Institutional Repository

An assessment of indoor and outdoor air quality in a university environment : a case of University of Limpopo, South Africa

Show simple item record

dc.contributor.advisor Ngole-Jeme, Veronica
dc.contributor.author Mundackal, Antony Jino
dc.date.accessioned 2021-06-23T13:54:09Z
dc.date.available 2021-06-23T13:54:09Z
dc.date.issued 2020-03
dc.date.submitted 2021-06-23
dc.identifier.uri http://hdl.handle.net/10500/27534
dc.description.abstract Air pollution of late has been the focus of many studies due to the detrimental health risks that it poses to individuals. University environments have several academic departments with peculiar activities that could be affecting the indoor and outdoor air quality (AQ) of these environments. University settings differ from other environments because of the variety of activities and different lines of work that go on inside buildings housing academic departments and their surroundings, which are likely to have an impact on indoor air quality (IAQ) and outdoor air quality (OAQ) in this environment. Only a few AQ studies have been done in university sites and surrounds worldwide and in these studies, IAQ was given primary importance; whereas, the outdoor environment was and is often neglected. A study comparing both IAQ and OAQ is critical to further understand the relationship between IAQ and OAQ within a university campus. The University of Limpopo (UL) in the Mankweng township of South Africa has been undergoing some refurbishments with numerous construction activities going on in addition to the academic activities of UL. These activities may be affecting the AQ in this unique environment. The main aim of this study was to determine differences between indoor and outdoor AQ in a university environment and to understand how AQ in this unique environment varies with seasons and building function. The study was carried out in three buildings housing three different academic departments in UL namely: Department of Physiology and Environmental Health (PEH), Department of Biochemistry, Microbiology, and Biotechnology (BMBT) and the Department of Biodiversity (BIOD). Twenty indoor and 20 outdoor measuring sites were identified per departmental building from where real-time measurements of 11 AQ parameters (linear air velocity (LAV), dry-bulb temperature (Tdb), relative humidity (RH), carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), sulphur dioxide (SO2), nitrogen dioxide (NO2), hydrogen sulphide (H2S), non-methane hydrocarbons (NMHCs) and volatile organic compounds (VOCs)) were taken over three consecutive days per season. Thus, a total of 60 indoor and 60 outdoor measurements were taken for each parameter in each of the three buildings of interest per season, leading to 360 measurements per season and 1440 measurement per parameter over the one-year period of study across the study area. A hot-wire anemometer was used to measure LAV, whereas the Q-Trak indoor AQ monitor was used in the measurement of Tdb, RH, CO and CO2. Aeroqual AQ monitors were employed in the measurement of O3, SO2, NO2, H2S, NMHCs and VOCs. The Wilcoxon signed ranks test was used to determine differences between indoor and outdoor environments. Significant differences were found between the indoor and outdoor environments for LAV (all three buildings), Tdb (PEH and BMBT), RH (BIOD), O3 (all three buildings), NO2 (all three buildings), CO (all three buildings), CO2 (all three buildings), NMHCs (BMBT and BIOD), and VOCs (all three buildings) (p < 0.05). Linear air velocity, O3, SO2, CO, CO2, and H2S values/concentrations across the indoor/outdoor environments were within the ASHRAE/DEA/WHO guidelines/standards, whereas Tdb, RH and NO2 values/concentrations were not. Air quality in the study area varied with building, with the best AQ across both the indoor and outdoor environments being within the BIOD building, whilst the worst AQ across both environments was encountered in the PEH building. Seasonal differences between buildings were also identified between indoor and outdoor environments among the PEH, BMBT and BIOD buildings (p < 0.008). Across the indoor environment, the winter season was found to be the season with the best AQ, since all the pollutants were found at minimum concentrations. Factors affecting AQ in the study area included thermal comfort, occupant densities, building function, laboratory emissions, renovation activities, generators, vehicular emissions, among others. The best AQ across the outdoor environment occurred during the autumn season, since all the air pollutants were present at minimal concentrations during this time. The best predictors of LAV, Tdb, CO, CO2, NO2, and NMHCs were seasons (R2 = 1.000, p < 0.01). For the parameters RH, H2S, and VOCs, the best predictor was building type (R2 = 1.000, p < 0.01). The indoor and outdoor environment were the best predictors for SO2 (R2 = 0.999, p < 0.01). Ozone had no single predictor that was found to significantly influence its concentration in this study. In relation to an air pollution index (API), generally all pollutant indices fell within the fair, good to very good range when using mean and maxima concentrations, whereas, corresponding NO2 concentrations throughout the study fell within the poor to very poor range (105.660–250.000). University management should take into consideration ventilation in laboratories, occupant densities and location of standby generators and car parks in the management of AQ on the university campus. All heating, ventilation and air conditioning (HVAC) systems need to be upgraded and work in tandem with natural ventilation when having high occupant densities within buildings. Future studies in this sector could incorporate larger sample sizes, be designed as a longitudinal study, and make use of questionnaires and sample more AQ parameters to get a detailed understanding of a university site and its surrounds. en
dc.format.extent 1 online resource (xvi, 234 leaves) : color illustrations, color graphs en
dc.language.iso en en
dc.subject.ddc 363.73920968256
dc.subject.lcsh Indoor air pollution -- South Africa -- Polokwane -- Case studies en
dc.subject.lcsh Air quality management -- South Africa -- Polokwane -- Case studies en
dc.subject.lcsh Indoor air quality -- South Africa -- Polokwane -- Case studies en
dc.subject.lcsh Laboratories -- Heating and ventilation -- South Africa -- Polokwane -- Case studies en
dc.subject.lcsh Buildings -- Repair and reconstruction -- South Africa -- Polokwane -- Case studies en
dc.subject.lcsh University of Limpopo -- Case studies en
dc.title An assessment of indoor and outdoor air quality in a university environment : a case of University of Limpopo, South Africa en
dc.type Thesis en
dc.description.department Environmental Sciences en
dc.description.degree Ph. D. (Environmental Science)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics