Institutional Repository

The validation of a big data analytics capability scale for the South African context

Show simple item record

dc.contributor.advisor Flotman, Aden-Paul
dc.contributor.author Naicker, Renee
dc.date.accessioned 2023-07-03T04:46:55Z
dc.date.available 2023-07-03T04:46:55Z
dc.date.issued 2023-01
dc.identifier.uri https://hdl.handle.net/10500/30255
dc.description Abstracts in English, Afrikaans and Zulu en
dc.description.abstract Literature confirms that few organisations have managed to enhance organisational performance through big data analytics capabilities (BDAC). Therefore, the primary objective of this study was to design and validate a BDAC scale for the South African context, and clarify the nature of the BDAC relationship to organisational performance. The population identified senior managers, executives and data analysts who work in the context of big data (BD) and the BDAC space with organisations or during project implementation. A new scale was designed comprising relevant items based on a comprehensive literature review and items taken from existing literature. Two pilot studies were conducted and data collected from respondents using an online survey provided 239 usable questionnaires. The final scale comprised two primary dimensions (i.e., BDAC and organisational performance) and ten subdimensions. The results confirm that the new BDAC scale is valid for South African organisations and can be used to enhance organisational performance. The study thus contributes a validated BDAC scale for the South African context to benefit academics, researchers and practitioners in the quest to further understand BD and BDAC utilisation in transforming organisations, improving organisational development and enhancing organisational performance. en
dc.description.abstract Die literatuur bevestig dat min organisasies al daarin geslaag het om organisasieprestasie deur grootdata-ontledingsvermoëns (GDOV) te verbeter. Die primêre doel van hierdie studie was dus om ’n geldige GDOV-skaal vir die Suid-Afrikaanse konteks te ontwerp, en om die aard van die GDOV-verhouding tot organisasieprestasie te verduidelik. Die populasie het senior bestuurders en data-ontleders geïdentifiseer wat in die konteks van groot data en die GDOV-ruimte met organisasies of tydens projekimplementering werk. ’n Nuwe skaal is ontwerp wat relevante items bevat gebaseer op ’n omvattende literatuuroorsig en items wat uit bestaande literatuur geneem is. Twee voorondersoeke is uitgevoer en data wat van respondente ingesamel is met behulp van ’n aanlyn opname het 239 bruikbare vraelyste verskaf. Die finale skaal het twee primêre dimensies (i.e. GDOV en organisasieprestasie) en tien subdimensies behels. Die resultate bevestig dat die nuwe GDOV-skaal geldig is vir Suid-Afrikaanse organisasies en gebruik kan word om organisasieprestasie te verbeter. Die studie dra dus ’n geldige GDOV-skaal vir die Suid-Afrikaanse konteks by tot voordeel van akademici, navorsers en praktisyns in die strewe om grootdata- en GDOV-benutting beter te verstaan vir die transformasie van organisasies, en die verbetering van organisasie-ontwikkeling en organisasieprestasie. af
dc.description.abstract Imibhalo iqinisekisa ukuthi izinhlangano ezimbalwa zikwazile ukuthuthukisa ukusebenza kwenhlangano ngamakhono amakhulu okuhlaziya idatha (KAOD). Ngakho-ke, inhloso eyinhloko yalolu cwaningo bekuwukuklama nokuqinisekisa isikali sa- KAOD somongo waseNingizimu Afrika, nokucacisa uhlobo lobudlelwano ba- KAOD nokusebenza kwenhlangano. Inani labantu lihlonze abaphathi abakhulu, abaphathi nabahlaziyi bedatha abasebenza kumongo wedatha enkulu (IE) kanye nesikhala sa- KAOD nezinhlangano noma phakathi nokuqaliswa kwephrojekthi. Kwaklanywa isikali esisha esihlanganisa izinto ezifanele ngokusekelwe ekubuyekezweni okuphelele kwezincwadi nezinto ezithathwe ezincwadini ezikhona. Kwenziwa izifundo zokuhlola ezimbili futhi iminingwane eqoqwe kwabaphendulayo kusetshenziswa inhlolovo ye-inthanethi yanikeza imibuzo engama-239 esebenzisekayo. Isilinganiso sokugcina sasihlanganisa izilinganiso ezingqala ezimbili (okungukuthi, KAOD nokusebenza kwenhlangano) kanye nezingxenye ezingaphansi eziyishumi. Imiphumela iqinisekisa ukuthi isikali esisha sa- KAOD sivumelekile ezinhlanganweni zaseNingizimu Afrika futhi singasetshenziswa ukuthuthukisa ukusebenza kwenhlangano. Ngakho-ke lolu cwaningo lufaka isandla esikalini sa- KAOD esiqinisekisiwe somongo waseNingizimu Afrika ukuze kuzuze izifundiswa, abacwaningi kanye nabasebenzi emzamweni wokuqonda kabanzi ukusetshenziswa kwe- IE na- KAOD ekuguquleni izinhlangano, ukuthuthukiswa kwenhlangano kanye nokuthuthukisa ukusebenza kwenhlangano. zu
dc.format.extent 1 online resource (xiv, 170 leaves) : illustrations (some color), graph en
dc.language.iso en en
dc.subject Big data en
dc.subject Big data analytics en
dc.subject Big data analytics capabilities en
dc.subject Confirmatory factor analysis en
dc.subject Exploratory factor analysis en
dc.subject Organisational performance en
dc.subject Validation studies en
dc.subject Groot data af
dc.subject Grootdata-ontleding af
dc.subject Grootdata-ontledingsvermoens af
dc.subject Bevestigende faktorontleding af
dc.subject Eksploratiewe faktorontleding af
dc.subject Organisasieprestasie af
dc.subject Geldigheidstudies af
dc.subject Ukuhlaziywa kwedatha enkulu zu
dc.subject Amakhono amakhulu okuhlaziya idatha zu
dc.subject Ukuhlaziya isici sokuqinisekisa zu
dc.subject Ukuhlaziya isici sokuhlola zu
dc.subject Ukusebenza kwenhlangano zu
dc.subject Izifundo zokuqinisekisa zu
dc.subject SDG 9 Industry, Innovation and Infrastructure en
dc.subject.ddc 005.70968
dc.subject.lcsh Big data -- South Africa en
dc.subject.lcsh Organizational effectiveness -- South Africa en
dc.title The validation of a big data analytics capability scale for the South African context en
dc.type Dissertation en
dc.description.department Industrial and Organisational Psychology en
dc.description.degree M. Com. (Industrial and Organisational Psychology)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics