Institutional Repository

On some results of analysis in metric spaces and fuzzy metric spaces

Show simple item record

dc.contributor.advisor Moshokoa, Seithuti Philemon
dc.contributor.author Aphane, Maggie
dc.date.accessioned 2010-04-20T12:53:42Z
dc.date.available 2010-04-20T12:53:42Z
dc.date.issued 2009-12
dc.identifier.citation Aphane, Maggie (2009) On some results of analysis in metric spaces and fuzzy metric spaces, University of South Africa, Pretoria, <http://hdl.handle.net/10500/3224> en
dc.identifier.uri http://hdl.handle.net/10500/3224
dc.description.abstract The notion of a fuzzy metric space due to George and Veeramani has many advantages in analysis since many notions and results from classical metric space theory can be extended and generalized to the setting of fuzzy metric spaces, for instance: the notion of completeness, completion of spaces as well as extension of maps. The layout of the dissertation is as follows: Chapter 1 provide the necessary background in the context of metric spaces, while chapter 2 presents some concepts and results from classical metric spaces in the setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy metric spaces, among others we show that: the product of two complete fuzzy metric spaces is also a complete fuzzy metric space. Our main contribution is in chapter 4. We introduce the concept of a standard fuzzy pseudo metric space and present some results on fuzzy metric identification. Furthermore, we discuss some properties of t-nonexpansive maps. en
dc.format.extent 1 online resource (iv, 75 leaves)
dc.language.iso en en
dc.subject Metric space en
dc.subject Cauchy sequence en
dc.subject Compactness en
dc.subject Precompactness en
dc.subject Completeness en
dc.subject Continuity en
dc.subject Uniform continuity en
dc.subject Isometry en
dc.subject Uniform convergence en
dc.subject Seperable en
dc.subject Nested en
dc.subject Closed sets en
dc.subject Diameter en
dc.subject Pseudo metric space en
dc.subject Fuzzy metric space en
dc.subject Standard fuzzy metric space en
dc.subject Fuzzy pseudo metric space en
dc.subject Metric identification en
dc.subject Fuzzy metric identification en
dc.subject Nonexpansive map en
dc.subject t-nonexpansive map en
dc.subject t-uniformly continuous map en
dc.subject t-isometry map en
dc.subject Quotient map en
dc.subject Quotient topology en
dc.subject Quotient space en
dc.subject Natural map en
dc.subject Topological space en
dc.subject.ddc 514.325
dc.subject.lcsh Metric spaces en
dc.subject.lcsh Fuzzy topology en
dc.title On some results of analysis in metric spaces and fuzzy metric spaces en
dc.type Dissertation en
dc.description.department Mathematical Sciences en
dc.description.degree M. Sc. (Mathematics)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics