Institutional Repository

On fractional volatility modelling

Show simple item record

dc.contributor.advisor Mukeru, Safari
dc.contributor.advisor Mulaudzi, Mmboniseni
dc.contributor.author Mpanda, Marc Mukendi
dc.date.accessioned 2023-02-17T08:05:33Z
dc.date.available 2023-02-17T08:05:33Z
dc.date.issued 2022-08
dc.date.submitted 2023-02-17
dc.identifier.uri https://hdl.handle.net/10500/29805
dc.description.abstract In this thesis, we investigate the roughness feature within realised volatility for different financial markets by using the multifractal detrended fluctuation approach and microstructure noise index technique, and we confirm that the Hurst parameter H 6= 1/2. To include this feature in stochastic volatility modelling, we construct an arbitrage-free financial market model that con sists of two assets, the risk-free and the risky assets. The price of a risk-free asset is described by an exponential function while the one for a risky as set is driven by a geometric Brownian motion with its stochastic volatility described as a function of fractional Cox-Ingersoll-Ross process defined by Yt = Z 2 t , where the process (Zt)t≥0 satisfies a singular stochastic differential driven by fractional Brownian motion (WH t )t≥0, H∈(0,1). The stochastic pro cess (Zt)t≥0 verifies dZt = en
dc.format.extent 1 online resource (xiii, 144 leaves) : color illustrations, color graphs
dc.language.iso en en
dc.subject Fractional Brownian Motion en
dc.subject Hurst parameter en
dc.subject Malliavin calculus en
dc.subject Financial Market Model en
dc.subject Stock Price process en
dc.subject Fractional Volatility Process en
dc.subject Fractional Cox-Ingersoll-Ross process en
dc.subject Heston model en
dc.subject Option pricing en
dc.subject Payoff function en
dc.subject.ddc 332.0727
dc.subject.lcsh Malliavin calculus en
dc.subject.lcsh Stocks -- Prices en
dc.subject.lcsh Finance -- Statistical methods en
dc.subject.lcsh Finance -- Mathematical methods en
dc.subject.lcsh Stochastic models en
dc.title On fractional volatility modelling en
dc.type Thesis en
dc.description.department Colleges of Economic and Management Sciences en
dc.description.degree Ph. D. (Operations Research)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics