Institutional Repository

Characterizations of noncommutative H ∞

Show simple item record

dc.contributor.author Blecher D.P. en
dc.contributor.author Labuschagne L.E. en
dc.date.accessioned 2012-11-01T16:31:32Z
dc.date.available 2012-11-01T16:31:32Z
dc.date.issued 2006 en
dc.identifier.citation Integral Equations and Operator Theory en
dc.identifier.citation 56 en
dc.identifier.citation 3 en
dc.identifier.issn 0378620X en
dc.identifier.other 10.1007/s00020-006-1425-5 en
dc.identifier.uri http://hdl.handle.net/10500/7318
dc.description.abstract We transfer a large part of the circle of theorems characterizing the generalization of classical H ∞ known as 'weak* Dirichlet algebras', to Arveson's very general noncommutative setting of subalgebras of finite von Neumann algebras. This solves the long-standing open question of the equivalence of principles such as Szegö's theorem, the weak* density of A +A*, and so on, within the noncommutative setting. The techniques should also be useful in future developments in noncommutative H p theory. © Birkhäuser Verlag, Basel 2006. en
dc.language.iso en en
dc.subject Finite von Neumann algebras; Logmodular; Noncommutative Hardy spaces; Subdiagonal operator algebra en
dc.title Characterizations of noncommutative H ∞ en
dc.type Article en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics