Institutional Repository

Largest family without A ∪ B ⊆ C ∩ D

Show simple item record

dc.contributor.author De Bonis A. en
dc.contributor.author Katona G.O.H. en
dc.contributor.author Swanepoel K.J. en
dc.date.accessioned 2012-11-01T16:31:35Z
dc.date.available 2012-11-01T16:31:35Z
dc.date.issued 2005 en
dc.identifier.citation Journal of Combinatorial Theory. Series A en
dc.identifier.citation 111 en
dc.identifier.citation 2 en
dc.identifier.issn 973165 en
dc.identifier.other 10.1016/j.jcta.2005.01.002 en
dc.identifier.uri http://hdl.handle.net/10500/7391
dc.description.abstract Let F be a family of subsets of an n-element set not containing four distinct members such that A ∪ B ⊆ C ∩ D. It is proved that the maximum size of F under this condition is equal to the sum of the two largest binomial coefficients of order n. The maximum families are also characterized. A LYM-type inequality for such families is given, too. © 2005 Elsevier Inc. All rights reserved. en
dc.language.iso en en
dc.subject Families of subsets; LYM; Sperner en
dc.title Largest family without A ∪ B ⊆ C ∩ D en
dc.type Article en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics