Institutional Repository

Bound states for A-body nuclear systems

Show simple item record

dc.contributor.advisor Lekala, Mantile Leslie
dc.contributor.advisor Rampho, Gaotsiwe Joel
dc.contributor.author Mukeru, Bahati
dc.date.accessioned 2013-04-11T11:59:24Z
dc.date.available 2013-04-11T11:59:24Z
dc.date.issued 2012-03
dc.identifier.citation Mukeru, Bahati (2012) Bound states for A-body nuclear systems, University of South Africa, Pretoria, <http://hdl.handle.net/10500/8909> en
dc.identifier.uri http://hdl.handle.net/10500/8909
dc.description.abstract In this work we calculate the binding energies and root-mean-square radii for A−body nuclear bound state systems, where A ≥ 3. To study three−body systems, we employ the three−dimensional differential Faddeev equations with nucleon-nucleon semi-realistic potentials. The equations are solved numerically. For this purpose, the equations are transformed into an eigenvalue equation via the orthogonal collocation procedure using triquintic Hermite splines. The resulting eigenvalue equation is solved using the Restarted Arnoldi Algorithm. Ground state binding energies of the 3H nucleus are determined. For A > 3, the Potential Harmonic Expansion Method is employed. Using this method, the Schr¨odinger equation is transformed into coupled Faddeev-like equations. The Faddeevlike amplitudes are expanded on the potential harmonic basis. To transform the resulting coupled differential equations into an eigenvalue equation, we employ again the orthogonal collocation procedure followed by the Gauss-Jacobi quadrature. The corresponding eigenvalue equation is solved using the Renormalized Numerov Method to obtain ground state binding energies and root-mean-square radii of closed shell nuclei 4He, 8Be, 12C, 16O and 40Ca. en
dc.format.extent 1 online resource (ix, 71 leaves) : color illustrations en
dc.language.iso en en
dc.rights University of South Africa en
dc.subject Three−dimensional differential Faddeev equations en
dc.subject Potential Harmonic basis en
dc.subject Coupled differential equations en
dc.subject Orthogonal collocation procedure en
dc.subject Eigenvalue equation en
dc.subject Restarted Arnoldi Algorithm en
dc.subject Renormalized Numerov Method en
dc.subject Closed shell nuclei en
dc.subject.ddc 539.70151535
dc.subject.lcsh Bound states (Quantum mechanics) en
dc.subject.lcsh Three-body problem en
dc.subject.lcsh Nuclear physics en
dc.subject.lcsh Mathematical physics en
dc.subject.lcsh Differential equations en
dc.title Bound states for A-body nuclear systems en
dc.type Dissertation en
dc.description.department Physics en
dc.description.degree M. Sc. (Physics)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics