dc.contributor.author |
De Bonis A.
|
en |
dc.contributor.author |
Katona G.O.H.
|
en |
dc.contributor.author |
Swanepoel K.J.
|
en |
dc.date.accessioned |
2012-11-01T16:31:35Z |
|
dc.date.available |
2012-11-01T16:31:35Z |
|
dc.date.issued |
2005 |
en |
dc.identifier.citation |
Journal of Combinatorial Theory. Series A |
en |
dc.identifier.citation |
111 |
en |
dc.identifier.citation |
2 |
en |
dc.identifier.issn |
973165 |
en |
dc.identifier.other |
10.1016/j.jcta.2005.01.002 |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/7391 |
|
dc.description.abstract |
Let F be a family of subsets of an n-element set not containing four distinct members such that A ∪ B ⊆ C ∩ D. It is proved that the maximum size of F under this condition is equal to the sum of the two largest binomial coefficients of order n. The maximum families are also characterized. A LYM-type inequality for such families is given, too. © 2005 Elsevier Inc. All rights reserved. |
en |
dc.language.iso |
en |
en |
dc.subject |
Families of subsets; LYM; Sperner |
en |
dc.title |
Largest family without A ∪ B ⊆ C ∩ D |
en |
dc.type |
Article |
en |