PORTABLE TCP/IP SERVER DESIGN
by
Robert Mark Jolliffe
submitted in part fuiﬁllment of the requirements for the degree of
MASTER OF SCIENCE
in the. subject
Computer Science
at the
UNIVERSITY OF SOUTH AFRICA
SUPERVISORS: Dr W Smuts and Prof J A van der Poll

November 2002

Abstract

il

There are a number of known architectural patterns for TCP/IP server design. I present
a survey of design choices based on some of the most common of these pattems.' T have
demonstrated, with working code samples, that most of these architectural patterns are
readily portable between UNIX and Windows NT platforms without necessarily incurring
significant performance penalties. |

Contents

1 Introduction _ 1
1.1 Rationale 0 o e e e e e e e e e e e e e e e 1
1.2 Problem statement ., e e e e e e e e e 2
1.3 Hypothesis. e e e 3
T4 SCOPE o v o o e et e e 3
1.5 Organization i e .. 4
1.6 Glossaryofterms i L 4

' 2 - Porting strategies N {
2.1 Portability e e e e e e e
2.2 E;ﬁuldtion layers e e e e e e
2.3 Abstracting the operating system through a library i 10
231 The Tel library e 11
232 The ACELibrary v v o vt e e e e e e e e e 12
2.4 Windows NT environment subsystems 13
2.5 Java and virtual machines Lo Lo, 15
2.8.1 Java . .. e e e e e e 15
2.8.2 NET . . e e e e e 17
26 Summary e e e e e e e e e e 17

3 BSD Sockets ' 19

31 Background e e e e e e e 19
311 IPC . e e e e e e e 20
3.1.2 Filedeseriptors 20

i

CONTENTS iii

3.1.3 ShuttingdownaTCPsocket. v o i i 22
3.1.4 Controlling the [/Omode ceev .. 23
3.2 Whatisasocket?o 23
3.2.1 Creatinganewsocket e e 24
3.22 Socket addresses L. 27
3.2.3 Library functions used with addresses 29
3.24 Socket functions. 32
3.2.5 Handlingerrors e [P e e e e et 41
3.3 Windows Sockets - the Winsock specification 43
3.3.1 Architecture L e 44
3.32 Features e e e e 46
3.3.3 Errorreporting, f e e e e e 48
3.4 Synchronisation and process control 49
4 Server Architectures . 50
4.1 lterative server architecture, 51
4.2 <Event driven server architecture 52
421 Overview ... L e e e e e e e e e e e e 52
422 Implementation using ACE 53
4.2.3 TImplementation using Tel e e e e e 58
4.3 Coucurrent architectureso 63
4.3.1 Classical implementation - multiple processes PR 63
4.3.2 Lightweight processes - threads e e e 67

44 SUMMALY © . ot v et e e e 7
5 Performance comparison 70
9.1 Introduction L e e e e 79
5.2 Hypothesis revisited e 80
5.3 Supporting argument e 80
54 AmdahlsLawinTeverse v it v vt e 81
9.5 Experimentalmethod L o L 83

591 The UNPVlimethod T, 84

CONTENTS iv

5.5.2 Some problems with the UNPV1method 85

5.5.3 Modifications to the UNPV1method 89

BB BCopE . . . e e e e e e e N

5.7 Results o o o i e e e e e 93

571 Windows. e e e e e e 95

BT.2 LADUX o e 104

5.73 Generalobservations et e 109

6 Conclusion 112
6.1 Portable architectures L o oo 112

6.1.1 Event mechanisms e 113

6.1.2 Threads and processes ¢ v v v i v i e e 114

6.2 Portable implementations 115

6.2.1 Making existing code portable, 115

6.2.2 Portability from the outset i « . 117

6.3 Future work e e e 119

..A " Orchestrator - a distributed test suite ' " :121 .

AL OVEIVIEW o o s i e e e e e e e e e e e e 121

A.2 Scripting the orchestrator L o oo 124

A3 Test environment e e e e e e e e e e e 126

A4 Relatedwork e 126

B Software versions 128

C Cost of Function calls 128

C.l LINUX . o o o o et e e e e e e e e e e e e e 129

C2 Windows 2000 e e e e e e 130

D TCPdump profiles 131

E Static Reflector Pattern ‘ 132

OB Name . e e e e e e e e e e e e e e 132

E.2 Problemm v v o vt e 133

CONTENTS v

E3 Context e e 134
E.4 Forces e e e e e e e e e e e e e e e e 135
E5 Solution o e e e e e e 136
E.6 Resulting Context 138
E7 Rationalettt e 138
EB Examples e e e e e e . 139

E81 Win32 APCs o e e e 139

E82 finerTel].............. e e e e e 141
E.9 Exceptions and Variations o o e 143

E.10 Related Patterns i v e e e e e e e e e e .. 144

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3

3.4 .

3.8
3.6
3.7
3.8
3.9
3.10

a1
42
43
44
4.5
4.6
47
4.8

Cygwin and Uwin use a Posix porting layer on Windows 9

ACE services e e e e e e e L. 12
Windows 2000 simplified architectureo L. 14
Java OS5 Abstraction using a Virtual Machine 16
Moving data through file descriptors o000 L 20
TCP Shutdown SequUence v v v v v it v it e e s 23
Position of a TCP socket oo o 26
Initializing sockaddrin . . . v o v PR 29
- Address lookup example e e e e e e T 32
TCP 3 way handshake o vt e .33
Active conmnect e e e e e e e e 35
Passive accept - o e s e e e e e e e e e e e e e e e 38
Scatter/Gather I/O using sendmsg() and recvmsg() 39
Winsack 2 WOSA architectureo oL o L 45
[terative SeIviCE L L e e e e e e e 52
An Acceptor Factory e e 54
ACE event driven servermain()o 55
ACE event driven client handler 56
ACE Client Handler implementation, 58
Tel Event Driven Server main() o o 60
Tecl ServiceHandler interface o oL, 61
Tcl Event Driven Server: ServiceHandler constructor 61

vi

LIST QF FIGURES vii

4.9
4.10
- 411
412
4.13
4.14
415
4.16
4.17
4.18
4.19
4.20
4.21

5.1
5.2
530
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Al
1.2
1.3
Ad

E.1
E.2

Tcl Event Driven Server: ServiceHandler::ioHandler 62
Create thread or process per connection 63
New process per connection 65
Thread per connection o i i e e e 69
Pre-threaded: Acceptor enqueues, workers dequene 70
ThreadPaol ver 1main() i 71
ThreadPool verl Worker interface 71
ThreadPool verl Worker implementation e e e e e e
Pre-threaded: Workers competeforjobs, 73
ThreadPool ver2main() 74
ThreadPool ver2 Worker Implementation 75
Java ThreadPool mainthread 76
Java ThreadPool: ConnectionHandler e e e e 77
Timing of TCP events using UNPV1 protocol 88
Modification of UNPVI1 protocol e . 90
Expected profile of ported SBrvers i e e e e e e c. M
Windows ILerative SEIveIS« « . v v e e 98
Windows select based servers 0 100
Windows thread;per-connection BEIVEIS . + v v v v v v v v b e 101
Windows thread-pool SEIVEIS o v i v i i 102
Linux iterative servers o L . e e 107
Linux select servers o e e e 108
Linux thread-per-connection servers B L. 109
Linux thread-pool Bervers 0 . i i i it e e e e 110
Test Environment 0 e e e e e 122
Harness IDL 0 0 e e e e e e e e 123
WorkTeam [DL 0 . . e e e 124
Test Environment o e e e e e e 126
Collaborations i v e e e e e e e 137
Inheritance Lo e e e e e 138

List of Tables

3.1

5.1
5.2
5.3
5.4

B.1

Some common POSIX errorcodes « v v v v v o v e s 42
WiIndows SerVEIE Lt s e e e e e e e e e e e e e e e e e e a1
Linux SBIVErS s h e e e e e e e e e e e e e e e e e e 92
Windows restlts L L i e e e e e e e e e e e o7
Windows results L e e e e e e e e e e e e e 106
Software versions e e e e e e e e e e e e e e e T, 128

viii

Chapter 1
Introduction

First law of portability: Every useful application outlives the platform on which
it was developed and deployed. Steven Walli [59]

This dissertation is an inv%tigation of the portability of TCP/IP server architectures
between UNIX-like and Microsoft Windows NT derived! systems.

1.1 Rationale
Wfiting communication software is difficult. Whereas this may seem rather an obvious point
to make, it has some bearing on the investigations concluded in this research. If writing
such software were trivial there would not be a need to consider issues of portability at all.
If, by porting the software between platforms, we can avoid the cost of an expensive rewrite
and reclaim some of the initial investment in development timme, there is much to gained.
Indeed, it is this promise of reusing large repositories of existing code which has motivated
the development of tools such as Cygwin [31], Uwin [18] and Interix [58](discussed in Chapter
2).

Creating new code offers more opportunities for building system portability into the
design. Frequently these opportunities are not siezed. There are probably four major factors
" which might drive a development effort towards targeting a single platform API, rather than

making portability part of the design rationale:

1Windows NT derived systems include NT 4.0, Windows 2000 and Windows XP,

1

CHAPTER 1. INTRODUCTION 2

o Familiarity with a particular system API. Given that there are so many complexities
associated with communication software design, this familiarity is valuable and not

easily attained.

s The need to optimise performance. Developers may well shy away from greater ab-
straction for fear of the application suffering an unacceptable performance hit. I show
in Chapter 5 that this fear is not necessarily well founded. Indeed, design choices at

- the architectural level will likely have a significantly greater impact on performance

than a judicious choice of abstraction layer.

s Dependence on unique or particular operating system functionality. Frequently this
dependence may not be as strong as it might appear. There is a surprizing overlap
of functionality between diverse operating systems. The use of Wrapper Facades [49)

provides a powerful example of how to avoid such dependencies.

s The belief that the software will never need to be ported. Whereas much existing code

seems to reflect this belief, this can be a costly assumption.

~My experience of writing the simple illustrative servers used in this research supports the

- claimthat writing communication software is difficult. The development process is long and
- error prone. An understanding of the fundamental design pattefns of server architectures is
certainly useful, but the devil is in the detail. There is a considerable effort in time spent on

¢ reading and verifying API documentation {which is, more often than not, out of synch
with the software)

e tracking down infrequent and intermitent run time errors - running a server which fields
100 requests does not necessarily encounter the occasional problems and memory leaks
seen when fielding 1 000 000 requests

» making the resulting implementation as efficient as possible.

1.2 Problem statement

TCP/IP servers make use of low-level operating system calls and services. The significant

differences in both the implementation and interface of such services between Microsoft

CHAPTER 1. INTRODUCTION 3

Windows and UNIX-like systems create difficulties when designing software which is targeted
at both platform sets. '

1.3 Hypothesis
My hypothesis is the following:

The use of thin layers to abstract and mask the difference between differ-
ent operating system interfaces allows one to target both Windows and Unix

platforms without necessarily incurring significant performance penalties.

1.4 Scope

The scope of this research is limited to a survey of TCP/IP server architectures using the
Berkeley Sockets API. Other interfaces and protocols (such as XT1I) are not considered. Such
- restriction of scope is justified on the grounds that TCP/IP and Berkeley sockets represent
~a de facto standard for network server design [26][54]. Nevertheless, the architectural is-
sues raised (threads, processes, /(0 multiplexing etc) are essentially protocol and interface -
- 'indepéﬁdent. ' .

The code samples are meant to be illustrative. Whereas every attempt has been made
to implement correct code?, there are instances where robustness may have been sacrificed
in the interest of readability.

C++ is used in most of the implementations discussed. Most of the texts dealing with
system level programming [55][56][43] use examples coded in ANSI C. A discussion of the
particular problems and merits of using C++ is presented in Section 6.2.2.

The list of tools used to provide portable implementations is far from exhaustive. I have
instead attempted to select a small range of tools and libraries which are representative of
the broader strategies outlined in Chapter 2. Related alternative packages are mentioned

in context.

2Each of the server programs presented in this dissertation has been run for many hours and handled
tens of thausands of connections without aborting or leaking memory.

CHAPTER 1. INTRODUCTION 4

The discussion on server architectures is mostly restricted to those using synchronous
blocking and nan-blocking 1/0. Specifically, I have not examined the asynchronous I/0
mechanisms provided by the POSIX Realtime extensions and the approximate Windows
equivalent, Overlapped I/0, in any detail. Asynchronous I/0 was avoided initially because of
the very weak support provided by early (v2.2.x} linux kernels. Linux support for the POSIX
Realtime extensions has improved considerably since. A proper discussion and comparison
of POSIX Asynchronous I/O and the Windows Overlapped I/0O model is left for future work.

There are a number of issues relating to portability which have not been considered.

Specifically different filesystem and security models are not addressed in this dissertation.

1.5 Organization

" This section describes the organization of the chapters within this document.

I describe a range of approaches and tools for targeting these platforms in Chapter 2.

The BSD sockets API has become the de facto standard for implementing TCP/ IP servers
on UNIX and its many derivatives. Winsock is the equivalent API oni Windows systems.
Chapter 3 prc-v.id.es a brief overview of the sockets interface of BSD UNIX, follovéed‘by a
discussion of the areas of compatibility and variation with the Winsock APL

Event driven and Concurrent architectures for handling multiple concurrent connections
are discussed in Chapter 4. Discussion around the examples in these chapters illustrate the
problems, solutious and insights encountered in addressing issues of portability.

Chapter 5 presents a quantitative comparison of the porting tools and techniques pre-
sented in earlier chapters. To facilitate the reproduction of a large number of experiments I
developed a distributed load generation and monitoring system using CORBA. This system
is described fully in Appendix A.

I have included an appendix on electronic media, with all of the source code referenced

in this dissertation together with a number of benchmarks referred to in the text.

1.6 Glossary of terms

The following is a short list of terms and acronyms

CHAPTER 1. INTRODUCTION

oY

TCP/IP A family of network protocols forming the backbone of the internet. First widely
available release was in 4.2BSD (1983), together with the sockets API. Consists of
application layer (telnet, FTP, SMTP, etc), transport layer (tcp [37] and udp [35]) as
well as network layver [36] {(ipv4 and ipv6) protocols. Figure 3.3 shows the relationship
between a TCP socket and the protocol stack.

POSIX Acronvm for Portable Operating System Interface. A set of standards relating to
operating systems maintained by the PASC working group of the IEEE. The POSIX
standards have since been adopted by IEC and the ISO. The standard mostly re-
ferred to is IEEE Std 1003.1 (or Posiz.1) which includes 1003.1-1990 (the base API)?,
1003.1b-1993 (real-time extensions), 1003.1¢-1995 (Pthreads) and 1003.1i-1995 (tech-
nical corrections ta 1003.1b).

+ (S I have used OS as an abbreviation for Operating -Sys_tem.

Patterns A trend in software engineering to capture and reuse proven good design-models.
Based originally on the work of the architect, Alexander[1], but brought into the soft-
ware engineering mainstreamn by Gamma, Helm, Johnson and Vlissides (affectionately
termed the Gang of Four) [8].

Server I have used the term to describe a process running on & host which accepts connec-
tions from one or more Client processes, running on one or more separate hosts, for

the purpose of providing a service.

API Application Programming Interface. An API describes the exported visible function
calls and structures presented by a library or system. The API is used by a programmer

to access the features and services of the system or library.

IPC Inter-process communication. A term encompassing the range of facilities through
which processes can communicate on a multi-tasking operating system. Examples

include pipes, shared memory, message queues and sockets.

DLL Dynamically linked library. Popular Windows terminology for a shared library. Shared
libraries on Windows systems have a .d11 extension.

IThis is the standard which the Windows NT Posix subsystem implements.

CHAFTER 1. INTRODUCTION 6

Portable I use this term to describe a body of source code which can be compiled and

executed on a heterogenous mix of target operating system platforms.

RFC Request For Comment - publically available documents communicating the work of
the working groups of the Internet Engineering Task Force (IETF). RFC’s are accorded
different statuses eg: Standard, Proposed Standard Informaticonal, Historical etc.

Chapter 2
Porting st'rat egies

In this chapter | describe some common strategies adopted in porting existing code as well

- as writing portable code.

2.1 Portability

L 1 use t}ig térm portability specifically in relation to Windows NT and Unix. Though thefe are

. certainly many portability issues between the different flavours of Unix[20] and the diflerent
-versions of Microsoft Windows, 1 do not specifically address them here. The assumption is
that most modern Unix systems supply an interface based on the IEEE/ISO standard for
operating systems, commonly known as POSIX!. I have, as far as possible, restricted my
Unix code examples to use only POSIX features. The scope is thus reduced to portability
between Windows NT and POSIX compliant systemas.

In short, software is expensive to produce. Complex software such as communication
software (in which category I place TCP/IP servers) is even more expensive to produce,
requiring expensive programming talent and extensive and rigorous testing. Forting such
software represents an attempt to recover some of this development cost by reusing existing

code to target new platforms. The software that was expensive to produce should not

IThe POSIX set of standards are not without their problems. In particular, the standards define an
interface and say nothing about implementation dstails. The standards are also evolving. The POSIX
Real-time Extensions, for example, are not fully implemented on many systems.

CHAPTER 2. PORTING STRATEGIES : 8

necessarily be expensive to reproduce. To what extent this is true depends largely on the
early design rationale. Software that is written with portability in mind from the start is
- going to be easier to work with, than software that was targeted at a particular platform.

Walli [59} outlines essentially four approaches to moving existing applications to Windows
NT:

1. a complete rewrite of the entire application
2. using a UNIX emulation layer

3. using a cross—platfonﬁ library

4. using a POSIX environment subsystem

We can add to this list a fifth approach, which is to target the code at a virtual machine.
The Java experience bears testimony to considerable success with this approach. The recent
arrival of the Microsoft .NET virtual machine is likely to make this an increasingly-popular

strategy.

2.2 Emulation layers

Perhaps the easiest way of achieving portability is to use a software layer which provi'des
the interface of one gystem on another. There is nothing very new with this approach.
Michael Franz [7] describes just such an approach in porting the Oberon system to the

Apple Macintosh in 1993. 4
Franz classified four major areas of difficulty in his work on Oberon:

1. Incorhpatibie paradigms
2. Contrasting abstractions
3. Immplementation restrictions

4. Performance bottlenecks

CHAPTER 2. PORTING STRATEGIES | 9

I have looked at two freely available examples of emulating POSIX on Win32. In both
cases they involve a DLL which provides an interface between POSIX system calls and the
underlying Win32 subsystem. The one example is the open source Cygwin [31], created by
Geoflrey Noer of Cygnus Solutions?, and Uwin [18][19] from David Korn at AT&T Research

-Labs. In the rest of this discussion I refer to Cygwin. It is interesting to note from examining

the Cygwin source code, that the hurdles identified by Franz are still very much in evidence.

Application

POSIX DLL

WIN 32 API

- 1. Application talks to Win32 api via unix-like POSIX
emulation layer
2. Application is still free to make native systcm calis

Figure 2.1: Cygwin and Uwin use a Posix porting layer on Windows

Figure 2.1 shows how the Cygwin DLL provides the POSIX emulation layer. One of the
benefits of this approach is that once the porting layer is in place, it can be used to port the
Unix development tools themselves (such as the gec compiler, linker, make utility etc). Most
of the GNU utilities requiréd to configure and build a software package on a Unix system have
been ported to Windows NT in this way. This allows one to use, not just a common source

?Cygnus was bought by RedHat m 1999,

CHAPTER 2. PORTING STRATEGIES 10

base, but also common configuration and Makefiles. The Cygwin development environment
has been used to provide a (relatively) simple porting option for many of the “classic”
TCP/IP servers such as the apache web server and the telnetd daemon®. I show in Chapter
4 how such an emulation layer can be used to provide the fork() system call on Windows
NT. These characteristics make the approach particularly suitable for porting existing Unix
code to Windows NT.

Although I have only considered emulating POSIX system calls on Windows NT, there
are also some interesting examples of gaing the other way i.e. “doing” Windows on Unix.
The WINE package® is one such example of a rapidly evolving, open source solution to
developing and running Win32 binaries in a Unix environment. A more recent example is
the Rotor project. The Rotor project is a port to FreeBSD of Microsoft's NET environment.
A significant component of Rotor is the Platform Adaptor Layer (PAL). The FreeBSD PAL
- serves to map from Win32 API1 calls into equivalent functionality on FreeBSD, where it
exists, or implements that functionality where it doesn’t. In this way the PAL performs the
same function as the Cygwin and Uwin libraries - emulating one system on top of another.

2.3 Abstracting the operating system through a libi:éry

The previous section describes a process whereby one coerces one system to behave like, or
emulate another. Another approach is to use a higher level of abstraction, which presents an
interface which is independent of the underlying system dependent implementation details®.
As long as the program interacts only with this interface, and does not make direct calls
to the system API, the challenge is reduced to porting the abstraction layer to different
platforms, rather than porting the individual applications. Such an abstraction layer is
typically implemented in the form of a library. There are many libraries which provide useful

abstractions for communication software. I have made use of two very different librares to

*A comprehensive list of references to successful Cygwin ports can be found at

http:/ fsources.redhat.com/cygwin.
*available from http://www.winehq.org/.
5Tt could be argued that the POSIX API is meant to provide exactly such an abstraction. In fact the

difference is one of degree. The emphasis of the libraries discussed here is on value added abstraction, rather

than simply a wrapping of system calls,

CHAPTER 2. PORTING STRATEGIES 1

illustrate this approach. These are the Tel library and the ACE library which are described
in Sections 2.3.1 and 2.3.2 below.

2.3.1 The Tcl library

Tecl (or Tool Command Language)[33] is an interpreted scripting language created by Dr
John Qusterhoudt in 1987, It is best known in combination with a GUI scripting extension
known as Tk. Tcl and Tk have found particularly widespread use in interactive communica-
tion software which requires‘a graphical user interface as well as communication capabilities.
Examples of such software include Groupkit, a Tcl/TK based toolkit for developing interac-
tive group-ware, as well as many of the Mbone [23] suite of tools.

Tk, like most other GUI toolkits, features strong support for the event driven model
- of programming. An application might typically initialize and display a set of widgets in
-a window and then enter an event processing loop. The main application code is written
as a series of event handling procedures which are arranged to be invoked in response to

--user interaction with the widgets. The software compenent within Tk which implements the

L event demulmplexmg and dispatching is known as the Notifier.

. Three features of Tel which make an- unhkely sounding tool an interesting component in
. ‘the design of TCP/IP servers are:

1. Tcl and Tk have been ported to all major Unix variants as well a3 Win32 and Macintosh

systerms.

2. The Tecl la.nguage is implemented in terms of a well defined and easily extensible C
library. C programs can link against this library to gain access to all of the features
available to the Tcl interpreter, including abstractions for creating network channels
and the Tecl Notifer.

3. The Notifier is not restricted to window events. Event handlers can also be registered
to be called back in response to I/O events (such as the file descriptor corresponding
to a connected TCP/IP socket becoming readable or writable) and timer events as well
as user defined event sources. The usefulness of this feature is illustrated in Section

4.2, which discusses event driven servers.

CHAFTER 2. PORTING STRATEGIES 12

Whereas Tcl has proved useful primarily through its provision of an event driven frame-
work, recent versions of Tcl {starting with 8.1) are also thread-safe and offer a number of
useful functions to create and manipulate mutexes, thread specific storage, condition vari-
ables as well as per-thread event queues. 1 do not give any examples of using these facilities,
but note that they exist and potentially increase the range of problem domains to which we

can apply the Tcl library.

2.3.2 The ACE library

ACE is the praduct of ongoing work by Doug Schmidt [47] and his research team at Wash-
ington University, St. Louis. The following description applies:

The Adaptive Communication Environment (ACE) is an object oriented frame-
work and toolkit that implements core concurrency and distribution patterns for

communication software [57]

' Y

Framewurks! Connecin! AcceplornService Handlers, ASX STREAMS, et

Co+ Wrappers ond et 1g3; SYNCH cl Tmﬁ. IPC SAP, Reaciors, Proactoss,
Mesange queucs, alfocaian s

0§ Adapiation Layer ; ACE_O8 namespace

POSIX and WIN32 Services

Preceeses Stream Bocketa/TLI Named Select Dynamic System ¥
Threads pipes pipes WFMD Linking [PC

Figure 2.2: ACE services

As can be seen from Figure 2.2, ACE has a layered architecture. The lowest layer is the
OS5 Abstraction layer. This layer hides the detail of different C API’s within a comprehen-
sive set of C++ wrappers. Doug Schmidt has written extensively on the subject of using
patterns for software design, so it is not surprising to see that much of the ACE library
consists of the implementation of various design patterns and frameworks common to the
‘domain of communication software. The C++ wrappers themselves are described in terms
of implementations of a Wrapper Facade pattern [49]. Schmidt argues that the use of C++

wrappers to encapsulate low-level functions and data structures can make network code more

CHAPTER 2. PORTING STRATEGIES 13

concise, robust, portable and maintainable. It is a persuasive argument which is borne out
- by the many ACE code samples, illustrating solutions to common problems.

-One of the drawbacks of using C++ is the problem of different compiler implementations,
‘Whereas the C language has been stable and standardized for many years, the ISO/ANSI
standard for C++ [13] is still very young (The first edition was only finalized in 1998).
Compiler vendors are still working towards full conformance. Therefore the problem of
creating portable C++ class libraries is effectively doubled - it must be portable to different
architectures and also to different compilers.’ Nevertheless, portable C++ code can be
written by restricting the code to a subset of standard C++ features.

Other examples of C++ class libraries which encapsulate low-level C AFPI calls on
various systems are Rogue Wave's Net.h++ and Threads.h++ libraries, the ObjectSpace
System<Toolkit>, Microsoft’s MFC library and, more recently, Microsoft’'s .NET frame-
- work,

It is beyond the scope of this dissertation to describe all of the features of ACE. The
code examples in Chapter 4 should give the reader some idea of the flavour of the library.

2.4 Windows NT environment subsystems

Windows NT (and Windows 2000) uses a microkernel architecture organized as a layered .
system of modules [6][52]. Figure 2.3 shows a simplified block diagram of this architecture:

The Hardware Abstraction Layer (HAL), kernel and executive run in protected mode
together with some of the window manager code which was brought down from the Win32
subsystem to enhance performance in Window NT4.0. The HAL exports a virtual machine
interface which is used by the kernel, the executive and device drivers. This is also bypassed
for performance reasons by the graphics and I/O drivers.

A variety of subsystems run in user mode on top of this model. The most interesting
from our perspective are the environment subsystems. The Win32 subsystem provides the
main operating environment and exports the Win32 AFI to user processes. The environ-
ment subsystem approach does allow Windows NT to support other environments. Besides
Win32, the original intention was to provide robust support for MSDOS, 16 bit Windows,

8The situation regarding standards conformant C++ compilers has improved considerably in recent years.

CHAPTER 2. PORTING STRATEGIES 14

win32 spplicaiin W‘i‘ﬁ’ﬁ“‘im

POSIX

bsyste;
security Wini2 subsyslem
subaystem sabsystem

nsez mode
exegutive:
object mannger, security reference monibor, windaw
prooess mwgr:,w MeMmary manager elc manager
o
manager
kemel .
graphic
device
drivers
hardware abstrection Layes
haniwere

Figure 2.3: Windows 2000 simplified architecture

0S/2 and POSIX applications. The popularity of Win32 has meant in effect that these ;)ther
- subsystems have not been the subject of much ongoing development. The POSIX subsys-
tem was never envisaged to be widely used at all and provides very minimal functionality.
Nevertheless, the environment subsystem concept allows for the possible implementation of
a more complete, usable POSIX subsystem.

Interix is such an environment sﬁbsystem, The original environment was called OpenNT
and was developed and marketed by a company called Softway Systems[59]. OpéhNT has
since been bought by Microsoft and is renamed Interix. Interix is now a key component used
in the implementation of Microsoft’s Services For Unix (SFU) product.

Interix provides a UNIX-like environment much like Cygwin and Uwin, with shells, utili-
ties and developer tools. The runtime performance of services on Interix is potentially better
in that the environment is directly layered on top of the N'T executive. In fact, my experi-
ments have shown that, except for the implementation of process fork()-ing, there appears

‘to be no significant performance gain over either Cygwin or Uwin.

CHAPTER 2. PORTING STRATEGIES 15

2.5 Java and virtual machines

One way of gaining program portability is to compile programs down to an intermediate
form based on an abstract machine definition. John Gough {10] notes that such approaches
date back as far as the 1970’s. The intermediate code can be either compiled down to the
native machine code of the target platform, or executed via an interpreter which emulates

the abstract machine.

2.5.1 Java

The Java Virtual Machine is a well known modern example of a portable abstract machine.
Patrick Naughton, one of the early pioneers of the “Java Revolution”, cites architecture neu-
trality as being part of the core design rationale [30]. A Java compiler compiles Java source
code into byte-codes which are “binary” compatible with the Java Virtual Machine(JVM).
The JVM interprets the byte-codes on the host system at run-time. This architecture is
 illustrated in Figure 2.4. ’

~Even though Java techﬁology.performs considerably better than other cross-platform in;
terpreted systems such as BASIC, Tcl and Perl, the interpreted byte-codes are still'many
times slower than native machine code compiled with & C or C++4 compiler. The situa-
tion can be impraved by using Just-In-Time (JIT) compiler technology which dynamically
compiles byte-codes to mative machine code immediately prior to method execution. Per

Bothner[5] lists two of the limitations of JIT technology as:

1. The compilation has to be done each time the application executes, which has a neg-

ative effect on start-up times.

2. The JIT compiler has to run fast, so is unable to make use of aggressive optimization

techniques.
Bothrer [5] claims that whereas Java is a “decent” language,

. it cannot become a mainstream programming language without mainstream

implementation techniques, specifically an optimizing, ahead-of-time compiler.

CHAPTER 2. PORTING STRATEGIES 16

Java Source (java}

Java Compiler
Java /

Bytecode (.class)

Iava Virtna! Machine

{Bytecode interpreter/JIT Compiler)

N o
i
e \
Host Architecture
., .

Figure 2.4: Java OS Abstraction using a Virtual Machine

Bothner and his team at Cygnus Solutions successfully produced a Java compiler front end
for gec” and a functional run-time library.

Many of the disadvantages of using Java stem from its dependence on the virtual ma-
chine. The performance and resource costs may be be too significant for many applications,
particularly those requiring high performance, small foctprint or both.

Degpite these drawbacks, Java is an increasingly popular choice as an environment for
. building server applications. Java 2 incorporates an implementation of the OMG CORBA

specification. There are a number of pure Java web servers which take advantage of the

"the Java front-end, gej, is integrated into gee versions 2.9X, available from http://gec.gnu.org/.

CHAPTER 2. PORTING STRATEGIES 17

successful Java servlet extension®. The success of Java in these areas illustrates that raw
speed and efficiency is not necessarily the most important factor in server design. Hobustness,
- ease of programming and standardized interfaces are often far more important design criteria.

2.5.2 .NET

Details of the .NET system were released by Microsoft during 2000. The system consists of a
number of components, including an object-oriented and garbage collected runtime. The run-
time processes an intermediate form known as MSIL (Micfosoft Intermediate Language)[28]
on an abstract stack machine superficially similar to the JVMP.

The open source version of the .NET runtime, Rotor, has been successfully ported to
FreeBSD and more recently to Linux. The Rotor source code reveals some interesting details:

1. The FreeBSD port is built on top of a platform adaption layer. As noted in Section
2.2 above, this can be used independently of the virtual machine in the much same
way as Cygwin and Uwin, to provide a Win32 API on UNIX-like systems.

© 2. Unlike the JVM, \NET does not support only one froni-end language. Currently C,
C++, C#, Visual Basic and JScript language front-ends can be used to generate the
MSIL.

Unfortunately the Rotor system has only very recently been ported to Linux, so I did not
have the opportunity to compare its perforrnance against the other strategies and systems

discussed. Such an analysis must be left to future work.

2.6 Summary

In this chapter I have presented four alternatives to code rewriting for creating portable code
between UNIX-like and Windows NT based systemns.
For each of these approaches [have identified existing and freely available example im-

plementations.

3ihe Tomeat server from the Apache Foundation is probably the best known example.
9A notable difference between .NET and the Java VM is ihat the intermediate code for NET is always

JIT compiled, ie there is no interpreter maode.

CHAPTER 2. PORTING STRATEGIES 18

The particular problem domain within which I am proposing portable salutions is that
of TCP/IP server architectures. Underlying such architectures is a dependence on access
to the TCP/IP transport layer provided by the system. Therefore an important area in
which all of the tools presented here provide some ahstraction or emulation is access to the
transport layer. The BSD sockets AP] has emerged as the de facto standard interface for
applications to access TCP/IP transport. Windows provides a similar interface through
its Winsock layer. The next chapter describes the sockets interface on BSD-derived and

Windows systems.

ard

Chapter 3
BSD Sockets

A TCP/IP server is a process which offers a service to a remote process or processes. TCP/IP
1s a suite of protocols which provide transport and network layer services to facilitate the
communication. The BSD Sockets API is the de facto standard interface by which processes
interact with TCP/IP. Microsoft Windows provides a similar interface known as Winsock.
-This chapter pfovides a brief background to the history and rationale of the BSD Sockets
API This is followed by a brief description of the API, as implemented on UNIX-like systems.
In order to better understand the porting problem, Section 3.3 discusses the similarities and

variations of the Winsock API.

3.1 Background

When 2a process is created! on a multitasking operating system, the system goes to a great
deal of trouble to provide that process a safe, isolated environment in which to execute.

Most importantly, a process is allocated a virtual address space which
® is the only memory the process can read or write to, and
e is inaccessible to other user-level process.

Unfortunately, processes which can only compute and move data around in this isolated

environment are not very useful. They also need to be able to interact with the world around

husing fork(} on UNIX-derived systems or CreateProcess() on Win32,

19

CHAFTER 3. BSD SOCKETS 20

USER PROCESS

File

LA T
T

Figure 3.1: Moving data through file descriptors

them. Such interactions include
o reading from and writing to files;
e interacting with devices (and hence indirectly with users);

e communicating with other processes (either local or across a network).

3.1.1 IPC

Sockets provide one means of communicating with other processes (Inter Process Communi-
cation or IPC). | have presented this communication paradigm in a general context, because
IPC is just an example of the more general problem of moving data in an out of a process
address space. In the very first paper published on UNIX by Ritchie and Thomson {42}, a
novel approach was described which provided a generic solution to the general problem: just
treat everything as if it were a file and channel all communication through file descriptors.
The “UNIX way” has survived for almost 30 years, and although the concept is certainly

becoming strained [17], it remains the most widely used model for IPC.

3.1.2 File descriptors

Figure 3.1 shows how file descriptors provide a controlled interface by which processes can

communicate with the outside world. Processes can make use of the read() and write()

CHAPTER 3. BSD SOCKETS 21

sytem calls to transfer data across the kernel boundary. The prototypes of these two functions

are shown below:

tinclude <unistd.h>
int read(int d, void *buf, int obytes);
int vrite(int d, void *buf, int nbytes};

" Return number of bytes read/uritten or -1 on error

In each case the integer parameter, d, represents the file descriptor. The variable, buf,
1s a pointer to the area in process memory which contains the data to be written, or the
place where data is to be read into, while nbytes is the mazimum number of bytes to be
transferred. The kernel maintains a table of open file descriptors in the process control block
~ of each process. Each file descriptor may correspond to any of a number of different kernel
entities. It does not have to refer to an actual disk file. Specifically, a file descriptor may

refer to: | .

e One of the standard I/0 streams. when the process is created these 3 deﬁcnptors
are opened by default: stdin, stdout and stderr. In console applications they are

nsually associated with the console.

o A disk file.

s A special device file - these are usually mapped into the file systemn under the /dev
directory. For example, a specw,l file such as /dev/audio mlght be used to read and

write audio data to and from a sound card.

e A pipe or fifo - these are the traditional IPC mechanisms for communication between
processes on the same machine. Pipes are created with the pipe() system call and
fifo’s with the mkfifo () system call.

» A socket - a more general IPC mechanism than a pipe, which can be used between

distributed processes.

CHAFPTER 3. BSD SQCKETS 22

Whatever the type of the underlying “file”, we can read and write to it in a standard
way using the generic read () and write() functions. Similarly we can close the file using

the close() system call:

#include <unistd.h>

int close(int d);

Return 0 on success or -1 on error

Closing a file desﬂriptﬂr does not nécessa_rily shut down the associated device. It is pos-
sible that more than one process has the file open at any one time since open file descriptors
are inherited by child processes. Calling close() on the descriptor makes that descriptor
unavailable to the current processes and decrements the system wide reference count on the
file. Only if this reference count becomes 0 does any shutdown sequence occur. We will
~ see that this can have jmportant consequences for socket stream connections (such as TCP

‘sockets) and also how the semantics of closing differs between UNIX-like and Win32 systems.

..3.1.3 Shutting down a TCP socket

‘The ‘'shutdown sequence ‘which occurs on TCP sockets .is illustrated in the partial state
transition diagram?® of Figure 3.2, taken from RFC733 |37]:

From the diagram it is clear that the sequence of states is different depending on which
side initiates the close. The left hand path from the ESTABLISHED state is followed by the
side which performs the active close. This side’s TCF sends a FIN segment to the peer,
which starts the transition to CLOSED on the right hand side. An important consequence of
actively closing is that the TCP ends up with it's control block suspended in a TIME.WAIT
state for a period of typically 1 minute before the structure is removed from memory. This is
to prevent new connections reincarnating the connection while there may still be stale TCP
segments in the network belonging to the old connection.

The shutdown sequence is initiated automatically when the reference count on a descrip-
~ tor becomes zero, but sockets can also be explicitly shut down with the shutdown{) system

-call.

?The same diagram could be drawn using UML state diagram notation, but I have reproduced the original

diagram “verbatim” here.

CHAPTER 3. BSD SOCKETS

23

Fo———————= F
| ESTAB |
© dmemm———— +
CLOSE | [rcv FIN
....... I I ————

e + snd FIN / \ end ACK ettt +
| FIN |€mmmmmmmmmmmmmmes eweeemeeee————eee- >| CLOSE |
| WAIT-1 [----rrmor—reemenan I WAIT |
o ———— + rev FIN Hommmmna +

| rev ACK of FIN —-=--em | CLOSE |

P o—e—momm - snd ACK | === |

L] x v snd FIN V
- + emmm——— + [——— +
IFINWAIT-2| | CLOSING | | LAST-ACK|
E + O + - +

| rev ACK of FIN | rev ACK of FIN |

| xew FIN ==eeeccccceo-o | Timeout=2M5L =~-==-==uven=~ |

| ==———-- x ¥V mememmeeme——— x v
\ end ACK o +delete TCB U "
------------------------ >|TIME WAIT|--==---=----=---=->| CLOSED |
e ———— + s +

Figure 3.2: TCP Shutdown sequence

3.1.4 Controlling the I/0 mode

~An additional system call that can be used with all file descriptors, including sockets, is
“fontl(). fentl () provides an interface for setting or getting various opefational parameters
-on opén.ﬁle descriptors, such as blocking/non-blocking mode, file locking (for synchfghiza—
tion), generation of the SIGIO signal when I/O is possible etc. A common use of fcntl ()
with sockets is for setting the blocking mode, but this can also be achieved with the ioct1()
system call described below. Because ioct1() has a Winsock equivalent and fcntl () hasn’t,

it may be preferable to use ioctl () for this purpose if portability to Windows is an issue.

#include <fcntl.h>

int fcntl(int £d4, int cmd, ...J};

Successful return velue depends on emd or -1 on error

3.2 What is a socket?

The socket was first introduced in the 4.2BSD kernel as a generalized IPC mechanism [24].
Sockets were designed to fit into the generalized UNIX I/O model where everything looks like

CHAFPTER 3. BSD SOCKETS 24

afile. Therationale was to allow programs to use the standard read (), write()} and close ()
functions described above on sockets. What differentiates sockets from UNIX System V pipes
and fifos, is that the sockets interface was designed to allow communication between processes
on the local machine and also remotely through a supported communication domain. The
consequent added complexity means that sockets can not be opened using the common
open() sytem call used for files. The three system calls which can create new sockets
are socket(), socketpair{() and accept{). We will start this discussion by looking at

" the socket () call. socketpair() creates PF_LOCAL sockets, which are not related to

networking so they are not discussed here. accept() is discussed in Section 3.7 below.

3.2.1 Creating a new socket
~ The socket() function

The prototype for the socket () call is shown below:

- [#include <sys/types.h>
#include <sgys/socket . h>

. |int .socket (int domain, int type, int protocol);

Returns fd on success, -1 on error

Whereas sockets are most commonly associated with TCP/IP? the interface is in fact
very general, hence the three parameters to the socket () call:

domain describes the communication domain to be used. This should be set to PF_INET for
use with the Internet Protocol (IP). On UNIX-like systems one can also use PF_LOCAL
for local IPC. Other cormmonly supported domains include PF_APPLETALK, FF_X25,
PF_ATM, PF_IFX etc. In the rest of this dissertation we shall focus on sockets in the
PF_INET domain.

type The two most commonly supported types are SOCK_STREAM and SOCK DGRAM

for stream and datagram oriented communication respectively. Other types such as

$Many sockets implementations, including Winsock 1.1, only have TCP/IF support.

CHAPTER 3. BSD SOCKETS 25

SOCK_RAW and SOCK _SEQPACKET are supported on some systems. Not all socket

types are supported by all communication domains.

protocol Normally only a single protocol exists to support a particular socket type within
a particular. protocol family (for example, a PF_INET socket of type SOCK_STREAM
implies TCP), so this can be left as 0. Otherwise a protocol from the list in /etc/protocols

is specified.
We can call the socket () function to create new sockets like this:

int sockl, sock2;
sockl = socket(PF_INET,SOCK_STREAM,0); // a stream oriented TCP socket
sock2 = socket(PF_INET,SOCK_DGRAM,0); // a message oriented UDP socket

Before we use sockl or sock2 we should check that socket () returned a valid descriptor. If
the call fails (eg. too many files already open or an invalid domain/socket type combination)
it will return a value of -1. It is up to the application programmer to check for, failure,
“‘determine the cause of error and take appropriate action. Fatlure to check return values of
-system calls is one of the most common causes of error in network programming. Dgaling

with error conditions is discussed in Section 3.2.5 below.

The place of sockets in the BSD system architecture

Figure 3.3 shows a simplified view of the resulting structures on a BSD type system (Linux
is very similar) after a TCP socket such as sockl has been created. The most visible entity
from the user process point of view is the file descriptor itself. The file descriptor references
a unique socket structure. The socket structure itself is a relatively simple C struct. An
important member of this struct is a pointer to an underlying protocol control block. The
type of this control block is determined by the type of socket which was created - in this case
a TCP control block. The TCP control block is yet another C structure which maintains
all the state information about the particular TCP connection associated with the socket.
The socket implements a convenient abstraction layer between the user process and the
underlying network protocol.
Another useful and general functionality provided by this socket layer is buffering. Each

socket has send and receive buffers associated with it. This shields the application from

26

CHAPTER 3. BSD SOCKETS
Process user space
mSocket file descriptor
Kemel
space . Socketstructure (" gend buffer —
------------ [Recv buffer)‘—
s = Y ™
~ ~ - 1 TEmsEEEsEEEE L]
N ! TCP control !
Transport protocol module (eg. TCP, UDP) > block ,
] 1
(1 ;]
e It
Intemnet Protocol module (IP)
> ~<
Link layer module {eg ethernet) and device driver
o N "

Figure 3.3: Position of a TCP socket

dealing with the complex asynchronicity of the physical network layer (see [50] for a good

description of the rationale) as well as the potentially complex detail of the protocol imple-

mentation. When a user program successfully writes data to a socket, for example using the

write() call described above, that data is simply copied down from the user’s address space
into the socket buffer. The detailed control of the movement of that data down the network

stack and out on to the “wire” is taken care of by the participating protocol modules. Sim-

ilarly, data that comes in along the “wire” is passed up the stack and accumulated into the

socket’s receive buffer. When the user process reads from the socket file descriptor, it simply

copies data from the receive buffer up into its address space.

CHAPTER 3. BSD SOCKETS 27

3.2.2 Socket addresses

Another complication introduced by making IPC communication channels operate across
networks is addressing. In order for processes to communicate via sockets they must have a
way. of finding one another. Put another way, if an application sends out a message onto the
internet, that message has to be able to find its way, not just to the correct destination host,
but-all the way to the correct socket -receive-buffer within that host, so that the receiving
process which created the socket (or perhaps one of its descendents) can read the message
throughﬂthe appropriaté file descriptof. Cleai‘ly a..socl.(ét must have some form of address,

and in the internet domain that address has two levels:

1. An IP address to identify the host (or, more correctly, the interface on that host) and

2. a port number which identifies the particular TCP (or UDP) control block and socket

structure.

- Binding

"The process of associating an address with a.socket is known as binding. The system call
“-used to bind an address to a socket is, not unnaturally, called bind() and it’s prototype is

shown below:

#include <sys/types.h>

#include <sys/socket.h>

int bind(int s, comst struct sockaddr *addr, socklen_t
addrlen);

Returns fd 0 on success, -1 on error

In order to bind an address to a socket, we must create the address structure first; then
call bind with the socket file descriptor, a pointer to the address and the length of the address

structure as parameters. The process is complicated by two factors:

1. Different communication domains use different address structures. The type sockaddr
is a sort of generic placeholder. For addresses in the PF_INET domain we must create

an address of type sockaddr.in and cast the pointer to the type *sockaddr in the call

CHAPTER 3. BSD SOCKETS 28

to bind. The reason for also providing the address length is that this can and does

vary between different address domain types.

2. The address must be organized in a consistent byte order. Different machine architec-
tures have byte ordering which is either big-endian or little-endian. The endian-ness
on a particular host architecture is known as the host byte order. Because addresses

“must be interpreted consistently on these different architectures, binary values such as
the IP number and port number, are first converted from host to network byte order
before being sent down to the socket layer. Network byte order is always big—endiaﬁ

and is thus independent of the host architecture.
The sockaddr.in structure is shown below:

struct sockaddr_in {
it_char sin_len;
u_char sin_family; »
- u.short sin_port;
struct in_addr sin_addr;
‘char sin_zero[8];

};

It is an awkward structure in a number of ways. The sin len member is optional and not
all vendors support it. It need not be set and, if it is present, is used only by internal kernel
routines. The Posix.1g standard only requires the sin_family, sin_addr and sin_port
members [55]. The sin_zero member is unused but must always be set to zero. The usual-
practice is to set the entire structure to zero, before filling in the required parts. The
sin_addr member is a structure for historical reasons®: typically it is simply defined as a 32
bit integer.

The code below shows a socket being initialized and being bound to an address in the

PF INET domain. This small snippet illustrates a number of important points.

44 9BS1) defined it as a union to facilitate access to the different parts of a class A, B or C addresses,
“With the advent of subnetting, the need for this fell away.

CHAPTER 3. BSD SOCKETS 29

iterative/uniz/simple.cpp

63 struct sockaddr_in servaddr;

64 memset (&servaddr,0,sizeof (servaddr));

65 gervaddr.sin_family = AF_INET;

656 servaddr.sin_addr.s_addr = htonl (IMADDR_ANY):
67 -servaddr.sin_port = htona(Fort);

68

69 . . if .(bind{listenfd, (struct sockaddr+) kzervaddr,sizeof (servaddr)} <Q)
70 {

71 perror(*bind");

Ky exit (~1);

73 }

iterotive /uniz/simple.cpp
Figure 3.4: Initializing sockaddr_in

Note how memset () is used to zero out the structure first. A lot of legacy code uses the
-BSD bzero() function for this. The memset () function is a Posix standard function, is more
portable (even to Windows) and is thus preferable. e

Notice also that the two integer values sin_port and s_addr are stored in the structure
- in network byte order. The two functions htons() and htonl{) are used to translate from
host-to-network-short and host-to-network-long respectively.

The macro INADDR.ANY is used when we do not want to specify the IP address. This
is typically done on server sockets, where we would not usually want to hardcode the IP
address the server will listen on, particularly on a host machine with multiple interfaces.

The bind() function is called on line 69 to bind the address to a socket. Note that the
function may fail so we check the return value and take appropriate action. In this simple
example we simply print an error message and exit. The perror() function is described in
Section 3.2.5 below.

3.2.3 Library functions used with addresses

An IP address is a 32 bit integer value. Besides the problem of byte ordering discussed

above, it is also not a convenient format for human interpretation. The following two sections

CHAPTER 3. BSD SOCKETS 30

describe library functions for converting between the raw IP address and more user friendly

formats.

Conversion to presentation format

A useful set of functions exist for converting between network addresses and the more familiar
ASCII formatted dotted string form of an address (eg: “192.168.0.2"). Legacy applications

frequently make use of inet_ntoa() and inet.addr().

#include <sys/gocket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

char #inetntoa(struct in_addr in);

Converts in_addr struct to dotted ASCII format

unsigned long int inet._addr(const char *cp);

- Returns binory equivalent (in net byte order) of dotled ASCII address

o

The newer functions inet_pton() and inet_ntop() are more flexible in that they can
work with different address families, such as AF_INETS, but the former are more portable®.

Host resolution

These two functions are commonly used to discover host information based on a name or

address structure:

#include <netdb.h>
#include <sys/socket.h>
struct hostent #gethoatbyname{const char *name);

struct hostent *gethostbyaddr{conat char *addr, int len, int

type);

Returns pointer to a hostent struct or -1 on error

SWinsack, for example, only supports the legacy functions.

CHAPTER 3. BSD SOCKETS

The hostent structure has the following form:

struct hostent {

31

char *«h_name; /* official name of host */
char *+h_aliases; /* alias list */

int h_addrtype; /* host address type */

int h_length; /* length of address */
char **h_addr_list; /+* list of addresses */

}

#define h_addr h_addr_list[0] /* for backward compatibility */

After calling gethostbyname (), the h_addr_list is usually the most interesting member

of the hostent struct, as we are interested in finding the address(es) corresponding to the

host name. Often we are not interested in multiple addresses a host might have. This is why
the macro h_addr is defined, which references the first address in the null terminated array.

Address lookup example

]

The example below illustrates the use of gethostbyname(} and inet_ntoa() to perform a

sirnple name lookup:

7 int main{int argc, char #®argv{])

B {

9
10
11
12
13

14
15
16
17
18
19
20
21
22
23
2%
25
26

if (arge!=2)
{
cerr << Mugage: " << argv[0] << " <host>" << endl;
return ~1;

}

hostent »*host = gethostbyname(argv(i]);

if (heoet)
{

int i = (;

in_addr %address;

vhile (address = {in_addr+) host->h_addr_list[i])

{

address = (in_addr*) host->h_addr_list[i];
cout << inet_ntoa(*address) << endl:
i++:

} »

lookup. cc

CHAPTER 3. BSD SOCKETS 32

27 else

28 {

29 cerr << "Error: " << strerror{errnc) << empdl;
30 }

<8 return 0;

az }

lookup. cc

- Figure 3.5: Address lookup example

3.2.4 Socket functions

The preceding sections looked at creating sockets and binding them to socket addresses.
. Sections 3.2.4 and 3.7 below describe the connect (), listen() and accept() functions for
establishing connections with stream-oriented sockets. Section 3.7 then describes the family
of recv() and send() functions used for socket I/O. Finally section 3.8 describes functions
for setting and reading socket options.

-~ Stream oriented sockets require that a connection be established before data can be read
. from or written to them. The sequence of function calls used to establish the connection
differs depending on whether we are the active or passive participant. The active participant
is the side which initiates the connection, usually the client process. The passive pa.rticipant

is the side which waits for and accepts connections, usually deemed the server.

Active connect

There are three steps required to actively establish a connection from a client to a server:
1. create a stream socket '(eg. int fd = socket (AF_INET,SOCK_STREAM,0);),
2. create a sockaddr structure and populate it with the address of the server socket,

3. call connect (), passing a pointer to the sockaddr struct as a parameter, to connect

the local socket with the remote socket.

CHAPTER 3. BSD SOCKETS 33

Note that it is not required to bind the socket to an address prior to calling connect (). The
connect () function has the following prototype:

[#include <gys/types.h>

#include <sys/socket.h>

int connect{int sockfd, struct sockaddr *servaddr, int
addrlen);

Returns @ on success, -1 on error

The connect () function will block by default until the connection is established. In the
case of TCP, connect{) initiates the TCF three-way handshake shown in Figure 3.6 by
sending a TCP SYN segment.

There are a number of reasons why connect () might fail: there may be no reply to the
SYN within a given time interval, there may be no process ready to accept the connection
on the remote end (in which case the remote TCP returns an RST segment) or there may
be no route available to the destination host. These conditions are indicated by the errors
ETIMEDDUT, ECONNREFUSED and EROSTUNREACH/ENETUNREACH respectively. See Section 3.2.5
below on detecting and handling errors.

If the connecticon is successfully established, connect() returns 0 and the client process
may read and write through the file descriptor. The connection is uniquely identified by the

CLIENT SERVER

conces0 T
SYH + ACK

ACK

blocks

- ———

copnec: relums

Figure 3.6: TCP 3 way handshake

CHAPTER 3. BSD SOCKETS

4 parameters: <client IP, client port, server IP, server port>6 .

34

The code below shows an example of a TCP client program using gethostbyname ()} and

connect():
client.cpp
16 int main{int argc, char* argv(])
17 {
18 if (argc!=4)
19 {
20 . fprintf(stderr,"Usage: %s <host> <port> <nbytes>\n",argv[0]);
21 exit (-1);
22 }
23 unsigned int nbytes = atoi(argv[3]);
24 if (nbytes>=MAXBUF)
25 {
26 fprintf (stderr,"nbytes must be less than ¥d\n",MAXBUF),;
27 exit (-1);
28 }
29 int port = atoi(argv([2]);
30 // lookup the address of the server host
231 - hostent *host; e
32 if (!(host = gethostbyname{argv[i]))) // look up host address
33 {
34 perror("gethostbyname");
35 exit (-1);
36 }
37 // £il1l in a sockaddr_in structure
38 struct sockaddr_in servaddr;
39 memset (&servaddr,0,sizeof (servaddr));
40 servaddr.sin_family = AF_INET;
41 memcpy (¥servaddr.sin_addr.s_addr, (host->h_addr) ,sizeof (in_addr));
a2 servaddr.sin_port = htons(port);
43 [/ create a socket
44 int connfd;
45 it ({connfd = socket(PF_INET, SOCK_STREAM,0)) < 0)
a6 {
a7 perror("socket");
48 exit (-1);
49 }

5This 4 parameter tuple is commonly known as a full association.

CHAPTER 3. BSD SOCKETS 35

50
51
52
53
54
55

56

if (connect(connfd, (struct sockaddr*) &servaddr, sizeof (servaddr))<0)
{ .
‘perror("commect™);
exit (-1);
}

// nov we're connected ...

chient.cpp

Figure 3.7: Active connect

Passive accept

. The process of setting up a stream socket to passively accept connections is quite different.

This time there are five steps which must he taken:

1

2.

4,

a.

.~the stream socket is created with the socket () function as before;

.8 sockaddr structure must be created and filled in with the server socket nddré&é. In

the case of TCP we must specify the port the server will listen on and the inaddr
(usually INADDR_ANY);

. the sockaddr must be bound to the socket by calling bind();

the socket must be assigned a listen queue by calling 1listen();

the process waits for incoming connections by blocking in a call to accept ().

We have already seen in Section 3.2.2 how to bind an address to a socket. The listen()

function 1s used to declare a willingness to accept connections and to create a queue for

handling incoming connections. The prototype is shown below:

#include <sys/socket.h>
int listen{int sockfd, int backlog);

Returns 0 on success, -1 on error

CHAPTER 3. BSD SOCKETS 36

The backlog parameter is used to specify the number of established connections which can
be queued before new client connections are refused. It is complicated by the fact that there
are actually two queues: a queue of partially established connections where the SYN has
‘been received from the client and a queue of fully established connections where the final
ACK of the.3 way handshake has been received. Different systems interpret the backlog
parameter differently in this regard. Historically (eg on 4.2BSD) it referred to the combined
‘length of both queues [55]. Linux kernels, as of v2.2, interpret it to mean the number of the
- established connections only.

The maximum value of the backlog parameter is also system dependent. Historically
it was limited to 5, but most modern systems allow larger values such as 128. One of the
differences between Windows NT (and derivatives) workstation and server editions is that
the backlog parameter is limited to 5 on the workstation. If a call to 1isten() specifies a

- larger value than the maximum, this value is silently truncated to the system limit.
After the call to listen(), connections from clients can be queued on the listening
socket, but we now need a means to dequeue them. The function that dequeues an incoming

connection, and creates a new socket in the process, is accept ().

|#include <sys/types.h>

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr *peeraddr, int |
*addrlen) ;

Returns fd of new connected socket on success, -1 on error

The file descriptor returned from accept() refers to a new socket (accept(} behaves
like a factory method for connected sockets). This socket has the same address and port
number as the listening socket, but TCP uniquely identifies it, as before, by also considering
the address and port of the remote end of the connection.

The second and third parameters to accept () are optional. If the peeraddr parameter
is provided, the structure will be populated with the remote address upon successful return

from accept (). It is possible to set this parameter to NULL, thus avoiding the copying of

CHAPTER 3. BSD SOCKETS 37

this data from the kernel” on accept().

The code below shows the initialization section of a server program illustrating the use
of bind(}, listen() and accept{}. The setting of the SO_REUSEADDR socket option is
a recommended practice[35] to allow a server which has terminated, to be immediately
-restarted and bound to the same address, even though existing connections which are using

the address may still survive. The use of socket options is discussed further in Section 3.8

below.
simple.cpp
34 if ((liatenfd = gocket (PF_INET, SOCK_STREAM, 0)) <D)
a5 {
36 perror("sccket");
37 axit (~1);
38 }
39
40 struct sockaddr_in servaddr;
41 memset (Eservaddr,0,sizect {servaddr));
42 servaddr.sin_family = AF INET; .
43 servaddr.sin_asddr.s. addr = htonl (INADDR_ANY);
44 servaddr.sin_port = htans(Port);
45 int opt = 1; ' : =

46 . Af (setsockopt(listenfd,SOL_SDCKET, SD_REUSEADDR, kopt, sizeéof{opt)) <0)
47 1{

48 perror ("setsockopt?);

43 exit (~1);

50 }

51 if (bind{listenfd, (struct sockaddr#*) &servaddr,sizeof(servaddr))} <0)
52 {

53 perror("bind");

B4 exit (~1);

55 }

56

57 // asaign LISTENQ te¢ socket
58 if (listen{listenfd,LISTENQ)<()

59 1

60 perror(“listen®);

61 exit (-1);

62 . }

63

64 /f loop processing client connactions

"I the server connection handler code requires the address of the remote peer it can call getpeername ()

at any stage.

CHAPTER 3. BSD SOCKETS 38

€5
66

67

68
69
70
71l
72
T3
74
75

76

77

atruct sockaddr_in peeraddr;
while(1)
{
socklen_t addrsize = gizeof(poeraddr);
connfd = accept(liatenfd, (struct sockaddr*)&peeraddr, &addrsize);
if (connfd<Q)
{
perror{“accept");
continne;

+

printf("Accepted connection from %s:%d\n", \
inet _ntoa(peeraddr.sin_addr), ntohs(peeraddr.sin_port));

simple.cpp

Figure 3.8: Passive accept

In the code above LISTENQ is a constant. The accept () function is called with all 3

parameters non-NULL so as to return the information about the remote peer.

.- Specialized Socket I/0

e

Even though the read() and write() system calls can be used to transfer data on a socket, '
-* a8 discussed in Section 3.1, there are six additional specialized I/O functions which exploit

socket-specific characteristics. These are shown in the textbox below.

-

#include <sys/typas.h>
#include <sys/socket.h>

int

int

int

int

int

int

send(int 8, const void *msg, int len, unsigned int flags);
sendto(int 5, const void *msg, int len, unsigned int flags,
const struct sockaddr *to, int telen);

sendmeg(int 5, const struct msghdr »msg, unsigned int flags);

racv(int s, void *buf, int len, unsigned int flags);
recvirom(int s, void #buf, int len, unsigned int flags,
struct sockaddr =from, int *fromlen);

recvmsg(int &,struct meghdr *msg, unsigned int flags)};

send/recy data on a sockel. Heturns -1 on ervor

CHAPTER 3. BSD SOCKETS 39

The send() and recv() calls are analagous to read() and write() and can only be
used with connected stream sockets. The difference is that these calls allow an additional
flags parameter. Flags are an OR'd combination of defined constants such as MSG_00B (for
reading or writing out of band data) and MSG_PEEK (to check the contents of the receive buffer
without copying the data). The set of supported flags is system specific so care must be
taken to remain portable. Winsock v2, for example, defines only the two mentioned above,
- whereas Linux defines MSG_WAITALL, MSG_NOSIGNAL and others which have no equivalent in
Winsock. - : :

Connectionless sockets (such as UDP SOCK_DGRAM sockets) typically use sendto()
and recvfrom(), where there is a need to specify a destination address to send to, or to

identify a source address on a received message.

Complete Message

r | | 3

HDRI1 HDR2 Application data payload

I/O vector

Figure 3.9: Scatter/Gather 1/O using sendmsg() and recvmsg()

Both sendmsg() and recvmsg() take a pointer to a msghdr struct as a parameter instead
of a simple void*. The msghdr is defined in <sys/socket.h> The most notable character-
istic of this structure is that it defines a vector of buffers, rather than a simple buffer pointer,
which can be used for scatter/gather I/O. This I/O mode is useful to avoid excessive data
copying when assembling or disassembling message blocks®.

Consider, for example, an application which implements a simple protocol stack. An
application message is generated and two protocol layers each generate a header to prepend
to the message. The resulting message structure is illustrated in Figure 3.9. If we were to

use the simple send () (or write()) to send the message we would either have to call send ()

8The readv() and writev() system calls provide a more generic method for performing scatter/gather
I/O on file descriptors.

CHAPTER 3. BSD SOCKETS 40

three times to send each part, or else we would first have to copy the three parts into a single
contiguous buffer space and then call send (). Both of these options are unattractive. Using
sendmsg () instead, we can avoid both of these sources of inefficiency, by simply passing
it the vector that points to the three areas of memory containing our composite message.
The sendmsg() function gathers the data and writes it down to the socket send buffer. The
reverse process, with recvmsg(), is to scaiter the data from the socket receive buffer into

the buffers pointed to by the vector.

Options

Whereas it is convenient for the UNIX programmer to treat sockets, disk drives, disk files,
terminals and audio devices as if they were all simply files, there are occasions when it is
desirable, or even necessary, to recognize that they are different. The kernel code which
~ implements sockets as well as device drivers generally provides hooks which the programmer
can use to fine tune the characteristics of the underlying device. These hooks are ?.ccessed

via the ioctl() system call.

#include <sys/ioctl.h>

int ioctl(int d, int request, ...)

returns -1 on error

Toctls are extremely system dependent, particularly where they refer to hardware device

drivers. Stevens [55] describes the ioct1() function as

“the system interface used for everything that didn’t fit neatly into some other

nicely defined category.”

Ugly though this concept may be, ioctls are frequently used in network programs to obtain
information on host interfaces, access to routing tables etc. A common ioct]l which is used
with sockets is FIONBIO to set or clear the nonblocking flag. For example, one can set a

socket in non-blocking mode with:

int flag = 1;
ioctl(sockfd, FIONBIO, &flag);

CHAPTER 3. BSD SOCKETS 41

An additional mechanism for manipulating socket specific aptions is provided by the
setsockopt () and getsockopt () functions. Again the options supported by different sys-
tems varies, but there is a significant overlap of commonly used options. The prototypes for

these functions are shown below:

‘ #include <sys/types.h>
#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void woptval,
socklen t *optlen);
int setsockopt{int s, int level, int optname, comst void *optval,

socklen t optlen);

returns ! on success, -1 on ervor

Like ioctl(), these are untidy functions. The second parameter, level, allows the
programmer to specify at which level the option refers to. Typical constants defined for this
- parameter are SOL_SOCKET, IPPROTOD.TCP and IPPROTO_IP which refer to the socket level,
~ TCP level and IP level respectively. The third parameter, optval, is defined as a voids
becaugie the option data value can be of different types. In most cases it is a simple integer,
but there are exceptions. The SO_RCVTIMEQ and SO_SNDTIMED options, for example, set (or
get) an option of type struct timeval.

The simple server example of Figure 3.8 illustrated the use of setsockopt() to set the
SO_REUSEADDR option on a listening socket.

3.2.5 Handling errors

Most system calls, including those relating to sockets, return either 0 or a positive integer
value on success. A return value of -1 indicates an error condition. Robust code should
detect and handle such error conditions gracefully, so it is common practice to code such

system calls within an if statement like the following:

if (connfd=accept(sockfd, &addr, kaddrsize) <0Q)

. handle error

CHAPTER 3. BSD SOCKETS 42

Code | Symbol Description
4 | EINTR Interrupted system call
11 | EAGAIN Try again - would block
77 { EBADFD Invalid file descriptor
88 | ENOTSOCK Socket operation on non socket
98 | EADDRINUSE Address already in use
110 | ETIMEDOQUT Connection timed out
111 | ECONNREFUSED ' Connection refused
112 | EHOSTDOWN Host is down

Table 3.1: Some common POSIX error codes

Errno

Whereas the return value of -1 gives an indication of error, it does not give any indication
of the cause of the error. In order to determine the cause of the error condition, it is
necessary to examine the value of errno. The variable errno is traditionally defined as
. a static global integer®. This mechanism is adequate for single threaded processes, but is
- problematic where multiple threads co-exist within the same process. If each thread shares
+:the same global errno value, and they are each making system calls, there is no way to
determiné which thread caused which error. For this reason, most modern implementations
define errno as a macro which actually refers to a thread specific error value, rather than a
global static integer. | '

The ISO C and POSIX.1 standards list error codes and their corresponding symbolic
names. Table 3.1 lists a small selection of common error codes. The UNIX manual pages for
the various socket related functions, by convention, have an Errors section which lists the

possible error conditions which can arise from that function.

SUNIX system calls are implemented via a software interrupt (0x80). The error value is returned on the

stack and copied into the global errno variable.

CHAPTER 3. BSD SOCKETS 43

Errno helper functions

There are two functions which convert the integer error values into a more human readable

format.

#include <string.h>

char* strerror(int errnum);

returns human readable siring describing error

The strerror () function is useful for composing log messages describing error conditions
which may have arisen. For debugging purposes, frequently it is only required to dump a
trace message to the standard error stream. The perror () function provides a simple means

to do this:

#include <stdio.h>

void perror(const charxs);

writes error message to stderr

"

“-perror() writes out the string s, followed by a colon, followed by the stringified error
message to the standard error stream. Typically the string s, might contain the name of the

function, a timestamp, line number or other useful trace information.

3.3 Windows Sockets - the Winsock specification

Winsock version 1.1 was the standard sockets API on Windows since its release in January
1993. Winsock was an open specification designed by a group of interested industry vendors.
Thus, at least initially, Winsock was not owned by Microsoft or even distributed with its
popular operating systems. Windows NT prior to version 4.0 did have a built in TCP/IP
transport module apparently based on the UNIX System V STREAMS environment[6][41].
The version 1.1 specification was limited in scope to TCP/IP sockets and provided a common
basis for TCP/IP stack vendors to provide compatible implementations.

 The release of the Winsock version 2 specification in 1996 reflected the major upheavals
which had taken place in the network industry. The Internet’s popularity had continued to

CHAPTER 3. BSD SOCKETS 44

explode. Microsoft began distributing a free TCP/IP implementation with all its operating
sytems, dealing a blow to the majority of 3rd party stack vendors. The last revision of
the publicelly available specification{11] apears to be revision 2.2.2 (dated August 7, 1997).
Companies listed in the acknowledgements section of this document include Microsoft, Intel,
ETP Software, Distinct, Turbosoft, Motorola, Novell, DEC, ICL, Stardust Technologies and
SunSoft. The complete Winsock 2 specification consists of four documents:

L Windows'S()ckets_E Applica,tipn Programming Interface
2. Windows Sockets 2 Protocol-Specific Annex
3. Windows Sockets 2 Service Provider Interface
4. Windows Sockets 2 Debug-Trace DLL.

The Application Programming Interface is the most interesting from an application program-
mer’s perspective. I have included the publically available Winsock revision 2.2.2 specifica-
tion in the electronic appendix on cdrom. There has been no further revision to the public
»:spec.iﬁcati'on_. Current documentation on Wingock is now integrated into the Microsoft Devel-
‘oper Network (MSDN) documentation. The few minor additions to the original speﬂiﬁ\cation

- -are flagged in this documentation as 'Microsoft specific’.

3.3.1 Architecture

Though the scope of this dissertation is restricted to issues relating to the top level API, a
brief architectural summary is in order.

One of the more interesting aspects of Winsock v2 is its architectural overhau! to adopt
the Windows Open Systemns Architecture (WOSA). WOSA separates the API from the
protocol service provider, presenting a layered architecture, as illustrated in Figure 3.10.
Winsock v2 provides two programming interfaces: the Winsock AFPI and the Winsock SFI
(Service Provider Interface). In this model, the Winsock DLL provides the standard API,
and an independent vendor can install its own service provider layer underneath. Whereas

-in Winsock v1.1, vendors would supply a replacement Winsock DLL, WOSA is structured

CHAPTER 3. BSD SOCKETS 45

Winsock 2 Application

Winsock 2 APl
WS2-32.DLL
Insert layered - ——r—-am Winsock 2 SPI's
SPI shims here
TCP/IP based Additional
TCPAP Transport Hamespace Transport Service
Service Provider Service Provider provider
(eg DNS) (Cg SPX/IPX)
PPN T
NDIS Interface
NDIS Wrapper DLL |
(Network Drivers]

Newwork Interface Cards

Figure 3.10: 'Winsock 2 WOSA architecture

much like the UNIX STREAMS environment!® . The “plug-in” and “pile-on” decoupling
of layers presents opportunities for vendors to interleave additional shim layers (to provide
encryption or accounting services for example) between the Winsock DLL and the base
transport service provider.

The bottom layer service provider module in turn talks to the NDIS (Network Driver In-
terface Specification) interface[6]. NDIS provides an abstraction which shields the transport
protocols from the device driver details and vice versa. NDIS is part of the original Windows
NT, STREAMS based, network architecture which has survived and been incorporated into
the newer WOSA architecture.

10Perhaps this is the answer to the mysterious disappearance of STREAMS from the documentation - the
STREAMS model was simply dusted off, tidied up and renamed WOSA!

CHAPTER 3. BSD SOCKETS 46

3.3.2 Features

The Winsock specification is too large to provide an effective summary here. The full
Winsock API release 2.2.2 specification is provided in the electronic appendix, so I have
not attempted to repeat it here. Of particular interest in the specification is the section enti-
tled “Deviation from BSD Sockets”, which outlines main programming considerations when
porting BSD sockets code. I'have given an overview below of features introduced in Winsock
1.1 followed by those introduced in Winsock 2 togéther with some historical rationale where
appropriate. | -

Two structural differences one finds between Windows sockets and BSD code relate to
header files and initialization. Whereas some backward compatible headers do exist, it is
normal practice to simply include <winsock.h> or <winsock2.h>. Before using any sockets

functions it is necessary for a process to load the Winsock DLL using the WSAInit () function.

Winsock 1.1

-

The emphasis of Winsock v1.1 was to implement the BSD sockets paradigm for TCP/IP
- sockets on. Windows in a manner which would ease porting of existing BSD sockets ap-
-plications to Windows. It provided most of the socket primitives such as the socket (},
“connect(), accept(), send(), recv(), shutdown() , getsockopt() and setsock'opt()
calls. Two notable exceptions, close() and ioct1(), were renamed to closesocket() and
ioctlsocket () respectiveley, to avoid clashes with existing Windows API functions.

The BSD select() function was implemented for synchronous demultiplexing of socket
events (not generic file events as on UNIX) but its use was initially discouraged. The early
Windows 3.1 system, which Winsock v1.1 was targeted at, did not support preemptive
multitasking. This meant that any blocking call, even a call to select(), could effectively
starve the system. In keeping with the Windows GUI message driven paradigm[40], a new
function WSAAsyncSelect () was introduced, which arranged for messages to be placed on a

window’s message queue in response to network events occurring on a socket.

CHAPTER 3. BSD SOCKETS 47

#include <winsock.h>

int WSAAPI
WSAAsyncSelect (
IN SOCEET =,
IN HWND hWnd,
IN unsigned int wMsg,
IN long lEvent);

This model proved popular due to its easy integration with the Windows GUI program-
ming paradigm!!. The socket was set automatically to non-blocking mode after calling
WSAAsyncSelect () to avoid the risk of blocking calls locking up the system. It is somewhat
simpler to use than the BSD select() in that the message which is placed on the window
- message queue contains an explicit indication of the event which has occurred (typically
FD READ, FD_.WRITE, FD_ACCEPT, FD_.CLOSE or FD_CONNECT) together with the
relevant socket handle. One of the problems with select() is that it only returnsan indi-

. r.cation-of the number of interesting events that have occurred. The file descriptor sets still

"~ have to be scanned to find the actual events which have occurred on each descriptor [4].

Winsock 2

Besides the structural overhaul, Winsock version 2 adds a number of new features to the

Winsock specification. Chief among these are:

1. Separation of the sockets interface from the transport and name service providers. A
consequence of this is that Winsock 2 sockets are no longer restricted to TCP/IP and
can access various name services such as DNS, NIS, X.500 and SAP in a standardized

way.

2. Support for advanced Windows NT I/O and synchronization mechanisms. Specifically
this means that sockets (like other file handles) can be used with overlapped I/0O and
Win32 event objects.

~ 117The Windows port of the Tel notifier uses WSAAsyncSelect() for the same reason - easy integration

with Tk GUI events.

CHAPTER 3. BSD SOCKETS 48

3. A Quality of Service mechanism for use with transport service providers which support
it. This is derived from the How specification described by Craig Partridge in RFC1363.
The structures below illustrate how a flowspec is specified:

typedef struct _flowspec
{
int32 TokenRate;
int32 TokenBucketSiza;
int32 PeakBandwidth;
. int32 Latency; .
int32 DelayVariation;
GUARANTEE LevelOfGuarantee;
int32 Cost0fCall;
int32 NetworkAvailability;
} FLOWSPEC, *LPFLOWSPEC;

typedef struct _QualitylfService
{ .
FLOWSFPEC SendingFlowspec;
FLOWSPEC ReceivingFlowspec;
- WSABUF ProviderSpecific;
} QOSs, "=LEQDS;

s

4. Scatter and gather operations are supported, not through sendmsg() and recvmsg(),
but rather as part of the generic Overlapped I/0 facility. Overlapped 1/Q is supported
through WSASend (), WSASendto (), WSARecv() and WSARecvFrom().

There are other enhancements listed in the specification, such as multicast and socket
sharing across processes, but the above represents some of the more important changes from
Winsock 1.1.

3.3.3 Error reporting

The WIN32 API is inconsistent with respect to reporting errors when functions fail [19].
Failure can be indicated by a return value of 0 or -1 depending on the function. A number
of commands return the exit code with 0 indicating success.

Whereas the Microsoft C library provides both the errno constant and the perror ()
function, the recommended (and more reliable) means of retrieving the exit code is via the
WIN32 GetLastError() function, or the Winsock equivalent, WSAGetLastError().

CHAPTER 3. BSD SOCKETS 49

The Windows exit codes are not the same as the equivalent UNIX errno values. A
common feature of all the porting libraries considered is therefore, that they provide some
mechanism for interpreting WIN32 and POSIX error codes in a platform independent man-
ner. The most common approach is to simply translate the WIN32 error codes into POSIX
equivalents. A clear illustration of this process can be seen in the file tclWinError.c from

the Tel source code.

3.4 Synchronisation and process control

It should be clear from the foregoing discussion that the Windows sockets API has functional
equivalents for most of the BSD sockets functionality. Indeed most of the existing BSD socket
calls can be used unchanged, by simply linking against the Winsock functions of the same
" name. Minor discrepancies, such as with closesocket{) and ioctlsocket (), should he
easily handled through the use of preprocessor macros or thin wrapper functions.

Unfortunately, the opening and closing of and exchanging of data with sockets is Bnl}f one
“aspect of the design of socket based servers. Most useful servers have to be able to successfully
“service 'multiple concurreni client connections. Strategies for iinplementing architettures
‘which solve this problem involve more fundamental aspects of the underlying operating

system than simply the sockets API. In particular we may need to be able to: .
» create threads and/or proéesses;
s communicate and synchronize hetween these;
o detect and demultiplex events suﬁh as I/0 readiness and timeouts,

In Chapter 4 we will see how the tools presented in Chapter 2 provide useful abstractions

or emulations of these mechanisms on the target operating systems.

Chapter 4
Server Architectures

This chapter describes portable implementations of the following server architectures:
e lterative service
e Event driven service
. .Thre-ad (or process) per connection service
-.Thréad (or process) pool service

As indicated in Section 1.4, architectures based on Asynchronous or Overlapped 1/0 models
are not considered. The classification above is also somewhat simplistic in that some of the
more interesting architectures that have emerged in the research community in recent years
employ hybrid models. Examples include the Jaws web server [14], which can dynamically
adapt its concurrency strategy based on load conditions, and the Flash [58] web server which
uses a blocking thread-pool model for disk I/O and an event driven model for network I/O.

The UNIX event driven servers are all based on the select () system call. Whereas it is
interesting to look at some of the newer event mechanisms such as /dev/poll on Linux{39]
and FreeBSD kqueues, it is beyond the scope of this research to do a comprehensive analysis
of UNIX event mechanisms. I have thus concentrated on the more primitive select()

function because it is widely available.

50

CHAPTER 4. SERVER ARCHITECTURES 51

4,1 Iterative server architecture

Each of the servers developed in this and later chapters performs a simple http-like service.
The client receives a simple “Hello” message! before sending a request to the server in the
form of an ASCII encoded decimal number occupying exactly 4 bytes (eg 0600). The server
responds by returning a stream of ‘A’s of the requested length (eg 600 for the example given).
Unlike http, the server does not terminate the connection. The client performs the active
close, thus ensuring that the TIME WAIT state occurs on the client side of the connection.
This is a useful consideration when testing, if we want to bombard the server with a large
number of connections per second. This service is almost identical to that used by Stevens
[55] to illustrate server architectures.

The iterative version performs the minimum amount of process control. It uses a single
thread of control and blocking I/0, which forces it to serialize multiple connections. The

main loop for such a server is shown below:

iterative/uniz/simple.cpp

82 // loop processing client connections

83 while(1) .
84 { ' ' ' .
85 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
86 if (connfd<0)

87 {

88 perror ("accept');

89 continne;

90 }

91

92 if (send_n(connfd,hello,7)<0)

93 i

94 perror ("aend"};

g5 close(connfd);

96 continne;

97 }

98

99 switch (read_n(connfd, inbuf, 4))

100 // read_n must return 4, 0 or -1

101 {

102 case 4:

103 if (send_n(connfd,outbuf,atoi(inbuf))<0)

104 {

105 perror("send");

1The reason for this initial greeting is to avoid a race condition described in Section 5.5.2.

CHAFTER 4. SERVER ARCHITECTURES 52

105 breek;

107 }

108 // wait for client to close
109 recv(connfd, inbuf, 1,0):
110 break;

111 cage O:

112 fprintf(stderr,”0dd: client closed\n"});
113 break;

114 defaunlt:

115 perror(®recv®);

116 break;

117 }

118 close{conntd) ;

119 } //while

120 - return 0;

121 }

sterative funiz/simple.cpp

Figure 4.1: Iterative service

hi

‘Multiple concurrent -connections will be fqueued on the listening socket queue. These
- are accept ()’ed and processed one at a time. Clearly the scheduling is inefficient. Ready
connections will be ignored while the active connection is being processed. Given that this
process may block, particularly in a wide area, internet environment, the latency experienced
by these waiting clients may be unacceptably high. The overall server throughput in these
circumstances will also be unacceptably low as available CPU cycles are not being used to

process ready connections.

4.2 Event driven server architecture

4.2.1 Overview

Event driven servers deal with multiple connections within a single process. They do not in
themselves exhibit any concurrency. All I/0O is done in non-blocking mode and the process
‘needs to use some form of I/O demultiplexing and event dispatching mechanism. On UNIX
systems this demultiplexing is achieved using the select() or poll () function calls. There
are problems of scalability with both of these functions [3]. Event driven I/O architectures

CHAPTER 4. SERVER ARCHITECTURES 33

have historically not been very popular on UNIX platforms, perhaps because of the lack of a
proper explicit event delivery mechanism [4]. POSIX Real-time signals [43] provide a model
for flexible event delivery and notification, but are not yet widely available on all systems.

On Windows versions prior to Windows 95, there was no pre-emptive multi-tasking,
making event driven architectures the natural (if not the only) choice. Winsock 1.1 does
have an implementation of the BSD select() function, but there are more sophisticated
Winsock specific alternatives. Winsock 1.1 introduced a function, WSAAsyncSelect (), which
causes notification messages to be posted to the application window’s message queue when
1/0 events of interest occur. This is the same mechanism used to handle GUI events.

Winsock 2 with Windows 93/98/NT introduced & new mechanism based on the functions
WSAEventSelect () and WSAWaitForMultipleEvents() or WaitForMultipleDbjects(),
which allow for explicit event delivery to Windows applications without making use of the
Windows message queue [26]. |

In this section I show how the substantial differences between these modes, can be masked
by abstracting away from the detail and concentrating on the architectural framewark. To
illustrate’I present an example using the ACE toolkit and an example using the Tel library.
" T have also impiemeﬁted native select () based versians of these servers. The source code

can be seen in the electronic appendix on CDROM.

4.2.2 Implementation using ACE

ACE provides a wide range of classes which are designed to be flexibly grouped together in
collaborations to form application frameworks. Developing software using the ACE library
invalves identifying the participants and collaborations required to implement the desigh. If
the design follows a well-known pattern? then one can almost always find a templatized class

within ACE which encapsulates it.

View from the top

Figure 4.2 describes a very high level view of the architecture we are implementing. There

are three participating classes in the server:

*For more information on factories and other paiterns see(8].

CHAPTER 4. SERVER ARCHITECTURES 54

|
¥

Client-Server Communication

Service Handler
Client creates Objects

T

ot

Acceptor (Factory)| - - | registers, alerts

e e

e e -]

N ACE Reactor
registers

Figure 4.2: An Acceptor Factory

¥

1. An Acceptqr-object, The acceptor is a factory class, which accepts new connections

and creates Service Handler objects to handle these connections.

2. Service Handler objects. These are the workers in the pattern. They are responsible
for providing the service to the client. This should be the only part of the design which

is application specific.

3. The Reactor. Because we are implementing a single process event driven server we
need an object which responds to events and dispatches messages to the Acceptor and
Service Handler objects. This is the role of the Reactor. The Acceptor and Service

Handlers must register with the Reactor in order to receive notifications.

Concretizing the abstract classes

Having clarified our high level design, we now need to fill in the details. The Acceptor we
have discussed above is deliberately a very abstract object. We can concretize it by saying

CHAPTER 4. SERVER ARCHITECTURES 35

that we need an Acceptor which listens for TCP/IP connections and creates our own unser

defined Client_Handler objects.

select/ace_select /server.cpp

10 typedef ACE_Acceptor <Client_Handler, ACE_SOUCK_ACCEPTOR> Client_Accepter;
"11 'stetic sig _atomic_t finished = Q;

12 extern "C" void handler {int)

13 {

14 finished = 1;

16 }

16 int main {int argc, char »argv[])

17 |

18 if (argec!=2)

15 ACE_ERROR_RETURN ((LM_ERROR,*Jp\n","port no®),~-1);

20 u_short port = atoi(argv[1]);

21 ACE::set_handle_limit(1024); "

22 . ACE_Select_Reactor *sreactor = new ACE_Select_Reactor ({ACE, SigmHandler*) ,0,1,0 0),
23 . ACE_Remctor *reactor = new ACE_Reactor(sreactor);
249 .

25 "'Cliént;kcceptor my, . accephor;

26 ii (my_acceptor.open (ACE_IMET_aAddr (port),

27 reactor,
24 h ACE_NOKBLOCK) == ~1)
20 ACE_ERROR_RETURN ((LM_ERROR,"%p\n”,"open"),-1);

36 ACE_Sig_Action sa ((ACE_SignalHandler) handlar, SIGINT);

31 // Process events ...

32 while (!finished)

33 {

34 reactor->handle_avents ();
35 }

36 delete reactor; delete sreactor;
ar return Q;

33 }

select /ace_select/server.cpp

Figure 4,3: ACE event driven server main(}

CHAFTER 4. SERVER ARCHITECTURES a6

The result, implemented in code, is shown in Figure 4.3. The strength of ACE is shown
in the typedef at the top of the file. This simple declaration actually dnes most of the work
- of defining our framework. lnside the main() function we simply declare a reactor, declare
an acceptor of our user defined type, register it with the reactor and listen for events. All
that remains is to implement the Client _Handler class.

The Client Handler (shown in Figure 4.4 below)is derived from an ACE.Sve Handler.
This is a necessary relationship in order to allow our Client Handler object to register with

the reactor. . : _
select/ace_select/client_handler.h

9 class Client_Handler : .
10 public ACE_Svc_Handler <ACE_SOCK_STREAM, ACE_NULL_SYNCH>
11 {
12 public;
13 Client_Handler (void) {;}
14 // void destroy (void);
15 int open (void %acceptor);
16 int handle_close (ACE_HANDLE handle, B
17 ACE_Reactor_Mask mask);
18 protected:
.:18 int handle_input (ACE_HANDLE handle);
20 . iot handle_output {ACE_HANDLE handls);

21 int bytes_to_send, bytes_sent;
22 int bytesrsad;

23 char out_message[10000];

94 char in message([5];

25 “Client_Handler {(void) {;J}

25 };

select face_select/client_handler.h

Figure 4.4: ACE event driven client handler

There is a lighter weight solution by inheriting from an ACE Event Handler instead, but
there are some additional benefits one derives from using the Svc_Handler. Chief among
these is that the Svc_Handler provides us with a built in ACE_Stream object which we can

“use to communicate with the client. The Svc Handler is also derived from an ACE Task
‘object, which would allow us to very easily adapt this server to a multi-threaded design?.

¥The ACE class hierarchy is quite extensive and beyond the scope of this work. The interested reader is

CHAPTER 4. SERVER ARCHITECTURES

Providing the service

To provide our application specific functionality we simply override the destroy(), open(),
handle.clogse(), handle_input() and handle.output() methods. For the sake of brevity,
I only show the handle_input() method in Figure 4.5. Note that the reactor ensures that

these methods are called in response to I/O events on the underlying socket. We remain

- registered with the reactor so long as we return 0 from these methods.

20
21
22
23
24
25
26
27
24
29
ao
a1
32

int
Client_Handler::open (void ¥_acceptor)

{

}

Client_Acceptor *acceptor = (Clienthcceptorr*) _acceptor;

// for the sske of simplicity, sssume this send won’t block
peer().send(hello, sizeof (*Hello\n"));

// get ready to read

bytasread = 0;

Af (reactor ()->register_handler (this,
ACE_Event_Handler::READ_MASK) == ~1)

ACE_ERROR_RETURN ({LM_ERR(R,
"{%4P1%t) can’t regiwter with reactor\n"),
-1);
returno 0;

int Client_Handler::handle_input (ACE_HANDLE handle)

in_messagel[4]=’\0’;
int nreceived = peer ().recv (in_message+bytesread,
4-~bytesread) ;
switch {nrecejved)
{
caga ~1: // Read error
cage 0: // Peer closed it’s end
this~>pear().clase();
return =1;
default:
bytesread += nreceived;

directed towards [57].

select/nce_select /elient_handler.cpp

CHAPTER 4. SERVER ARCHITECTURES 38

a3 if(bytesread == 4)

34 {

3 if ((bytes_to.send = atoi(in_message))){

36 bytesread = 0;

ar bytes_sent = 0;

as handle_output ((ACE_HANDLE) this->get_bandle()};
a9 ¥

40 else // atoi failed: received strange input from client 7
41 return -1; '

42 ¥

43 return 0;

48 i '

45 3}

select/ace_gelect/client_handler.cpp

Figure 4.5: ACE Client Hahdler implementation

Reflections

- This-little example serves to illustrate how we.can use an object-oriented toolkit like ACE
- to build a portable.event driven server. The end result is a clean and extensible design,
built with flexible and reusable objects, The underlying patterns in the ACE framework
mmpbn‘ents‘ help to ensure a high degree of robustness, by taking care of much of the error-
prone detail. The reactor shields us from the platform specific details of 1/O demultiplexing
and event dispatching. The reactor can be parameterized to use either poll(j or selact()
on UNIX. The default on Windows NT is to use WaitForMultipleObjects (). _
Note from Figure 4.3 how ACE also provides platform neutral wrappers for socket address

structures and signal handling functions.

4.2.3 Implementation using Tcl
Some useful tools

The Tcl library is a C library which provides implementations for the Tel commands used

in the interpreter as well as a number of utility functions. In this section I show how we can

CHAFPTER 4. SERVER ARCHITECTURES 59

make use of some of threse functions to build a portable server using C++. The following is
a list of some of the Tecl functions we use:

Tcl.OpenTcpServer A useful function which creates a server socket and arranges a call-
back when clients are accepted. A much simplified version of the acceptors discussed

in the previous section.

Tcl . CreateChannelHandler A function to arrange for callbacks to be registered for events
- on Tel I/O channels. On UNIX we can use T¢cl.CreateéFileHandler, which works on
“normal” file descriptors. Unfortunately, this function is not provided on Windows,
probably because of the SOCKET handle problem, so we have to use the more abstract,

and more heavyweight, channels if we want to maintain portability. There is no reason

why the Tel core functions cannot be extended to provide a Tcl_CreateFileHandlar
function on Windows (Don Libes did this to facilitate porting Expect to NT), but I

leave it for future investigation.

~+

Tcl DoOneEvent The driver of Tel event driven programs. Checks the event queue of the
. Tcl Notifier-to see. if any registered events are due to be serviced. If so, it Arranges

- for the first event in the queue to be serviced. Otherwise it simply blocks. Thé’ Tel
Notifier uses select() on UNIX and WSAAsyncSelect () on Windows platforms. If =

Tl is compiled with threads enabled, the notifier runs in its own thread.

The factory pattern revisited

Figure 4.6 shows a simple main function for our event driven server. Normally, using C, one
would create handlers for the connected channel directly in the acceptBandlexr function.
Building on my experience with ACE I decided to treat the acceptHandler as a factory
method for ServiceHandler objects. This decision exposed an interesting problem (and
fortunately its solution) which I have since come across a number of times when interfacing

C++4 with C APT calls.
select/telsery/main. cpp

12 void acceptHandler(ClientData interp,Trl_Channel connch,char* hostname,iunt port)

13 {
14 // Create a ney Connection object

CHAPTER 4. SERVER ARCHITECTURES 60

15
16

17
18
19
20
21
22
23

24
25
26
27

28
29
30
31

ServiceHandler* Sh = new ServiceHandler(ccmnch, (T¢l_Interp=)interp);

int mailn(int argc, char+ arge[]) {

// =igna) (SIGINT,sig handler);
cerr << "startinmg tel server on port "<< argv[1]<< endl;
int port = atoil(argwv([1]);

Tcl_Interp* interp = Tcl _Createlnterp() ;
‘BerviceHandler::init{5000);

// & handy convenience function which creates a listening
// socket and causes cur acceptHandler to be dinvoked in
// Tesponse to new connections
Tcl_OpenTcpServer (interp,port NULL,acceptHandler ,NULL);

// Btart Tcl Event Loop
wvhila{1){
Tcl_DoOneEvent (0} ;

}

- select/telserv/main.cpp

‘Figure 4.6: Tcl Event Driven Server main() |

The problem with static functions

Figure 4.7 shows the interface to my ServiceHandler class. The class encapsulates the con-
nected client channel together with the data members (buffers and pointers) required to

 manage the I/O.

select/tclserv/iclichandler.h

5
6
7
8

4=}

class ServiceHandler {

public:
ServiceHandler {Tcl_Channel connch, Tcl Interp# interp);
"ServiceHandler();
static void init(int outbuf_size)
{
out = new char[outbuf_size];
// just so we can see what’s going on ...
memset{out,’A? ,outbuf_size);

}

CHAPTER 4. SERVER ARCHITECTURES 61

16
17
18
19
20
21
22
23
24
26
25
27
28

int readRequest();

int processRequest();

static void ioHendler{ClientData c, int mask);
private:

// data epecific to the comnection ipstance

int nbytes;

int bytssleft;

int byiesread:

char =in;

static char» out;

Tel_ Channel conn;

Tcl_Interp *_interp;

select/tclserv/icliohandler.h

Figure 4.7: Tcl ServiceHandler interface

In Figure 4.8 we see that the constructor makes a call to Tcl.CreateChannelHandler
to register interest with the Notifier. The problem is that the callback function passed
-as the third parameter to this function must be declared as static. This means that our

e céllback (ServiceHandler: :ioHandler) does not have access to the data members of our

- ServiceRandler instance. Fortunately the Tcl function allows us to send an application

" specific parameter as the fourth argument to the function. I make use of this to pass a

pointer to the current instance {the ¢his pointer) to the static ioHandler.

select/telserv/tcliohandler.cpp

7 ServiceHasndler::ServiceHandler(Tcl _Channel connch, Tcl _Interp* interp}{

8

9
10
11
12
13
12
15

this->»conn = connch;

thie~->bytesread = 0;

this->in = new char([5];

Tel_SetChannellption(NULL,cennch, “~blocking”,"0"});
Tecl_Write(this->conn,const_cast<char*>(hella) ,sizecf (*Hello\n"));
Tcl_Flush{this~>conn);

Tcl_CreateChannelHandler (this->conn,TCL_READABLE,ServiceHandler::ioHandler,this);

select /telsery/icliohandler. cpp

Figure 4.8: Tcl Event Driven Server: ServiceHandler constructor

CHAPTER 4. SERVER ARCHITECTURES 62

‘The static ioHandler() function is shown in Figure 4.9. It is now possible to refer to
specific data or member functions of the ServiceHandler instances by dereferencing the local

ServiceHandler pointer, sh.

select/tclsery/teliohandler.cpp

50 // ioHandler is static

51 // we receive a reference to a ServiceHandler instance via Clientdata
52 void ServiceHandler::ioHandler(ClientData ¢, int mask){

b3 ServiceHandler+ sh = (ServiceHandler+) c;

b4 int numread = 0;

55 switch(mask){
86 - case TCL_READABLE:

57 sh->readRequest();

B8 break; :

3] case TCL_WRITABLE:

60 sh->processRequest () ;
61 i

62 }

»

select/tclserv/tcliohandler. cpp

"

Figure 4.9: Tcl Event Driven Server: ServiceHandler::ioHandler

Reflections

‘The problem with static functions outlined above is interesting to reflect upon because it
occurs in many places where one attempts to wrap C system API calls in C++ classes®.
Using these same function calls in a C style program (without classes) results in a simple
elegant. construction, whereas routing the dispatch back to a C++ object method call is
problematic. Schmidt[49] talks of cases of “impedance mismatch” between C and C4+
when mixing the two languages. This phenomenon is indeed one of those mismatch cases.
I have presented the solution outlined above, using a static reflection method, in a pattern
format to the PLOP2001 conference in Illinois [16]. The full paper is presented as Appendix
E.

4For example, we see the same thing with the POSIX pthread_create() function which requires the

thread entry point to be declared as a static C function.

CHAPTER 4. SERVER ARCHITECTURES 63

4.3 Concurrent architectures

Comparing the iterative server of Figure 4.1 with the event driven servers of Figures 4.3 and
4.6, one is struck by the simplicity of the service implementation of the iterative version,
using synchronous, blocking I/Q. We saw how the introduction of non-blocking I/0O solved
a problem for us at the cost of some complexity. Recall the reason that we had to use non-
blocking IO was that our server was running as a single thread in a single process. If we
could arrange for the service to be implemented in a separate process or thread, we would be _
able to use the simpler blocking I/Q in this service without hampering our server’s ability
to accept new connections. Doug Schmidt’s description of the “Half-Synch Half-Asynch”[50]
gives a good background on how and why we want to do this, ,

The servers presented in this chapter illustrate some of the variations on the multiple

. process and multiple thread theme.

4.3.1 Classical implementation - multiple processes ;
|
|
Client-Server Communication Service Handler
Active Objects

Client crestes M

\ ‘

Acceptor {Factory)

Figure 4.10: Create thread or process per connection

The simplest implementation of the architecture illustrated in Figure 4.10 is using the
UNIX fork{) function. The parent process accepts connections and forks a new process to

handle each connection. A basic implementation of our “*A” service using the “new process

CHAPTER 4. SERVER ARCHITECTURES

64

per connection” architecture is shown in Figure 4.11 below.

fem R I R B]

11
12
13
14
15
16
17
18
19
20
21
22
23

24

.25 .
26 ..

27

28
29
30
31

32
_ 33
34
35
35
a7
a8
39
40
41
42
43
44
45
48
47

// Reap dead children - avoid "zombies"
void handler (int)
{
while (ACE_0S::waitpid(-1,NULL,WNOQHANG)} »0);
}

// main function is similar to iterative server
int main(int arge, char* argv[])
{
if (arge 1=2)
{
ACE_0S::printf("Usage: forker <port>\n*};
ACE_DS: :exit(~1);
1

int Port = ACE_0S::atai{argv[1]);
ACE_INET_Addr addr(Port);

ACE_SOCK _Stream peer;
ACE_SOCK_Acceptor myhcceptor(addr);

char inbuf[5]:

char outbuf [10000];

.ACE_U3: :memset (outbuf, *A* ,sizeof (outbuf));
“inbut [4]=\07;

//instell sig handler to catch child exits

ACE _Sig Actiom sa ((ACE_SignalHandler) handler,

int pid;

while(1)
A . :
myAcceptor.accept(peer);
// fork() on accept
if ((pid = ACE_0S::fork{))==0) {
// this is the child
myAcceptor.clese();
peer.send_n{hello,sizeof ("Hello\n"));
switch (peer.recv_n(inbuf,d))
!

case 4:

peer.send_n(outbuf ,ACE_03::atoi(inbuf));

peer.recv(inbuf,1);
break;
case (:

concurrent/ace.forker/forker.cc

SIGCHLD);

ACE_DS: :fprintf (stderr,”0dd: client closed\n");

CHAPTER 4. SERVER ARCHITECTURES 65

48 break;

49 default:

5O ACE_08::perror ("Recv');
51 : break;

52 }

53 _

b4 peer.close();

55 // child exit

g6 ACE _0S::exit(0);

5T 1

53 /{ this is the parent
59 peer.closa();

&0 }

61 }

concurrent/ace_forker /forker.cc

Figure 4.11: New process per connection

The fork() function is the standard way to create processes on UNIX systems. It is a
unique function call in that it returns two values. The fork causes a copy of the running
process tu be made. The only way of distinguishing between the parent and the child is the
return value of fork(). A return value of 0 indicates we are the child. The return value in
the parent is the process id of the child process®.

There is no native equivalent to fork() in the Win32 API systems.

Process creation on Windows NT

The standard way to create processes on Windows NT is using the CreateProcess() or .
CreateProcessEx() function calls. This new process is not cloned from a running process.
FEach new process is independently loaded and started up from an executable file on the
filesystem. This startup time is a strong argument against this new-process-per-connection
model being used in a Windows envirenment.

Cygwin and UWin (see Section 2.2) do provide an emulation of fork() for Windows,

The Cygwin version is open source so we can see exactly how it has been achieved. The

51t is aften important for the parent to keep track of child processes. In our example, the only important
thing is for the parent to catch and clean up after the child exits. This is the teason for the signal handler.
See {55] for a thorough explanation of cleaning up “zambies”.

CHAPTER 4. SERVER ARCHITECTURES 66

new process is started in the standard Windows way by loading a new invocation of the
running program (as reported by argv[0]). This new process is created in a suspended
state (a ‘Windows feature for which I know no UNIX equivalent), and its data segment
is overwritten with a copy of the parent’s data. Once the new process has been suitably
hacked to resemble the execution state of the parent (with the exception of the return value
of fork() } its execution is resumed. The result is a crude and inefficient, but functional,
emulation of forking {31)].

The fork(} emulation is useful because there are so many UNIX servers which depend on
this mechanism. Almost all of the “classic” servers such as the apache web server, the innd
news server, sendmail, inetd, telnetd and a host of others are examples of forking daemons.
Porting them to Windows without a fork(} facility involves a substantial rewrite of the
concurrency mechanism, In a small scale scenario, where the expense of process creation is
- not critical, a literal port of these types of server using the likes of Cygwin is a worthwhile
a.nd relatively painless exercise. Where a betier performance characteristic is required, some
other concurrency strategy needs to be used. The “official” Windows port of the apafche web

~ server from the Apache project (http://www.apache.org/) makes use of multiple threads
. instead of processes, though both Cygwin and UWin ports are maintained based on the

cutrent UNIX source code.

Process pools
Even on UNIX, where the cost of process creation is more reasonable, forking a new process

per connection is not the most efficient strategy. The strategy persists because it has two

great strengths:

1. Simplicity. There are very few complications to consider. The process uses blocking
1/0 so there is no need for the complex buffer management typical of event driven

servers. The flow of control is easy to follow and debug,

2. Robustness. A server based on short-lived processes has an inherent stability. Once
the service process has performed its task, all resources allocated to it are reclaimed by
the operating systemn on exit. Using the operating system to do the garbage collection

reduces the complexity of the program considerablity.

CHAPTER 4. SERVER ARCHITECTURES 67

A compromise solution is to pre-fork a pool of processes. This removes the overhead of
process creation on a per-connection basis, but introduces the new problem of how to allocate
incoming client connections to service processésn I have not shown a code example here since
the basic strategies are similar to that of the multi-threaded servers below.

Pre-forking negates some of the robustness qualities of the short-lived new-process-per-
‘connection described above. If a process is going to stay around for longer, it needs to take
- more tesponsibility for the management of its resources. Again there are compromises one
can reach. A managed process pool can create and cull processes dynamically to adapt to
server load as well ag limiting the lifespan of individual processes to only handling a fixed
number of requests before being reclaimed by the operating system. This is a model used by
apache, which though far from being the fastest of weh servers, certainly has a reputation

for stability.

4.3.2 Lightweight processes - threads

-

Threads can be user level or kernel level. This discussion only applies to kernel level threads.
Threads offer a lighter weight alternative to processes for implementing designs based on
active objects. The creation time is considerably less than for a process, as is the overhead
of context switching. The API’s for creating threads on Windows and UNIX are different,
but sufficiently close to make porting an eagier proposition than is the case with multiple

processes. There are however, many more hazards to be aware of:

1. Threads do not release resources automatically on exit the way processes do.

2. Functions called by multi-threaded programs must be thread-safe i.e. they have to
deal with re-entrancy. This property must also be true of any libraries the program is
linked against. This can still be a problem with many legacy libraries.

3. Great care must be taken to synchronize access to shared resources. Different mech-
anisms are used on different platforms to achieve this. The primary mechanism on
Windows is the CRITICAL SECTION{44]. This is similar to the Java ’synchronized’
sections. Condition variables, which are a widely used technique on POSIX systems,

are not available on Windows.

CHAPTER 4. SERVER ARCHITECTURES 68

4. The behaviour of signals with threads is platform dependent. Many experts (see usenet
news://comp.programming.threads) advise against any mixing of signals with threads.

The interactions are potentially complex and best avoided.

Nevertheless there are benefits. With threads one gets the convenience of non-blocking
I/O without the excessive overhead of process creation and context switching. This is still
less efficient on single processor machines than event driven designs which have no context
switching overhead at all. The choice between the two models in thls case is dlﬂicult Factors

one might consider are:

e What is the nature of the service? Event driven servers tend to favour short-live
services [3](14]. Connections that are likely to stay around for longer would benefit

from a thread, or even a process, being allocated to them.

e What are the other functional requirements of the system? A TCP/IP client, for
example, may require a GUI which uses an event loop (such as that provided with
Tcl/Tk). In this case it may be simply convenient to integrate non-blocking I/ O into
‘the existing event loop. This is also typical of many Windows servers which throw up

a GUI control panel of some sort. -

The most common AFPI for threads is the POSIX 1003.g specification (commonly known
aS__pthreadS). V'Alth(')ugh many UNIX flavours carry their own thread variations,'.almost all of
them support the POSIX pthreads API. Windows threads do not, but there are a number of
freely available pthreads libraries which essentially wrap native Windows threads functions
in standard pthreads calls. I have used the Win32 Pthreads library from Cygnus Solutlons
with some success.

Again there are benefits in abstracting away from the low-level API and using an Object-
Oriented wrapper library when programming threads across platforms using C++. The
illustrative examples which follow use the ACE library. I have taken this approach because

the code is shorter, it’s easier to write and it runs on UNIX and Windows platforms.

Thread per connection

The thread per connection model is similar to the process per connection model discussed
in Section 4.3.1 above. Instead of forking a new process to handle the incoming client

CHAPTER 4. SERVER ARCHITECTURES

69

... initialize listening socket ...

while(1) {
connfd = accept(listenfd,(struct sockaddrs) NULL, NULL);
if (pthread. create(&-tid, NULL &worker,(void =) connfd)#0){
cout < "Trouble! can’t create thread " < endl;
close{connfd};

}

static void+ worker(void+ arg) {
.. perform service
}

Figure 4.12: Thread per connection

connection, we create a new thread. A section of a pthreads program implementing this

strategy is shown in Figure 4.12. A simple wrapper around the Windows thread functions

is sufficient to get this type of program to compile on Windows.

. Note that the thread main function is a static C function. This gives rise to the _same

'problem dlscussed in the previous section when trying to encapsulate a thread into a C++

- class.

ThreadPaool version 1

As with multiple process servers, one can avoid the cost of creating a new thread for each

connection by pre-spawning a pool of threads. The most common variation on this theme

is to have one thread responsible for accepting connections and dispatching them to worker

threads who perform the service. Figure 4.13 illustrates the idea.

CHAPTER 4. SERVER ARCHITECTURES | 70

Pool of Workers

Client-Server Communication |
i Service Handler
Active Objects

A

Client .
assigns work

Acceptor Job Quene
Connects P ’

—

Figure 4.13: Pre-threaded: Acceptor enqueues, workers dequeue

concurrent/ace_msgq/simple.cpp

©. 6 .int ‘main(int arge, char* argv([])

t

7L | -
B8 if (arge != 3){
8 - cerr << "usage server <port> <nworkers>" << endl;
SR (NN _ ACE_DS::exit(-1);
IR } 7
12
13 int Port = ACE_0S::atoi(argv[1]);
14
15 _ ACE_INET_Addr addr(Port); //listening socket
16 ACE_SDCK_Stream *peer; //client connection
17 ACE_Meszage_Block *mb; //for passing to our threads
i8
19 ACE_SOCK_Acceptor myAcceptor (addr);
20
21 // create worker threads
22 Worker ThrPool(ACE_DS::atoi(argv[2]));
23 //start them up .
24 ThrPool.open();
25 while(1)
26 {
27 peer = new ACE_SOCK_Stream;
28 myAcceptor.accept (*peer) ;
29 //make a new message block containing reference to peer socket

30 mb = new ACE_Message_Block ((const char#*)peer,sizeof(peer));

CHAPTER 4. SERVER ARCHITECTURES 71

a //put it on the thrpool guane
3z ThrPool.putq{mb) ;

33 }

34 return O;

35 }

concurrent/ace_msgq/simple.cpp

Figure 4.14: ThreadPool ver 1 main()

Figure 4.14 shows the main() function of a thread pool based server. Connections are
accepted and a reference to the connected socket is placed onto a message queue.

Figure 4.15 shows the interface to the warker class which is responsible for de-queueing
messages and servicing the connection. 1 have made use of an ACE_Task class to do this,
as each task has an associated message queue. The constructor is used to set the number of
threads assigned for this task. Hence the Worker class actually represents a pool of threads.
The ACE Task object takes care of dispatching messages from a single message quene to the
- waiting threads. V '
ORI o concurrent/ace.msgq/ Worker.h

9 // Worker descends from an ACE_Task
210 *// this is how we get our message gueue for free !
"11 " class Worker ; public ACE_Task<ACE_MT_SYNCH»
12 {
13 public:
14 Worker {size_t n, threads) : n_threads_{n_threads){;}
15 int open (void » = 0); // start up our threads

16

17 /* Our worker method »/

18 int svec (void):

19

20 protected:

21 size_t n_threads_; // Number of threads in the pool,
22 char outbuf [10000]; //shared cutput buffer

23 1

concurrent/ace_msgq/ Worker.h

Figure 4.15: ThreadPool verl Worker interface

CHAPTER 4. SERVER ARCHITECTURES 72

Figure 4.16 shows the implementation of the Worker class. Here we see that the open()
method is being used to activate the threads. The activated threads start in the svc()
method, where they block waiting for messages. On de-queueing the message the thread
goes on to service the request using blocking I/O. Notice that we do not delete the message
object. The messﬁges are reference counted. The release method will cause the message to

be deleted when there are no further references to it.
concurrent/ece.msgq/ Worker.cpp

3 /« Open the object te do work. Next, we activate the Task into the _
4 numbar of requested threads, */
5 iot
& Worker::open (vold sunused)
7 {
8 return this-»activate (THR_NEW_LWP,
9 n_threads_);
10 }
11 , S o
12 /% Dur svc() method waits for work on the queue and then processes
13 that work., =/ *
14 int
- 15 Worker::ave (void)
R [I A v
17 ACE_Meesage_Block ¥message; "
18

139 const char* hello="Hello\n";

20 chax inbuf{5];

21 char owtbuf [10000] ;

22 - ACE_03: :memset (cutbuf,?A? . sizsof(outbuf));

23

2% ACE_SOCK_Stream #peer;

25

26 for (;;) .

27 {

28 /* Got a moseage from the queue. Blocking #*/

28 if(getq (message)==-1){

30 cerr << "lops" << endl;

a1 message->releasal) ;

32 continue;

33 }

34

a5 //message should contain our SOCK_STREAH reference ..
38 péer = (ACE_SOCGK_Stream *)message->hase();
a7

3B // Do the job.

39 peer—>send_n(hello,sizaof ("Hello\n"));

40 vhile {peer->recv_n({inbuf,4) >03{

CHAPTER 4. SERVER ARCHITECTURES 73

41 int nbytes = ACE_0S::atoi(inbuf);
42 peer->send_n{outbuf,nbytes);
43 3}

44 peer->»close();

45 // Clean up ...

44 delete peer;

47 nessage-rrelease();

48 }

49

50 return 0;

51 }

concurrent/ace_msgq/Worker.cpp

Figure 4.16: ThreadPool verl Worker implementation

There are other methods for communicating between threads, but the message queue

model works well and is easily transferable to a multi-process architecture as well.

ThreadPool version 2

w1

Pool of Workal;s

Client-Server Communication

Service Handler
Acceptor | Active Objects

X

Service Handler

Client '
Connects Acceptor | Active Objects

)

Service Handler
Acceptor | Active Objects

g

Figure 4.17: Pre-threaded: Workers compete for jobs

CHAPTER 4. SERVER ARCHITECTURES 74

Stevens [55] has a variation on the thread pool idea which I have reinterpreted here using
ACE. Qur listening socket is already maintaining a queue of client connections (see Section
3.2.4). 1t may seem -wasteful to have an acceptor thread de-queueing connections off the
listening socket and then en-queueing them again to pass on to worker threads. Figure 4.17
shows the variation where the workers themselves each call accept ().

The main() function in Figure 4.18 below does little more than to create the worker
threads. In a real application the originating thread may do more in terms of managing the
‘thread pool. In this simple example it merely creates them and goes to sleep. The interface
for the Worker class is not substantially different to the previcus version. We do need to
pass an extra parameter to the open() method to indicate to the worker threads which port

to listen on.

concurrent/ace_thrpool_accept fsimple. cpp

6 int main(int argc, chars argv[])

7 { :
B8 if (argc '= 3){ s
9 - gerr << "usage server <port® <nworkers>" << endl;
10 ACE_0S::exit(-1);
11 S
12
13 u_short port = ACE_0S::stol(argv[1]);
14 u_long nthreads = ACE_0S::atoi(argv[2]);
15 /{ create worker threade .
16 Worker ThrPool(nthreads);
17 //start them up ... listening on port
18 ThrPool.open(port); '
19 ThrPool.wait(}; //block until all threads exit
20 return Q;
21}

concurrent/ace.thrpool_accept/simple.cpp

. Figure 4.18: ThreadPool ver2 main()

Figure 4.19 shows the svc () method of the worker threads blocking in a call to accept ().
Only one thread will suceessfully dequeue the connection. There is a2 danger of a problemn

CHAPTER 4. SERVER ARCHITECTURES 75

known as a “thundering herd” [55], whereby all the threads are woken on the arrival of a
connection. One of them succeeds in accepting the connection and the rest go back to sleep
again. This activity caunses a lot of unnecessary system overhead and can be prevented by

providing some sort of locking synchronization around the call to accept().

concurrent/ace_thrpool_accept/Worker.cpp

3 /« (reate listening socket and activate workers %/
4 int Worker::open (u_short port)

5 { ,

6 ACE_DEBUG((LM_DEBRUG,"Opened listener\n"));

7 listener.open(ACE_ INET_Addr(port));

8 ACE_US::memsat(outbuf.’h’,sizeof(outbuf));

9 return this-»activate (THA_NEW_LWP,n_threads_);
10 }

12 /# Each thread competes to accept conhectioms %/
13 int Worker::svc (veoid)

15 const char* hello='"Hello\n";
16 . char inbuf[5];

17 . - ACE_SOCK_Stream peer; ') _ -
18 '
18 for (;:)

20 - { , .
~21 /% all threads block here: synchronize access to acceptT+/
22 lock.acquire();

23 ACE_DEBUG ((LM_DEBUG,"¥%t: Got thae lock\n"));

24 listener.accept(pesr);

25 _lock.release();

26 // Do tha job ...

27 peer.send(hello,sizeof ("Hello\n™));

28 while (peer.recv_n(imbuf,4) >0){

29 int nbytes = ACE_DS::atoi(inbuf);

30 peer.send n(outbuf ,nbytes);

31 }

a2 peer.closa(); // Clean wp ...

33 }

34 return 0:

35 }

concurrent/ace thrpool_accept/ Worker. cpp

Figure 4.19: ThreadPool ver2 Worker Implementation

CHAPTER 4. SERVER ARCHITECTURES 76

The _lock used in Figure 4.19 is a parameterized type which can be set to use mutex
locking, file locking, semaphore locking or CRITICAL_-SECTION locking (on Windows NT).
The mutex semantics should ensure that only one of the threads waiting to acquire the mutex
will actually be woken. This version of our thread pool server is potentially more efficient

than the previous version (doing away with the need for message queues).

Java threads

We could not use Java to ilﬁplement an event driven server because of the lack of language
support. Java does, however, provide integrated language support for threads. I have im-
plemented and tested both the thread-per-connection and thread-pool architectures in Java.
A Java version of the multi-threaded architecture of Figure 4.17 is shown below. It uses the

same strategy of each thread blocking in accept(). .

jova/thread_pool/ServerJM Tpool. java

4 public class ServerJMTpocl extends Thread

5 { .
6 . public static void main(Stringl[l args) throws IOException ’
7 {
g _ + ServerSocket s = new ServerSocket(60002,30);

.9 . for(int n=0; n< 10; n++) {

10 PoolConnectHandler t = new PoolConnectHandler(s);

11 _ 5 t.start{);

12 : }

13 // currentThread() .suspend();

14 . System.out.println("Running ...");

15 } .

i6 }

jova/thread_pool/Server JM Tpool. java

Figure 4.20: Java ThreadPocl main thread

The code for the startup class is shown in Figure 4.20. As before, the main thread simply
creates a ServerSocket and then creates the worker threads.
The ConnectHandler thread is shown in Figure 4.21. It implements the same service as

our C++ versions.

CHAPTER 4. SERVER ARCHITECTURES [

java/thread poal/PoolConnectHandler. jova

27 /f tha thread’s entry point ... very simple

28 public void run()

29 {

30 try {

31 // just mccept connections and service them
az while{true){ ,

a3 connfd = listenfd.accept();

34 service();

36 _ } // loop forever ‘

36 } catch (IDException e) {e.printStackTrace();}
37 }

3E

39 // reads the 4 bytes from client and sends back reply
a0 private void service()

11 {

java/thread.pool/PoolConnectHandler.jave

»

‘Figure 4.21: Java ThreadPool: ConnectionHandler

© -4 This Java version Tuns in the Java VM on Windows and Linux. The performance mea-

sures recorded in Chapter 5§ show it to be somewhat heavier than the native binary equiv-
alents, but probably adequate for a wide range of applications. I have also successfully
compiled it with gcj (see Section 2.5) on Linux to run as a native binary. Preliminary re-
sults indicate that it is at least twice as efficient as the same server running with JIT enabled
in the Java VM. Support for the libgej Java run time library on Windows is still at an alpha

stage hence I have been unable to present comparative results here.

4.4 Summary

In this chapter I have detnonstrated the port'ability of the classical event driven and concur-
rent server architectures. Both Windows and Linux (and other UNIX flavours) provide the
essential OS mechanisms to implement these architeciures. Using intermediate library code
it is possible to target source code at abstractions of these mechanisms and thereby maintain

a common source code base between platforms.

CHAPTER 4. SERVER ARCHITECTURES 78

Whereas there are clear benefits to this approach, there must surely be a penalty in terms
of performance. In the following chapter 1 have quantified that penalty within a particular

application context.

Chapter 5

Performance comparison

5.1 Introduction

I have illustrated in previous chapters that hoth Windows NT and Linux provide native
support for implementing single-threaded and multiple threaded TCP/IP gervers. The 8Ys-

| k-tem API s for thread creation and synchronization are different, but not markedly so. The

1Eema.m:lcax of event demutiplexing and dlspatchmg differ more significantly. 1 have shown,
- jl'm'v.nurever§ that it is possible to implement the fundamental design patterns using hlgher level

API's (ACE, Tel, cygwin, uwin etc) which essentially mask the differences between the ta.rget
system interfaces. The forces in favour of using such API’s are compelling:

1. the portability problems are contained within a single software layer

2. the implementation of this layer is likely to be robust, particularly if the source is freely

available, mature and widely used

3. there is frequently extra added value to be gained by using the higher level APT, such as
a reusable framework of objects (ACE) or the availability of an embedded interpreter
and related library functions {T'cl).
There is of course a price to be paid. Forces which act against the use of a higher level
API include:

1. There may be a significant effort required on the part of the developer, or development

team, to learn yet another AFPI. In the often subtle, and always complex, domain of

™

CHAPTER 5. PERFORMANCE COMPARISON 80

communication software this developer effort may indeed be a high price to pay. David
Korn [18] cites this as a major factor which influenced his decision to create a POSIX

layer on NT, rather than to adopt or create a different higher level APL

2. There will be some runtime cost in terms of efficiency as a result of the extra layer of

abstraction.

A successfully engineered and portable software solution to a particular server design
problem will have to resolve both of these forces. I have not attempted to measure the cost
of learning communication API’s, but merely note, from my own and other experience, that
there is a cost. In this chapter I present an approach to measuring runtime efficiency. I
use this approach to evaluate the porting strategies introduced in earlier chapters. Though
it would be proper to look at runtime efficiency in terms of time and space i.e., CPU and

- memory utilization, the scope of this study is restricted to CPU utilization.

5.2 Hypothesis revisited

The inclusion of an extra layer of abstraction implies that more instructions will need ﬂto be
'executed to do an equivalent amount of work. Therefore by accéssing the underlying system
calls via a higher level API, we can reasonably expect that we will be consuming more CPU
cycles than if we access the system calls directly. '
The hypothesis [proposed in Chapter 1 was that the run time cost of using a higher level
API is not neccesarily prohibitively high. In this chapter I will show that this is substantially

true.

5.3 Supporting argument

How do we interpret a performance speed up or a degradation? Jeffrey Mogul {29] makes a
scathing critique on the “brittle” nature of many of the metrics quoted in operating systems
research. In particular, when claims are made about performance, it is to be expected that
‘the measurements supporting those claims should be repeatable, comparable to existing

measures and that they should have some relevance to existing applications.

CHAPTER 5. PERFORMANCE COMPARISON 81

I am confident that the measurements I have made here are repeatable and the full sources
of all my sample servers and test environment is made available as an appendix, precisely
to facilitate this. I have based my approach on that used by the late Richard Stevens in
Unix Network Programming Volume 1 [55]. Whereas the approach is known to have its
limitations, many of which I address in the following sections, the Stevens book (commonly
referred to simply as UNPV1) is widely known and referred to. By basing my approach
on Stevens I provide some reference for comparison. In the text that follows I refer to his
method as the UNPV1 method. '

There remains a clear danger when using synthetic applications (as I have done) that
we end up none the wiser as to what the observed effects would be on a real application.
Essentially the server programs which I compare, like the ones of UNPV1, illustrate skeletal
architectures rather than functional, real applications. In Section 5.4 below, I present a case
that differences observed in these skeletal architectures are in fact exaggerated differences.
As we add more layers of application functionality, the degree of degradation seen as a result

of selecting a portable implementation is expected to become proportionally less.

54 | Arhdahl’s Law' in reverse

Patterson and Hennessy [15] show that the performance gain that can be obtained by im-
proving some feature of a computer can be calculated using Amdahls’s Law. Amdahls’s
law states that the performance improvement to be gained from using some faster mode of
execution is limited by the fraction of the time the faster mode can be used.

For computation bound tasks, the following relationship expresses this idea:

Speedup = % (5.1)

Where T is the execution for the entire task without using the enhancement and 7, is
the execution for the entire task using the enhancement when possible.

Speedup tells us how much faster a task will run using the machine with the enhancement
- as opposed to the original'machine.
" Because the enhancement is only usable for a fraction of the time, we can derive the

following relationship to express the ratio of the execution times and hence the overall

CHAPTER 5. PERFORMANCE COMPARISON 82

speedup:
1 _
Speedupoyeray = - ; 5.2
T (1 — Fractionenhanced) + *——mmg;’zﬁ:;uham 4 (52)

This gives us a useful quick way of calculating the speedup based on two factors: the
fraction of time an enhancement is used and the speedup achieved while using the enhance-
ment.

Consider for example a server that does network I/O for 10% of the time - perhaps the
remaining 90% is taken up doing disk I/O and computation. We can calculate the speedup
we would get by doubling the performance of the network 1/0:

Fractionenhanccd = 0-1

Speedupenhanced = 2

Substituting into equation 5.2 yields:

1

Speedupauerall =" 0T = 1.05 A
(1-01)+%

.~ We can see that there is a diminishing return here. Even though we have'_doub_led the -
- performance of the network I/O we only see a performance improvement of 5%. " '
Amdahl’s Law has two impdrtant implications on the interpretation of the results [have

obtained in measuring the cost of portability:

1. The nature of my test servers is essentially artificial. They do no additional work other
than the moving of data from the server to the client(s) and establishing the minimum
infrastructure in terms of threads, processes and event handlers to accomplish this task.
The impact of any slowdown (or speedup) that we can measure on these skeletons will

in fact be far less on a “real” server which is also doing other work.

2. Whereas we have seen that the overall performance improvement gained by improving
a feature is limited by the amount of time that feature is used, we can also reasonably
expect that the pérformance degradation experienced by incorporating a slower feature

is also similarly limited.

By masking operating system calls in portable wrapper functions we are not enhancing

our servers so that they will exhibit an increased speedup. In fact we expect the reverse to

CHAPTER 5. PERFORMANCE COMPARISON 83

be true. There should be some overhead involved in calling the wrapped function, which will
result in a decreased speedup, or penalty. Either way we expect the law of diminishing returns
to be true. If a program spends 10% of its time executing the de-enhanced (or wrapped)
sections of a program, and those sections are twice as slow as the native (unwrapped) sections,

we can still apply Amdahl’s Law and equation 5.2:

Speedupguerau == == 0.909

_L
| | 0.9+ 23
By incorporating components which are twice as slow, but 6nly using them for 10% of
the time we expect to see a speedup of around 0.9. In this case we interpret the fractional
speedup as a penalty. Our new server should only experience a performance degradation, or
penalty, of around 10% as a result of using the slower functions.
‘ In reality the cost of wrapping a native call in a function wrapper should be very low.
Measurements taken using ACE (see Appendix C) suggest that the absolute cost of the extra
function call on my test system should be somewhere between 0.005us and 0.009us. Where
these function calls have been inlined, as is the case in many of the ACE wrapper classes,

: ::.._--_’@héir is no re_aSon ‘to expect any degradation at all.

i

5.5 Experimental method

In his book, Unix Netﬁork Programming Vol 1[55], Stevens compares the efficiency of sefver
designs by examining CPU usage. While conceding that this is not thé most sophisticated
way of measuring performance, he contends that it provides us with a reasonable basis for
comparison. The primary focus of my investigation is comparison, so I have adbpted a
similar approach. While measuring essentially the same quantities as Stevens does, I have
improved on the system of measurement as well as the accuracy of the measures. There
is an important difference in intent - whereas Stevens essentially constructs a “shootout”
between architectures (single threaded, multi-threaded, multi-process etc), my intention is

to compare different implementations of the same architectures.

CHAPTER 5. PERFORMANCE COMPARISON 84

5.5.1 The UNPV1 method

The UNPV1 method measures different architectural implementations of a simple http-like

service. The first stage in the process is as follows:

Run the simplest possible iterative server - .this server is expected to consume the least

amount of CPU cycles per request as there is a minimum of control overhead.

¢ Generate a fixed amount of work for it to do eg. 20000 consecutive requests for 4000
bytes of data. ' ' ' ' T

¢ Record the amount of CPU time (system time and user time) used by the process to
perform the task. The UNPV1 servers have a SIGINT handler installed - the handler
uses the getrusage() system call to report the CPU utilization times of the process
in response to the SIGINT signal.

The figure we get from this activity represents a baseline figure. Our simple server has
done the minimum amount of work required to service the requests. There is no proéess con-

_:trol overhead such as process forking, thread creation, context switching or event ha.ndlmg

s :TThere is a.lso no ‘overhead from indirect function calls resulting from using a “portability”

layer1 ‘We expect that servers which have any of these features will require more CPU tlme
'to perform the sa.me fixed amount of work. It is this extra CPU time which is of interest as -
it is a measure of the cost of the particular feature or technique?.

The approach is basic and has some limitations. The analogy here is of measuring total
work done, rather than power being used at any given instant. Stevens is not “stress” testing
the server by systematically increasing the connection rate until the server fails [14). This -
type of measure is interesting, but also closely related to factors external to the software
itself such as the underlying network, the processor speed, the speed and amount of system

memory etc. By simply providing a “normal” load condition® and looking at the CPU usage

'In fact Stevens does make extensive use of wrapper functions in 1ibunp to incorporate testing of return

values and reporting errors.
2A further benefit of Stevens approach is that the measure is not unduly influenced by the scheduling

priority used. Like his experiments, all of my test servers were run using the default scheduling priority and

nevertheless produced highly consistent results.
3Effectively the connection rate is being clocked by the server, making it impossible to raise the load

above what the server is prepared to handle.

CHAFTER 5. PERFORMANCE COMPARISON 85

cost, we are reasonably assured that variations observed are attributable to variations in the
software design of the server.

The nature of the “normal” load is an issue. I have chosen to standardize on a request
size of 4000 bytes, which is similar to the original UNPV1 experiments. The client sends
4 bytes (“40007) and the server replies by sending 4000 bytes (“AAAAA..A”). This is a
similar pattern to what you might see with a typical http request. There are of course many
other types of service. An ftp server might iypically transfer many megabytes of data in
a single session. Design choices which are good for one type of service do not necessarily
translate to another. For example, process and thread creation times are significant issues in
these http-like servers, which typically provide a short lived service. These factors become
less significant for longer lived services.

Thus, while the information I have gathered using this technique gives us interesting and
- worthwhile information about the server characteristics, it does not tell us about performance
of all types of servers under all circumstances. We will see, however, in Appendix A that
the architecture of my test environment is such that it is easily extendable i;o incorporate
dlfferent types of test loads. The measurement is essentially non-intrusive, without requmng

access to the source code of the server under test.

5.5.2 Some problems with the UNPV1 method

My early attempts to replicate the UNPV1 results exposed some difficulties whlnh I hlghllght

below:

The servers require instrumentation

That the servers require instrumentation i.e they are self measuring, containing the code to
trap SIGINT, call getrusage() etc, is not a problem in the UNPV1 context. I particularly
wanted to avoid building in instrumentation so as to generalize the system of measurement. It
should be possible to measure the utilization of any process without that process necessarily

co-operating with the measurement.

CHAFTER 5. PERFORMANCE COMPARISON 86

CPU utilization of threads were not properly reported on Linux

The problem of acquiring utilization statistics for threads on Linux relates to the Linux
interpretation of a thread. On Linux a thread is viewed exactly as a process from the
scheduler’s perspective. Hence it runs with its own pid (strictly a POSIX violation). It is
thus incorrect to assume (as is done in UNPV1) that the CPU utilization reported for a
process reflects the utilization of all the threads running within that process. This is a Linux
peculiarity which is easy to compensate for. We simply take the same view as the scheduler,
~and treat all running tasks (be they threads or procééses) as independentljr scheduled units
which need to be accounted for individually. Unfortunately, for reasons which are addressed
in the following paragraph, there is so much CPU time which is being used outside of the
context of the process that this fiz eventually proved unnecessary.

 The reported statistics per process are unreliable

The reliability of the reported statistics was a particular problem. In particular, on Wind'ows;
there is a marked and variable difference between the CPU utilization for the process, and
~‘the ‘utilization of the system as a whole. Given the nature of the operating system, this is
~to be expected. :Much of the work that is being done on behalf of the process is being done
n by the I/Q subsysiem and others. These do not accumulate their time back to the calling
process. The interix servers (see Table 5.3 in Section 5.7.1) are an extreme case. Because
Interix is implemented as a separate environment subsystemn, apparently no CPU time at all
is accounted to the calling process. Whereas it might have been possible to trace down all
the times being accumulated by the various tasks, it is certainly simpler to view the overall
system utilization instead of the per process utilization. According to my observations this
figure gives a fairer reflection of all the work being done on behalf of the process. The slight
error of overestimation as a result of the occasional disk cache flush is considerably less than
the gross error of underestimation in the per-process statistics.
On Linux kernel version 2.2 there is a very close agreement between the usage reported
per process and the overall usage, with the latter being equal to and occasionally very slightly
_greater than the former. Unfortunately the same does not hold true of early version 2.4 series
kernels (my test kernel was 2.4.3). Like Windows, there is a la,rge discrepancy. Changes to
the kernel to better support SMP (symmetric multiprocessing) have lead to changes in the

CHAPTER 5. PERFORMANCE COMPARISON 87

scheduler code which appears to be the culprit here, The effect is visible, even with a
non-SMP configured kernel. As with Windows, the fairest reflection of utilization can be
gained by reducing additional system activity to a minimum and recording overall system
usage. The UNPV1 method under-reports on this system - the most convincing evidence for
which can be seen by comparing the simple Linux iterative server to the fork per connection
server. Clearly the latter should be consuming more cycles in kernel mode, but the process
utilization recorded with getrusage() and the proc filesystem shows less®. The overall

system CPU usage provides a more correct picture of actual work being done here. -

There is a race condition which favours slow servers -

The Linux kernel version 2.4.3 is also afflicted with long latencies and surprizingly (shock-

ingly) expensive context switches. This phenomenon is well known and heatedly debated on

- the Linux kernel mailing lists. A thorough investigation into this behaviour must unfortu-

nately be left for future work. My understanding is that these delays are a consequence of

the kernel holding long duration spinlocks, during which time it cannot be preempted. If the

o _!;hread_ which -owns the spinlock is pre-empted prior to releasing the lock, all other threads
on all CPUs will be deadlocked [2]. Consequently, interrupts must be disabled while holding

the lock, which has an adverse effect on latency. The scheduler code is protected by such a

- spinlock - I/O bound processes such as the servers under test here should rarely use their

full quantum and therefore the scheduler code will be revisited frequently . Reports on the
Linux kernel mailing lists suggest that this can lead to as much as 30% of all time being
spent in the scheduler function itself. Though this extreme situation should only be found
with a busy run queue and an SMP configured kernel, the discrepancies I have recorded
between per process utilization and the overall utilization points a strong .ﬁnger in this di-
rection. There is currently considerable work being done on the scheduler algorithm as well
as preemptable kernel (for low-latency) patches, so it is probably safe to assume that these
effects are transient.

A “positive” spinoff of these unfortunate effects is that it exposes a race condition in the

4Note that this server does wait for all exited children so we are supposedly accumulating child utilization

“as well.

CHAPTER 5. PERFORMANCE COMPARISON 88

CHent Server

5YN TCP Socket inferface

‘_‘—‘_—‘—_S.Y_'N:tc;x-—___’___—
ACK
\—Mﬂ O Conuection Established

Bccept() retums |
\%\\‘ recw(}
...... @ recv(] retums

I S =0
DATA

.
———a | @
................... vy e

FIN/ACK close()

. S

Figure 5.1: Timing of TCP events using UNPV2 protocol

g oiigina.l UNPV1 test protocol. Consider the timing diagram of figure 5.15, There are three
‘events indicated in the server TCP which might cause a blocked server process to unblock.

1. A connection is fully established on a listening socket. A blocked accept () call would
unblock at this point.

2. Data is available in the connected socket’s receive buffer. A blocked recv() would
unblock at this point.

3. The client has closed. Again a blocked recv() will return.

The UNPV1 client connects to the server, then immediately sends off its request. Can-
sidering that a TCP connection can be fully ESTABLISHED [37] but still not accept ()’ed

this leads to two possible scenarios:

SAll the ACKs are not shawn - only those segment arrivals which cause the server TCP ta propagate an

event to the server process are relevant to this discussion.

CHAPTER 5. PERFORMANCE COMPARISON , B9

1. The server accepts the incoming connection quickly, then blocks in a recv() waiting

for the incoming request.

2. The server is slow to accept the connection. By the time it does, the request is already
in its socket receive buffer, and it does the recv() without blocking®.

The first case is probably the norm, but the second case can and does happen. In
particular, the Java version of the basic iterative server consistently does this. It takes
longer to accept(), both because it is interpreted and slower, but also because the Java
ServerSocket always copies the address of the client connection up into user space. Using
the native accept () one has a choice to make the second parameter NULL and avoid the
copy. The net result of being slower is that it comes out of accept () to find the client’s
request has already arrived so it can immediately recv() without blocking.

Is the race significant? Unfortunately, on Linux 2.4.3 it is very significant because of
the huge cost involved in being rescheduled. The java server, which should on all counts
perform slower than a C/C-++ equivalent, performs considerably better! It uses less CPU
time (15-20%) and achieves a higher throughput than the native coded version. The reason
it performs better is precisely because it is slower. By running slower it a.v01ds having to

=block in recv () and benefits handsomely as a result.

| 5.5.3 Modifications to the UNPV1 method

Given the discussion above, there is clearly a need to modify the approach in a number of

~ ways. I have taken the following steps:

s To avoid having to instrument the servers, I use a harness process to launch the
server under test. Armed with the pid (or Windows handle) of the server process, it
is then relatively easy to read the statistics from the proc filesystem on Linux or the
Windows performance counters on NT. I use the proc filesystem under Linux rather

than getrusage(), because getrusage () only records child usage after the child has

6This is very similar to X.25 call user data. The Winsock AcceptEx() function provides a useful feature
to take advantage of this condition and avoid the race. AcceptEx() can be configured to accept() and read(}
a specified number of bytes in a single operation, either blocking or overlapped.

CHAPTER 5. PERFORMANCE COMPARISON a0

Clent Server

SYN TCF Socker lntsrface

ACK
M‘M“*—»‘—“. @ Cuonection Established

socept() refums
GREETING semd()

| omme

REQUEST
\ ------ @ -------- I‘BC\}'O remms

I S e

DATA

S
—a | @
B R PR mv();emms

FIN'ACK closa()

..-———'“"—’"——'-"—— .

Figure 5.2: Modification of UNPV1 protocol

exited (and been waited upon). It is sometimes useful to be able to measure something
without having to kill it first - this is perhaps a similar difference as that between an

X-ray and a post-mortem. Fuller details of the system can be found in Appendix A.

¢ Further to the discussion in Section 5.5.2, the figures used for comparison are not the

per process figures, but the overall system usage.

¢ The race referrred to above is avoided by adding some extra user level protocol. The
server sends a short greeting to the client after accepting the connection. The client,
does not make its request before receiving this short message’. The exchange is illus-

trated in Figure 5.2.

With these modifications in place, the method produces consistent, believable and useful

information with which to test the hypothesis.

TThis application level protocol construct is not unusual.

CHAPTER 3. PERFORMANCE COMPARISON 91

5.6 Scope

I have implemented and tested 35 different variations of the basic http-like server described

above, 20 on Windows and 15 on Linux.

[Narmne | Description - i Source (on attached CDROM)
Iterative servers
nativewin iterative server using native Winj2 API only | iterative/win/nativewin.cpp
cygsimple cygwin port of iterative server * | iterative/unix/simple.cpp
uwinsimple uwin port of iterative server iterative/unix/simpie,cpﬁ
ACE simple ACE port of iterative server iterative/ ACE/ACE_simple.cpp
interix Interix port of iterative server iterative/unix/simple.c®
ISimple Java port of iterative server java/iterative/
Fork per connection servers
cygforker cygwin port of forking server concurrent /forker/lin forker.cpp
interixforker Interix port of forking server concurrent /forker /forker.c
Thread per conneclion servers *
winthread native thread-per-connection server concurrent/winthread/winthread.cpp
ace_thr ACE thread-per-connection server concurrent/ace thr/
ServerJMT | Java thread-per-connection server java/thr%ﬂ.per..conn / .
Thrend poal servers
winthrpoat simple native thread-poal server ‘ concurrent/winthread /winthrpool/
ace_thepool simple ACE thread pool server concurrent/ace thrpool/
ace_TEEq managed ACE thread pool server concurrent/ace/ace_msgq/
ServerJMTpool | simple Java thread-pocl server java/thread pool/
Eyent driven based servers .
winselect - native windows select server selact/winselect /
cygselect cygwin port of unix select server select/select/
uwinselect uwin port of unix select server | gelect /select /
ace.select ACE select server select /ace select/
telservy 'Tcl event driven server select /telserv/

Table 5.1: Windows servers

These variations are illustrative of the different porting strategies described in earlier chap-
ters, but the list is not exhaustive. The following outlines some of the restrictionz on the

CHAPTER 5. PERFORMANCE COMPARISON

scope of this experimental work:

92

¢ The range of servers tested is naturally lirnited. The names by which they are referred

to in the text, plus accompanying brief descriptions, are given in tables 5.1 and 5.2.

[Natme

Description

Source (on attached CDROM)

Hterative servers

simple iterative server using POSIX API only | iterative/unix/simple.cpp

ACE simple ACE port of iterative server iterative/ ACE/ACE simple.cpp
jsimple.sh Java port of iterative server java/iterative/

Select based servers

select native select server select /select /

ace_select ACE select server select/ace select/

tclsery Tcl event driven server - select ftciserv/

Fork per connection serve

rs

Hin _forker
ace forker

fork per connection server
ACE fork per connection server

concurrent/forker /lin forker.cpp
concurrent/ace forker/ |

Thread per connection seruera

pthreadd per_connection | POSIX thread-per-connection server concurrent/pthread

ace.thr ACE thread-per-connection server conarrent /ace thr/ -
| imt.sh | Java thread-per-connection server javafthread_per_conn/

Thread per connection servers o |

pthreadd simple POSIX thread-paol server concurrent/pthread

ace.thrpool simple ACE thread pool server concurrent/ace_thrpool/

ace_Imsgyq managed ACE thread pool server concurrent/ace/ace msgq/

jpool.sh simple Java thread-pool server java/thread poolf

Table 5.2: Linux servers

o Like Stevens, I have used a fixed set of parameters (20000 requests per sample, each
returning 4000 bytes) for these experiments. The rationale for choosing the number of

requests is twofold:

1. The number should be large enough to generate reasonably long times. The

average run time for a sample is approximately 150sec. With a timer resolution

of 10ms this was deemed to be adequate.

CHAPTER 5. PERFORMANCE COMFPARISON 93

2. The number is bounded by the local (ephemeral) port range setting of the client[37).
The default setting of 1024-4999 would only allow some 4000 connections within
a 2'minute interval. On my FreeBSD client I have increased the range to 13000-
60000, which would make the upper limit 47000 connections per 2 minute inter-

val®. 20000 requests is comfortably within this limit.

The choice of request size is somewhat arbitrary, but similar to the original UNPV1
size, Though it would certainly be interesting to see how these' servers handle different
request sizes (in particular long. running ftp-like .lbads scaling-to 'Mbytes) this must"
unfortunately be left for future investigation. I have assumed that the performance
of the short service (the entire payload is delivered in 3 TCP segments with MSS
1460 bytes), is essentially latency bound. Wrapped functions take longer to execute
and contribute to this latency. The observed variations using a short service like this
should be a stronger indicator of the efficiency of the wrapped software layers, than
variations in throughput for longer running services. The transfer of a 50MByte file is
‘likely to be more strongly influenced by factors such as choice of architecture (single-
threaded, fork-per-connection etc), buffer sizes, TCP and driver,implementatiqg etc,

than whether the server is written in Java or C.

5.7 Results

The relative performance of the servers under test is clearly seen in the tables and graphs
which follow. I present the Windows servers first, followed by the Linux servers, Each point

on the graphs represents the total CPU uéage (ie. time speht in system and user mbde))
for a complete run of 20000 requests. In order to readily compare similar architectures, the
iterative servers are grouped on one graph, the select based servers on another and so forth.
Tables 5.3 and 5.4 show the aggregated figures, on Windows and Linux respectively, for 50

runs of each server,

Igysct] net.inet.ip.portrange. first=13000; sysctl net.inet.ip.partrange.iast==60000.

CHAPTER 5. PERFORMANCE COMPARISON 94

Less efficient
ported '
versions.-”

CPU Utilizalion (seconds)

Native implementation

Elapsed Time (seconds)

Figure 5.3: Expected profile of ported servers

Figure 5.3 shows what we would expect to see when comparing servers of the same
architecture. If the architectures are identical we expect that the same type and number of
system calls are being made. Less efficient parts will be spending more time in user space -
which should manifest itself in a proportional increase in elapsed time.

In .most cases the difference in performance between servers is clearly wisible from the
graphs. The interesting cases are where there is significant overlap - ie. the ported or
portable version appears to petform similarly to the native one. There are a number of cages
(using ACE on Linux below) where this is the case. We can use a standard hypothesis test
of the difference between two means [22] in these cases to see if the measured data suggests
that one performs better than the other or not. For two servers, A and B, with recorded

‘mean CPU utilization times p4 and pp we form two hypotheses:

CHAFTER 5. PERFORMANCE COMPARISON 95

Hu: HA = UR (5,3)

and
Hy:pa> pn (5.4)

where Hy is the Null Hypothesis. If we accept Hy we are assuming that there is no contra-
diction between the two means, and that any difference can be asecribed soley to random
factors. Otherwise we accept hypothesis H;, that the CPU utilization of A is indeed greater
than that of B.

To decide whether to accept Hy or H;, we first calculate the standard errors of the

difference of means,

p) p)
5 5
Za L 78 (5.5)
na ng .
where s, is the standard deviation of sample A, size n4, and 55 is the standard deviation

S(Za-¥p) =

of sample B, size ng.

The Z score is calculated using

et

T4 —Zp| ‘
7o 5.6
$(ZTa — Tp) (5.6)

~ We know (from normal distribution statistical tables) that a Z score of 1.65 or more
indicates that 95% of the population supports Hp, ie. there is indeed a difference between
the two means. Thus if we calculate a score of less than 1.65 we can say that, at the 5% level,
there is nothing to suggest that the means are different. According to {22] such conclusions
are valid for relatively large sample sizes (n > 30). The means and standard deviations |

present here are all for sample sizes of 50.

5.7.1 Windows

Table 5.3 shows the measured times of all the servers on the Windows 2000 platform.

CHAFTER 5. PERFORMANCE COMPARISON

Windows Iterative Servers

iemtlive i meanfses) | stdev(s)
elapzed 18403 1.38
usar 1.50 0.15
system 88,36 .82
waerdaystem BO.&5 a.55
eygrimpit mann{zec) i stdev(a)
=iapsed 166,95 1.3
user 1.85 0,14
aystem 449.52 .87
user4system 1.3% 0.172
uumnrienple meanuee} shdev(s)
eiapsad 178.58 2.85
uger | . 4.90 0.21
aystem #5.13 0.43
usar Sy aLEm 1aG0.02 .41

I interis meanfsec} ! sidevis)
alapsed 183,00 1.7
nser L E] 0.7%
Tyitem or.58 0.99
uBeT-Hsygham 02,72 1.12

| Faimpie mean{sec) | stdevis}
vlapsed 165.22 1.82
ver .89 0.32
S¥stem BZ.11 1.4
user-+Iyqtem 95.70 1.23
ace.simple mean{sec) stdev(s)
elapsad 165.22 1.18
user 1.8 0.8
gystom a9.a3 124
user-aysken - 21.44 1.29

Windews Bvent Diriven Servers

wingaloct mean(sec) stdavisd
elapaed E 118.21 4,85
ugoy 2.06 0.15%
Eystem . BT.7B 081
wsert-syatom B 8482 0.52

j aceselect { mean{see} stdev(s}
elapged 11510 4.14
ussy 2.40 0.19
aygtem 89.84 .44
usgr-Favitem 83.2% #.59

| felsers mean{sech stdev{s)
elzpsed 119.97 4.8
uger i.88 0.74
system B2.68 0.60
usersysten 98,58 0.59
cypaelect l mesn{gss) stdev{s}
elapsed 131.9% 811
uier 8.54 Q.20
system 11811 0.43
uaer-Haystem 12778 .58

| wwineelmt rean{sec) | stdev(s)
elapsed 122.20 1a.07
USEP 547 0.39
system Fa.09 0.57
user-Hayatem 48,548 0.55

Windows Fork per connection
cygfarker l meanfies) l stdevis)
eiapsed 408.55 .38
[0 P2.B3 1.78
By sham ai5.28 116
user-fiystem 408.09 0.88
interizforker mann{gec) srdew{s}
€lapasd 154.05 1.84
usef 1283 0.a7
aystem 140.23 0,58
Hses-Laystem 153.08 [+ .13

‘Windows Thread per connection
winthrecd mean(sec) § etdev(s)
elagpied 121.81 9,69
user 2.8% .17
sysiam 92.88 .50
userd-syatemn 95,80 0.52
stethr mean(gec) stdovis}
elapasd 127.48 13.80
uger £.40 0.82
Fystem g7.38 g.ar
dser4-system 103.Te 077

{ SorwerIMT miesn{sec) sidev(s)
elapsed 136,88 2.02
user 8.07 0.32
sysiem 89.70 0.49
usardgreiom 107.77 0.44

Windows Thresd pasi

winthrpool mean(see) stdev{a)

[“etapsed 17.24 887
st 1.B2 0.13
system BT.13 0.5%
osur-d-ayabam BS.7% 0455
acethrpool 1 mesn {sec) f stdev(s)
elapsed 115.50 3.21
user 1.73 0.16
system 87.28 0.33
uscr--system 89.09 02.60
HEEITAEE 1 meanisc) sldav{s)
alagyed 118,59 4.03
usar 1.96 0.5
Bystem &T.B1 n.Bg
user-f-system 89.77 0.52
Server] M Tnoal nieaniszc) | stdev{s)
elapsed 12518 382
UseT 4.28 Q.28
system 91,15 0.82
uper-raysham 95.41 068

Table 5.3; Windows Results

96

CHAPTER 5. PERFORMANCE COMPARISON 97

Iterative servers

Figure 5.4 shows the native windows, Cygwin, Uwin, Interix, ACE and Java versions of the
iterative server. The trend is similar to what was expected from Figure 5.3 with the exception
of the Java server. This server almost matches the throughput of the native version at this
load level, but consumes more CPU cycles to do it. With an increased connecticn rate it
can be expected that, as the CPTU becomes a more scarce resource, this server will not scale
as well. : _

From the graph the ACE and Cygwin versions appea'r' to be very close to the eiﬁcienéy
of the native version. The detailed figures shown in Table 5.3, however, illustrate that in
fact there is a small, but significant performance hit in each case, which is obscured on the
graph by the relatively wide spread of results for the ACE server. The fact that some servers
‘ show a greater variability of CPU usage than others may be significant or may be incidental.
The question remains unanswered within the scope of this research, but warrants further
investigation‘ . }

The Interix version appears to be i;mrticula.rly sluggish, which is a little surprizing. Given
that Interix implements the POSIX system calls at the subsystem le?el, I had expected
that it would at least outperform the Uwin and Cygwin versions, which perform the IFTOSIX
emulation above the Win32 subsystem. The POSIX interfaces provided by all three (Interix,
Cygwin and Uwin) was complete enough to allow each of the versions to be compiled without

change from the Unix source code.

Select based servers

The servers in Figure 5.5 all illustrate a common pattern in the relationship between the
elapsed time and the cpu utilization. The distributions of elapsed times show the charac-
teristic long tails which one would expect in measures of network performance. Various
factors, probably mostly related to the lower layers of the network stack, can and do cause
throughput to be occasionally and variably impaired. Therefore we see a cluster of points at
the head of each distribution followed by a tail of straggling points representing the slower
runs. The relative insensitivity of the CPU utilization to the variation in elapsed time, lends
it credibilty as a reliable and predictable metric to compare performance.

The select () based servers illustrate some interesting strengths and weaknesses among

CHAFTER 5. PERFORMANCE COMPARISON 08

130 ¥ T
ftoralive o
cygs;mple x :
uwingimple +
125 |- h';:?& s PAPRNRRSSENE SSSSSSEIS S S—
asee_simpls w
Jeimgle o
i20 FSVNUTVRRTTSON S SO S :
= 115
g 110
»
E
e L e S
8
g 100
85
90 »
85 A
110 120 130 140 180 160 170 180 180

Elapsed fims {s}

Figure 5.4: Windows iterative servers

‘the porting layers. Whereas the ACE version continues to perform very close to the native
- windows equivalent, cygwin fares considerably worse in this case. Cygwin does not use
~ the native Win32 select() function to implement Unix select() semantics. Its version
of select() is an elaborate wrapping of the Win32 WaitForMultipleObjects() function,
involving multiple threads and synchronization event objects. It is clear from the source
code and ChangeLogs that a great deal of effort has been put into getting select() to
work properly with stdic channels and to respond correctly to signals. Even without having
the source code for Uwin, it is clear that the implementation of the Uwin select() uses
a different technique to Cygwin. David Korn tells us in [19] that the Uwin select() was
originally implemented using a technique similar to that used by Cygwin, but was later
changed to use the Windows message queue. This is similar to the Windows version of the
Tcl event notifier'®. Both the Cygwin and Uwin versions are compiled directly off the UNIX

source and appear to emulate the UNIX behaviour flawlessly.

10The significant overlap of the tclserv and uwinselect results in Figure 5.5 suggests a similar imple-

mentation.

CHAPTER 5. PERFORMANCE COMPARISON 99

It is interesting to note that the ACE version actually achieves a hetter throughput than

the native version. The ace_select server is implemented using the ACE_Select_Reactor
- component. Its architecture is thus very similar to the others, but not identical. The strategy
used to demultiplex and dispatch events within the Reactor (which results in more frequent
calls to select ()] appears to be favoured by these experimental conditions, These strategic
- choices are discussed in greater detail in section 4.2.
. The ACE Select_Reactor and the Tecl Notifier are also more complete components with
a richer set of functionality than the simple demultiplexing component underlying the other
servers. The extra overhead in ace_select {which is slight, but nevertheless apparent} and
tclserv is thus to be expected. The Tcl version used here is 8.0p2, which runs the notifier
code in & separate thread. Experiments with the latest stable release version (8.3.4) were
disappointing - a version of tclserv compiled against 8.3.4 runs in 6 threads on Windows
2000, which results in a considerable performance hit. One reason for using a non-blocking
event driven model is to avoid the overhead of multiple threads - here we clearly get the
worst of both worlds. '

Unfortunately, the source for these servers makes use of a number of 1SO Standard C++

features which are not supported in my current Interix development environment, so we

: _ca.n.not gee how Interix compares here. It would also have been mterestmg to see how the

new Java non—blockmg I/0O performed relative to the others, but the jdk version 1.4 was

released too recently to be used in these experiments.

Concurrent servers

There are three categories of servers addressed under this category: the classical new-process-
per-connection model, the lighter thread-per-connection equivalent and a simple thread pool
model.

The POSIX fork() system call is one of the more defining differences between the Win32
API and Unix-like systems. Cygwin, Uwin and Interix each provide a fork () implementation
on Windows. The Linux forker program was compiled on Windows using these three tools.
Unfortunately, the Uwin version could not complete a run of 20000 connections, so results
for it are not given here. It is not clear to me where the problem lies, or whether the problem
is solved on later Uwin versions. After fielding about 1000 connections, it simply freezes up

CHAFTER 5. PERFORMANCE COMPARISON 100

1 winselect w ; ! :
X i H
oygselect x ﬁ" ’S}Q)-)s(xx*
135 L UWINSBIECY & e i .
oce select @ i N
tolserv o
120 G —
g 115
g
B 10 o :
a
1]
E
= o10S &
B
5 100 T I O S VR ST UPUOUU: PP SR E
: g po
a5
s o
59 ,....M'..A..,.{g'&,_#_,mép AAAAAAAAAA
. ; ,
11¢ 120 130 140 150 160 170 180 180

Elapsad tima (5}

Figure 5.5: Windows select based servers

and refuses to fork any further.

Both Cygwin and Interix handle the task without error, but with very different perfor-
mance characteristics. Because there are only these two examples, and the fact that they
perform so differently, I have not presented them together on a graph, but the figures are
clear ﬁom Table 5.3. Cygwin is very slow and CPU intensive. This is not surprizing, given
the complexity of emulating fork () using the Win32 API. The Interix version shows that the
Windows 2000 kernel interface does provide a reasonably efficient way of creating processes
other than through the Win32 CreateProcess () function. Although it uses some 50% more
CPU time than the thread-per-connection servers, this is much more acceptable than the
300% difference when using Cygwin's fork().

Given the difficulty with forking, this server architecture is bound to be penalized the
most on the Windows platform. It is clear, however, that if performance is not the key
.concern, such servers can be ported reliably to Windows platforms. The performance penalty
is likely to be much less on pre-forked process pool servers, where the cost of process creation

is & one-off cost. Particularly given the Cygwin iterative server’s impressive performance in

CHAPTER 5. PERFORMANCE COMPARISON 101

the iterative tests, there is good reason to believe that a Cygwin process pool architecture
would perform well. Unfortunately time did not permit testing this architecture and it

remains to be shown in future work how viable the architecture is on Windows platforms.

160
'winthread‘ L] ! i : ' E
som e ow : H :
java SersardMT w @ 2 ®

150 intefidtorker © ¢ . >
140 e e e
g ol
L]
E
3 1A
B
3
2

110 :

Qﬁ *; M
W
¢ x
100 L2 M8 I
Prrarsueg = a
s L ;
115 120 125 130 135 140 145 50 155 150 165
Elepsed lims (&}

Figure 5.6: Windows thread-per-connection servers

There are only three examples of Windows thread-per-connection servers. Neither Uwin
nor Interix supported the Pthreads interface at the time of writing. Current versions of
Cygwin support a Pthreads library for Windows which is a thin wrapper around the Windows
threads API , but this was not tested. The Tel library also has had a platform independent
threads API since version 8.2.x, but it is not enabled by default and was not tested here.

The three exatnples presented are the native version (winthread), a Java version (Server-
JMT) and an ACE version {ace_thr). The Interix forking server (interixforker) is shown
on the same graph (Figure 5.6) to illustrate the relative cost of creating a new process per
connection ws creating a new thread. It is perhaps unfair to make a strict comparison be-
tween these three. What they have in common is that they each create a thread to handle
each incoming connection, but the implementations differ considerably. The Java version is

predictably the slowest and heaviest, but with only 13% more CPU time than the native

CHAFPTER 5. PERFORMANCE COMPARISON 102

version, it is quite respectable. It is interesting to compare the CPU time vs elapsed time
charcteristics to that seen for the iterative servers. Here we have used 13% more CPU time
than the native version which has resulted in a 13% increase in elapsed time. The iterative
version showed less than 7% increase in CPU time, resulting in an increase in elapsed time
of less than 1%. It would appear that there is a significant cost, in terms of CPU utilization
and wall clock time, to the creation of Java threads.

The ACE version performs better than the Java one. Nevertheless the CPU usage dif-
ference between ace.thr and winthread is greater '(8,5%) than the differences seen when
using ACE in the other examples. This is because ace_thr does not simply use a one to one
mapping of ACE wrapped versions of the Win32 APL. An intersting feature of ace.thr is
its use of a Strategy Acceptor [47] to decouple the concurrency strategy (in this case thread-
per-connection) from the service handler code. It is an elegant and flexible design pattern,
" but it daes add a small amount of overhead.

130 —
winthrpoel
aca_thmoel X
ace o
L= i i e S lava Smer&ﬁ‘i‘ml 7]
120
¥ 5L
B
g 180
@
£
- 108 y— -
B
E iod
-
E
; i
140 150 160 R il 180 80

Elapsed time (s}

Figure 5.7: Windows thread-pool servers

The thread pool servers also feature a native version (winthrpool), a Java version

(ServerJMTpoal) and an ACE version (ace.thrpool). They all implement the simple

CHAPTER 5. PERFORMANCE COMPARISON 103

architecture of creating a listening socket and then pre-spawning a pool of threads which
each block in a call to accept() on the same listening socket. This architecture has the
potential of suffering from the thundering herd [55] problem, but with a small pool of 5
threads the effect seems not to be significant. The simple arrangement has each thread act-
ing autonomously and in isolation from one another - effectively a number of iterative server
threads sharing the same listening socket. It does not lend itself to dynamic tuning (such as
_shrinking or growing the size of the pool in response to load conditions). For comparative
purposes I have also included an example of a more flexible architecture, ace_mesggq, which
has a controlling thread to accept new connections and feeds these off to the waiting pool
via a message queue. The graph of the performance of these four servers is shown in Figure
5.7.

As hefore, the Java version is the slowest, but nevertheless respectable - only 7.5% more
CPU usage than the native windows equivalent. This is an improvement on the thread-per-
connection result, confirming that Java thread creation is relatively heavy. .

The performance of the ace_thrpool server is very close to that of the native version.
Comparing the means using equations 5.5 and 5.6 , we can calculate a 7 score of

P 89.09 — BR.TH
- 0.60% 40,55
¥ B0

which is greater than 1.65, indicaiing that even though they are close, we have to concede

= 2.95

that, at the 5% level, the ACE version is slightly slower. The mean elapsed time is actually
less than that of the native version, but the large standard deviations of these elapsed time
readings due to the long tails, means that there is little we can read into them.

The results for ace_mesgq show that the cost of implementing this slightly more complex,
but more flexible, architecture is very small. It uses approximately 1% more CPU time and
1% more elapsed time than the native windows implementation of the simpler architecture.

The best performers of all the servers measured on Windows were winthrpool and
ace.thrpool. It is interesting to note that they perform marginally better than the event
driven servers, which is similar to what we see on the Linux platform below. Unfortunately
‘we do not have sufficient information to generalize over the general merits of the event-driven
vs. thread-pool approach on either platform. These results were obtained with a fixed size

pool of ten threads and a maximum of five concurrent connections. Banga [3] has shown that

CHAPTER 5. PERFORMANCE COMPARISON 104

select () scales badly with very large numbers of simultaneous connections on BSD derived
systems, particularly in a wide area internet environment where many of the connections
. are passive for much of the time. How well the thread pool approach scales under similar
conditions and whether the trends are similar on both Windows and Linux is an unanswered
question. Comparing architectures is not the central purpose of this study, but this is a

question which merits future work,

5.7.2 Linux

Results for the Linux servers are shown in Table 5.4. The distributions of recorded times

are presented graphically in the sections that follow.

Iterative servers

Figure 5.8 shows that the CPU utilization of the ACE iterative server is indistinguishable
from that of the native Linux version. Table 5.4 shows that the mean CPU utilization,
80.58s, is actually slightly lower than the native version’s 80.64s. The Z score calculated
from equation 5.6 is 1.12; which is less than 1.65. We can say with 95% certainty thatwthere
is nothing to suggest that the ACE version performs any differently to the native one.

S The"‘.] ava version uses 12% more CPU time than the native version, which is higher than
the 7.5% cost that we saw on Windows. The relatively high standard deviation (2.28s) of
the Java server is a characteristic we can see in all the Java servers in Table 5.4. Looking at
the graphs (Figures 5.8, 5.10 and 5.11) we see that the Java times seem often to form two
distinct groups. This i3 most obvious in Figure 5.10. Revisiting the raw data, it is noticeable
that in a series of runs, the first run consistently consumes more time than subsequent ones.
Clearly the high startup cost of the Java Virtual Machine is exaggerated when the cache is
cold.

CHAFPTER 5. PERFORMANCE COMPARISON

Linux Tterative Servors
sirnple mean{sec) xtdev{s)
elapsed 177.62 .32
ugar Q.08 0,02
£yNEA an.58 0.33
wEerdirstem G184 0.a3
ace simple meati(sec) stdevis}
elapsed 17764 8.37
user 0.00 003
Bysiam 80.43 0.33
VELF Sy Steny 80.58 0.34
Jaimple_ah meanfsec skdavis) |
2lapsed . 181.1% 1054
usar 2,20 0.7L
System Ba.33 2.01
vserdgyatom 80.54 2.28
E Linux Eivent Driven Servers §
f fingelect meanisec) L stdevis)
slapsed 117.61 Figa
ugee 0.23 0.D5
aystam TO.T4 0.41
uEerdaystem 79.97 0.42
P acesetect wesnizec) stedev(a) E
elapsed 116.695 0.12
user 1.02 012
gysiem BO.LT 053
nsertsystem B1.20 0.50
[tsisere Thensnd st skdevia)
einpsed 118.02 D.61
user - 1.98 0.13
gystem B).3& D.45
Auserduystem 82,02 1 ode
| Linux Fork per connection
Fin_forker | msanizec) | stdev(s)
etapsed 129,64 Q.11
uger 1.72 0.14
Eystem 8%.73 .54
pegrdtyatem 91.45% .48
wosforker mean{sec) atelev(s)
elapzed 128.78 0,18
user .07 0.26
system 102.51 3.13
user4-system 111,58 3.18

| Linux Thread per connaction
pﬁ!sm&&per,camweﬁon mean{sec) stdev(s)
elnpsed 121.59 a.12
user 0.43 0.08
sysbam 2}1.53 0.84
user--aystom 81.96 .65
toeathe | masnisec} stdevin} J
eiapsed 122,24 0.14 -
uaer 248 Q.17
Byatem 83.30 0.58
laser-+system 85.66 0.54
jent.sh mean(sec) stdevis)
vlapzad 134.15 0.46
ey 7.4% 1.03
aystem 8O.58 3.44
userbsyatam 46.73 1.21

hinux Thread pool

pihresdd | meanfsec) | stdev(s)
elapsed 121.23 0.13
uger 0,10 a.03
system T9.45 0.50
nzerd-systom T9.54 0.59

[acedtrpect mean{zec) | stdevis)
elapyed 121.5% i.14 w
usar Q.14 0.04
gystem fp:¥-H 0.64
usar--system 79.84 0.63
sd_megy meaninec) srdevis)
elapsed 121.10 037
usér 0.48 D.08
systam g80.08 a.11
wyerhaysiam 8049“' 0,68

{ Jpovlak meRn ga::} atdev(s}
elapsed 130.71 0.18
uzer 278 .48
syretem B5.20 0.83
userfsystem B7.95 $.92

Table 5.4: Linux Results

105

CHAPTER 5. PERFORMANCE COMPARISON : 106

Some additional investigation was made into using the gcc Java frontend, gej, on Linux,
to compile the Java code down to a native binary format. The results were encouraging.
The same Java iterative server was compiled using gcj and subjected to the same tests. The

following times were recorded (in seconds):

Elapsed mean | Flapsed stddev | Total CPU mean | Total CPU stddev
183.38 1.23 82.34 0.41

This represents only a 2% penalty in CPU utilization and 3% penalty in elapsed time,
compared to the native iterative version. At the time of writing, g¢j and the associated libgej
library was still too immature on Windows to use it to compile the servers in this study,
but clearly there is some potential in using this approach to efficiently use Java simply as
_ a platfarm neutral library. Given that object code produced by g¢j can be linked ta object
code produced from C/C++ source, one would only need to use Java for platform dependent
parts of the code. Similar good results were produced for the thread pool server below, but
- problems were experienced with the thread-per-connection server. More work is required to
verify the stability of libgej.

w

. Select based servers

The trade-offs here are much the same as in the Windows case. The native linselect uses
less CPU time than the ACE and Tcl versions, but the ACE version delivers a slightly
better throughput. As was the case on Windows, the longer elapsed times on the Tcl and
native versions compared to ace_select are a result of extracting all the events returned by

select() and queueing them before dispatching.

Concurrent servers

Three categories of server architecture are presented in this section: Fork-per-connection,
thread-per-connection and thread-pool based servers.

The native forking server, lin_forker, predictably uses more CPU time than the thread-
per-connection servers, but the difference is not as striking as with the emulated fork() on
Windows. Creating a new process on Linux is certainly heavier than creating a new thread,

but the fork() is clearly optimized.

CHAPTER 5. PERFORMANCE COMPARISON 107

105 —— T 3 T T
iterative :
aoi simple »
Jsimples @
100 o
. B e .
% x
a9
& B Y89 o
$ a0 [TV VNPTV USROS SO L3 < 3 -
- . . ; o .0
= Qﬁl}%%@
= . T
g !
El
lg B3
’ ;
80 po m‘- :
75
176 178 80 182 184 186 188 180 182 194 198
Elapsed time (s} .

Figure 5.8: Linux iterative servers

<

.. The ace_forker provides a caveat here: forking a large process costs more than forking '
- a small process. I have not considered memory usage thus far in the comparisons made, but
" when pfocesses have to £ork() frequently, the size of the process has a clear impact on the
CPU utilization. Whereas the ACE toolkit has shown itself to be equal, or almost equal, to
native versions of the other server architectures, there is a significant cost to be seen here.

Figure 5.11 shows that the CPU utilization of the ACE thread pool servers are indis-
tinguishable from that of the native Linux Posix threads version. The mean for the native
version is 79.54s as against 79.64s for the equivalent ACE thread pool server and 80.49s for
the ACE message queue thread pocl server.

Cormparing pthreadd with ace_thrpool, the Z score calculated from equation 5.6 is 0.819,
which is less than 1.65, indicating that, at the 5% significance level, there is in fact nothing
to suggest that the ACE version performs any worse than the native one.
~ Comparing pthreadd with ace_msgq, the Z score calculated from equation 5.6 is 7.46,
which is significantly larger than 1.65. The ACE message queue server uses only slightly
more CPU time, but the difference is significant at the 5% level.

CHAPTER 5. PERFORMANCE COMPARISON 108
m ¥
linselect =
clsery +
me?_seiect]
85
ig 80 * » . —
2 75 N
£
2
E 70
.65
?
E'Q L
110 i1s 120 25 130 135 140
Elapsed time (s} v

Figure 5.9: Linux select servers

W

A comparison with the select{) based servers is interesting. There is very little difference

in terms of CPU utilization, but the elapsed times of the thread pool servers are significantly

| higher. The higher elapsed times are probably indicative of the incressed interrupt latency
referred to in Section 5.5.2. The more threads that are running, the more time will be spent

scheduling (during which time interrupts are disabled). This issue and the question of how

well each architecture scales is left for future work.

The Java version is predictably the heaviest, with a cost of 11% CPU utilization and

8% elapsed time. Again, it is intersting to see the performance improvement we can get by

compiling the Java thread pool server to native code using gcj:

Elapsed mean

Elapsed stddev

Total CPU mean

Total CPU stddev

123.04

0.18

81.39

0.48

The table above shows that the compiled Java code only incurs a 2% penalty in CPU

utilization and 1.5% penalty in elapsed time, which is a considerable improvement over

running the byte code in a Java Virtual Machine.

CHAPTER 5. PERFORMANCE COMPARISON 109

115 T y T H
pthreadd_per_connsction

a »
acs Ny x
n folker o
11a ace | Ciotker W ...
it D
1058
=
B
: @ e
£ #
& @
é Y23) PSS VRS SRS SN UGS S, . . .
8
g 90
-
BS
[TV I POURUNTIOO. .t SRS SO
75 1
120 122 124 126 128 130 132 134

Elap=ed tms {3}

Figure 5.10: Linux thread-per-connection servers

57.3. Geaeral.observations

Ha.vmg looked at the set of Windows and Linux results there are a number of gener&l

" observations which should be made:

® There are fewer Linux servers than were tested under Windows. We looked at a
number of POSIX emulation tools under Windows. Under Linux we only looked at

native versions, ACE, Java and Tel versions of the various architectures.

¢ The Windows servers have performed generally better than their Linux equivalents.
Reading too much into this comparison would be a little reckless. There are, in both
instances, a myriad of tcp options, compiler optimizations and other tuneable param-
eters which might prove a case either way. Comparing Linux 2.4.3 and Windows 2000
is not the purpose of this study. I have the humbler objective of showing that server
architectures are portable, and that the cost of portability, in performance terms, is

not necessarily prohibitively high.

¢ Using ACE on Linux appears to incur no CPU utilization penalty in a number of cases.

Sq

a2

w
(=]

CHAPTER 5. PERFORMANCE COMPARISON

pthreadd '
acs_thrpoal
ace_msg
- jpoo

ooxXm

110

&

B

Totat cpu lime expended s}
O
e

az

124 126 128 130 132
Elapsed time {s} v

Figure 5.11: Linux thread-pool servers

“This in itself is not surprizing, but it does raise the question of why there should be

. a consistent, if tiny, performance cost associated with the same servers on Windows.
There are a number of possibilities, which 1T have not verified, but which may account
for this slight difference:

1. The ACE.SOCK Stream close{) method always makes a call to shutdown()
~ before closesocket() on Windows platforms to avoid losing data that may be
still in the socket send buffer. There can never be any unsent data with these
servers, because the client initiates the close and then only after it has received all
the data. The redundant call to shutdown(), multiplied 20000 times may have

some mpact.

2. It is possible that there is a more efficient combination of compiler optimization
switches for the Visual C++ compiler than the ones 1 have used. For example,
I have seen that disabling C+4 exceptions can lead to significant performance

improvements.

CHAPTER 5. PERFORMANCE COMPARISON 111

3. I did nat compile and use a static version of the ACE library on either platform.
It is possible that the relative cost of linking against position independent code
in & Windows DLL is higher than linking against shared library code on Linux.

Chapter 6
Conclusion

In Chapter 1 the difference between the systern APIs of Windows and UNIX-like systems was
identified as a problem when designing TCP/IP server software targeted at both platform
sets. In Chapter 3 we saw that the sockets interface to the TCP/IP stack is reasonably similar
-in both cases. Whereas there are differences, they are not major barriers to portability.
s;‘Ih"’Chﬁpter 4 we saw that the required supporting infrastructure,‘in't_efms of event and
~ concurrency mechanisms, present far greater challenges to portability.

I proposed the hypothesis that, by avoiding programming directly to the native system
API, but instead making use of thin abstraction layers, it is possible to maintain portable
source code which implements common server design patterns. Further, I proposed that
such implementations should not necessarily incur significant performance penalties. |

This chapter presents a summary of my conclusions. Section 6.1 deals with portability
at the level of server architecture. This is followed by a review of implementation options
in section 6.2. In this section I show that whereas my hypothesis is largely true, there are
important caveats. Almost inevitably, in a work of this nature, there is far more unconcluded

than there is concluded. Section 6.3 proposes directions for future work.

6.1 Portable architectures

Simple iterative servers are trivially ported between platforms which provide some form of

BSD sockets interface. The Winsock 2 implementation of BSD sockets is reasonably similar

112

s generally one of the latter two from the list above.

CHAPTER 6. CONCLUSION 113

to Unix implementations, Areas of difference such as the treatment of error codes, ioctl
options and the semantics of close() /closesocket() and shutdown{) are addressed in
Chapter 3. They do not present a significant challenge in terms of portability and can easily
be accommodated with simple Wrapper Facades and pre-processor macros.

In order to be useful, servers must usually be able to handle a number of concurrent
connections (referred to as the capacity of the server). Architectural patterns to support

. concurrent connections fall into three categories:

s Single process event driven (SPED)
e Thread-per connection

® Threadpool

Multiple process servers fall into one or other of the latter two categories. For each of
_-these, the service handler code is dispatched in its own thread context. Whether the threads

-;--exist within a single process, or are distributed across processes, the resulting architecture
_ e "

The following two sections describe the portability of event driven and multi-threaded

servers respectively.

6.1.1 Event mechanisms

The primary portability issue with event driven servers revolves around the different de-
multiplexing mechanisms. Winsock provides a select() function which is sufficiently sim-
ilar to the BSD derived equivalent to be a useful common denominator. Both Windows
and Unix provide a range of alternative mechanisins to select(). On Windows there is
WaitForMultiplaObjects(}, Asynchronous Procedure Calls (APCs) as well as the older
message based asynchronous I/Q of Winsock version 1. The various Unix-like flavours sup-
port different mechanisms such as the POSIX poll() system call, signal driven I/Q as well
as the newer explicit kernel event queue mechanisms supported by BSD kernels. Fortunately
the process of building software frameworks to dispatch service handlers in response to events,

allows ane to decouple the dispatching mechanism from the actual platform-specific event

CHAPTER 6. CONCLUSION 114

detection mechanism. The resulting component (such as the Tcl Notifier and ACE reactor

discussed in Section 4.2) presents a platform-neutral interface.

6.1.2 Threads and processes

Forking a new process to handle an incoming connection is a common idiom on Unix-like
platforms. In Section 5.7.1 we saw that this idiom does not translate well to Windows
platforms. The Win32 API lacks the fork() system call and uses CreateProcess() to
create new processes. CreateProcess () must load its process image from a disk file and is
thus similar to a combined fork() plus exec(). POSIX emulation toolsets such as Cygwin
- and Uwin provide an emulated fork, but such emulations are necessarily inefficient - two
levels of copying are required: the process must be created in a suspended state, which still
~ involves copying the image from the disk file, and then this image must be overwritten with
that of the parent process. The Uwin version proved to be unreliable under sustained load
conditions, Table 5.3 in Chapter 5 shows that the Cygwin version of the forking server
- performed suceessfully, but at considerable cost in terms of CPU cycles émd througput.
The Windows 2000 kernel primitives for creating processes may well have a means of
.- avoiding the double copying referred to ahove, Interix is a POSIX envir_onihént Subéystem
imple'ment,ed on to'p. of the Windows 2000 kernel, ie hypassing the Win32 environment sub-
system. The Interix version of the forking server consumed less than 40% of the CPU,cycles
used by the Cygwin version. Whereas it is still considerably more heavyweight than the
single process servers it is clearly more efficient than emulating fork() through the Win32
APL ' '

The fact that fork() has been implemented on Windows using these two approaches is
prabably more significant than the efficiency of the implementations. Even on Unix plat-
forms, the fork-per-connection model is not the best model to use when performance is the
major criterion. The Cygwin implementation, which was by far the slowest of all the servers
tested, still managed to service 20000 connections in 409 seconds - that is 48 connections
per second which may well be adequate for a wide range of applications.

Having multiple threads within a single process presents fewer problems. In section 4.3.2
we saw that the thread creation semantics of POSIX Pthreads calls and Win32 calls are

very similar. They introduce no substantial barriers to porting multithreaded programs

CHAPTER 6. CONCLUSION 115

between Unix-like and Windows systems. Synchronization primitives, such as mutexes and
semaphaores, are present and also exhibit similar behaviour. The lack of an equivalent to
POSIX condition variables on Win32 systems does present a non-trivial challenge, which is
discussed by Schmidt [46].

(given the similarities, it may seem surprizing that neither Cygwin, Uwin nor Interix
provided a Pthreads interface. In fact this has less to do with the difficulty of porting
Pthreads, and more to do with the thread safety of the respective runtime environments.
This is an area which has been under active development (at least in the Cygwin and Uwin
projects) since this work began. At the time of writing Cygwin does provide a substantial
portion of the Pthreads APL

- 6.2 Portable implementations

(Given that the architectures discussed can be ported between platforms, the question‘remains
: ,of how best to implement these and what the associated costs and benefits are. There are
~ " two different scenarios which were presented in Chapter 2. In thé one case we attempt to
‘. leave ".thévexisti'n.g platform specific code untouched, and instead provide an intermediate
- porting layer to support the code on the foreign platform. In the other, we consider the case
of writing software from scratch with portability as a specific design goal. The merits of
these two approaches are presented in sections 6.2.1 and 6.2.2 below.

6.2.1 Making existing code portable

Two approaches to making existing Unix code portable to Windows systems were presented.
Using a POSIX emulation layer (Section 2.2) and using a POSIX Windows NT environment
subsystem (Section 2.4). Two examples of emulation layers were used: Cygwin (DIl version ,
an open source project from RedHat, and Uwin, a commercial product from AT&T Research
"Labs. The environment subsystem used was Interix, formerly from Softway Systems, now
- owned by Microsoft Corporation!. A brief overview of these systems was given in Chapter
2,
1The latest Interix distribution from Microsoft has been incorporated into théir SFU (Bervices For Unix)

product.

CHAPTER 6. CONCLUSION 116

Each of the systems reviewed provides more than just access to a UNIX-like APl. They
also provide {indeed require} a development environment including header files, libraries,
shells and other utilities as well as a supporting runtime environment. Whereas this may
be a considerable amount of infrastructure for a simple porting project, there are significant
benefits:

e No source code changes were required when recompiling code originally developed on

" Linux. The Windows versions of iterative, fork-per-connection and select based servers
in Table 5.1 were all compiled using the same source as the Linux versions in Table
5.2.

e Having a fairly complete runtime environment means that one can also make use
of existing Makefiles and configure scripts. Though this was less of an issue with
my simple servers, it can contribute significantly to the maintenance effort for larger

S

software projects.

A significant. feature of all three systems is support for the fork(} functlon as dlscussed
in Section 6.1.2 above, We saw in Section 5.7.1 that the performance of the three 1mplemen—
tations varied greatly. The Uwin forking server disappointingly failed to handle the load of
20000 connections - I failed to establish what the problem was. Both the Cygwin and Interix
versions were reliable, though the Cygwin fork () is clearly very slow.

The Interix development environment is currently far better suited to compiling C source
than ANSI C++. The Interix frontend to the Microsoft Visual C++ compiler accepts C
code only. An alternative compiler, an early version of gee {2.7.2), is bundled with the de-
velopment environment, but this version has poor ANSI C++ conformance. This limitation
is unfortunate and is likely to be corrected in future releases. It should be possible, for
example, to compile a later version of gce using the bundled gee 2.7.2.

The performance results of Table 5.3 show that there is in each case a performance
penalty when using any of the three toolkits, but each appears to have different strengths
and weaknesses. In the sirﬁple iterative server tests the Cygwin version performed almost as
‘well as the native version but used 42% more CPU time for the select, based server. Uwin, on
the other hand, suffered a performance hit of 11% CPU utilization for the iterative tests, but
also only 11% for the select based server. Interix performed slightly worse in the iterative

CHAPTER 6. CONCLUSION 117

tests (14% extra CPU utilization penalty) but, as discussed in Section 6.1.2 above, has a
relatively efficient fork() implementation,

In summary we can conclude that POSIX emulation can be done quite effectively on Win-
dows NT derived systems, but expect some performance penalty when using Unix paradigms
which are particularly foreign to the native system. If raw performance is not the primary
design goal (as frequently it isn’t} then this is a painless way of porting applications. Each
of the three systems discussed have been used effectively to port large amounts of existing
'~ source code to Windows. Bath Uwin and Cygwin have seen active development over the past
few years, with frequent version updates. We can reasonably expect that their functionality
and efficiency will continue to improve. Interix has been absorbed into Microsoft’s Services
For Unix product where it forms the heart of their Unix legacy applications ports (inetd,

telnetd, nfsd etc).

6.2.2 Portability from the outset .

- . Designing software with partability as a specific design goal is a different problem to porting

_; ‘exiéting code. For a given set of requirements, there may be many choices open to the
. “developer. The choice of implementation language can play a significant role in the ease of

-development and effectiveness of a portable solution.

C style cndé

We saw in Chapter 3 that the BSD sockets AF1 and indeed the rest of the system API of
the platforms considered are C language API’'s. Whereas programming close to the system
API may be desirable in terms of run-time efficiency it can also create the most significant
maintenance problems. We saw in Section 3.3, that the preprocessor can be used to isolate
platform specific versions of the code for conditional compilation. The physical complexity
of such an approach frequently results in code which is prone to error, difficult to read and
maintain. This physical complexity can be contained to a certain extent by concentrating
the © “#ifdef ...#endif’’ preprocessor directives into a single file. Jon Snader [53] gives

~an example of one such approach in his book on TCP/IP programming?.

2The source code for his examples are available at http://pwl.netcom.com/ jsnader/etepsre.tgz.

CHAPTER 6. CONCLUSION 118

We can reduce this physical complexity by abstracting through the use of library func-
tions. We saw in Section 2.3.1 how the Tcl C library can be used as an example of such an
abstraction layer. Whereas the Tel library is not a purpose written communication library,
it is widely ported and provides a ready made channel abstraction which removes the ne-
cessity of programming directly to the sockets layer. The Tcl Notifier provides a convenient
and portable event mechanism which makes it a particulary suitable candidate for coding

- event driven servers. Tables 5.3 and 5.4 show that the CPU utilization cost of a T¢cl library
based server over a native coded select() based server is remarkably low. Less than 10%

on Windows and only 1% on Linux.

C++ code

The object oriented language features of C++, particularly in the implementation of Wrap-
per Facades, can be effectively used to reduce software complexity and hence increase read-
- ability and robustness. The Ace toolkit (described in Chapter 2) makes use of {Vrapper

- Facades and other patterns to provide communication software frameworks which combine
'::5ﬂejcibi'1ity§;reuéébiiity and portability in an extremely efficient way. In Chapter 5 wé saw
that portable iterative, event driven and multi-threaded servers could be implemented which
- showed neglible performance penalties compared to their native coded equivalents. Indeed in
section 5.2 we saw three cases on Linux where there was no way to statistically differentiate
their performance from their native equivalents. _ _
These results provide the strongest support for my hypothesis that portability does not
necessarily imply a significant penalty in efficiency. In the three cases referred to above there

is no CPU utilization penalty at all3.

Virtual machines

Java is a very popular choice for cross platform development. We saw in Chapter 2 that
Java compilers produce byte code targetted at the Java Virtual Machine. The portability
- problem is completely deleéated to the virtual machine layer. One of the limitations of Java
‘has been the lack of support for non-blocking I/O. This has meant that, though Java could
be used to implement all of the multithreaded architectures of Section 4.3, it was not possible

3Note that we are still ignoring the question of memory efficiency here.

CHAFTER 6. CONCLUSFON 119

to implement the event driven model of Section 4.2. The new Sun Jdk v1.4 has introduced
support for non-blocking I/0, but 1 am unaware of any independent performance studies
done on this at the time of writing. |

The Sun Jdk v1.3 was used on both Windows and Linux for the experiments described in
Chapter 5. The server optimized version of the virtual machine was used on Linux, whereas
only the client virtual machine was available to me for the Windows experiments. The results
(Tables 5.3 and 5.4) show that, for the simple iterative servers, Java performs well in terms
of connections handled per second, but there is a significant cost in CPU utilization on both
platforms. The multithreaded servers show a similar penalty in CPU utilization, but also
show a drop-off in the number of connections handled per second on both platforms. This
seems to indicate that the Java thread wrappers introduce some additional latency to the
. underlying PThreads and Win32 threads APIL

6.3 Future wark

* A large part of the experimental aspect of this work involved looking at overall CPU utiliza- '
. tion as a measure of efficiency. Whereas there are hazards associated with interpreting such |
a“ measure too simplisticaly, it is significant that the experiments revea.led few surprizes.
The figures, by and large, revealed simplé and consistént characteristics. Future work is
required to establish if there are useful predictive extrapolations to be made between this
measure of efficiency and more established external performance measures such as latency
and throughput under various test load conditions. _ h
The QOrchestrator distributed test suite used in the experiments presented in this work,
was designed with flexibility and extensibility as primary design goals. The scope of this
work required that only a single, simple load client be implemented. More work needs to be .
done to extend the range of load generating and monitoring services within the framework.
POSIX Asynchronous 1/0O (aio) and Windows overlapped 1/0 have similar semantics,
vet none of the POSIX emulation tools on Windows support this I/0 mode. The increasing
.number of UNIX-like systems providing better aio support coupled with the dominance of
.‘overlapped 1/0 as the preferred I/Q mode on Windows, raises the challenge of an aio port

to Windows. The open source Cygwin environment may well be the best avenue to pursue

CHAPTER 6. CONCLUSION 120

this work. _

The Microsoft .NET framework has been released since this work was started. FreeBSD
and Linux ports of the .NET virtual machine have already appeared. Though sharing the
VM concept with Java, there are a number of substantial differences in the implementation
and design rationale of the twa [10]. Counting the CPU cycles used by the .NET VM under
the same conditions presented here may well provide some useful insights into the efficiency

of this new technology.

Appendix A

Orchestrator - a distributed test suite

 Orchestrator is a system designed to facilitate the control and monitoring of server load
test experiments in a heterogeneous distributed environment. The use of CORBA as &
middleware abstraction layer allows a high degree of flexibility and configurability. -

The system was designed to facilitate the gathering of the data presented in Chapter

-5, but is sufficiently general that it could easily be adapted to meet different experimental

- Tequirements.

A.1 Overview
In order to conduct experiments such as those described in Chapter 5, we can identify a
number of participants:

1. the server process under test;
2. one or more load generating clients;

3. a supervisory process to oversee and capture results.

To assist the supervisory process, it is also useful to provide a naming service. The supervi-
- SOTY Drocess can query this service to determine where to find the server to test and where
“the load generating clients are.

I have implemented a number of CORBA objects which map onto these participants.
Figure A.1 shows a schematic representation. The machine on which the server(s) are to be

121

APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE

NomeService

[T

Sexver

Load Chients

Hamess

WorkTeam

| |

[

MICO ORB

tested exposes an object called Harness. Harness objects offer an interface for starting and

||

Opchestrator

Figure A.1: Test Environment

122

+ .. stopping processes,-as well as methods for querying the CPU utilization on the machine. A
: benefit of expasing such an interface is that the platform specific implementation of these
methods is hidden from the user of the object.

Simi]’afrly, WorkTeam objects reside on load generating client machines. Users of a Work-

Team object can specify parameters to the load generator and start and stop load generating

activity.

The Harness and all WorkTeam objects register themselves with the CORBA NameSer-

vice on startup. The organization of the naming service is shown in the tree below:

\--orchestrator~~ servers -- <hostname> -— Harness

!

+--- clients -— <hostname> -- WorkTsam

|

+ —- <hostnama> -— WorkTeam

APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 123

I call the supervisory process the orchestrator. The orchestrator runs in a single process
on a machine separate from the server and load generators. By querying the name service the
orchestrator can acquire a reference to the distributed Harness object. Using this reference
it can start (and stop) server processes on the remote test machine. The same orchestrator
process can also acquire references io one or more WorkTeam objects. Armed with these
references it is possible to conduct an experiment by calling on the WorkTeam(s) to generate
a load on the server. Once the server has handled the regnired number of connections (20000
connections were used in my experiments) the orchestrator queries the Harness object for
the CPU utilization figures. At this point it can kill the running server process and repeat
the cycle. '

The CORBA IDL description of the harness object is shown in Figure A.2 below:

marc/harness/harness.idl

%

1 // harness.idl
2 // IbL
3: struct usage { -
4 ' double user; // process nser time in sgeconds
5 ‘double system; // process system time
-8 ' -double ‘total_user: // totel user time in seconds
~+7 - .-double total_system; // total system time
I H '
9

10 interface harness

11 {

12 boolean start{in string cmd); // Start process

13 baclean signal{in short signum); // Kill process

14 boolean geateurrent (out nsage times); //Current usage
i5 ¥;

msrc/harness/harness.idl
Figure 1.2; Hamness IDL

Harness objects are very simple. The start method can be used to start an arbitrary

.process on the machine by providing the name of the executable'. What distinguishes it

YThere are no security safeguards currently built in - anyone with a handle on a Hamess object can run
arbitrary processes. Building in a security model would be pessible, but was not deemed necessary in a

controlled environment.

APPENDIX A. ORCHESTRATGR - A DISTRIBUTED TEST SUITE 124

from a simple rsh type command which one would use on a UNTX-type system, is that the
interface disguises the platform specific details of creating and monitoring the process on
either UNTX or Windows systems.

Figure A.3 shows the IDL for the WorkTeam object:

marc/wteamb/load.idl

24 interface WorkTeam {
25 // The init method must be called prior t¢ comnactions being made
268 // Specify the ip address in dot format and the listening port

ar // of the server under test
28 Dboolean init{in string host,

29 in unpigned short port,

30 in unsigned long numbytes);

31 // dovork is a blecking call

32 // it does not return until all the work is dome or if there has
33 // been an error - in which case it returns false

34 // Parameters ara:

38 // npumpararallel - the number of concurrent worker threads to deplgy
36 // ~numbytes - the number of bytes to request for each connactionm

3t // num_iter - the total number of commections to make

3B/ time ~ total real time in seconds for all threads to complete v

.39 °// either num_iter or time muist be Epecified as non-zero to define the
40 . // amount of work to be done. {n return both will contain valid date
41 // Returms no of failed attempts

42 long dovwork(inout long mum_iter,
43 inout dooble time, :

44 in long numparallel);

45 };

/msrc/wieamb locd.idl

Figure 1.3: WorkTeam [DL

The CORBA implementation used was the excellent open source Mico ORB from the
Unjversity of Frankfurt.

A.2 Scripting the orchestrator

Mico is a C++ CORBA implementation. The Harness and WorkTeam classes are also

implemented in C++ because they need to access low level system API's on the targei

APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 125

platforms. The CORBA IDL is, however, language independent - we can implement the
orchestrator in any language which has CORBA IDL bindings. Using C++ (or Java) for
this task is neither the simplest nor the most desirable in this context. Ideally we would like
to be able to fexibly configure different experiments using simple configuration scripts.

Tcl is a language ideally suited to this problem. Automated software testing is one
of its traditional strengths [21] and creating Tcl bindings to the CORBA 1DL is a simple
process. Better still, an existing Tcl-IDL binding could be used. I made use of of the Combat
(originally Tecl Mico) Tel extension [34] for this purpose. |

A simple orchestrator script might then look like the following:

set wtiname “/orchestrator/clients/starship/WorkTeam"
set harnessname ”/orchestratar/servers/bobsde11/Harness“

look up handles from nameservice
et harnesshndl [get_handle $harnessname]
set wtlhndl [get_handle $wtiname]

. #initialise the workteam:)
$wtihndl init 192.168.0.10 60002 4000 o

ask harnmess to run "myserver"
$harnesshndl start “myserver”
puts stderr "Server starting ..."
Bet wtlhndl [get_handle $wtinamel

pause a second to let things settle
after 1000

Bpawn 5 workers to make 20000 connections
$wtihndl dowork 20000 300 5

$harnesshndl getcurrent R
puts Etderr "§server Usage: $R“

send SIGINT to “myserver”
$harmesshndl signal 2

The actual scripts used are more complex in that they must be capable of running batch
jobs to test lists of servers robustly. A combination of awk and tcl scripts are used on the

APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 127

CORBA as a good candidate for distributed measnrement.

Geihs and Gebauer [9] developed a general 1oad monitoring tool using CORBA and Tel.
Whereas their tool is more a more complete monitoring system than mine, it doeg not not
include the load generation aspect.

A weakness of my orchestrator system is that it does not take dynamic real-time measure-
ments. The system must reach a steady state (ie complete a fixed number of tasks) before
the measurement is taken. Real-time extensions [60] to the CORBA standard can be used to
implement a more dynamic flexible measurement system. Harrison et al [12] implemented a
Real-time CORBA Event Service which could meet the Quality of Service requirements for

low-latency, predictable real-time measurement.

Appendix B
Software versions

- The software versions used in this work are as follows:

Windows Linux
| 08 version | Win2000 Professional SP3 | 2.4.3 (Mandrake 8.0)
ACE 2.2 9.2
Tel 8.0p2 , 8.3.2
| Cygwin 1.3.10 -
Uwin 2.9 -
Java Sun Hotspot VM 1.3 (Client} | Sun Hetspot VM 1.3 (Server)

Table B.1: Software versions

128

Appendix C

Cost of Function calls

The ACE toolkit includes a number of sample applications which measure various aspects of
the system making use of high resolution timers. I include the results here of the function call
tests on Linux and Windows systems. The Linux system is using gcc2.96 and the Windows
sytem, Visual C++ 6.0.

" C.1 Linux

bobsdell.cs.up.ac.za (1686, Linux 2.4.3-20mdk at 18:00:37.457912
10000000 iterations _ '
An empty iteration costs 0.002 microseconds.

operation time, microseconds

global function calls:
inline function call 0.000
non-inline fumction call 0.00%

member function calls:
inline member functiom call 0.000
non-inline member function call 0.008
.member function calls, class has a virtual function:
inline member function with virtual call 0.000

non-inline member function w/virtual call 0.008

virtual member functiom calls:

129

APPENDIX C. COST OF FUNCTION CALLS

virtual member function call, optimizable 0.009
virtual member function call 0.00%9

C.2 Windows 2000

BOBSDELL (Intel Pentium Pro), Win3Z2 Windows NT 5.0 at 12:59:27,430000
10000000 iterations '
An empty iteration costs 0.031 microseconds.

aoperation time, microseconds

global function calls:
inline function call 0.000
non-inline function call 0.009

member function calls:
“inline member function call 0.000

non~inline member function call 0.008 .

member:function.calls, class has a virtual functiom:

~inline member femction with virtual call 0.000 -

pon—inline wember function w/virtual cell 0.007

virtual member function calls:
virtual member function call, optimizable 0.007
virtual member fumction call 0.008

130

Appendix D

TCPdump profiles

In each of the following two tcp dumps, the client (starship) is a FreeBSD4.5 machine. The

server (bobsdell) is running a simple iterative service.

"Windows 2000 on bobsadell

00:13:3T. 518488 starabip 30364 > bebsdwil.S0003: 5 S000B09BO:400E80880(0) win HES3E
- 4mEs $400,m0p . vscals 1,nop,Dop,timestamp 405004 0> -
-00:42:37. 60470 hobadall 80007 > starship.50384: § ZTIOC0ADAZ:2TIOOOLIAZIAS mak SHOABOROC win 1TEZD
- fma¥ . 3489,0cp wecale 0,B0p,p0p, timastaxp D OF

A0:13:97.510600 starakip 30384 > bobsdell.00001; . ack I eip 3334 <nop.nop,timestamp 4A08SBO4 D>

£G:13:37. 620384 bobsdell.B00072 > wtarship.903B4: P $:0(T) nek 1 win 17520 <nop,uop, tloesdamy 437433 40B2004AY
G0:19:97 621705 starship, 30384 > bohsdeil 80002: P 1:8{4] ack B win 39304 <nop,nop,tioesterp AOBHIDS 2374030
-(0:19:87. 594723 bobsdall.B0002 > atarship.30884; . 8:1438{1448} ack 5 win ITG16 <nop,pop,tlmastwmp 37453 40520057
D2 43:3T. 627068 bobadel) A0D02 » winxshlp.90384: . 1468:2004 (14483 mek § win 17840 ieap,oop,tlosstesp 37493 4053008Y
69510:37, 827021 bobedell 50002 » stezship 30ABA: P 2004:4008(1104) ack b win 1TBI0 <mep,mop,timsstamp 437453 40520053
00:33-3T, 627000 wtarship. W324 > bobedall.BCO02: . ack 2004 win 33580 <oop.nep,tloskbncp SOB200K 4AST4R3>
£0:13:37.8268615 starabip 20384 > bobadell.A0002: F 5:5(0} nck 4008 win 33303 <vop,nop,tlmstenp 4052005 AFTIEI>

QU: 13537, 820050 bobedell SC002 » sfaxehip.30384: . ack B win ITELE <mop.nop.tieestonp AIT4E3 4062005

A0:33:97, 820145 bobmde]l), G400 > atarsbip AC¥84: F 4008:4008I0} &cx & win 17516 <neprop,tlmestamp 437493 4052005>
00:13: 57T 520200 wtarsbip. 3383 > bobxdell 800md: . sck 4608 win 335M <oop.nop,timsatamp AGAICOS 4374835

Linux 2.4.3 on bobsdell

00:57:04_BARLI6 wtarsbip. 80404 > bobede1l.E0002: § 2B1I4H4960:2811444980(0% win 8B82E

<ous 1460;poF,vacale 1,pop, mop,timeatamp 4312702 0>
Q:57:04. 536880 bobade}l, 50002 » starship. 300d: § $IRGTATZTZ:1TO0TEVATI{0) azk 2815444081 win 6752

“mm¥ $460,.000.Eop,timertamp BOTTL 4312702, uop,vsenls O
O00:E7:04. . B3T0ES stexship 30404 > bobadell.€3002: , ack § win 33304 <mop,nop,timestemp 312707 GOTTL>
00:BT:04.537677 bobedall .BOO0T » atarship.30404: P 1:B{7) nek ¢ vin 5767 <nop,nep,timextamp BSTT1 4312T02:
60;57:04. 530368 starahdp, 30054 3 Bobadell.60002: P £:B{4} ack 8 wio 393 <aop,nop,tizestacp 4313702 BOTTA>
00;57:04. 5360850 bohedall .BDAD? > sbarship.30404: | sck B rlm E792 <nsp,noptimestenp BOTTS 4512700
GR:57:0%. SA002 bobedall, 30902 » wtarwbip.S0404; . 8:1458{1%24) ack 5 win E702 <nop.Rop.tlmestasp EI7T7: 4313702
GR:87:00,. Ba0240 bohedal).B0002 > starahip.30404: . $4SJ:7904(1e48) ack B win E797 ¢nop,nop.tizmsteap SRTTL 4312TH2»
00:B7:04. B43640 bobadell. 50002 > atarsbip.3184049: P Tu04:4608{1104) eck E win 5792 focp,Bap tlmsstamp BSTTL 43127023
Dd:57:04.544078 atarabip. 30404 > bobedel:.BOBD]: . ack 2504 win 32§80 <nep,nop,tlmsskamp 4313703 HATTix
DE:57:04 544797 wtarsbip.30404 > bobrdell.60003: F E:5{0) sck 4008 win 33304 <oop,nop,timmatamp 2312703 SE7TL>
D0:57:09. 548245 bobadell.60002 > rtarsbip.20404: F 400B:4008(0) ack & win 8793 <nop,mcp.tioestsnp SETTZ 4312703
Q3357704545403 storship, 304H > Yobadald.50002: . ack 4009 win 33304 <aop,Bef,theastamp §E1IT08 SOFTY>

131

Appendix E

Static Reflector Pattern

. This pattern was presented at the PLOP 2001 conference, Allerton, Illinois. It is struec-
tured according to the canonical form under the headings Name, Problem, Context, Forces,
Solution, Resulting Context, Rationale, Examples and Related Patterns. *
Somewhere near the bottom af the food chain of object oriented programming, the devel-
opér frequently encounters the rock face of a non abject oriented API. This paper describes a

o specialisation of the Wrapper Facade [{9] [47] pattern. Wrapper Facades encapsulate func-

- tions and data provided by existing non-object oriented API’s. The Static Reflector addresses
_the particular problem of building wrappers which contain functions which take C function
pointers as parameters. The pattern makes use of a static reflection methad to facz‘litate'the
conslruction of cohesive, reusable framework clusses which make use of such C functions. I
show that the application of this pattern is surprisingly wide. Though concerned primarily
with the interface between C and C++, the patlern has implicalions and applications to other

languages as diverse as Jova and fincr Tclf.

E.1 Name

Static Reflector

132

APPENDIX E. STATIC REFLECTOR PATTERN 133

E.2 Problem

Many non-object oriented API’s contain functions which arrange for another function (the
target function) to be dispatched, perhaps in the context of a new thread or in the future,
in response to an I/0, timer or user interface event. Building object oriented compone‘nts
on top of such API’s is complicated by the fact that the target function must be statically
declared. There is generally no way to directly specify a member function of an object
instance to be the target of such an API function. 7 ' |

As a motivating problem, consider the problem of implementing a Java Thread class in
a Java Virtual Machine written in C++ using the POSIX threads APL Java threads have
a start() method which causes a new thread to be spawned to run, with its run() hook
method as the thread entry point. In Java we would create and despatch the thread like
this: '

~ Thread t = new Thread();)
t.start();

: A'éta'ri;ing ﬁoiht might be to collect together the POSIX threads functions (pthread_ create ()
“and family) into a cohesive Wrapper Facade[47]. It would then be convenient if we could

“build a C++ implementation as follows:

¢lasy Thread {
public:
Thread(}) {}
int start()
p
// incorrect ~ rum is not static
return pthread_create(&tid, NULL,
run, NULL);
}
protected:
virtual void* run()
{/* thread function */}

pthread_t tid; //thread id
/* ... other member data for
the thread object */
};

APPENDIX E. STATIC REFLECTOR PATTERN 134

The resulting run{) method of Thread instances would have access to the member data
of the instances. We could create new thread classes by inheriting from the base Thread and
gimply providing an overloaded run() method. Unfortunately, the call to pthread create()
is illegal as the third parameter refers to our run{}) method, which is not a valid static C
function. ‘

The above code can be modified to compile correctly by simply declaring the run()
method as static, but this has a serious drawback. Static class functions have no direct
access to the instance data of the object, nor can they benefit from inheritance and poly-

morphism.

E.3 Context

~ This problem recurs frequently in the context of building C++ classes around C functions
which take C-style function pointers as parameters. Such functions are usually scheduling
functions of some sort i.e. they request that another function be dispatched after some event
" oceurs or in the context of a new thread.

Examples include:

‘The POSIX threads library The function pthread create()?, which is used for creat-
ing new threads, has an argument which specifies the entry function for the new thread.

The function prototype is as follows:

int pthread_creats(pthread_t *thread,
pthread_attr_t® attr,
void * (#gtart_routine)(void =),
void * arg):

The start_routine argument specifies the entry function.

The Win32 API This interface is rich in its use of function callbacks. The SetWaitableTimer()
function, for example, has an optional argument to cause an Asynchronous Procedure
Call (APC) to be gueued when the timer expires. The argument specifies a pointer

1The Windows beginthreadex() function has a gimilar form and is also a candidate for static reflection

APPENDIX E. STATIC REFLEGTOR PATTERN 135

to a C funciion. An application places itself in an alertable state, such as in a call to
SleepEx (), to receive notification of the event and dequeue and dispatch the APC.

The Tcl C library This library provides a number of usefu! [unctions for creating event-
driven applications based around the Tcl Notifier[33]. A commonly used one is Tcl_CreateFi

which has the form:

Tcl_CreateFileHandler(int fd, int mask,
Tcl_FileProc proc,
CliaentData clientdata)

The proc argument is a pointer to a C function. Typically, the application waits for
events in an infinite loop, blocking in calls to Tcl DoOneEvent ().

Each of the above is characterized by having at least two arguments; one being a pointer to
a C function and the other a general purpose argument which is passed through to the target
function (the void* arg in pthread create, the ClientData clientdate in Tcl.CreateFileHandler).
. 'The purpose of this argument is to pass data to the target function. :
. Such functions are commonly found in system APIs as well as in legacy C libraries. These
. tunctiong are important in the implementation of components for nse in extensible object
oriented frameworks. Template and Hook methads|38] commeonly form the metapatterns for
such components, with the initiating method which makes the call to the C API scheduling
function, being the template method. Hook methods are the application specific “hotspots”
ie. the methods which are dispatched as a consequence of invoking the template method.
They provide the application specific behavior. The problem-solution pair description below
illustrates how the impedance mismatch between C and C++ frequently dictates the use of
a third participant in this ccllaboration, the static reflector function.

E.4 Forces

o The developer needs to interact with a non object-oriented API for reasons of effi-
ciency or fine grained functionality. The creation of Wrapper Facades i.e. clustering

cohesive groups of functions into classes, is a proven good strategy|[49] for dealing with

APPENDIX E. STATIC REFLECTOR PATTERN 136

this interactiion. Functions which arrange the dispatch of other functions, such as
those described above, present an implementation problem in creating classes based
on Wrapper Facades because the target functions, in each case, must fall cutside of
the Wrapper Facade (or any other} class. The run{) method of a thread class, for
example, should form part of the cohesive cluster of functions which cperate on thread

objects.

e« An importa.iit benefit of bui.lding ob ject-oriented infrastructure on top of a non object-
oriented API is the encapsulation of data with the methods which operate on that
data. We would like the run() method in our thread example to have access to the
thread instance variables such as tid in the example?. This behaviour would in fact

be mandatory in an implementation of a Java Thread.

Similarly, callback functions, such as file* and timer event handlers must frequently
implement complex state machines. Having the callback as a member function hook
with access to instance data has desirable consequences. It is these hooks which must
act upeon and alter the state data. Encapsulating the data with the methods which
-operate on it imposes some control and order on the resulting design.

E.5 Solution

The Static Reflection pattern resolves these forces by providing a mechanism for causing the
dispatch of an object member function. It does this by introducing a static method to the
collaboration, which is the intermediate target of the scheduler function. It makes use of the
generic void* type argument provided by the scheduler functions to send, not explicit data
to the target function, but a reference back to the originator of the scheduling call (a this.
pointer in C++). This collaboration is illustrated in Figure E.1.

Applying this pattern to our Java Thread class implementation yields a solution which

resolves the problems encountered earlier:

2The advantages and disadvantages of implementing thread specific storage in this way compared to using

the traditional thread specific storage interfaces have been described in {cite schmidt plopd 4)
31 use file in the very generic Unix sense of a file descriptor, which may actually refer to sockets, pipes or

fifos

APPENDIX E. STATIC REFLECTOR PATTERN

‘Wrapper Favade

Template Method

Hoak Methad

C AP

Scheduler
Function

Figure E.1: Collaborations

class Thread {
public:
Thread () {}
int start()
{
return pthread_create(&tid, NULL,
reflect, this);
}
protected:
inline static void reflect (void+* id)
{
(Thread=*) (id)~>run();
}

virtual void+* run()
{/* thread function */}

pthread_t tid; //thread id
/* ... other member data for
the thread object */

137

APPENDIX E. STATIC REFLECTOR PATTERN 138

};

E.6 Resulting Context

An important consequence of the Static Reflection pattern is the ability to build framework
objects through inheritance. By making the hook method virtual in the base class, derived
classes need simply to provide an implementation of the hook method. The reflector in the -

base class will ensure that the hook is dynamically bound and despatched.

abstractClass
........... Invokes C AFI
rtemplate {}i acheduling function[j
#hook {}
concreleClassA concreteClassB
~ [#hook {} ¥hook ()

Figure E.2: Inheritance

A desirable consequence of placing the static reflector within the namespace of the class
is that scoping can be used to make the hook method protected. Placing the reflector outside
of the class would require either the hook method to be declared public or the reflector to
be a friend. _ _ .

A possible negative consequence of this patiern is the extra overhead involved with the
double dispatch. This overhead is minimized by inlining the reflector method. Combined
with the effects of compiler optimization the overhead should be negligible.

E.7 Rationale

The task of the static reflector method is to simply delegate to the hook method of the
object which originated the message. The mechanism is similar to the double dispatch of

APPENDIX E. STATIC REFLECTOR PATTERN 139

the Visitor Pattern of [8]' By providing a reflector method to reflect the message back to

the originating object the pattern solution effectively resolve the forces in the given context:

e Cohesion is achieved, because we can include our target function among the other

Wrapper Facade functions which act upon the object.

s Access to encapsulated data is achieved, because the target function is a non-static

member function of the class.

E.8 Examples

The Java thread example in the previous section is an example of a synchronous application
- of the Static Reflector pattern. The pattern is also used in this way in {47] to implement
a threaded TCP service handler. Another example from the POSIX threads API is in the
installation of thread exit handlers with pthread_cleanup.push(). |
The pattern is more commonly seen in the context of asynchronous, event-driven scenar-
ios. In this section I describe two such cases: one using C++ and the Win32 API and the
other using IncrTel and the underlying Tcl Notifier. Both cases describe the implementation
of timer handlers. 1/0 event handlers and GUI event handlers can be constructed using the

same pattern, but the code for timers is shotrter.

E.8.1 Win32 APCs

The Win32 API provides a mechanism known as an Asynchronous Procedure Call (APC)[27].
Threads have an APC queue upon which APCs are queued when they are due to be sched-
uled. Threads need to be in an alertable state for the APCs to be dequeued and dispatched.
APCs are typically used for timer and [/O event handlers and provide an alternative mecha-
nism to the WaitForMultipleQObjects () family of functions for demultiplexing and dispatch-
ing. APCs are a more explicit event delivery mechanism. WaitForMultipleObjects (), like
‘the Unix select () and pbll functions[55], lends itself more to a state-driven rather than

event-driven design[4].

4In fact it is more like a triple dispatch, where the dispatching of the reflector is separated by space (a
new thread context) or time (an event handler) from the originating call

APPENDIX E. STATIC REFLECTOR PATTERN 140

In the example below, an APC is used to implement a timer handler. The template
method in this class is the start () method and the hook method, timedout () is a pure
virtual method. Note how the static reflector method, reflect(), and the timedout()
hook are both protected. A concrete timer class, myTimer, is implemented by providing an

implementation of the timedout () hook.

#include <windous.h>
#include <iosatream>
#include <string>

class Timer {
public:
Timer (}
{ .
thndl = CreateWaitableTimer {NULL, FALSE, NULL};
}
void start{int fire, int repeat)
{
// Bcale everything up to millissconds
.o liPueTime . QuadPart=-fire«10000;
interval = repeat;
// arrange for Win32 APC to reflactor
SetWaitableTimer{thndl, £1iDueTime, interval, \
Timer::reflect, this, FALSE);
}
protected:
// the static reflector function
static VOID CALLBACK
reflact(LPVOID self, \
DMORD duTimerLowValue, \
DWORD dwTimerHighValue)
{
Timer* id = [Timer*}self;
id-»>TimedOut (};
}

virtnal void TimedOut() = 0;
HANDLE thndl;

LARGE_INTEGER liDueTime;

int interval;

};

APPENDIX E. STATIC REFLECTOR PATTERN

class myTimer : public Timer {
public:
myTimer{const stringd name = “Anonymous'')
:myname (name) {}
// the callback ~ with access to member data!
void TimedOut ()
{
cout << myname << " timed out® << endl;
} .
protected:
string myname;

+;

int main()

{
myTimer T1("A Win32 alertable timer"),T2;
cerr << "Starting timers ...\n";
T1.start (3000, 3000):
T2.s8tart (4000, 3000);
// & primitive event loop ...
vhile(1) {
. SlecpEx (INFINITE, TRUE) ;
}

}

E.8.2. [incr Tcl]

141

Incremental Tcl [iner Tcl] is an object system for the Tcl language created by Michael J.

McLennan of Lucent Techno!ogies{%]. Being an interpreted language, the mechanics are

considerably less sophisticated than C++. [incr Tcl] supports classes, scoping and inher-

itance, but has no notion of polymorphism and virtual methods. The underlying event

demultiplexing and dispatching mechanism is based on the C language Tcl Notifier, which

necessitates the application of the Static Reflector pattern to build notifiable, event driven

objects. The form is slightly different from the previous examples, but the pattern is the

samme.

class Timer {
Note: the after command causes

APPENDIX E. STATIC REFLECTOR PATTERN

the reflex scriptlet to be
evaluated at global scope after
the elapsad ms.
reflex thus plays the role of
the static reflector
method schedule {ms} {
set reflex “$this hook”
after $ms $reflox
}

method hook {} {
puts "Timer expired”
}
}

- class myTimer {
inherit Timer

method hook {} {
reschedule for 2 sec¢ later
schedule 2000
puts "myTimer expired!!"

}

myTimer tl
t1 schedule 2000

wait forever in event loop

tl's hook will be despatched
after 2 seconds

vwait 1

142

It may not be immediately clear how static reflection is being used here. The key point

is that the semantics of the tel after command determines that the argument script to after

is evalnated at global scope. Notice how the template method (schedule) creates a string

variable (reflex) which acts as the reflector to call back the hook method. In this case the

hook method must be public because reflex is evaluated outside of the class namespace. We

could have made the reflex script call back to a class wide procedure within Timer, which in

turn called hook. This way the hook method could be declared protected, but at some cost.

APPENDIX E. STATIC REFLECTOR PATTERN 143

There are many non object oriented APIs to which this this pattern can be meaningfully
applied. One other such API the author is aware of is the Gtk toolkit, which is a C GUI
framework used in the Gnome projectS. Functions such as gtk_signal.connect() bind a
C style function to a user-interface event. Static reflection is required to route such event

handlers to object methods.

E.9 Exceptions and Variations

Not all scheduling type functions are candidates for static reflection. One notable exception is-
the installation and dispatch of signal handlers. The BSD signal () function and it's POSIX
counterpart, sigaction(), specify a function to be dispatched in response to an operating
systemn signal. Neither APT funetion provides the facility for passing a this pointer, so static
reflection cannot be used. [48] demonstrates how design patterns can be applied to the
development of signal handling corﬁponents, .

The OpenGL-GLUT library supports C-style callback functions for GUI events. These
callbacks do not have the facility for passing a this pointer, so static reflection canrot be
used. The author is aware of object oriented interfaces to OpenGL but not how th‘ay are
implemented. _

Variations on the static reflector pattern are commonly seen when the collaboration
between template, reflector and hook methods transgress class boundaries. I have shown
examples where all three are defined in a single class. There are cases where it may be
desirable to more clearly separate the functionality of these three.

Creating pools of managed threads, for example, may suggest a design strategy where
the template and reflector methods occur in a thread factory class, and the thread entry
hook in a separate thread class. Similarly, one can separate an event handler class from the
event dispatch and demultiplexing mechanism, as is done in the Reactor[51] pattern. The

essence of the template-reflect-hook collaboration remains the same in each case.

®More information about gnome and gtk can be fonnd at http://www.gnome. org/

APPENDIX E. STATIC REFLECTOR PATTERN 144

E.10 Related Patterns

This pattern is closely related to the Wrapper Facade[49] pattern, which addresses the prob-
lem of building object oriented infrastructure on top of non object-oriented APIs. Whereas
the Wrapper Facade deals with cohesive grouping of related existing API functions, the
Static Reflector provides a mechanism for extending Wrapper Facades to include scheduled
functions such as thread ‘entry points and event callbacks. _ o)

In its application to the context of event callbacks, there is also some relationship with
the Reactor pattern. The TkReactor implementation of the Reactor in the ACE toolkit
makes use of static reflectors to dispatch timer and I/Q handlers.

The Static Reflector makes use of the Hook/Template Method|38] pattern and something
similar to a Double Dispatch|8].

Bibliography

[1] Christopher Alexander. A Pattern Langunge: Towns/Buildings/Construction. Oxford
University Press, 1977.

[2] John H. Baldwin. Locking in the Multithreaded FreeBSD Kernel. In BSDCon 2002,
San Francisco, California, pages 27-35, 2002.

{3] Gaurav Banga and Jeffrey C. Mogul. Scalable kernel performance for internet servers
under realistic loads. In USENIX Annual Technical Conference, November 1998.

[4] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A scalable and explicit event
- . delivery mechanism for UNIX. In USENIX Annual Technical Conference, June 1999,

[5] Per Bothner. A gcc-based java implementation. In IEEE Compeon 1997 Proceedings,
pages 174-178, February 1997,

[6] Helen Custer. Inside Windows NT. Microsoft Press, 1993. ISBN 1-55615-181-X.

[7] Michael Franz. Emulating an Operating System on Top of Another. Seftware - Practive
and Ezperience, 23(6):677-692, June 1993.

[8] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[9] Kurt Geihs and Christoph Gebauer. Load Menitor LM - ein CORBA-hasiertes
Werkzeug zur Lastbestimmung in heterogenen verteilten Systemen. In MMB Freiberg,
pages 173-189, 1997,

BIBLIOGRAPHY : 146

{10] K John Gough. Stacking them up: a comparison of Virtual Machines. Australian Com-
puter Science Communications, IEEE Computer Society Press, 23(4):55-61, January
2001.

[11] The WinSock Group. Windows sockets 2 specification, rev 2.2.2, August 1997.
ftp://ftp.microsoft.com/bussys/winsock /winsock2/.

[12] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The design and -
performance of a real-time CORBA event service. In Proceedings of OOPSLA 97,
pages 184-200, Atlanta, GA, October 1997. ACM.

[13] ISO/IEC. International Standard: Programming Longuages - C++, Number
14882:1998(E) in ASC X3 American National Standards Institute, 1998.

[14] Douglas C. Schmidt James C. Hu, Irfan Pyarali. Measuring the impact of event dis-
patching and concurrency models on web server performance over high-speed networks.

In 2nd Global Internet mint-conference, November 1997.

{15] David A. Patterson John L. Hennessey. Fundamentals of Computer Design. Morgan
Kaufmann Publishers {Inc), 1990.

[18] Bob Jolliffe. Static Reflection Pattern. In PLOP200! (Pattern Language of Pregrams),
Ilinois, September 2001.

[17} Poul-Henning Kamp. Rethinking /dev and devices in the unix kernel. In BSDCon 2002,
San Francisco, Californie, pages 77-88, 2002.

[18] David G. Korn. Porting UNIX to Windows NT. In Proceedings of the 1997 USENIX
Conference, pages 43-57. USENIX, 1997.

[19] David G. Korn. UWIN — UNIX for Windows. In Proceedings of the USENIX Windows
NT Workshap, pages 133-145. USENIX, 1997.

[20] Greg Lehey. Porting UNIX Software. O’Reilly and Associates,Inc, 1995.

[21] Don Libes. Automation and testing of character-graphic programs. Software Practice
and Experience, 27(2):123-137, 1997,

BIBLIOGRAFHY 147

[22] T Lucey. Quantitative Technigues. DP Publications Ltd, Aldine Place, 142-144 Uxbridge
Rd, London W12 8AA, 4th edition, 1993.

[23] M. R. Macedonia and D. P. Brutzman. Mbone provides audio and video across the
internet. JEEE Computer, 27(4):30~36, April 1994.

[24] McKusick, Bostic, Karels, and Quarterman. The Design and Inmplementation of {.4
BSD Operating Systern. Addison Wesley, 1996. ' x

f25] M. McLennan. fincr Telj: Object-Oriented Programming with Tcl, 1993.
[26] Microsoft Corporation. Microsoft Developer Network (MSDN) Library, October 1999,
[27] Microsoft Corporation. Microsoft Developer Network (MSDN) Library, April 2000.

(28] Microsoft Corporation. .NET Framework Devéloper’s Guide, Microsoft Developer Net-
work (MSDN) Library, July 2002.

[29] Jeffrey Mogul. Brittle metrics in operating systems research. In 7th JEEE Workshop
on Hot Topics in Operating Systems (HotOS-VII), pages 90-95, March 1999. Rio Rico,
AZ. , _

[30] Patrick Naughton. The Jeve Hondbook. McGraw-Hill, 1996.

[31] Geoffery J Noer. Cygwin32: A free win32 porting layer for unix applications. In 2nd
Usenizr Windows NT Symposium, 1997.

[32] The Open Group (X/Open & OSF). Systems Management: Universal Megsurement
Architecture. CAE Specification C427, January 1997.

{33] John K. Ousterhoudt. Tcl and The Tk Toolkit. Addison-Wesley, 1994.

[34] Frank Pilhofer. Combat. a CORBA language mapping for Tcl. In Euro Tl Conference,
2000. "

[35] J. Postel. User Datagram Protocol. REC768, August 1980.

[36] J. Postel. Internet Protocol. RFC791, September 1981.

BIBLIOGRAPHY 148

[37] J. Postel. Transmission Control Protocol. RFC793, September 1981.

[38] Wolfgang Pree. Design Patterns for Object Oriented Software Developmeni. ACM Press,
Addison Wesley, 1995.

[39] Niels Proves and Chuck Lever. Scalable Network I/O in Linux. Technical Report
CITI00-4, Center fo Information Technology Integration, University of Michigan, May
2000. '

[40] Bob Quinn and Dave Shute. Windows Sockets Network Programming. Addison-Wesley,
1 edition, 1993,

[41] Dennis Ritchie. A Stream Input-Output System. AT&T Beii Laboratories Technical
Journal, 63(8 part 2), October 1984.

[42] D.M. Ritchie and K. Thomson. The unix time-sharing system. Communications of the
ACM, 17(7), July 1974.

[43] Kay A Robbins and Steven Robbins. Practical Uniz Programming. Prentice Hall, 1st
edition, 1996,

[44] Herbert Schildt. Windows 95 Programming in C end C++. McGraw-Hill, first edition,
1995.

[45] Douglas Schmidt. Experience using design patterns to develop reuseable object-oriented
communication software. Communications of the ACM, Special Issue on Object-

Oriented Ezperiences, October 1995,

[46] Douglas Schmidt and Irfan Pyarali. Strategies for implementing condition variables on
win32. C++ Repord, SIGS, 10(5), June 1398,

f47] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Duschmann. Pattern Ori-
ented Software Architecture: Patterns for Concurrent and Networked Objects, volume 2.
Wiley, 2000.

{48} Douglas C. Schmidt. ”Applying Design Patterns to Simplify Signal Handling”. C++
Report, SIGS, 9(6), June 1997.

