Institutional Repository

Rank and the Drazin inverse in Banach algebras

Show simple item record

dc.contributor.author Brits R.M. en
dc.contributor.author Lindeboom L. en
dc.contributor.author Raubenheimer H. en
dc.date.accessioned 2012-11-01T16:31:29Z
dc.date.available 2012-11-01T16:31:29Z
dc.date.issued 2006 en
dc.identifier.citation Studia Mathematica en
dc.identifier.citation 177 en
dc.identifier.citation 3 en
dc.identifier.issn 393223 en
dc.identifier.other 10.4064/sm177-3-2 en
dc.identifier.uri http://hdl.handle.net/10500/7296
dc.description.abstract Let A be an arbitrary, unital and semisimple Banach algebra with nonzero socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and H. Mouton) and the Drazin index for elements belonging to the socle of A. In particular, we show that the results for the finite-dimensional case can be extended to the (infinite-dimensional) socle of A. en
dc.language.iso en en
dc.subject Drazin inverse; Rank; Semisimple Banach algebra en
dc.title Rank and the Drazin inverse in Banach algebras en
dc.type Article en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics