Institutional Repository

Bounds for the Bayes error in classification: A Bayesian approach using discriminant analysis

Show simple item record

dc.contributor.author Pham-Gia T. en
dc.contributor.author Turkkan N. en
dc.contributor.author Bekker A. en
dc.date.accessioned 2012-11-01T16:31:28Z
dc.date.available 2012-11-01T16:31:28Z
dc.date.issued 2007 en
dc.identifier.citation Statistical Methods and Applications en
dc.identifier.citation 16 en
dc.identifier.citation 1 en
dc.identifier.issn 16182510 en
dc.identifier.other 10.1007/s10260-006-0012-x en
dc.identifier.uri http://hdl.handle.net/10500/7280
dc.description.abstract We study two of the classical bounds for the Bayes error P e , Lissack and Fu's separability bounds and Bhattacharyya's bounds, in the classification of an observation into one of the two determined distributions, under the hypothesis that the prior probability χ itself has a probability distribution. The effectiveness of this distribution can be measured in terms of the ratio of two mean values. On the other hand, a discriminant analysis-based optimal classification rule allows us to derive the posterior distribution of χ, together with the related posterior bounds of P e. © Springer-Verlag 2007. en
dc.language.iso en en
dc.subject Bernoulli; Beta distribution; Bhattacharyya bounds; Discriminant analysis; Hypergeometric functions; Lissack and Fu bounds; Misclassification; Overlapping coefficient en
dc.title Bounds for the Bayes error in classification: A Bayesian approach using discriminant analysis en
dc.type Article en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics