dc.contributor.author |
Blecher D.P.
|
en |
dc.contributor.author |
Labuschagne L.E.
|
en |
dc.date.accessioned |
2012-11-01T16:31:32Z |
|
dc.date.available |
2012-11-01T16:31:32Z |
|
dc.date.issued |
2006 |
en |
dc.identifier.citation |
Integral Equations and Operator Theory |
en |
dc.identifier.citation |
56 |
en |
dc.identifier.citation |
3 |
en |
dc.identifier.issn |
0378620X |
en |
dc.identifier.other |
10.1007/s00020-006-1425-5 |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/7318 |
|
dc.description.abstract |
We transfer a large part of the circle of theorems characterizing the generalization of classical H ∞ known as 'weak* Dirichlet algebras', to Arveson's very general noncommutative setting of subalgebras of finite von Neumann algebras. This solves the long-standing open question of the equivalence of principles such as Szegö's theorem, the weak* density of A +A*, and so on, within the noncommutative setting. The techniques should also be useful in future developments in noncommutative H p theory. © Birkhäuser Verlag, Basel 2006. |
en |
dc.language.iso |
en |
en |
dc.subject |
Finite von Neumann algebras; Logmodular; Noncommutative Hardy spaces; Subdiagonal operator algebra |
en |
dc.title |
Characterizations of noncommutative H ∞ |
en |
dc.type |
Article |
en |