dc.description.abstract |
Abstract
We investigate sufficient conditions for existence and uniqueness of solutions for a coupled system of fractional order hybrid differential equations (HDEs) with multi-point hybrid boundary conditions given by
D
ω
(
x
(
t
)
H
(
t
,
x
(
t
)
,
z
(
t
)
)
)
=
−
K
1
(
t
,
x
(
t
)
,
z
(
t
)
)
,
ω
∈
(
2
,
3
]
,
D
ϵ
(
z
(
t
)
G
(
t
,
x
(
t
)
,
z
(
t
)
)
)
=
−
K
2
(
t
,
x
(
t
)
,
z
(
t
)
)
,
ϵ
∈
(
2
,
3
]
,
x
(
t
)
H
(
t
,
x
(
t
)
,
z
(
t
)
)
|
t
=
1
=
0
,
D
μ
(
x
(
t
)
H
(
t
,
x
(
t
)
,
z
(
t
)
)
)
|
t
=
δ
1
=
0
,
x
(
2
)
(
0
)
=
0
,
z
(
t
)
G
(
t
,
x
(
t
)
,
z
(
t
)
)
|
t
=
1
=
0
,
D
ν
(
z
(
t
)
G
(
t
,
x
(
t
)
,
z
(
t
)
)
)
|
t
=
δ
2
=
0
,
z
(
2
)
(
0
)
=
0
,
$$\begin{aligned}& \mathcal{D}^{\omega}\biggl(\frac{x(t)}{\mathcal{H}(t,x(t),z(t))}\biggr)=-\mathcal {K}_{1}\bigl(t,x(t),z(t)\bigr), \quad\omega\in(2,3], \\& \mathcal{D}^{\epsilon}\biggl(\frac{z(t)}{\mathcal {G}(t,x(t),z(t))}\biggr)=-\mathcal{K}_{2} \bigl(t,x(t),z(t)\bigr), \quad\epsilon\in (2,3],\\& \frac{x(t)}{\mathcal{H}(t,x(t),z(t))}\bigg|_{t=1}=0,\qquad \mathcal{D}^{\mu}\biggl( \frac{x(t)}{\mathcal{H}(t,x(t),z(t))}\biggr)\bigg|_{t= \delta_{1} }=0,\qquad x^{(2)}(0)=0, \\& \frac{z(t)}{\mathcal{G}(t,x(t),z(t))}\bigg|_{t=1}=0, \qquad\mathcal{D}^{\nu}\biggl( \frac{z(t)}{\mathcal{G}(t,x(t),z(t))}\biggr)\bigg|_{t= \delta_{2}}=0,\qquad z^{(2)}(0)=0, \end{aligned}$$
where
t
∈
[
0
,
1
]
$t\in[0,1]$
,
δ
1
,
δ
2
,
μ
,
ν
∈
(
0
,
1
)
$\delta_{1}, \delta_{2}, \mu, \nu\in(0,1)$
, and
D
ω
$\mathcal{D}^{\omega}$
,
D
ϵ
$\mathcal{D}^{\epsilon}$
,
D
μ
$\mathcal{D}^{\mu}$
and
D
ν
$\mathcal{D}^{\nu}$
are Caputo’s fractional derivatives of order ω, ϵ, μ and ν, respectively,
K
1
,
K
2
∈
C
(
[
0
,
1
]
×
R
×
R
,
R
)
$\mathcal{K}_{1}, \mathcal{K}_{2}\in C([0,1]\times\mathcal{R}\times \mathcal{R},\mathcal{R} )$
and
G
,
H
∈
C
(
[
0
,
1
]
×
R
×
R
,
R
−
{
0
}
)
$\mathcal{G},\mathcal{H}\in C([0,1]\times\mathcal{R}\times\mathcal {R},\mathcal{R} - \{0\} )$
. We use classical results due to Dhage and Banach’s contraction principle (BCP) for the existence and uniqueness of solutions. For applications of our results, we include examples. |
|