dc.contributor.author |
Potgieter, Paul
|
|
dc.date.accessioned |
2015-07-03T09:46:36Z |
|
dc.date.available |
2015-07-03T09:46:36Z |
|
dc.date.issued |
2012 |
|
dc.identifier.citation |
Potgieter, P. (2012). The rapid points of a complex oscillation.Logical Methods in Computer Science. Vol 8 (1:23). P1-11. DOI:10.2168/LMCS-8 (1:23) 2012 |
en |
dc.identifier.issn |
1860-5974 |
|
dc.identifier.uri |
http://hdl.handle.net/10500/18771 |
|
dc.description.abstract |
By considering a counting-type argument on Brownian sample paths, we prove
a result similar to that of Orey and Taylor on the exact Hausdorff dimension of the rapid
points of Brownian motion. Because of the nature of the proof we can then apply the
concepts to so-called complex oscillations (or algorithmically random Brownian motion),
showing that their rapid points have the same dimension. |
en |
dc.language.iso |
en |
en |
dc.title |
The rapid points of a complex oscillation |
en |
dc.type |
Article |
en |
dc.description.department |
Decision Sciences |
en |