Institutional Repository

Onderrig van wiskunde met formele bewystegnieke

Show simple item record

dc.contributor.advisor Alderton, Ian William, 1952-
dc.contributor.advisor Barnard, J. J. (John James), 1957-
dc.contributor.author Van Staden, P. S. (Pieter Schalk) en
dc.date.accessioned 2015-01-23T04:24:26Z
dc.date.available 2015-01-23T04:24:26Z
dc.date.issued 1999-04 en
dc.identifier.citation Van Staden, P. S. (Pieter Schalk) (1999) Onderrig van wiskunde met formele bewystegnieke, University of South Africa, Pretoria, <http://hdl.handle.net/10500/17764> en
dc.identifier.uri http://hdl.handle.net/10500/17764
dc.description Text in Afrikaans, abstract in Afrikaans and English
dc.description.abstract Hierdie studie is daarop gemik om te bepaal tot welke mate wiskundeleerlinge op skool en onderwysstudente in wiskunde, onderrig in logika ontvang as agtergrond vir strenge bewysvoering. Die formele aspek van wiskunde op hoerskool en tersiere vlak is besonder belangrik. Leerlinge en studente kom onvermydelik met hipotetiese argumente in aanraking. Hulle leer ook om die kontrapositief te gebruik in bewysvoering. Hulle maak onder andere gebruik van bewyse uit die ongerymde. Verder word nodige en voldoende voorwaardes met stellings en hulle omgekeerdes in verband gebring. Dit is dus duidelik dat 'n studie van logika reeds op hoerskool nodig is om aanvaarbare wiskunde te beoefen. Om seker te maak dat aanvaarbare wiskunde beoefen word, is dit nodig om te let op die gebrek aan beheer in die ontwikkeling van 'n taal, waar woorde meer as een betekenis het. 'n Kunsmatige taal moet gebruik word om interpretasies van uitdrukkings eenduidig te maak. In so 'n kunsmatige taal word die moontlikheid van foutiewe redenering uitgeskakel. Die eersteordepredikaatlogika, is so 'n taal, wat ryk genoeg is om die wiskunde te akkommodeer. Binne die konteks van hierdie kunsmatige taal, kan wiskundige toeriee geformaliseer word. Verskillende bewystegnieke uit die eersteordepredikaatlogika word geidentifiseer, gekategoriseer en op 'n redelik eenvoudige wyse verduidelik. Uit 'n ontleding van die wiskundesillabusse van die Departement van Onderwys, en 'n onderwysersopleidingsinstansie, volg dit dat leerlinge en studente hierdie bewystegnieke moet gebruik. Volgens hierdie sillabusse moet die leerlinge en studente vertroud wees met logiese argumente. Uit die gevolgtrekkings waartoe gekom word, blyk dit dat die leerlinge en studente se agtergrond in logika geheel en al gebrekkig en ontoereikend is. Dit het tot gevolg dat hulle nie 'n volledige begrip oor bewysvoering het nie, en 'n gebrekkige insig ontwikkel oor wat wiskunde presies behels. Die aanbevelings om hierdie ernstige leemtes in die onderrig van wiskunde aan te spreek, asook verdere navorsingsprojekte word in die laaste hoofstuk verwoord.
dc.description.abstract The aim of this study is to determine to which extent pupils taking Mathematics at school level and student teachers of Mathematics receive instruction in logic as a grounding for rigorous proof. The formal aspect of Mathematics at secondary school and tertiary levels is extremely important. It is inevitable that pupils and students become involved with hypothetical arguments. They also learn to use the contrapositive in proof. They use, among others, proofs by contradiction. Futhermore, necessary and sufficient conditions are related to theorems and their converses. It is therefore apparent that the study of logic is necessary already at secondary school level in order to practice Mathematics satisfactorily. To ensure that acceptable Mathematics is practised, it is necessary to take cognizance of the lack of control over language development, where words can have more than one meaning. For this reason an artificial language must be used so that interpretations can have one meaning. Faulty interpretations are ruled out in such an artificial language. A language which is rich enough to accommodate Mathematics is the first-order predicate logic. Mathematical theories can be formalised within the context of this artificial language. Different techniques of proof from the first-order logic are identified, categorized and explained in fairly simple terms. An analysis of Mathematics syllabuses of the Department of Education and an institution for teacher training has indicated that pupils should use these techniques of proof. According to these syllabuses pupils should be familiar with logical arguments. The conclusion which is reached, gives evidence that pupils' and students' background in logic is completely lacking and inadequate. As a result they cannot cope adequately with argumentation and this causes a poor perception of what Mathematics exactly entails. Recommendations to bridge these serious problems in the instruction of Mathematics, as well as further research projects are discussed in the final chapter.
dc.format.extent 1 online resource (viii, 297 leaves) en
dc.language.iso en
dc.subject Logic and Mathematics
dc.subject Mathematical activities
dc.subject Mathematical education
dc.subject Proof techniques
dc.subject Problem solving skills
dc.subject Mathematical curriculum
dc.subject Mathematical foundation
dc.subject Mathematical creativity
dc.subject Mathematical philosophy
dc.subject Secondary school mathematics
dc.subject Teacher training
dc.subject.ddc 510.712 en
dc.subject.lcsh Mathematics -- Study and teaching (Secondary) en
dc.subject.lcsh Mathematics -- Philosophy en
dc.subject.lcsh Mathematics teachers -- Training of en
dc.title Onderrig van wiskunde met formele bewystegnieke en
dc.type Thesis
dc.description.department Curriculum and Institutional Studies
dc.description.degree D. Phil. (Wiskundeonderwys) en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics