Institutional Repository

Linear perturbations of a Schwarzschild black hole

Show simple item record

dc.contributor.advisor Lesame, W. M. en
dc.contributor.advisor Bishop, N. T. en
dc.contributor.author Kubeka, Amos Soweto en
dc.date.accessioned 2009-08-25T10:55:29Z
dc.date.available 2009-08-25T10:55:29Z
dc.date.issued 2013-02
dc.date.submitted 2015-02-17 en
dc.identifier.citation Kubeka, Amos Soweto (2013) Linear perturbations of a Schwarzschild black hole, University of South Africa, Pretoria, <http://hdl.handle.net/10500/1667> en
dc.identifier.uri http://hdl.handle.net/10500/1667
dc.description.abstract We firstly numerically recalculate the Ricci tensor of non-stationary axisymmetric space-times (originally calculated by Chandrasekhar) and we find some discrepancies both in the linear and non-linear terms. However, these discrepancies do not affect the results concerning linear perturbations of a Schwarzschild black hole. Secondly, we use these Ricci tensors to derive the Zerilli and Regge-Wheeler equations and use the Newman-Penrose formalism to derive the Bardeen-Press equation. We show the relation between these equations because they describe the same linear perturbations of a Schwarzschild black hole. Thirdly, we illustrate heuristically (when the angular momentum (l) is 2) the relation between the linearized solution of the Einstein vacuum equations obtained from the Bondi-Sachs metric and the Zerilli equation, because they describe the same linear perturbations of a Schwarzschild black hole. Lastly, by means of a coordinate transformation, we extend Chandrasekhar's results on linear perturbations of a Schwarzschild black hole to the Bondi-Sachs framework. en
dc.format.extent 1 online resource (xvii, 161 leaves)
dc.language.iso en en
dc.subject Linear perturbations en
dc.subject Gravitational radiation en
dc.subject Black hole perturbation theory en
dc.subject Black hole theory en
dc.subject Einstein vacuum equations linear solution en
dc.subject Schwarzschild black hole en
dc.subject Bondi-Sachs metric en
dc.subject.ddc 523.887501515392
dc.subject.lcsh Black holes (Astronomy) -- Mathematics en
dc.subject.lcsh Perturbation (Mathematics) en
dc.subject.lcsh Schwarzschild black holes en
dc.subject.lcsh Bondi, Hermann -- Knowledge -- Schwarzschild black holes en
dc.subject.lcsh Sachs, R. K. (Rainer Kurt), 1932- -- Knowledge -- Schwarzschild black holes en
dc.title Linear perturbations of a Schwarzschild black hole en
dc.type Thesis en
dc.description.department Mathematical Sciences en
dc.description.degree M. Sc. (Applied Mathematics) en


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics