Institutional Repository

An analysis of semantic data quality defiencies in a national data warehouse: a data mining approach

Show simple item record

dc.contributor.advisor Bankole, F. O.
dc.contributor.advisor Omlin, Christian W.
dc.contributor.author Barth, Kirstin
dc.date.accessioned 2019-07-17T11:51:41Z
dc.date.available 2019-07-17T11:51:41Z
dc.date.issued 2018-09
dc.date.submitted 2019-07
dc.identifier.citation Barth, Kirstin (2018) An analysis of semantic data quality defiencies in a national data warehouse: a data mining approach, University of South Africa, Pretoria, <http://hdl.handle.net/10500/25576>
dc.identifier.uri http://hdl.handle.net/10500/25576
dc.description.abstract This research determines whether data quality mining can be used to describe, monitor and evaluate the scope and impact of semantic data quality problems in the learner enrolment data on the National Learners’ Records Database. Previous data quality mining work has focused on anomaly detection and has assumed that the data quality aspect being measured exists as a data value in the data set being mined. The method for this research is quantitative in that the data mining techniques and model that are best suited for semantic data quality deficiencies are identified and then applied to the data. The research determines that unsupervised data mining techniques that allow for weighted analysis of the data would be most suitable for the data mining of semantic data deficiencies. Further, the academic Knowledge Discovery in Databases model needs to be amended when applied to data mining semantic data quality deficiencies. en
dc.format.extent 1 online resource (iii, 642 leaves) : illustrations, graphs en
dc.language.iso en en
dc.subject Data warehouse en
dc.subject Data mining en
dc.subject Data quality mining en
dc.subject Exploratory data mining en
dc.subject Cluster analysis en
dc.subject Association rule en
dc.subject Knowledge discovery in databases en
dc.subject National Learners’ Records Database en
dc.subject Learner enrolment data en
dc.subject Semantic data quality deficiencies en
dc.subject.ddc 005.745
dc.subject.lcsh Data warehousing en
dc.subject.lcsh Data mining en
dc.subject.lcsh Cluster analysis en
dc.subject.lcsh Association rule mining en
dc.title An analysis of semantic data quality defiencies in a national data warehouse: a data mining approach en
dc.type Dissertation en
dc.description.department School of Computing en
dc.description.degree M. Tech. (Information Technology)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics