.