Institutional Repository

Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment

Show simple item record

dc.contributor.author Lebea, L.
dc.contributor.author Ngwangwa, H. M.
dc.contributor.author Desai, D.
dc.contributor.author Nemavhola, F.
dc.date.accessioned 2021-12-01T05:32:31Z
dc.date.available 2021-12-01T05:32:31Z
dc.date.issued 2021-11-17
dc.identifier.citation International Journal of Mechanical and Materials Engineering. 2021 Nov 17;16(1):16
dc.identifier.uri https://doi.org/10.1186/s40712-021-00138-2
dc.identifier.uri https://hdl.handle.net/10500/28355
dc.description.abstract Abstract The initial stability after implantology is paramount to the survival of the dental implant, and the surface roughness of the implant plays a vital role in this regard. The characterisation of surface topography is a complicated branch of metrology, with a huge range of parameters available. Each parameter contributes significantly towards the survival and mechanical properties of three-dimensional printed specimens. The purpose of this paper is to experimentally investigate the effect of surface roughness of three-dimensional printed dental implants and three-dimensional printed dogbone tensile samples under areal height parameters, amplitude parameters (average of ordinates), skewness parameters and mechanical properties. During the experiment, roughness values were analysed, and the results showed that the skewness parameter demonstrated a minimum value of 0.59%. The three-dimensional printed dental implant recorded the arithmetic mean deviation of the assessed profile with a 3.4-mm diameter at 43.23% and the three-dimensional printed dental implant with a 4.3-mm diameter at 26.18%. Samples with a complex geometry exhibited a higher roughness surface, which was the greatest difficulty of additive manufacturing when evaluating surface finish. The results show that when the ultimate tensile stress decreases from 968.35 to 955.25 MPa, the arithmetic mean deviation increases by 1.4%, and when ultimate tensile stress increases to 961.18 MPa, the arithmetic mean deviation increases by 0.6%. When the cycle decreases from 262,142 to 137,433, the arithmetic mean deviation shows that less than a 90.74% increase in the cycle is obtained. For the three-dimensional printed dental implants, the higher the surface roughness, the lower the mechanical properties, ultimately leading to decreased implant life and poor performance.
dc.title Experimental investigation into the effect of surface roughness and mechanical properties of 3D-printed titanium Ti-64 ELI after heat treatment
dc.type Journal Article
dc.date.updated 2021-12-01T05:32:31Z
dc.language.rfc3066 en
dc.rights.holder The Author(s)


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics