dc.description.abstract |
One aspect of critical reasoning is the analysis and appraisal of claims and arguments. A typical problem, when analysing and appraising arguments, is inconsistent statements. Although several inconsistencies may have deleterious effects on rationality and action, not all of them do. As educators, we also have an obligation to teach this evaluation in a way that does justice to our normal reasoning practices and judgements of inconsistency. Thus, there is a need to determine the acceptable inconsistencies from those that are not, and to impart that information to students.
We might ask: What is the best concept of inconsistency for critical reasoning and pedagogy? While the answer might appear obvious to some, the history of philosophy shows that there are many concepts of “inconsistency”, the most common of which comes from classical logic and its reliance on opposing truth-values. The current exemplar of this is the standard truth functional account from propositional logic. Initially, this conception is shown to be problematic, practically, conceptually and pedagogically speaking. Especially challenging from the classical perspective are the concepts of ex contradictione quodlibet and ex falso quodlibet. The concepts may poison the well against any notion of inconsistency, which is not something that should be done unreflectively. Ultimately, the classical account of inconsistency is rejected.
In its place, a semantic conception of inconsistency is argued for and demonstrated to handle natural reasoning cases effectively. This novel conception utilises the conceptual antonym theory to explain semantic contrast and gradation, even in the absence of non-canonical antonym pairs. The semantic conception of inconsistency also fits with an interrogative argument model that exploits inconsistency to display semantic contrast in reasons and conclusions. A method for determining substantive inconsistencies follows from this argument model in a
4
straightforward manner. The conceptual fit is then incorporated into the pedagogy of critical reasoning, resulting in a natural approach to reasoning which students can apply to practical matters of everyday life, which include inconsistency. Thus, the best conception of inconsistency for critical reasoning and its pedagogy is the semantic, not the classical. |
en |