dc.contributor.advisor |
Salbany, Sergio
|
|
dc.contributor.author |
Brooks, Hannalie Helena
|
en |
dc.date.accessioned |
2015-01-23T04:24:14Z |
|
dc.date.available |
2015-01-23T04:24:14Z |
|
dc.date.issued |
2002-11 |
en |
dc.identifier.citation |
Brooks, Hannalie Helena (2002) Measurable functions and Lebesgue integration, University of South Africa, Pretoria, <http://hdl.handle.net/10500/16035> |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/16035 |
|
dc.description.abstract |
In this thesis we shall examine the role of measurerability in the theory
of Lebesgue Integration. This shall be done in the context of
the real line where we define the notion of an integral of a bounded
real-valued function over a set of bounded outer measure without a prior assumption of measurability concerning the function and the domain of integration. |
|
dc.format.extent |
1 online resource (x, 63 leaves) |
en |
dc.language.iso |
en |
|
dc.subject |
Lebesgue integral |
|
dc.subject |
Measurable set |
|
dc.subject |
Outer measure |
|
dc.subject |
Inner measure |
|
dc.subject |
Generalised Lebesgue Integral |
|
dc.subject |
Inner integrals |
|
dc.subject |
Outer integrals |
|
dc.subject |
Integrability |
|
dc.subject |
Limit theorems |
|
dc.subject |
Role of measurability |
|
dc.subject.ddc |
515.43 |
en |
dc.subject.lcsh |
Lebesgue integral |
en |
dc.subject.lcsh |
Measure theory |
en |
dc.subject.lcsh |
Limit theorems (Probability theory) |
en |
dc.title |
Measurable functions and Lebesgue integration |
en |
dc.type |
Dissertation |
|
dc.description.department |
Mathematical Sciences |
|
dc.description.degree |
M. Sc. (Mathematics) |
en |