Institutional Repository

On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions

Show simple item record

dc.contributor.author Baleanu, Dumitru
dc.contributor.author Khan, Hasib
dc.contributor.author Jafari, Hossein
dc.contributor.author Khan, Rahmat A
dc.contributor.author Alipour, Mohsen
dc.date.accessioned 2017-02-10T17:32:10Z
dc.date.available 2017-02-10T17:32:10Z
dc.date.issued 2015-10-15
dc.identifier.citation Advances in Difference Equations. 2015 Oct 15;2015(1):318
dc.identifier.uri http://dx.doi.org/10.1186/s13662-015-0651-z
dc.identifier.uri http://hdl.handle.net/10500/21984
dc.description.abstract Abstract We investigate sufficient conditions for existence and uniqueness of solutions for a coupled system of fractional order hybrid differential equations (HDEs) with multi-point hybrid boundary conditions given by D ω ( x ( t ) H ( t , x ( t ) , z ( t ) ) ) = − K 1 ( t , x ( t ) , z ( t ) ) , ω ∈ ( 2 , 3 ] , D ϵ ( z ( t ) G ( t , x ( t ) , z ( t ) ) ) = − K 2 ( t , x ( t ) , z ( t ) ) , ϵ ∈ ( 2 , 3 ] , x ( t ) H ( t , x ( t ) , z ( t ) ) | t = 1 = 0 , D μ ( x ( t ) H ( t , x ( t ) , z ( t ) ) ) | t = δ 1 = 0 , x ( 2 ) ( 0 ) = 0 , z ( t ) G ( t , x ( t ) , z ( t ) ) | t = 1 = 0 , D ν ( z ( t ) G ( t , x ( t ) , z ( t ) ) ) | t = δ 2 = 0 , z ( 2 ) ( 0 ) = 0 , $$\begin{aligned}& \mathcal{D}^{\omega}\biggl(\frac{x(t)}{\mathcal{H}(t,x(t),z(t))}\biggr)=-\mathcal {K}_{1}\bigl(t,x(t),z(t)\bigr), \quad\omega\in(2,3], \\& \mathcal{D}^{\epsilon}\biggl(\frac{z(t)}{\mathcal {G}(t,x(t),z(t))}\biggr)=-\mathcal{K}_{2} \bigl(t,x(t),z(t)\bigr), \quad\epsilon\in (2,3],\\& \frac{x(t)}{\mathcal{H}(t,x(t),z(t))}\bigg|_{t=1}=0,\qquad \mathcal{D}^{\mu}\biggl( \frac{x(t)}{\mathcal{H}(t,x(t),z(t))}\biggr)\bigg|_{t= \delta_{1} }=0,\qquad x^{(2)}(0)=0, \\& \frac{z(t)}{\mathcal{G}(t,x(t),z(t))}\bigg|_{t=1}=0, \qquad\mathcal{D}^{\nu}\biggl( \frac{z(t)}{\mathcal{G}(t,x(t),z(t))}\biggr)\bigg|_{t= \delta_{2}}=0,\qquad z^{(2)}(0)=0, \end{aligned}$$ where t ∈ [ 0 , 1 ] $t\in[0,1]$ , δ 1 , δ 2 , μ , ν ∈ ( 0 , 1 ) $\delta_{1}, \delta_{2}, \mu, \nu\in(0,1)$ , and D ω $\mathcal{D}^{\omega}$ , D ϵ $\mathcal{D}^{\epsilon}$ , D μ $\mathcal{D}^{\mu}$ and D ν $\mathcal{D}^{\nu}$ are Caputo’s fractional derivatives of order ω, ϵ, μ and ν, respectively, K 1 , K 2 ∈ C ( [ 0 , 1 ] × R × R , R ) $\mathcal{K}_{1}, \mathcal{K}_{2}\in C([0,1]\times\mathcal{R}\times \mathcal{R},\mathcal{R} )$ and G , H ∈ C ( [ 0 , 1 ] × R × R , R − { 0 } ) $\mathcal{G},\mathcal{H}\in C([0,1]\times\mathcal{R}\times\mathcal {R},\mathcal{R} - \{0\} )$ . We use classical results due to Dhage and Banach’s contraction principle (BCP) for the existence and uniqueness of solutions. For applications of our results, we include examples.
dc.title On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions
dc.type Journal Article
dc.date.updated 2017-02-10T17:32:10Z
dc.language.rfc3066 en
dc.rights.holder Baleanu et al.


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search UnisaIR


Browse

My Account

Statistics