Institutional Repository

Characterising the Martin-Löf random sequences using computably enumerable sets of measure one

Show simple item record

dc.contributor.author Davie G. en
dc.date.accessioned 2012-11-01T16:31:36Z
dc.date.available 2012-11-01T16:31:36Z
dc.date.issued 2004 en
dc.identifier.citation Information Processing Letters en
dc.identifier.citation 92 en
dc.identifier.citation 3 en
dc.identifier.issn 200190 en
dc.identifier.other 10.1016/j.ipl.2004.06.016 en
dc.identifier.uri http://hdl.handle.net/10500/7423
dc.description.abstract The Martin-Löf random sequences using the computably enumerable (c.e.) sets of measure one was characterized. It was found that an infinite binary sequence is Martin-Löf random, if it passes all Martin-Löf tests. It was shown that a set of binary strings of ever decreasing nature can be encoded of any c.e. set of measure one as a Martin-Löf test. Martin-Löf proved that an infinite binary sequences passes all these tests with probability one. en
dc.language.iso en en
dc.subject Compressibility coefficient; Computational complexity; Kolmogorov complexity; Martin-Löf random; Probability law Algorithms; Computational complexity; Data processing; Mathematical operators; Probability; Random processes; Set theory; Theorem proving; Compressability coefficients; Kolmogorov complexity; Martin-Löf random; Probability law; Binary sequences en
dc.title Characterising the Martin-Löf random sequences using computably enumerable sets of measure one en
dc.type Article en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics