dc.contributor.advisor |
Holtman, Lorna B. |
|
dc.contributor.author |
Gondo, Garikayi Emmanuel
|
|
dc.date.accessioned |
2023-11-13T08:29:26Z |
|
dc.date.available |
2023-11-13T08:29:26Z |
|
dc.date.issued |
2023-05-02 |
|
dc.identifier.uri |
https://hdl.handle.net/10500/30651 |
|
dc.description |
Abstracts in English and Shona |
en |
dc.description.abstract |
Currently, the fourth industrial revolution is driven by cyber-physical systems through interconnected emerging technologies that produce a lot of information, referred to as the big data environment. However, extracting value from the information presents valuable opportunities and insights to those who are able to analyse the data. The current environment requires managers to use technologies such as business intelligence systems (BI) to analyse the data. Technology has advanced; managers who do not embrace it to conduct business intelligence become spectators in the world of business where they should be dominating. The aim of this research study was to explore the value to be derived from data analytics application to improve business intelligence in the manufacturing sector. The main objective was to propose suitable general frameworks that can guide managers to analyse data in the big data environment using BI to create a competitive advantage. The specific objectives were to explore how external data are integrated with internal data and to examine what is limiting managers from using BI systems to analyse the resultant data to extract value during the decision-making process. The study design was an exploratory qualitative case study that involved Executives, Senior managers, and Consultants as implementers of BI. Data were collected through semi-structured interviews and analysed using Atlas_ti to generate codes and themes. A focus group validated the findings. The results revealed that BI systems are not plug-and-play; managers lack technical skills and time due to operational commitments. External consultants lack knowledge of the business process. Internal consultants lack facilitating conditions and training. Managers are not at liberty to share their data even though the data are already structured. They are afraid of violating ethics because there are no clear frameworks to integrate systems. Four frameworks emerged from this study (i) a framework to reach the pervasive level of business intelligence maturity level (ii) the Trust benefit framework for external data sharing (iii) the BI skills imparting framework and (iv) the Framework for adopting data analytics in an environment of other emerging technologies. The research study made an original contribution to the Unified Theory of Acceptance and Use of Technology theory. It suggests the incorporation of trust, risk, and ethical considerations as key moderators for sharing data and adopting data analytics. |
en |
dc.description.abstract |
Parizvino, shanduko yechina yekubatwa kunoita mabasa mumakambani iri kufambiswa kuburikidza nematekinoroji akati wandei ari kuburwa. Matekinoroji aya anoburitsa ruzivo rwakawanda kwazvo kuumba nharaunda yakakura ye denhe reruzivo. Nekudaro, kutora kukosha kubva kuruzivo rwe nharaunda iyi kunopa mikana kune avo chete vane nzira dzekuongorora denhe idzva reruzivo iri. Iyo nharaunda itsva iyi inotoda kuti vakuru vemakambani vashandise masisitimu azvino seinonzi, bhizimusi rehungwaru (BI). Tekinoroji yafamba; zvekuti vakuru vemakambani vasingaigamuchire kuti vaite bhizimusi neungwaru vanosiiwa sevaokeri munharaunda yevemabhizinesi umo mavanofanirwa kunge vachitonga. Chinangwa cheongororo iyi chaive chekuumba hwaro hwakakodzera hunogona kushandiswa nevakuru vemakambani emuZimbabwe kuongorora denhe rerwuzivo munzvimbo huru vachishandisa sisitimu ye BI kuitira kuti vave pamusoro pevamwe vavo. Donzvo raive rekuongorora kuti denhe rerwuzivo rwekunze ringasanganiswa sei nedenhe rerwuzivo rwemukati uye zvozoongororwa kuti chii chinotadzisa vatungamiri vemakambani kushandisa sisitimu ye BI kuongorora denhe reruzivo rinenge rabuda kuti vabatsirwe panguva yekuita sarudzo yemafambiro avanoda kuzoita pabasa ravo. Nyaya iyi yakaongororwa kuchishandiswa mhando yaisanganisira vatungamiri vakuru vemakambani, vanounza masisitimu aya mumakambani, vapi vemazano vemukati avo vanoashandisa. Zvaibuda mukubvunzurudza zvakaunganidzwa nekuongororwa kuchishandiswa imwe sisitimu inonzi Atlas_ti kugadzira mipanda nemadingindira. Kaboka kadiki kakaumbwa kuti katange kanzvera zvakabuda. Mhedzisiro yacho yakaratidza kuti masisitimu e BI haasi ekungobayirira wobva watotanga kushandisa ipapo ipapo. Nekudaro vatungamiri vemakambani vanoshaya hunyanzvi hwekuashandisa uye nguva nekuda kwebasa ravo. Vanounza masisitimu aya mumakambani havanawo ruzivo rwemaitirwo emabhizimusi uye vapi vemazano vemukati vanoshayawo nzira yekubatsira nayo uye nguva yekuti vadzidziswe nevekunze. Zvakaratidzawo zvakare kuti vatungamira vemakambani havana kunyatso sunungukirwa nekupa denhe ravo reruzivo rwavo rwemukati nekuti hapana hurongwa hwakajeka hwekubatanidza masisitimu avo neekunze kuti vatambidzane denhe rezivo, saka vanotya kutyora mirairo yemubatanidzwa wemakambani. Kune avo vanoshandidzana havo, nzira ye denhe reruzivo rwekunze yakatogadzirwa kare asi, naivowo havanawo rusununguko rwekugovera denhe reruzivo rwavo. Zvirongwa zvina zvinotevera zvakabuda muchidzidzo chino (i) hurongwa hunodiwa kuti pasvikwe padanho rakakura rekuwedzera hungwaru (ii) Rubatsiro rwekuvimbika nehurongwa hwekugovana denhe reruzivo rwekunze (iii) hurongwa hwekupa hunyanzvi neungwaru mumabhizimisi uye (iv) Nzira inodiwa kugona kunzwera denhe reruzivo zvisinganetsi. Tsvagiridzo iyi yakaitawo kuti muono wepakutanga wekugamuchirwa kwekushandisa Tekinoroji (UTAUT) unyatso nzverwa nekugadziriswa kuti ubatanidze kuvimbika, njodzi, uye hunhu, sezvinhu zvakakosha pakugovana zivo neungwaru munharaunda hombe yedenhe reruzivo. |
sn |
dc.format.extent |
1 online resource (xix, 322 leaves) : illustrations (chiefly color) |
en |
dc.language.iso |
en |
en |
dc.subject |
Big data |
en |
dc.subject |
Fourth Industrial Revolution and Digitalisation |
en |
dc.subject |
SDG 9 Industry, Innovation and Infrastructure |
en |
dc.subject |
SDG 16 Peace, Justice and Strong Institutions |
en |
dc.subject |
Data analytics |
en |
dc.subject |
Business Intelligence |
en |
dc.subject |
Business Intelligence System |
en |
dc.subject |
External data |
en |
dc.subject |
Internal data |
en |
dc.subject |
External data sharing |
en |
dc.subject |
Frameworks |
en |
dc.subject |
Enterprise Resource Planning System |
en |
dc.subject |
Denhe reruzivo |
sn |
dc.subject |
Kunzvera denhe reruzivo |
sn |
dc.subject |
Ungwaru mumabhizimisi |
sn |
dc.subject |
Kugoverana nhenhe reruzivo rekunze |
sn |
dc.subject |
Nzira |
sn |
dc.subject |
Masisitimu ekushandisa muma company |
sn |
dc.subject.other |
UCTD |
|
dc.title |
Value realisation of data analytics to improve business intelligence in the manufacturing sector in the big data era |
en |
dc.type |
Thesis |
en |
dc.description.department |
Graduate School of Business Leadership |
en |
dc.description.degree |
DBL |
|