dc.contributor.advisor |
Manale, J. M.
|
|
dc.contributor.author |
Adams, Conny Molatlhegi
|
|
dc.date.accessioned |
2015-03-23T07:00:40Z |
|
dc.date.available |
2015-03-23T07:00:40Z |
|
dc.date.issued |
2014-08 |
|
dc.identifier.citation |
Adams, Conny Molatlhegi (2014) A Lie symmetry analysis of the heat equation through modified one-parameter local point transformation, University of South Africa, Pretoria, <http://hdl.handle.net/10500/18414> |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/18414 |
|
dc.description.abstract |
Using a Lie symmetry group generator and a generalized form of Manale's formula
for solving second order ordinary di erential equations, we determine new symmetries
for the one and two dimensional heat equations, leading to new solutions. As
an application, we test a formula resulting from this approach on thin plate heat
conduction. |
en |
dc.format.extent |
1 online resource (ix, 92 leaves) |
|
dc.language.iso |
en |
en |
dc.subject |
Heat equation |
en |
dc.subject |
Partial differential equation |
en |
dc.subject |
Lie point symmetry |
en |
dc.subject |
Lie equivalence transformation |
en |
dc.subject |
Invariant solution |
en |
dc.subject.ddc |
515.353 |
|
dc.subject.lcsh |
Heat equation |
en |
dc.subject.lcsh |
Partial differential equations |
en |
dc.subject.lcsh |
Lie algebras |
en |
dc.title |
A Lie symmetry analysis of the heat equation through modified one-parameter local point transformation |
en |
dc.type |
Dissertation |
en |
dc.description.department |
Applied Mathematics |
en |
dc.description.degree |
M. Sc. (Applied Mathematics) |
|