dc.contributor.author |
Botha A.E.
|
en |
dc.date.accessioned |
2012-11-01T16:31:26Z |
|
dc.date.available |
2012-11-01T16:31:26Z |
|
dc.date.issued |
2012 |
en |
dc.identifier.citation |
Computer Physics Communications |
en |
dc.identifier.citation |
183 |
en |
dc.identifier.citation |
1 |
en |
dc.identifier.issn |
104655 |
en |
dc.identifier.other |
10.1016/j.cpc.2011.08.019 |
en |
dc.identifier.uri |
http://hdl.handle.net/10500/7222 |
|
dc.description.abstract |
A Fortran 90 code is provided for calculating the electron reflection and transmission coefficients in semiconductor heterostructures within the 14-band k · p approximation. The code may easily be adapted for use with any k · p model, including magnetic field and/or strain effects, for example. Numerical instability, which is problematic in type-II systems due to the simultaneous presence of propagating and evanescent states, is reduced by developing a novel log-derivative R-matrix approach based on the Jost solution to the k · p equation. © 2011 Elsevier B.V. All rights reserved. |
en |
dc.language.iso |
en |
en |
dc.subject |
Jost solution; Multiband k · p model; Quantum transport; Reflection matrix; Semiconductor heterostructures Jost solutions; P-model; Quantum transport; Reflection matrix; Semiconductor heterostructures; Crystals; Magnetic field effects; Quantum chemistry; Quantum electronics; Heterojunctions |
en |
dc.title |
General R-matrix approach for integrating the multiband k · p equation in layered semiconductor structures |
en |
dc.type |
Article |
en |