
PORTABLE TCP /IP SERVER DESIGN

by

Robert Mark Jolliffe

submitted in part fulfillment of the requirements for the degree of

MASTER OF SCIENCE

in the subject

Computer Science

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISORS: Dr W Smuts and Prof J A van der Poll

November 2002

Abstract

There are a number of known architectural patterns for TCP /IP server design. I present

a survey of design choices based on some of the most common of these patterns. 1·have

demonstrated, with working code samples, that most of these architectural patterns are

readily portable between UNIX and Windows NT platforms without necessarily incurring

significant performance penalties.

Contents

1

2

Introduction

1.1 Rationale
1.2 Problem statement

1.3 Hypothesis . .

1.4 Scope

1.5 Organization

1.6 Glossary of terms

· Porting strategies

2.1 Port~bility . . .

2.2 Emulation layers

2.3 Abstracting the operating system through a library

2.3.1 The Tel library

2.3.2 The ACE library

2.4 Windows NT environment subsystems

2.5 Java and virtual machines

2.5.1 Java .

2.5.2 .NET.

2.6 Summary

3 BSD Sockets

3.1 Background

3.1.1 IPC

3.1.2 File descriptors

ii

1

1

2

3

3

.; 4

4

.. - 7

7

8

10

11

12

13

15

15

17

17

19

19

20

20

CONTENTS

3.1.3 Shutting down a TCP socket .

3.1.4 Controlling the I/O mode

3.2 What is a socket?

3.2.1 Creating a new socket

3.2.2 Socket addresses ...

3.2.3 Library functions used with addresses .

3.2.4 Socket functions .

3.2.5 Handling errors

3.3 Windows Sockets - the Winsock specification .

3.3.1 Architecture .

3.3.2 Features ...

3.3.3 Error reporting

3.4 Synchronisation and process control .

4 Server Architectures

4.1 Iterative server architecture

4.2 · Event driven server architecture

4.3

4.4

. 4.2.1 Overview

4.2.2 Implementation using ACE

4.2.3 Implementation using Tel

Concurrent architectures

4.3.1 Classical implementation - multiple processes

4.3.2 Lightweight processes - threads

Summary

5 Performance comparison

5.1 Introduction

5.2 Hypothesis revisited

5.3 Supporting argument

5.4 Amdahl's Law in reverse

5.5 Experimental method ..

5.5.1 The UNPVl method

iii

22

23

23

24

27

29

32

41

43

44

46

48

49

50

51

52

52

53

58

63

63

67

77

79

79

80

80

81

83

84

CONTENTS

5.5.2 Some problems with the UNPVl method .

5.5.3 Modifications to the UNPVl method

5.6 Scope

5. 7 Results .

5.7.1 Windows.

5.7.2 Linux ..

5.7.3 General observations

6 Conclusion

6.1 Portable architectures

6.1.1 Event mechanisms ..

6.1. 2 Threads and processes

6.2 Portable implementations . .

6.2.1 Making existing code portable .

6.2.2 Portability from the outset .

6.3 Future work

.. A Orchestrator - a distributed test suite

A.1 .Overview

A.2 Scripting the orchestrator

A.3 Test environment

A.4 Related work .

B Software versions

C Cost of Function calls

C.1 Linux

C.2 \Vindows 2000 .

D TCPdump profiles

E Static Reflector Pattern

E.1 Name .

E.2 Problem

iv

85

89

91

93

95

104

109

112

112

113

114

115

115

•. 117

119

'" 121

121

124

126

126

128

129

129

130

131

132

132

133

CONTENTS v

E.3 Context 134

E.4 Forces 135

E.5 Solution 136

E.6 Resulting Context . 138

E.7 Rationale 138

E.8 Examples 139

E.8.1 Win32 APCs 139

E.8.2 [incr Tel] ... 141

E.9 Exceptions and Variations 143

E.10 Related Patterns 144

List of Figures

2.1 Cygwin and Uwin use a Posix porting layer on Windows

2.2 ACE services

2.3 Windows 2000 simplified architecture

2.4 Java OS Abstraction using a Virtual Machine

3.1 Moving data through file descriptors

3.2 TCP Shutdown sequence

3.3 Position of a TCP socket

3.4 Initializing sockaddr jn .

3.5 . Address lookup example

3.6 TCP 3 way handshake

3.7 Active connect

3.8 Passive accept .

3.9 Scatter/Gather I/O using sendmsgO and recvmsg()

3.10 Winsock 2 WOSA architecture.

4.1 Iterative service . . .

4.2 An Acceptor Factory

4.3 ACE event driven server main()

4.4 ACE event driven client handler .

4.5 ACE Client Handler implementation

4.6 Tel Event Driven Server main() ...

4. 7 Tel ServiceHandler interface

4.8 Tel Event Driven Server: ServiceHandler constructor

VI

9

12

14

16

20

23

26

29

32

33

35

38

39

45

52

54

55

56

58

60

61

61

LIST OF FIGURES

4.9 Tel Event Driven Server: ServiceHandler::ioHandler

4.10 Create thread or process per connection

4.11 New process per connection

4.12 Thread per connection

4.13 Pre-threaded: Acceptor enqueues, workers dequeue

4.14 ThreadPool ver 1 main()

4.15 ThreadPool verl Worker interface

4.16 ThreadPool verl Worker implementation

4.17 Pre-threaded: Workers compete for jobs

4.18 ThreadPool ver2 main()

4.19 ThreadPool ver2 Worker Implementation

4.20 Java ThreadPool main thread

4.21 Java ThreadPool: ConnectionHandler .

5.1 Timing of TCP events using UNPVl protocol

5.2 Modification of UNPVl protocol .

. · 5.3 Expected profile of ported servers

5.4 . Windows iterative servers . .

5.5 Windows select based servers

5.6 Windows thread-per-connection servers

5.7 Windows thread-pool servers .

5.8 Linux iterative servers

5. 9 Linux select servers . .

5.10 Linux thread-per-connection servers .

5. ll Linux thread-pool servers

A.1 Test Environment .

1.2 Harness IDL ..

1.3 WorkTeam IDL

A.4 Test Environment .

E.l Collaborations .

E.2 Inheritance ..

Vil

62

63

65

69

70

71

71

73

73

74

75

76

77

88

90

94
,<'

98

100

101

102

107

108

109

llO

122

123

124

126

137

138

List of Tables

3.1 Some common POSIX error codes . 42

5.1 Windows servers 91

5.2 Linux servers .. 92

5.3 Windows results . 97

5.4 Windows results . 106

B.1 Software versions 128

viii

Chapter 1

Introduction

First law of portability: Every useful application outlives the platform on which

it was developed and deployed. Steven Walli [59]

This dissertation is an investigation of the portability of TCP /IP server architectures

between UNIX-like and Microsoft Windows NT derived1 systems.

1.1 Rationale

Writing communication software is difficult. Whereas this may seem rather an obvious point

to make, it has some bearing on the investigations concluded in this research. If writing

such software were trivial there would not be a need to consider issues of portability at all.

If, by porting the software between platforms, we can avoid the cost of an expensive rewrite

and reclaim some of the initial investment in development time, there is much to gained.

Indeed, it is this promise of reusing large repositories of existing code which has motivated

the development of tools such as Cygwin [31], Uwin [18] and Interix [59](discussed in Chapter

2).

Creating new code offers more opportunities for building system portability into the

design. Frequently these opportunities are not siezed. There are probably four major factors

which might drive a development effort towards targeting a single platform API, rather than

making portability part of the design rationale:

1 Windows NT derived systems include NT 4.0, Windows 2000 and Windows XP.

1

CHAPTER 1. INTRODUCTION 2

• Familiarity with a particular system APL Given that there are so many complexities

associated with communication software design, this familiarity is valuable and not

easily attained.

• The need to optimise performance. Developers may well shy away from greater ab­

straction for fear of the application suffering an unacceptable performance hit. I show

in Chapter 5 that this fear is not necessarily well founded. Indeed, design choices at

the architectural level will likely have a significantly greater impact on performance

than a judicious choice of abstraction layer.

• Dependence on unique or particular operating system functionality. Frequently this

dependence may not be as strong as it might appear. There is a surprizing overlap

of functionality between diverse operating systems. The use of Wrapper Facades [49)

provides a powerful example of how to avoid such dependencies.

• The belief that the software will never need to be ported. Whereas much exist!ng code

seems to reflect this belief, this can be a costly assumption.

My experience of writing the simple illustrative servers used in this research suppo~ the

claim that writing communication software is difficult. The development process is long and

error prone. An understanding of the fundamental design patterns of server architectures is

certainly useful, but the devil is in the detail. There is a considerable effort in time spent on

• reading and verifying API documentation (which is, more often than not, out of synch

with the software)

• tracking down infrequent and intermitent run time errors - running a server which fields

100 requests does not necessarily encounter the occasional problems and memory leaks

seen when fielding 1 000 000 requests

• making the resulting implementation as efficient as possible.

1.2 Problem statement

TCP /IP servers make use of low-level operating system calls and services. The significant

differences in both the implementation and interface of such services between Microsoft

CHAPTER 1. INTRODUCTION 3

Windows and UNIX-like systems create difficulties when designing software which is targeted

at both platform sets.

1.3 Hypothesis

My hypothesis is the following:

The use of thin layers to abstract and mask the difference between differ­

ent operating system interfaces allows one to target both Windows and Unix

platforms without necessarily incurring significant performance penalties.

1.4 Scope

The scope of this research is limited to a survey of TCP /IP server architectures using the

Berkeley Sockets APL Other interfaces and protocols (such as XTI) are not considered. Such

restriction of scope is justified on the grounds that TCP /IP and Berkeley sockets represent

· a de facto standard for network server design [26][54]. Nevertheless, the architectural is­

sues raised (threads, processes, I/O multiplexing etc) are essentially protocol and interface

independent.

The code samples are meant to be illustrative. Whereas every attempt has been made

to implement correct code2 ,. there are instances where robustness may have been sacrificed

in the interest of readability.

C++ is used in most of the implementations discussed. Most of the texts dealing with

system level programming [55][56][43] use examples coded in ANSI C. A discussion of the

particular problems and merits of using C++ is presented in Section 6.2.2.

The list of tools used to provide portable implementations is far from exhaustive. I have

instead attempted to select a small range of tools and libraries which are representative of

the broader strategies outlined in Chapter 2. Related alternative packages are mentioned

in context.
2Each of the server programs presented in this dissertation has been run for many hours and handled

tens of thousands of connections without aborting or leaking memory.

CHAPTER 1. INTRODUCTION 4

The discussion on server architectures is mostly restricted to those using synchronous

blocking and non-blocking I/O. Specifically, I have not examined the asynchronous I/O

mechanisms provided by the POSIX Realtime extensions and the approximate Windows

equivalent, Overlapped I/O, in any detail. Asynchronous I/O was avoided initially because of

the very weak support provided by early (v2.2.x) linux kernels. Linux support for the POSIX

Realtime extensions has improved considerably since. A proper discussion and comparison

of POSIX Asynchronous I/O and the Windows Overlapped I/O model is left for future work.

There are a number of issues relating to portability which have not been considered.

Specifically different filesystem and security models are not addressed in this dissertation.

1.5 Organization

This section describes the organization of the chapters within this document.

I describe a range of approaches and tools for targeting these platforms in Chapter 2.

The BSD sockets API has become the de facto standard for implementing TCP /IP servers

on UNIX and its many derivatives. Winsock is the equivalent API on' Windows systems.

Chapter 3 provides a brief overview of the sockets interface of BSD UNIX, followed by a

discussion of the areas of compatibility and variation with the Winsock APL

Event driven and Concurrent architectures for handling multiple concurrent connections

are discussed in Chapter 4. Discussion around the examples in these chapters illustrate the

problems, solutions and insights encountered in addressing issues of portability.

Chapter 5 presents a quantitative comparison of the porting tools and techniques pre­

sented in earlier chapters. To facilitate the reproduction of a large number of experiments I

developed a distributed load generation and monitoring system using COREA. This system

is described fully in Appendix A.

I have included an appendix on electronic media, with all of the source code referenced

in this dissertation together with a number of benchmarks referred to in the text.

1.6 Glossary of terms

The following is a short list of terms and acronyms

CHAPTER 1. INTRODUCTION 5

TCP /IP A family of network protocols forming the backbone of the internet. First widely

available release was in 4.2BSD (1983), together with the sockets API. Consists of

application layer (telnet, FTP, SMTP, etc), transport layer (tcp [37] and udp [35]) as

well as network layer [36] (ipv4 and ipv6) protocols. Figure 3.3 shows the relationship

between a TCP socket and the protocol stack.

POSIX Acronym for Portable Operating System Interface. A set of standards relating to

operating systems maintained by the PASC working group of the IEEE. The POSIX

standards have since been adopted by IEC and the ISO. The standard mostly re­

ferred to is IEEE Std 1003.1 (or Posix.1) which includes 1003.1-1990 (the base API)3 ,

1003.lb-1993 (real-time extensions), 1003.lc-1995 (Pthreads) and 1003.li-1995 (tech­

nical corrections to 1003.lb).

OS I have used OS as an abbreviation for Operating System.

Patterns A trend in software engineering to capture and reuse proven good design.models.

Based originally on the work of the architect, Alexander[l J, but brought into the soft­

ware engineering mainstream by Gamma, Helm, Johnson and Vlissides (affectio,q.ately

termed the Gang of Four) [8].

Server I have used the term to describe a process running on a host which accepts connec­

tions from one or more Client processes, running on one or more separate hosts, for

the purpose of providing a service.

API Application Programming Interface. An API describes the exported visible function

calls and structures presented by a library or system. The API is used by a programmer

to access the features and services of the system or library.

IPC Inter-process communication. A term encompassing the range of facilities through

which processes can communicate on a multi-tasking operating system. Examples

include pipes, shared memory, message queues and sockets.

DLL Dynamically linked library. Popular Windows terminology for a shared library. Shared

libraries on Windows systems have a .dll extension.

3This is the standard which the Windows NT Posix subsystem implements.

CHAPTER 1. INTRODUCTION 6

Portable I use this term to describe a body of source code which can be compiled and

executed on a heterogenous mix of target operating system platforms.

RFC Request For Comment - publically available documents communicating the work of

the working groups of the Internet Engineering Task Force (IETF). RFC's are accorded

different statuses eg: Standard, Proposed Standard Informational, Historical etc.

Chapter 2

Porting strategies

In this chapter I describe some common strategies adopted in porting existing code as well

as writing portable code.

2.1 Portability

. I use the term portability specifically in relation to Windows NT and Unix. Though there are

certainly many portability issues between the different flavours of Unix[20] and the different

versions of Microsoft Windows, I do not specifically address them here. The assumption is

that most modern Unix systems supply an interface based on the IEEE/ISO standard for

operating systems, commonly known as POSIX1
. I have, as far as possible, restricted my

Unix code examples to use only POSIX features. The scope is thus reduced to portability

between Windows NT and POSIX compliant systems.

In short, software is expensive to produce. Complex software such as communication

software (in which category I place TCP /IP servers) is even more expensive to produce,

requiring expensive programming talent and extensive and rigorous testing. Porting such

software represents an attempt to recover some of this development cost by reusing existing

code to target new platforms. The software that was expensive to produce should not

'The POSIX set of standards are not without their problems. In particular, the standards define an

interface and say nothing about implementation details. The standards are also evolving. The POSIX

Real-time Extensions, for example, are not fully implemented on many systems.

7

CHAPTER 2. PORTING STRATEGIES 8

necessarily be expensive to reproduce. To what extent this is true depends largely on the

early design rationale. Software that is written with portability in mind from the start is

going to be easier to work with, than software that was targeted at a particular platform.

Walli [59] outlines essentially four approaches to moving existing applications to Windows

NT:

1. a complete rewrite of the entire application

2. using a UNIX emulation layer

3. using a cross-platform library

4. using a POSIX environment subsystem

We can add to this list a fifth approach, which is to target the code at a virtual machine.

The Java experience bears testimony to considerable success with this approach. The recent

arrival of the Microsoft .NET virtual machine is likely to make this an increasinglrpopular

strategy.

2.2 Emulation layers

Perhaps the easiest way of achieving portability is to use a software layer which provides

the interface of one system on another. There is nothing very new with this approach.

Michael Franz [7] describes just such an approach in porting the Oberon system to the

Apple Macintosh in 1993.

Franz classified four major areas of difficulty in his work on Oberon:

1. Incompatible paradigms

2. Contrasting abstractions

3. Implementation restrictions

4. Performance bottlenecks

CHAPTER 2. PORTING STRATEGIES 9

I have looked at two freely available examples of emulating POSIX on Win32. In both

cases they involve a DLL which provides an interface between POSIX system calls and the

underlying Win32 subsystem. The one example is the open source Cygwin [31], created by

Geoffrey Noer of Cygnus Solutions2 , and Uwin [18][19] from David Korn at AT&T Research

. Labs. In the rest of this discussion I refer to Cygwin. It is interesting to note from examining

the Cygwin source code, that the hurdles identified by Franz are still very much in evidence.

Application

G)
0

POSIXDLL

WIN32API

..

1. Application talks to Win32 api via unix-like POSIX
emulation layer
2. Application is still free to make native system calls

Figure 2.1: Cygwin and Uwin use a Posix porting layer on Windows

,,•·"

Figure 2.1 shows how the Cygwin DLL provides the POSIX emulation layer. One of the

benefits of this approach is that once the porting layer is in place, it can be used to port the

Unix development tools themselves (such as the gee compiler, linker, make utility etc). Most

of the GNU utilities required to configure and build a software package on a Unix system have

been ported to Windows NT in this way. This allows one to use, not just a common source

2 Cygnns wa;; bought by RedHat in 1999.

CHAPTER 2. PORTING STRATEGIES 10

base, but also common configuration and Makefiles. The Cygwin development environment

has been used to provide a (relatively) simple porting option for many of the "classic"

TCP /IP servers such as the apache web server and the telnetd daemon3 • I show in Chapter

4 how such an emulation layer can be used to provide the fork() system call on Windows

NT. These characteristics make the approach particularly suitable for porting existing Unix

code to Windows NT.

Although I have only considered emulating POSIX system calls on Windows NT, there

are also some interesting examples of going the other way i.e. "doing" Windows on Unix.

The WINE package4 is one such example of a rapidly evolving, open source solution to

developing and running Win32 binaries in a Unix environment. A more recent example is

the Rotor project. The Rotor project is a port to FreeBSD of Microsoft's .NET environment.

A significant component of Rotor is the Platform Adaptor Layer (PAL). The FreeBSD PAL

serves to map from Win32 API calls into equivalent functionality on FreeBSD, where it

exists, or implements that functionality where it doesn't. In this way the PAL performs the

same function as the Cygwin and Uwin libraries - emulating one system on top of another.

2.3 Abstracting the operating system through a lib;~ry

The previous section describes a process whereby one coerces one system to behave like, or

emulate another. Another approach is to use a higher level of abstraction, which presents an

interface which is independent of the underlying system .dependent implementation details5.

As long as the program interacts only with this interface, and does not make direct calls

to the system API, the challenge is reduced to porting the abstraction layer to different

platforms, rather than porting the individual applications. Such an abstraction layer is

typically implemented in the form of a library. There are many libraries which provide useful

abstractions for communication software. I have made use of two very different libraries to

3 A comprehensive list of references to successful Cygwin ports can be found at

http://sources.redhat.com/cygwin.
4available from http://www.winehq.org/.
5It could be argued that the POSIX API is meant to provide exactly such an abstraction. In fact the

difference is one of degree. The emphasis of the libraries discussed here is on value added abstraction, rather

than simply a wrapping of system calls.

CHAPTER 2. PORTING STRATEGIES 11

illustrate this approach. These are the Tel library and the ACE library which are described

in Sections 2.3.1 and 2.3.2 below.

2.3.1 The Tel library

Tel (or Tool Command Language)[33] is an interpreted scripting language created by Dr

John Ousterhoudt in 1987. It is best known in combination with a GUI scripting extension

known as Tk. Tel and Tk have found particularly widespread use in interactive communica­

tion software which requires a graphical user interface as well as communication capabilities.

Examples of such software include Groupkit, a Tcl/TK based toolkit for developing interac­

tive group-ware, as well as many of the Mbone [23] suite of tools.

Tk, like most other GUI toolkits, features strong support for the event driven model

of programming. An application might typically initialize and display a set of widgets in

a window and then enter an event processing loop. The main application code is written

as a series of event handling procedures which are arranged to be invoked in response to

. user interaction with the widgets. The software component within Tk which implements the

event demultiplexing and dispatching is known as the Notifier.

Three features of Tel which make an unlikely sounding tool an interesting component in

the design of TCP /IP servers are:

1. Tel and Tk have been ported to all major Unix variants as well as Win32 and Macintosh

systems.

2. The Tel language is implemented in terms of a well defined and easily extensible C

library. C programs can link against this library to gain access to all of the features

available to the Tel interpreter, including abstractions for creating network channels

and the Tel Notifier.

3. The Notifier is not restricted to window events. Event handlers can also be registered

to be called back in response to I/O events (such as the file descriptor corresponding

to a connected TCP /IP socket becoming readable or writable) and timer events as well

as user defined event sources. The usefulness of this feature is illustrated in Section

4. 2, which discusses event driven servers.

CHAPTER 2. PORTING STRATEGIES 12

Whereas Tel has proved useful primarily through its provision of an event driven frame­

work, recent versions of Tel (starting with 8.1) are also thread-safe and offer a number of

useful functions to create and manipulate mutexes, thread specific storage, condition vari­

ables as well as per-thread event queues. I do not give any examples of using these facilities,

but note that they exist and potentially increase the range of problem domains to which we

can apply the Tel library.

2.3.2 The ACE library

ACE is the product of ongoing work by Doug Schmidt [47] and his research team at Wash­

ington University, St. Louis. The following description applies:

The Adaptive Communication Environment (ACE) is an object oriented frame­

work and toolkit that implements core concurrency and distribution patterns for

communication software [57]

Frameworks: ConnectorfAccc:ptor/Servke Handlers, ASX STREAMS, etc

C++ Wrappers and components: SYNCH classes, Tasks, IPC SAP, Reactors, Proactors,
Message queues, aJJocators etc

OS Adaptation Layer : ACE_OS namespacc

POSIX and WIN32 Services

Processes Stream Socketsll'LI Named Select Dynamic System V
Threads pipes pipes WFMO Linking IPC

Figure 2.2: ACE services

As can be seen from Figure 2.2, ACE has a layered architecture. The lowest layer is the

OS Abstraction layer. This layer hides the detail of different C API's within a comprehen­

sive set of C++ wrappers. Doug Schmidt has written extensively on the subject of using

patterns for software design, so it is not surprising to see that much of the ACE library

consists of the implementation of various design patterns and frameworks common to the

domain of communication software. The C++ wrappers themselves are described in terms

of implementations of a Wrapper Facade pattern [49]. Schmidt argues that the use of C++

wrappers to encapsulate low-level functions and data structures can make network code more

CHAPTER 2. PORTING STRATEGIES 13

concise, robust, portable and maintainable. It is a persuasive argument which is borne out

by the many ACE code samples, illustrating solutions to common problems.

One of the drawbacks of using C++ is the problem of different compiler implementations.

Whereas the C language has been stable and standardized for many years, the ISO/ ANSI

standard for C++ [13] is still very young (The first edition was only finalized in 1998).

Compiler vendors are still working towards full conformance. Therefore the problem of

creating portable c++ class libraries is effectively doubled - it must be portable to different

architectures and also to different compilers.6 Nevertheless, portable C++ code can be

written by restricting the code to a subset of standard C++ features.

Other examples of C++ class libraries which encapsulate low-level C API calls on

various systems are Rogue Wave's Net.h++ and Threads.h++ libraries, the ObjectSpace

System<Toolkit>, Microsoft's MFC library and, more recently, Microsoft's .NET frame­

work.

It is beyond the scope of this dissertation to describe all of the features of ACE. The

code examples in Chapter 4 should give the reader some idea of the flavour of the library.

2.4 Windows NT environment subsystems

Windows NT (and Windows 2000) uses a microkernel architecture organized as a layered .

system of modules [6][52]. Figure 2.3 shows a simplified block diagram of this architecture:

The Hardware Abstraction Layer .(HAL), kernel and executive run in protected mode

together with some of the window manager code which was brought down from the Win32

subsystem to enhance performance in Window NT4.0. The HAL exports a virtual machine

interface which is used by the kernel, the executive and device drivers. This is also bypassed

for performance reasons by the graphics and I/O drivers.

A variety of subsystems run in user mode on top of this model. The most interesting

from our perspective are the environment subsystems. The Win32 subsystem provides the

main operating environment and exports the Win32 API to user processes. The environ­

ment subsystem approach does allow Windows NT to support other environments. Besides

Win32, the original intention was to provide robust support for MSDOS, 16 bit Windows,

6The situation regarding standards conformant C++ compilers has improved considerably in recent years.

CHAPTER 2. PORTING STRATEGIES

win32 applicatio11

I
POSIX

I / subsystem security
subsystem

Win32
subsystem /..__,._____~

executive:

VO
manager

~---+---~

object manager, security reference monitor,
process manager, virtual memory manager etc

I kernel

I

I hardware abstraction layer

user mode

window
manager

graphic
device
drivers

-----------------·-------------------------------- --------- ---------------- ------------

hardware

Figure 2.3: Windows 2000 simplified architecture

14

08/2 and POSIX applications. The popularity ofWin32 has meant in effect that thes;·~ther
subsystems have not been the subject of much ongoing development. The POSIX subsys­

tem was never envisaged to be widely used at all and provides very minimal functionality.

Nevertheless, the environment subsystem concept allows for the possible implementation of

a more complete, usable POSIX subsystem.

Interix is such an environment subsystem. The original environment was called OpenNT

and was developed and marketed by a company called Softway Systems[59]. OpenNT has

since been bought by Microsoft and is renamed Interix. Interix is now a key component used

in the implementation of Microsoft's Services For Unix (SFU) product.

Interix provides a UNIX-like environment much like Cygwin and Uwin, with shells, utili­

ties and developer tools. The runtime performance of services on Interix is potentially better

in that the environment is directly layered on top of the NT executive. In fact, my experi­

ments have shown that, except for the implementation of process forkO-ing, there appears

to be no significant performance gain over either Cygwin or Uwin.

CHAPTER 2. PORTING STRATEGIES 15

2.5 Java and virtual machines

One way of gaining program portability is to compile programs down to an intermediate

form based on an abstract machine definition. John Gough (10] notes that such approaches

date back as far as the 1970's. The intermediate code can be either compiled down to the

native machine code of the target platform, or executed via an interpreter which emulates

the abstract machine.

2.5.1 Java

The Java Virtual Machine is a well known modern example of a portable abstract machine.

Patrick Naughton, one of the early pioneers of the "Java Revolution", cites architecture neu­

trality as being part of the core design rationale (30]. A Java compiler compiles Java source

code into byte-codes which are "binary" compatible with the Java Virtual Machine(JVM).

The JVM interprets the byte-codes on the host system at run-time. This architecture is
•

illustrated in Figure 2.4.

Even though Java technology performs considerably better than other cross-platform in­

terpreted systems such as BASIC, Tel and Perl, the interpreted byte-codes are still "many

times slower than native machine code compiled with a C or C++ compiler. The situa­

tion can be improved by using Just-In-Time (JIT) compiler technology.which dynamically

compiles byte-codes to native machine code immediately prior to method execution. Per

Bothner(5] lists two of the limitations of JIT technology as:

1. The compilation has to be done each time the application executes, which has a neg­

ative effect on start-up times.

2. The JIT compiler has to run fast, so is unable to make use of aggressive optimization

techniques.

Bothner (5] claims that whereas Java is a "decent" language,

... it cannot become a mainstream programming language without mainstream

implementation techniques, specifically an optimizing, ahead-of-time compiler.

•

CHAPTER 2. PORTING STRATEGIES 16

Java Source (.java)

Java Compiler__)

Java /
Bytecode (.class)

Java Virtual Machine

(Bytecode interpreter/JIT Compiler)

Host Architecture

Figure 2.4: Java OS Abstraction using a Virtual Machine

Bothner and his team at Cygnus Solutions successfully produced a Java compiler front end

for gcc7 and a functional run-time library.

Many of the disadvantages of using Java stem from its dependence on the virtual ma­

chine. The performance and resource costs may be be too significant for many applications,

particularly those requiring high performance, small footprint or both.

Despite these drawbacks, Java is an increasingly popular choice as an environment for

building server applications. Java 2 incorporates an implementation of the OMG CORBA

specification. There are a number of pure Java web servers which take advantage of the

7the Java front-end, gej, is integrated into gee versions 2.9X, available from http://gcc.gnu.org/.

CHAPTER 2. PORTING STRATEGIES 17

successful Java servlet extension8 . The success of Java in these areas illustrates that raw

speed and efficiency is not necessarily the most important factor in server design. Robustness,

ease of programming and standardized interfaces are often far more important design criteria.

2.5.2 .NET

Details of the .NET system were released by ·Microsoft during 2000. The system consists of a

number of components, including an object-oriented and garbage collected runtime. The run­

time processes an intermediate form known as MSIL (Microsoft Intermediate Language)[28]

on an abstract stack machine superficially similar to the JVM9•

The open source version of the .NET runtime, Rotor, has been successfully ported to

FreeBSD and more recently to Linux. The Rotor source code reveals some interesting details:

1. The FreeBSD port is built on top of a platform adaption layer. As noted in Section

2.2 above, this can be used independently of the virtual machine in the much same

way as Cygwin and Uwin, to provide a Win32 API on UNIX-like systems.

2. Unlike the JVM, .NET does not support only one front-end language. Currendy C, .. ~
C++, C#, Visual Basic and JScript language front-ends can be used to generate the

MSIL.

Unfortunately the Rotor system has only very recently been ported to Linux, so I did not

have the opportunity to compare its performance against the other strategies and systems

discussed. Such an analysis must be left to future work.

2.6 Summary

In this chapter I have presented four alternatives to code rewriting for creating portable code

between UNIX-like and Windows NT based systems.

For each of these approaches I have identified existing and freely available example im­

plementations.

8the Tomcat server from the Apache Foundation is probably the best known example.
9 A notable difference between .NET and the Java VM is that the intermediate code for .NET is always

JIT compiled, ie there is no interpreter mode.

CHAPTER 2. PORTING STRATEGIES 18

The particular problem domain within which I am proposing portable solutions is that

of TCP /IP server architectures. Underlying such architectures is a dependence on access

to the TCP /IP transport layer provided by the system. Therefore an important area in

which all of the tools presented here provide some abstraction or emulation is access to the

transport layer. The BSD sockets API has emerged as the de facto standard interface for

applications to access TCP /IP transport. Windows provides a similar interface through

its Winsock layer. The next chapter describes the sockets interface on BSD-derived and

Windows systems.

Chapter 3

BSD Sockets

A TCP /IP server is a process which offers a service to a remote process or processes. TCP /IP

is a suite of protocols which provide transport and network layer services to facilitate the

communication. The BSD Sockets API is the de facto standard interface by which processes

interact with TCP /IP. Microsoft Windows provides a similar interface known as Winsock.

This chapter provides a brief background to the history and rationale of the BSD Sockets

API. This is followed by a brief description of the API, as implemented on UNIX-like systems.

In order to better understand the porting problem, Section 3.3 discusses the similarities and

variations of the Winsock API.

3.1 Background

When a process is created 1 on a multitasking operating system, the system goes to a great

deal of trouble to provide that process a safe, isolated environment in which to execute.

Most importantly, a process is allocated a virtual address space which

• is the only memory the process can read or write to, and

• is inaccessible to other user-level process.

Unfortunately, processes which can only compute and move data around in this isolated

environment are not very useful. They also need to be able to interact with the world around

1using fork() on UNIX-derived systems or CreateProcess () on Win32.

19

CHAPTER 3. BSD SOCKETS

USER PROCESS

File
Descriptor

KERNEL

Figure 3.1: Moving data through file descriptors

them. Such interactions include

• reading from and writing to files;

• interacting with devices (and hence indirectly with users);

• communicating with other processes (either local or across a network). ,, ..

3.1.1 IPC

20

Sockets provide one means of communicating with other processes (Inter Process Communi­

cation or IPC). I have presented this communication paradigm in a general context, because

IPC is just an example of the more general problem of moving data in an out of a process

address space. In the very first paper published on UNIX by Ritchie and Thomson [42], a

novel approach was described which provided a generic solution to the general problem: just

treat everything as if it were a file and channel all communication through file descriptors.

The "UNIX way" has survived for almost 30 years, and although the concept is certainly

becoming strained [17], it remains the most widely used model for IPC.

3.1.2 File descriptors

Figure 3.1 shows how file descriptors provide a controlled interface by which processes can

communicate with the outside world. Processes can make use of the read 0 and write()

CHAPTER 3. BSD SOCKETS 21

sytem calls to transfer data across the kernel boundary. The prototypes of these two functions

are shown below:

#include <unistd.h>

int read(int d, void •buf, int nbytes);

int vrite(int d, void •buf, int nbytes);

Return number of bytes read/written or -1 on error

In each case the integer parameter, d, represents the file descriptor. The variable, buf,

is a pointer to the area in process memory which contains the data to be written, or the

place where data is to be read into, while nbytes is the maximum number of bytes to be

transferred. The kernel maintains a table of open file descriptors in the process control block

of each process. Each file descriptor may correspond to any of a number of different kernel

entities. It does not have to refer to an actual disk file. Specifically, a file descriptor may

refer to: ·

• One of the standard I/O streams. when the process is created these 3 descriptors

are opened by default: stdin, stdout and stderr. In console applications they are

usually associated with the console.

• A disk file.

• A special device file - these are usually mapped into the file system under the I dev

directory. For example, a special file such as I dev I audio might be used to read and

write audio data to and from a sound card.

• A pipe or fifo - these are the traditional IPC mechanisms for communication between

processes on the same machine. Pipes are created with the pipe() system call and

fifo's with the mkfifo () system call.

• A socket - a more general IPC mechanism than a pipe, which can be used between

distributed processes.

CHAPTER 3. BSD SOCKETS 22

Whatever the type of the underlying "file", we can read and write to it in a standard

way using the generic read() and 11ri te () functions. Similarly we can close the file using

the close() system call:

#include <unistd.h>

int close(int d);

Return 0 on success or -1 on error

Closing a file descriptor does not necessarily shut down the associated device. It is pos­

sible that more than one process has the file open at any one time since open file descriptors

are inherited by child processes. Calling close() on the descriptor makes that descriptor

unavailable to the current processes and decrements the system wide reference count on the

file. Only if this reference count becomes 0 does any shutdown sequence occur. We will

see that this can have important consequences for socket stream connections (such as TCP

sockets) and also how the semantics of closing differs between UNIX-like and Win32 ~ystems.

3.1.3 Shutting down a TCP socket

The shutdown sequence which occurs on TCP sockets is illustrated in the partial state

transition diagram2 of Figure 3.2, taken from RFC793 (37]:

From the diagram it is clear that the sequence of states is different depending on which

side initiates the close. The left hand path from the ESTABLISHED state is followed by the

side which performs the active close. This side's TCP sends a FIN segment to the peer,

which starts the transition to CLOSED on the right hand side. An important consequence of

actively closing is that the TCP ends up with it's control block suspended in a TIMLWAIT

state for a period of typically 1 minute before the structure is removed from memory. This is

to prevent new connections reincarnating the connection while there may still be stale TCP

segments in the network belonging to the old connection.

The shutdown sequence is initiated automatically when the reference count on a descrip­

tor becomes zero, but sockets can also be explicitly shut down with the shutdown() system

call.
2The same diagram could be drawn using UML state diagram notation, but I have reproduced the original

diagram "verbatim" here.

CHAPTER 3. BSD SOCKETS

I ESTAB I
+---------+

CLOSE I rev FIN
I

+---------+ snd FIN I \ snd ACK +---------+
I FIN l<----------------- ------------------>! CLOSE I

I WAIT I 1 WAIT-1 1------------------
+---------+

I rev ACK of FIN
I --------------
v x

+---------+
IFINWAIT-21
+---------+

I rev FIN
I -------

rev FIN \
I

snd ACK I
v

+---------+
CLOSE I

------- I
snd FIN V

+---------+ +---------+
I CLOSING I I LAST-ACKI
+---------+ +---------+

rev ACK of FIN I
-------------- I

x v

rev ACK of FIN I
Timeout=2MSL -------------- I
------------ x v

\ snd ACK +---------+delete TCB +---------+
------------------------>ITIME WAITl------------------>I CLOSED I

+---------+ +---------+

Figure 3.2: TCP Shutdown sequence

3.1.4 Controlling the 1/0 mode

23

An additional system call that can be used with all file descriptors, including sockets, is

f cntl () . f cntl ().provides an interface for setting or getting various operational parameters

·on open file descriptors, such as blocking/non-blocking mode, file locking (for synchr~niza­
tion), generation of the BIGIO signal when I/O is possible etc. A common use of fcntl()

with sockets is for setting the blocking mode, but this can also be achieved with the ioctl()

system call described below. Because ioctl() has a Winsock equivalent and fcntl () hasn't,

it may be preferable to use ioctl() for this purpose if portability to Windows is an issue.

#include <fcntl.h>

int fcntl(int fd, int cmd, ...);

Successful return value depends on cmd or -1 on error

3.2 What is a socket?

The socket was first introduced in the 4.2BSD kernel as a generalized IPC mechanism [24].

Sockets were designed to fit into the generalized UNIX I/O model where everything looks like

CHAPTER 3. BSD SOCKETS 24

a file. The rationale was to allow programs to use the standard read(), write() and close()

functions described above on sockets. What differentiates sockets from UNIX System V pipes

and fifos, is that the sockets interface was designed to allow communication between processes

on the local machine and also remotely through a supported communication domain. The

consequent added complexity means that sockets can not be opened using the common

open() sytem call used for files. The three system calls which can create new sockets

are socket(), socketpair () and accept(). We will start this discussion by looking at

the socket() call. socketpair () creates PF ..LOCAL sockets, which are not related to

networking so they are not discussed here. accept() is discussed in Section 3.7 below.

3.2.1 Creating a new socket

The socket() function

The prototype for the socket() call is shown below:

#include <sys/types.h>

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Returns fd on success, -1 on error

Whereas sockets are most commonly associated with TCP /IP3 the interface is in fact

very general, hence the three parameters to the socket 0 call:

domain describes the communication domain to be used. This should be set to PF JNET for

use with the Internet Protocol (IP). On UNIX-like systems one can also use PF ..LOCAL

for local IPC. Other commonly supported domains include PF _APPLETALK, PF _)(25,

PF _ATM, PF JPX etc. In the rest of this dissertation we shall focus on sockets in the

PF JNET domain.

type The two most commonly supported types are SOCK_STREAM and SOCK..DGRAM

for stream and datagram oriented communication respectively. Other types such as

3Many sockets implementations, including Winsock 1.1, only have TCP /IP support.

CHAPTER 3. BSD SOCKETS 25

SOCK.RAW and SOCK-8EQPACKET are supported on some systems. Not all socket

types are supported by all communication domains.

protocol Normally only a single protocol exists to support a particular socket type within

a particular protocol family (for example, a PF JNET socket of type SOCK-8TREAM

implies TCP), so this can be left as 0. Otherwise a protocol from the list in /etc/protocols

is specified.

We can call the socket() function to create new sockets like this:

int socki, sock2;

socki = socket(PF_INET,SOCK_STREAM,0); II a stream oriented TCP socket

sock2 = socket(PF_INET,SOCK_DGRAM,O); II a message oriented UDP socket

Before we use sock1 or sock2 we should check that socket() returned a valid descriptor. If

the call fails (eg. too many files already open or an invalid domain/socket type combination)

it will return a value of -1. It is up to the application programmer to check for. failure,

··determine the cause of error and take appropriate action. Failure to check return values of

·system calls ·is one of the most common causes of error in network programming. Dealing
:.-'"

with error conditions is discussed in Section 3.2.5 below.

The place of sockets in the BSD system architecture

Figure 3.3 shows a simplified view of the resulting structures on a BSD type system (Linux

is very similar) after a TCP socket such as socki has been created. The most visible entity

from the user process point of view is the file descriptor itself. The file descriptor references

a unique socket structure. The socket structure itself is a relatively simple C struct. An

important member of this struct is a pointer to an underlying protocol control block. The

type of this control block is determined by the type of socket which was created - in this case

a TCP control block. The TCP control block is yet another C structure which maintains

all the state information about the particular TCP connection associated with the socket.

The socket implements a. convenient abstraction layer between the user process and the

underlying network protocol.

Another useful and general functionality provided by this socket layer is buffering. Each

socket has send and receive buffers associated with it. This shields the application from

CHAPTER 3. BSD SOCKETS 26

Process user space

(\Socket file descriptor

L Kernel
Socket structure _ Send buffer ' space ,

c~eOJ~t~~~:
Recv buffer r-

' ' ' ' ' ' '
' ' ----- ---------' ' ' ' ' ' TCP control ' ' ' ' ' Transport protocol module (eg. TCP, UDP)

.. ____ ...
block ' ' ' ' ' ' ' ' '

Internet Protocol module (IP)
<

Link layer module (eg ethemet) and device driver

A ,,~-

II

Figure 3.3: Position of a TCP socket

dealing with the complex asynchronicity of the physical network layer (see (50] for a good

description of the rationale) as well as the potentially complex detail of the protocol imple­

mentation. When a user program successfully writes data to a socket, for example using the

write() call described above, that data is simply copied down from the user's address space

into the socket buffer. The detailed control of the movement of that data down the network

stack and out on to the "wire" is taken care of by the participating protocol modules. Sim­

ilarly, data that comes in along the "wire" is passed up the stack and accumulated into the

socket's receive buffer. When the user process reads from the socket file descriptor, it simply

copies data from the receive buffer up into its address space.

CHAPTER 3. BSD SOCKETS 27

3.2.2 Socket addresses

Another complication introduced by making IPC communication channels operate across

networks is addressing. In order for processes to communicate via sockets they must have a

way of finding one another. Put another way, if an application sends out a message onto the

internet, that message has to be able to find its way, not just to the correct destination host,

but ·all the way to the correct socket ·receive buffer within that host, so that the receiving

process which created the socket (or perhaps one of its descendents) can read the message

through the appropriate file descriptor. Clearly a socket must have some form of address,

and in the internet domain that address has two levels:

1. An IP address to identify the host (or, more correctly, the interface on that host) and

2. a port number which identifies the particular TCP (or UDP) control block and socket

structure .

. Binding

The process of associating an address with a socket is known as binding. The system call

used to bind an address to a socket is, not unnaturally, called bind() and it's prototype is

shown below:

#include <sys/types.h>

#include <sys/socket.h>

int bind(int s, const struct sockaddr •addr, socklen_t

addrlen);

Returns fd 0 on success, -1 on error

In order to bind an address to a socket, we must create the address structure first; then

call bind with the socket file descriptor, a pointer to the address and the length of the address

structure as parameters. The process is complicated by two factors:

1. Different communication domains use different address structures. The type sockaddr

is a sort of generic placeholder. For addresses in the PF -1NET domain we must create

an address of type sockaddr .in and cast the pointer to the type *sockaddr in the call

CHAPTER 3. BSD SOCKETS 28

to bind. The reason for also providing the address length is that this can and does

vary between different address domain types.

2. The address must be organized in a consistent byte order. Different machine architec­

tures have byte ordering which is either big-endian or little-endian. The endian-ness

on a particular host architecture is known as the host byte order. Because addresses

· ·must be interpreted consistently on these different architectures, binary values such as

the IP number and port number, are first converted from host to network byte order

before being sent down to the socket layer. Network byte order is always big-endian

and is thus independent of the host architecture.

The sockaddr_in structure is shown below:

struct sockaddr_in {

u_char sin_len;

u_char sin_family;

u_short sin_port;

struct in_addr sin_addr;

char sin_zero [8] ;

};

It is an awkward structure in a number of ways. The sin_len member is optional and not

all vendors support it. It need not be set and, if it is present, is used only by internal kernel

routines. The Posix.lg standard only requires the sin_family, sin_addr and sin_port

members [55]. The sin_zero member is unused but must always be set to zero. The usual

practice is to set the entire structure to zero, before filling in the required parts. The

sin_addr member is a structure for historical reasons4
: typically it is simply defined as a 32

bit integer.

The code below shows a socket being initialized and being bound to an address in the

PF JNET domain. This small snippet illustrates a number of important points.

4 4.2BSD defined it as a union to facilitate access to the different parts of a class A, B or C addresses.

With the advent of subnetting, the need for this fell away.

CHAPTER 3. BSD SOCKETS 29

iterative/unix/simple. cpp

63 struct sockaddr_in servaddr;
64 memset(&servaddr,0,sizeof(servaddr));
65 servaddr.sin_family = AF_INET;
66 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
67 servaddr.sin_port = htons(Port);
68
69 . if .(bind(listenfd, (struct sockaddr*) &:servaddr, sizeof(servaddr)) <O)
70 {
71 perror("bind");
72 exit (-1);
73 }

iterative/unix/simple. cpp

Figure 3.4: Initializing sockaddr Jn

Note how memset () is used to zero out the structure first. A lot of legacy code uses the

BSD bzero () function for this. The memset () function is a Posix standard function, is more

portable (even to Windows) and is thus preferable. ,, •.

Notice also that the two integer values sin_port and s_addr are stored in the structure

in network byte order. The two functions htons () and htonl () are used to translate from

host-to-network-short and host-to-network-long respectively.

The macro INADDR_ANY is used when we do not want to specify the IP address. This

is typically done on server sockets, where we would not usually want to hardcode the IP

address the server will listen on, particularly on a host machine with multiple interfaces.

The bind() function is called on line 69 to bind the address to a socket. Note that the

function may fail so we check the return value and take appropriate action. In this simple

example we simply print an error message and exit. The perror () function is described in

Section 3.2.5 below.

3.2.3 Library functions used with addresses

An IP address is a 32 bit integer value. Besides the problem of byte ordering discussed

above, it is also not a convenient format for human interpretation. The following two sections

CHAPTER 3. BSD SOCKETS 30

describe library functions for converting between the raw IP address and more user friendly

formats.

Conversion to presentation format

A useful set of functions exist for converting between network addresses and the more familiar

ASCII formatted dotted string form of an address (eg: "192.168.0.2"). Legacy applications

frequently make use of inet..ntoa () and inet_addr ().

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

char •inet..ntoa(struct in..addr in);

Converts in_addr struct to dotted ASCII format

unsigned long int inet_addr(const char *Cp);

Returns binary equivalent {in net byte order) of dotted ASCII address

The newer functions inet_pton() and inet..ntopO are more flexible in that they can

work with different address families, such as AF JNET6, but the former are more portable5.

Host resolution

These two functions are commonly used to discover host information based on a name or

address structure:

#include <netdb.h>

#include <sys/socket.h>

struct hostent *gethostbyname(const char •name);

struct hostent •gethostbyaddr(const char •addr, int len, int

type);

Returns pointer to a hostent struct or -1 on error

5 Winsock, for example, only supports the legacy functions.

CHAPTER 3. BSD SOCKETS 31

The hostent structure has the following form:

struct hostent {

char *h_name; /* official name of host +/
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses */

}

#define h_addr h_addr _list [OJ /* for backward compatibility */

After calling gethostbyname (), the h_addr _list is usually the most interesting member

of the hostent struct, as we are interested in finding the address(es) corresponding to the

host name. Often we are not interested in multiple addresses a host might have. This is why

the macro h_addr is defined, which references the first address in the null terminated array.

Address lookup example

The example below illustrates the use of gethostbyname() and inet...ntoa() to perform a

simple name lookup:

7 int main(int argc, char •argv[])
8 {
9 if (argc!=2)

10 {
11 cerr << "usage: 11 << argv [O] << 11 <host>" << endl;
12 return -1;
13 }

14 hostent •host= gethostbyname(argv[1]);
15
16 if (host)
17 {
18 int i = O;
19 in_addr *addressj
20 while (address= (in_addr*) host->h_addr_list[i])
21 {
22 address·= (in_addr*) host->h_addr_list[i];
23 cout << inet_ntoa(*address) << endl;
24 i++;
25 }
26 }

look~p.cc

CHAPTER 3. BSD SOCKETS 32

27 else
28 {
29 cerr << 11 Error: " << strerror(errno) << endl;
30 }
31 return O;
32 }

lookup.cc

Figure 3.5: Address lookup example

3.2.4 Socket functions

The preceding sections looked at creating sockets and binding them to socket addresses.

Sections 3.2.4 and 3. 7 below describe the connect(), listen() and accept() functions for

establishing connections with stream-oriented sockets. Section 3. 7 then describes the family

of recv() and send() functions used for socket I/O. Finally section 3.8 describes functions

for setting and reading socket options.

· Stream oriented sockets require that a connection be established before data can b.~ read

· . from or written to them. The sequence of function calls used to establish the connection

differs depending on whether we are the active or passive participant. The active participant

is the side which initiates the connection, usually the client process. The passive participant

is the side which waits for and accepts connections, usually deemed the server.

Active connect

There are three steps required to actively establish a connection from a client to a server:

1. create a stream socket (eg. int fd = socket(ALINET,SOCK_STREAM,0) ;),

2. create a sockaddr structure and populate it with the address of the server socket,

3. call connect(), passing a pointer to the sockaddr struct as a parameter, to connect

the local socket with the remote socket.

CHAPTER 3. BSD SOCKETS 33

Note that it is not required to bind the socket to an address prior to calling connect(). The

connect() function has the following prototype:

#include <sys/types.h>

#include <sys/socket.h>

int connect(int sockfd, struct sockaddr *servaddr, int

addrlen);

Returns 0 on success, -1 on error

The connect() function will block by default until the connection is established. In the

case of TCP, connect() initiates the TCP three-way handshake shown in Figure 3.6 by

sending a TCP SYN segment.

There are a number of reasons why connect() might fail: there may be no reply to the

SYN within a given time interval, there may be no process ready to accept the connection

on the remote end (in which case the remote TCP returns an RST segment) or there may

be no route available to the destination host. These conditions are indicated by the errors

ETIMEDOUT, ECONNREFUSED and EHOSTUNREACH/ENETUNREACH respectively. See Section 3.2.5 , ..
below on detecting and handling errors.

If the connection is successfully established, connect() returns 0 and the client process

may read and write through the file descriptor. The connection is uniquely identified by the

CLIENT SERVER

connect() SYN

blocks

I
connect returns

Figure 3.6: TCP 3 way handshake

CHAPTER 3. BSD SOCKETS 34

4 parameters: <client IP, client port, server IP, server port>6 .

The code below shows an example of a TCP client program using gethostbyname () and

connect():

16 int main(int argc, char• argv[])
17 {
18 if (argc!=4)
19 {
20 fprintf (stderr, "Usage: Y.s <host> <port> <nbytes>\n" ,argv [0]);
21 exit (-1);
22 }

23 unsigned int nbytes = atoi(argv[3]);
24 if (nbytes>=MAXBUF)
25 {
26 fprintf (stderr, 11 nbytes must be less than %d\n11 ,MAXBUF);
27 exit (-1);
28 }

29 int port= atoi(argv[2]);

30 II lookup the address of the server host
31
32
33

hostent •host;
if (!(host= gethostbyname(argv[1]))) II look up host address

{
34 perror('1gethostbyname 11

);

35 exit (-1);
36 }

37 II fill in a sockaddr_in structure
38 struct sockaddr_in servaddr;
39 memset(&servaddr,O,sizeof(servaddr));
40 servaddr.sin_family = AF_INET;
41 memcpy(&servaddr.sin_addr.s_addr,(host->h_addr),sizeof(in_addr));
42 servaddr.sin_port = htons(port);

43 II create a socket
44 int connfd;
45 if ((connfd = socket(PF_INET, SOCK_STREAM,0)) < 0)
46 {
47 perror(11 socket 11

);

48 exit (-1);
49 }

6This 4 parameter tuple is commonly known as a full association.

client.cpp

CHAPTER 3. BSD SOCKETS 35

50
51 if (connect(connfd, (struct sockaddr*) &servaddr, sizeof(servaddr))<O)
52 {
53 perror (11 connect 11

) ;

54 exit (-1);
55 }

56 II now we're connected

client.cpp

Figure 3.7: Active connect

Passive accept

The process of setting up a stream socket to passively accept connections is quite different.

This time there are five steps which must be. taken:

1. the stream socket is created with the socket() function as before;

2. a sockaddr structure must be created and filled in with the server socket addre~. In

the case of TCP we must specify the port the server will listen on and the inaddr

(usually INADDR_ANY);

3. the sockaddr must be bound to the socket by calling bind();

4. the socket must be assigned a listen queue by calling listen();

5. the process waits for incoming connections by blocking in a call to accept().

We have already seen in Section 3.2.2 how to bind an address to a socket. The listen()

function is used to declare a willingness to accept connections and to create a queue for

handling incoming connections. The prototype is shown below:

#include <sys/socket.h>

int listen(int sockfd, int backlog);

Returns 0 on success, -1 on error

CHAPTER 3. BSD SOCKETS 36

The backlog parameter is used to specify the number of established connections which can

be queued before new client connections are refused. It is complicated by the fact that there

are actually two queues: a queue of partially established connections where the SYN has

been received from the client and a queue of fully established connections where the final

ACK of the 3 way handshake has been received. Different systems interpret the backlog

parameter differently in this regard. Historically (eg on 4.2BSD) it referred to the combined

length of both queues [55]. · Linux kernels, as of v2.2, interpret it to mean the number of the

established connections only.

The maximum value of the backlog parameter is also system dependent. Historically

it was limited to 5, but most modern systems allow larger values such as 128. One of the

differences between Windows NT (and derivatives) workstation and server editions is that

the backlog parameter is limited to 5 on the workstation. If a call to listen() specifies a

larger value than the maximum, this value is silently truncated to the system limit.

After the call to listen(), connections from clients can be queued on the listening

socket, but we now need a means to dequeue them. The function that dequeues an incoming

connection, and creates a new socket in the process, is accept().

#include <sys/types.h>

#include <sys/socket.h>

int accept(int sockfd, struct sockaddr •peeraddr, int

•addrlen);

Returns fd of new connected socket on success, -1 on error

The file descriptor returned from accept() refers to a new socket (accept() behaves

like a factory method for connected sockets). This socket has the same address and port

number as the listening socket, but TCP uniquely identifies it, as before, by also considering

the address and port of the remote end of the connection.

The second and third parameters to accept() are optional. If the peeraddr parameter

is provided, the structure will be populated with the remote address upon successful return

. from accept(). It is possible to set this parameter to NULL, thus avoiding the copying of

CHAPTER 3. BSD SOCKETS 37

this data from the kernel7 on accept().

The code below shows the initialization section of a server program illustrating the use

of bind(), listen() and accept(). The setting of the SOJtEUSEADDR socket option is

a recommended practice[55] to allow a server which has terminated, to be immediately

restarted and bound to the same address, even though existing connections which are using

the address may still survive. The use of socket options is discussed further in Section 3.8

below.
simple.cpp

34 if ((listenfd = socket(PF_INET, SOCK_STREAM, 0)) <O)
35 {
36 perror("socket");
37 exit (-1);
38 }
39
40 struct sockaddr_in servaddrj
41 memset(&servaddr,0,sizeof(servaddr));
42 servaddr.sin_family = AF_INET;
43 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
44 servaddr.sin_port = htons(Port);

45 intopt=1; ,..
46 if (setsockopt(listenfd,SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt)) <0)
47 {
48 perror(11 setsockopt 11

);

49 exit (-1);
50 }

51 if (bind(listenfd,(struct sockaddr•) &servaddr,sizeof(servaddr)) <O)
52 {
53 perror("bind 11) i

54 exit (-1);
55 }
56
57 //assign LISTENQ to socket
58 if (listen(listenfd,LISTENQ)<O)
59 {
60 perror("listen");
61 exit (-1);
62 }
63
64 //loop processing client connections

7If the server connection handler code requires the address of the remote peer it can call getpeername ()

at any stage.

CHAPTER 3. BSD SOCKETS

65 struct sockaddr_in peeraddr;
66 while(!)
67 {
68 socklen_t addrsize = sizeof(peeraddr);
69 connfd = accept(listenfd, (struct sockaddr•)&peeraddr, &addrsize);
70 if (connfd<O)
71 {
72
73
74
75

}

perror(11 accept 11
);

continue;

76 printf(11 Accepted connection from %s:%d\n", \
77 inet_ntoa(peeraddr.sin_addr), ntohs(peeraddr.sin_port));

38

-------------------------------- simple.cpp

Figure 3.8: Passive accept

In the code above LISTENQ is a constant. The accept() function is called with all 3

parameters non-NULL so as to return the information about the remote peer.

Specialized Socket 1/0

Even though the read() and write () system calls can be used to transfer data on a socket,

as discussed in Section 3.1, there are six additional specialized 1/0 functions which exploit

socket-specific characteristics. These are shown in the textbox below.

#include <sys/types.h>

#include <sys/socket.h>

int send(int s, const void •msg, int len, unsigned int flags);

int sendto(int s, const void •msg, int len, unsigned int flags,

const struct sockaddr •to, int tolen);

int sendmsg(int s, const struct msghdr •msg, unsigned int flags);

int recv(int s, void •buf, int len, unsigned int flags);

int recvfrom(int s, void •buf, int len, unsigned int flags,

struct.sockaddr •from, int •fromlen);

int recvmsg(int s,struct msghdr •msg, unsigned int flags);

send/recv data on a socket. Returns -1 on error

CHAPTER 3. BSD SOCKETS 39

The send 0 and recv () calls are analagous to read() and write() and can only be

used with connected stream sockets. The difference is that these calls allow an additional

flags parameter. Flags are an OR'd combination of defined constants such as MSG_OOB (for

reading or writing out of band data) and MSG_FEEK (to check the contents of the receive buffer

without copying the data). The set of supported flags is system specific so care must be

taken to remain portable. Winsock v2, for example, defines only the two mentioned above,

whereas Linux defines MSG_WAITALL, MSG...NOSIGNAL and others which have no equivalent in

Winsock.

Connectionless sockets (such as UDP SOCK_DGRAM sockets) typically use sendtoO

and recvfrom(), where there is a need to specify a destination address to send to, or to

identify a source address on a received message.

Complete Message

HDRl HDR2 Application data payload

, ..

Figure 3.9: Scatter/Gather I/O using sendmsgO and recvmsgO

Both sendmsg () and recvmsg () take a pointer to a msghdr struct as a parameter instead

of a simple void*. The msghdr is defined in <sys/socket .h>. The most notable character­

istic of this structure is that it defines a vector of buffers, rather than a simple buffer pointer,

which can be used for scatter/gather I/O. This I/O mode is useful to avoid excessive data

copying when assembling or disassembling message blocks8•

Consider, for example, an application which implements a simple protocol stack. An

application message is generated and two protocol layers each generate a header to prepend

to the message. The resulting message structure is illustrated in Figure 3.9. If we were to

use the simple send() (or llri te ()) to send the message we would either have to call send()

8The readv() and 11ritev() system calls provide a more generic method for performing scatter/gather

1/0 on file descriptors.

CHAPTER 3. BSD SOCKETS 40

three times to send each part, or else we would first have to copy the three parts into a single

contiguous buffer space and then call send(). Both of these options are unattractive. Using

sendmsg 0 instead, we can avoid both of these sources of inefficiency, by simply passing

it the vector that points to the three areas of memory containing our composite message.

The sendmsgO function gathers the data and writes it down to the socket send buffer. The

reverse process, with recvmsg (), is to scatter the data from the socket receive buffer into

the buffers pointed to by the vector.

Options

Whereas it is convenient for the UNIX programmer to treat sockets, disk drives, disk files,

terminals and audio devices as if they were all simply files, there are occasions when it is

desirable, or even necessary, to recognize that they are different. The kernel code which

implements sockets as well as device drivers generally provides hooks which the programmer

can use to fine tune the characteristics of the underlying device.

via the ioctl() system call.

#include <sys/ioctl.h>

int ioctl(int d, int request, ...)

These hooks are accessed
•

.

returns -1 on error

Ioctls are extremely system dependent, particularly where they refer to hardware device

drivers. Stevens [55] describes the ioctl() function as

"the system interface used for everything that didn't fit neatly into some other

nicely defined category."

Ugly though this concept may be, ioctls are frequently used in network programs to obtain

information on host interfaces, access to routing tables etc. A common ioctl which is used

with sockets is FIONBIO to set or clear the nonblocking flag. For example, one can set a

socket in non-blocking mode with:

int flag = 1;

ioctl(sockfd, FIONBIO, &flag);

CHAPTER 3. BSD SOCKETS 41

An additional mechanism for manipulating socket specific options is provided by the

setsockopt () and getsockopt () functions. Again the options supported by different sys­

tems varies, but there is a significant overlap of commonly used options. The prototypes for

these functions are shown below:

#include <sys/types.h>

#include <sys/socket.h>

int getsockopt(int s, int level, int optname, void *Optval,

socklen_t *Optlen);

int setsockopt(int s, int level, int optname, canst void *optval,

socklen_t optlen);

returns 0 on success, -1 on error

Like ioctl(), these are untidy functions. The second parameter, level, allows the

programmer to specify at which level the option refers to. Typical constants defined for this

·parameter are SQL_SOCKET, IPPROTQ_TCP and IPPROTO_IP which refer to the socket level,

TCP level and IP level respectively. The third parameter, optval, is defined as a >Void*

because the option data value can be of different types. In most cases it is a simple integer,

but there are exceptions. The SQ_RCVTIMEO and SO..SNDTIMED options, for example, set (or

get) an option of type struct timeval.

The simple server example of Figure 3.8 illustrated the use of setsockopt () to set the

SO_REUSEADDR option on a listening socket.

3.2.5 Handling errors

Most system calls, including those relating to sockets, return either 0 or a positive integer

value on success. A return value of -1 indicates an error condition. Robust code should

detect and handle such error conditions gracefully, so it is common practice to code such

system calls within an if statement like the following:

if (connfd=accept(sockfd, &addr, &addrsize) <O)

: . . handle error

CHAPTER 3. BSD SOCKETS 42

I Code I Symbol Description I
4 EINTR Interrupted system call

11 EA GAIN Try again - would block

77 EBADFD Invalid file descriptor

88 ENOTSOCK Socket operation on non socket

98 EADDRINUSE . Address already in use

110 ETIMEDOUT Connection timed out

111 ECONNREFUSED Connection refused

112 EHOSTDOWN Host is down

Table 3.1: Some common POSIX error codes

Err no

Whereas the return value of -1 gives an indication of error, it does not give any indication

of the cause of the error. In order to determine the cause of the error condition, it is

necessary to examine the value of errno. The variable errno is traditionally defined as

a static global integer9 • This mechanism is adequate for single threaded processes, ,but is

· ·. problematic where multiple threads co-exist within the same process. If each thread shares

·the same global errno value, and they are each making system calls, there is no way to

determine which thread caused which error. For this reason, most modern implementations

define errno as a macro which actually refers to a thread specific error value, rather than a

global static integer.

The ISO C and POSIX.1 standards list error codes and their corresponding symbolic

names. Table 3.1 lists a small selection of common error codes. The UNIX manual pages for

the various socket related functions, by convention, have an Errors section which lists the

possible error conditions which can arise from that function.

9UNIX system calls are implemented via a software interrupt (Ox80). The error value is returned on the

stack and copied into the global errno variable.

CHAPTER 3. BSD SOCKETS 43

Errno helper functions

There are two functions which convert the integer error values into a more human readable

format.

#include <string.h>

char* strerror(int errnwn);

returns human readable string describing error

The strerror () function is useful for composing log messages describing error conditions

which may have arisen. For debugging purposes, frequently it is only required to dump a

trace message to the standard error stream. The perror() function provides a simple means

to do this:

#include <stdio.h>

void perror(const char•s);

writes error message to stderr

perror () writes out the string s, followed by a colon, followed by the stringified error

message to the standard error st.ream. Typically the strings, might contain the name of the , '

function, a timestamp, line number or other useful trace information.

3.3 Windows Sockets - the Winsock specification

Winsock version 1.1 was the standard sockets API on Windows since its release in January

1993. Winsock was an open specification designed by a group of interested industry vendors.

Thus, at least initially, Winsock was not owned by Microsoft or even distributed with its

popular operating systems. Windows NT prior to version 4.0 did have a built in TCP /IP

transport module apparently based on the UNIX System V STREAMS environment[6][41].

The version 1.1 specification was limited in scope to TCP /IP sockets and provided a common

basis for TCP /IP stack vendors to provide compatible implementations.

The release of the Winsock version 2 specification in 1996 reflected the major upheavals

which had taken place in the network industry. The Internet's popularity had continued to

CHAPTER 3. BSD SOCKETS 44

explode. Microsoft began distributing a free TCP /IP implementation with all its operating

sytems, dealing a blow to the majority of 3rd party stack vendors. The last revision of

the publically available specification[ll] apears to be revision 2.2.2 {dated August 7, 1997).

Companies listed in the acknowledgements section of this document include Microsoft, Intel,

FTP Software, Distinct, Turbosoft, Motorola, Novell, DEC, ICL, Stardust Technologies and

SunSoft. The complete Winsock 2 specification consists of four documents:

1. Windows Sockets 2 Application Programming Interface

2. Windows Sockets 2 Protocol-Specific Annex

3. Windows Sockets 2 Service Provider Interface

4. Windows Sockets 2 Debug-Trace DLL.

The Application Programming Interface is the most interesting from an application program­

mer's perspective. I have included the publically available Winsock revision 2.2.2 specifica­

tion in the electronic appendix on cdrom. There has been no further revision to the public

specification. Current documentation on Winsock is now integrated into the Microsoft 9evel­

oper Network {MSDN) documentation. The few minor additions to the original specification

are flagged in this documentation as 'Microsoft specific'.

3.3.1 Architecture

Though the scope of this dissertation is restricted to issues relating to the top level API, a

brief architectural summary is in order.

One of the more interesting aspects of Winsock v2 is its architectural overhaul to adopt

the Windows Open Systems Architecture {WOSA). WOSA separates the API from the

protocol service provider, presenting a layered architecture, as illustrated in Figure 3.10.

Winsock v2 provides two programming interfaces: the Winsock API and the Winsock SPI

{Service Provider Interface). In this model, the Winsock DLL provides the standard API,

and an independent vendor can install its own service provider layer underneath. Whereas

in Winsock vl.l, vendors would supply a replacement Winsock DLL, WOSA is structured

CHAPTER 3. BSD SOCKETS 45

Winsock 2 Application

WS2-32.DLL

Insert layered ----'==================::::'__ Winsock 2 SPI's
SPI shims he "

TCP/IP based Additional
TCP/JP Transport Names pace Transport Serv

Service Provider Service Provider provider
ice

(cg DNS) (eg SPXIIPX)

NDIS Interface

NDIS Wrapper DLL I

Network Drivers

I
Network Interface Cards ,.. ...

Figure 3.10: Winsock 2 WOSA architecture

much like the UNIX STREAMS environment10 • The "plug-in" and "pile-on" decoupling

of layers presents opportunities for vendors to interleave additional shim layers (to provide

encryption or accounting services for example) between the Winsock DLL and the base

transport service provider.

The bottom layer service provider module in turn talks to the NDIS (Network Driver In­

terface Specification) interface[6]. NDIS provides an abstraction which shields the transport

protocols from the device driver details and vice versa. NDIS is part of the original Windows

NT, STREAMS based, network architecture which has survived and been incorporated into

the newer WOSA architecture.
10Perhaps this is the answer to the mysterious disappearance of STREAMS from the documentation - the

STREAMS model was simply dusted off, tidied up and renamed WOSA!

CHAPTER 3. BSD SOCKETS 46

3.3.2 Features

The Winsock specification is too large to provide an effective summary here. The full

Winsock API release 2.2.2 specification is provided in the electronic appendix, so I have

not attempted to repeat it here. Of particular interest in the specification is the section enti­

tled "Deviation from BSD Sockets", which outlines main programming considerations when

porting BSD sockets code. I have given an overview below of features introduced in Winsock

1.1 followed by those introduced in Winsock 2 together with some historical rationale where

appropriate.

Two structural differences one finds between Windows sockets and BSD code relate to

header files and initialization. Whereas some backward compatible headers do exist, it is

normal practice to simply include <winsock.h> or <winsock2.h>. Before using any sockets

functions it is necessary for a process to load the Winsock DLL using the WSAini t () function.

Winsock 1.1

The emphasis of Winsock vl.l was to implement the BSD sockets paradigm for TCP /IP

sockets on Windows in a manner which would ease porting of existing BSD sock~ts ap­

plications to Windows. It provided most of the socket primitives such as the socket(),

connect(), accept(), send(), recv(), shutdown() , getsockoptO and setsockoptO

calls. Two notable exceptions, close() and ioctl(), were renamed to closesocketO and

ioctlsocket () respectiveley, to avoid clashes with existing Windows API functions.

The BSD select() function was implemented for synchronous demultiplexing of socket

events (not generic file events as on UNIX) but its use was initially discouraged. The early

Windows 3.1 system, which Winsock vl.1 was targeted at, did not support preemptive

multitasking. This meant that any blocking call, even a call to select(), could effectively

starve the system. In keeping with the Windows GUI message driven paradigm[40], a new

function WSAAsyncSelectO was introduced, which arranged for messages to be placed on a

window's message queue in response to network events occurring on a socket.

CHAPTER 3. BSD SOCKETS

#include <winsock.h>

int WSAAPI

WSAAsyncSelect (

IN SOCKET s,

IN HWND hWnd,

IN unsigned int wMsg,

IN long !Event);

47

This model proved popular due to its easy integration with the Windows GUI program­

ming paradigm11• The socket was set automatically to non-blocking mode after calling

WSAAsyncSelect () to avoid the risk of blocking calls locking up the system. It is somewhat

simpler to use than the BSD select() in that the message which is placed on the window

message queue contains an explicit indication of the event which has occurred (typically

FD..READ, FD_WRITE, FD_ACCEPT, FD_CLOSE or FD_CQNNECT) together with the

relevant socket handle. One of the problems with select() is that it only returns 'an indi-

cation of the number ofinteresting events that have occurred. The file 'descriptor sets still

have to be scanned to find the actual events which have occurred on each descriptor [4].

Winsock 2

Besides the structural overhaul, Winsock version 2 adds a number of new features to the

Winsock specification. Chief among these are:

1. Separation of the sockets interface from the transport and name service providers. A

consequence of this is that Winsock 2 sockets are no longer restricted to TCP /IP and

can access various name services such as DNS, NIS, X.500 and SAP in a standardized

way.

2. Support for advanced Windows NT I/O and synchronization mechanisms. Specifically

this means that sockets (like other file handles) can be used with overlapped I/O and

Win32 event objects:

11The Windows port of the Tel notifier uses WSAAsyncSelect () for the same reason - easy integration

with Tk GUI events.

CHAPTER 3. BSD SOCKETS 48

3. A Quality of Service mechanism for use with transport service providers which support

it. This is derived from the flow specification described by Craig Partridge in RFC1363.

The structures below illustrate how a flowspec is specified:

typedef struct _f lovspec
{

int32 TokenRate;
int32 TokenBucketSize;
int32 PeakBandvidth;
int32 Latency;
int32 DelayVariation;
GUARANTEE LevelOfGuarantee;
int32 CostOfCall;
int32. NetvorkAvailability;

} FLOWSPEC, •LPFLOWSPEC;

typedef struct _QualityOfService
{

FLOWSPEC SendingFlovspec;
FLOWSPEC ReceivingFlovspec;
WSABUF ProviderSpecific;

} QOS, •LPQOS;

4. Scatter and gather operations are supported, not through sendmsg() and recvmsg(),

but rather as part of the generic Overlapped I/O facility. Overlapped I/O is supported

through WSASend (), WSASendto (), WSARecv () and WSARecvFrom ().

There are other enhancements listed in the specification, such as multicast and socket

sharing across processes, but the above represents some of the more important changes from

Winsock 1.1.

3.3.3 Error reporting

The WIN32 API is inconsistent with respect to reporting errors when functions fail [19].

Failure can be indicated by a return value of 0 or -1 depending on the function. A number

of commands return the eJi:it code with 0 indicating success.

Whereas the Microsoft C library provides both the errno constant and the perror()

function, the recommended (and more reliable) means of retrieving the exit code is via the

WIN32 GetLastError () function, or the Winsock equivalent, WSAGetLastError 0.

CHAPTER 3. BSD SOCKETS 49

The Windows exit codes are not the same as the equivalent UNIX errno values. A

common feature of all the porting libraries considered is therefore, that they provide some

mechanism for interpreting WIN32 and POSIX error codes in a platform independent man­

ner. The most common approach is to simply translate the WIN32 error codes into POSIX

equivalents. A clear illustration of this process can be seen in the file tclWinError. c from

the Tel source code.

3.4 Synchronisation and process control

It should be clear from the foregoing discussion that the Windows sockets API has functional

equivalents for most of the BSD sockets functionality. Indeed most of the existing BSD socket

calls can be used unchanged, by simply linking against the Winsock functions of the same

name. Minor discrepancies, such as with closesocket () and ioctlsocket (), should be

easily handled through the use of preprocessor macros or thin wrapper functions.

Unfortunately, the opening and closing of and exchanging of data with sockets is only one

·. aspect of the design of socket based servers. Most useful servers have to be able to successfully

service multiple concurrent client connections. Strategies for implementing architectures

which solve this problem involve more fundamental aspects of the underlying operating

system than simply the sockets API. In particular we may need to be able to:

• create threads and/ or processes;

• communicate and synchronize between these;

• detect and demultiplex events such as I/O readiness and timeouts.

In Chapter 4 we will see how the tools presented in Chapter 2 provide useful abstractions

or emulations of these mechanisms on the target operating systems.

Chapter 4

Server Architectures

This chapter describes portable implementations of the following server architectures:

• Iterative service

• Event driven service

•.Thread (or process) per connection service •..
• Thread (or process) pool service

As indicated in Section 1.4, architectures based on Asynchronous or Overlapped 1/0 models

are not considered. The classification above is also somewhat simplistic in that some of the

more interesting architectures that have emerged in the research community in recent years

employ hybrid models. Examples include the Jaws web server [14], which can dynamically

adapt its concurrency strategy based on load conditions, and the Flash [58] web server which

uses a blocking thread-pool model for disk I/O and an event driven model for network 1/0.

The UNIX event driven servers are all based on the select() system call. Whereas it is

interesting to look at some of the newer event mechanisms such as I dev /poll on Linux[39]

and FreeBSD kqueues, it is beyond the scope of this research to do a comprehensive analysis

of UNIX event mechanisms. I have thus concentrated on the more primitive select()

function because it is widely available.

50

CHAPTER 4. SERVER ARCHITECTURES 51

4.1 Iterative server architecture

Each of the servers developed in this and later chapters performs a simple http-like service.

The client receives a simple "Hello" message1 before sending a request to the server in the

form of an ASCII encoded decimal number occupying exactly 4 bytes (eg 0600). The server

responds by returning a stream of 'A's of the requested length (eg 600 for the example given).

Unlike http, the server does not terminate the connection. The client performs the active

close, thus ensuring that the TIME_WAIT state occurs on the client side of the connection.

This is a useful consideration when testing, if we want to bombard the server with a large

number of connections per second. This service is almost identical to that used by Stevens

[55] to illustrate server architectures.

The iterative version performs the minimum amount of process control. It uses a single

thread of control and blocking 1/0, which forces it to serialize multiple connections. The

main loop for such a server is shown below:

------------------------ iterative/unix/simple.cpp

82 //loop processing client connections
83 while(!)
84 {
85 connfd = accept(listenfd, (struct sockaddr*)NULL, NULL);
86 if (connfd<O)
87 {
88
89
90
91

}

perror(11 accept 11
);

continue;

92 if (send_n(connfd,hello,7)<0)
93 {
94 perror(11 send 11

);

95 close(connfd);
96 continue;
97 }
98
99 switch (read_n(connfd, inbuf, 4))

100 11 read_n must return 4, 0 or -1
101 {
102 case 4:
103 if (send_n(connfd,outbuf,atoi(inbuf))<O)
104 {
105 perror(11 send11

);

1The reason for this initial greeting is to avoid a race condition described in Section 5.5.2.

CHAPTER 4. SERVER ARCHITECTURES

106
107
108
109
110
111
112
113
114

brea.kj
}

II wait for client to close
recv(connfd, inbuf, 1,0);
breakj

case 0:
fprintf(stderr,"Odd: client closed\n");
break;

default:
115 perror ("recv");
116 break;
117 }
118 close(connfd);
119 } //while
120 return O;
121 }

52

------------------------- iterative/unix/simple.cpp

Figure 4.1: Iterative service

Multiple concurrent connections will be queued on the listening socket queue. These

are accept() 'ed and processed one at a time. Clearly the scheduling is inefficient. Ready

connections will be ignored while the active connection is being processed. Given that this

process may block, particularly in a wide area, internet environment, the latency experienced

by these waiting clients may be unacceptably high. The overall server throughput in these

circumstances will also be unacceptably low as available CPU cycles are not being used to

process ready connections.

4.2 Event driven server architecture

4.2.1 Overview

Event driven servers deal with multiple connections within a single process. They do not in

themselves exhibit any concurrency. All I/O is done in non-blocking mode and the process

. needs to use some form of I/O demultiplexing and event dispatching mechanism. On UNIX

systems this demultiplexing is achieved using the select() or poll() function calls. There

are problems of scalability with both of these functions [3]. Event driven I/O architectures

CHAPTER 4. SERVER ARCHITECTURES 53

have historically not been very popular on UNIX platforms, perhaps because of the lack of a

proper explicit event delivery mechanism [4]. POSIX Real-time signals [43] provide a model

for flexible event delivery and notification, but are not yet widely available on all systems.

On Windows versions prior to Windows 95, there was no pre-emptive multi-tasking,

making event driven architectures the natural (if not the only) choice. Winsock 1.1 does

have an implementation of the BSD select() function, but there are more sophisticated

Winsock specific alternatives. Winsock 1.1 introduced a function, WSAAsyncSelect (), which

causes notification messages to be posted to the application window's message queue when

I/O events of interest occur. This is the same mechanism used to handle GUI events.

Winsock 2 with Windows 95/98/NT introduced a new mechanism based on the functions

WSAEventSelect () and WSAWaitForMultipleEventsO or WaitForMultipleObjectsO,

which allow for explicit event delivery to Windows applications without making use of the

Windows message queue [26].
In this section I show how the substantial differences between these modes, can be masked

by abstracting away from the detail and concentrating on the architectural framework. To

illustrate I present an example using the ACE toolkit and an example using the Tel library.

I have also implemented native select() based versions of these servers. The source· code

can be seen in the electronic appendix on CDROM.

4.2.2 Implementation using ACE

ACE provides a wide range of classes which are designed to be flexibly grouped together in

collaborations to form application frameworks. Developing software using the ACE library

involves identifying the participants and collaborations required to implement the design. If

the design follows a well-known pattern2 then one can almost always find a templatized class

within ACE which encapsulates it.

View from the top

Figure 4.2 describes a very high level view of the architecture we are implementing. There

are three participating classes in the server:

2 For more information on factories and other patterns see[8].

CHAPTER 4. SERVER ARCHITECTURES 54

I
Client-Server Communication

Service Handler -
Client creates Objects -

I
~

•
I
I
I

Acceptor (Factory)
I

registers1 alerts
I
I . I

I I

I
I .

I alerts
L-----·

registers
ACE Reactor

Figure 4.2: An Acceptor Factory

1. An Acceptor object. The acceptor is a factory class, which accepts new connections

and creates Service Handler objects to handle these connections.

2. Service Handler objects. These are the workers in the pattern. They are responsible

for providing the service to the client. This should be the only part of the design which

is application specific.

3. The Reactor. Because we are implementing a single process event driven server we

need an object which responds to events and dispatches messages to the Acceptor and

Service Handler objects. This is the role of the Reactor. The Acceptor and Service

Handlers must register with the Reactor in order to receive notifications.

Concretizing the abstract classes

Having clarified our high level design, we now need to fill in the details. The Acceptor we

have discussed above is deliberately a very abstract object. We can concretize it by saying

CHAPTER 4. SERVER ARCHITECTURES 55

that we need an Acceptor which listens for TCP /IP connections and creates our own user

defined Client_Handler objects.

select/ ace_select/server. cpp

10 typedef ACE_Acceptor <Client_Handler, ACE_SOCK_ACCEPTOR> Client_Acceptor;

11 static sig_atomic_t finished = O;

12 extern 11 C11 void handler (int)
13 {

14 finished = 1;
15 }

16 int main (int argc, char •argv[])
17 {
18 if (argc!=2)
19 ACE_ERROR_RETURN((LM_ERROR,"Xp\n'',"port no") ,-1);
20 u_short port= atoi(argv[l]);
21 ACE::set_handle_limit(1024);
22 .ACE_Select_Reactor *•reactor= new ACE_Select_Reactor((ACE_Sig_Handler*) 0,0,1,0,0);
23 ACE_Reactor *reactor= new ACE_Reactor(sreactor);
24
25 Client_Acceptor my_acceptor;

26 if (my_acceptor.open (ACE_INET_Addr (port),
27 reactor,
28 ACE_NONBLOCK) == -1)
29 ACE_ERROR_RETURN ((LM_ERROR, "Xp\n", "open") ,-1);

30 ACE_Sig_Action sa ((ACE_SignalHandler) handler, SIGINT);

31 //Process events
32 while (!finished)
33 {
34 reactor->handle_events ();
35 }

36 delete reactor; delete sreactor;
37 return O;
38 }

select/ace_select/server.cpp

Figure 4.3: ACE event driven server main()

CHAPTER 4. SERVER ARCHITECTURES 56

The result, implemented in code, is shown in Figure 4.3. The strength of ACE is shown

in the typedef at the top of the file. This simple declaration actually does most of the work

of defining our framework. Inside the main() function we simply declare a reactor, declare

an acceptor of our user defined type, register it with the reactor and listen for events. All

that remains is to implement the Client_Handler class.

The Client_Handler (shown in Figure 4.4 below)is derived from an ACE_Svc_Handler.

This is a necessary relationship in order to allow our Client_Handler object to register with

the reactor.
select/ ace_select/ clientJiandler.h

9 class Client_Handler :
10 public ACE_Svc_Handler <ACE_SOCK_STREAM, ACE_NULL_SYNCH>
11 {
12 public:
13 Client_Handler (void) {;}
14 //void destroy (void);
15 int open (void *acceptor);
16 int handle_close (ACE_HANDLE handle,
17 ACE_Reactor_Mask mask);
18 protected:
19 int handle_input (ACE_HANDLE handle);
20 int handle_output (ACE_HANOLE handle);

21 int bytes_to_send, bytes_sent;
22 int bytesread;
23 char out_message[10000];
24 char in_message[5];
25 -client_Handler (void) {;}
26 };

select/ ace_select/ clientJiandler.h

Figure 4.4: ACE event driven client handler

There is a lighter weight solution by inheriting from an ACLEvent_Handler instead, but

there are some additional benefits one derives from using the Svc_Handler. Chief among

these is that the Svc_Handler provides us with a built in ACLStream object which we can

use to communicate with the client. The Svc_Handler is also derived from an ACE_Task

object, which would allow us to very easily adapt this server to a multi-threaded design3 .

3The ACE c!ru;s hierarchy is quite extensive and beyond the scope of this work. The interested reader is

CHAPTER 4. SERVER ARCHITECTURES 57

Providing the service

To provide our application specific functionality we simply override the destroy() , open() ,

handle_close () , handle_input () and handle_output () methods. For the sake of brevity,

I only show the handle_inputO method in Figure 4.5. Note that the reactor ensures that

these methods are called in response to I/O events on the underlying socket. We remain

· registered with the reactor so long as we return 0 from these methods.

select/ ace_select/ clientJiandler. cpp

4 int
5 Client_Handler::open (void •_acceptor)
6 {
7 Client_Acceptor •acceptor = (Client_Acceptor •) _acceptor;
8
9

10
11
12
13
14
15
16
17

II for the sake of simplicity, assume this send won't block
peer() .send(hello, sizeof ("Hello\n"));
II get ready to read
bytesread = 0;
.if (reactor ()->register_handler (this,

ACE_Event_Handler::READ_MASK) == -1)
ACE_ERROR_RETURN ((LM_ERROR,

18 return O;
19 }

11 (Y.PIY.t) can't register with reactor\n 11
),

-1);

20 int Client_Handler::handle_input (ACE_HANDLE handle)
21 {
22 in_message[4]='\0';
23 int nreceived =peer ().recv (in_message+bytesread,
24 4-bytesread);
25 switch (nreceived)
26 {
27 case -1: 11 Read error
28 case 0: II Peer closed it's end
29 this->peer() .close();
30 return .,f i
31 default:
32 bytesread += nrecei ved;

directed towards [57].

,,,··

CHAPTER 4. SERVER ARCHITECTURES 58

33 if(bytesread == 4)
34 {
35 if ((bytes_to_send = atoi(in_message))){
36 bytesread = 0;
37 bytes_sent = 0;
38 handle_ output ((ACE_HANDLE) this->get_handle ());
39 }
40 else // atoi failed: received strange input from client ?
41 return -1;
42 }
43 return O;
44 }
45 }

select/ ace_select/ clienLhandler. cpp

Figure 4.5: ACE Client Handler implementation

Reflections

This,little example serves to illustrate how .we can use an object-oriented toolkit like ACE

to build a portable event driven server. The end result is a clean and extensible design,

built with flexible and reusable objects. The underlying patterns in the ACE framework

components help to ensure a high degree of robustness, by taking care of much of the error­

prone detail. The reactor shields us from the platform specific details of I/O demultiplexing

and event dispatching. The reactor can be parameterized to use either poll() or select()

on UNIX. The default on Windows NT is to use WaitForMultipleObjects 0.
Note from Figure 4.3 how ACE also provides platform neutral wrappers for socket address

structures and signal handling functions.

4.2.3 Implementation using Tel

Some useful tools

The Tel library is a C library which provides implementations for the Tel commands used

in the interpreter as well as a number of utility functions. In this section I show how we can

CHAPTER 4. SERVER ARCHITECTURES 59

make use of some of these functions to build a portable server using C++. The following is

a list of some of the Tel functions we use:

TcLOpenTcpServer A useful function which creates a server socket and arranges a call­

back when clients are accepted. A much simplified version of the acceptors discussed

in the previous section.

TcLCreateChannelHandler A function to arrange for callbacks to be registered for events

on Tel I/O channels. On UNIX we can use TcLCreateFileHandler, which works on

"normal" file descriptors. Unfortunately, this function is not provided on Windows,

probably because of the SOCKET handle problem, so we have to use the more abstract,

and more heavyweight, channels if we want to maintain portability. There is no reason

why the Tel core functions cannot be extended to provide a TcLCreateFileHandler

function on Windows (Don Libes did this to facilitate porting Expect to NT), but I

leave it for future investigation.
•

TcLDoOneEvent The driver of Tel event driven programs. Checks the event queue of the

Tel Notifier -to see if any registered events are due to be serviced. If so, it arranges

for the first event in the queue to be serviced. Otherwise it simply blocks. The Tel

Notifier uses select() on UNIX and WSAAsyncSelect () on Windows platforms. If

Tel is compiled with threads enabled, the notifier runs in its own thread.

The factory pattern revisited

Figure 4.6 shows a simple main function for our event driven server. Normally, using C, one

would create handlers for the connected channel directly in the acceptHandler function.

Building on my experience with ACE I decided to treat the acceptHandler as a factory

method for ServiceHandler objects. This decision exposed an interesting problem (and

fortunately its solution) which I have since come across a number of times when interfacing

C++ with C API calls.
select/tclserv/main. cpp

12 void acceptHandler(ClientData interp,Tcl_Channel connch,char• hostname,int port)
13 {
14 //Create a new Connection object

CHAPTER 4. SERVER ARCHITECTURES

15 ServiceHandler• Sh= new ServiceHandler(connch, (Tcl_Interp•)interp);
16 }

17 int main(int argc, char• argv[]) {
18 II signal(SIGINT,sig_handler);
19 cerr << "starting tel server on port "<< argv(1]<< endl;
20 int port= atoi(argv[1]);
21
22 Tcl_Interp• interp = Tcl_Create!nterp()
23 ServiceHandler::init(5000);

24 I I A handy convenience function which creates a listening
25 // socket and causes our acceptHandler to be invoked in
26 //response to new connections
27 Tcl_OpenTcpServer(interp,port,NULL,acceptHandler,NULL);

28 II Start Tel Event Loop
29 while(!){
30 Tcl_DoOneEvent(O);
31 }

60

select/tclserv/main. cpp

Figure 4.6: Tel Event Driven Server main()

The problem with static functions

Figure 4. 7 shows the interface to my ServiceHandler class. The class encapsulates the con­

nected client channel together with the data members (buffers and pointers) required to

manage the I/O.

5 class ServiceHandler {
6 public:

select/tclserv/tcliohandler.h

7 ServiceHandler(Tcl_Channel connch, Tcl_Interp* interp);
8 -serviceHandler();
9 static void init(int outbuf_size)

10 {
11 out= new char[outbuf_size];
12 // just so we can see what 1 s going on ...
13 memset (out, 1 A', outbuf_size);
14 }
15

CHAPTER 4. SERVER ARCHITECTURES

16 int readRequest();
17 int processRequest();
18 static void ioHandler(ClientData c, int mask);
19 private:
20 //data specific to the connection instance
21 int nbytes;
22 int bytesleft;
23 int bytesread;
24 char *in;
25 static char* out;
26 Tcl_Channel conn;
27 Tcl_lnterp •_interp;
28 };

61

select/tclserv/tcliohandler.h

Figure 4. 7: Tel ServiceHandler interface

In Figure 4.8 we see that the constructor makes a call to TcLCreateChannelHandler

to register interest with the Notifier. The problem is that the callback function passed

as the third parameter to this function must be declared as static. This means that our

·· callback (ServiceHandler: : ioHandler) does not have access to the data members 9f our

ServiceHandler instance. Fortunately the Tel function allows us to send an application

specific parameter as the fourth argument to the function. I make use of this to pass a

pointer to the current instance (the this pointer) to the static ioHandler.

select/tclserv/tcliohandler.cpp

7 ServiceHandler::ServiceHandler(Tcl_Channel connch, Tcl_Interp• interp){
8 this->conn = connch;
9 this->bytesread = O;

10 this->in = new char[5];
11 Tcl_SetChannelOption(NULL, connch, "-blocking", "011

);

12 Tcl_Write(this->conn,const_cast<char*>(hello),sizeof("Hello\n"));
13 Tcl_Flush(this->conn);
14 Tcl_CreateChannelHandler(this->conn,TCL_READABLE,ServiceHandler::ioHandler,this);
15 }

select/tclserv/tcliohandler. cpp

Figure 4.8: Tel Event Driven Server: ServiceHandler constructor

CHAPTER 4. SERVER ARCHITECTURES 62

The static ioHandler () function is shown in Figure 4.9. It is now possible to refer to

specific data or member functions of the ServiceHandler instances by dereferencing the local

ServiceHandler pointer, sh.

select/tclserv/tcliohandler. cpp

50 // ioHandler is static
51 // ve receive a reference to a ServiceHandler instance via Clientdata
52 void ServiceHandler::ioHandler(ClientData c, int mask){
53 ServiceHandler* sh ; (ServiceHandler*) c;
54 int numread = O;

55 switch(mask){
56 case TCL_READABLE:
57 sh->readRequest ();
58 break;
59 case TCL_WRITABLE:
60 sh->processRequest ();
61 }
62 }

select/tclserv/tcliohandler. cpp

Figure 4.9: Tel Event Driven Server: ServiceHandler::ioHandler

Reflections

The problem with static functions outlined above is interesting to reflect upon because it

occurs in many places where one attempts to wrap C system API calls in C++ classes4 •

Using these same function calls in a C style program (without classes) results in a simple

elegant construction, whereas routing the dispatch back to a C++ object method call is

problematic. Schmidt[49] talks of cases of "impedance mismatch" between C and C++

when mixing the two languages. This phenomenon is indeed one of those mismatch cases.

I have presented the solution outlined above, using a static reflection method, in a pattern

format to the PLOP2001 conference in Illinois [16]. The full paper is presented as Appendix

E.
4 For example, we see the same thing with the POSIX pthread_create () function which requires the

thread entry point to be declared as a static C function.

CHAPTER 4. SERVER ARCHITECTURES 63

4.3 Concurrent architectures

Comparing the iterative server of Figure 4.1 with the event driven servers of Figures 4.3 and

4.6, one is struck by the simplicity of the service implementation of the iterative version,

using synchronous, blocking I/O. We saw how the introduction of non-blocking I/O solved

a problem for us at the cost of some complexity. Recall the reason that we had to use non­

blocking I/O was that our server was running as a single thread in a single process. If we

could arrange for the service to be implemented in a separate process or thread, we would be

able to use the simpler blocking I/O in this service without hampering our server's ability

to accept new connections. Doug Schmidt's description of the "Half-Synch Half-Asynch" [50]

gives a good background on how and why we want to do this.

The servers presented in this chapter illustrate some of the variations on the multiple

process and multiple thread theme.

4.3.1 Classical implementation - multiple processes

I
I

Client-Server Communication Service Handler
Active Objects -

Client creates ,/']/
I

-

~
Acceptor (Factory)

Figure 4.10: Create thread or process per connection

The simplest implementation of the architecture illustrated in Figure 4.10 is using the

UNIX fork() function. The parent process accepts connections and forks a new process to

handle each connection. A basic implementation of our "A" service using the "new process

CHAPTER 4. SERVER ARCHITECTURES 64

per connection" architecture is shown in Figure 4.11 below.
concurrent/ ace-forker /forker. cc

6 II Reap dead children - avoid "zombies"
7 void handler(int)
8 {
9 while (ACE_OS: :waitpid(-1;NULL,WNOHANG) >O);

10 }

11 //main function is similar to iterative server
12 int main(int argc, char• argv[])
13 {
14 if (argc !=2)
15 {
16 ACE_OS: :printf("Usage: forker <port>\n");
17 ACE_OS: :exit(-1);
18 }
19
20 int Port = ACE_ OS: : atoi (argv [1]);
21 ACE_INET_Addr addr(Port);
22 ACE_SOCK_Stream peer;
23 ACE_SOCK_Acceptor myAcceptor(addr);

24 char inbuf[5];
. 25 . char outbuf [10000) ;
26 ... ACE_OS: :memset(outbuf, 'A', sizeof (outbuf));
27 inbuf[4]='\0';

28 //install sig handler to catch child exits
29 ACE_Sig_Action sa ((ACE_SignalHandler) handler, SIGCHLD);
30
31 int pid;

32 while(!)
33 {
34 myAcceptor.accept(peer);
35 //fork() on accept
36 if ((pid = ACE_OS: :fork())==O) {
37 I I this is the child
38 my Acceptor. close();
39 peer .send_n(hello, sizeof ("Hello\n"));
40 switch (peer.recv_n(inbuf,4))
41 {
42 case 4:
43 peer .send_n(outbuf ,ACE_OS: :atoi(inbuf));
44 peer.recv(inbuf,1);
45 break;
46 case 0:
47 ACE_ OS: : fprintf (stderr, "Odd: client closed\n") ;

CHAPTER 4. SERVER ARCHITECTURES

48
49
50
51
52
53

break;
default:

}

ACE_OS: :perror("Recv");
break;

54 peer. close() ;
55 I I child exit
56 ACE_OS: :exit(O);
57 }
58 II this is the parent
59 peer.close();
60 }
61 }

65

concurrent/ ace_forker /forker. cc

Figure 4.11: New process per connection

The fork() function is the standard way to create processes on UNIX systems; It is a

unique function call in that it returns two values. The fork causes a copy of the running

process to be made. The only way of distinguishing between the parent and the child.is the

return value of fork(). A return value of 0 indicates we are the child. The return value in

the parent is the process id of the child process5 •

There is no native equivalent to fork() in the Win32 API systems.

Process creation on Windows NT

The standard way to create processes on Windows NT is using the CreateProcess () or

CreateProcessEx () function calls. This new process is not cloned from a running process.

Each new process is independently loaded and started up from an executable file on the

filesystem. This startup time is a strong argument against this new-process-per-connection

model being used in a Windows environment.

Cygwin and UWin (see Section 2.2) do provide an emulation of fork() for Windows.

The Cygwin version is open source so we can see exactly how it has been achieved. The

5It is often important for the parent to keep track of child processes. In our example, the only important

thing is for the parent to catch and clean up after the child exits. This is the reason for the signal handler.

See [55] for a thorough explanation of cleaning up "zombies".

CHAPTER 4. SERVER ARCHITECTURES 66

new process is started in the standard Windows way by loading a new invocation of the

running program (as reported by argv[O]). This new process is created in a suspended

state (a Windows feature for which I know no UNIX equivalent), and its data segment

is overwritten with a copy of the parent's data. Once the new process has been suitably

hacked to resemble the execution state of the parent (with the exception of the return value

of fork()) its execution is resumed. The result is a crude and inefficient, but functional,

emulation of forking [31].
The fork() emulation is useful because there are so many UNIX servers which depend on

this mechanism. Almost all of the "classic" servers such as the apache web server, the innd

news server, sendmail, inetd, telnetd and a host of others are examples of forking daemons.

Porting them to Windows without a fork() facility involves a substantial rewrite of the

concurrency mechanism. In a small scale scenario, where the expense of process creation is

not critical, a literal port of these types of server using the likes of Cygwin is a worthwhile

and relatively painless exercise. Where a better performance characteristic is required, some

other concurrency strategy needs to be used. The "official" Windows port of the apache web

server from the Apache project (http://www.apache.org/) makes use bf multiple threads

.instead of processes, though both Cygwin and UWin ports are maintained based oh the

current UNIX source code.

Process pools

Even on UNIX, where the cost of process creation is more reasonable, forking a new process

per connection is not the most efficient strategy. The strategy persists because it has two

great strengths:

1. Simplicity. There are very few complications to consider. The process uses blocking

I/O so there is no need for the complex buffer management typical of event driven

servers. The flow of control is easy to follow and debug.

2. Robustness. A server based on short-lived processes has an inherent stability. Once

the service process has performed its task, all resources allocated to it are reclaimed by

the operating system on exit. Using the operating system to do the garbage collection

reduces the complexity of the program considerablity.

CHAPTER 4. SERVER ARCHITECTURES 67

A compromise solution is to pre-fork a pool of processes. This removes the overhead of

process creation on a per-connection basis, but introduces the new problem of how to allocate

incoming client connections to service processes. I have not shown a code example here since

the basic strategies are similar to that of the multi-threaded servers below.

Pre-forking negates some of the robustness qualities of the short-lived new-process-per­

connection described above. If a process is going to stay around for longer, it needs to take

more responsibility for the management of its resources. Again there are compromises one

can reach. A managed process pool can create and cull processes dynamically to adapt to

server load as well as limiting the lifespan of individual processes to only handling a fixed

number of requests before being reclaimed by the operating system. This is a model used by

apache, which though far from being the fastest of web servers, certainly has a reputation

for stability.

4.3.2 Lightweight processes - threads

Threads can be user level or kernel level. This discussion only applies to kernel level threads.

Threads offer a lighter weight alternative to processes for implementing designs based on
"",.~

active objects. The creation time is considerably less than for a process, as is the overhead

of context switching. The API's for creating threads on Windows and UNIX are different,

but sufficiently close to make porting an easier proposition than is the case with multiple

processes. There are however, many more hazards to be aware of:

1. Threads do not release resources automatically on exit the way processes do.

2. Functions called by multi-threaded programs must be thread-safe i.e. they have to

deal with re-entrancy. This property must also be true of any libraries the program is

linked against. This can still be a problem with many legacy libraries.

3. Great care must be taken to synchronize access to shared resources. Different mech­

anisms are used on different platforms to achieve this. The primary mechanism on

Windows is the CRITICAL SECTION[44]. This is similar to the Java 'synchronized'

sections. Condition variables, which are a widely used technique on POSIX systems,

are not available on Windows.

CHAPTER 4. SERVER ARCHITECTURES 68

4. The behaviour of signals with threads is platform dependent. Many experts (see usenet

news://comp.programming.threads) advise against any mixing of signals with threads.

The interactions are potentially complex and best avoided.

Nevertheless there are benefits. With threads one gets the convenience of non-blocking

I/O without the excessive overhead of process creation and context switching. This is still

less efficient on single processor machines than event driven designs which have no context

switching overhead at all. The choice between the two models in this case is difficult. Factors

one might consider are:

• What is the nature of the service? Event driven servers tend to favour short-live

services [3][14]. Connections that are likely to stay around for longer would benefit

from a thread, or even a process, being allocated to them.

• What are the other functional requirements of the system? A TCP /IP client, for

example, may require a GUI which uses an event loop (such as that provided with

Tcl/Tk). In this case it may be simply convenient to integrate non-blocking I/O into

the existing event loop. This is also typical of many Windows servers which throw up

a GUI control panel of some sort. ,,,..-

The most common API for threads is the POSIX 1003.g specification (commonly known

as pthreads). Although many UNIX flavours carry their own thread variations, almost all of

them support the POSIX pthreads APL Windows threads do not, but there are a number of

freely available pthreads libraries which essentially wrap native Windows threads functions

in standard pthreads calls. I have used the Win32 Pthreads library from Cygnus Solutions

with some success.

Again there are benefits in abstracting away from the low-level API and using an Object­

Oriented wrapper library when programming threads across platforms using C++. The

illustrative examples which follow use the ACE library. I have taken this approach because

the code is shorter, it's easier to write and it runs on UNIX and Windows platforms.

Thread per connection

The thread per connection model is similar to the process per connection model discussed

in Section 4.3.1 above. Instead of forking a new process to handle the incoming client

CHAPTER 4. SERVER ARCHITECTURES

... initialize listening socket ...

while{!) {

}

connfd = accept(listenfd,(struct sockaddr*) NULL, NULL);
if (pthread_create(&tid,NULL,&worker ,{void *) connfd)#O){

cont << 0 Trouble ! can't create thread 11 << endl;
close(connfd);

}

static void* worker(void* arg) {
... perform service

}

Figure 4.12: Thread per connection

69

connection, we create a new thread. A section of a pthreads program implementing this

strategy is shown in Figure 4.12. A simple wrapper around the Windows thread functions

is sufficient to get this type of program to compile on Windows.

Note that the thread main function is a static C function. This gives rise to the same ,..,,

problem discussed in the previous section when trying to encapsulate a thread into a c++
class.

ThreadPool version 1

As with multiple process servers, one can avoid the cost of creating a new thread for each

connection by pre-spawning a pool of threads. The most common variation on this theme

is to have one thread responsible for accepting connections and dispatching them to worker

threads who perform the service. Figure 4.13 illustrates the idea.

CHAPTER 4. SERVER ARCHITECTURES 70

Pool of Workers

I
Qient-Server Communication I

Service Handler

Client
Active Objects

'--
assigns work

~ I /V -

\ ···-···· ·····-- ·····-···- ········-····-·········

Acceptor
Job Queue

Connects

/V

Figure 4.13: Pre-threaded: Acceptor enqueues, workers dequeue

concurrent/ ace_msgq/simple. cpp

6 ·int main(int argc, char• argv[])
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

if (argc != 3){
cerr << 11usage server <port> <nworkers>" << endl;
ACE_OS::exit(-1);

}

int Port= ACE_OS::atoi(argv[l]);

ACE_INET_Addr addr(Port);
ACE_SOCK_Stream •peer;
ACE_Message_Block •mb;

//listening socket
//client connection
//for passing to our threads

ACE_SOCK_Acceptor myAcceptor(addr);

II create vorker threads
Worker ThrPool(ACE_OS::atoi(argv[2]));
//start them up
ThrPool. open() ;
vhile(l)
{

peer = nev ACE_SOCK_Stream;
myAcceptor.accept(•peer);
//make a nev message block containing reference to peer socket
mb = nev ACE_Message_Block ((const char•)peer,sizeof(peer));

CHAPTER 4. SERVER ARCHITECTURES

31
32
33
34
35 }

}

//put it on the thrpool queue
ThrPool.putq(mb);

return O;

71

concurrent/ ace_msgq/simple. cpp

Figure 4.14: ThreadPool ver 1 main()

Figure 4.14 shows the main() function of a thread pool based server. Connections are

accepted and a reference to the connected socket is placed onto a message queue.

Figure 4.15 shows the interface to the worker class which is responsible for de-queueing

messages and servicing the connection. I have made use of an ACE_Task class to do this,

as each task has an associated message queue. The constructor is used to set the number of

threads assigned for this task. Hence the Worker class actually represents a pool of threads.

The ACE_Task object takes care of dispatching messages from a single message queue to the

waiting threads.

9 //Worker.descends from an ACE_Task
10 // this is how we get our message queue for free

. 11 class Worker : public ACE_Task<ACE_MT_SYNCH>
12 {
13 public:

concurrent/ ace_msgq/Worker. h

14 Worker (size_t n_threads) : n_threads_(n_threads){;}
15 int open (void*= O); // start up our threads
16
17 /• Our worker method •/
18 int svc (void);
19
20 protected:
21 size_t n_threads_; //Number of threads in the pool.
22 char outbuf[10000]; //shared output buffer
23 };

---------------------- concurrent/ace_msgq/Worker.h

Figure 4.15: ThreadPool verl Worker interface

CHAPTER 4. SERVER ARCHITECTURES 72

Figure 4.16 shows the implementation of the Worker class. Here we see that the open()

method is being used to activate the threads. The activated threads start in the svc()

method, where they block waiting for messages. On de-queueing the message the thread

goes on to service the request using blocking I/O. Notice that we do not delete the message

object. The messages are reference counted. The release method will cause the message to

be deleted when there are no further references to it.
concurrent/ ace_msgq/Worker. cpp

3 /* Open the object to do work.
number of requested threads.

5 int
4

Next, ve activate the Task into the

*/

6 Worker::open (void *unused)
7 {
8 return this->activate (THR_NEW_LWP,
9

10 }
11

n_threads_);

12 /* Our svc() method waits for work on the queue and then processes
13 that work. */
14 int
15 Worker::svc (void)
16 {
17
18

ACE_Message_Block •message;

19 const char• hello::o"Hello\n";
20 char inbuf[5];
21 char outbuf[lOOOO];
22 ACE_OS::memset(outbuf,'A',sizeof(outbuf));
23
24 ACE_SOCK_Stream •peer;
25
26 for (; ;)
27 {
28 /• Get a message from the queue. Blocking •/
29 if(getq (message)==-1){
30 cerr << "Oops" << endl;
31 message->release();
32 continue;
33 }
34
35 //message should contain our SOCK_STREAM reference
36 peer= (ACE_SOCK_Stream •)message->base();
37
38 // Do the job.
39 peer->send_n(hello,sizeof("Hello\n"));
40 while (peer->recv_n(inbuf,4) >O){

CHAPTER 4. SERVER ARCHITECTURES

41
42
43
44
45
46
47
48 }

49
50 return O;
51 }

}

int nbytes = ACE_OS::atoi(inbuf);
peer->send_n(outbuf,nbytes);

peer->close ();
II Clean up ..•
delete peer;
message->release();

73

concurrent/ ace_msgq/Worker. cpp

Figure 4.16: ThreadPool verl Worker implementation

There are other methods for communicating between threads, but the message queue

model works well and is easily transferable to a multi-process architecture as well.

ThreadPool version 2

Client

Pool of Workers

Client-Server Communication
Service Handler

(L7ccept ~A=c=c=ep=t=o•::::'.:=A=c=ti=ve=#=bJ=·ec=t=s==
Service Handler

Connects
1---------+i Acceptor Active Objects

s~R'-==::::'.:==~=== •oc t ~
Service Handler

Acceptor Active Objects

~

Figure 4.17: Pre-threaded: Workers compete for jobs

CHAPTER 4. SERVER ARCHITECTURES 74

Stevens [55] has a variation on the thread pool idea which I have reinterpreted here using

ACE. Our listening socket is already maintaining a queue of client connections (see Section

3.2.4). It may seem wasteful to have an acceptor thread de-queueing connections off the

listening socket and then en-queueing them again to pass on to worker threads. Figure 4.17

shows the variation where the workers themselves each call accept().

The main() function in Figure 4.18 below does little more than to create the worker

threads. In a real application the originating thread may do more in terms of managing the

thread pool. In this simple example it merely creates them and goes to sleep. The interface

for the Worker class is not substantially different to the previous version. We do need to

pass an extra parameter to the open() method to indicate to the worker threads which port

to listen on.

concurrent/ ace_thrpooLaccept/simple. cpp

6 int main(int argc, char* argv[])
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20
21 }

if (argc != 3){

}

cerr << "usage server <port> <nworkers> 11 << endl;
ACE_OS::exit(-1);

u_short port= ACE_OS::atoi(argv[l]);
u_long nthreads = ACE_OS::atoi(argv[2]);
// create worker threads
Worker ThrPool(nthreads);
//start them up ... listening on port
ThrPool.open(port);
ThrPool.wait(); //block until all threads exit
return O;

concurrent/ ace_thrpooLaccep t/ simple. cpp

·Figure 4.18: ThreadPool ver2 main()

Figure 4.19 shows the svcO method of the worker threads blocking in a call to accept().

Only one thread will successfully dequeue the connection. There is a danger of a problem

CHAPTER 4. SERVER ARCHITECTURES 75

known as a "thundering herd" (55], whereby all the threads are woken on the arrival of a

connection. One of them succeeds in accepting the connection and the rest go back to sleep

again. This activity causes a lot of unnecessary system overhead and can be prevented by

providing some sort of locking synchronization around the call to accept().

concurrent/ ace_thrpooLaccept/Worker. cpp

3 /* Create listening socket and activate workers */
4 int Worker::open (u_short port)
5 {
6 ACE_DEBUG ((LM_DEBUG, "Opened listener\n"));
7 listener.open(ACE_INET_Addr(port));
8 ACE_OS::memset(outbuf,'A',sizeof(outbuf));
9 return this->activate (THR_NEW_LWP,n_threads_);

10 }
11
12 /• Each thread competes to
13 int Worker: :svc (void)

accept connections */

14 {
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 }

const char* hello:"Hello\n";
char inbuf [5] ;
ACE~SOCK_Stream peer;

for (; ;)
{

}

/• all threads block here: synchronize access to accept?•/
_lock.acquire();
ACE_DEBUG((LM_DEBUG,"l\t: Got the lock\n"));
listener.accept(peer);
_lock.release();
//Do the job ...
peer.send(hello,sizeof("Hello\n"));
while (peer.recv_n(inbuf,4) >0){

}

int nbytes = ACE_OS::atoi(inbuf);
peer.send_n(outbuf,nbytes);

peer. close(); // Clean up ...

return O;

concurrent/ ace_thrpooLaccept/Worker. cpp

Figure 4.19: ThreadPool ver2 Worker Implementation

CHAPTER 4. SERVER ARCHITECTURES 76

The _lock used in Figure 4.19 is a parameterized type which can be set to use mutex

locking, file locking, semaphore locking or CRITICAL_SECTION locking (on Windows NT).

The mutex semantics should ensure that only one of the threads waiting to acquire the mutex

will actually be woken. This version of our thread pool server is potentially more efficient

than the previous version (doing away with the need for message queues).

Java threads

We could not use Java to implement an event driven server because of the lack of language

support. Java does, however, provide integrated language support for threads. I have im­

plemented and tested both the thread-per-connection and thread-pool architectures in Java.

A Java version of the multi-threaded architecture of Figure 4.17 is shown below. It uses the

same strategy of each thread blocking in accept().

------------------- java/thread_pool/ServerJMTpool.java

4 public class .ServerJMTpool extends Thread
5 {
6
7
8
9

10
11
12
13
14
15
16 }

public static void main(String[] args) throws IOException
{

}

ServerSocket s =new ServerSocket(60002,30);
for(int n=O; n< 10; n++) {

}

PoolConnectHandler t =new PoolConnectHandler(s);
t .start();

II currentThread().suspend();
System.out .println(11 Running ... 11

);

------------------- java/thread_pool/ServerJMTpool.java

Figure 4.20: Java ThreadPool main thread

The code for the startup class is shown in Figure 4.20. As before, the main thread simply

creates a ServerSocket and then creates the worker threads.

The ConnectHandler thread is shown in Figure 4.21. It implements the same service as

our c++ versions.

CHAPTER 4. SERVER ARCHITECTURES 77

------------------ java/thread_pool/PoolConnectHandler.java

27
28
29

II the thread's entry point
public void run()
{

30 try {

very simple

31 I I just accept connections and service them
32 while(true){
33 connfd = listenfd.accept();
34 service();
35 } I I loop forever
36 } catch (IOException e) {e.printStackTrace();}
37 }
38
39 II reads the·4 bytes from client and sends back reply
40 private void service()
41 {

------------------ java/thread_pool/PoolConnectHandler.java

Figure 4.21: Java ThreadPool: ConnectionHandler

This Java version runs in the Java VM on Windows and Linux. The performance mea­

sures recorded in Chapter 5 show it to be somewhat heavier than the native binary equiv­

alents, but probably adequate for a wide range of applications. I have also successfully

compiled it with gcj (see Section 2.5) on Linux to run as a native binary. Preliminary re­

sults indicate that it is at least twice as efficient as the same server running with JIT enabled

in the Java VM. Support for the libgcj Java run time library on Windows is still at an alpha

stage hence I have been unable to present comparative results here.

4.4 Summary

In this chapter I have demonstrated the portability of the classical event driven and concur­

rent server architectures. Both Windows and Linux (and other UNIX flavours) provide the

essential OS mechanisms to implement these architectures. Using intermediate library code

it is possible to target source code at abstractions of these mechanisms and thereby maintain

a common source code base between platforms.

CHAPTER 4. SERVER ARCHITECTURES 78

Whereas there are clear benefits to this approach, there must surely be a penalty in terms

of performance. In the following chapter I have quantified that penalty within a particular

application context.

Chapter 5

Performance comparison

5.1 Introduction

I have illustrated in previous chapters that both Windows NT and Linux provide native

support for implementing single-threaded and multiple threaded TCP /IP servers. The sys­

tem API's for thread creation and synchronization are different, but not markedly so. The

semantics ofevent demutiplexing and dispatching differ more significantly. I have shown,

however, that it is possible to implement the fundamental design patterns using higher level

API's (ACE, Tel, cygwin, uwin etc) which essentially mask the differences between the target

system interfaces. The forces in favour of using such API's are compelling:

1. the portability problems are contained within a single software layer

2. the implementation of this layer is likely to be robust, particularly if the source is freely

available, mature and widely used

3. there is frequently extra added value to be gained by using the higher level API, such as

a reusable framework of objects (ACE) or the availability of an embedded interpreter

and related library functions (Tel).

There is of course a price to be paid. Forces which act against the use of a higher level

API include:

1. There may be a significant effort required on the part of the developer, or development

team, to learn yet another APL In the often subtle, and always complex, domain of

79

CHAPTER 5. PERFORMANCE COMPARISON 80

communication software this developer effort may indeed be a high price to pay. David

Korn [18] cites this as a major factor which influenced his decision to create a POSIX

layer on NT, rather than to adopt or create a different higher level APL

2. There will be some runtime cost in terms of efficiency as a result of the extra layer of

abstraction.

A successfully engineered and portable software solution to a particular server design

problem will have to resolve both of these forces. I have not attempted to measure the cost

of learning communication API's, but merely note, from my own and other experience, that

there is a cost. In this chapter I present an approach to measuring runtime efficiency. I

use this approach to evaluate the porting strategies introduced in earlier chapters. Though

it would be proper to look at runtime efficiency in terms of time and space i.e., CPU and

memory utilization, the scope of this study is restricted to CPU utilization.

5.2 Hypothesis revisited

The inclusion of an extra layer of abstraction implies that more instructions will neecf"to be

executed to do an equivalent amount of work. Therefore by accessing the underlying system

calls via a higher level API, we can reasonably expect that we will be consuming more CPU

cycles than if we access the system calls directly.

The hypothesis I proposed in Chapter 1 was that the run time cost of using a higher level

API is not neccesarily prohibitively high. In this chapter I will show that this is substantially

true.

5.3 Supporting argument

How do we interpret a performance speed up or a degradation? Jeffrey Mogul (29] makes a

scathing critique on the "brittle" nature of many of the metrics quoted in operating systems

research. In particular, when claims are made about performance, it is to be expected that

the measurements supporting those claims should be repeatable, comparable to existing

measures and that they should have some relevance to existing applications.

CHAPTER 5. PERFORMANCE COMPARISON 81

I am confident that the measurements I have made here are repeatable and the full sources

of all my sample servers and test environment is made available as an appendix, precisely

to facilitate this. I have based my approach on that used by the late Richard Stevens in

Unix Network Programming Volume 1 [55]. Whereas the approach is known to have its

limitations, many of which I address in the following sections, the Stevens book (commonly

referred to simply as UNPVl) is widely known and referred to. By basing my approach

on Stevens I provide some reference for comparison. In the text that follows I refer to his

method as the UNPVl method.

There remains a clear danger when using synthetic applications (as I have done) that

we end up none the wiser as to what the observed effects would be on a real application.

Essentially the server programs which I compare, like the ones of UNPVl, illustrate skeletal

architectures rather than functional, real applications. In Section 5.4 below, I present a case

that differences observed in these skeletal architectures are in fact exaggerated differences.

As we add more layers of application functionality, the degree of degradation seen as a result

of selecting a portable implementation is expected to become proportionally less. •

5.4 Amdahl's Law in reverse

Patterson and Hennessy [15] show that the performance gain that can be obtained by im­

proving some feature of a computer can be calculated using Amdahls's Law. Amdahls's

law states that the performance improvement to be gained from using some faster mode of

execution is limited by the fraction of the time the faster mode can be used.

For computation bound tasks, the following relationship expresses this idea:

T
Speedup= T. (5.1)

Where T is the execution for the entire task without using the enhancement and T. is

the execution for the entire task using the enhancement when possible.

Speedup tells us how much faster a task will run using the machine with the enhancement

as opposed to the original machine.

Because the enhancement is only usable for a fraction of the time, we can derive the

following relationship to express the ratio of the execution times and hence the overall

CHAPTER 5. PERFORMANCE COMPARISON 82

speedup:
1

SpeedUPoverall = F c1·
(1 - Fraction) + ra •onenh•nced

enhanced Speedupenhanced

(5.2)

This gives us a useful quick way of calculating the speedup based on two factors: the

fraction of time an enhancement is used and the speedup achieved while using the enhance­

ment.

Consider for example a server that does network I/O for 10% of the time - perhaps the

remaining 90% is taken up doing disk I/O and computation. We can calculate the speedup

we would get by doubling the performance of the network I/O:

Fractionenhanced = 0.1

SpeedUPenhanced = 2

Substituting into equation 5.2 yields:

1
SpeedUPoverall = (l - O.l) + o;} = 1.05

We can see that there is a diminishing return here. Even though we have doubled the

performance of the network I/O we only see a performance improvement of 53.

Amdahl's Law has two important implications on the interpretation of the results I have

obtained in measuring the cost of portability:

1. The nature of my test servers is essentially artificial. They do no additional work other

than the moving of data from the server to the client(s) and establishing the minimum

infrastructure in terms of threads, processes and event handlers to accomplish this task.

The impact of any slowdown (or speedup) that we can measure on these skeletons will

in fact be far less on a "real" server which is also doing other work.

2. Whereas we have seen that the overall performance improvement gained by improving

a feature is limited by the amount of time that feature is used, we can also reasonably

expect that the performance degradation experienced by incorporating a slower feature

is also similarly limited.

By masking operating system calls in portable wrapper functions we are not enhancing

our servers so that they will exhibit an increased speedup. In fact we expect the reverse to

CHAPTER 5. PERFORMANCE COMPARISON 83

be true. There should be some overhead involved in calling the wrapped function, which will

result in a decreased speedup, or penalty. Either way we expect the law of diminishing returns

to be true. If a program spends 10% of its time executing the de-enhanced (or wrapped)

sections of a program, and those sections are twice as slow as the native (unwrapped) sections,

we can still apply Amdahl's Law and equation 5.2:

1
SpeedUPoverall = O

9
lU = 0.909

. + 0.5

By incorporating components which are twice as slow, but only using them for 10% of

the time we expect to see a speedup of around 0.9. In this case we interpret the fractional

speedup as a penalty. Our new server should only experience a performance degradation, or

penalty, of around 10% as a result of using the slower functions.

In reality the cost of wrapping a native call in a function wrapper should be very low.

Measurements taken using ACE (see Appendix C) suggest that the absolute cost of the extra

function call on my test system should be somewhere between 0.005µs and 0.009µs. Where

these function calls have been inlined, as is the case in many of the ACE wrapper classes,

their is no reason to expect any degradation at all.

5.5 Experimental method

In his book, Unix Network Programming Vol 1[55], Stevens compares the efficiency of server

designs by examining CPU usage. While conceding that this is not the most sophisticated

way of measuring performance, he contends that it provides us with a reasonable basis for

comparison. The primary focus of my investigation is comparison, so I have adopted a

similar approach. While measuring essentially the same quantities as Stevens does, I have

improved on the system of measurement as well as the accuracy of the measures. There

is an important difference in intent - whereas Stevens essentially constructs a "shootout"

between architectures (single threaded, multi-threaded, multi-process etc), my intention is

to compare different imple.mentations of the same architectures.

CHAPTER 5. PERFORMANCE COMPARISON 84

5.5.1 The UNPVl method

The UNPVl method measures different architectural implementations of a simple http-like

service. The first stage in the process is as follows:

• Run the simplest possible iterative server - this server is expected to consume the least

amount of CPU cycles per request as there is a minimum of control overhead.

• Generate a fixed amount of work for it to do eg. 20000 consecutive requests for 4000

bytes of data.

• Record the amount of CPU time (system time and user time) used by the process to

perform the task. The UNPVl servers have a SIGINT handler installed - the handler

uses the getrusage () system call to report the CPU utilization times of the process

in response to the SIGINT signal.

The figure we get from this activity represents a baseline figure. Our simple server has

done the minimum amount of work required to service the requests. There is no pro~ess con-

.. trol overhead such as process forking, thread creation, context switching or event handling.

There is also no overhead from indirect function calls resulting from using a "portability"

layer1
. We expect that servers which have any of these features will require more CPU time

to perform the same fixed amount of work. It is this extra CPU time which is of interest as

it is a measure of the cost of the particular feature or technique2 .

The approacli is basic and has some limitations. The analogy here is of measuring total

work done, rather than power being used at any given instant. Stevens is not "stress" testing

the server by systematically increasing the connection rate until the server fails [14]. This

type of measure is interesting, but also closely related to factors external to the software

itself such as the underlying network, the processor speed, the speed and amount of system

memory etc. By simply providing a "normal" load condition3 and looking at the CPU usage
1 In fact Stevens does make extensive use of wrapper functions in libunp to incorporate testing of return

values and reporting errors.
2 A further benefit of Stevens approach is that the measure is not unduly influenced by the scheduling

priority used. Like his experiments, all of my test servers were run using the default scheduling priority and

nevertheless produced highly consistent results.
3Effectively the connection rate is being clocked by the server, making it impossible to raise the load

above what the server is prepared to handle.

. '
'

CHAPTER 5. PERFORMANCE COMPARISON 85

cost, we are reasonably assured that variations observed are attributable to variations in the

software design of the server.

The nature of the "normal" load is an issue. I have chosen to standardize on a request

size of 4000 bytes, which is similar to the original UNPVl experiments. The client sends

4 bytes ("4000") and the server replies by sending 4000 bytes ("AAAAA ... A"). This is a

similar pattern to what you might see with a typical http request. There are of course many

other types of service. An ftp server might typically transfer many megabytes of data in

a single session. Design choices which are good for one type of service do not necessarily

translate to another. For example, process and thread creation times are significant issues in

these http-like servers, which typically provide a short lived service. These factors become

less significant for longer lived services.

Thus, while the information I have gathered using this technique gives us interesting and

worthwhile information about the server characteristics, it does not tell us about performance

of all types of servers under all circumstances. We will see, however, in Appendix A that

the architecture of my test environment is such that it is easily extendable to incorporate

different types of test loads. The measurement is essentially non-intrusive, without requiring

access to the source code of the server under test.

5.5.2 Some problems with the UNPVl method

My early attempts to replicate the UNPVl results exposed some difficulties which I highlight

below:

The servers require instrumentation

That the servers require instrumentation i.e they are self measuring, containing the code to

trap SIGINT, call getrusageO etc, is not a problem in the UNPVl context. I particularly

wanted to avoid building in instrumentation so as to generalize the system of measurement. It

should be possible to measure the utilization of any process without that process necessarily

co-operating with the measurement.

CHAPTER 5. PERFORMANCE COMPARISON 86

CPU utilization of threads were not properly reported on Linux

The problem of acquiring utilization statistics for threads on Linux relates to the Linux

interpretation of a thread. On Linux a thread is viewed exactly as a process from the

scheduler's perspective. Hence it runs with its own pid (strictly a POSIX violation). It is

thus incorrect to assume (as is done in UNPVl) that the CPU utilization reported for a

process reflects the utilization of all the threads running within that process. This is a Linux

peculiarity which is easy to compensate for. We simply take the same view as the scheduler,

and treat all running tasks (be they threads or processes) as independently scheduled units

which need to be accounted for individually. Unfortunately, for reasons which are addressed

in the following paragraph, there is so much CPU time which is being used outside of the

context of the process that this fix eventually proved unnecessary.

The reported statistics per process are unreliable

The reliability of the reported statistics was a particular problem. In particular, on Windows,

there is a marked and variable difference between the CPU utilization for the process, and

·. the utilization of the system as a whole. Given the nature of the operating system, J;his is

to be expected. Much of the work that is being done on behalf of the process is being done

by the I/O subsystem and others. These do not accumulate their time back to the calling

process. The interix servers (see Table 5.3 in Section 5.7.1) are an extreme case. Because

Interix is implemented as a separate environment subsystem, apparently no CPU time at all

is accounted to the calling process. Whereas it might have been possible to trace down all

the times being accumulated by the various tasks, it is certainly simpler to view the overall

system utilization instead of the per process utilization. According to my observations this

figure gives a fairer reflection of all the work being done on behalf of the process. The slight

error of overestimation as a result of the occasional disk cache flush is considerably less than

the gross error of underestimation in the per-process statistics.

On Linux kernel version 2.2 there is a very close agreement between the usage reported

per process and the overall. usage, with the latter being equal to and occasionally very slightly

greater than the former. Unfortunately the same does not hold true of early version 2.4 series

kernels (my test kernel was 2.4.3). Like Windows, there is a large discrepancy. Changes to

the kernel to better support SMP (symmetric multiprocessing) have lead to changes in the

CHAPTER 5. PERFORMANCE COMPARISON 87

scheduler code which appears to be the culprit here. The effect is visible, even with a

non-SMP configured kernel. As with Windows, the fairest reflection of utilization can be

gained by reducing additional system activity to a minimum and recording overall system

usage. The UNPVl method under-reports on this system - the most convincing evidence for

which can be seen by comparing the simple Linux iterative server to the fork per connection

server. Clearly the latter should be consuming more cycles in kernel mode, but the process

utilization recorded with getrusage () and the proc filesystem shows less4 • The overall

system CPU usage provides a more correct picture of actual work being done pere.

There is a race condition which favours slow servers

The Linux kernel version 2.4.3 is also afflicted with long latencies and surprizingly (shock­

ingly) expensive context switches. This phenomenon is well known and heatedly debated on

the Linux kernel mailing lists. A thorough investigation into this behaviour must unfortu­

nately be left for future work. My understanding is that these delays are a conseq,iience of

the kernel holding long duration spinlocks, during which time it cannot be preempted. If the

. thread which owns the spinlock is pre-empted prior to releasing the lock, all other threads

on all CPUs will be deadlocked [2]. Consequently, interrupts must be disabled while h~lding
; the lock, which has an adverse effect on latency. The scheduler code is protected by such a

spinlock - I/O bound processes such as the servers under test here should rarely use their

full quantum and therefore the scheduler code will be revisited frequently . Reports on the

Linux kernel mailing lists suggest that this can lead to as much as 30% of all time being

spent in the scheduler function itself. Though this extreme situation should only be found

with a busy run queue and an SMP configured kernel, the discrepancies I have recorded

between per process utilization and the overall utilization points a strong finger in this di­

rection. There is currently considerable work being done on the scheduler algorithm as well

as preemptable kernel (for low-latency) patches, so it is probably safe to assume that these

effects are transient.

A "positive" spinoff of these unfortunate effects is that it exposes a race condition in the

4 Note that this server does wait for all exited children so we are supposedly accumulating child utilization

as well.

CHAPTER 5. PERFORMANCE COMPARISON 88

Client Sen'er

SYN TCP Socket interface

SYN-ACK

ACK CD
·········-········· Connection Established

~

REQUEST
acceptO returns
recv()

CV recv() returns ~ ···················
DATA send()

DATA recv()

DATA

FIN G>
··················· recvO returns

FIN/ACK close()

Figure 5.1: Timing of TCP events using UNPVl protocol

original UNPVl test protocol. Consider the timing diagram of figure 5.15 . There are three

·events indicated in the server TCP which might cause a blocked server process to unblock.

1. A connection is fully established on a listening socket. A blocked accept() call would

unblock at this point.

2. Data is available in the connected socket's receive buffer. A blocked recv() would

unblock at this point.

3. The client has closed. Again a blocked recv () will return.

The UNPVl client connects to the server, then immediately sends off its request. Con­

sidering that a TCP connection can be fully ESTABLISHED [37] but still not accept() 'ed

this leads to two possible scenarios:

5 All the ACKs are not shown - only those segment arrivals which cause the server TCP to propagate an

event to the server process are relevant to this discussion.

CHAPTER 5. PERFORMANCE COMPARISON 89

1. The server accepts the incoming connection quickly, then blocks in a recv () waiting

for the incoming request.

2. The server is slow to accept the connection. By the time it does, the request is already

in its socket receive buffer, and it does the recv() without blocking6•

The first case is probably the norm, but the second case can and does happen. In

particular, the Java version of the basic iterative server consistently does this. It takes

longer to accept(), both because it is interpreted and slower, but also because the Java

ServerSocket always copies the address of the client connection up into user space. Using

the native accept() one has a choice to make the second parameter NULL and avoid the

copy. The net result of being slower is that it comes out of accept() to find the client's

request has already arrived so it can immediately recv() without blocking.

Is the race significant? Unfortunately, on Linux 2.4.3 it is very significant because of

the huge cost involved in being rescheduled. The java server, which should on all counts
•

perform slower than a C/C++ equivalent, performs considembly better! It uses less CPU

time (15-20%) and achieves a higher throughput than the native coded ~ersion. The reason

it performs better is precisely because it is slower. By running slower it avoids having to

block in recv () and benefits handsomely as a result.

5.5.3 Modifications to the UNPVl method

Given the discussion above, there is clearly a need to modify the approach in a number of

ways. I have taken the following steps:

• To avoid having to instrument the servers, I use a harness process to launch the

server under test. Armed with the pid (or Windows handle) of the server process, it

is then relatively easy to read the statistics from the proc filesystem on Linux or the

Windows performance counters on NT. I use the proc filesystem under Linux rather

than getrusage (), because getrusage () only records child usage after the child has

6This is very similar to X.25 call user data. The Winsock AcceptEx() function provides a useful feature

to take advantage of this condition and avoid the race. AcceptEx() can be configured to accept() and read()

a specified number of bytes in a single operation, either blocking or overlapped.

CHAPTER 5. PERFORMANCE COMPARJSON

Client Server

SYN TCP Socket interface

SYN-ACK

ACK
r--~---J .. 9.? Connection E'.stabUshed

accept() returns

GREEfING

REQUEST

DATA

DATA

DATA

FIN

FIN/ACK

G)

send()

recv()

recVQ rewms
sendO

recv()

-·-·-·-····-·-·-··- recvQretums

close()

Figure 5.2: Modification of UNPVl protocol

90

exited (and been waited upon). It is sometimes useful to be able to measure something

without having to kill it first - this is perhaps a similar difference as that between an

X-ray and a post-mortem. Fuller details of the system can be found in Appendix A.

• Further to the discussion in Section 5.5.2, the figures used for comparison are not the

per process figures, but the overall system usage.

• The race referrred to above is avoided by adding some extra user level protocol. The

server sends a short greeting to the client after accepting the connection. The client

does not make its request before receiving this short message7
• The exchange is illus­

trated in Figure 5.2.

With these modifications in place, the method produces consistent, believable and useful

information with which to test the hypothesis.

7This application level protocol construct is not unusual.

CHAPTER 5. PERFORMANCE COMPARISON 91

5.6 Scope

I have implemented and tested 35 different variations of the basic http-like server described

above, 20 on Windows and 15 on Linux.

Name Description Source (on attached CDROM)

Iterative servers

nativewin iterative server using native Win32 API only iterative/win/nativewin.cpp

cygsimple cygwin port of iterative server iterative/unix/simple.cpp

uwinsimple uwin port of iterative server iterative/unix/simple.cpp

ACE.simple ACE port of iterative server iterative/ ACE/ ACE..simple.cpp

interix Interix port of iterative server iterative/unix/simple.c8

JSimple Java port of iterative server java/iterative/

Fork per connection servers

cygf orker cygwin port of forking server concurrent /forker /!in.forker .cpp

interixforker Interix port of forking server concurrent /forker/ forker .c

Thread per connection servers '"

winthread native thread-per-connection server concurrent/winthread/winthread.cpp

ace_thr ACE thread-per-connection server concurrent/ ace.thr /

ServerJMT Java thread-per-connection server java/thread_per .conn/ -~

Thread pool servers

winthrpool simple native thread-pool server concurrent/winthread/winthrpool/

ace_thrpool simple A CE thread pool server concurrent/ ace.thrpool/

ace..msgq managed ACE thread pool server concurrent/ace/ace..msgq/

Server JMTpool simple Java thread-pool server java/thread_pool/

Event driven based servers

winselect native windows select server select /winselect /

cygselect cygwin port of unix select server select/ select/

uwinselect uwin port of unix select server select/ select/

ace.select ACE select server select/ ace.select/

tclserv Tel event driven server select/tclserv /

Table 5.1: Windows servers

These variations are illustrative of the different porting strategies described in earlier chap­

ters, but the list is not exhaustive. The following outlines some of the restrictions on the

CHAPTER 5. PERFORMANCE COMPARISON 92

scope of this experimental work:

• The range of servers tested is naturally limited. The names by which they are referred

to in the text, plus accompanying brief descriptions, are given in tables 5.1 and 5.2.

I Name I Description I Source (on attached CDROM)

Iterative servers

simple iterative server using POSIX API only iterative/unix/simple.cpp

ACK.simple ACE port of iterative server iterative/ ACE/ ACE_.simple.cpp

jsimple.sh Java port of iterative server java/iterative/

Select based servers

select native select server select/ select/

ace_select A CE select server select/ ace_select/

tclserv Tel event driven server - select/tclserv /

Fork per connection servers

lin_forker fork per connection server concurrent/ forker /lin_forker .cpp

ace_forker ACE fork per connection server concurrent/ ace_forker / •
Thread per connection servers

pthreadd_per _connection POSIX thread-per-connection server concurrent/pthread

ace_thr ACE thread-per-connection server concurrent/ ace_thr / ""

jmt.sh Java thread-per-connection server java/thread_per _conn/

Thread per connection servers

pthreadd simple POSIX thread-pool server concurrent/pthread

ace_thrpool simple ACE thread pool server concurrent/ ace_thrpool/

ace_msgq managed ACE thread pool server concurrent/ace/ace_msgq/

jpool.sh simple Java thread-pool server java/thread_pool/

Table 5.2: Linux servers

• Like Stevens, I have used a fixed set of parameters (20000 requests per sample, each

returning 4000 bytes) for these experiments. The rationale for choosing the number of

requests is twofold:

1. The number should be large enough to generate reasonably long times. The

average run time for a sample is approximately 150sec. With a timer resolution

of lOms this was deemed to be adequate.

CHAPTER 5. PERFORMANCE COMPARISON 93

2. The number is bounded by the local (ephemeral) port range setting of the client[37].

The default setting of 1024-4999 would only allow some 4000 connections within

a 2 minute interval. On my FreeBSD client I have increased the range to 13000-

60000, which would make the upper limit 47000 connections per 2 minute inter­

val9. 20000 requests is comfortably within this limit.

The choice of request size is somewhat arbitrary, but similar to the original UNPVl

size. Though it would certainly be interesting to see how these servers handle different

request sizes (in particular long running ftp-like loads scaling to Mbytes) this must

unfortunately be left for future investigation. I have assumed that the performance

of the short service (the entire payload is delivered in 3 TCP segments with MSS

1460 bytes), is essentially latency bound. Wrapped functions take longer to execute

and contribute to this latency. The observed variations using a short service like this

should be a stronger indicator of the efficiency of the wrapped software layers, than

variations in throughput for longer running services. The transfer of a 50MByte file is

likely to be more strongly influenced by factors such as choice of architecture (single­

threaded, fork-per-connection etc), buffer sizes, TCP a.nd driver implementati~!1 etc,

than whether the server is written in Java or C.

5.7 Results

The relative performance of the servers under test is clearly seen in the tables and graphs

which follow. I present the Windows servers first, followed by the Linux servers. Each point

on the graphs represents the total CPU usage (ie. time spent in system and user mode)

for a complete run of 20000 requests. In order to readily compare similar architectures, the

iterative servers are grouped on one graph, the select based servers on another and so forth.

Tables 5.3 and 5.4 show the aggregated figures, on Windows and Linux respectively, for 50

runs of each server.

9sysctl net.inet.ip.portrange.first=l3000; sysctl net.inet.ip.portrange.last=60000.

CHAPTER 5. PERFORMANCE COMPARISON

Less efficient
ported
versio~~-··

....... ·
.·

Native implementation

Elapsed Time (seconds)

-~

Figure 5.3: Expected profile of ported servers

94

Figure 5.3 shows what we would expect to see when comparing servers of the same

architecture. If the architectures are identical we expect that the same type and number of

system calls are being made. Less efficient ports will be spending more time in user space -

which should manifest itself in a proportional increase in elapsed time.

In most cases the difference in performance between servers is clearly visible from the

graphs. The interesting cases are where there is significant overlap - ie. the ported or

portable version appears to perform similarly to the native one. There are a number of cases

(using ACE on Linux below) where this is the case. We can use a standard hypothesis test

of the difference between two means [22] in these cases to see if the measured data suggests

that one performs better than the other or not. For two servers, A and B, with recorded

·mean CPU utilization times µA and µB we form two hypotheses:

CHAPTER 5. PERFORMANCE COMPARISON 95

(5.3)

and

(5.4)

where Ho is the Null Hypothesis. If we accept H0 we are assuming that there is no contra­

diction between the two means, and that any difference can be ascribed soley to random

factors. Otherwise we accept hypothesis H1 , that the CPU utilization of A is indeed greater

than that of B.

To decide whether to accept Ho or Hi, we first calculate the standard errors of the

difference of means,

S(xA-xB) =
s2 s2

____,-!_ + __.!!_
nA ns

(5.5)

where SA is the standard deviation of sample A, size nA, and ss is the standard deviation

of sample B, size ns.

The Z score is calculated using

Z= lxA-xsl
s(xA - xs)

(5.6)

We know (from normal distribution statistical tables) that a Z score of 1.65 or more

indicates that 95% of the population supports H0 , ie. there is indeed a difference between

the two means. Thus if we calculate a score of less than 1.65 we can say that, at the 5% level,

there is nothing to suggest that the means are different. According to [22] such conclusions

are valid for relatively large sample sizes (n > 30). The means and standard deviations I

present here are all for sample sizes of 50.

5.7.1 Windows

Table 5.3 shows the measured times of all the servers on the Windows 2000 platform.

CHAPTER 5. PERFORMANCE COMPARISON 96

Windows Iterative Servers Windows Fork per connection

itero.!ive mean(sec) stdev(s) cv9/orkf!r meao.(sec) I stdev(s)

ela.psed 164.03 1.38 elapsed 409.55 1.39

user 1.50 0.16 user 92.83 1.28
system 88.36 0.52 system 315.26 1.19

user+system 89.85 0.55 user+system 408.09 0.85

I cygnmple I mean(sec) I stdev(s) I mean(sec) f stdev(s)

elapsed 165.35 1.34 elapsed 154.95 1.84
user 1.85 0.14 user 12.82 0.37

system 89 . .52 0.67 system 140.23 0.58

user+system 91.37 0.72 user+system 153.05 0.55

j 111l1ln.nmpfe) mean(sec)) stdev(s)

elapsed 175.38 2.85 Windows Thread per connection
user 4.90 0.21 tuinthread . mean(sec) stdev(s)
system 95.13 0.48

user+system 100.02 0.41
elapsed 121.31 3.69

user 2.95 0.17
I 1nhn:1: I mean(sec) I stdev(s) system 92.66 0.50

elapsed 183.00 1. 71 user+system 95.60 0.52

I ace thr I mean(sec) I stdev(s) user 5.13 0.29 -
system 97.59 0.99

user+system 102.72 1.12
elapsed 127.46 13.90

user 6.40 0.32
I J.11mple I mean(sec) I stdev(s) system 97.36 0.67

elapsed 165.22 1.62 user+system 103.76 0.77

j ScrvcrJMT J mean(sec) J 5tdev(s) user 3.89 0.32

system 92.11 1.04

user+system 95.99 1.23
elapsed 136.89 2.02

um 8.07 0.32
I ace ... umple I mean(sec) I stdev(s) system 99.70 0.59 •

elapsed 165.22 1.15 user+system 107.77 0.56

user 1.61 0.16

system 89.83 1.24

user+system. 91.44 1.29 Window• ThNad pool

wintln".f'OO! . mean(sec) stdev(s)

elapsed 117.24 8.87
Wlndo:iws Event Driven Servers user 1.62 0.13

urin~dect mean(sec) 5tdev{s) system 87.13 0.55

elapsed 118.31 4.95 user+system 88.75 0.55

I acLthrpool J mean(sec) J stdev(s) user 2.06 0.15

system 87.75 0.51

user+system 89.82 0.52
elapsed 115.50 3.21

user 1.73 0.16
l mean(sec) I stdev(s) system 87.36 0.55

elapsed 115.19 4.14 user+system 89.09 0.60

I ace m~gq I mean(sec) I stdev(s) user 3.40 0.23 -
system 89.84 0.44

.
user+system 93.25 0.52

elapsed 118.59 4.05

user 1.96 0.15
I tcl.seru I mean(sec) I stdev(s) system 87.81 0.52

elapsed 119.97 4.83 user+system 89.77 0.52

user 5.86 0.24 I Server} MT pool [mean(sec:) I stdev(s)
system 92.68 0.60

user+system 98.55 0 . .59
elapsed 128.16 3.82

user 4.26 0.25
I mean(sec) I stdev(s) system 91.15 0.62

elapsed 131.22 3.11 user+system 95.41 0.68

user 8.64 0.29

system 119.11 0.43

user+system 127.75 0.50

I mean(sec:) I stdev(s)

elapsed 122.20 12.07

user 5.47 0.39

system 94.09 0.57

user+system 99 . .56 0.66

Table 5.3: Windows Results

CHAPTER 5. PERFORMANCE COMPARISON 97

Iterative servers

Figure 5.4 shows the native windows, Cygwin, Uwin, Interix, ACE and Java versions of the

iterative server. The trend is similar to what was expected from Figure 5.3 with the exception

of the Java server. This server almost matches the throughput of the native version at this

load level, but consumes more CPU cycles to do it. With an increased connection rate it

can be expected that, as the CPU becomes a more scarce resource, this server will not scale

as well.

From the graph the ACE and Cygwin versions appear to be very close to the efficiency

of the native version. The detailed figures shown in Table 5.3, however, illustrate that in

fact there is a small, but significant performance hit in each case, which is obscured on the

graph by the relatively wide spread of results for the ACE server. The fact that some servers

show a greater variability of CPU usage than others may be significant or may be incidental.

The question remains unanswered within the scope of this research, but warrants further

investigation. •

The Interix version appears to be particularly sluggish, which is a little surprizing. Given

that Interix implements the POSIX system calls at the subsystem level, I had expected
,,~·

that it would at least outperform the Uwin and Cygwin versions, which perform the POSIX

emulation above the Win32 subsystem. The POSIX interfaces provided by all three (Interix,

Cygwin and Uwin) was complete enough to allow each of the versions to be compiled without

change from the Unix source code.

Select based servers

The servers in Figure 5.5 all illustrate a common pattern in the relationship between the

elapsed time and the cpu utilization. The distributions of elapsed times show the charac­

teristic long tails which one would expect in measures of network performance. Various

factors, probably mostly related to the lower layers of the network stack, can and do cause

throughput to be occasionally and variably impaired. Therefore we see a cluster of points at

the head of each distribution followed by a tail of straggling points representing the slower

runs. The relative insensitivity of the CPU utilization to the variation in elapsed time, lends

it credibilty as a reliable and predictable metric to compare performance.

The select() based servers illustrate some interesting strengths and weaknesses among

CHAPTER 5. PERFORMANCE COMPARISON 98

! l !

1 ; 1... .

! 1. L... i

120 • _, I 1 :r r
··--··-·r·· I I I i

:§: 115 ···+·- --- ···········----+ ······················-!---- l ---·············-----+- !.. ..

IC. 11 o ._ ______ -.i_____ _ _ ________ !_ ··------·····-----···--·! : ----····-----J .. _. i ___ ! r· ~ ······················+··•·•·• +

~ 'l.!···· ! . ········-·····~.:_:.1 -~ 105 • :

f 100 ; L ! J
~ !.' l ~
i ·.·.!···· i t ······················~---- f .. .

....... ······ L T

130
iteratiVe ! 0

cygsimple x

125
uwinsimple +

interix • ace simple •
Jsimple 0

90 . ··········-}····

' -·····•·······a

95

85'--~~Li: ~~-L':~~-'-~~--'-'~~-'-j~~--'i~~~'--~---'
110 120 130 140 150 160 170 180 190

Elapsed time (s)

Figure 5.4: Windows iterative servers

the porting layers. Whereas the ACE version continues to perform very close to the ·~ative
windows equivalent, cygwin fares considerably worse in this case. Cygwin does not use

the native Win32 select() function to implement Unix select() semantics. Its version

of select() is an elaborate wrapping of the Win32 WaitForMultipleObjectsO function,

involving multiple threads and synchronization event objects. It is clear from the source

code and ChangeLogs that a great deal of effort has been put into getting select() to

work properly with stdio channels and to respond correctly to signals. Even without having

the source code for Uwin, it is clear that the implementation of the Uwin select() uses

a different technique to Cygwin. David Korn tells us in [19] that the Uwin select() was

originally implemented using a technique similar to that used by Cygwin, but was later

changed to use the Windows message queue. This is similar to the Windows version of the

Tel event notifier10 • Both the Cygwin and Uwin versions are compiled directly off the UNIX

source and appear to emuiate the UNIX behaviour flawlessly.

'°The significant overlap of the tclserv and u1'inselect results in Figure 5.5 suggests a similar imple­

mentation.

CHAPTER 5. PERFORMANCE COMPARISON 99

It is interesting to note that the ACE version actually achieves a better throughput than

the native version. The ace_select server is implemented using the ACE_Select..Reactor

component.· Its architecture is thus very similar to the others, but not identical. The strategy

used to demultiplex and dispatch events within the Reactor (which results in more frequent

calls to select()) appears to be favoured by these experimental conditions. These strategic

choices are discussed in greater detail in section 4.2.

The ACE_Select..Reactor and the Tel Notifier are also more complete components with

a richer set of functionality than the simple demultiplexing component underlying the other

servers. The extra overhead in ace_select (which is slight, but nevertheless apparent) and

tclserv is thus to be expected. The Tel version used here is 8.0p2, which runs the notifier

code in a separate thread. Experiments with the latest stable release version (8.3.4) were

disappointing - a version of tclserv compiled against 8.3.4 runs in 6 threads on Windows

2000, which results in a considerable performance hit. One reason for using a non-blocking

event driven model is to avoid the overhead of multiple threads - here we clearly get the

worst of both worlds.

Unfortunately, the source for these servers makes use of a number of ISO Standarq,C++

features which are not supported in my current Interix development environment, so we

cannot see how Interix compares here. It would also have been interesting to see how the

new Java non-blocking I/O performed relative to the others, but the jdk version 1.4 was

released too recently to be used in these experiments.

Concurrent servers

There are three categories of servers addressed under this category: the classical new-process­

per-connection model, the lighter thread-per-connection equivalent and a simple thread pool

model.

The POSIX fork() system call is one of the more defining differences between the Win32

API and Unix-like systems. Cygwin, Uwin and Interix each provide a fork() implementation

on Windows. The Linux forker program was compiled on Windows using these three tools.

Unfortunately, the Uwin version could not complete a run of 20000 connections, so results

for it are not given here. It is not clear to me where the problem lies, or whether the problem

is solved on later Uwin versions. After fielding about 1000 connections, it simply freezes up

CHAPTER 5. PERFORMANCE COMPARISON

130
winse1ect • cygselect x

125 ~ uwinselect +
ace_select a

tclserv 0

'
... L ~ ··········---------··-··--·····

! :

' .
' !

....... ; ... ·················---! ························i··--

! ;
120 . ····················! ···--··················+···- ! ·········------~ ················-····)

, -- ·····T······· , I,,
... t

~ 115

I e. 110

. ·--··· .. ·····i
.l

I 1 - i 1 ·······~---- -- .

i] •••••••••.. 1 : . ·····-·-·······)" -

"
~ 105

fr
! 100

_ I :.! : I • : - ···········--·-+-·· ····--+

~:~)~~] L [J 4
95 "~~;;;;;bf +~ I + L j j
90 111.:.\ •• J~ i t J ; l

! l i j i · ss~~~~~~~~~~~~~~~~~~~~~~~~~
110 120 130 t40 150 160 170 180 190

Elapsed time (s)

Figure 5.5: Windows select based servers

and refuses to fork any further.

100

Both Cygwin and Interix handle the task without error, but with very different perfor­

mance characteristics. Because there are only these two examples, and the fact that they

perform so differently, I have not presented them together on a graph, but the figures are

clear from Table 5.3. Cygwin is very slow and CPU intensive. This is not surprizing, given

the complexity of emulating fork () using the Win32 APL The Interix version shows that the

Windows 2000 kernel interface does provide a reasonably efficient way of creating processes

other than through the \Vin32 CreateProcess () function. Although it uses some 50% more

CPU time than the thread-per-connection servers, this is much more acceptable than the

300% difference when using Cygwin's fork().

Given the difficulty with forking, this server architecture is bound to be penalized the

most on the Windows platform. It is clear, however, that if performance is not the key

. concern, such servers can be ported reliably to Windows platforms. The performance penalty

is likely to be much less on pre-forked process pool servers, where the cost of process creation

is a one-off cost. Particularly given the Cygwin iterative server's impressive performance in

CHAPTER 5. PERFORMANCE COMPARISON 101

the iterative tests, there is good reason to believe that a Cygwin process pool architecture

would perform well. Unfortunately time did not permit testing this architecture and it

remains to be shown in future work how viable the architecture is on Windows platforms.

1~r-~-r-~--.~~~~--r~~..-~--.-~~..-~--.-~~~~-,
winthread' • ~ l ! ! ; ~

150 e javai~:;5~~f = J J L .. ~ ~ • . 00

140 e I J I J L J ; j , .
1

I .. 1 ;·:I .. 1 .. 1 !
! f i . :

·················+···· ···j ·········-·······+ ·············-·-·+········ ;........ ··········-····< ·············-····i---- .

i : ! ! i,, ~.:. i 1 1 ;.1 I I
i . : . ' .

·················+···- ········+·· ···············! .. <. .••••••.....••••• {. ·+· ---~- ... ···········+ j

~ ! i . . ! _j :
110 ··-----·-·········l ···-··-----1--- ------·--···---i--.. · ----- ····-t•·~· -----t -·~r • i

100 _ J t<+ ~}r,; ! L
!

¥
ii 130

~
~
§. 120

.......... .J

• ~ •·.'Cf~· ,, • l •
i l : ; i :

so~~-'-~--'~~-'-~-'-~~,,_~-'-~~,,_~-'-~~'--~-'

115 120 125 130 135 140 145 150 155 160 165
Elapsed time (s)

Figure 5.6: Windows thread-per-connection servers

There are only three examples ·of Windows thread-per-connection servers. Neither Uwin

nor Interix supported the Pthreads interface at the time of writing. Current versions of

Cygwin support a Pthreads library for Windows which is a thin wrapper around the Windows

threads API , but this was not tested. The Tel library also has had a platform independent

threads API since version 8.2.x, but it is not enabled by default and was not tested here.

The three examples presented are the native version (winthread), a Java version (Server­

JMT) and an ACE version (ace_thr). The Interix forking server (interixforker) is shown

on the same graph (Figure 5.6) to illustrate the relative cost of creating a new process per

connection vs creating a riew thread. It is perhaps unfair to make a strict comparison be­

tween these three. What they have in common is that they each create a thread to handle

each incoming connection, but the implementations differ considerably. The Java version is

predictably the slowest and heaviest, but with only 13% more CPU time than the native

CHAPTER 5. PERFORMANCE COMPARISON 102

version, it is quite respectable. It is interesting to compare the CPU time vs elapsed time

charcteristics to that seen for the iterative servers. Here we have used 13% more CPU time

than the native version which has resulted in a 13% increase in elapsed time. The iterative

version showed less than 7% increase in CPU time, resulting in an increase in elapsed time

of less than 1 %. It would appear that there is a significant cost, in terms of CPU utilization

and wall clock time, to the creation of Java threads.

The ACE version performs better than the Java one. Nevertheless the CPU usage dif­

ference between ace_thr and winthread is greater (8.5%) than the differences seen when

using ACE in the other examples. This is because ace_thr does not simply use a one to one

mapping of ACE wrapped versions of the Win32 APL An intersting feature of ace_thr is

its use of a Strategy Acceptor [47] to decouple the concurrency strategy (in this case thread­

per-connection) from the service handler code. It is an elegant and flexible design pattern,

but it does add a small amount of overhead.

130 .---.,i --.-... ';' -..... -.. -.... -.... -..... -,-.1-.... -..... -.... -.... -........ :-.... --·i-----,.-.-:-·;~-~~,~·:-~---,
:: r l w ••• .i I java~:~·:J~T:: ~ :

........... 1l

................ .!. ...

:g 115 L... +.. ···········!····· -
al

I ''° I · I

t 105 I . I i ;.:
~ 100;.... ········! ·····----!----······· :

. ······---f

"l_L

....... j---- •••••...•.••• ,_!.
L '

'

....... .L .. . J•

I ~ ·.:.. i I 95 L .. ~'!1-..i' L ~ . ; l - : ··········-··········· ~.:· .. .

l ·.!. '•...••• l... ! 90 ···--~.·. - - ·-o·-~tj ······················+---·· ·····················+• ---~- . .)

ir-~~ , : I !
! i i ! i

as~--~--~--~--~--~--~--~--~
110 120 130 140 150

Elapsed time (S}
160 170

Figure 5.7: Windows thread-pool servers

180 190

The thread pool servers also feature a native version (winthrpool), a Java version

(ServerJMTpool) and an ACE version (ace_thrpool). They all implement the simple

CHAPTER 5. PERFORMANCE COMPARISON 103

architecture of creating a listening socket and then pre-spawning a pool of threads which

each block in a call to accept() on the same listening socket. This architecture has the

potential of suffering from the thundering herd [55] problem, but with a small pool of 5

threads the effect seems not to be significant. The simple arrangement has each thread act­

ing autonomously and in isolation from one another - effectively a number of iterative server

threads sharing the same listening socket. It does not lend itself to dynamic tuning (such as

shrinking or growing the size of the pool in response to load conditions). For comparative

purposes I have also included an example of a more flexible architecture, ace_mesgq, which

has a controlling thread to accept new connections and feeds these off to the waiting pool

via a message queue. The graph of the performance of these four servers· is shown in Figure

5.7.

As before, the Java version is the slowest, but nevertheless respectable - only 7.5% more

CPU usage than the native windows equivalent. This is an improvement on the thread-per­

connection result, confirming that Java thread creation is relatively heavy.

The performance of the ace_thrpool server is very close to that of the native version.

· Comparing the means using equations 5.5 and 5.6 , we can calculate a Z score of

z = 89.09 - 88.75 = 2.95
J0.60'+0.552

50

which is greater than 1.65, indicating that even though they are close, we have to concede

that, at the 53 level, the ACE version is slightly slower. The mean elapsed time is actually

less than that of the native version, but the large standard deviations of these elapsed time

readings due to the long tails, means that there is little we can read into them.

The results for ace_mesgq show that the cost of implementing this slightly more complex,

but more flexible, architecture is very small. It uses approximately 1 % more CPU time and

13 more elapsed time than the native windows implementation of the simpler architecture.

The best performers of all the servers measured on Windows were winthrpool and

ace_thrpool. It is interesting to note that they perform marginally better than the event

driven servers, which is similar to what we see on the Linux platform below. Unfortunately

·we do not have sufficient information to generalize over the general merits of the event-driven

vs. thread-pool approach on either platform. These results were obtained with a fixed size

pool of ten threads and a maximum of five concurrent connections. Banga [3] has shown that

CHAPTER 5. PERFORMANCE COMPARISON 104

select 0 scales badly with very large numbers of simultaneous connections on BSD derived

systems, particularly in a wide area internet environment where many of the connections

are passive for much of the time. How well the thread pool approach scales under similar

conditions and whether the trends are similar on both Windows and Linux is an unanswered

question. Comparing architectures is not the central purpose of this study, but this is a

question which merits future work.

5.7.2 Linux

Results for the Linux servers are shown in Table 5.4. The distributions of recorded times

are presented graphically in the sections that follow.

Iterative servers

Figure 5.8 shows that the CPU utilization of the ACE iterative server is indistinguishable

from that of the native Linux version. Table 5.4 shows that the mean CPU utilization,

80.58s, is actually slightly lower than the native version's 80.64s. The Z score calculated

from equation 5.6 is 1.12, which is less than 1.65. We can say with 95% certainty that'there

is nothing to suggest that the ACE version performs any differently to the native one.

The Java version uses 12% more CPU time than.the native version, which is higher than

the 7.5% cost that we saw on Windows. The relatively high standard deviation (2.28s) of

the Java server is a characteristic we can see in all the Java servers in Table 5.4. Looking at

the graphs (Figures 5.8, 5.10 and 5.11) we see that the Java times seem often to form two

distinct groups. This is most obvious in Figure 5.10. Revisiting the raw data, it is noticeable

that in a series of runs, the first run consistently consumes more time than subsequent ones.

Clearly the high startup cost of the Java Virtual Machine is exaggerated when the cache is

cold.

CHAPTER 5. PERFORMANCE COMPARISON 105

Linux Iterative Servers Linux Thread per connection
.aimple mea.n(sec) stdev(s) pthreadd..per....connectic>n I mean(sec) I stdev(s)

elapsed 177.52 0.32 elapsed 121.59 0.12
user 0.05 0.02 user 0.43 0.06
system 80.59 0.33 system 81.53 0.64
user+system 80.64 0.33 user+system 81.96 0.65

I a.ce nmple I mean{sec) I stdev(s) I ace thr - I mean(S<lc) I stdev(s)
f'!iapsed 177.64 0.37 elapsed 122-24 0.14
user 0.09 0.03 user 2.45 0.17
system 80.49 0.33 system 83.20 0.56
user+system 80.58 0.34 user+system 85.66 0 . .54

I].nmple Jh I mean(sec) I stdev(s) I mean(sec) I stdev(s)

elapsed . 191.17 0.94 elapsed 131.Ui 0.46
user 2.30 0.71 user 7.15 1.05
system 88.23 2.01 system 89.58 0.44
user+system 90.54 2.28 user+ system 96.73 1.21

Linux Event Driven Server• Linux Thread pool

lin.sdi:(:t j mea.n(sec) I stdev(s) p th dd no I mea.n(sec) stdev(s)

elapsed 117.61 1.02 elapsed 121.23 0.13
user 0.23 0.05 user 0.10 0.03
system 79.74 0.41 system 79.4.5 0.59
u!l4lr+system 79.97 0.42 user+system 79.54 0 . .59

I ace...1elect I mea.n(sec) I stdev(s) •« "'"" I mean(sec) I stdev(s)

elapsed 115.95 0.12 elapsed 121.55 1.14 .
user 1.03 0.12 user 0.14 0.04
system 80.17 0.51 system 79.!Sl 0.64
user+system 81.20 0.50 user+system 79.64 0.63

J mean(sec) (stdev(s) 0 ce m.sgq - I mean(sec) I stdev(s)

elapsed 118.02 0.51 elapsed 121.10 0.17
user 1.66 0.13 user 0.46 0.08
system 80.36 0.45 system 80.03 0.71
user+sf$1;em 82.02 0.46 user+ system 80.49 0.68

I mean(sec) I stdev(s)

Linux Fork per connec::tion elapsed 130. 71 0.19

lin...forker I mean(sec) I stdev(s) user 2.75 0.46

system 85.20 0.83

user+system 87.95 0.92
elapsed 122.09 0.11

user l.72 0.14
system 89.73 0.54

user+system 91.45 0.48

I ace forker - I mean(sec) I stdev(s)

elapsed 126.76 0.18
user 9.07 0.26

system 102.51 3.13

user+system 111.58 3.19

Table 5.4: Linux Results

CHAPTER 5. PERFORMANCE COMPARISON 106

Some additional investigation was made into using the gee Java frontend, gcj, on Linux,

to compile the Java code down to a native binary format. The results were encouraging.

The same Java iterative server was compiled using gcj and subjected to the same tests. The

following times were recorded (in seconds):

Elapsed mean Elapsed stddev Total CPU mean Total CPU stddev

183.38 1.23 82.34 0.41

This represents only a 23 penalty in QPU utilization and 3% penalty in elapsed time,

compared to the native iterative version. At the time of writing, gcj and the associated libgcj

library was still too immature on Windows to use it to compile the servers in this study,

but clearly there is some potential in using this approach to efficiently use Java simply as

a platform neutral library. Given that object code produced by gcj can be linked to object

code produced from C/C++ source, one would only need to use Java for platform dependent

parts of the code. Similar good results were produced for the thread pool server below, but

problems were experienced with the thread-per-connection server.

verify the stability of libgcj.

Select based servers

More.work is required to

The trade-offs here are much the same as in the Windows case. The native linselect uses

less CPU time than the ACE and Tel versions, but the ACE version delivers a slightly

better throughput. As was the case on Windows, the longer elapsed times on the Tel and

native versions compared to ace...select are a result of extracting all the events returned by

select() and queueing them before dispatching.

Concurrent servers

Three categories of server architecture are presented in this section: Fork-per-connection,

thread-per-connection and thread-pool based servers.

The native forking server, Jin_forker, predictably uses more CPU time than the thread­

per-connection servers, but the difference is not as striking as with the emulated fork() on

Windows. Creating a new process on Linux is certainly heavier than creating a new thread,

but the fork() is clearly optimized.

CHAPTER 5. PERFORMANCE COMPARISON

105r--~lte~ra-tiv-e~o~.~~T.,~~ ••• ~~ •• ~~ ••. ~~ •.• ~~ •• ~~r •. ~~

100 _ ·:~::rg:~ =: -············· L. J . + .1 : J 0-

, t i' •. i. t.' : 1 ! i i,i···· :E. 95 -- ~ ! .. - ·················'<'·"••,.... ·······-~--- ·············f···· ·- :

I 90 L ················ J L J .k~~g~t
! !.·.... i I : i ·fo~ib . ,
::s!... i ···········-----~.' ----·-··· L ' ··········--------.! -------··-----·) .•..... ~ 85 ' : •••• ! ················t

I 1 I ~ I !
80 I-· ...• :.... .. •• ;]! .. J ···············-*··· i.= !.. .. _. _____ _

i

: I
75'--~~~~~~1~~-'--~-~·j~~~·!~~~··~~"-~--'-~~'--~~ I)

176 178 180 182 184 186 188 190 192 194 196
Elapsed time (s)

Figure 5.8: Linux iterative servers

107

The ace_forker provides a caveat here: forking a large process costs more than forking

· a small process. I have not considered memory usage thus far in the comparisons made, but

when processes have to fork() frequently, the size of the process has a clear impact on the

CPU utilization. Whereas. the ACE toolkit has shown itself to be equal, or almost equal, to

native versions of the other server architectures, there is a significant cost to be seen here.

Figure 5.11 shows that the CPU utilization of the ACE thread pool servers .are indis­

tinguishable from that of the native Linux Posix threads version. The mean for the native

version is 79.54s as against 79.64s for the equivalent ACE thread pool server and 80.49s for

the ACE message queue thread pool server.

Comparing pthreadd with ace_thrpool, the Z score calculated from equation 5.6 is 0.819,

which is less than 1.65, indicating that, at the 5% significance level, there is in fact nothing

to suggest that the ACE version performs any worse than the native one.

Comparing pthreadd with aceJTisgq, the Z score calculated from equation 5.6 is 7.46,

which is significantly larger than 1.65. The ACE message queue server uses only slightly

more CPU time, but the difference is significant at the 5% level.

CHAPTER 5. PERFORMANCE COMPARISON 108

9o,--~~~T .. ~~~-.,~~~~,,, ~~~--,-~~~-r0inse0 ~lec-t~•~,

85 " ················· ; ! ······························· ! 1 ace[~1:~·······~········
············-

'

!,!········· -

[. ··················•

i
65 ········-···············- ·····+--- ·······-······---·-l----- ···········--- ----~

l
.. ·········i····· ········--

! :

60'-~~~~·i~~~--'j~~~~L-~~~~'!~~~--'i~~~--'
110 115 120 125 130 135 140

Elapsed time (s}

Figure 5.9: Linux select servers

A comparison with the select() based servers is interesting. There is very little difference

in terms of CPU utilization, but the elapsed times of the thread pool servers are significantly

higher. The higher elapsed times are probably indicative of the increased interrupt latency

referred to in Section 5.5.2. The more threads that are running, the more time will be spent

scheduling (during which time interrupts are disabled). This issue and the question of how

well each architecture scales is left for future work.

The Java version is predictably the heaviest, with a cost of 11% CPU utilization and

8% elapsed time. Again, it is intersting to see the performance improvement we can get by

compiling the Java thread pool server to native code using gcj:

Elapsed mean Elapsed stddev Total CPU mean Total CPU stddev

123.04 0.18 81.39 0.48

The table above shows that the compiled Java code only incurs a 2% penalty in CPU

utilization and 1.5% penalty in elapsed time, which is a considerable improvement over

running the byte code in a Java Virtual Machine.

CHAPTER 5. PERFORMANCE COMPARISON 109

115 ~~p-thr-.~~d_p-.-~-c-on-nect~~-.~.~--,,~~~-!,-.~~--,,~~~-,,~~~

110 " .~~;:~~ ~ : ,e- : J L
105 ! [... L.. L.... J L

I i : I '
al 100 ····················! ····················-······! ···························<-····"""" + + l

l! j i _1,'·1 ·······5··· o ____ o __ · ___ ii;_·_··:=,:® ~ ·-----···---.. ·-··-.l ·····----·····-t.... . . ·-- L :qr_

i :: i L L. l l I

~ 85 h· , " L. ----------------+---- .

.................... !" __ ·,,,1___ ! ' i ' 111 ·····-·········-·····---i_· , - j ·····--------····---~_] j ·············t··-·· ···················-···----f

. 1

80

··········•

'
; l l

~~~~--'-~~~~~~--'-~~~~~~--'-~~~~~~~ 

120 122 124 126 128 130 132 134 
Elapsed time (s) 

Figure 5.10: Linux thread-per-connection servers 

,,~·· 

5. 7.3 General observations 

. Having looked at the .set of Windows and Linux results there are a number of general 

observations which should_ be made: 

• There are fewer Linux servers than were tested under Windows. We looked at a 

number of POSIX emulation tools under Windows. Under Linux we only looked at 

native versions, ACE, Java and Tel versions of the various architectures. 

• The Windows servers have performed generally better than their Linux equivalents. 

Reading too much into this comparison would be a little reckless. There are, in both 

instances, a myriad of tcp options, compiler optimizations and other tuneable param­

eters which might prove a case either way. Comparing Linux 2.4.3 and Windows 2000 

is not the purpose of this study. I have the humbler objective of showing that server 

architectures are portable, and that the cost of portability, in performance terms, is 

not necessarily prohibitively high. 

• Using ACE on Linux appears to incur no CPU utilization penalty in a number of cases. 



CHAPTER 5. PERFORMANCE COMPARISON 110 

94 ~~p-th-ra-ad-d~.~~~~ •. ~~~~i~~~~,~. ~~~-~ .. ~~~~ 

a~~~~ ~ .............. ...\ ............................... J ............................... .!.... .. .... ······~ ......... e ... . 

i l ........................... :.!···· : 90 ............................ L. ! . , 

f •........ ; =1 -~. ::Jji~= 
i 6 ......................• :.

1 
f ............................. l.... f l Cl) 8 ...................... ' ................... +-···· ....................... ; -·-

~ t · I . t I ........................ . 

~ 84 ··········+ -----···························i ................................. i ········-········<-·-···· ----! ··-·····················---···-

! I i ................. i.1..... I 82 ............. 1::1 ·····---~ ................................ j ................................ ; ........ : ········-·······-········-····-

• • •. : i.- -·· + . _i v i i ! 1s~~~~~~~~~~~~~~~~~~~~~~~~~ 

92 

···················-

120 1U 1~ 1~ 128 130 1~ 

Elapsed lime (s) 

Figure 5.11: Linux thread-pool servers 

This in itself is not surprizing, but it does raise the question of why there should be 

. a consistent, if tiny, performance cost associated with the same servers on Windows. 

There are a number of possibilities, which I have not verified, but which may account 

for this slight difference: 

1. The ACE_SQCK..Stream close() method always makes a call to shutdown() 

before closesocket () on Windows platforms to avoid losing data that may be 

still in the socket send buffer. There can never be any unsent data with these 

servers, because the client initiates the close and then only after it has received all 

the data. The redundant call to shutdown(), multiplied 20000 times may have 

some impact. 

2. It is possible that there is a more efficient combination of compiler optimization 

switches for the Visual C++ compiler than the ones I have used. For example, 

I have seen that disabling C++ exceptions can lead to significant performance 

improvements. 



CHAPTER 5. PERFORMANCE COMPARISON 111 

3. I did not compile and use a static version of the ACE library on either platform. 

It is possible that the relative cost of linking against position independent code 

in a Windows DLL is higher than linking against shared library code on Linux. 



Chapter 6 

Conclusion 

In Chapter 1 the difference between the system APis of Windows and UNIX-like systems was 

identified as a problem when designing TCP /IP server software targeted at both platform 

sets. In Chapter 3 we saw that the sockets interface to the TCP /IP stack is reasonably similar 

in both cases. Whereas there are differences, they are not major barriers to portability. 

In Chapter 4 we saw that the required supporting infrastructure, in terms of evel!t and 

· · concurrency mechanisms, present far greater challenges to portability. 

I proposed the hypothesis that, by avoiding programming directly to the native system 

API, but instead making use of thin abstraction layers, it is possible to maintain portable 

source code which implements common server design patterns. Further, I proposed that 

such implementations should not necessarily incur significant performance penalties. 

This chapter presents a summary of my conclusions. Section 6.1 deals with portability 

at the level of server architecture. This is followed by a review of implementation options 

in section 6.2. In this section I show that whereas my hypothesis is largely true, there are 

important caveats. Almost inevitably, in a work of this nature, there is far more unconcluded 

than there is concluded. Section 6.3 proposes directions for future work. 

6.1 Portable architectures 

Simple iterative servers are trivially ported between platforms which provide some form of 

BSD sockets interface. The Winsock 2 implementation of BSD sockets is reasonably similar 

112 



CHAPTER 6. CONCLUSION 113 

to Unix implementations. Areas of difference such as the treatment of error codes, ioctl 

options and the semantics of close() I closesocket () and shutdown() are addressed in 

Chapter 3. They do not present a significant challenge in terms of portability and can easily 

be accommodated with simple Wrapper Facades and pre-processor macros. 

In order to be useful, servers must usually be able to handle a number of concurrent 

connections (referred to as the capacity of the server). Architectural patterns to support 

concurrent connections fall into three categories: 

• Single process event driven (SPED) 

• Thread-per connection 

• Threadpool 

Multiple process servers fall into one or other of the latter two categories. For. each of 

. these, the service handler code is dispatched in its own thread context. Whether the threads 

exist within a single process, or are distributed across processes, the resulting architecture 

is generally one of the latter two from the list above. 
,.~· 

The following two sections describe the portability of event driven and multi-threaded 

servers respectively. 

6.1.1 Event mechanisms 

The primary portability issue with event driven servers revolves around the different de­

multiplexing mechanisms. Winsock provides a select() function which is sufficiently sim­

ilar to the BSD derived equivalent to be a useful common denominator. Both Windows 

and Unix provide a range of alternative mechanisms to select(). On Windows there is 

WaitForMultipleObjectsO, Asynchronous Procedure Calls (APCs) as well as the older 

message based asynchronous I/O of Winsock version 1. The various Unix-like flavours sup­

port different mechanisms .such as the POSIX poll() system call, signal driven I/O as well 

as the newer explicit kernel event queue mechanisms supported by BSD kernels. Fortunately 

the process of building software frameworks to dispatch service handlers in response to events, 

allows one to decouple the dispatching mechanism from the actual platform-specific event 



CHAPTER 6. CONCLUSION 114 

detection mechanism. The resulting component (such as the Tel Notifier and ACE reactor 

discussed in Section 4.2) presents a platform-neutral interface. 

6.1.2 Threads and processes 

Forking a new process to handle an incoming connection is a common idiom on Unix-like 

platforms. In Section 5.7.1 we saw that this idiom does not translate well to Windows 

platforms. The Win32 API lacks the fork() system call and uses CreateProcess() to 

create new processes. CreateProcess () must load its process image from a disk file and is 

thus similar to a combined fork() plus exec(). POSIX emulation toolsets such as Cygwin 

and Uwin provide an emulated fork, but such emulations are necessarily inefficient - two 

levels of copying are required: the process must be created in a suspended state, which still 

involves copying the image from the disk file, and then this image must be overwritten with 

that of the parent process. The Uwin version proved to be unreliable under sustained load 
• 

conditions. Table 5.3 in Chapter 5 shows that the Cygwin version of the forking server 

performed successfully, but at considerable cost in terms of CPU cycles and througput. 

The Windows 2000 kernel primitives for creating processes may well have a me'~s of 

avoiding the double copying referred to above. Interix is a POSIX environment subsystem 

implemented on top of the Windows 2000 kernel, ie bypassing the Win32 environment sub­

system. The Interix version of the forking server consumed less than 40% of the CPU cycles 

used by the Cygwin version. Whereas it is still considerably more heavyweight than the 

single process servers it is clearly more efficient than emulating fork() through the Win32 

APL 

The fact that fork() has been implemented on Windows using these two approaches is 

probably more significant than the efficiency of the implementations. Even on Unix plat­

forms, the fork-per-connection model is not the best model to use when performance is the 

major criterion. The Cygwin implementation, which was by far the slowest of all the servers 

tested, still managed to service 20000 connections in 409 seconds - that is 48 connections 

per second which may weli be adequate for a wide range of applications. 

Having multiple threads within a single process presents fewer problems. In section 4.3.2 

we saw that the thread creation semantics of POSIX Pthreads calls and Win32 calls are 

very similar. They introduce no substantial barriers to porting multithreaded programs 



CHAPTER 6. CONCLUSION 115 

between Unix-like and Windows systems. Synchronization primitives, such as mutexes and 

semaphores, are present and also exhibit similar behaviour. The lack of an equivalent to 

POSIX condition variables on Win32 systems does present a non-trivial challenge, which is 

discussed by Schmidt [46]. 

Given the similarities, it may seem surprizing that neither Cygwin, Uwin nor Interix 

provided a Pthreads interface. In fact this has less to do with the difficulty of porting 

Pthreads, and more to do with the thread safety ofthe resp€ctive runtime environments. 

This is an area which has been under active development (at least in the Cygwin and Uwin 

projects) since this work began. At the time of writing Cygwin does provide a substantial 

portion of the Pthreads APL 

6.2 Portable implementations 

Given that the architectures discussed can be ported between platforms, the question·remains 

.of how best to implement these and what the associated costs and benefits are. There are 

two different scenarios which were presented in Chapter 2. In the one case we attempt to 

leave the existing platform specific code untouched, and instead provide an intermediate 

porting layer to support the code on the foreign platform. In the other, we consider the case 

of writing software from scratch with portability as a specific design goal. The merits of 

these two approaches are presented in sections 6.2.1 and 6.2.2 below. 

6.2.1 Making existing code portable 

Two approaches to making existing Unix code portable to Windows systems were presented. 

Using a POSIX emulation layer (Section 2.2) and using a POSIX Windows NT environment 

subsystem (Section 2.4). Two examples of emulation layers were used: Cygwin (Dll version, 

an open source project from RedHat, and Uwin, a commercial product from AT&T Research 

· Labs. The environment subsystem used was Interix, formerly from Softway Systems, now 

owned by Microsoft Corporation1. A brief overview of these systems was given in Chapter 

2. 
1The latest Interix distribution from Microsoft hrui been incorporated into their SFU (Services For Unix) 

product. 



CHAPTER 6. CONCLUSION 116 

Each of the systems reviewed provides more than just access to a UNIX-like APL They 

also provide (indeed require) a development environment including header files, libraries, 

shells and other utilities as well as a supporting runtime environment. Whereas this may 

be a considerable amount of infrastructure for a simple porting project, there are significant 

benefits: 

• No source code changes were required when recompiling code originally developed on 

Linux. The Windows versions of iterative, fork-per-connection and select based servers 

in Table 5.1 were all compiled using the same source as the Linux versions in Table 

5.2. 

• Having a fairly complete runtime environment means that one can also make use 

of existing Makefiles and configure scripts. Though this was less of an issue with 

my simple servers, it can contribute significantly to the maintenance effort for larger 

software projects. 

A significant feature of all three systems is support for the fork() function, as discussed 
, .. 

in Section 6.1.2 above. We saw in Section 5.7.1 that the performance of the three implemen-

tations varied greatly. The Uwin forking server disappointingly failed to handle the load of 

20000 connections - I failed to establish what the problem was. Both the Cygwin and Interix 

versions were reliable, though the Cygwin fork() is clearly very slow. 

The Interix development environment is currently far better suited to compiling C source 

than ANSI C++. The Interix frontend to the Microsoft Visual C++ compiler accepts C 

code only. An alternative compiler, an early version of gee (2.7.2), is bundled with the de­

velopment environment, but this version has poor ANSI C++ conformance. This limitation 

is unfortunate and is likely to be corrected in future releases. It should be possible, for 

example, to compile a later version of gee using the bundled gee 2.7.2. 

The performance results of Table 5.3 show that there is in each case a performance 

penalty when using any of the three toolkits, but each appears to have different strengths 

and weaknesses. In the simple iterative server tests the Cygwin version performed almost as 

well as the native version but used 42% more CPU time for the select based server. Uwin, on 

the other hand, suffered a performance hit of 11 % CPU utilization for the iterative tests, but 

also only 11 % for the select based server. Interix performed slightly worse in the iterative 



CHAPTER 6. CONCLUSION 117 

tests (14% extra CPU utilization penalty) but, as discussed in Section 6.1.2 above, has a 

relatively efficient fork() implementation. 

In summary we can conclude that POSIX emulation can be done quite effectively on Win­

dows NT derived systems, but expect some performance penalty when using Unix paradigms 

which are particularly foreign to the native system. If raw performance is not the primary 

design goal (as frequently it isn't) then this is a painless way of porting applications. Each 

of the three systems discussed have been used effectively to port large amounts of existing 

source code to Windows. Both Uwin and Cygwin have seen active development over the past 

few years, with frequent version updates. We can reasonably expect that their functionality 

and efficiency will continue to improve. Interix has been absorbed into Microsoft's Services 

For Unix product where it forms the heart of their Unix legacy applications ports (inetd, 

telnetd, nfsd etc). 

6.2.2 Portability from the outset 

. Designing software with portability as a specific design goal is a different problem to porting 

existing code. For a given set of requirements, there may be many. choices open .to the 

developer. The choice of implementation language can play a significant role in the ease of 

··development and effectiveness of a portable solution. 

C style code 

We saw in Chapter 3 that the BSD sockets API and indeed the rest of the system API of 

the platforms considered are C language API's. Whereas programming close to the system 

API may be desirable in terms of run-time efficiency it can also create the most significant 

maintenance problems. We saw in Section 3.3, that the preprocessor can be used to isolate 

platform specific versions of the code for conditional compilation. The physical complexity 

of such an approach frequently results in code which is prone to error, difficult to read and 

maintain. This physical complexity can be contained to a certain extent by concentrating 

the ' '#ifdef ... #end if' ' preprocessor directives into a single file. Jon Snarler [53] gives 

an example of one such approach in his book on TCP /IP programming2
. 

2The source code for his examples are available at http://pwl.netcom.com/ jsnader/etcpsrc.tgz. 



CHAPTER 6. CONCLUSION 118 

We can reduce this physical complexity by abstracting through the use of library func­

tions. We saw in Section 2.3.1 how the Tel C library can be used as an example of such an 

abstraction layer. Whereas the Tel library is not a purpose written communication library, 

it is widely ported and provides a ready made channel abstraction which removes the ne­

cessity of programming directly to the sockets layer. The Tel Notifier provides a convenient 

and portable event mechanism which makes it a particulary suitable candidate for coding 

. event driven servers. Tables 5.3 and 5.4 show that the CPU utilization cost of a Tel library 

based server over a native coded select() based server is remarkably low. Less than 10% 

on Windows and only 1 % on Linux. 

c++ code 

The object oriented language features of c++, particularly in the implementation of Wrap­

per Facades, can be effectively used to reduce software complexity and hence increase read­

ability and robustness. The Ace toolkit (described in Chapter 2) makes use of Wrapper 

Facades and other patterns to provide communication software frameworks which combine 

flexibility, reusability and portability in an extremely efficient way. In Chapter 5 we saw 

that portable iterative, event driven and multi-threaded servers could be implemented which 

·.showed neglible performance penalties compared to their native coded equivalents. Indeed in 

section 5 .2 we saw three cases on Linux where there was no way to statistically differentiate 

their performance from their native equivalents. 

These results provide the strongest support for my hypothesis that portability does not 

necessarily imply a significant penalty in efficiency. In the three cases referred to above there 

is no CPU utilization penalty at all3 . 

Virtual machines 

Java is a very popular choice for cross platform development. We saw in Chapter 2 that 

Java compilers produce byte code targetted at the Java Virtual Machine. The portability 

problem is completely delegated to the virtual machine layer. One of the limitations of Java 

has been the lack of support for non-blocking 1/0. This has meant that, though Java could 

be used to implement all of the multi threaded architectures of Section 4.3, it was not possible 

3Note that we are still ignoring the question of memory efficiency here. 



CHAPTER 6. CONCLUSION 119 

to implement the event driven model of Section 4.2. The new Sun Jdk vl.4 has introduced 

support for non-blocking I/O, but I am unaware of any independent performance studies 

done on this at the time of writing. 

The Sun Jdk vl.3 was used on both Windows and Linux for the experiments described in 

Chapter 5. The server optimized version of the virtual machine was used on Linux, whereas 

only the client virtual machine was available to me for the Windows experiments. The results 

(Tables 5.3 and 5.4) show that, for the simple iterative servers, Java performs well in terms 

of connections handled per second, but there is a significant cost in CPU utilization on both 

platforms. The multithreaded servers show a similar penalty in CPU utilization, but also 

show a drop-off in the number of connections handled per second on both platforms. This 

seems to indicate that the Java thread wrappers introduce some additional latency to the 

underlying PThreads and Win32 threads APL 

6.3 Future work 

A large part of the experimental aspect of this work involved looking at overall CPU utiliza­

tion as a measure of efficiency. Whereas there are hazards associated with interpreting such 

a measure too simplisticaly, it is significant that the experiments revealed few surprizes. 

The figures, by and large, revealed simple and consistent characteristics. Future work is 

required to establish if there are useful predictive extrapolations to be made between this 

measure of efficiency and more established external performance measures such as latency 

and throughput under various test load conditions. 

The Orchestrator distributed test suite used in the experiments presented in this work, 

was designed with flexibility and extensibility as primary design goals. The scope of this 

work required that only a single, simple load client be implemented. More work needs to be 

done to extend the range of load generating and monitoring services within the framework. 

POSIX Asynchronous I/O (aio) and Windows overlapped I/O have similar semantics, 

yet none of the POSIX emulation tools on Windows support this I/O mode. The increasing 

·.number of UNIX-like systems providing better aio support coupled with the dominance of 

overlapped I/O as the preferred I/O mode on Windows, raises the challenge of an aio port 

to Windows. The open source Cygwin environment may well be the best avenue to pursue 



CHAPTER 6. CONCLUSION 120 

this work. 

The Microsoft .NET framework has been released since this work was started. FreeBSD 

and Linux ports of the .NET virtual machine have already appeared. Though sharing the 

VM concept with Java, there are a number of substantial differences in the implementation 

and design rationale of the two [10]. Counting the CPU cycles used by the .NET VM under 

the same conditions presented here may well provide some useful insights into the efficiency 

of this new technology. 

,, .. , 



Appendix A 

Orchestrator - a distributed test suite 

Orchestrator is a system designed to facilitate the control and monitoring of server load 

test experiments in a heterogeneous distributed environment. The use of CORBA as a 

middleware abstraction layer allows a high degree of flexibility and configurability .• 

The system was designed to facilitate the gathering of the data presented in Chapter 

5, but is sufficiently general that it could easily be adapted to meet different experi1,11-ental 

· requirements. 

A.1 Overview 

In order to conduct experiments such as those described in Chapter 5, we can identify a 

number of participants: 

1. the server process under test; 

2. one or more load generating clients; 

3. a supervisory process to oversee and capture results. 

To assist the supervisory process, it is also useful to provide a naming service. The supervi­

sory process can query this service to determine where to find the server to test and where 

the load generating clients are. 

I have implemented a number of CORBA objects which map onto these participants. 

Figure A.1 shows a schematic representation. The machine on which the server(s) are to be 

121 



APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 122 

Load Clients 

Server 

NameService Harness WorkTeam 

I I I I I 

MICOORB 

I 

Orchestrator 

Figure A.I: Test Environment 

tested exposes an object called Harness. Harness objects offer an interface for starting and 

stopping processes, as well as methods for querying the CPU utilization on the machine. A 

benefit of exposing such an interface is that the platform specific implementation of these 

methods is hidden from the user of the object. 

Similarly, WorkTeam objects reside on load generating client machines. Users of a Work­

Team object can specify parameters to the load generator and start and stop load generating 

activity. 

The Harness and all WorkTeam objects register themselves with the CORBA NameSer­

vice on startup. The organization of the naming service is shown in the tree below: 

\--orchestrator-- servers <hostname> Harness 
I 
+--- clie.nts <hostname> WorkTeam 

+ -- <hostname> WorkTeam 



APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 123 

I call the supervisory process the orchestrator. The orchestrator runs in a single process 

on a machine separate from the server and load generators. By querying the name service the 

orchestrator can acquire a reference to the distributed Harness object. Using this reference 

it can start (and stop) server processes on the remote test machine. The same orchestrator 

process can also acquire references to one or more WorkTeam objects. Armed with these 

references it is possible to conduct an experiment by calling on the WorkTeam(s) to generate 

a load on the server. Once the server has handled the required number of connections (20000 

connections were used in my experiments) the orchestrator queries the Harness object for 

the CPU utilization figures. At this point it can kill the running server process and repeat 

the cycle. 

The CORBA IDL description of the harness object is shown in Figure A.2 below: 

1 // harness.idl 
2 // IDL 

msrcjhamess/hamess. idl 

3 struct usage { 
4 .double user; 
5 double system; 

II process user time in seconds 
II process system time 

6 double ·.total_user; 
7 . :double total_system; 
8 }; 
9 

10 interface harness 
11 { 

// total user time in seconds 
II total system time 

12 boolean start(in string cmd); //Start process 
13 boolean signal(in short signum); //Kill process 
14 boolean getcurrent(out usage times); //Current usage 
15 }; 

Figure 1.2: Harness IDL 

msrc/harness/hamess. idl 

Harness objects are very simple. The start method can be used to start an arbitrary 

, process on the machine by providing the name of the executable1
. What distinguishes it 

'There are no security safeguards currently built in - anyone with a handle on a Harness object can run 

arbitrary processes. Building in a security model would be possible, but was not deemed necessary in a 

controlled environment. 



APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 124 

from a simple rsh type command which one would use on a UNIX-type system, is that the 

interface disguises the platform specific details of creating and monitoring the process on 

either UNIX or Windows systems. 

Figure A.3 shows the IDL for the WorkTeam object: 

msrc/wteam5 /load. idl 

24 interface WorkTeam { 
25 II The init method must be called prior to connections being made 
26 II Specify the ip address in dot format and the listening port 
27 II of the server under test 
28 boolean init(in string host, 
29 in unsigned short port, 
30 in unsigned long numbytes); 

31 II dowork is a blocking call 
32 II it does not return until all the work is done or if there has 
33 II been an error - in which case it returns false 
34 II Parameters are: 
35 II numpararallel - the number of concurrent worker threads to deploy 
36 II numbytes - the number of bytes to request for each connection 
37 II num_iter - the total number of connections to make 
38 I I .time - total real time in seconds for all threads to complete •· 
39 //either num_iter or time must be speCified as non-zero to define the 
40 II amount of work to be done. On return both will contain valid data 
41 II Returns no of failed attempts 

42 long dowork( inout long num_iter, 
43 inout double time, 
44 in long numparallel); 
45 }; 

Figure 1.3: WorkTeam IDL 

/msrc/wteam5 /load. idl 

The CORBA implementation used was the excellent open source Mico ORB from the 

University of Frankfurt. 

.A.2 Scripting the orchestrator 

Mico is a C++ CORBA implementation. The Harness and WorkTeam classes are also 

implemented in C++ because they need to access low level system API's on the target 



APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 125 

platforms. The CORBA IDL is, however, language independent - we can implement the 

orchestrator in any language which has CORBA IDL bindings. Using C++ (or Java) for 

this task is neither the simplest nor the most desirable in this context. Ideally we would like 

to be able to flexibly configure different experiments using simple configuration scripts. 

Tel is a language ideally suited to this problem. Automated software testing is one 

of its traditional strengths [21] and creating Tel bindings to the CORBA IDL is a simple 

process. Better still, an existing Tel-IDL binding could be used. I made use of of the Combat 

(originally Tel Mico) Tel extension [34] for this purpose. 

A simple orchestrator script might then look like the following: 

set Yt1name "/orchestrator I clients/starship/WorkTeam" 
set harnessname "/orchestrator/servers/bobsdell/Harness" 

# look up handles from nameservice 
set harnesshndl [get_handle $harnessname] 
set Yt1hndl [get_handle $Yt1name] 

.. #initialise the Yorkteam: 
$Yt1hndl init 192.168.0.10 60002 4000 

# ask harness to run "myserver" 
$harnesshndl start· "myserver" 
puts stderr "Server starting .... " 
set Yt1hndl [get_handle $'1t1name] 

# pause a second to let things settle 
after 1000 

# spaYn 5 yorkers to make 20000 connections 
$Yt1hndl dOYOrk 20000 300 5 

$harnesshndl getcurrent R 
puts stderr "$server Usage: $R" 

# send SIGINT to "myserver" 
$harnesshndl signal 2 

The actual scripts used are more complex in that they must be capable of running batch 

jobs to test lists of servers robustly. A combination of awk and tel scripts are used on the 



APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 126 

orchestrator output to calculate statistical properties and prepare the data for plotting with 

gnu plot. 

A.3 Test environment 

Figure A.4 shows the physical test environment used. The test servers were run on bobsdell 

which dual-boots Linux and Windows 2000. The orchestrator process was run on starship. 

WorkTeam loadservers were run on bobsdell and boys. 

boys 

200MHz AMO K6 
64MRAM 
Linux 2.2.19 

lOMbs Ethernet (10Base2) 

starsh1"p 

300MHz Intel Celeron 
96MbRAM 
FreeBSD4.5 

bobsdell 

Dell Latitude 
750Mhz Intel Pentium II 
128MRAM 

Windows 2000 Professional I Linux 2.4.3 

Figure A.4: Test Environment 

The lOMbs ethernet network was the bottleneck which determined the maximum through­

put. This effectively ensured that the server would never be saturated - typically it was 

running at around 30% CPU utilization. 

This was not a limitation for the experiments carried out in this work, as I was primarily 

concerned with the total number of cycles used to process a fixed number of requests. 

A.4 Related work 

There a number of other examples of using CORBA in a testing and monitoring environ­

ment. The Open Group proposed a Universal Measurement Architecture [32] which suggests 



APPENDIX A. ORCHESTRATOR - A DISTRIBUTED TEST SUITE 127 

CORBA as a good candidate for distributed measurement. 

Geihs and Gebauer [9] developed a general load monitoring tool using CORBA and Tel. 

Whereas their tool is more a more complete monitoring system than mine, it does not not 

include the load generation aspect. 

A weakness of my orchestrator system is that it does not take dynamic real-time measure­

ments. The system must reach a steady state (ie complete a fixed number of tasks) before 

the measurement is taken. Real-time extensions [60] to the CORBA standard can be used to 

implement a more dynamic flexible measurement system. Harrison et al [12] implemented a 

Real-time CORBA Event Service which could meet the Quality of Service requirements for 

low-latency, predictable real-time measurement. 

..~-



Appendix B 

Software versions 

The software versions used in this work are as follows: 

Windows Linux 

OS version Win2000 Professional SP3 2.4.3 (Mandrake 8.0) 

ACE 5.2 5.2 

Tel 8.0p2 8.3.2 

Cygwin 1.3.10 -
Uwin 2.9 -

Java Sun Hotspot VM 1.3 (Client) Sun Hotspot VM 1.3 (Server) 

Table B.l: Software versions 

128 



Appendix C 

Cost of Function calls 

The ACE toolkit includes a number of sample applications which measure various aspects of 

the system making use of high resolution timers. I include the results here of the function call 

tests on Linux and Windows systems. The Linux system is using gcc2.96 and the Windows 

sytem, Visual C++ 6.0. 

C.1 Linux 

bobsdell.cs.up.ac.za (i686), Linux 2.4.3-20mdk at 18:00:37.457912 
10000000 iterations 
An empty iteration costs 0.002 microseconds. 

operation time, microseconds 
========= ================== 
global function calls: 

inline function call 
non-inline function call 

member function calls: 
inline member function call 
non-inline member function call 

0.000 
0.005 

0.000 
0.008 

.member function calls, class has a virtual function: 
inline member function vith virtual call 
non-inline member function v/virtual call 

virtual member function calls: 

129 

0.000 
0.008 



APPENDIX C. COST OF FUNCTION CALLS 

virtual member function call, optimizable 
virtual member function call 

C.2 Windows 2000 

0.009 
0.009 

BOBSDELL (Intel Pentium Pro), Win32 Windows NT 5.0 at 12:59:27.430000 
10000000 iterations 
An empty iteration costs 0.031 microseconds. 

operation time, microseconds 
========= ================== 
global function calls: 

inline function call 0.000 
non-inline function call 0.009 

member function calls: 
inline member function call 
non-inline member function call 

0.000 
0.008 

member:function.calls, class has a virtual function: 
.inline member function with.virtual call 0.000 
:non-inline member function w/virtual call 0 .007 

virtual member function calls: 
virtual member function call, optimizable 
virtual member function call 

0.007 
0.008 

130 



Appendix D 

TCPdump profiles 

In each of the following two tcp dumps, the client (starship) is a FreeBSD4.5 machine. The 

server (bobsdell) is running a simple iterative service. 

Windows 2000 on bobsdell 
00:13:37.618-158 itarship.30384 > babsdell.60002: S 460880889:460880889(0) vin 65635 

<IU• 1460,nop,vic:al.• 1,nop,Dopiti.m.ltiUlp 4052004 0> 
00:13!37.619470 bobidell.60002 > •taribip.30384: S 2710004()82:2710004082(0) ac:l: 460880890 vin 17620 

<iu1 1480,nop,vicale O,nop,111op,t!Ju1tamp 0 O> 
.(10:13:37.519669 itarship.3<1384 > bobidell.60002: , ack 1 wia 33304 <nop,nop,tilu1tamp 4052004 0> 
00:13:37.620394 bobidell.60002 > staribip.30384: P 1,8(7) aclt 1 vin 17520 <nop,nop,thie1tamp 4374513 4052004> 
00:13:37.521205 itarship.30384 > bobsdell.60002: P 1:6(4) •"- 8 win 33304 <nop,nop,t1-1tamp 4.052006 437493) 
00:13:37.524723 'bobsd111.l50002 > 1tar1bip.30384: , 8:1456(1448) •ck 5 vin 17516 Ucp,nop,t!Just-.p 437493 4052005> 
00:13:37.6.27086 bobsdell.60002 > •tar•bip.30384: • 1456:2904(1448} ack 5 vin. 17516 <n.cip,n.Q-P,U.••••tamp 437493 4052006> 
00:13;37.627821 bcib•d•ll.50002 > •tarihip.30384: P 2904:4008(1104) ac;k 6 win 17616 <nop,n.op,tilu1tamp 437493 4062005> 
(10:13:37.527i99 itership.303&4 > bobidell.60002: , ack 2904 win 32580 <n.op,D.op,t1.J1111tamp 4062006 437493> 
00:13:37.528616 itarship.30384 > bcibsdell.80002: F 5:5(0) ack 4006 vb 33304 <D.op,nop,timestamp 4052006 437493> 
00:13:37.529060 bob•dell.60002 > •taribip.30384: . ae.k 6 111.D. 17516 <n.op,:n.op,dme11:uip 437493 4052005> 
00:13;37.629185 bcib•d•ll.60002 > staribip.30384: P 4008:4008(0) •ck 6 win 17516 <n.op,11op,tilu1tamp 437493 4062006> 
(10:13:37.629299 1tar1bip.30384 > bobsd.ell.60002: , ack 4009 vin 33304 <n.op,n.op,t1-1ta.mp 4062005 437493> 

Linux 2.4.3 on bobsdell 
00:57:04.536136 1tar1bip.30404 > bcibsd•ll.60002: S 2911444960:2811444960(0} vin 55535 

<m.11 1460,nop,v1c1le 1,ll0p,110p,tilu1tuip 4312702 O> 
(10:57:04.536880 bcibidell.60002 > ataribip.30404: S 1799787272:1799787272(0) aclc. 2911444961 vin. 6792 

<ms1 1460,ll0p,110p,1:i11.e1tuip 59n1 4312702,n.op,vscal• O> 
00:57:04.637066 1tar1bip.30404 > bobidell.60002: . ack 1 win 33304 <n.op,11op,time.11:uip 4312702 69771> 
00:67:04,537977 bob•dell.60002 > .1tar1bip.304041 P 118(7) a.ck 1 will 5792 <nop,n.op,1:ime1t1111p 59771 4312702) 
00:57:04.638358 1tar1hip.30404 > bob1dell.60002: P 115(4) ack 8 Yin 33304 <n.op,n.op,time1tamp 4312702 59771> 
00:57:04.638810 bobidell.60002 > 1tar1bip.30404: , ack 5 win 6792 <n.op,nop,tilil••tamp 59771 4312702> 
00:57:04.542002 bob•d<11ll.60002 > starihip.30404: , 8:1456(1448) •ck 5 win 6792 <n.op,nop 1 t1-1tamp 69n1 4312702> 
00:57:04.643210 bobidell.60002 > staribip.30404: . 1456:2904(1448) •ck 5 vin 6792 <nop,nop,ti111e1tamp 69771 4312702) 
00:67:04.543940 bobidell.60002 > 1tu1bip.30404: P 2904:4008(1104) e.ck 6 via 6792 <nop,nop,tilu1tamp 69771 4312702) 
00:57:04.544078 1tu1hip.30404 > bob1d<11ll.60002: , e.ck 2904 •in 32590 <nop,nop,tilu1tam.p 4312703 69771) 
00:57:04.644797 starihip.30404 ) bobidell.60002: F 6:6(0) ack 4008 win 33304 <nop,ncip,tilli••tlllllp 4312703 69771> 
00:67:04.645243 bob1d111.60002 > 1ter1hip.30404: F 4008:4008(0} a.ck 6 win 5792 <D.Q-P 1 nop,tiln••tamp 59772 4912703> 
00:67:04.645403 s'tarihip.30404 > boh•d•11.150002: • ack 4009 win 33304 <nop,nop,ti111t11tamp 4312703 69n2> 

131 



Appendix E 

Static Reflector Pattern 

This pattern was presented at the PLOP 2001 conference, Allerton, Illinois. It is struc­

tured according to the canonical form under the headings Name, Problem, Context, Forces, 

Solution, Resulting Context, Rationale, Examples and Related Patterns. • 

Somewhere near the bottom of the food chain of object oriented programming, the devel­

. oper frequently encounters the rock face of a non object oriented AP!. This paper describes a 

. specialisation of the Wrapper Facade {49} {47} pattern. Wrapper Facades encapsulate func­

tions and data provided by existing non-object oriented API's. The Static Reflector addresses 

the particular problem of building wrappers which contain functions which take C function 

pointers as parameters. The pattern makes use of a static reflection method to facilitate the 

construction of cohesive, reusable framework classes which make use of such C functions. I 

show that the application of this pattern is surprisingly wide. Though concerned primarily 

with the interface between C and C++, the pattern has implications and applications to other 

languages as diverse as Java and finer Tel}. 

E.1 Name 

Static Reflector 

132 



APPENDIX E. STATIC REFLECTOR PATTERN 133 

E.2 Problem 

Many non-object oriented API's contain functions which arrange for another function (the 

target function) to be dispatched, perhaps in the context of a new thread or in the future, 

in response to an I/O, timer or user interface event. Building object oriented components 

on top of such API's is complicated by the fact that the target function must be statically 

declared. There is generally no way to directly specify a member function of an object 

instance to be the target of such an API function. 

As a motivating problem, consider the problem of implementing a Java Thread class in 

a Java Virtual Machine written in C++ using the POSIX threads AP!. Java threads have 

a start() method which causes a new thread to be spawned to run, with its run 0 hook 

method as the thread entry point. In Java we would create and despatch the thread like 

this: 

Thread t =new Thread(); 

t.start(); 

· A starting point might be to collect together the POSIX threads functions (pthread.:'.create () 

and family) into a cohesive Wrapper Facade[47]. It would then be convenient if we could 

build a c++ implementation as follows: 

class Thread { 
public: 

Thread() {} 
int start() 

{ 

} 

II incorrect - run is not static 
return pthread_create(&tid, NULL, 

run, NULL); 

protected: 

}; 

virtual void* run() 
{/* thread function */} 

pthread_t tid; //thread id 
f* ... other member data for 

the thread object */ 



APPENDIX E. STATIC REFLECTOR PATTERN 134 

The resulting run() method of Thread instances would have access to the member data 

of the instances. We could create new thread classes by inheriting from the base Thread and 

simply providing an overloaded run() method. Unfortunately, the call to pthread_create () 

is illegal as the third parameter refers to our run() method, which is not a valid static C 

function. 

The above code can be modified to compile correctly by simply declaring the run() 

method as static, but this has a serious drawback. Static class functions have no direct 

access to the instance data of the object, nor can they benefit from inheritance and poly­

morphism. 

E.3 Context 

This problem recurs frequently in the context of building C++ classes around C functions 

which take C-style function pointers as parameters. Such functions are usually sc\leduling 

functions of some sort i.e. they request that another function be dispatched after some event 

occurs or in the context of a new thread. 

Examples include: 

The POSIX threads library The function pthread_create () 1 , which is used for creat­

ing new threads, has an argument which specifies the entry function for the new thread. 

The function prototype is as follows: 

int pthread_create(pthread_t •thread, 
pthread_attr_t* attr, 
void* (•start_routine)(void •), 
void* arg); 

The start..routine argument specifies the entry function. 

The Win32 API This interface is rich in its use of function callbacks. The Set Wai table Timer() 

function, for example, has an optional argument to cause an Asynchronous Procedure 

Call (APC) to be queued when the timer expires. The argument specifies a pointer 

1 The Windows beginthreadex () function has a similar form and is also a candidate for static reflection 



APPENDIX E. STATIC REFLECTOR PATTERN 135 

to a C function. An application places itself in an alertable state, such as in a call to 

SleepEx (), to receive notification of the event and dequeue and dispatch the APC. 

The Tel C library This library provides a number of useful functions for creating event­

driven applications based around the Tel Notifier[33]. A commonly used one is TcLCreateFi 

which has the form: 

Tcl_CreateFileHandler(int fd, int mask, 
Tcl_FileProc proc, 
ClientData clientdata) 

The proc argument is a pointer to a C function. Typically, the application waits for 

events in an infinite loop, blocking in calls to TcL.DoOneEvent {). 

Each of the above is characterized by having at least two arguments; one being a pointer to 

a C function and the other a general purpose argument which is passed through to the target 

.function (the void* arg in pthread_create, the ClientData clientdata in TcLCreateFileHandler). 

·· The purpose of this argument is to pass data to the target function. ,. 

Such functions are commonly found in system APis as well as in legacy C libraries. These 

functions are important in the implementation of components for use in extensible object 

oriented frameworks. Template and Hook methods[38] commonly form the metapatterns for 

such components, with the initiating method which makes the call to the C API scheduling 

function, being the template method. Hook methods are the application specific "hotspots" 

ie. the methods which are dispatched as a consequence of invoking the template method. 

They provide the application specific behavior. The problem-solution pair description below 

illustrates how the impedance mismatch between c and c++ frequently dictates the use of 

a third participant in this collaboration, the static reflector function. 

E.4 Forces 

• The developer needs to interact with a non object-oriented API for reasons of effi­

ciency or fine grained functionality. The creation of Wrapper Facades i.e. clustering 

cohesive groups of functions into classes, is a proven good strategy[49] for dealing with 



APPENDIX E. STATIC REFLECTOR PATTERN 136 

this interactiion. Functions which arrange the dispatch of other functions, such as 

those described above, present an implementation problem in creating classes based 

on Wrapper Facades because the target functions, in each case, must fall outside of 

the Wrapper Facade (or any other) class. The run() method of a thread class, for 

example, should form part of the cohesive cluster of functions which operate on thread 

objects. 

• An important benefit of building object-oriented infrastructure on top of a non object­

oriented API is the encapsulation of data with the methods which operate on that 

data. We would like the run() method in our thread example to have access to the 

thread instance variables such as tid in the example2 . This behaviour would in fact 

be mandatory in an implementation of a Java Thread. 

E.5 

Similarly, callback functions, such as file3 and timer event handlers must frequently 

implement complex state machines. Having the callback as a member function hook 

with access to instance data has desirable consequences. It is these hooks which must 

act upon and alter the state data. Encapsulating the data with the methods ~hich 

operate on it imposes some control and order on the resulting design. 

Solution 

The Static Reflection pattern resolves these forces by providing a mechanism for causing the 

dispatch of an object member function. It does this by introducing a static method to the 

collaboration, which is the intermediate target of the scheduler function. It makes use of the 

generic void* type argument provided by the scheduler functions to send, not explicit data 

to the target function, but a reference back to the originator of the scheduling call (a this 

pointer in C++). This collaboration is illustrated in Figure E. l. 

Applying this pattern to our Java Thread class implementation yields a solution which 

resolves the problems encountered earlier: 

2The advantages and disadvantages of implementing thread specific storage in this way compared to using 

the traditional thread specific storage interfaces have been described in (cite schmidt plopd 4) 
31 use file in the very generic Unix sense of a file descriptor, which may actually refer to sockets, pipes or 

fifos 



APPENDIX E. STATIC REFLECTOR PATTERN 

CAPJ 
Wrapper Facade 

Template Method >--+--------+< Scheduler 
Function 

Hook Method 

reflect 

despatch 
Static ReHector 

Figure E.1: Collaborations 

class Thread { 
public: 

Thread() {} 
int start() 

{ 

return pthread_create(&tid, NULL, 
reflect, this); 

} 

protected: 
inline static void reflect(void* id) 

{ 

(Thread*)(id)->run(); 
} 

virtual void* run() 
{/* thread function */} 

pthread_t tid; //thread id 
/* other member data for 

the thread object */ 

137 



APPENDIX E. STATIC REFLECTOR PATTERN 138 

}; 

E.6 Resulting Context 

An important consequence of the Static Reflection pattern is the ability to build framework 

objects through inheritance. By making the hook method virtual in the base class, derived 

classes need simply to provide an implementation of the hook method. The reflector in the 

base class will ensure that the hook is dynamically bound and despatched. 

abstractClass 

+template () ------ ----- Invokes C 

i:c:efle~t ( l · 2QiC scheduling 
#hook() 

I 
I I 

concreteClassA concreteClassB 

#hook() #hook() 

Figure E.2: Inheritance 

API 
function 

A desirable consequence of placing the static reflector within the namespace of the class 

is that scoping can be used to make the hook method protected. Placing the reflector outside 

of the class would require either the hook method to be declared public or the reflector to 

be a friend. 

A possible negative consequence of this pattern is the extra overhead involved with the 

double dispatch. This overhead is minimized by inlining the reflector method. Combined 

with the effects of compiler optimization the overhead should be negligible. 

E. 7 Rationale 

The task of the static reflector method is to simply delegate to the hook method of the 

object which originated the message. The mechanism is similar to the double dispatch of 



APPENDIX E. STATIC REFLECTOR PATTERN 139 

the Visitor Pattern of [8]4 By providing a reflector method to reflect the message back to 

the originating object the pattern solution effectively resolve the forces in the given context: 

• Cohesion is achieved, because we can include our target function among the other 

Wrapper Facade functions which act upon the object. 

• Access to encapsulated data is achieved, because the target function is a non-static 

member function of the class. 

E.8 Examples 

The Java thread example in the previous section is an example of a synchronous application 

of the Static Reflector pattern. The pattern is also used in this way in (4 7] to implement 

a threaded TCP service handler. Another example from the POSIX threads API is in the 

installation of thread exit handlers with pthread_cleanup_push (). 

The pattern is more commonly seen in the context of asynchronous, event-driven scenar­

ios. In this section I describe two such cases: one using C++ and the Win32 API and the 

other using lncrTcl and the underlying Tel Notifier. Both cases describe the implementation 

of timer handlers. I/O event handlers and GUI event handlers can be constructed using the 

same pattern, but the code for timers is shorter. 

E.8.1 Win32 APCs 

The Win32 API provides a mechanism known as an Asynchronous Procedure Call (APC)(27]. 

Threads have an APC queue upon which APCs are queued when they are due to be sched­

uled. Threads need to be in an alertable state for the APCs to be dequeued and dispatched. 

APCs are typically used for timer and 1/0 event handlers and provide an alternative mecha­

nism to the WaitForMultipleObjects () family of functions for demultiplexing and dispatch­

ing. APCs are a more explicit event delivery mechanism. WaitForMultipleObjects 0, like 

the Unix select() and poll functions(55], lends itself more to a state-driven rather than 

event-driven design[4]. 

4In fact it is more like a triple dispatch, where the dispatching of the reflector is separated by space (a 

new thread context) or time (an event handler) from the originating call 



APPENDIX E. STATIC REFLECTOR PATTERN 140 

In the example below, an APC is used to implement a timer handler. The template 

method in this class is the start() method and the hook method, timedout () is a pure 

virtual method. Note how the static reflector method, reflect(), and the timedout () 

hook are both protected. A concrete timer class, myTimer, is implemented by providing an 

implementation of the timedout () hook. 

#include <windows.h> 
#include <iostream> 
#include <string> 

class Timer { 
public: 

Timer() 
{ 

thndl = CreateWaitableTimer(NULL, FALSE, NULL); 
} 

void start(int fire, int repeat) 
{ 

} 

II scale everything up to milliseconds 
c liDueTime.QuadPart=-fire•10000; 
interval = repeat; 
II arrange for Win32 APC to reflector 
SetWaitableTimer(thndl, &liDueTime, interval, \ 

Timer: :reflect, this, FALSE); 

protected: 

}; 

II the static reflector function 
static VOID CALLBACK 
reflect(LPVOID self, \ 

{ 

} 

DWORD dwTimerLowValue, \ 
DWORD dwTimerHighValue) 

Timer* id= (Timer*)self; 
id->TimedOut () ; 

virtual void TimedOut() = O; 
HANDLE thndl; 
LARGE_INTEGER liDueTime; 
int interval; 



APPENDIX E. STATIC REFLECTOR PATTERN 

class myTimer : public Timer { 
public: 

myTimer(const string& name = "Anonymous") 
:myname(name) {} 

II the callback - vith access to member data! 
void TimedOut () 

{ 

cout « myname << " timed out" << endl; 
} 

protected: 
string myname; 

}; 

int main() 
{ 

} 

myTimer T1 ("A Win32 alert able timer") , T2; 
cerr « "Starting timers ... \n"; 
T1.start(3000, 3000); 
T2.start(4000, 3000); 
II A primitive event loop 
vhile(1) { 

SleepEx(INFINITE,TRUE); 
} 

E.8.2. [incr Tel] 

141 

Incremental Tel [incr Tel] is an object system for the Tel language created by Michael J. 

McLennan of Lucent Technologies[25]. Being an interpreted language, the mechanics are 

considerably less sophisticated than C++. [incr Tel] supports classes, scoping and inher­

itance, but has no notion of polymorphism and virtual methods. The underlying event 

demultiplexing and dispatching mechanism is based on the C language Tel Notifier, which 

necessitates the application of the Static Reflector pattern to build notifiable, event driven 

objects. The form is slightly different from the previous examples, but the pattern is the 

same. 

class Timer { 
#Note: the after command causes 



APPENDIX E. STATIC REFLECTOR PATTERN 

} 

# the reflex scriptlet to be 
# evaluated at global scope after 
# the elapsed ms. 
# reflex thus plays the role of 
# the static reflector 
method schedule {ms} { 

} 

set reflex "$this hook" 
after $ms $reflex 

method hook {} { 
puts "Timer expired" 

} 

class myTimer { 
inherit Timer 

method hook {} { 

} 
} 

# reschedule for 2 sec later 
schedule 2000 
puts "myTimer expired!!" 

myTimer ti 
t1 schedule 2000 

# wait 
# ti's 
# 
vwait i 

forever in event loop 
hook will be despatched 
after 2 seconds 

142 

It may not be immediately clear how static reflection is being used here. The key point 

is that the semantics of the tel after command determines that the argument script to after 

is evaluated at global scope. Notice how the template method (schedule) creates a string 

variable (reflex) which acts as the reflector to call back the hook method. In this case the 

hook method must be public because reflex is evaluated outside of the class namespace. We 

could have made the reflex script call back to a class wide procedure within Timer, which in 

turn called hook. This way the hook method could be declared protected, but at some cost. 



APPENDIX E. STATIC REFLECTOR PATTERN 143 

There are many non object oriented APis to which this this pattern can be meaningfully 

applied. One other such API the author is aware of is the Gtk toolkit, which is a C GUI 

framework used in the Gnome project5 . Tunctions such as gtk_signaLconnectO bind a 

C style function to a user-interface event. Static reflection is required to route such event 

handlers to object methods. 

E.9 Exceptions and Variations 

Not all scheduling type functions are candidates for static reflection. One notable exception is 

the installation and dispatch of signal handlers. The BSD signal() function and it's POSIX 

counterpart, sigaction(), specify a function to be dispatched in response to an operating 

system signal. Neither API function provides the facility for passing a this pointer, so static 

reflection cannot be used. [48) demonstrates how design patterns can be applied to the 
• 

development of signal handling components. 

The OpenGL GLUT library supports C-style callback functions for GUI events. These 

callbacks do not have the facility for passing a this pointer, so static reflection cannot be 

used. The author is aware of object oriented interfaces to OpenGL but not how they are 

implemented. 

Variations on the static reflector pattern are commonly seen when the collaboration 

between template, reflector and hook methods transgress class boundaries. I have shown 

examples where all three are defined in a single class. There are cases where it may be 

desirable to more clearly separate the functionality of these three. 

Creating pools of managed threads, for example, may suggest a design strategy where 

the template and reflector methods occur in a thread factory class, and the thread entry 

hook in a separate thread class. Similarly, one can separate an event handler class from the 

event dispatch and demultiplexing mechanism, as is done in the Reactor[51 J pattern. The 

essence of the template-reflect-hook collaboration remains the same in each case. 

5More information about gnome and gtk can be found at http://www.gnome.org/ 



APPENDIX E. STATIC REFLECTOR PATTERN 144 

E.10 Related Patterns 

This pattern is closely related to the Wrapper Facade[49] pattern, which addresses the prob­

lem of building object oriented infrastructure on top of non object-oriented APis. Whereas 

the Wrapper Facade deals with cohesive grouping of related existing API functions, the 

Static Reflector provides a mechanism for extending Wrapper Facades to include scheduled 

functions such as thread entry points and event callbacks. 

In its application to the context of event callbacks, there is also some relationship with 

the Reactor pattern. The TkReactor implementatiOn of the Reactor in the ACE toolkit 

makes use of static reflectors to dispatch timer and I/O handlers. 

The Static Reflector makes use of the Hook/Template Method[38] pattern and something 

similar to a Double Dispatch[8]. 



Bibliography 

[1] Christopher Alexander. A Pattern Language: Towns/Buildings/Construction. Oxford 

University Press, 1977. 

[2] John H. Baldwin. Locking in the Multithreaded FreeBSD Kernel. In BSDCon 2002, 

San Francisco, California, pages 27-35, 2002. 

[3] Gaurav Banga and Jeffrey C. Mogul. Scalable kernel performance for internet servers 

under realistic loads. In USENIX Annual Technical Conference, November 1998. 

[4] Gaurav Banga, Jeffrey C. Mogul, and Peter Druschel. A scalable and explicit"event 

. delivery mechanism for UNIX. In USENIX Annual Technical Conference, June 1999. 

[5] Per Bothner. A gee-based java implementation. In IEEE Compean 1997 Proceedings, 

pages 174-178, February 1997. 

[6] Helen Custer. Inside Windows NT. Microsoft Press, 1993. ISBN 1-55615-481-X. 

[7] Michael Franz. Emulating an Operating System on Top of Another. Software - Practive 

and Experience, 23(6):677-692, June 1993. 

[8] Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: 

Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995. 

[9] Kurt Geihs and Christoph Gebauer. Load Monitor LM - ein CORBA-basiertes 

Werkzeug zur Lastbestimmung in heterogenen verteilten Systemen. In MMB Freiberg, 

pages 173-189, 1997. 

145 



BIBLIOGRAPHY 146 

[10] K John Gough. Stacking them up: a comparison of Virtual Machines. Austmlian Com­

puter Science Communications, IEEE Computer Society Press, 23(4):55-61, January 

2001. 

[ll] The WinSock Group. Windows sockets 2 specification, rev 2.2.2, August 1997. 

ftp:/ /ftp. microsoft. com/bussys/winsock/winsock2 /. 

[12] Timothy H. Harrison, David L. Levine, and Douglas C. Schmidt. The design and 

performance of a real-time CORBA event service. In Proceedings of OOPSLA '97, 

pages 184-200, Atlanta, GA, October 1997. ACM. 

[13] ISO/IEC. International Standard: Programming Languages - C++, Number 

14882:1998{E} in ASC X3. American National Standards Institute, 1998. 

[14] Douglas C. Schmidt James C. Hu, Irfan Pyarali. Measuring the impact of event dis­

patching and concurrency models on web server performance over high-speed n~tworks. 

In 2nd Global Internet mini-conference, November 1997. 

[15] David A. Patterson John L. Hennessey. Fundamentals of Computer Design. Morgan 

Kaufmann Publishers (Inc), 1990. 

[16] Bob Jolliffe. Static Reflection Pattern. In PLOP2001 (Pattern Language of Progmms}, 

Illinois, September 2001. 

[17] Poul-Henning Kamp. Rethinking /dev and devices in the unix kernel. In BSDCon 2002, 

San Fmncisco, California, pages 77-88, 2002. 

[18] David G. Korn. Porting UNIX to Windows NT. In Proceedings of the 1997 USENIX 

Conference, pages 43-57. USENIX, 1997. 

[19] David G. Korn. UWIN - UNIX for Windows. In Proceedings of the USENIX Windows 

NT Workshop, pages .133-145. USENIX, 1997. 

[20] Greg Lehey. Porting UNIX Software. O'Reilly and Associates,Inc, 1995. 

[21] Don Libes. Automation and testing of character-graphic programs. Software Pmctice 

and Experience, 27(2):123-137, 1997. 



BIBLIOGRAPHY 147 

[22] T Lucey. Quantitative Techniques. DP Publications Ltd, Aldine Place, 142-144 Uxbridge 

Rd, London W12 SAA, 4th edition, 1993. 

[23] M. R. Macedonia and D. P. Brutzman. Mbone provides audio and video across the 

internet. IEEE Computer, 27(4):30-36, April 1994. 

[24] McKusick, Bostic, Karels, and Quarterman. The Design and Inmplementation of 4.4 

BSD Operating System. Addison Wesley, 1996. 

[25] M. McLennan. [incr Tel]: Object-Oriented Programming with Tel, 1993. 

[26] Microsoft Corporation. Microsoft Developer Network (MSDN) Library, October 1999. 

[27] Microsoft Corporation. Microsoft Developer Network (MSDN} Library, April 2000. 

[28] Microsoft Corporation . . NET Framework Developer's Guide, Microsoft Developer Net-
' work (MSDN} Library, July 2002. 

[29] Jeffrey Mogul. Brittle metrics in operating systems research. In 7th IEEE Workshop 

on Hot Topics in Operating Systems (HotOS- VII}, pages 90-95, March 1999. Rio Rico, 

AZ. 

[30] Patrick Naughton. The Java Handbook. McGraw-Hill, 1996. 

[31] Geoffery J Noer. Cygwin32: A free win32 porting layer for unix applications. In 2nd 

Usenix Windows NT Symposium, 1997. 

[32] The Open Group (X/Open & OSF). Systems Management: Universal Measurement 

Architecture. GAE Specification C427, January 1997. 

[33] John K. Ousterhoudt. Tel and The Tk Toolkit. Addison-Wesley, 1994. 

[34] Frank Pilhofer. Combat. a CORBA language mapping for Tel. In EuroTcl Conference, 

2000. 

[35] J. Postel. User Datagram Protocol. RFC768, August 1980. 

[36] J. Postel. Internet Protocol. RFC791, September 1981. 



BIBLIOGRAPHY 148 

[37] J. Postel. Transmission Control Protocol. RFC793, September 1981. 

[38] Wolfgang Pree. Design Patterns for Object Oriented Software Development. ACM Press, 

Addison Wesley, 1995. 

[39] Niels Provos and Chuck Lever. Scalable Network I/O in Linux. Technical Report 

CITI00-4, Center fo Information Technology Integratiop., University of Michigan, May 

2000. 

[40] Bob Quinn and Dave Shute. Windows Sockets Network Programming. Addison-Wesley, 

1 edition, 1995. 

[41] Dennis Ritchie. A Stream Input-Output System. AT&T Bell Laboratories Technical 

Journal, 63(8 part 2), October 1984. 

[42] D.M. Ritchie and K. Thomson. The unix time-sharing system. Communications of the 

ACM, 17(7), July 1974. 

[43] Kay A Robbins and Steven Robbins. Practical Unix Programming. Prentice Hall, 1st 

edition, 1996. 

[44] Herbert Schildt. Windows 95 Programming in C and C++. McGraw-Hill, first edition, 

1995. 

[45] Douglas Schmidt. Experience using design patterns to develop reuseable object-oriented 

communication software. Communications of the ACM, Special Issue on Object­

Oriented Experiences, October 1995. 

[46] Douglas Schmidt and Irfan Pyarali. Strategies for implementing condition variables on 

win32. C++ Report, SICS, 10(5), June 1998. 

[47] Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern Ori­

ented Software Architecture: Patterns for Concurrent and Networked Objects, volume 2. 

Wiley, 2000. 

[48] Douglas C. Schmidt. "Applying Design Patterns to Simplify Signal Handling". C++ 

Report, SICS, 9(6), June 1997. 


