dc.contributor.advisor |
Mukeru, Safari
|
|
dc.contributor.advisor |
Mulaudzi, Mmboniseni
|
|
dc.contributor.author |
Mpanda, Marc Mukendi
|
|
dc.date.accessioned |
2023-02-17T08:05:33Z |
|
dc.date.available |
2023-02-17T08:05:33Z |
|
dc.date.issued |
2022-08 |
|
dc.date.submitted |
2023-02-17 |
|
dc.identifier.uri |
https://hdl.handle.net/10500/29805 |
|
dc.description.abstract |
In this thesis, we investigate the roughness feature within realised volatility
for different financial markets by using the multifractal detrended fluctuation
approach and microstructure noise index technique, and we confirm that the
Hurst parameter H 6= 1/2. To include this feature in stochastic volatility
modelling, we construct an arbitrage-free financial market model that con sists of two assets, the risk-free and the risky assets. The price of a risk-free
asset is described by an exponential function while the one for a risky as set is driven by a geometric Brownian motion with its stochastic volatility
described as a function of fractional Cox-Ingersoll-Ross process defined by
Yt = Z
2
t
, where the process (Zt)t≥0 satisfies a singular stochastic differential
driven by fractional Brownian motion (WH
t
)t≥0, H∈(0,1). The stochastic pro cess (Zt)t≥0 verifies dZt = |
en |
dc.format.extent |
1 online resource (xiii, 144 leaves) : color illustrations, color graphs |
|
dc.language.iso |
en |
en |
dc.subject |
Fractional Brownian Motion |
en |
dc.subject |
Hurst parameter |
en |
dc.subject |
Malliavin calculus |
en |
dc.subject |
Financial Market Model |
en |
dc.subject |
Stock Price process |
en |
dc.subject |
Fractional Volatility Process |
en |
dc.subject |
Fractional Cox-Ingersoll-Ross process |
en |
dc.subject |
Heston model |
en |
dc.subject |
Option pricing |
en |
dc.subject |
Payoff function |
en |
dc.subject.ddc |
332.0727 |
|
dc.subject.lcsh |
Malliavin calculus |
en |
dc.subject.lcsh |
Stocks -- Prices |
en |
dc.subject.lcsh |
Finance -- Statistical methods |
en |
dc.subject.lcsh |
Finance -- Mathematical methods |
en |
dc.subject.lcsh |
Stochastic models |
en |
dc.title |
On fractional volatility modelling |
en |
dc.type |
Thesis |
en |
dc.description.department |
Colleges of Economic and Management Sciences |
en |
dc.description.degree |
Ph. D. (Operations Research) |
|