dc.contributor.advisor |
Lindeboom, Lucas
|
|
dc.contributor.author |
Smit, Joukje Anneke
|
|
dc.date.accessioned |
2011-10-06T07:46:30Z |
|
dc.date.available |
2011-10-06T07:46:30Z |
|
dc.date.issued |
2010-11 |
|
dc.date.submitted |
2011-10-06 |
|
dc.identifier.citation |
Smit, Joukje Anneke (2010) Koliha–Drazin invertibles form a regularity, University of South Africa, Pretoria, <http://hdl.handle.net/10500/4905> |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/4905 |
|
dc.description.abstract |
The axiomatic theory of ` Zelazko defines a variety of general spectra where specified axioms
are satisfied. However, there arise a number of spectra, usually defined for a single element
of a Banach algebra, that are not covered by the axiomatic theory of ` Zelazko. V. Kordula and
V. M¨uller addressed this issue and created the theory of regularities. Their unique idea was
to describe the underlying set of elements on which the spectrum is defined. The axioms of a
regularity provide important consequences. We prove that the set of Koliha-Drazin invertible
elements, which includes the Drazin invertible elements, forms a regularity. The properties of
the spectrum corresponding to a regularity are also investigated. |
en |
dc.format.extent |
1 online resource (vi, 70 leaves) |
en |
dc.language.iso |
en |
en |
dc.subject |
Banach algebra |
en |
dc.subject |
Radical |
en |
dc.subject |
Spectrum |
en |
dc.subject |
Resolvent |
en |
dc.subject |
Quasinilpotent |
en |
dc.subject |
Nilpotent |
en |
dc.subject |
Spectral idempotent |
en |
dc.subject |
Isolated spectral point |
en |
dc.subject |
Accumulation point |
en |
dc.subject |
Regularity |
en |
dc.subject |
Koliha-Drazin invertible |
en |
dc.subject |
Quasipolar |
en |
dc.subject |
KD-spectrum |
en |
dc.subject |
D-spectrum |
en |
dc.subject |
Laurent expansion |
en |
dc.subject |
Poles of the resolvent |
en |
dc.subject.ddc |
511.322 |
|
dc.subject.lcsh |
Axiomatic set theory |
en |
dc.subject.lcsh |
Banach algebras |
en |
dc.subject.lcsh |
Spectrum analysis |
en |
dc.subject.lcsh |
Spectral sequences (Mathematics) |
en |
dc.title |
Koliha–Drazin invertibles form a regularity |
en |
dc.type |
Dissertation |
en |
dc.description.department |
Mathematical Sciences |
en |
dc.description.degree |
M. Sc. (Mathematics) |
|