Dynamics of the breakup of two-body halo nuclei

Loading...
Thumbnail Image

Authors

Mukeru, Bahati

Issue Date

2015-06

Type

Thesis

Language

en

Keywords

Interferences , Integrated breakup cross sections , Continuum-continuum couplings , Differential breakup cross sections

Research Projects

Organizational Units

Journal Issue

Alternative Title

Abstract

In this thesis, the first-order and higher-order interferences on the total (Coulomb+nuclear), Coulomb and nuclear breakup cross sections in the 15C+208Pb, 11Be+208Pb breakup reactions are first studied at 68 MeV/u incident energy. It is shown that the first-order interference reduces by more than 60% the total breakup cross sections, by less than 3% the Coulomb breakup cross sections and by more than 85% the nuclear breakup cross sections, for both reactions. On the other hand, the high-order interference is found to reduce by less than 9% the total breakup cross section, less than 1% the Coulomb breakup cross section and less than 7% the nuclear breakup cross section for the 15C+208Pb reaction. For the 11Be+208Pb reaction however, the high-order interference reduces by less than 7% the total breakup cross section, by less than 1% the Coulomb breakup cross section and by less than 4% the nuclear breakup cross section. It is finally shown that even at first-order, the incoherent sum of the nuclear breakup cross sections is more important than the incoherent sum of the Coulomb breakup cross sections for the two reactions. The role of the diagonal and off-diagonal continuum-continuum couplings on total, Coulomb and nuclear breakup cross sections is also investigated for the 8B+58Ni, 8B+208Pb and 19C+208Pb at 29.3, 170.3 MeV and 1273 MeV incident energies respectively. Qualitatively, we found that, the diagonal continuum-continuum couplings are responsible for the large reduction of the differential total and nuclear breakup cross sections at backward angles. At forward angles, this reduction is due to the off-diagonal continuum-continuum couplings. In the absence of these couplings, the nuclear breakup is the more dominant process, while when they are included, the Coulomb breakup becomes dominant. This shows that, the nuclear breakup is more affected by the continuum-continuum couplings than its Coulomb counterpart. Quantitatively, we found that, the off-diagonal countinuum-countinuum couplings reduce by 13.39%, 12.71% and 11.11% the total breakup cross sections for the 8B+58Ni, 8B+208Pb and 19C+208Pb reactions, respectively.

Description

Citation

Mukera, Bahati (2015) Dynamics of the breakup of two-body halo nuclei, University of South Africa, Pretoria, <http://hdl.handle.net/10500/20711>

Publisher

License

Journal

Volume

Issue

PubMed ID

DOI

ISSN

EISSN