Institutional Repository

The rapid points of a complex oscillation

Show simple item record

dc.contributor.author Potgieter, Paul
dc.date.accessioned 2015-07-03T09:46:36Z
dc.date.available 2015-07-03T09:46:36Z
dc.date.issued 2012
dc.identifier.citation Potgieter, P. (2012). The rapid points of a complex oscillation.Logical Methods in Computer Science. Vol 8 (1:23). P1-11. DOI:10.2168/LMCS-8 (1:23) 2012 en
dc.identifier.issn 1860-5974
dc.identifier.uri http://hdl.handle.net/10500/18771
dc.description.abstract By considering a counting-type argument on Brownian sample paths, we prove a result similar to that of Orey and Taylor on the exact Hausdorff dimension of the rapid points of Brownian motion. Because of the nature of the proof we can then apply the concepts to so-called complex oscillations (or algorithmically random Brownian motion), showing that their rapid points have the same dimension. en
dc.language.iso en en
dc.title The rapid points of a complex oscillation en
dc.type Article en
dc.description.department Decision Sciences en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics