dc.contributor.advisor |
Lesame, W. M.
|
en |
dc.contributor.advisor |
Bishop, N. T.
|
en |
dc.contributor.author |
Kubeka, Amos Soweto
|
en |
dc.date.accessioned |
2009-08-25T10:55:29Z |
|
dc.date.available |
2009-08-25T10:55:29Z |
|
dc.date.issued |
2013-02 |
|
dc.date.submitted |
2015-02-17 |
en |
dc.identifier.citation |
Kubeka, Amos Soweto (2013) Linear perturbations of a Schwarzschild black hole, University of South Africa, Pretoria, <http://hdl.handle.net/10500/1667> |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/1667 |
|
dc.description.abstract |
We firstly numerically recalculate the Ricci tensor of non-stationary axisymmetric
space-times (originally calculated by Chandrasekhar) and we find some discrepancies
both in the linear and non-linear terms. However, these discrepancies do not affect
the results concerning linear perturbations of a Schwarzschild black hole. Secondly,
we use these Ricci tensors to derive the Zerilli and Regge-Wheeler equations and use
the Newman-Penrose formalism to derive the Bardeen-Press equation. We show the
relation between these equations because they describe the same linear perturbations
of a Schwarzschild black hole. Thirdly, we illustrate heuristically (when the angular
momentum (l) is 2) the relation between the linearized solution of the Einstein vacuum
equations obtained from the Bondi-Sachs metric and the Zerilli equation, because
they describe the same linear perturbations of a Schwarzschild black hole. Lastly, by
means of a coordinate transformation, we extend Chandrasekhar's results on linear
perturbations of a Schwarzschild black hole to the Bondi-Sachs framework. |
en |
dc.format.extent |
1 online resource (xvii, 161 leaves) |
|
dc.language.iso |
en |
en |
dc.subject |
Linear perturbations |
en |
dc.subject |
Gravitational radiation |
en |
dc.subject |
Black hole perturbation theory |
en |
dc.subject |
Black hole theory |
en |
dc.subject |
Einstein vacuum equations linear solution |
en |
dc.subject |
Schwarzschild black hole |
en |
dc.subject |
Bondi-Sachs metric |
en |
dc.subject.ddc |
523.887501515392 |
|
dc.subject.lcsh |
Black holes (Astronomy) -- Mathematics |
en |
dc.subject.lcsh |
Perturbation (Mathematics) |
en |
dc.subject.lcsh |
Schwarzschild black holes |
en |
dc.subject.lcsh |
Bondi, Hermann -- Knowledge -- Schwarzschild black holes |
en |
dc.subject.lcsh |
Sachs, R. K. (Rainer Kurt), 1932- -- Knowledge -- Schwarzschild black holes |
en |
dc.title |
Linear perturbations of a Schwarzschild black hole |
en |
dc.type |
Thesis |
en |
dc.description.department |
Mathematical Sciences |
en |
dc.description.degree |
M. Sc. (Applied Mathematics) |
en |