Institutional Repository

Koliha–Drazin invertibles form a regularity

Show simple item record

dc.contributor.advisor Lindeboom, Lucas
dc.contributor.author Smit, Joukje Anneke
dc.date.accessioned 2011-10-06T07:46:30Z
dc.date.available 2011-10-06T07:46:30Z
dc.date.issued 2010-11
dc.date.submitted 2011-10-06
dc.identifier.citation Smit, Joukje Anneke (2010) Koliha–Drazin invertibles form a regularity, University of South Africa, Pretoria, <http://hdl.handle.net/10500/4905> en
dc.identifier.uri http://hdl.handle.net/10500/4905
dc.description.abstract The axiomatic theory of ` Zelazko defines a variety of general spectra where specified axioms are satisfied. However, there arise a number of spectra, usually defined for a single element of a Banach algebra, that are not covered by the axiomatic theory of ` Zelazko. V. Kordula and V. M¨uller addressed this issue and created the theory of regularities. Their unique idea was to describe the underlying set of elements on which the spectrum is defined. The axioms of a regularity provide important consequences. We prove that the set of Koliha-Drazin invertible elements, which includes the Drazin invertible elements, forms a regularity. The properties of the spectrum corresponding to a regularity are also investigated. en
dc.format.extent 1 online resource (vi, 70 leaves) en
dc.language.iso en en
dc.subject Banach algebra en
dc.subject Radical en
dc.subject Spectrum en
dc.subject Resolvent en
dc.subject Quasinilpotent en
dc.subject Nilpotent en
dc.subject Spectral idempotent en
dc.subject Isolated spectral point en
dc.subject Accumulation point en
dc.subject Regularity en
dc.subject Koliha-Drazin invertible en
dc.subject Quasipolar en
dc.subject KD-spectrum en
dc.subject D-spectrum en
dc.subject Laurent expansion en
dc.subject Poles of the resolvent en
dc.subject.ddc 511.322
dc.subject.lcsh Axiomatic set theory en
dc.subject.lcsh Banach algebras en
dc.subject.lcsh Spectrum analysis en
dc.subject.lcsh Spectral sequences (Mathematics) en
dc.title Koliha–Drazin invertibles form a regularity en
dc.type Dissertation en
dc.description.department Mathematical Sciences en
dc.description.degree M. Sc. (Mathematics)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics