GREATEST COMMON DWISORS

AND
LEAST COMMON MULTIPLES
OF GRAPHS
by
FARROKHSABAsubmitted in accordance with the requirementsfor the degree of
DOCTOR OF PHILOSOPHY
in the subject
MATHEMATICS
at the
UNIVERSITY OF SOUTH AFRICA
PROMOTER: PROFESSOR C M MYNHARDT
NOVEMBER 1991

TABLE OF CONTENTS

ACKNOWLEDGEMENTS (ii)
SUMMARY (iii)
CHAPTER
I. BACKGROUND AND HISTORY 1
1.1 Greatest Common Subgraphs 1
1.2 Maximal Common Subgraphs and Absorbing Common Subgraphs 6
1.3 Greatest Common Divisors and Least Common Multiples. 9
II. PRIME GRAPHS AND PRIME DIVISORS OF GRAPHS 15
2.1 Prime and Prime-Connected Trees 15
2.2 The Number of Prime Divisors in a Graph 25
III. AROPERTESCOFGREATEST GPMESOF BKASORS 47
3.1 Graphs with a Prescribed Number of Greatest Common Divisors (or Least Common Multiples) 47
IV. SIZES OF GREATEST COMMON DIVISORS AND LEAST COMMON MULTIPLES OF SPECIFIED GRAPHS 59
4.1 Greatest Common Divisors and Least Common Multiples of Stars and Stripes. 59
4.2 Least Common Multiples of Paths and Complete Graphs 63
4.3 The Greatest Common Divisor Index of a Graph 84
V. ON GREATEST COMMON DIVISORS AND
LEAST COMMON MULTIPLES OF DIGRAPHS 93
5.1 Introduction 93
5.2 Least Common Multiples of Directed Stars. 97
5.3 The Greatest Common Divisor Index of a Digraph 126
REFERENCES 131

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and deepest gratitude to Professor Gary Chartrand and Professor Christine M Mynhardt for their outstanding mathematical guidance during the writing of this dissertation.

Farrokh Saba

SUMMARY

Chapter I begins with a brief history of the topic of greatest common subgraphs. Then we provide a summaiy of the work done on some variations of greatest common subgraphs. Finally, in this chapter we present results previously obtained on greatest common divisors and least common multiples of graphs.

In Chapter II the concepts of prime graphs, prime divisors of graphs, and primeconnected graphs are presented. We show the existence of prime trees of any odd size and the existence of prime-connected trees that are not prime having any odd composite size. Then the number of prime divisors in a graph is studied. Finally, we present several results involving the existence of graphs whose size satisfies some prescribed condition and which contains a specified number of prime divisors.

Chapter III presents properties of greatest common divisors and least common multiples of graphs. Then graphs with a prescribed number of greatest common divisors or least common multiples are studied.

In Chapter IV we study the sizes of greatest common divisors and least common multiples of specified graphs. We find the sizes of greatest common divisors and least common multiples of stars and that of stripes. Then the size of greatest common divisors and least common multiples of paths and complete graphs are investigated. In particular, the size of least common multiples of paths versus K 3 or K 4 are determined. Then we present the greatest common divisor index of a graph and we determine this parameter for several classes of graphs.

In Chapter V greatest common divisors and least common multiples of digraphs are introduced. The existence of least common mutliples of two stars is established, and the size of a least common multiple is found for several pairs of stars. Finally, we present the concept of greatest common divisor index of a digraph and determine it for several classes of digraphs.

CHAPTER I

History and Background

Our subject began in 1987 with the study of greatest common subgraphs. In the first section of this chapter, we provide a brief history of this topic. In the second section, we summarize work done on some variations of greatest common subgraphs of graphs. In the third and final section, we summarize results obtained on greatest common divisors and least common multiples of graphs, the main topics of this dissertation. All terms and notation not defined or described in this dissertation may be found in Chartrand and Lesniak [CL].

1.1 Greatest Common Subgraphs

The concept of greatest common subgraphs of graphs was introduced by Chartrand, Saba, and Zou [CSZ1]. A graph G without isolated vertices is called a greatest common subgraph of a set $Q=\left\{\mathrm{Gj}, Q^{\wedge} \ldots, \mathrm{G}_{\mathrm{n}}\right), \mathrm{n}>2$, of graphs having the same size if G is a graph of maximum size that is isomorphic to a subgraph of each graph $\mathrm{Gi}, 1<\mathrm{i}<\mathrm{n}$. The set of all greatest common subgraphs of Q is denoted by $\operatorname{gcs} \mathrm{Q}$ or $\operatorname{gcs}\left(\mathrm{G}_{1}, \mathrm{G}_{2}>\ldots \mathrm{G}_{\mathrm{n}}\right)$. For example, if Q - $\{\mathrm{Gj}, \mathrm{G} 2)$ for the graphs of Figure 1.1, then gcs $\mathrm{Q}-\left\{\mathrm{H}^{\wedge \wedge}\right\}$.

Gi

\mathbf{G}_{2}

o

HI

Q O
$0 \quad \mathrm{O}$

0
H_{2}

Figure 1.1 Greatest common subgraphs of graphs

Thus, it is clear that a greatest common subgraph'may not be unique. In fact, it is not unusual for a set Q of two or more graphs of equal size to have several greatest common subgraphs. The following result was established in [CSZ2].

Theorem 1A For every pair m, n of positive integers with $n>2$, there exist n pairwise nonisomorphic graphs $\mathrm{Gj}, \mathrm{G} 2, \mathrm{G}_{\mathrm{n}}$ of equal size such that

$$
\operatorname{Igcs}\left(\mathrm{G}_{\mathrm{x}}, \mathrm{G}_{2}, \mathrm{G}_{\mathrm{n}}\right) \mid=\mathrm{m} .
$$

Another related problem is to find, for a given graph G, two nonisomorphic graphs Gj and G 2 of equal size (or a set Q of graphs of equal size) such that G is the unique greatest common subgraph of G_{x} and G 2 (respectively, of Q). The following result was obtained in [CSZ2], and we state it for future reference.

Theorem IB If G is a graph without isolated vertices, then there exist nonisomorphic graphs Gi and G_{2} of equal size such that $\operatorname{gcs}\left(\mathrm{Gi}, \mathrm{G}_{2}\right)=\{\mathrm{G}\}$.

In the proof of Theorem IB, one of Gi and G_{2} is connected while the other graph is disconnected. However, Chartrand, Johnson, and Oellermann [CJO] proved that if G is connected but not complete, then there are nonisomorphic connected
graphs Gi and G 2 of equal size such that $\operatorname{gcs}(\mathrm{Gi}, \mathrm{G} 2)=\{\mathrm{G}\}$. Later, a more general class of problems was investigated.

Let P be a graphical property. For a given graph G without isolated vertices and having property P , do there exist non-isomorphic graphs Gi and G 2 of equal size having property P such that $\operatorname{gcs}(G i, G 2)=\{G\}$? If P is the property of being 2 -connected, then the following characterization was given in [COSZ], For a 2 connected graph G, there exist non-isomorphic 2-connected graphs Gj and G 2 of equal size such that $\operatorname{gcs}(G i, G 2)=\{G\}$ if and only if $G \wedge K_{n}(n>3)$ and $G \wedge$ $\mathrm{K}_{\mathrm{n}}-\mathrm{e}(\mathrm{n}>4)$. In the same paper, it was shown that for every n -chromatic graph G ($\mathrm{n}>2$), there exist non-isomorphic n -chromatic graphs Gi and G 2 of the same size such that $\operatorname{gcs}(\mathrm{Gj}, \mathrm{G} 2)=\{\mathrm{G}\}$.

Chartrand and Zou [CZ] characterized trees that are unique greatest common subgraphs of two suitably chosen nonisomorphic trees of equal size. Let $\mathrm{D}(\mathrm{t})$ denote a tree consisting of two stars $K(1, t)$ whose central vertices are connected by a path of length 3. If T is a tree, then $\operatorname{gcs}(\mathrm{Ti}, \mathrm{T} 2)=\{\mathrm{T})$ for some nonisomorphic trees Ti and $T 2$ of equal size if and only if $T \wedge P_{n}, n=2,4,5, \ldots$ and $T £ D(t), t>2$. When the property P is that of being connected outerplanar, connected planar, or unicyclic, then the problem was solved as well, by Kubicki [K],

There are several concepts closely related to greatest common subgraphs that have been studied. Greatest common induced subgraphs have been considered in [CJO], [COSZ], and [CZ], and this concept has proved to be considerably easier than the greatest common subgraph. Also, related problems for digraphs have been considered in [CJO].

Let Q be a set of graphs without isolated vertices, all having the same size. A graph G without isolated vertices is a least common supergraph of Q if G is a graph
of minimum size that is isomorphic to some supergraph of every graph in G. The set of all least common supergraphs of Q is denoted by les Q . For the graphs Gx and G_{2} of Figure 1.2, $\operatorname{lcs}\left(\mathrm{G}_{15} \mathrm{G}_{2}\right)$ consists of the three graphs $\mathrm{Hj}, \mathrm{H}_{2}$, and H_{3}, also shown in Figure 1.2.

G_{1}

G_{2}

H_{1}

H_{2}

H_{3}

Figure 1.2 Least common supergraphs of graphs

The next result [CHKOSZ] shows a relationship among the size of two given graphs (of equal size) and the sizes of a greatest common subgraph and a least common supergraph of the two given graphs.

Theorem 1C Let Gj and G_{2} be graphs without isolated vertices and having size q. If $\mathrm{Ge} \operatorname{gcs}\left(G_{l t} \mathrm{G}_{2}\right)$ and $\mathrm{He} \operatorname{lcs}\left(\mathrm{G}_{\text {lf }} \mathrm{G}_{2}\right)$, then

$$
\mathrm{q}(\mathrm{G})+\mathrm{q}(\mathrm{H})=2 \mathrm{q} .
$$

In order to present a characterization [CHKOSZ] of graphs that can be least common supergraphs of two graphs, we present a definition. A nonempty graph G is edge-symmetric if $\mathrm{G}-\mathrm{e}=\mathrm{G}-\mathrm{f}$ for all $\mathrm{e}, \mathrm{fe} \mathrm{E}(\mathrm{G})$.

Theorem ID Let G be a graph without isolated vertices. Then G is a least common supergraph of two nonisomorphic graphs of equal size if and only if G is not edge-symmetric.

The dual nature of greatest common subgraphs and least common supergraphs was described in more detail in [CHKOSZ]. First, some additional notation is useful. For a given graph G, let p be an integer with $p>p(G)$. The graph $G(p)$ is defined by

$$
\mathrm{G}^{\wedge} \mathrm{sGuCp}-\mathrm{pCO} \mathrm{C} x,
$$

that is, $\mathrm{G}(\mathrm{p})$ is obtained by adding $\mathrm{p}-\mathrm{p}(\mathrm{G})$ isolated vertices to G .

In what follows, least common supergraphs are permitted to have isolated vertices.

Theorem IE Let $\mathrm{Q}=\left\{\mathrm{G}^{\wedge}, \mathrm{G}_{2}, \ldots » \mathrm{G}_{\mathrm{n}}\right\}$ be a family of graphs of equal size and let $p=\max \{p(H) \mid H e \operatorname{lcs} Q$ and H has no isolated vertices $\}$. Then H e lcs Q if and only if $H(p)$ e gcs $\left.\left(G^{\wedge} p\right), G_{2}(p)>G_{n}(p)\right)$.

The following is a consequence of Theorems ID and IE.

Theorem IF Let G be a graph of order p without isolated vertices. Then G is a greatest common subgraph of two nonisomorphic graphs of equal size having order p if and only if G is not edge-symmetric.

The final result of this section follows immediately from Theorems 1A and IE.

Theorem 1G For every pair m, n of integers with $m>2$ and $n>1$, there exists a set Q of m pairwise nonisomorphic graphs of equal size such that I lcs $\mathrm{q} \backslash-\mathrm{n}$.

1.2 Maximal Common Subgraphs and Absorbing Common Subgraphs

Let Gi and G_{2} be nonisomorphic graphs of the same size. The set of all common subgraphs of Gj and G_{2} can be considered as a set partially ordered by the relation "is a subgraph of. Maximal common subgraphs are the maximal elements in this partially ordered set. More formally, a graph H without isolated vertices is a maximal common subgraph of Gj and G_{2} if H is (isomorphic to) a subgraph of G^{\wedge} and G_{2}, and there is no graph F without isolated vertices that is a common subgraph of Gj and G_{2} such that H is a proper subgraph of F . The set of all maximal common subgraphs of Gj and G_{2} is denoted by $\operatorname{mcs}\left(\mathrm{G}_{\mathrm{ls}} \mathrm{G}_{2}\right)$. If $\mathrm{Gj}=\mathrm{K}(3,3)$ and $\mathrm{G}_{2} \mathrm{~s} \mathrm{~K}(1,3) \mathrm{u} \mathrm{K}_{4}$, then $\operatorname{mcs}\left(\mathrm{G}_{\mathrm{lf}} \mathrm{G}_{2}\right)=\left\{\mathrm{H}_{2}, \mathrm{H}_{2}, \mathrm{H}_{3}\right\}$, where $\mathrm{H}_{\mathrm{t}} \mathrm{s} \mathrm{K}(1,3)$, $\mathrm{H}_{2}=2 \mathrm{~K}(1,2)$, and $\mathrm{H}_{3}=\mathrm{C}_{4} \mathrm{u} \mathrm{K}_{2}$ (see Figure 1.3).

G.

Hi

H.

0
H,

Figure 1.3 Maximal common subgraphs

In this example, the graphs $\mathrm{Hj}, \mathrm{H}_{2}$, and H 3 have different sizes (namely 3,4 , and 5 , respectively), so H 3 , having maximum size, is the unique greatest common subgraph of G_{x} and G_{2}.

It was shown in $[\mathrm{K}]$ that the difference between the sizes of a greatest common subgraph and a maximal common subgraph can be arbitrarily large.

Theorem 1H For every positive integer M, there exist graphs G_{x} and G_{2} of equal size and graphs $G e \operatorname{gcs}\left(G j, G_{2}\right)$ and $H e \operatorname{mcs}\left(G j, G_{2}\right)$ such that $q(G)-q(H)>M$.

The set of maximal common subgraphs of two graphs can have arbitrarily large cardinality; indeed, a wide range of sizes for maximal common subgraphs is possible [K].

Theorem II For every positive integer N, there exist graphs G_{x} and G_{2} of equal size and N graphs $\mathrm{Hj}, \mathrm{H}_{2}, \mathrm{H}_{\mathrm{N}}$ with qCHj$) * \mathrm{q}(\mathrm{Hj})$ for $1<\mathrm{i}<\mathrm{j}<\mathrm{N}$ such that $\left\{\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{n}}\right\} \mathbf{Q} \operatorname{mcs}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$.

In $[\mathrm{K}]$ graphs are characterized that are maximal common subgraphs of a certain pair of graphs but not greatest common subgraphs of the same pair of graphs.

Theorem 1J Let G be a graph without isolated vertices such that $G £ K(1, r)$ $(\mathrm{r}=1,2)$. Then there exist nonisomorphic graphs Gj and G_{2} of equal size such that Ge mcs $\left(G j, G_{2}\right)$, but $G 4 \operatorname{gcs}\left(G j, G_{2}\right)$.

A graph G without isolated vertices is an absorbing common subgraph of two nonisomorphic graphs Gj and G_{2} if (1) G is (isomorphic to) a subgraph of G_{x} and G_{2} and (2) whenever a graph H (without isolated vertices) is a common
subgraph of G^{\wedge} and $G 2$, then H is a subgraph of G. Informally, an absorbing common subgraph of Gj and G 2 is a common subgraph of Gi and G 2 that "absorbs" every other common subgraph of Gi and G 2 . This concept was introduced by Chartrand, Erdos, and Kubicki [CEK].

Two graphs of equal size need not have an absorbing common subgraph. However, if an absorbing common subgraph of Gj and G 2 exists, then it is unique and is denoted by acs $(\mathrm{Gj}, \mathrm{G} 2)$. In fact, when G is the unique maximal common subgraph of graphs Gi and G 2 , then G is the absorbing common subgraph of Gi and G2, and vice versa, as shown in [CEK].

Theorem IK A graph G is an absorbing common subgraph of two nonisomorphic graphs Gi and G 2 of equal size if and only if G is the unique maximal common subgraph of Gj and G 2 .

From Theorem IK, it then follows that if G is an absorbing common subgraph of two nonisomorphic graphs Gj and G 2 , then it is the unique greatest common subgraph of Gj and G2.

Thus, the graphs Gj and G 2 of Figure 1.3 do not have an absorbing common subgraph since Gj and G2 have more than one maximal common subgraph.

It is not difficult to show that no complete graph of order at least 3 is an absorbing common subgraph. The situation for complete bipartite graphs is presented in [CEK].

Theorem 1L Let $\mathrm{G}=\mathrm{K}(\mathrm{m}, \mathrm{n})$, where $\mathrm{m}<\mathrm{n}$. Then G is an absorbing common subgraph if and only if $\mathrm{m}=1, \mathrm{~m}=2$, or $\mathrm{n}=\mathrm{m}+1$.

Various other classes of graphs that are (or are not) absorbing common subgraphs are also given in [CEK].

1.3 Greatest Common Divisors and Least Common Multiples

A variation of greatest common subgraphs and least common supergraphs with number-theoretic overtones was introduced in Chartrand, Hansen, Kubicki, and Schultz [CHKS]. A nonempty graph G is said to be decomposable into the subgraphs $\mathrm{Gi}, \mathrm{G}_{2}, \mathrm{G}_{\mathrm{n}}$ of G if no graph $\mathrm{Gi}, 1<\mathrm{i}<\mathrm{n}$, has isolated vertices, and the edge set $\mathrm{E}(\mathrm{G})$ of G is partitioned into ECGj$), \mathrm{E}\left(\mathrm{G}_{2}\right), \mathrm{E}\left(\mathrm{G}_{\mathrm{n}}\right)$ - If $\mathrm{Gi}=\mathrm{H}$ for every i $(1<\mathrm{i}<\mathrm{n})$, then G is said to be H-decomposable. In fact, this is a generalization of r-factorable graphs, for a positive integer r. If G is H -decomposable into two or more copies of H , and $\mathrm{H} £ \mathrm{~K}_{2}$, then we say G is nontrivially H -decomposable.

The following observation will prove useful to us later.

Proposition 1.1 If a graph G is decomposable into subgraphs $G_{1\}} G_{2}, \ldots, G_{n}$ $(\mathrm{n}>2)$ and each subgraph $\mathrm{G}^{\wedge}(1<\mathrm{i}<\mathrm{n})$ is decomposable into subgraphs $\mathrm{F}^{\wedge} \mathrm{Fi}_{2}$, $\ldots, \mathrm{Fj}_{\mathrm{mi}}(\mathrm{mf}>2)$, then G is decomposable into the subgraphs $\mathrm{F}_{\mathrm{n}}, \mathrm{F}_{12}, \ldots, \mathrm{~F}_{1 \mathrm{mi}}$,

This result has the following immediate consequence.

Corollary 1.2 If a graph G is decomposable into subgraphs $G_{1 s} G_{2}, \ldots, G_{n}$ ($\mathrm{n}>2$), each of which is F -decomposable, then G is F -decomposable.

Finally, we have the following result.

Corollary 1.3 If a graph G is F -decomposable and F is H -decomposable, then G is H -decomposable.

If a graph G is H -decomposable, then H is said to divide G and is a divisor of G . If H divides G , we write $\mathrm{H} \mid \mathrm{G}$. It is clear that for every graph G of size at least 2, we have $K_{2} 1 \mathrm{G}$ and $\mathrm{G} \mid \mathrm{G}$. For such a graph G, the graphs K_{2} ajid G are called the trivial divisors of G . A graph H is said to be a proper divisor of G if G is nontrivially H -decomposable, that is, if $\mathrm{H} \mid \mathrm{G}$ and $1<\mathrm{q}(\mathrm{H})<\mathrm{q}(\mathrm{G})$.

If a graph G is H -decomposable, then $\mathrm{q}(\mathrm{H}) \mid \mathrm{q}(\mathrm{G})$. However, if H is a subgraph of G without isolated vertices such that $q(H) \mid q(G)$, then G may not be H-decomposable. For example, in Figure 1.4, the graph G is Hj -decomposable but not H_{2}-decomposable.

Figure 1.4 An Hj -decomposable graph G that is not H_{2}-decomposable

The following theorem, obtained in [CPS], will prove to be useful.

Theorem 1M Every nontrivial connected graph of even size is P3~decomposable.

In [CHKS], a graph G without isolated vertices is defined to be a greatest common divisor of two graphs and G_{2} if G is a graph of maximum size such that both Gj and G_{2} are G -decomposable. We also refer to this as a greatest
common divisor of Gj versus G_{2}. For example, in the graphs of Figure $1.5, \mathrm{Hj}$ is the unique greatest common divisor of Gj and G_{2}, while H^{\wedge} and H_{2} are the greatest common divisors of G_{2} and G3.

Figure 1.5 Greatest common divisors
A greatest common divisor of a set $Q=\left\{\mathrm{Gj}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}\right\}, \mathrm{n}>2$, of nonempty graphs is defined similarly. Since K_{2} is a divisor of every graph of Q , there exists a graph of maximum size that is a divisor of every graph of Q . Consequently, every set of two or more nonempty graphs has a greatest common divisor.

The set of all greatest common divisors of a set $\mathrm{Q} \sim\left\{\mathrm{Gj}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{n}}\right), \mathrm{n}>2$, of graphs is denoted by $G C D Q$. In this case, we also write $\operatorname{GCD} \mathrm{Q}=\operatorname{GCD}\left(\mathrm{G}_{1\}} \mathrm{G}_{2}\right.$, $\left.\ldots, G_{n}\right)$. The size of a greatest common divisor of a set $\left(3=\left\{G_{1\}} G_{2}, \ldots, G_{n}\right), n>\right.$ 2 , of graphs is denoted by $\operatorname{gcd} Q$ or $\operatorname{gcd}\left(\mathrm{G}_{1\}} \mathrm{G}_{2}, \mathrm{G}_{\mathrm{n}}\right)$.

In [CHKS], a graph H without isolated vertices is called a least common multiple of two nonempty graphs Gj and G_{2} if H is a graph of minimum size such that H is both Gj -decomposable and G_{2}-decomposable. Similarly, a graph H without isolated vertices is called a least common multiple of a set $Q=\left\{\mathrm{Gj}, \mathrm{G}_{2}\right.$, $\left.\mathrm{G}_{\mathrm{n}}\right\}, \mathrm{n}>2$, of graphs if H is a graph of minimum size such that H is $G p$ decomposable for all $\mathrm{i}(1<\mathrm{i}<\mathrm{n})$.

The set of least common multiples of a set $Q-\left\{G j, G 2, \quad G_{n}\right), n>2$, of graphs is denoted by $L C M Q$ or by $L_{C M C G}{ }^{\wedge} G 2, G_{n}$). The size of a least common multiple of a set $\mathrm{Q}-\left\{\mathrm{Gj}, \mathrm{G} 2, \quad \mathrm{G}_{\mathrm{n}}\right\}, \mathrm{n}>2$ of graphs is denoted by $\operatorname{lcm} \mathrm{Q}$ or $\operatorname{lcm}\left(\mathrm{Gj}, \mathrm{G} 2, \quad \mathrm{G}_{\mathrm{n}}\right)$. For the graphs Gj and G 2 of Figure 1.6, the graphs $\mathrm{Hj}(1<\mathrm{i}<5)$ are the least common multiples of Gj and G 2 . It is clear that $1 \mathrm{~cm}(\mathrm{G} \mid, \mathrm{G} 2)=8$. This example shows that least common multiples need not be unique.

$$
\begin{aligned}
& \mathrm{O} \\
& \mathrm{o}-\mathrm{o}
\end{aligned}
$$

G

H

Figure 1.6 Least common multiples

While it is evident that every two (or more) graphs have a greatest common divisor, it is not obvious that they have a least common multiple. It was verified in [CHKS] that every two nonempty graphs do indeed have a least common multiple. The proof of this result made use of the following theorem of Wilson [W].

Theorem IN Let F be a graph of size $\mathrm{q}(>1)$ without isolated vertices. Then $\mathrm{f} \mid \mathrm{k}_{\mathrm{d}}$ provided n is sufficiently large, $\mathrm{q} \mid(2)$, and $\mathrm{d} \mid(\mathrm{n}-1)$, where d is the greatest common divisor of the degrees of the vertices of F .

With the aid of Theorem IN, we show that every (finite) set of two or more graphs has a least common multiple.

Theorem 1.4 For graphs $\mathrm{Gi}, \mathrm{G} 2, \mathrm{Gm}_{\mathrm{m}}(\mathrm{m}>2)$ without isolated vertices, there exists a graph H that is Gi -decomposable for all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$.

Proof Suppose Gj has size $\mathrm{qi}(1<\mathrm{i}<\mathrm{m})$, and let $\mathrm{d}[=\mathrm{gcd}\{\mathrm{deg} \mathrm{v}: \mathrm{ve} \mathrm{V}(\mathrm{Gi})\}$ for all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$. By Theorem IN, for all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$, there exists an integer Ni such that if

$$
\begin{equation*}
\mathrm{n}>\mathrm{Ni}, \tag{i}
\end{equation*}
$$

(ii) $\mathrm{n}(\mathrm{n}-1)=0(\bmod 2 \mathrm{q})$, and
(iii) $(\mathrm{n}-1)=0(\bmod d j)$,
then K_{n} is Gi -decomposable.
Then define $\mathrm{t}=\mathrm{lcm}\left\{\mathrm{di}>\mathrm{d}_{2}, \quad \mathrm{~d}_{\mathrm{m}}, \mathrm{q}_{\mathrm{h}} \mathrm{q}_{2}, \quad \mathrm{q}_{\mathrm{m}}\right\}$. Choose k sufficiently large so that $2 \mathrm{kt}+1>\max \left\{\mathrm{Ni}, \mathrm{N}_{2}, \ldots, \mathrm{~N}_{\mathrm{m}}\right\}$, and let $\mathrm{n}=2 \mathrm{kt}+1$. Now di 11 and qi 11 for all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$, and conditions (i) - (iii) of Theorem IN are satisfied and, therefore, $\mathrm{H}=\mathrm{K}_{\mathrm{rt}}$ is Gj -decomposablefor all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$.

Theorem 1.4 has the immediate consequence.

Theorem 1.5 Every set of two or more nonempty graphs has a least common multiple.

Proof Let $\mathrm{Q}=\left\{\mathrm{G} \mid, \mathrm{G} 2, \quad \mathrm{G}_{\mathrm{m}}\right), \mathrm{m}>2$, be a set of nonempty graphs. Theorem 1.4 shows the existence of a graph H that is Gj -decomposable for all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$. Therefore, H is a common multiple of Q . Consequently, there exists a graph of smallest size that is Gj -decomposable for all $\mathrm{i}(1<\mathrm{i}<\mathrm{m})$, implying that a least common multiple of Q exists.

It is a well-known fact from number theory that for every pair a, b of positive integers, $a-b=\operatorname{gcd}(a, b>\operatorname{lcm}(a, b)$. It may have been anticipated that there is some relationship between $\mathrm{q}(\mathrm{Gj})-\mathrm{q}(\mathrm{G} 2)$ and $\mathrm{gcd}(\mathrm{Gj}, \mathrm{G} 2) * \operatorname{lcm}\left(\mathrm{Gj}, \mathrm{G}_{2}\right)$. However, it was shown in [CHKS] that for every positive integer N , there exist graphs Hj and H_{2} such that $\mathrm{q}\left(\mathrm{H}_{1}\right)-\mathrm{q}\left(\mathrm{H}_{2}\right)>\mathrm{N}$-gcd $\left(\mathrm{H}_{1}, . \mathrm{H}_{2}\right)$-lcm $\left(\mathrm{H}^{\wedge} \mathrm{H}_{2}\right)$ and graphs Fj and F_{2} such that $\operatorname{gcd}\left(\mathrm{F}_{\mathrm{h}} \mathrm{F}_{2}\right)-\mathrm{lcm}\left(\mathrm{Fi}, \mathrm{F}_{2}\right)>\mathrm{N}-\mathrm{q}\left(\mathrm{F}_{1}\right)-\mathrm{q}\left(\mathrm{F}_{2}\right)$.

In [CHKS], $1 \mathrm{~cm}\left(\mathrm{C}_{\mathrm{n}}, \mathrm{K}(1, \mathrm{~m})\right.$) was determined when n is even and m is arbitrary and when $\mathrm{n}=3$ and m is arbitrary. In forthcoming chapters, properties of greatest common divisors, least common multiples, and related concepts are investigated further.

CHAPTER n

PRIME GRAPHS AND
 PRIME DIVISORS OF GRAPHS

In this chapter we present the concepts of prime graphs, prime divisors of graphs, and prime-connected graphs. We begin by showing the existence of prime trees of any odd size and the existence of prime-connected trees that are not prime and having any odd composite size. Furthermore, prime double stars, prime-connected double stars, and prime-connected caterpillars of diameter 4 or 5 are characterized.

We then investigate the number of prime divisors in a graph. In particular, it is shown that trees and cyclic graphs of every composite size, having a unique prime divisor, exist. Furthermore, this problem is considered for trees and cyclic graphs (of composite size) having exactly two prime divisors. We conclude the chapter by presenting a collection of results involving the existence of graphs (some of which are required to be more highly connected) whose size often satisfies some prescribed condition and which contain a specified number of prime divisors.

2.1 Prime and Prime-Connected Trees

Recall that K_{2} and G are the trivial divisors of a nonempty graph G. If G has no isolated vertices and has size at least 2 , then G is called a prime graph, or simply a prime, if it has no nontrivial divisor. If the size of a graph is prime, then the graph is prime. However, the size of a prime graph need not be prime. For example,
the graphs $\mathrm{K}(1,3) \mathrm{u}_{2}$ and $\mathrm{K} 3 \mathrm{u}_{2}$ are prime graphs of size 4. In fact, for every composite integer $q(>4)$, there exists a prime graph of size q, namely $K_{2} u$ $\mathrm{K}(1, \mathrm{q}-1)$. Note, however, that Theorem 1M implies that there are no connected prime graphs of even size at least 4. A composite graph is a graph of size 2 or more that is not prime. A divisor that is prime is called a prime divisor.

Among all graphs of size 2,4 , or 6 , the graphs $\mathrm{Gj}, 1<\mathrm{i}<7$, in Figure 2.1 are the only prime graphs, as can easily be seen by using Theorem 1 M and by checking all remaining cases.
$0 \quad 0$
$\mathrm{O} \quad \mathrm{O}$
Gi

G<

0
0 - o
Go

O

G,

G,
O-

\mathbf{G}_{7}

Figure 2.1 Prime graphs of size 2, 4, and 6

A connected graph G of size at least 2 is prime-connected if its only connected divisors are K_{2} and G. By Theorem 1M, every prime-connected graph of size at least 3 must be of odd size. Observe that a connected graph that is prime is also prime-connected. However, the converse is not true in general. The tree T in Figure 2.2 is an example of a prime-connected tree which is not prime, since P3 u K_{2} and $3 \mathrm{~K}_{2}$ are the only nontrivial divisors of T .

$$
0-0-0-0-0-0-0-
$$

T

Figure 2.2 A prime-connected tree that is not prime

We have already indicated that $\mathrm{K}_{2} \mathrm{u} \mathrm{K}(1, \mathrm{q}-1)$ is prime for every integer $\mathrm{q}>2$. Of course, this graph is disconnected. We show that for every odd integer $\mathrm{q}>$ 3 , there is a connected prime graph of size q. Indeed, we prove that prime trees of size q exist for all odd integers $\mathrm{q}>3$, and that prime-connected trees of size q that are not prime exist for all odd composite integers q . We begin with a lemma.

Lemma 2.1 A graph of size at least 2 containing an edge adjacent to all other edges lias no disconnected divisor.

Proof Let G be a graph of size at least 2 containing an edge, say e, adjacent to all other edges. Suppose, to the contrary, that H is a disconnected divisor of G . Observe that in any H -decomposition of G , there exists a copy H^{\prime} of H containing the edge e. Let H_{t} be a component of H^{\prime} containing the edge e. Now since any edge of H^{\prime} other than the edges of Hj is adjacent to e , it follows that no component other than Hj exists. Therefore, H is connected.

Theorem 2.2 Let $q(>3)$ be an integer. There exists a prime tree of size q if and only if q is odd.

Proof By Theorem 1M, there does not exist a prime tree of even size q (>4). The result for q odd holds when q is a prime number, since every tree of prime size is a
prime tree. Let $q(>9)$ be an odd composite number, and let T be the tree constructed by joining the central vertices u and v of two copies of $K(1, r)$, where $r=(q-1) / 2$, by the edge $e=u v$. Observe that $\operatorname{diam} T=3$. Suppose that T is Indecomposable for some graph H , where $1<\mathrm{q}(\mathrm{H})<\mathrm{q}$. Since e is adjacent to all other edges of T, Lemma 2.1 implies that H is connected.

If diam $H=3$ and $H £ T$, then e belongs to some copy of H, and T $\mathrm{E}(\mathrm{H})$ is disconnected, implying that diam $\mathrm{H}<2$ in other copies of $\mathrm{H}-\mathrm{a}$ contradiction. If diam $\mathrm{H}<2$, then $\mathrm{H}=\mathrm{K}(1, \mathrm{t})$, for some $\mathrm{t}>1$. Suppose that mj and m_{2} copies of H have central vertex at u and v , respectively. Without loss of generality, let e be an edge of a copy of H having v as its central vertex. Then $\mathrm{m}_{2} \mathrm{t}-\mathrm{mjt}=1$, that is, $\left(\mathrm{m}_{2}-\mathrm{mj}\right) \mathrm{t}=1$, implying that $\mathrm{m}_{2}-\mathrm{mj}=1$ and $\mathrm{t}=1$. Hence, $\mathrm{m}_{2}=\mathrm{nij}+1$ and $\mathrm{H} \mathrm{s} \mathrm{K}_{2}$, implying that T is a prime tree.

We now generalize the tree T depicted in Figure 2.2 to prove the existence of a prime-connected tree of size q that is not prime, where q is any odd composite integer.

Theorem 2.3 For every odd composite integer \mathfrak{q}, there exists a prime-connected tree of size q that is not prime.

Proof Let $\mathrm{q}=\mathrm{rs}$, where r is the smallest prime factor of q . We construct a tree T of size q by identifying an end-vertex of the path P j with the central vertex of the path P_{3}. We label the edges of T as indicated in Figure 2.3.

T
Figure 2.3 A prime-connected tree that is not prime

We show that T is a prime-connected tree that is not prime. First we show that T is not prime. Observe that T is $\left(\mathrm{P}_{\mathrm{r}} \mathrm{u} \mathrm{K}_{2}\right)$-decomposable into s copies $(\mathrm{s}>\mathrm{r}>3)$ of ($\mathrm{P}_{\mathrm{r}} \mathrm{u}_{2}$) containing edges $\mathrm{e}_{\left(\mathrm{m}_{-} 1\right)\left(\mathrm{r}_{-} 1\right)+1}, \mathrm{e}_{\left(\mathrm{m}_{-} 1\right)\left(\mathrm{r}_{-} 1\right)+2}, \quad \mathrm{t}_{\left\{\mathrm{mr}_{-} \mathrm{m}_{-} 1\right)+\mathrm{r}_{-} \mathrm{v}}$ and $\mathbf{e}_{\mathbf{q}-\mathbf{s}+\mathbf{m}}$ for $\mathrm{m}=1,2, \mathrm{~s}$. Therefore, T is not prime.

Next, we show that T is prime-connected. Let Tj be a nontrivial divisor of T. Suppose, to the contrary, that Tj is connected. Since $\mathrm{A}(\mathrm{T})=3$, it follows that $\mathrm{A}(\mathrm{Tj})<3$. But Tj is nontrivial, so $\mathrm{A}(\mathrm{Tj}) * 1$. Observe that T has exactly one vertex of degree 3 , so that $\mathrm{A}(\mathrm{Tj}) * 3$. Therefore, $\mathrm{A}(\mathrm{Tj})=2$ and $T_{l}=\mathrm{P}_{\mathrm{k}}$ for some integer $k(>4)$, where $(k-1) \mid q$.

Since $k-1>r(>3)$, it follows that $e_{q_{_}} 2$ and one of $e_{q} j$ and e_{q} belong to the same copy of P_{k} in any P_{k}-decomposition of T . Suppose, without loss of generality, that $\mathrm{e}_{\mathrm{q},, 2}$ and $\mathrm{e}_{\mathrm{q}-1}$ belong to the same copy of P_{k}. Therefore, the edge e_{q} can only belong to a disconnected divisor of T - a contradiction. Hence Tj is disconnected and T is prime-connected but not prime.

We next consider some specific classes of trees. First, we note that the star $\mathrm{K}(1, \mathrm{~m}), \mathrm{m}>2$, is prime and prime-connected if and only if m is prime. We now turn our attention to double stars. A double star is a tree containing exactly two vertices that are not end-vertices. If these two vertices have degrees a and b, we denote this double star by $\mathrm{S}(\mathrm{a}, \mathrm{b})$ (see Figure 2.4).

$$
\begin{array}{ll}
a-1 & b-1
\end{array}
$$

Figure 2.4 The double star $S(a, b)$

We are now prepared to characterize prime double stars.

Proposition 2.4 For integers a, $b(>2)$, the double star $S(a, b)$ is prime if and only if $\operatorname{gcd}(a, b-1)=\operatorname{gcd}(a-1, b)=1$.

Proof Assume that the double star $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is a prime graph. We show that $\operatorname{gcd}(\mathrm{a}, \mathrm{b}-1)=\operatorname{gcd}(\mathrm{a}-1, \mathrm{~b})=1$. If $\operatorname{gcd}(\mathrm{a}, \mathrm{b}-1)=\mathrm{m}(>2)$, then $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is $\mathrm{K}(1, \mathrm{~m})$-decomposable and, therefore, $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is not a prime graph - contrary to hypothesis. Similarly, $\operatorname{gcd}(a-I, b)=1$.

Conversely, assume that $\operatorname{gcd}(a, b-1)=\operatorname{gcd}(a-1, b)=1$. Suppose, to the contrary, that $S(a, b)$ is not a prime graph. Then $S(a, b)$ is H-decomposable for some graph H such that $H £ K_{2}$ and $H \wedge S(a, b)$. Since the edge $e=u v$, where $\operatorname{deg} \mathbf{u}=\mathrm{a}$ and $\operatorname{deg} \mathrm{v}=\mathrm{b}$, is adjacent to all other edges of $\mathrm{S}(\mathrm{a}, \mathrm{b})$, Lemma 2.1 implies that H is connected. Therefore, $\mathrm{H}=\mathrm{K}(1, \mathrm{r})$ for some integer $\mathrm{r}(>2)$. Then (1) $\mathrm{r} \mid \mathrm{a}$ and $r \mid(b-1)$, or $(2) r \mid(a-1)$ and $r \mid b$. Therefore, $\operatorname{gcd}(a, b-1) * 1$ or $\operatorname{gcd}(a-1, b)^{\wedge} 1-$ contrary to hypothesis.

We now show that a double star is prime if and only if it is prime-connected.

Proposition 2.5. For integers $a, b(>2)$, the double star $S(a, b)$ is prime if and only if $S(a, b)$ is prime-connected.

Proof Let the double star $S(a, b)$ be prime for integers $a, b(>2)$. Clearly, $S(a, b)$ is prime-connected.

Conversely, if $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is prime-connected, then it has no connected nontrivial divisors, and by Lemma 2.1, also no disconnected divisors. Hence, $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is prime. -

The following characterization of prime-connected double stars is now obvious.

Proposition 2.6 For integers a , b (> 2), the double star $\mathrm{S}(\mathrm{a}, \mathrm{b})$ is primeconnected if and only if $\operatorname{gcd}(\mathrm{a}, \mathrm{b}-1)=\operatorname{gcd}(\mathrm{a}-1, \mathrm{~b})=1$.

Finally, we present a result on double stars having divisors of size 3 .

Proposition 2.7 Let $T=S(a, b)$ be a double star of size $3 n(>9)$. Then T is not decomposable into any graph of size 3 if and only if $a=2(\bmod 3)$ and $b=2(\bmod 3)$.

Proof Suppose that T is not decomposable into any graph of size 3. If it is not the case that $\mathrm{a}=2(\bmod 3)$ and $\mathrm{b}=2(\bmod 3)$, then either (i) $\mathrm{a}=0(\bmod 2)$ and $\mathrm{b}=$ $1(\bmod 3)$, or $(i i) \mathrm{a}^{\wedge} 1(\bmod 3)$ and $\mathrm{b}=0(\bmod 3)$. Suppose that (i) holds and that $\mathrm{u}, \mathrm{ve} \mathrm{V}(\mathrm{T})$ with $\operatorname{deg} \mathrm{u}=\mathrm{a}=3 \mathrm{k}$ and $\operatorname{deg} \mathrm{v}=\mathrm{b}=3 \mathrm{k}^{\prime}+1$ for some positive integers k and k^{\prime}. Then u is the central vertex of k edge-disjoint stars $\mathrm{K}(1,3)$, one of which contains the edge uv, and v is the central vertex of k^{\prime} edge-disjoint stars $\mathrm{K}(1,3)$ (not containing uv). Thus, T is $\mathrm{K}(1,3)$-decomposable, contrary to hypothesis.

Case (ii) can be proved similarly to case (i). Therefore, $\mathrm{a}=2(\bmod 3)$ and $\mathrm{b}=$ $2(\bmod 3)$.

Suppose next that $a=2(\bmod 3)$ and $b=2(\bmod 3)$. The only possible subgraphs of size 3 in T are $P_{4}, K(1,3)$, and $P 3 u K_{2}$. We first show that T is
not P_{4}-decomposable. Note that $\mathrm{T} £ \mathrm{P}_{4}$ since T has size at least 9 . Suppose, to the contrary, that T is P^{\wedge} decomposable. Then the removal of a copy of P 4 from T results in a disconnected graph in which each component has diameter at most 2, implying that the resulting graph is not P 4 -decomposable - a contradiction. Therefore, T is not $\mathrm{P} 4 \sim$ decomposable. Next, we show that T is not $\mathrm{K}(1,3)$ decomposable. Suppose, to the contrary, that T is $\mathrm{K}(1,3)$-decomposable. Then the central vertex of each copy of $\mathrm{K}(1,3)$ in every $\mathrm{K}(1,3)$-decomposition of T is either at u or at v, implying that the degree of one of u and v is a multiple of 3 , contrary to the hypothesis. That T is not ($\mathrm{P} 3 \mathrm{u} \mathrm{K}_{2}$)-decomposable follows from Lemma 2.1. Therefore, T is not decomposable into any graph of size 3 . •

Next we consider a class of trees that are generalizations of double stars.

Let $\mathrm{a}_{1 \text { ? }} \mathrm{a}_{2}, \mathrm{a}_{\mathrm{n}}(\mathrm{n}>2)$ be integers greater than 1 . The caterpillar $\mathrm{C}\left(\mathrm{ai}, \mathrm{a}_{2}\right.$, $\ldots, \mathrm{a}_{\mathrm{n}}$) is the tree obtained from the path $\mathrm{P}_{\mathrm{n}}: \mathrm{x}_{\mathrm{lf}} \mathrm{x}_{2}, \mathrm{x}_{\mathrm{n}}$ by joining the vertices xj and x_{n} to aj -1 and to $\mathrm{a}_{\mathrm{n}}-1$ new vertices, respectively, and the vertex xj to $\mathrm{a}^{\wedge}-2$ new vertices for each $\mathrm{i}(2<\mathrm{i}<\mathrm{n}-1)$. Figure 2.5 shows $\mathrm{C}(3,4,5,2)$. Note that the double star $S(a, b)$ is isomorphic to the caterpillar $C(a, b)$.

$\mathrm{C}(3,4,5,2)$
Figure 2.5 The caterpillar $\mathrm{C}(3,4,5,2)$

We now characterize prime-connected caterpillars of the type $C\left(a_{1 s} a_{2}, a 3\right)$.

Proposition 2.8 The caterpillar $C\left(a j, a_{2}, a_{3}\right)$ is prime-connected if and only if the following conditions hold:
(i) $\quad \operatorname{gcd}\left(a_{1}, a_{2}-1, a_{3}-1\right)=1$,
(ii) $\operatorname{gcd}\left(\mathbf{a}_{:}-1, \mathbf{a} 2-1, \mathbf{a}_{3}\right)=1$,
(iii) $\operatorname{gcd}\left(a_{1}, a_{2}-2, a_{3}\right)=1$,
(iv) $\operatorname{gcd}\left(a j-1, a^{\wedge} a_{3}-1\right)=1$,
(v) $a_{1} * a_{3}$, or $\mathrm{a} 2=2$ or an odd integer at least 3 ,
(vi) $\quad a_{2} \wedge a j+a_{3}$.

Proof Assume that $C\left(a j, a^{\wedge} a_{3}\right)$ is a prime-connected caterpillar. If $\operatorname{gcd}\left(a_{1\}} a_{2}-1\right.$, $\left.\mathrm{a}_{3}-1\right)=\mathrm{ir}^{\wedge} \& 1$, then $\mathrm{C}\left(\mathrm{aj}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$ is $\mathrm{K}\left(1, \mathrm{n}^{\wedge}\right)$-decomposable - a contradiction. Hence, condition (i) holds. Similarly, conditions (ii), (iii), and (iv) hold. Now suppose, to the contrary, that condition (v) does not hold. Then it follows that aj = a_{3} and is an even integer at least 4. In this case, $C\left(a_{i s} a_{2}, a_{3}\right)$ is $S\left(a j, a_{2} / 2\right)$ decomposable, contrary to hypothesis. Finally, suppose, to the contrary, that the condition (vi) does not hold. Then it follows that $a_{2}=a_{1}+a_{3}$, implying that $C\left(a_{1 ?} a_{2}, a_{3}\right)$ is $S\left(a j, a_{3}\right)$-decomposable, contrary to hypothesis.

Conversely, suppose that conditions (i) - (vi) hold and that $\mathrm{C}\left(\mathrm{aj}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)$ is not prime-connected. Let H be a connected graph such that $C\left(a j, a_{2}, a_{3}\right)$ is nontrivially H -decomposable.

Case 1 Assume that the graph H is isomorphic to $\mathrm{K}(1, \mathrm{~m})$ for some integer $m(>2)$. In this case at least one of the following conditions (a) - (d) must hold:
(a) $\mathrm{m} \mid \mathrm{a}_{\mathrm{x}}$ and $\mathrm{m} \mid\left(\mathrm{a}_{2}-1\right)$ and $\mathrm{m} \mid\left(\mathrm{a}_{3}-1\right)$,
(b) $\mathrm{mlfaj}-1)$ and $\mathrm{m} \mid\left(\mathrm{a}_{2}-1\right)$ and $\mathrm{m} \mid \mathrm{a}_{3}$,
(c) $m \mid a_{x}$ and $m \mid\left(a_{2}-2\right)$ and $m \mid a_{3}$,
(d) $\mathrm{mI}\left(\mathrm{a}_{\mathrm{x}}-1\right)$ and m^{\wedge} and $\mathrm{m} \mid\left(\mathrm{a}_{3}-1\right)$.

This, in turn, implies that at least one of the conditions (i) - (iv) fails, contrary to hypothesis.

Case 2 Assume that the graph H is isomorphic to $\mathrm{S}(\mathrm{a}, \mathrm{b})$ for some integers a*1 and $\mathrm{b} \wedge 1$. In this case, one of the following conditions holds:
(e) $\mathrm{C}\left(\mathrm{aj}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)=\mathrm{C}(\mathrm{a}, 2 \mathrm{~b}, \mathrm{a})$ having size $\mathrm{aj}+\mathrm{a}_{2}+\mathrm{a}_{3}-2=2 \mathrm{a}+2 \mathrm{~b}-2$,
(f) $C\left(a_{1\}} a_{2}, a_{3}\right)=C(a, a+b, b)$ having size ${ }^{\wedge}+a 2+a_{3}-2=2 a+2 b-2$.

But, then
(e') $a_{x}=a_{3}(=a)$ and $a 2=2 b$ (that is, d^{\wedge} is an even integer at least 4),
(f) $\quad \sim^{a} \mathrm{i}^{+}{ }^{\mathrm{a}} 3-$

Therefore, at least one of the conditions (v) and (vi) fails - contrary to hypothesis. These two cases are exhaustive and the result follows.

Necessary and sufficient conditions for the caterpillar $C\left(a j, a_{2}, \ldots, a^{\wedge}\right)$ to be prime-connected appear complicated to obtain for large n; however, we do state such a result (without proof) for $\mathrm{n}=4$.

Proposition 2.9 The caterpillar $C\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is prime-connected if and only if the following conditions hold:
(i) $\operatorname{gcd}\left(a j, a 2-1, a_{3}-2, a_{4}\right)=1$,
(ii) $\operatorname{gcd}\left(a j, a 2-2, a_{3}-1, a_{4}\right)=1$,
(iii) $\operatorname{gcd}\left(a_{x}-1, a_{2}, a_{3}-1, a_{4}-1\right)=1$,
(iv) $\operatorname{gcd}\left(a_{1}-1, a_{2}-1, a_{3}, a_{4}-1\right)=1$,
(v) $a j \& a_{3}$ or $a_{2} * a_{4}$,
(vi) $a j * a_{4}$ or $a 2^{\wedge} a_{3}$.
respectively. Thus, if $\operatorname{Gg} \operatorname{LCM}\left(W_{5}, \mathrm{~K}_{5}\right.$-e $)$, then $\mathrm{q}(\mathrm{G})=72 \mathrm{k}$ for some integer $\mathrm{k}>$ 1. Let Gj be a copy of W_{5} with $\left.\mathrm{E}^{\wedge}\right)=\left\{\mathrm{e}_{1\}} \mathrm{e}_{2}, \ldots, \mathrm{e}_{8}\right\}$ and denote the endvertices of each ej by $r(e j)$ and $s C e j)$. Let G be the graph obtained from G_{2} by adding, for each edge ej of Gj , the vertices uj , vj , and wj , joining each of these new vertices to each of $\mathrm{r}(\mathrm{ej})$ and $\mathrm{s}(\mathrm{ej})$, and Vj to Uj and w_{v} Then $\mathrm{q}(\mathrm{G})=72$ and G is $\backslash V 5$-dec0mp0sable into nine copies of W5, namely Gj and ($\left\{\mathrm{r}(\mathrm{ej}), \mathrm{s}(\mathrm{ei}), \mathrm{u}_{\mathrm{v}} \mathrm{v}^{\wedge}\right.$, $\left.{ }^{\mathrm{w}} \mathrm{i}\right)$) - ${ }_{\mathrm{i}} \mathrm{i}$ for each $\mathrm{i}(1<\mathrm{i}<8)$. Also, G is (K5-e)-decomposable into eight copies of $K_{5}-\mathrm{e}$, namely $\left\{\left\{\mathrm{r}(\mathrm{ej}), \mathrm{s}(\mathrm{ei}), \mathrm{Uj}, \mathrm{v}_{\mathrm{v}} \mathrm{wj}\right\}\right)$ for each $\mathrm{i}(1<\mathrm{i}<8)$. Thus, Ge LCM(W5, K5-e). However, G is not 3-connected since $\{\mathrm{r}(\mathrm{ej}), \mathrm{s}(\mathrm{ej})\}$ is a cut-set of G for each i.

CHAPTER IV

SIZES OF GREATEST COMMON DIVISORS AND LEAST COMMON MULTIPLES OF SPECIFIED GRAPHS

In this chapter we study the sizes of greatest common divisors and least common multiples for several classes of graphs. In particular, we determine the size of the greatest common divisor and least common multiple of any path and K_{3}, and of any path and K4. A lower bound for the size of a least common multiple of a path and a complete graph of any order is established.

The greatest common divisor index is introduced in this chapter. This parameter is determined for any collection of stars and stripes, for paths $\mathrm{P}_{\mathrm{n}}(2<\mathrm{n}<$ 5), for all complete graphs, and for the cycle C 4 , for example.

In [CHKS] much interest was shown in the sizes of greatest common divisors and least common multiples of graphs. For graphs Gi and G2, the size of a greatest common divisor of Gi and G2 is denoted by gcd (Gi, G2) and the size of a least common multiple by 1 cm ($\mathrm{Gi}, \mathrm{G} 2$).
4.1 Greatest Common Divisors and Least Common Multiples of Stars and Stripes

The sizes of a greatest common divisor and least common multiple of two matchings (stripes) or of two stars were found in [CHKS].

Theorem 4A For integers $m, n>1$,
(1) $\operatorname{gcd}(\mathrm{mK} 2, \mathrm{nK} 2)=\operatorname{gcd}(\mathrm{m}, \mathrm{n})$;
(2) $1 \mathrm{~cm}(\mathrm{mK} 2, \mathrm{nK} 2)=1 \mathrm{~cm}(\mathrm{~m}, \mathrm{n})$;
(3) $\operatorname{gcd}(\mathrm{K}(1, \mathrm{~m}), \mathrm{K}(1, \mathrm{n}))=\operatorname{gcd}(\mathrm{m}, \mathrm{n})$; and
(4) $1 \mathrm{~cm}(\mathrm{~K}(1, \mathrm{~m}), \mathrm{K}(1, \mathrm{n}))=1 \mathrm{~cm}(\mathrm{~m}, \mathrm{n})$.

These results can be generalized to an arbitrary number of matchings and to an arbitrary number of stars as follows.

Proposition 4.1 For all positive integers $\mathrm{m}_{1 \mathrm{~s}} \mathrm{~m}_{2}, \mathrm{~m}_{\mathrm{n}}(\mathrm{n}>2)$,
(1) $\left.\operatorname{gcdCmxK} \wedge \mathrm{m}_{2} \mathrm{~K}_{2} \ldots \mathrm{~m}_{\mathrm{n}} \mathrm{K}_{2}\right)=\operatorname{gcd}\left(\mathrm{m}_{\mathrm{lt}} \mathrm{m}_{2}>\mathrm{m}_{\mathrm{n}}\right)$;
(2) $\operatorname{lcm}\left(\mathrm{mjK}_{2 \mathrm{i}} \mathrm{m}_{2} \mathrm{~K}_{2} \ldots \mathrm{~m}_{\mathrm{n}} \mathrm{K}_{2}\right)=\operatorname{lcm}\left(\mathrm{m}_{1 \mathrm{t}} \mathrm{m}_{2>} \quad \mathrm{m}_{\mathrm{n}}\right)$;
(3) $\operatorname{gcd}\left(\mathrm{K}(1, \mathrm{mj}), \mathrm{K}\left(1, \mathrm{~m}_{2}\right), \quad \mathrm{K}\left(1, \mathrm{~m}_{\mathrm{n}}\right)\right)=\operatorname{gcd}\left(\mathrm{m}_{1 \xi} \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$;
(4) $\quad \operatorname{lcm}\left(\mathrm{K}\left(1, \mathrm{~m}_{\mathrm{x}}\right)_{\mathrm{t}} \mathrm{K}\left(1, \mathrm{~m}_{2}\right), \quad \mathrm{K}\left(1, \mathrm{~m}_{\mathrm{n}}\right)\right)=1 \mathrm{~cm}\left(\mathrm{~m}_{\mathrm{L}} \mathrm{m}_{2 \mathrm{i}} \ldots \mathrm{t} \mathrm{m}_{\mathrm{n}}\right)$.

Proof (1) For every i $(i=1,2, \ldots, n)$, the graph $m \mid K_{2}$ is $r K_{2}$-decomposable, where $\mathrm{r}=\operatorname{gcd}\left(\mathrm{m}_{1\}} \mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$. Therefore,

$$
\left.\operatorname{gcd}\left(m_{1} K_{2 t} m_{2} K 2 \ldots m_{n} K_{2}\right)>\operatorname{gcdfmj}, m_{2}, \ldots, m_{n}\right)
$$

From the definition of the greatest common divisor of graphs it follows that

$$
\left.\operatorname{gcd}\left(\mathrm{mjK}_{2)} \mathrm{m}_{2} \mathrm{~K}_{2} \ldots \mathrm{~m}_{\mathrm{n}} \mathrm{~K}_{2}\right)<\mathbf{g c d C m} \mathbf{j}, \mathrm{m}_{2}, \ldots, \mathbf{m}_{\mathrm{n}}\right) .
$$

Therefore, $\operatorname{gcd}\left(m_{1} K_{2}, m_{2} K_{2>} \quad m_{n} K_{2}\right)=\operatorname{gcd}\left(m_{1 s} m_{2}, m_{n}\right)$.
(2) For $\mathrm{i}=1,2, \ldots, \mathrm{n}$, the graph rK_{2} is miK_{2}-decomposable, where $\mathrm{r}=1 \mathrm{~cm}\left(\mathrm{mj}, \mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$. Therefore,

$$
\operatorname{lcm}\left(\mathrm{m}_{1} \mathrm{~K}_{2}>\mathrm{m}_{2} \mathrm{~K}_{2} \ldots \mathrm{~m}_{\mathrm{n}} \mathrm{~K}_{2}\right)<\operatorname{lcm}\left(\mathrm{m}_{15} \mathrm{~m}_{2}, \quad \mathrm{~m}_{\mathrm{n}}\right)
$$

From the definition of the least common multiple of graphs it follows that

$$
\left.\operatorname{lcm}\left(m_{1} K_{2}, m_{2} K_{2}, \ldots . m_{n} K_{2}\right)>\operatorname{lcmOnj}, m_{2}, m_{n}\right) .
$$

Therefore, $\left.\left.1 \mathrm{cmCmjK} \mathrm{K}^{\wedge} \mathrm{m}_{2} \mathrm{~K}_{2>}{ }_{\mathrm{f}} \mathrm{m}_{\mathrm{n}} \mathrm{K}_{2}\right)=\operatorname{lcm}(\mathrm{m}], \mathrm{m}_{2}, \mathrm{~m}_{\mathrm{n}}\right)$.
(3) For every i $(\mathrm{i}=1,2, \ldots, \mathrm{n})$, the graph $\mathrm{K}\left(1, \mathrm{~m}^{\wedge}\right.$ is $\mathrm{K}(1, \mathrm{r})$ decomposable, where $\mathrm{r}=\operatorname{gcd}\left(\mathrm{m}_{1 \xi} \mathrm{~m}_{2}, \mathrm{~m}_{\mathrm{n}}\right)$. Therefore,

$$
\left.\operatorname{gcd}\left(K\left(1, m_{1}\right)>K\left(1, m_{2}\right), \ldots, K\left(1, m_{n}\right)\right)>\operatorname{gcdCmx}, m_{2}, \quad m_{n}\right) .
$$

From the definition of the greatest common divisor of graphs it follows that

$$
\operatorname{gcd}\left(K\left(1, m^{\wedge} K\left(1, m_{2}\right), \ldots K\left(1, m_{n}\right)\right)<\operatorname{gcdCmj}, m_{2}, \quad m_{n}\right)
$$

and equality follows.
(4) For $\mathrm{i}=1,2, \mathrm{n}$, the graph $\mathrm{K}(1, \mathrm{r})$ is $\mathrm{K}(1, \mathrm{mi})$-decomposable, where $\mathrm{r}=\operatorname{lcm}\left(\mathrm{mi}, \mathrm{m}_{2}, \mathrm{~m}_{\mathrm{n}}\right)$. Therefore,

$$
\operatorname{lcm}\left(\mathrm{K}(1, \mathrm{mi}) K\left(1_{\mathrm{t}} \mathrm{~m}_{2}\right) \ldots \mathrm{K}\left(1, \mathrm{~m}_{\mathrm{n}}\right)\right)<\operatorname{lcm}\left(\mathrm{m}_{1\}} \mathrm{m}_{2}, \quad \mathrm{~m}_{\mathrm{n}}\right),
$$

and the desired result follows from the definition of the least common multiple of graphs.

Proposition 3 of [CHKS] gives examples of graphs G^{\wedge} and G_{2} such that $\operatorname{gcd}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)=\operatorname{gcd}\left(\mathrm{q}\left(\mathrm{G}_{1}\right), \mathrm{q}\left(\mathrm{G}_{2}\right)\right)$ and $\left.\left.\operatorname{|cm}\left(G_{h} \mathrm{G}_{2}\right)=1 \mathrm{~cm}{ }^{\wedge}\right), \mathrm{q}\left(\mathrm{G}_{2}\right)\right)$. Therefore, Proposition 4.1 can be considered as a generalization of the aforementioned proposition.

For positive integers m and n, we have $\operatorname{gcd}(m, n) 1 c m(m, n)=m n$. For several classes of graphs and G_{2} we have $\operatorname{gcd}\left(\mathrm{Gj}, \mathrm{G}_{2}\right) \operatorname{lcm}\left(\mathrm{Gi}, \mathrm{G}_{2}\right)=$ $\mathrm{q}(\mathrm{Gi}) \mathrm{q}(\mathrm{G} 2>$, namely
(1) $\operatorname{gcd}\left(\mathrm{mK}_{2}, \mathrm{nK}_{2}\right) \operatorname{lcm}\left(\mathrm{mK}_{2>} \mathrm{nK}_{2}\right)-\mathrm{mn}$,
(2) $\quad \operatorname{gcd}(\mathrm{K}(1, \mathrm{~m}), \mathrm{K}(1, \mathrm{n})) \operatorname{lcm}(\mathrm{K}(1, \mathrm{~m}), \mathrm{K}(1, \mathrm{n}))=\mathrm{mn}$.

We now establish some related results.

Proposition 4.2 For positive integers m and n,
(1) $\operatorname{gcd}\left(\mathrm{mK}_{2}, \mathrm{~K}(1, \mathrm{n})\right)=1$,
(2) $\quad 1 \mathrm{~cm}\left(\mathrm{mK}_{2}, \mathrm{~K}(1, \mathrm{n})\right)=\mathrm{mn}$.

Proof (1) The divisors of $m K_{2}$ are $r K_{2}$, where $r \mid m$, and the divisors of $\mathrm{K}(1, \mathrm{n})$ are $\mathrm{K}(1, \mathrm{t})$, where tin. Therefore, the unique common divisor of mK_{2} and $\mathrm{K}(1, \mathrm{n})$ is obtained when $\mathrm{r}=\mathrm{t}=1$. Hence, $\operatorname{GCD}\left(\mathrm{mK}_{2}, \mathrm{~K}(1, \mathrm{n})\right)=\left\{\mathrm{K}_{2}\right\}$, and $\operatorname{gcd}\left(\mathrm{mK}_{2}, \mathrm{~K}(1, \mathrm{n})\right)=1$.
(2) The result is clear when at least one of m or n is 1 . Therefore, we may assume that m and n are at least 2 . Let G be a graph of smallest size that is both mK_{2}-decomposable and $\mathrm{K}(1, \mathrm{n})$-decomposable. Suppose that G can be decomposed into r copies of mK_{2} and into t copies of $\mathrm{K}(1, \mathrm{n})$. Since no copy of $\mathrm{K}(1, \mathrm{n})$ can contain more that one edge of mK_{2}, it is clear that $\mathrm{r}>\mathrm{n}$. Furthermore, no copy of mK_{2} can contain more than one edge of $\mathrm{K}(1, \mathrm{n})$, so $\mathrm{t}>\mathrm{m}$. Therefore, G can be decomposed into at least n copies of mK_{2} and into at least m copies of $\mathrm{K}(1, \mathrm{n})$. Hence, $\mathrm{q}(\mathrm{G})>\mathrm{mn}$. Now since $\mathrm{mK}(1, \mathrm{n})$ is both mK_{2}-decomposable and $\mathrm{K}(1, \mathrm{n})$-decomposable, it follows that $\operatorname{lcm}\left(\mathrm{mK}_{2}, \mathrm{~K}(1, \mathrm{n})\right)-\mathrm{mn}$.

Next we generalize the first result of Proposition 4.2 by the next proposition.

Proposition 4.3 For positive integers n, $n i, n_{2} \ldots n_{t}$,

$$
\operatorname{gcd}\left(\mathrm{nK}_{2}, \mathrm{~K}(1, \mathrm{ni}), \mathrm{K}\left(1, \mathrm{n}_{2}\right), \ldots . . K\left(\mathbf{l}, \mathrm{n}_{\mathrm{t}}\right)\right)=1 .
$$

Proof Observe that for every positive integer s, the divisors of $K(1, s)$ are the graphs $\mathrm{K}(1, \mathrm{r})$, for every r such that $\mathrm{r} \mid \mathrm{s}$. Furthermore, the divisors of nK_{2} are of the form mK_{2}, where $\mathrm{m} \mid \mathrm{n}$. Therefore, K_{2} is the only common divisor of all graphs $n K_{2}, K(1, n j), K\left(1, n_{2}\right), \ldots . K\left(1, n_{t}\right)$. Hence, $\operatorname{gcd}\left(\mathrm{nK}_{2}, K a . n j\right), K\left(\mathbf{l}, n_{2}\right), \ldots$ $\left.\mathbf{K}\left(\mathbf{l}, \mathbf{n}_{\mathbf{t}}\right)\right)=1$.

4.2 Least Common Multiples of Paths and Complete Graphs

We determine $\operatorname{gcd}\left(P_{n}, K_{3}\right)$, 1cm $\left(P_{n}, K_{3}\right)$, and $1 \mathrm{~cm}\left(P_{n}, K_{4}\right)$ for all $n>2$.

Proposition 4.4 For all integers $n>2$, $\operatorname{gcd}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{3}\right)=1$.

Proof The only divisors of K_{3} are K_{2} and K_{3}. The divisors of P_{n} are P_{m} where $(m-1) I(n-1)$. However, K_{3} is not a divisor of P_{n}, implying that K_{2} is the only divisor of P_{n} and K_{3}. Therefore, $\operatorname{GCD}\left(P_{n}, K_{3}\right)=\left(K_{2}\right)$ and $\operatorname{gcd}\left(P_{n}, K_{3}\right)=$ 1, for all integers $\mathrm{n}>2$. •

Next we present a useful proposition that gives a lower bound for the size of a least common multiple of paths versus complete graphs.

Proposition 4.5 For all integers $\mathrm{n}>2$ and $\mathrm{p}>3$,
(1) $\quad \operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{\mathrm{p}}\right)>(\mathrm{P})$ if $\mathrm{n}<\mathrm{p}$ and $\mathrm{n}-11(\mathrm{j})$,
(2) $\quad \operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{\mathrm{D}}\right)>\mathrm{ML}$ otherwise, where
$\mathrm{L}=\operatorname{lcm}(\mathrm{n}-1,(\S))$ and $\mathrm{M}=\max \{[(\mathrm{p}-1)(\mathrm{n}-1) / \mathrm{L}],[\mathrm{p}(\mathrm{n}-1) / 2 \mathrm{~L}]\}$.

Proof The result is clear when $\mathrm{n}<\mathrm{p}$ and $\mathrm{n}-1\{(\mathrm{JJJ}$. Now suppose $\mathrm{n}>\mathrm{p}$ or $\mathrm{n}-$ 1 does not divide (j).
(i) Let $\mathrm{q}=\mathrm{mL}$, where $\mathrm{L}=\operatorname{lcm}(\mathrm{n}-1,(2))$ and m is an integer such that $m<\left[{ }^{\prime}(p-1)(n-1) / L \mid\right.$. Suppose G is a connected graph of size q and order at least n such that G is K_{p}-decomposable. Then G contains a vertex v of degree at least $2(\mathrm{p}-1)$ but at most $\mathrm{p}-2$ paths P_{n}. Hence, G is not P_{n}-decomposable, for v lies on at least p-1 paths in any decomposition of G into paths.
(ii) Suppose $q=m L$, where m is an integer such that $m<\nsim p(n-1) / 2 L]$. Let G be a connected graph of size $m L$ that is K_{p}-decomposable. We show that G has at most $n-1$ vertices: Note that G contains $s=m L / \wedge 0$ edge-disjoint copies of Kp . The maximum number r of vertices of G occur when G consists of s copies $\mathrm{Hj}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{s}}$ of Kp where for each $\mathrm{i}=1,2, \ldots, \mathrm{~s}-1, \mathrm{Hj}$ has one vertex in common with and with no other $\mathrm{Hj}, \mathrm{j} \& \mathrm{i}+1$. Hence, $\mathrm{r}=\mathrm{p}+(\mathrm{s}-1)(\mathrm{p}-1)=$ $\mathrm{s}(\mathrm{p}-1)+1=(2 \mathrm{~mL} / \mathrm{p})+1<\mathrm{n}$. Thus, G has at most $\mathrm{n}-1$ vertices. Therefore, P_{n} is not a subgraph of G, and therefore, G is not P_{n}-decomposable. •

Theorem 4.6 For all integers $m>2$,
(1) $\quad \operatorname{lcm}\left(\mathrm{P}_{\mathrm{m}}, \mathrm{K}_{3}\right)=3(\mathrm{~m}-1)$ for $\mathrm{m}=0$ or $2(\bmod 3)$,
(2) $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{m}}, \mathrm{K}_{3}\right)-2(\mathrm{~m} \quad 1)$ for $\mathrm{m}=1(\bmod 3)$.

Proof (1) Assume that $m=2(\bmod 3)$, where $m>2$. Let $m=3 n-1$ for some integer $\mathrm{n}>1$. Since $\mathrm{q}\left(\mathrm{P} 3_{\mathrm{n}}-\mathrm{i}\right)=3 \mathrm{n}-2$ and the integers $3 \mathrm{n}-2$ and 3 are relatively prime, it follows that $\operatorname{lcm}\left(\mathrm{P}_{3 \mathrm{n} _1}, \mathrm{~K}_{3}\right)>\operatorname{lcm}(3 \mathrm{n}-2,3)=3(3 \mathrm{n}-2)$.

Next we show that the graph Gj of Figure 4.1 is both $\mathrm{P}_{3 \mathrm{n}-1}$-decomposable and K 3 -decomposable. Observe that Gj is K_{3}-decomposable into $3 \mathrm{n}-2$ copies of K3 having vertices Vj , Uj , and for all $\mathrm{i}(1<\mathrm{i}<3 \mathrm{n}-2)$. Moreover, Gj is $\mathrm{P}_{3 \mathrm{n}_{-}} 1$-decomposable into 3 copies of $\mathrm{P}_{3 \mathrm{n}_{-}} \mathrm{i}$. Consider the path $\mathrm{v}_{1 \text { ? }} \mathrm{v}_{2}, \ldots, \mathrm{v}_{3 \mathrm{n} _} \mathrm{j}$. Then let $r=\left[(3 n-1) / 2 *\right.$. When n is even, consider the paths $v_{1\}} u_{1 f} v_{2}, u_{2}, \ldots, v_{r}$ and $v_{r}, u_{r}, v_{r+1}, u_{r+1}, \ldots, v_{3 n_{-}} i$. When n is odd, consider the paths $v j, u j, v_{2}, u_{2}$, \ldots, u_{r} and $u_{r}, v_{r+1}, u_{r+1}, \ldots, v_{3 n_{-} 1}$.

Gi
Figure 4.1 \quad A $\mathrm{P}_{3 \mathrm{n} _1}$-decomposable and K_{3}-decomposable graph

Next, assume that $m=0(\bmod 3)$, where $m>2$. Let $m-3 n$ for some positive integer n. In this case, $q\left(P 3_{n}\right)=3 n-1$. Then $1 \mathrm{~cm}\left(P_{3 n}, K_{3}\right)>$ $\operatorname{lcm}(3 n-1,3)=3(3 n-1)$. Now we consider the graph G_{2} of Figure 4.2, that is both $\mathrm{P}_{3 \mathrm{n}}$-decomposable and K_{3}-decomposable into $(3 n-1)$ copies of K_{3} having vertices v^{\wedge}, $u j$, and vj_{+1} for all $\mathrm{i}(1<\mathrm{i}<3 \mathrm{n}-1)$. Moreover, G_{2} is $\mathrm{P}_{3 \mathrm{n}}$ decomposable into 3 copies of $\mathrm{P}_{3 \mathrm{n}}$. Let $\mathrm{r}=[3 \mathrm{n} / 2]$. When n is even, consider the paths $\mathrm{vj}, \mathrm{Uj}, \mathrm{v}_{2}, \mathrm{u}_{2}, \ldots, \mathrm{v}_{\mathrm{r}}, \mathrm{u}_{\mathrm{r}}$ and $\mathrm{u}_{\mathrm{r}}, \mathrm{v}_{\mathrm{r}+1}, \mathrm{u}_{\mathrm{r}+1}, \mathrm{v}_{\mathrm{r}+2}, \mathrm{u}_{\mathrm{r}+2} \ldots, \mathrm{v}_{3 \mathrm{n}}$ and $\mathrm{Vj}, \mathrm{v}_{2}, \ldots$, $\mathrm{v}_{3 \mathrm{n}}$. When n is odd, consider the paths $\mathrm{v}_{2}, \mathrm{u}_{1 \text { ? }} \mathrm{v}_{2}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{r}} \mathrm{j}, \mathrm{v}_{\mathrm{r}} ; \mathrm{v}_{\mathrm{r}}, \mathrm{u}_{\mathrm{r}}, \mathrm{v}_{\mathrm{r}+1}$,

Figure 4.2 A $\quad \mathrm{P} 3_{\mathrm{n}}$-decomposable and K_{3}-decomposable graph
(2) Assume that $\mathrm{m}=1(\bmod 3)$, where $\mathrm{m}>2$. Let $\mathrm{m}=3 \mathrm{n}+1$ for some positive integer n. Since $P 3_{n}+i$ is not K_{3}-decomposable, it follows that a least common multiple of $P 3_{n+1}$ ind K_{3} has at least $2(3 n)=6 n$ edges. Next, we show that the graph G_{3} of Figure 4.3 is both $\mathrm{P}_{3 \mathrm{n}+1}$-decomposable and K_{3}-decomposable.

Figure 4.3 A $\mathrm{P}_{3 \mathrm{n}+\mathrm{j}} \mathrm{j}$ decomposable and K_{3}-decomposable graph

Observe that G_{3} is K_{3}-decomposable into $2 n$ copies of K_{3} having vertices Vj , $\mathrm{Up} \mathrm{Vi}_{+} \mathrm{i}$ for all $\mathrm{i}\left(1<\mathrm{i}<2 \mathrm{n}\right.$). Moreover, G_{3} is $\mathrm{P}_{3 \mathrm{n}+1}$-decomposable into two copies of $P_{3 n+} j$, one of which is the path $v_{1 \xi} u j, v_{2}, u_{2}, \ldots, v_{n+1}, v_{n+2}, \ldots, v_{2 n+1}$ and the other path is obtained from removal of the edges of the aforementioned path.

For $\mathrm{n}=2,3,4$, the graph K 4 is P_{n}-decomposable, implying that $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K} 4\right)=6$. We now determine $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{4}\right)$ for all integers $\mathrm{n}(>5)$ in the following results.

Proposition $4.7 \quad \operatorname{lcm}\left(\mathrm{P}_{5}, \mathrm{~K}_{4}\right)=12$.

Proof Since $q(P 5)=4$ and $q\left(K_{4}\right)=6$, it follows that $1 \mathrm{~cm}\left(P_{5}, K_{4}\right)>1 \mathrm{~cm}(4,6)=$ 12. Furthermore, $\operatorname{lcm}\left(\mathrm{P}_{5}, \mathrm{~K}_{4}\right)<12$, since the graph G of Figure 4.4 is $\mathrm{K}_{4}-$ decomposable and P5-decomposable, into the following three p5's in G:
(i) 3-5-2-1-6;
(ii) 5-4-2-7-1; (iii) 4-3-2-6-7.

G
Figure 4.4 A P5-decomposable and K^{\wedge}-decomposable graph

We now present an easy proof that $1 \mathrm{~cm}(\mathrm{Pg}, \mathrm{K} 4)-30$; a more general result can be found in Theorem 4.17.

Proposition $\left.4.8 \quad \operatorname{lemtPg}, K^{\wedge}\right)=\mathbf{3 0}$.

Proof Since $q\left(P_{6}\right)=5$ and $\left.q^{\wedge}\right)=6$, it follows that $\operatorname{lcm}\left(P_{6}, 1^{\wedge}\right)>\operatorname{lcm}(5,6)=$ 30. Furthermore, $\operatorname{lcm}\left(\mathrm{P}^{\wedge}, \mathrm{K}_{4}\right)<30$, since the graph G of Figure 4.5 is both Indecomposable and Pg-decomposable, into the following six P6's in G:

G
Figure 4.5 A Pg-decomposable and K_{4}-decomposable graph
$2-1-6-7-3-4, \quad 1-5-6-11-16-15, \quad 5-2-6-10-14-13, \quad 8-4-7-10-13-9, \quad 14-9-10-11-12-16$, and 3-8-7-11-15-12. •

Observe that the minimum number of paths needed to partition $\mathrm{E}(\mathrm{G})$ is equal to half the number of odd vertices of G. This provides a lower bound on the number of paths required, that is, an upper bound on the number of odd vertices graphs which are candidates for $\operatorname{LCM}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{\mathrm{p}}\right)$, for $\mathrm{n}>2$ and $\mathrm{p}>3$, can have.

Proposition $4.9 \quad \operatorname{lcm}\left(\mathrm{P}_{7}, \mathrm{~K}_{4}\right)=18$.

Proof Since $q(P 7)=6$ and $q\left(K_{4}\right)=6$, it follows from Proposition 4.5 that $\operatorname{lcm}\left(\mathrm{P} 7, \mathrm{~K}_{4}\right)>18$. Futhermore, $\operatorname{lcm}\left(\mathrm{P} 7, \mathrm{~K}_{4}\right)<18$, since the graph G of Figure 4.6 is both ${ }^{\wedge}$-decomposable and P 7 -decomposable, into the following three $\mathrm{P} \wedge \mathrm{s}$ in G :

G
Figure 4.6 A p7-decomposable and ${ }^{\wedge}$-decomposable graph

6-7-1-2-5-3-4, 3-2-4-5-7-9-8, and 1-6-2-7-8-5-9. •

Proposition $4.10 \quad \operatorname{lcm}\left(\mathrm{P}_{8}, \mathrm{~K}_{4}\right)=42$.

Proof Since $q\left(P_{8}\right)=7$ and $q\left(K_{4}\right)=6$, it follows that $\operatorname{lcm}\left(P_{8}, K_{4}\right)>\operatorname{lcm}(7,6)=$ 42. Furthermore, $\operatorname{lcm}\left(\mathrm{Pg}, \mathrm{K}_{4}\right)<42$, since the graph G of Figure 4.7 is both $\mathrm{K}_{4^{-}}$ decomposable and Pg-decomposable, into the following six Pg's in G:

Figure 4.7 A Pg-decomposable and ${ }^{\wedge}$-decomposable graph

$1-5-2-3-8-9-14-15,3-7-2-6-5-11-4-10,2-.8-7-6-13-12-16-17$,

$$
4-5-10-11-12-17-13-18, \quad 9-15-8-14-18-17-11-16, \text { and } 2-1-6-12-7-13-14-17 .
$$

(Also see Theorem 4.17 for a more general result.)

Proposition $4.11 \quad \operatorname{lcm}\left(\mathrm{P}_{9}, \mathrm{~K}_{4}\right)=24$.

Proof Since $q\left(P_{9}\right)=8$ and $q\left(K_{4}\right)=6$, it follows that $\operatorname{lcm}\left(P_{9}, K_{4}\right)>\operatorname{lcm}(8,6)=$ 24. Furthermore, $\operatorname{lcm}\left(p 9, K_{4}\right)<24$, since the graph G of Figure 4.8 is both $K_{4^{-}}$ decomposable and P_{9}-decomposable, into the following three copies of P_{9} in G :

Figure 4.8 A Pp-decomposable and K_{4}-decomposable graph
$1-7-2-8-9-10-6-4-5,3-4-11-10-8-1-2-6-9$, and 7-8-6-3-2-4-10-5-11. •

Proposition $\left.4.12 \operatorname{lcmCPjQ}, \mathrm{~K}_{4}\right)=36$.

Proof Since $q($ Pio $)=9$ and $q\left(K_{4}\right)$. $=6$, it follows by Proposition 4.5 that $\operatorname{lcm}\left(\mathrm{P}_{10}, \mathrm{~K}_{4}\right)>36$.

Observe that $\operatorname{lcm}\left(\operatorname{Pio}, \mathrm{K}_{4}\right)<36$, since the graph G of Figure 4.9 is K_{4} decomposable and PjQ -decomposable, into the following four copies of Pjq in G :

Figure 4.9 A Pig-decomposable and ${ }^{\wedge}$-decomposable graph

9-7-8-10-12-11-5-1-4-3, $9-10-6-12-5-2-4{ }_{\mathrm{T}} 11-1-3,5-7-6-8-12-1-2-3-9-11$, and

5-6-2-7-3-8-9-4-10-11. •

Proposition $4.13 \quad 1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}}, \mathrm{K}_{4}\right)=30$.

Proof Since $\mathrm{q}(\mathrm{Pn})=10$ and $\mathbf{q}\left(\mathbf{K}_{4}\right)=6$, it follows that $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}}, \mathbf{K}_{4}\right)>$ $\operatorname{lcm}(10,6)=30$. Furthermore, $\operatorname{lcm}\left(\mathrm{P}_{11}, \mathrm{~K}_{4}\right)<30$, since the graph of Figure 4.10 is both K_{4}-decomposable and P^{\wedge}-decomposable, into the following three copies of P_{n} in G :

G
Figure 4.10 $\quad \mathrm{A} \mathrm{P}^{\wedge}$-decomposable and ${ }^{\wedge}$-decomposable graph

1-3-4-2-10-5-7-9-8-6-11, 1-2-3-7-4-9-5-6-10-8-11, and 1-4-8-7-6-3-5-2-9-10-11.
-

We now obtain $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+} \mathrm{i}, \mathrm{K} 4\right)$, where n is an even integer at least 12 .

Theorem 4.14 $\quad \operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)-3 \mathrm{n}$, where $\mathrm{n}(>12)$ is an even integer.

Proof First, we show that $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)>3 \mathrm{n}$. Observe that a connected graph that is nontrivially ${ }^{\wedge}$-decomposable must have a vertex of degree at least 6 . Therefore, a graph that is both $\mathrm{P}_{\mathrm{n}+\mathrm{j}} \mathrm{j}$ decomposable and K^{\wedge}-decomposable is decomposable into at least 3 copies of $\mathrm{P}_{\mathrm{n}+1} \mathrm{i}$ - This implies that $\mathrm{icm}\left(\mathrm{P}_{\mathrm{n}+1} \mathrm{i}, \mathrm{K} 4\right)>3 \mathrm{n}$, when $\mathrm{n}>12$.

Next, we show that $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)<3 \mathrm{n}$. We construct the graph Gj of Figure 4.11 that is obtained by identifying some of the vertices of $n / 2$ copies of K4 as indicated, where $\mathrm{r}=\mathrm{n} / 2$.

Gi
Figure 4.11 The graph used in the construction of a $\mathrm{P}_{\mathrm{n}+} \mathrm{i}$-decomposable graph, where $r=n / 2$ is even

Then consider the following cases.

Case 1 Assume that r is even. We construct the graph G of Figure 4.12 by identifying some of the vertices of Gi as indicated by the vertices of the same labels.

G

Figure 4.12 A $\mathrm{P}_{\mathrm{n}+1}$-decomposable and K_{4}-decomposable graph, where r is even

Observe that G is K_{4}-decomposable into r copies of K 4 having vertices Uj , $\mathrm{W} \mid, \mathrm{Vj}$, and $\mathrm{wj} \mathrm{j}_{+1}$ for each $\mathrm{i}(1<\mathrm{i}<\mathrm{r})$. Next, we show that G is $\left.\mathrm{P}_{\mathrm{n}+}\right\}-$ decomposable into 3 copies of $\mathrm{P}_{\mathrm{n}+1}$ as indicated in Figures 4.13 to 4.15.

Figure 4.13 The first copy of P_{n+j} in a P_{n+1}-decomposition of G

$\mathrm{v}_{\mathrm{r} _2}{ }^{\mathrm{v}} \mathrm{r}-1$
v_{r}

Figure 4.14 The second copy of P_{n+j} in a $P_{n+j} j$-decomposition of G

Figure 4.15 The third copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G Therefore, $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)<3 \mathrm{n}$, where $\mathrm{n}=2 \mathrm{r}(>12)$ and r is even.

Case 2 Assume that r is odd. We construct the graph H of Figure 4.16 by identifying some of the vertices of Gj as indicated by the vertices of the same labels.

H
Figure 4.16 A $\mathrm{P}_{\mathrm{n}+1} \mathrm{i}$-decomposable and ${ }^{\wedge}$-decomposable graph, where r is odd

Trivially, H is K^{\wedge}-decomposable into r copies of K 4 having vertices Uj, Wj, Vj , and $\mathrm{Wi}_{+} \mathrm{i}$ for each $\mathrm{i}(1<\mathrm{i}<\mathrm{r})$. Finally, we show that H is $\mathrm{P}_{\mathrm{n}+\mathrm{i}} \mathrm{i}$-decomposable into 3 copies of $\mathrm{P}_{\mathrm{n}+1}$ as indicated in Figures 4.17 to 4.19.

Figure 4.17 The first copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of H

Figure 4.18 The second copy of $\mathrm{P}_{\mathrm{n}+\mathrm{j}}$ in a $\mathrm{P}_{\mathrm{n}+1} \mathrm{i}$-decomposition of H

Figure 4.19 The third copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of H
Therefore, $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K}_{4}\right)<3 \mathrm{n}$, where $\mathrm{n}=2 \mathrm{r}(>12)$ and r is odd.
Hence, $\operatorname{lcm}\left(P_{n+1}, K 4\right)=3 n$, where $n(>12)$ is an even integer. -

Next, we obtain $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)$, where $\mathrm{n}(>11)$ is an odd integer that is not a multiple of 3 .

Theorem 4.15 $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1} \mathrm{i}, \mathrm{K} 4\right)=6 \mathrm{n}$, where $\mathrm{n}(>11)$ is an odd integer that is not a multiple of 3 .

Proof Observe that $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)>\operatorname{lcm}\left(\mathrm{q}\left(\mathrm{P}_{\mathrm{n}+1}\right), \mathrm{q}\left(\mathrm{K}_{4}\right)\right)=\operatorname{lcm}(\mathrm{n}, 6)=6 \mathrm{n}$. Next, we consider the graph Gi of Figure 4,20 that is obtained by identifying some of the vertices of n copies of K_{4} as indicated in this figure, where $r=(n+1) / 2$.

Figure 4.20 The graph used in the construction of a $P_{n+j} j$-decomposable graph, where $r=(n+1) / 2$

Then we construct the graph G of Figure 4.21 by identifying some of the vertices of Gj as indicated by the vertices of the same labels.

Figure 4.21 A $\mathrm{P}_{\mathrm{n}+\mathrm{j}}$-decomposable and K^{\wedge}-decomposable graph, where n is an odd integer that is not a multiple of 3

Note that G is ${ }^{\wedge}$-decomposable into n copies of K4. Next, we show that G is $P_{n}+$ rdecomposable into 6 copies of $P_{n+}+$ - Consider the following 6 copies of $\mathrm{P}_{\mathrm{n}+1}$ as indicated in Figures 4.22 to 4.27.

Figure 4.22 The first copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G

Figure 4.23 The second copy of $\mathrm{P}_{\mathrm{n}+} \mathrm{i}$ in a $\mathrm{P}_{\mathrm{n}+}{ }^{\wedge}$ decomposition of G

12

Figure 4.24 The third copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G

Figure 4.25 The fourth copy of P_{n+j} in a $P_{n+j} j$-decomposition of G

Figure 4.26 The fifth copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G

Figure 4.27 The sixth copy of $\mathrm{P}_{\mathrm{n}+1} \mathrm{i}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G

Therefore, $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)<6 \mathrm{n}$, where $\mathrm{n}(>5)$ is an odd integer that is not a multiple of 3 .

Hence, $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}+\mathrm{i}}, \mathrm{K} 4\right)=6 \mathrm{n}$, where $\mathrm{n}(>5)$ is an odd integer that is not a multiple of 3 .

When n is an odd multiple of 3 , we have the following result.

Theorem 4.16 $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}+\mathrm{i}}, \mathrm{K} 4\right)=4 \mathrm{n}$, where $\mathrm{n}(>9)$ is an odd integer that is a multiple of 3 .

Proof Let $\mathrm{n}=3(2 \mathrm{k}+1)$, where k is a positive integer. Then, by Proposition 4.5, we have $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K} 4\right)>\mathrm{ML}$, where $\left.\mathrm{L}=\operatorname{lcm}(\mathrm{n}, \mathrm{Q})\right)=\operatorname{lcm}(3(2 \mathrm{k}+1), 6)-6(2 \mathrm{k}+$
1). Moreover, $\mathrm{M}=\max \{\mid * 3(3)(2 \mathrm{k}+1) / 6(2 \mathrm{k}+1) 1,[4(6 \mathrm{k}+3) / 12(2 \mathrm{k}+1) 1)=2$. Therefore, $1 \mathrm{~cm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K}_{4}\right)>12(2 \mathrm{k}+1)=4 \mathrm{n}$.

It remains to show that there exists a graph of size $4 n$ that is both $\mathrm{P}_{\mathrm{n}+\mathrm{i}} \sim$ decomposable and K_{4}-decomposable. We consider the graph Gj of Figure 4.28 that is obtained by identifying those pairs of vertices of $2 \mathrm{n} / 3=2(2 \mathrm{k}+1)$ copies of K_{4} indicated in the figure.

G1
Figure 4.28 The graph G_{2} used in the construction of a $\mathrm{P}_{\mathrm{n}+\mathrm{i}}$-decomposable graph, where $n(>9)$ is an odd multiple of 3

Now let G be the graph of Figure 4.29 obtained from Gj by identifying those pairs of vertices of Gj having the same labels.

G
Figure 4.29 A $\mathrm{P}_{\mathrm{n}+\mathrm{i}} \mathrm{i}$-decomposable and K^{\wedge}-decomposable graph, where $n(>9)$ is an odd multiple of 3

Observe that this construction creates no multiple edges, so G is indeed a graph.

We show that G is P_{n+1}-decomposable into four copies of $P_{n+1} i-$ Note, firstly, that Gj can be decomposed into the four subgraphs shown in Figures 4.30 4.33.
ui

u_{2}

$\mathrm{u}_{3} \quad .$.

$\mathrm{u}_{2 \mathrm{k} _2}$
${ }^{\mathrm{v}} 2 \mathrm{k}+1$ $\overbrace{w_{2 k+1}}^{w_{2 k+2}}$
$\mathbf{u}_{2 \mathrm{k}+1}$

Figure 4.30 The first copy of $\mathrm{P}_{\mathrm{n}+} \mathrm{i}$ in a $\mathrm{P}_{\mathrm{n}+}{ }^{\wedge}$-decomposition of G

$\mathrm{UL}^{=}=\mathrm{V}_{2} \quad \mathrm{U}_{2}=\mathrm{V}_{3} \quad \mathrm{U}_{3}=\mathrm{V}_{4}$

$$
\begin{array}{clll}
{ }^{\circ} 2 \mathrm{k}-2 & \mathrm{u}_{2} 2 \mathrm{k}-1 & \text { " } 2 k & \mathrm{u}_{2 k+1} \mathrm{k}+1 \\
(=\wedge 2 \mathrm{k}-1) & \left({ }^{\mathrm{v}} 2 \mathrm{k}\right) & \left({ }^{\mathrm{v}} 2 \mathrm{k}+1\right)
\end{array}
$$

Figure 4.31 The second copy of $\mathrm{P}_{\mathrm{n}+\mathrm{j}}$ in a $\mathrm{P}_{\mathrm{n}+\mathrm{i}} \mathrm{i}$-decomposition of G

H_{2}

H_{k}
$\mathrm{H}_{\mathrm{k}+1}$

Figure 4.32 The third copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G

$\mathrm{u}_{1}^{\prime}=\mathrm{v}_{2}$

${ }^{\mathrm{u}} 2 \mathrm{k}-\mathrm{l}^{=\mathrm{v}} 2 \mathrm{k}$

Figure 4.33 The fourth copy of $\mathrm{P}_{\mathrm{n}+1}$ in a $\mathrm{P}_{\mathrm{n}+1}$-decomposition of G

Observe that the two paths shown in Figures 4.30 and 4.31 are paths in G as well as in Gj. Moreover, because of the manner in which the vertices are identified to produce G from $G_{1 s}$ the unions of paths shown in Figures 4.32 and 4.33 are, in fact, paths in G. For example, the path of G produced by the union of the paths $\mathrm{Hj}, \mathrm{H}_{2}$, ..., $\mathrm{H}_{\mathrm{k}+\mathrm{i}}$ in Figure 4.32 is obtained by.successively taking the vi $\sim \mathrm{v}_{3}$ path Hi followed by the $v_{3}-v_{5}$ path H_{2}, etc., finally concluding with the $v_{2 k+1}-u_{2 k+1}$ path $\mathrm{H}_{\mathrm{k}+1}$.

Since G is obviously K_{4}-decomposable and since $q(G)=4 n<\operatorname{lcm}\left(P_{n+1}\right.$, $\left.\mathrm{K}_{4}\right)$, it follows that $\mathrm{Ge} \operatorname{LCM}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K}_{4}\right)$ and that $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{n}+1}, \mathrm{~K}_{4}\right)=4 \mathrm{n}$.

We summarize the previous three results in the next theorem.

Theorem 4.17 For each integer $\mathbf{m}>2$,
(1) $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{m}}, \mathrm{K}_{4}\right)=6$ for $\mathrm{m}=2,3,4$
(2) $\operatorname{lcm}\left(\mathrm{P}_{\mathrm{m}}, \mathrm{K}_{4}\right)=3(\mathrm{~m}-1)$ for $\mathrm{m}=1,3$, or $5(\bmod 6)$
(3) $\quad \operatorname{lcm}\left(\mathrm{P}_{\mathrm{m}}, \mathrm{K}_{4}\right)=6(\mathrm{~m}-1)$ for $\mathrm{m}=0$ or $2(\bmod 6)$

$$
\begin{equation*}
\operatorname{lcm}\left(\mathbf{P}_{\mathrm{m}}, \mathrm{~K}_{4}\right)=4(\mathrm{~m} \quad \text { 1) for } \mathrm{m}=4(\bmod 6), \mathrm{m}>10 . \tag{4}
\end{equation*}
$$

4.3 The Greatest Common Divisor Index of a Graph

For a graph G of size q, define the greatest common divisor index $i(G)$ of G , or simply the index of G , as the greatest positive integer n for which there exist graphs Gi and G_{2}, both of size at least nq, such that $\mathrm{GCD}\left(\mathrm{Gj}, \mathrm{G}_{2}\right)=\{\mathrm{G}\}$. If no such n exists, then we define this index to be

We show that the index of stripes (that is, disjoint copies of K_{2}) is infinite.

Proposition 4.18 For every integer n (> 1)

$$
\mathrm{i}\left(\mathrm{nK}_{2}\right)=\mathrm{oo} .
$$

Proof Let $\mathrm{G}=\mathrm{niC}_{2}$ and suppose, to the contrary, that $\mathrm{i}(\mathrm{G})=\mathrm{t}$ is finite. Now let $\mathrm{m}(>\mathrm{t})$ be an integer and pi and p_{2} be distinct primes so that pjn and $\mathrm{p}_{2} \mathrm{n}$ are at least m. Then for graphs $\mathrm{G}_{2}=\operatorname{PinK} \mathrm{K}_{2}$ and $\mathrm{G}_{2}=\mathrm{p}_{2} \mathrm{nK}_{2}$, having size $\mathrm{p}^{\wedge} \mathrm{n}$ and $\mathrm{p}_{2} \mathrm{n}$ respectively, it is clear that $\mathrm{GCD}\left(\mathrm{Gj}, \mathrm{G}_{2}\right)=\{\mathrm{G}\}$. Therefore, $\mathrm{i}(\mathrm{G})>\mathrm{m}(>\mathrm{t})$, contrary to the hypothesis. Hence, $\mathrm{i}\left(\mathrm{nK}_{2}\right)=00$. •

Next we show that the index of stars is infinite as well.

Proposition 4.19 For every integer n (> 1),

$$
\mathrm{i}(\mathrm{~K}(\mathrm{l}, \mathrm{n}))=\mathrm{oo}
$$

Proof Let $\mathrm{G}=\mathrm{K}(1, \mathrm{n})$ and suppose, to the contrary, that $\mathrm{i}(\mathrm{K}(1, \mathrm{n}))=\mathrm{t}$ is finite. Let $m(>t)$ be an integer and pj and p_{2} be distinct primes so that $\mathrm{p}_{2} \mathrm{n}$ and $\mathrm{p}_{2} \mathrm{n}$.are
at least m . Then for graphs $\mathrm{Gj}=\mathrm{K}(1, \mathrm{pjii})$ and $\mathrm{G}_{2}=\mathrm{K}\left(1, \mathrm{p}_{2} \mathrm{n}\right)$, having size $\mathrm{p}_{\mathrm{x}} \mathrm{n}$ and $\mathrm{p}_{2} \mathrm{n}$ respectively, it is clear that $\operatorname{GCD}\left(\mathrm{G}_{\mathrm{x}}, \mathrm{G}_{2}\right)=\{\mathrm{G}\}$. Therefore, $\mathrm{i}(\mathrm{G})>\mathrm{m}$ $(>\mathrm{t})$-contrary to the hypothesis. Hence, $\mathrm{i}(\mathrm{K}(1, \mathrm{n}))=00$. •

We combine the previous results in the next proposition.

Proposition 4.20 For all integers a,b (> 1),

$$
\mathrm{i}\left(\mathrm{aK}_{2} \mathrm{u} \mathrm{~K}(\mathrm{l}, \mathrm{~b})\right)=
$$

Proof Let $G=\cdot\left(\mathrm{aK}_{2} \mathrm{u} \mathrm{K}(1, \mathrm{~b})\right)$ and suppose, to the contrary, that $\mathrm{i}\left(\mathrm{aK}_{2} \mathrm{uK}(1, \mathrm{~b})\right)=\mathrm{t}$ is finite. Let $\mathrm{m}(>\mathrm{t})$ be an integer and pj and p_{2} be distinct primes so that $\mathrm{p}_{\mathrm{x}} \mathrm{a}+\mathrm{p}^{\wedge} \mathrm{b}$ and $\mathrm{p}_{2} \mathrm{a}+\mathrm{p}_{2} \mathrm{~b}$ are at least m . The graphs $\mathrm{G}_{\mathrm{t}}=$ $\left(\mathrm{pjaK} \mathrm{K}_{2} \mathrm{u} \mathrm{K}(\mathrm{l}, \mathrm{pjb})\right)$ and $\mathrm{G}_{2}=\left(\mathrm{p}_{2} \mathrm{aK}_{2} \mathrm{u} \mathrm{K}\left(1, \mathrm{p}_{2} \mathrm{~b}\right)\right)$ provide the desired contradiction. -

We next present a result for the index of an arbitrary number of stars.

Proposition 4.21 For all positive integers $n j, n_{2}, n_{m}$,

$$
\mathrm{i}\left(\mathrm{~K}(1, \mathrm{nj}) \text { u } \mathrm{K}\left(1, \mathrm{n}_{2}\right) \text { u } \ldots \text { u } \mathrm{K}\left(1, \mathrm{n}_{\mathrm{m}}\right)\right)=-
$$

Proof Let $G=K(1, n j) u K\left(1, n_{2}\right) u \ldots K\left(1, n_{m}\right)$ and suppose, to the contrary, that $\mathrm{i}(\mathrm{G})=\mathrm{t}$ is finite. Let $\mathrm{m}(>\mathrm{t})$ be an integer and $\mathrm{p}_{1\}} \mathrm{p}_{2}>\mathrm{m}$ be distinct primes. In this case, the graphs $\mathrm{Gi}=\mathrm{K}(1, \operatorname{Pinj}) \mathrm{u} \mathrm{K}\left(1, \mathrm{p}_{\mathrm{x}} \mathrm{n}_{2}\right) \mathrm{u} \ldots \mathrm{uK}\left(1, \mathrm{pin}_{\mathrm{m}}\right)$ and $\mathrm{G}_{2} \mathrm{~s}$ $\mathrm{K}\left(1, \mathrm{p}_{2} \mathrm{nj}\right)$ u $\mathrm{K}\left(1, \mathrm{p}_{2} \mathrm{n}_{2}\right) \mathrm{u} \ldots \mathrm{u} \mathrm{K}\left(1, \mathrm{p}_{2} \mathrm{n}_{\mathrm{m}}\right)$ satisfy $\left.\operatorname{GCDCGj}, \mathrm{G}_{2}\right)=\{\mathrm{G}\}$, again a contradiction. •

We now generalize Propositions 4.20 and 4.21 by finding the index of stars and stripes.

Proposition 4.22 For all positive integers a, m, and n,

$$
\mathrm{i}\left(\mathrm{aK}_{2} \mathrm{u} \mathrm{~K}\left(1, \mathrm{n}\{) \mathrm{u} \mathrm{~K}\left(1, \mathrm{n}_{2}\right) \mathrm{u} \ldots \mathrm{u} \mathrm{~K}\left(1, \mathrm{n}_{\mathrm{m}}\right)\right)=\right.
$$

Proof The result follows as before by considering the integer $m>t$, distinct primes Pl and p_{2} such that $\mathrm{p}_{2}\left(\mathrm{a}+\mathrm{n}_{2}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{m}}\right)$ and $\mathrm{p}_{2}\left(\mathrm{a}+\mathrm{nj}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{m}}\right)$ are at least m , and the graphs $\mathrm{Gj}=\mathrm{PiaK}_{2} \mathrm{u} \mathrm{K}(1, \mathrm{pjnj}) \mathrm{u} \mathrm{K}\left(1, \mathrm{p}^{\wedge}\right) \mathrm{u} \ldots \mathrm{u} \mathrm{K}\left(1, \mathrm{pin}_{\mathrm{m}}\right)$ and $\mathrm{G}_{2} \mathbf{S} \mathrm{p}_{2} \mathrm{aK}_{2} \mathbf{U K}\left(1, \mathrm{p}_{2} \mathrm{n}_{\mathrm{x}}\right) \mathbf{U K}\left(1, \mathrm{p}_{2} \mathrm{n}_{2}\right) \mathrm{u} \ldots \mathrm{uK}\left(1, \mathrm{p}_{2} \mathrm{n}_{\mathrm{m}}\right)$.

Now we present the index of paths of size $1,2,3$, and 4.

Proposition 4.23 For $\mathrm{n}=2,3,4$,

$$
\mathrm{i}\left(\mathrm{P}_{\mathrm{n}}\right)=
$$

Proof Since $\mathrm{i}(\mathrm{K}(\mathrm{l}, \mathrm{m}))=<^{*}$, for every integer $\mathrm{m}(>1)$, it follows for $\mathrm{m}=1$ and $\mathrm{m}=2$ that $\mathrm{i}\left(\mathrm{P}_{2}\right)=*$ and $\mathrm{i}\left(\mathrm{P}_{3}\right)=$ respectively.

To show that $\mathrm{i}\left(\mathrm{P}_{4}\right)=<{ }^{*}$, suppose, to the contrary, that $\mathrm{i}\left(\mathrm{P}_{4}\right)=\mathrm{t}$ is finite. Let $\mathrm{m}(>\mathrm{t})$ be an integer and pj and p_{2} be distinct primes, each of which is at least m . Now for the graphs $G j=\mathrm{p}^{\wedge}$ and G_{2} described in Figure 4.34, having $\mathrm{k}=\mathrm{p}_{2}$,

Figure 4.34 The greatest common divisor of Gj and G_{2} is P 4
we will show that $\operatorname{GCD}\left(\mathrm{G}_{\mathrm{lt}} \mathrm{G}_{2}\right)-\{\mathrm{P} 4\}-$ We observe that $\operatorname{gcd}\left(3 \mathrm{p}_{\mathrm{lt}} 3 \mathrm{p}_{2}\right)=3$, since pi and p_{2} are distinct primes. For the graph Gj the divisors of size 3 are $\mathrm{P} 4, \mathrm{P} 3 \mathrm{u}$ K_{2}, and $3 \mathrm{~K}_{2}$. However, by Lemma 2.1, the graph G_{2} is not $\left(\mathrm{P} 3 \mathrm{u} \mathrm{K}_{2}\right)$ decomposable, since the edge $u y^{\wedge}$ is adjacent to all other edges of G_{2}. Similarly, G_{2} is not $3 \mathrm{~K}_{2}$-decomposable. Observe that G_{2} is P 4 -decomposable into paths $x-v \mathrm{u}, \mathrm{y}_{\mathrm{i} 5}$ y_{1} for all $\mathrm{i}(2<\mathrm{i}<\mathrm{k})$ and finally the path $\mathrm{xj}, \mathrm{u}, \mathrm{yj}, \mathrm{v}$. Therefore, the path P_{4} is the only divisor of size 3 for the graph G_{2}. Hence, $\mathrm{GCD}(\mathrm{Gj}, G q)=\left\{\mathrm{P}_{4}\right\}$ implying that $\mathrm{i}\left(\mathrm{P}_{4}\right)>\mathrm{m}(>\mathrm{t})$-contrary to the hypothesis. Therefore, $\mathrm{i}\left(\mathrm{P}_{4}\right)=$

We determine the index of P5 in the next result.

Proposition 4.24 i(P5> =

Proof Suppose, to the contrary, that KP5) = a, where a e N. Let m (> a) be an integer, and let pj and p_{2} be distinct primes, where $\mathrm{pj}>\mathrm{p}_{2}>\mathrm{m}$ and $\mathrm{p}_{2}=2 \mathrm{k}+1$ for some positive integer k . Let $\mathrm{G}=\mathrm{P} 1 \mathrm{P} 5$ and let G_{2} be the graph of Figure 4.35, where the vertices of G_{2} are labeled as indicated.

Figure 4.35 The greatest common divisor of Gi and G_{2} is P 5

We show that $\operatorname{GCD}\left(\mathrm{G}_{\mathrm{lt}} \mathrm{G}_{2}\right)=\left(\mathrm{P}_{5}\right)$: Observe that $\operatorname{gcd}\left(\mathbf{G}_{\mathrm{If}} \mathrm{G}_{2}\right)<$ $\operatorname{gcd}\left(4 \mathrm{pj}, 4 \mathrm{p}_{2}\right)=4$. The graph G_{2} is P 5 -decomposable into p_{2} paths, namely UpX , $\mathrm{Vj}, \mathrm{y}, \mathrm{u}_{\mathrm{i}+1}$ for $\mathrm{i}=1,2,2 \mathrm{k}-1$ together with the path $\mathrm{u}_{2 \mathrm{k}}, \mathrm{x}, \mathrm{v}_{2 \mathrm{k}}, \mathrm{y}, \mathrm{m}$ and z, x, y, w, t. The graph $G j$ is P_{5}-decomposable. Hence, $\{P 5) \mathrm{c} \operatorname{GCD}\left(\mathrm{G}_{1}, \mathrm{G}_{2}\right)$. Observe that for the graph Gi the divisors of size 4 are $\mathrm{P}_{5}, \mathrm{P}_{4} \mathrm{u} \mathrm{K}_{2}, 2 \mathrm{P}_{3}, \mathrm{P}_{3} \mathrm{u}$ $2 \mathrm{~K}_{2}$, and $4 \mathrm{~K}_{2}$. Every edge of G_{2} different from xy and wt is incident with x or y , so $\mathrm{Pi}\left(\mathrm{G}_{2}-\mathrm{wt}\right)=2$. Therefore, G_{2} is not G -decomposable, for $\mathrm{G} e\left\{\mathrm{P} 4 \mathrm{u} \mathrm{K}_{2}\right.$, $\left.P_{3} u 2 \mathrm{~K}_{2}, 4 \mathrm{~K}_{2}\right\}$. Also, G_{2} is not 2 P 3 -decomposable, for otherwise the edge xy is an edge of P3 in some copy H of 2P3, but no other disjoint copy of P3 in H exists, producing a contradiction. Hence, G_{2} is not 2P3~decomposable. Hence, $\operatorname{GCD}\left(\mathrm{Gj}, \mathrm{G}_{2}\right)=\left\{\mathrm{P}_{5}\right\}$ and $\mathrm{i}\left(\mathrm{P}_{5}\right)>\mathrm{m}(>\mathrm{a})$, contrary to hypothesis. •

The index of a path P_{n} for $n>6$ is not known and it appears to be difficult to obtain.

Next, we present another class of graphs and we obtain the index of some special cases of such graphs.

The broom $\mathrm{B}(\mathrm{n}, \mathrm{k})$ for which each of the integers n and k is at least 2 is constructed by identification of the central vertex of the $\operatorname{star} \mathrm{K}(1, \mathrm{n})$ and an end-vertex of the path P_{k}. Figure 4.36 shows $\mathrm{B}(4,2)$ and $\mathrm{B}(2,3)$.

$B(4,2)=K(1,5)$

$\mathrm{B}(2,3)$

Figure 4.36 The brooms $\mathrm{B}(4,2)$ and $\mathrm{B}(2,3)$

Proposition 4.25 $\mathrm{i}(\mathrm{B}(\mathrm{n}, 3))=$

Proof We suppose, to the contrary, that $\mathrm{i}(\mathrm{B}(\mathrm{n}, 3))=\mathrm{t}$ is finite. Let $\mathrm{m}(>\mathrm{t})$ be an integer and $\mathrm{pi}, \mathrm{p}_{2} \wedge \mathrm{~m}$ be distinct primes. Now for graphs $\mathrm{Gj} \mathrm{spiB}(\mathrm{n}, 3)$ and G_{2} described in Figure 4.37, where $k=p_{2} n$, we show that $\operatorname{GCD}\left(\mathrm{Gx}, \mathrm{G}_{2}\right)=\{\mathrm{B}(\mathrm{n}, 3)\}$.

Since pi and p_{2} are distinct primes, it follows that $\operatorname{gcd}(\operatorname{pj}(\mathrm{n}+2)$, $\left.\mathrm{p}_{2}(\mathrm{n}+2)\right)=\mathrm{n}+2$. Certainly, Gj is $\mathrm{B}(\mathrm{n}, 3)$-decomposable. Also, G_{2} is $\mathrm{B}(\mathrm{n}, 3)$ decomposable, which can be seen by selecting copies of $\mathrm{B}(\mathrm{n}, 3)$ with vertices $\mathrm{xj}, \mathrm{x}_{2}$, $x_{n}, u, y j, v$ and $p_{2}-1$ other copies of $B(n, 3)$ having vertices $X_{J_{N+1}}, \mathbf{X I}_{\mathrm{N}+2}$, *in+n>4 yi+l>yi. for ${ }^{\text {all }} \mathrm{i}(1<\mathrm{i}<\mathrm{P} 2-1)$. Thus $\mathrm{B}(\mathrm{n}, 3)$ e $\operatorname{GCD}\left(\mathrm{G}!, \mathrm{G}_{2}\right)$ and

$\mathbf{G}_{\mathbf{2}}$

Figure 4.37 The greatest common divisor of Gj and G_{2} is $\mathrm{B}(\mathrm{n}, 3)$
$\operatorname{gcd}\left(\mathrm{Gj}, \mathrm{G}_{2}\right)=\mathrm{n}+2$. Let H be any greatest common divisor of Gj and G_{2}; so $\mathrm{q}(\mathrm{H})=\mathrm{n}+2$. The edge uyj in the graph G_{2} is adjacent to all other edges, implying, by Lemma 2.1, that H is connected. So H must be a subgraph of each component of Gi- However, each component of $G j$ is isomorphic to $B(n, 3)$ and so has size $n+$ 2. Thus $\mathrm{H}=\mathrm{B}(\mathrm{n}, 3)$, implying that $\mathrm{GCD}\left(\mathrm{G}_{\mathrm{b}} \mathrm{G}_{2}\right)=\{\mathrm{B}(\mathrm{n}, 3))$. Therefore, $\mathrm{i}(\mathrm{B}(\mathrm{n}$, $3))>\mathrm{m}(>\mathrm{t})$. Hence $\mathrm{i}(\mathrm{B}(\mathrm{n}, 3))=$

Next, we find the index of the cycle C4.

Proposition 4.26 i(C4) $=\ll$

Proof Suppose, to the contrary, that $\mathrm{i}(\mathrm{C} 4)=\mathrm{t}$ is finite. Let $\mathrm{m}(>\mathrm{t})$ be an integer and pi and p_{2} primes with $\mathrm{p}_{2}>\mathrm{pj}>\mathrm{m}$. Let $\mathrm{Gjs} \mathrm{PiC}_{4}$ and let G_{2} be the graph of Figure 4.38 , where the vertices of G_{2} are labeled as indicated with $\mathrm{k}=\mathrm{p}_{2}-1$. In
other words, G_{2} is obtained by identifying a vertex of degree 2 k in $\mathrm{K}(2,2 \mathrm{k})$ with the vertex u of the cycle $C: v, u, w, z, v$ and identifying the other vertex of degree 2 k with vertex v of C .

G_{2}
Figure 4.38 The greatest common divisor of and G_{2} is C 4

Then $\left.\operatorname{gcdCG}^{\wedge} \mathrm{G}_{2}\right)^{\wedge} \operatorname{gcd}\left(4 \mathrm{p}_{1>} 4 \mathrm{p}_{2}\right)=4$. We show that $\operatorname{GCD}\left(\mathrm{G}_{15} \mathrm{G}_{2}\right)=$ $\{\mathrm{C} 4\}$. For $\mathrm{i}=1,2, \mathrm{k}$, define Hj to be the 4 -cycle $\mathrm{u}, \mathrm{Xj}, \mathrm{v}, \mathrm{y}^{\wedge} \mathrm{u}$ and let $\mathrm{H}_{\mathrm{k}+1}$ be the 4 -cycle $\mathrm{u}, \mathrm{v}, \mathrm{z}, \mathrm{w}, \mathrm{u}$. Then we see that G_{2} is decomposable into the 4-cycles $\mathrm{Hj}(1<\mathrm{i}<\mathrm{k}+1)$. Now since G_{x} is C_{4}-decomposable, it follows that $\mathrm{C}_{4} \mathrm{e}$ $\operatorname{GCD}\left(\mathrm{Gx}, \mathrm{G}_{2}\right)$. Observe that graphs $\mathrm{C}_{4}, \mathrm{P}_{4} \mathrm{u} \mathrm{K}_{2}, 2 \mathrm{P}_{3}, \mathrm{P}_{3} \mathrm{u} 2 \mathrm{~K}_{2}$ and $4 \mathrm{~K}_{2}$ are the divisors of size 4 for the graph Gj . Every edge of G_{2} different from zw is incident with u or v; so $\left(G_{2}-\mathrm{zw}\right)=2$. Notice that the only edge of G_{2} not adjacent to uv is zw , that is, uv does not belong to an independent set of three edges. Therefore, G_{2} is not G-decomposable, for every $\mathrm{Ge}\left\{4 \mathrm{~K}_{2},\left(\mathrm{P}_{3}\right.\right.$ u $\left.2 \mathrm{~K}_{2}\right)$, $\left.\mathrm{P} 4 \mathrm{u} \mathrm{K}_{2}\right\}$. Since any edge adjacent to zw is also adjacent to uv, there can be no copy of P_{3} disjoint from a copy of P_{3} containing zw , that is, G_{2} is not $2 \mathrm{P}_{3}$-decomposable. Hence, $\operatorname{GCD}\left(\mathrm{Gi}, \mathrm{G}_{2}\right)=\left\{\mathrm{C}_{4}\right\}$ and $\mathrm{i}\left(\mathrm{C}_{4}\right)>\mathrm{m}(>\mathrm{t})$, contrary to the hypothesis. Therefore, $\mathrm{i}\left(\mathrm{C}_{4}\right)=00$. •

The index of a cycle C_{m}, for $m>5$, is not known.

Every class of graphs we have considered thus far has been shown to have infinite index. This is not always the case, since the complete graph $K_{n}(n>3)$ has index equal to 1 , a fact which follows directly from Lemma 2.13.

Proposition 4.27 For every integer n (> 3),

$$
\mathrm{i}\left(\mathrm{~K}_{\mathrm{n}}\right)=1 .
$$

In general, the problem of determining the greatest common divisor index of a graph appears to be difficult and it is unknown whether graphs G, with $1<\mathrm{i}(\mathrm{G})<$ exist.

CHAPTER V

ON GREATEST COMMON DIVISORS AND LEAST COMMON MULTIPLES OF DIGRAPHS

In this chapter we introduce the concepts of greatest common divisors and least common multiples for digraphs. It is proved that least common multiples of two directed stars exist. For several pairs of directed stars, the size of a least common multiple is determined. Finally, the greatest common divisor index of a digraph is introduced, and this parameter is found for several classes of digraphs, including directed stars and stripes, directed paths $\mathrm{P}^{\wedge}(2<\mathrm{n}<5)$, directed cycles C 3 and C 4 , and the complete symmetric digraph Kp , for all integers $\mathrm{p}(>3)$.

5.1 Introduction

A digraph D is said to be decomposable into the subdigraphs $\mathrm{Di}, \mathrm{D} 2, \mathrm{D}_{\mathrm{n}}$, $\mathrm{n}>1$, of D if no $\mathrm{Di}(\mathrm{i}=1,2, \ldots, \mathrm{n})$ has isolated vertices and the arc set $\mathrm{E}(\mathrm{D})$ of D is partitioned into $E(D i), E(D 2), \quad E\left(D_{n}\right)$. IfDi $=H$ for each $i(1<i<n)$, then D is said to be H-decomposable, and H is said to divide D and be a divisor of D . If H divides D, we write $H \mid D$. Of course, if a digraph D is H-decomposable, then $\mathrm{q}(\mathrm{H}) \mathrm{I} \mathrm{q}(\mathrm{D})$. As with graphs, if H is a subdigraph of D without isolated vertices such that $q(H) \mid q(D)$, then D need not be H-decomposable. For example, in the digraph D of Figure 5.1, Hi, H2 and H3 are all subdigraphs of D such that $q\left(H^{\wedge}\right) \mid q(D)$ for
$1=1,2,3$. While D is Hi-decomposable, D is neither H_{2}-decomposable nor Indecomposable.

Figure 5.1 Digraphs having $\mathrm{q}(\mathrm{Hi}) \mid \mathrm{q}(\mathrm{D})$ for $\mathrm{i}=1,2,3$ so that only Hj divides D

For positive integers m and n, let $t(m, n)$ be the digraph whose vertex set can be partitioned into sets Vi and V_{2}, where $\mid \mathrm{VjI}=\mathrm{m}$ and $\left|\mathrm{V}_{2}\right|=\mathrm{n}$ so that every vertex of Vj is adjacent to every vertex of V 2 . Observe that every nonempty digraph is 1 -decomposable, where $\operatorname{lt}(1,1)$ is the unique connected digraph of order 2 and size 1.

A digraph D without isolated vertices is called a greatest common divisor of two digraphs Di and D 2 if D is a digraph of maximum size such that both Di and D 2 are D -decomposable. If Dj and D 2 are nonempty digraphs, then they are both

Indecomposable. Hence there exists some digraph D of maximum size such that Di and D2 are D-decomposable. Consequently, every two nonempty digraphs have a greatest common divisor. For the digraphs Di and D2 of Figure 5.2, Hi is the unique greatest common divisor of Di and D_{2}, while Hi and H 2 are the greatest common divisors of D2 and D3.

D1

D_{2}

D_{3}
HI
H_{2}

Figure 5.2 Digraphs for which $\left.\operatorname{GCDCD}^{\wedge} \mathrm{D}_{2}\right)=\left\{\mathrm{H}_{\mathrm{x}}\right\}$ and $\operatorname{GCD}\left\{\mathrm{D}_{2}, \mathrm{D}_{3}\right\}=\left\{\mathrm{H}_{\mathrm{x}}, \mathrm{H}_{2}\right\}$

A greatest common divisor of a set $\mathrm{D}-\left\{\mathrm{D}^{\wedge}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{n}}\right\}, \mathrm{n}>2$ of digraphs is defined similarly, and it follows, as before, that every set of two or more nonempty digraphs has a greatest common divisor.

A digraph H without isolated vertices is called a least common multiple of two digraphs Di and D_{2} if H is a digraph of minimum size such that it is both Didecomposable and D_{2}-decomposable. For the digraphs Dj and D_{2} of Figure 5.3, $\mathrm{Hi}, \mathrm{H}_{2}, \mathrm{H} 3, \mathrm{H} 4$, and H 5 are the least common multiples of Di and D_{2}.

$$
\mathrm{O}-\bullet-\mathrm{O}
$$

D1
D2

HI

H_{2}

H_{3}

H4
H_{5}

Figure 5.3 The least common multiples of and D_{2} are $\mathbf{H J}, \mathbf{H}_{2}, \ldots, \mathrm{H} 5$

Note that Wilson's result (Theorem IN), which is used to prove the corresponding existence result for graphs, does not hold for digraphs and that no similar result is known for digraphs. Therefore, whether every two nonempty digraphs Di and D2 have a least common multiple is unknown.

For digraphs Di and D2, we denote by gcd (Di, D2) the size of a greatest common divisor of Di and D_{2} and by $1 \mathrm{~cm}\left(\mathrm{Di}, \mathrm{D}_{2}\right)$ the size of a least common multiple of Di and D_{2} (if it exists). It is clear that $\operatorname{gcd}\left(\mathrm{Di}, \mathrm{D}_{2}\right)<\operatorname{gcd}(\mathrm{q}(\mathrm{Di}), \mathrm{q}(\mathrm{p} 2))$ and $1 \mathrm{~cm}(\mathrm{Di}, \mathrm{D} 2)^{\wedge} 1 \mathrm{~cm}(\mathrm{q}(\mathrm{Di}), \mathrm{q}(\mathrm{D} 2))$. There are some digraphs Dj and D 2 for
which equality holds in both cases. For example, when Dj s (the directed path of length m-1) and $D_{2}=P_{n}$, we have
(i) $\operatorname{gcd}\left(?_{\mathrm{m}}, ?_{\mathrm{n}}\right)=\operatorname{gcd}\left(\mathrm{q}\left(?_{\mathrm{m}}\right), \mathrm{q}(?,),\right)=\operatorname{gcd}(\mathrm{m}-1, \mathrm{n}-1)$ and
(ii) $\operatorname{lcrn}\left(?_{\mathrm{m}}, \mathrm{t}_{\mathrm{n}}\right)=\operatorname{lcm}\left(\mathrm{q}\left(?_{\mathrm{m}}\right), \mathrm{q}\left(?,{ }_{\mathrm{n}}\right)\right)=\operatorname{lcm}(\mathrm{m}-1, \mathrm{n}-1)$.

The set of all greatest common divisors of two digraphs DI and D_{2} is denoted by GCD (DI, D_{2}). Similarly, the set of all least common multiples of two digraphs DI and D_{2} is denoted by $\mathrm{LCM}\left(\mathrm{DI}, \mathrm{D}_{2}\right)$. We define $\mathrm{GCD}\left(\mathrm{DI}, \mathrm{D}_{2}, \ldots\right.$, $\left.\mathrm{D}_{\mathrm{N}}\right), \mathrm{LCM}\left(\mathrm{DI}, \mathrm{D}_{2}, \mathrm{D}_{\mathrm{N}}\right)$, $\operatorname{gcd}\left(\mathrm{D}_{h} \mathrm{D}_{2}, \ldots, \mathrm{D}_{\mathrm{N}}\right)$, and $1 \mathrm{~cm}\left(\mathrm{D}_{\mathrm{B}} \mathrm{D}_{2}, \quad \mathrm{D}_{\mathrm{N}}\right)$, in the expected manner.

5.2 Least Common Multiples of Directed Stars

A directed star $\mathrm{D}(\mathrm{m}, \mathrm{n})$, for nonnegative integers m and n , is a digraph obtained by joining m vertices to a vertex and joining this vertex to n new vertices. A vertex of $\mathrm{D}(\mathrm{m}, \mathrm{n})$ with indegree r and outdegree s is called an (r, s) vertex. Thus, $\mathrm{D}(\mathrm{m}, \mathrm{n})$ is a digraph having one vertex with indegree m and outdegree n , an (m, n) vertex, m vertices having indegree 0 and outdegree 1 , the $(0,1)$ vertices and n vertices having indegree 1 and outdegree 0 , the $(1,0)$ vertices (see Figure 5.4). In Figure 5.4 the vertex v is an (m, n) vertex. Therefore, the digraph $1^{\wedge}(1,1)$ is the directed star $\mathrm{D}(0,1)$ or, equivalently, the directed star $\mathrm{D}(1 \% 0)$ with one $(0,1)$ vertex and one $(1,0)$ vertex.

Figure 5.4 The digraph $D(m, n)$

Next, we show that least common multiples of $D(m, n)$ and $D(r, s)$ exist for all positive integers $\mathrm{m}, \mathrm{n}, \mathrm{r}$, and s .

Theorem 5.1 For all positive integers m, n, r, and $s, \operatorname{LCM}(D(m, n), D(r, s))$ is nonempty.

Proof It suffices to verify the existence of a digraph D that is both $D(m, n)$ decomposable and $\mathrm{D}(\mathrm{r}, \mathrm{s})$-decomposable, implying that $\operatorname{LCM}(\mathrm{P}(\mathrm{m}, \mathrm{n}), \mathrm{D}(\mathrm{r}, \mathrm{s}))$ is nonempty and that $\operatorname{lcm}(\mathrm{D}(\mathrm{m}, \mathrm{n}), \mathrm{D}(\mathrm{r}, \mathrm{s}))<\mathrm{IE}(\mathrm{D}) \mid$. We suppose, without loss of generality, that $m>r$.

Case 1 Assume that $\mathrm{ms}=\mathrm{nr}$. Let $\mathrm{D}=\mathrm{D}(\mathrm{mr}, \mathrm{ms})$. Thus, D is decomposable into m copies of $\mathrm{D}(\mathrm{r}, \mathrm{s})$. By hypothesis $\mathrm{D}(\mathrm{mr}, \mathrm{ms})=\mathrm{D}(\mathrm{mr}, \mathrm{nr})$, so that D is decomposable into r copies of $\mathrm{D}(\mathrm{m}, \mathrm{n})$. Therefore, D is both $\mathrm{D}(\mathrm{r}, \mathrm{s})$-decomposable and $\mathrm{D}(\mathrm{m}, \mathrm{n})$-decomposable. In this case $\operatorname{lcm}(\mathrm{D}(\mathrm{m}, \mathrm{n}), \mathrm{D}(\mathrm{r}, \mathrm{s}))<\mathrm{m}(\mathrm{r}+\mathrm{s})$.

Case 2 Assume that $\mathrm{ms}>\mathrm{nr}$. First, let $\mathrm{H}=\mathrm{D}(\mathrm{mr}, \mathrm{ms})=\mathrm{D}(\mathrm{mr}, \mathrm{nr}+\mathrm{ms}-\mathrm{nr})$. If $\mathrm{ms}-\mathrm{nr}(1,0)$ vertices and their corresponding arcs are removed from H , then the
resulting digraph is $\mathrm{D}(\mathrm{mr}, \mathrm{nr})$, which is $\mathrm{D}(\mathrm{m}, \mathrm{n})$-decomposable into r copies of $\mathrm{D}(\mathrm{m}, \mathrm{n})$. Therefore, we may present and label the vertices of H as indicated in Figure 5.5, where the encircled part represents a copy of $\mathrm{D}(\mathrm{mr}, \mathrm{nr})$ whose (mr, nr) vertex is joined to $\mathrm{ms}-\mathrm{nr}$ vertices outside of the encircled area.

Figure 5.5 The digraph H is $\mathrm{D}(\mathrm{r}, \mathrm{s})$-decomposable into m copies of $\mathrm{D}(\mathrm{r}, \mathrm{s})$

Next, let $\mathrm{t}=\mathrm{ms}-\mathrm{nr}$ and consider mt disjoint digraphs $\mathrm{Hj}=\mathrm{H}$ for $1<\mathrm{i}<$ mt . Label the (mr, ms) vertex of Hj by xj and t of the $(1,0)$ vertices of Hj by Yil> yj2, Yit for each i ($1<\mathrm{i}<\mathrm{mt}$). Now we consider the digraph H^{\prime} of Figure 5.6 obtained by identifying, for every $\mathrm{k}(1<\mathrm{k}<\mathrm{t})$, the mt vertices $\mathrm{y}^{\wedge}, \mathrm{i}=1,2, \ldots$, mt , and denoting the resulting vertex by y^{\wedge}. Observe that y_{k} is an (mt,0) vertex for all $\mathrm{k}(1<\mathrm{k}<\mathrm{t})$. This completes the construction of H^{\prime}.

H^{\prime}
Figure 5.6 Digraph H^{\prime} used in the construction of D

Now consider the digraph $\mathrm{H}^{\prime \prime} \mathrm{s} \mathrm{D}(\mathrm{nmr}, \mathrm{nms})$ of Figure 5.7, and let H'f, HJ, \ldots... $\mathrm{H}^{\prime}\left\{\right.$ be t copies of $\mathrm{H}^{\prime \prime}$. Moreover, let $\mathrm{F}^{\prime \prime}=\mathrm{D}\left(\mathrm{nmr}, \mathrm{n}^{2} \mathrm{r}\right)$ and $\mathrm{F} \mathrm{s} \mathrm{F}^{\prime \prime}$ for eveiy $\mathrm{k}(1<\mathrm{k}<\mathrm{t})$, where we consider $\mathrm{F} £$ to be a subdigraph of $\mathrm{H} £$ for each $1<\mathrm{k}<\mathrm{t}$. Observe that $\mathrm{F}^{\prime \prime}$ is $\mathrm{D}(\mathrm{m}, \mathrm{n})$-decomposable into nr copies of $\mathrm{D}(\mathrm{m}, \mathrm{n})$.

Figure 5.7 A digraph that is $D(r, s)$-decomposable into $n m$ copies of $D(r, s)$

Finally, we construct the digraph D (see Figure 5.8) by identifying for each k $(1<\mathrm{k}<\mathrm{t})$ the vertex y_{k} of H^{\prime} and the unique vertex of maximum degree of H_{k}. (The digraph D for the case $\mathrm{m}=\mathrm{s}=2, \mathrm{n}=\mathrm{r}=1$ is also illustrated in Figure 5.9.)

D
Figure 5.8 A digraph that is $D(m, n)$-decomposable and $D(r, s)$-decomposable

By construction, D is $D(m, n)$-decomposable with r copies of $D(m, n)$ centered at each vertex $\mathrm{Xj}(1<\mathrm{i}<\mathrm{mt})$ and with $\mathrm{t}+\mathrm{nr}$ copies of $\mathrm{D}(\mathrm{m}, \mathrm{n})$ centered at each vertex $\mathrm{y}_{\mathrm{k}}(1<\mathrm{k}<\mathrm{t})$. D is $\mathrm{D}(\mathrm{r}, \mathrm{s})$-decomposable with m copies of $\mathrm{D}(\mathrm{r}, \mathrm{s})$ centered at each vertex $\mathrm{x}_{\{ }(1<\mathrm{i}<\mathrm{mt})$ and with mn copies of $\mathrm{D}(\mathrm{r}, \mathrm{s})$ centered at each vertex $y_{k}(1<k<t)$. The size of D is $m(m+n)(r+s)(m s-n r)$, implying that $\operatorname{lcm}(\mathrm{D}(\mathrm{m}, \mathrm{n}), \mathrm{D}(\mathrm{r}, \mathrm{s}))<\mathrm{m}(\mathrm{m}+\mathrm{n})(\mathrm{r}+\mathrm{s})(\mathrm{ms}-\mathrm{nr})$.

Case 3 Assume that $\mathrm{ms}<\mathrm{nr}$. Construct a digraph H by identifying the (r, s) vertices of n copies of $\mathrm{D}(\mathrm{r}, \mathrm{s})$. Therefore, $\mathrm{H}=\mathrm{D}(\mathrm{nr}, \mathrm{ns})=\mathrm{D}(\mathrm{nr}-\mathrm{ms}+\mathrm{ms}$, ns$)$. If $\mathrm{nr}-\mathrm{ms}(0,1)$ vertices and the corresponding arcs are removed from H, then the resulting digraph is $\mathrm{D}(\mathrm{ms}, \mathrm{ns})$ which is $\mathrm{D}(\mathrm{m}, \mathrm{n})$-decomposable into s copies of $\mathrm{D}(\mathrm{m}, \mathrm{n})$. Now we follow the technique we used in Case 2 to construct a digraph which is both $\mathrm{D}(\mathrm{m}, \mathrm{n})$-decomposable and $\mathrm{D}(\mathrm{r}, \mathrm{s})$-decomposable.

The above theorem provides an upper bound for the size of a least common multiple of two directed stars. However, the size of a least common multiple of two directed stars can be relatively small.

For example, by Theorem 5.1, $1 \mathrm{~cm}(\mathrm{D}(2,1), \mathrm{D}(1,2))<54$. (see Figure 5.9.)
The digraph D^{\prime} of Figure 5.10 is both $\mathrm{D}(2,1)$-decomposable and $\mathrm{D}(1,2)$ decomposable as indicated. Of course, D^{\prime} is a digraph of smallest size with this property, implying that $\operatorname{lcm}(\mathrm{D}(2,1), \mathrm{D}(1,2))=6$.

Figure 5.9 A digraph that is $\mathrm{D}(2,1)$-decomposable and $\mathrm{D}(1,2)$-decomposable, having 54 arcs

$\mathrm{D}(1,2)$

$\mathrm{D}(1,2)$

$\mathrm{D}(2,1)$

$\mathrm{D}(2,1)$

Figure 5.10 A smallest digraph that is $\mathrm{D}(2,1)$-decomposable and $\mathrm{D}(1,2)$-decomposable

The converse D of a digraph D is that digraph with $V(D)=V(D)$ such that (u, v) e $E(D)$ if and only if (v, u) e $E(D)$. In addition to the converse of a digraph, one can also refer to the converse of a concept dealing with digraphs. More specifically, the converse of a concept is the concept that results when the original concept is applied to the converse of a digraph. For example, "adjacent from" is the converse of "adjacent to", "incident from" is the converse of "incident to", and "indegree" is the converse of "outdegree". An elementary, but often useful, observation is the folowing.

Principle of Directional Duality For each theorem concerning digraphs, there is a corresponding theorem obtained by replacing each concept in the theorem by its converse concept.

We illustrate the above ideas with the following result.

Proposition 5.2 For all integers m, n (> 1),
(1) $\operatorname{gcd}(D(m, 0), D(n, 0))=\operatorname{gcd}(m, n)$,
(2) $\operatorname{gcd}(D(0, m), D(0, n))=\operatorname{gcd}(m, n)$,

$$
\begin{align*}
& \operatorname{lcm}(D(\mathrm{~m}, 0), \mathrm{D}(\mathrm{n}, 0))=\operatorname{lcm}(\mathrm{m}, \mathrm{n}) \tag{3}\\
& \operatorname{lcm}(\mathrm{D}(0, \mathrm{~m}), \mathrm{D}(0, \mathrm{n}))=\operatorname{lcm}(\mathrm{m}, \mathrm{n})
\end{align*}
$$

Proof (1) Observe that a common divisor of $\mathrm{D}(\mathrm{m}, 0)$ and $\mathrm{D}(\mathrm{n}, 0)$ is of the form $\mathrm{D}(\mathrm{k}, 0)$, where k is a common divisor of m and n . Let $\mathrm{k}^{*}=\mathrm{gcd}(\mathrm{m}, \mathrm{n})$. Since $D\left(\mathrm{k}^{*}, 0\right)$ is a common divisor of $\mathrm{D}(\mathrm{m}, 0)$ and $\mathrm{D}(\mathrm{n}, 0)$, it follows that $\operatorname{gcd}(\mathrm{D}(\mathrm{m}, 0)$, $\mathrm{D}(\mathrm{n}, 0))=\mathrm{k}^{*}=\operatorname{gcd}(\mathrm{m}, \mathrm{n})$.
(2) This result follows by the Principle of Directional Duality.
(3) Any common multiple of $\mathrm{D}(\mathrm{m}, 0)$ and $\mathrm{D}(\mathrm{n}, 0)$ is of the form $\mathrm{D}(\mathrm{j}, 0)$, where j is a common multiple of m and n. Let $\mathrm{j}^{*}=1 \mathrm{~cm}(m, n)$. Since $D\left(j^{*}, 0\right)$ is a common multiple of $D(m, 0)$ and $D(n, 0)$, we have $\operatorname{lcm}(D(m, 0), D(n, 0))=j^{*}=$ lcm(m, n).

Equality (4) follows by the Principle of Directional Duality. •

The former results can be generalized as follows - the proofs are similar to those above and are omitted.

Proposition 5.3 For all positive integers $\mathrm{m}_{1 ?} \mathrm{~m} 2, \ldots, \mathrm{~m}_{\mathrm{n}}$, with $\mathrm{n}>2$,
(1) $\operatorname{gcd}\left(D(m j, 0), D\left(m_{2}, 0\right), \ldots, D\left(m_{n}, 0\right)\right)=\operatorname{gcd}\left(m_{1\}} m_{2}, \ldots, m_{n}\right)$,
(2) $\left.\operatorname{gcd}\left(\mathrm{D}(0, \mathrm{mj}), \mathrm{D}\left(0, \mathrm{~m}_{2}\right), \ldots, \mathrm{D}\left(0, \mathrm{~m}_{\mathrm{n}}\right)\right)=\operatorname{gcdCmj}, \mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$,
(3) $\left.\left.\operatorname{lcmCDCm}!, 0), \mathrm{D}\left(\mathrm{m}_{2>} 0\right), \ldots, \mathrm{D}\left(\mathrm{m}_{\mathrm{n}}, 0\right)\right)=1 \mathrm{lmCmx}, \mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$,
(4) $\left.\quad \operatorname{lcm}\left(D(0, m j), D\left(0, m_{2}\right), \ldots, D\left(0, m_{n}\right)\right)=\operatorname{IcmCm}{ }^{\wedge} m_{2}, \ldots, m_{n}\right)$.

Proposition 5.2 considers the stars $\mathrm{D}\left(\mathrm{m}, n_{\}}\right)$and $\mathrm{D}\left(\mathrm{m}_{2}, \mathrm{n}_{2}\right)$ in which $\mathrm{mj}=$ $\mathrm{m}_{2}=0$ or $\mathrm{nj}=\mathrm{n}_{2}=0$. We now consider those stars for which $\mathrm{mj}=\mathrm{n}_{2}=0$ or $\mathrm{m}_{2}=$ $n_{3}=0$.

Proposition 5.4 For all positive integers m and n ,
(1) $\operatorname{gcd}(\mathrm{D}(\mathrm{m}, 0), \mathrm{D}(0, \mathrm{n}))=1$,
(2) $\quad \operatorname{lcm}(\mathrm{D}(\mathrm{m}, 0), \mathrm{D}(0, \mathrm{n}))=\mathrm{mn}$.

Proof (1) Since only a star is a common divisor of two stars, it follows that,
$1)$ is the only divisor of both $\mathrm{D}(\mathrm{m}, 0)$ and $\mathrm{D}(0, \mathrm{n})$, implying that $\operatorname{gcd}(\mathrm{D}(\mathrm{m}, 0)$, $\mathrm{D}(0, \mathrm{n}))=1$.
(2) Suppose that $\operatorname{lcm}(\mathrm{D}(\mathrm{m}, 0), \mathrm{D}(0, \mathrm{n}))=\mathrm{k}$ and that D is a digraph of size k that is both $\mathrm{D}(\mathrm{m}, 0)$-decomposable and $\mathrm{D}(0, \mathrm{n})$-decomposable. Let F be a subdigraph isomorphic to $\mathrm{D}(\mathrm{m}, 0)$ in D . Then every two arcs of F belong to distinct copies of $\mathrm{D}(\mathrm{n}, \mathrm{n})$. Therefore, $\mathrm{k}>\mathrm{mn}$. The digraph n$)$ has size mn and is both $\mathrm{D}(\mathrm{m}, 0)$-decomposable and $\mathrm{D}(0, \mathrm{n})$-decomposable, implying that $\mathrm{k}<\mathrm{mn}$, and completing the proof.

We conjecture that these results can be generalized as follows:

Conjecture 5.5 For positive integers $m j, m_{2}, \ldots, m_{n}$ and $t j, t_{2}, \ldots, t_{k}$, with $n>$ 2,
(1) $\operatorname{gcd}\left(D\left(m_{\text {ls }} 0\right), D\left(m_{2}, 0\right), \ldots, D\left(m_{n}, 0\right), D\left(0, t^{\wedge}, D\left(0, t_{2}\right), \ldots, D\left(0, t_{k}\right)\right)=1\right.$,
(2) $\quad \operatorname{lcm}\left(\mathrm{D}(\mathrm{mi}, 0), \mathrm{D}\left(\mathrm{m}_{2}, 0\right), \ldots, \mathrm{D}\left(\mathrm{m}_{\mathrm{n}}, 0\right), \mathrm{D}(0, \mathrm{tj}), \mathrm{D}\left(0, \mathrm{t}_{2}\right), \ldots, \mathrm{D}\left(0, \mathrm{t}_{\mathrm{k}}\right)\right)=$ $\left.\operatorname{lcmCmj}, \mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right) \operatorname{lcm}\left(\mathrm{t}_{\mathrm{lf}} \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}\right)$.

For (2) consider the digraph $\wedge(\mathrm{r}, \mathrm{s})$, where $\mathrm{r}=\operatorname{lcm}\left(\mathrm{mi}, \mathrm{m}_{2}, \ldots, \mathrm{~m}_{\mathrm{n}}\right)$, and $\mathrm{s}=1 \mathrm{~cm}\left(\mathrm{t}!, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{k}}\right)$.

Next, we consider results related to another kind of directed stars.

Theorem 5.6 For every positive integer n,
(1) $\operatorname{gcd}(D(n, 0), D(1,1))=1$,
(2) $\operatorname{gcd}(\mathrm{D}(0, \mathrm{n}), \mathrm{D}(1,1))=1$,
(3) $\operatorname{lcm}(\mathrm{D}(2 \mathrm{n}, 0), \mathrm{D}(1,1))=4 \mathrm{n}^{2}$,
(4) $\quad \operatorname{lcm}(\mathbf{D}(2 \mathrm{n}+1,0), \mathrm{D}(1,1))=(2 \mathrm{n}+1)(2 \mathrm{n}+2)$.

Proof (1) The only divisors of $D(1,1)$ are 1) and $D(1,1)$. But, $\mathbf{D}(1,1)$ is not a subgraph of $\mathrm{D}(\mathrm{n}, 0)$. Therefore, 1) is the only common divisor of $\mathrm{D}(\mathrm{n}, 0)$ and $D(1,1)$. Hence, $\operatorname{gcd}(D(n, 0), D(1,1))=1$.
(2) This can be shown similarly.
(3) For a digraph which is both $\mathrm{D}(2 \mathrm{n}, 0)$-decomposable and $\mathrm{D}(1,1)$ decomposable, eveiy two arcs of a copy of $\mathrm{D}(2 \mathrm{n}, 0)$ belong to two different copies of $\mathrm{D}(1,1)$ and vice versa. Therefore, such a digraph must contain at least 2 n copies of $D(2 n, 0)$. Hence, $1 \mathrm{~cm}(D(2 n, 0), D(1,1))>4 n^{2}$

We construct a digraph D having $4 \mathrm{n}^{2}$ arcs such that D is both $\mathrm{D}(2 \mathrm{n}, 0)$ decomposable and $\mathrm{D}(1,1)$-decomposable. Consider two copies of the complete symmetric digraph K^{*} having vertex sets $\left\{\mathrm{u}^{\wedge}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{vj}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right)$, respectively. For every $\mathrm{i}(1<\mathrm{i}<\mathrm{n})$ join Uj and v^{\wedge} by a symmetric pair of arcs. We add $2 n$ new vertices $x^{\wedge} x_{2}, \ldots, x_{n}$ and $y j, y_{2}, \ldots, y_{n}$ and join x^{\wedge} to $U j$ and join yi to Vj for $1<\mathrm{i}<\mathrm{n}$. Next, we add new vertices wy $(1<\mathrm{i}, \mathrm{j}<\mathrm{n}, \mathrm{i} \wedge \mathrm{j})$ and join wy to both Uj and vj . This completes the construction of D , which then has size $4 n^{2}$ (See Figure 5.11).

D
Figure 5.11 A digraph that is $\mathrm{D}(2 \mathrm{n}, 0)$-decomposable and $\mathrm{D}(1,1)$-decomposable

Observe that for every $\mathrm{i}(1<\mathrm{i}<\mathrm{n})$, the vertex $\operatorname{uj}_{\boldsymbol{j}}$ is adjacent from $\mathrm{n}-1$ vertices in its copy of K_{n} and from xi, v^{*}, and wij ($\mathrm{i} \wedge \mathrm{j}$, and $1<\mathrm{j}<\mathrm{n}$). Hence, $\mathrm{id}(\mathrm{uj})=2 \mathrm{n}$ for each $\mathrm{i}(1<\mathrm{i}<\mathrm{n})$. Similarly, $\mathrm{id}(\mathrm{Vi})=2 \mathrm{n}$ for all $\mathrm{i}(1<\mathrm{i}<\mathrm{n})$. Thus, D is $D(2 n, 0)$-decomposable such that each ($2 \mathrm{n}, 0$) vertex of $\mathrm{D}(2 \mathrm{n}, 0)$ is at vertices $u 1, u_{2}, u_{n}, v i, v_{2}, v_{n}$. It remains to show that D is $D(1,1)$-decomposable. The paths xj , uj , vi and $y_{u} \mathrm{vj}$, ui are 2 n copies of $\mathrm{D}(1,1)$ and $w y, u j, u j(i \wedge j)$ where $1<\mathrm{i}<\mathrm{n}, \mathrm{l}<\mathrm{j}<\mathrm{n}$ are $\mathrm{n}(\mathrm{n}-1)$ copies of $\mathrm{D}(1,1)$. Finally, wij, vi, vj $(\mathrm{i} \wedge \mathrm{j})$ with $1<\mathrm{i}<. \mathrm{n}, 1<\mathrm{j}<\mathrm{n}$ are $\mathrm{n}(\mathrm{n}-1)$ copies of $\mathrm{D}(1,1)$, producing $2 \mathrm{n}+\mathrm{n}(\mathrm{n}-1)+$ $n(n-1)=2 n^{2}$ copies of $D(1,1)$ having a total of $4 n^{2}$ arcs. Therefore, $1 \mathrm{~cm}(\mathrm{D}(2 \mathrm{n}$, $0)$, $\mathrm{D}(1,1))<4 \mathrm{n}^{2}$, completing the proof.
(4) In a digraph D which is both $\mathrm{D}(2 \mathrm{n}+1,0)$-decomposable and $\mathrm{D}(1,1)$ decomposable, every two arcs of a copy of $\mathrm{D}(2 \mathrm{n}+1,0)$ are arcs of two different copies of $\mathrm{D}(1,1)$ and vice versa. Therefore, D must contain at least $2 \mathrm{n}+1$ copies
of $D(2 n+1,0)$. Since D is $D(1,1)$-decomposable, it must contain an even number of arcs. Hence, D must contain at least $2 \mathrm{n}+2$ copies of $\mathrm{D}(2 \mathrm{n}+1,0)$, implying that $\operatorname{lcm}(\mathrm{D}(2 \mathrm{n}+1,0), \mathrm{D}(1,1))>(2 \mathrm{n}+1)(2 \mathrm{n}+2)$. We construct a digraph D having $(2 \mathrm{n}+1)(2 \mathrm{n}+2)$ arcs such that D is both $\mathrm{D}(2 \mathrm{n}+1,0)$-decomposable and $\mathrm{D}(1,1)$ decomposable. Consider a copy of the complete symmetric digraph $\mathrm{K} 2 \mathrm{n}^{\boldsymbol{\prime}}{ }^{\boldsymbol{+}} \mathrm{i}$ having vertices $\mathrm{vj}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}}+\mathrm{i}$ and add vertices $\mathrm{uj}, \mathrm{u}_{2}, \mathrm{u}_{2 \mathrm{n}}+\mathrm{i}$ such that each vertex Uj $(1<\mathrm{i}<2 \mathrm{n}+1)$ is adjacent to the vertex v_{i} of $\mathrm{K}_{2 \mathrm{n}}+\mathrm{i}$. Then add a new vertex w adjacent from all vertices $\mathrm{Vj}(1<\mathrm{i}<2 \mathrm{n}+1)$ of $\mathrm{K}_{2 \mathrm{n}+\mathrm{i}}$. This completes the construction of D (see Figure 5.12).

D
Figure 5.12 A digraph that is $\mathrm{D}(2 \mathrm{n}+1,0)$-decomposable and $\mathrm{D}(1,1)$-decomposable

Thus, D has $(2 n+1)(2 n+2)$ arcs. It is straight forward to show that D is both $\mathrm{D}(2 \mathrm{n}+1,0)$-decomposable and $\mathrm{D}(1,1)$-decomposable. Therefore, $\operatorname{lcm}((\mathrm{D}(2 \mathrm{n}+1,0), \mathrm{D}(1,1))<(2 \mathrm{n}+1)(2 \mathrm{n}+2)$ and thus completing the proof. •

The next result follows immediately from the Principle of Directional Duality.

Corollary 5.7 For all positive integers n,
(1) $\quad 1 \mathrm{~cm}(\mathrm{D}(0,2 \mathrm{n}), \mathrm{D}(1,1))=4 \mathrm{n}^{2}$,
(2) $\quad \operatorname{lcm}(\mathrm{D}(0,2 \mathrm{n}+1), \mathrm{D}(1,1))=(2 \mathrm{n}+1)(2 \mathrm{n}+2)$.

Based on these results we have the following conjectures.

Conjecture 5.8 For positive integers $\mathrm{nj}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}}$, where $\mathrm{k}>2$,
(1) $\operatorname{lcm}\left(D(0,2 \mathrm{nj}), D\left(0,2 \mathrm{n}_{2}\right), \ldots, \mathrm{D}\left(0,2 \mathrm{n}_{\mathrm{k}}\right), \mathbf{D}(1,1)\right)=\mathrm{r}^{2}$, where $\mathrm{r}=1 \mathrm{~cm}\left(2 \mathrm{n}_{1}, 2 \mathrm{n}_{2}, \ldots, 2 \mathrm{n}_{\mathrm{k}}\right)$.
(2) $\quad 1 \mathrm{~cm}\left(\mathrm{D}\left(0,2 n_{x}+1\right), \mathrm{D}\left(0,2 \mathrm{n}_{2}+1\right), \ldots, \mathrm{D}\left(0,2 \mathrm{n}_{\mathrm{k}}+1\right)\right.$, $\mathrm{D}(1,1))=\mathrm{r}(\mathrm{r}+1)$, where $\mathrm{r}=1 \mathrm{~cm}\left(2 \mathrm{n}_{1}+1,2 \mathrm{n}_{2}+1, \ldots\right.$, $\left.2 \mathrm{n}_{\mathrm{k}}+1\right)$.

Now by the Principle of Directional Duality we have:

Conjecture 5.9 For positive integers $\mathrm{n}^{\wedge} \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{k}>}$ where $\mathrm{k}>2$,
(1) $\quad \operatorname{lcm}\left(D\left(2 n_{1}, 0\right), D\left(2 n_{2>} 0\right), \ldots, D\left(2 n_{k}, 0\right), D(1,1)\right)=r^{2}$, where $\mathrm{r}=1 \mathrm{~cm}\left(2 \mathrm{n} \mid, 2 \mathrm{n}_{2}, \ldots, 2 \mathrm{n}_{\mathrm{k}}\right)$.
(2) $\operatorname{lcm}\left(D\left(2 n_{1}+1,0\right), D\left(2 n_{2}+1,0\right), \ldots, D\left(2 n_{k}+1,0\right)\right.$, $\mathrm{D}(1,1))=\mathrm{r}(\mathrm{r}+1)$, where $\mathrm{r}=1 \mathrm{~cm}\left(2 \mathrm{n}_{1}+1,2 \mathrm{n}_{2}+1, \ldots\right.$, $\left.2 n_{k}+1\right)$.

Since $D(2,1)$ is not a subdigraph of $D(n, 0)$ or $D(0, n)$ for $n>1$, we have the following result.

Proposition 5.10 For all positive integers n,
(1) $\operatorname{gcd}(\mathrm{D}(\mathrm{n}, 0), \mathrm{D}(2,1))=1$, .
(2) $\quad \operatorname{gcd}(\mathrm{D}(0, \mathrm{n}), \mathrm{D}(2,1))=1$.

Next we determine $\operatorname{lcm}(\mathrm{D}(\mathrm{m}, 0), \mathrm{D}(2,1))$ for some small values of m .

Proposition 5.11 (1) $1 \mathrm{~cm}(\mathrm{D}(2,0), \mathrm{D}(2,1))=6$,
(2) $\operatorname{lcm}(\mathrm{D}(3,0), \mathrm{D}(2,1))=6$,
(3) $\operatorname{lcm}(\mathrm{D}(4,0), \mathrm{D}(2,1))=12$,
(4) $\operatorname{lcm}(\mathrm{D}(5,0), \mathrm{D}(2,1))=30$.

Proof (1) Since the sizes of $\mathrm{D}(2,0)$ and $\mathrm{D}(2,1)$ are 2 and 3 , respectively, $\operatorname{lcm}(D(2,0), D(2,1))>.6$. The digraph of Figure 5.13 , that is both $D(2,0)$ decomposable and $\mathrm{D}(2,1)$-decomposable, shows that $\operatorname{lcm}(\mathrm{D}(2,0), \mathrm{D}(2,1))<6$.

Figure 5.13 A digraph that is $\mathrm{D}(2,0)$-decomposable and $\mathrm{D}(2,1)$-decomposable
(2) Since $\mid \mathrm{E}(\mathrm{D}(3,0)) \mathrm{I}=3$ and $\operatorname{IE}(\mathrm{D}(2,1)) \mathrm{I}=3$, it follows that $\operatorname{lcm}(\mathrm{D}(3,0), \mathrm{D}(2,1))>\operatorname{lcm}(3,3)=3$. However, $\mathrm{D}(3,0)$ is not $\mathrm{D}(2,1)$ decomposable, implying $1 \mathrm{~cm}(\mathrm{D}(3,0), \mathrm{D}(2,1))>6$. The digraph of Figure 5.14 shows that $\operatorname{lcrri}(\mathrm{D}(3,0), \mathrm{D}(2,1))<6$. Therefore, $\operatorname{lcm}(\mathrm{D}(3,0), \mathrm{D}(2,1))=6$.

D_{2}
Figure 5.14 A digraph that is $\mathrm{D}(3,0)$-decomposable and $\mathrm{D}(2,1)$-decomposable
(3) The digraph D_{3} of Figure 5.15 shows that $\operatorname{lcm}(D(4,0), D(2,1))=12$.

D_{3}
Figure 5.15 A digraph of smallest size that is $\mathrm{D}(4,0)$-decomposable andD(2, Indecomposable
(4) It is straight forward to show that the digraph D_{4} having size 30 in Figure 5.16 is both $D(2$, Indecomposable and $D(5,0)$-decomposable, so that $\operatorname{lcm}(\mathrm{D}(5,0), \mathrm{D}(2,1))<30$.

D_{4}

Figure 5.16 A digraph of smallest size that is $\mathrm{D}(5,0)$-decomposable and $\mathrm{D}(2,1)$-decomposable

We show that $\operatorname{lcm}(\mathrm{D}(5,0), \mathrm{D}(2,1)) * \operatorname{lcm}(5,3)=15$.
Suppose to the contrary, that there is a digraph of size 15 that is both $\mathrm{D}(5,0)$ decomposable and $\mathrm{D}(2,1)$-decomposable. We show that the vertices of three copies of $\mathrm{D}(5,0)$ cannot be identified in such a way that the resulting digraph D is also $\mathrm{D}(2,1)$-decomposable. Let D_{2}, and D 3 be these three copies of $\mathrm{D}(5,0)$ in any $\mathrm{D}(5,0)$-decomposition of D . We consider the.following cases.

Case 1 Assume that the three $(5,0)$ vertices of the copies of $\mathrm{D}(5,0)$ are identified. In this case the $(0,1)$ vertices of copies of $\mathrm{D}(5,0)$ cannot be identified without causing multiple arcs, and the resulting digraph is not $\mathrm{D}(2,1)$-decomposable.

Case 2 Assume that two of the $(5,0)$ vertices of two copies of $\mathrm{D}(5,0)$ are identified.. Without loss of generality, let D^{\wedge} and D_{2} be the two copies whose $(5,0)$ vertices are identified. Suppose firstly that one $(2,1)$ vertex of a copy of $D(2,1)$ is at the $(5,0)$ vertex of D^{\wedge} and two $(2,1)$ vertices of two copies of $\mathrm{D}(2,1)$ are at
the $(5,0)$ vertex of D_{2}. Then two $(2,1)$ vertices of two copies of $D(2,1)$ are at the $(5,0)$ vertex of D3. This implies that only one arc of D3 is available to be used for three arcs for the three copies of $\mathrm{D}(2,1)$ of and D_{2}, which is impossible. Therefore, two $(2,1)$ vertices of two copies of $\mathrm{D}(2,1)$ are at the $(5,0)$ vertex of T>i and two $(2,1)$ vertices of two copies of $\mathrm{D}(2,1)$ are at the $(5,0)$ vertex of D_{2}. Then one $(2,1)$ vertex of a copy of $\mathrm{D}(2,1)$ is at the $(5,0)$ vertex of D3. This implies that only three arcs of D3 are available to be used for the four copies of $\mathrm{D}(2$, 1) of D \} and D_{2}, which is impossible.

Case 3 Assume that none of the $(5,0)$ vertices of copies of $\mathrm{D}(5,0)$ are identified. In this case, at least one arc to the $(5,0)$ vertex of a copy of $D(5,0)$ is not an arc from the $(2,1)$ vertex of any copy of $\mathrm{D}(2,1)$ in any $\mathrm{D}(2,1)$-decomposition of D . Therefore, D is not $\mathrm{D}(2,1)$-decomposable.

For $\mathrm{n}>6$, the determination of $\operatorname{lcm}(\mathrm{D}(\mathrm{n}, 0), \mathrm{D}(2,1))$ is still an open problem. We now turn our attention to $\operatorname{lcm}(\mathrm{D}(0, \mathrm{n}), \mathrm{D}(2,1))$ for $\mathrm{n}=2,3$.

Proposition 5.12 (1) $1 \mathrm{~cm}(\mathrm{D}(0,2), \mathrm{D}(2,1))=6$,
(2) $\operatorname{lcm}(\mathrm{D}(0,3), \mathrm{D}(2,1))=9$.

Proof (1) Since $I E(D(0,2)) \mid=2$ and $\mid E(D(2,1)) I=3$, it follows that $\operatorname{lcm}(\mathrm{D}(0,2), \mathrm{D}(2,1))>\operatorname{lcm}(2,3)>6$. The result follows by considering the digraph D of size 6 in Figure 5.17 which is both $D(0,2)$-decomposable and $D(2,1)$ decomposable.

D
Figure 5.17 A digraph of smallest size that is $\mathrm{D}(0,2)$-decomposable and $\mathrm{D}(2,1)$-decomposable
(2) Let H be a digraph that is both $\mathrm{D}(0,3)$-decomposable and $\mathrm{D}(2,1)$ decomposable. Since the out-degree of each vertex of $D(2,1)$ is at most 1 and $\mathrm{D}(0,3)$ has a vertex with out-degree equal to 3 , it follows that H contains at least three copies of $\mathrm{D}(2,1)$. Therefore, $1 \mathrm{~cm}(\mathrm{D}(0,3), \mathrm{D}(2,1))>9$.

Consider the digraph H of Figure 5.18, having $|E(H)|=9$.

H
Figure 5.18 A digraph that is $\mathrm{D}(0,3)$-decomposable and $\mathrm{D}(2,1)$-decomposable

Observe that H is $\mathrm{D}(0,3)$-decomposable into three copies of $\mathrm{D}(0,3)$ as described in Figure 5.19.

Figure 5.19 A $\mathrm{D}(0,3)$-decomposition of the digraph H of Figure 5.18

Furthermore, the digraph D is $\mathrm{D}(2,1)$-decomposable into three copies of $\mathrm{D}(2,1)$ as described in Figure 5.20.

Figure 5.20 A $D(2,1)$-decomposition of the digraph H of Figure 5.18

Since the digraph H having $|E(D)|=9$ is both $D(0,3)$-decomposable and $\mathrm{D}(2,1)$-decomposable, it follows that $\operatorname{lcm}(\mathrm{D}(0,3), \mathrm{D}(2,1))<9$, completing the proof.

Next we find the size of a greatest common divisor and a least common multiple of the digraphs $\mathrm{D}(\mathrm{m}, 1)$ and $\mathrm{D}(1,1)$ for $\mathrm{m}>2$. In this connection, the following lemma will be helpful.

In the directed star $D(m, n)$, where $m, n>0$, an arc from the (m, n) vertex to a $(1,0)$ vertex is called a central out arc, while an arc from a $(0,1)$ vertex to the (m, n) vertex is called a central in arc.

Lemma 5.13 Let $D_{1\}} D_{2}, \ldots, D_{k}$ be $k(>2)$ copies of $D(m, 1), m>2$. Then in any identification of the vertices of Dj with those of Dj (i \& j), where distinct vertices of Dj are identified with distinct vertices of Dj , at most two copies of $\mathrm{D}(1,1)$ can be produced that do not use central out arcs of Dj and Dj .

Proof Let $\mathrm{C} \mid$ and c_{2} be the central vertices of Dj and $\mathrm{Dj}\left(\mathrm{i}{ }^{\wedge} \mathrm{j}\right)$, respectively. For $t=1,2$, 3 , let H_{t} be a copy of $D(1,1)$ having vertices u_{t}, v_{t}, and w_{t} and arcs $\left(u_{t}, v_{t}\right)$ and $\left(v_{t}, w_{t}\right)$. Suppose that $H_{1 s} \mathrm{H}_{2}$, and H3 are three edge-disjoint copies of $\mathrm{D}(1,1)$ that do not use central out arcs. Then the arcs of $\mathrm{Hj}, \mathrm{H}_{2}$, and H 3 are all central in arcs. This implies that the vertices v_{t} and w_{t} are central (distinct) vertices of Dj or Dj . Furthermore, at least two of the vertices $\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{2}$, or v_{3} must be the same. Without loss of generality, let vj and v_{2} be the central vertex Cj . Then w^{\wedge} and w_{2} are the central vertex c_{2}, implying that there are two $\operatorname{arcs}(\mathrm{vj}, \mathrm{Wj})$ and $\left(\mathrm{v}_{2}\right.$, W2) from the vertex cj to the vertex c_{2} which is impossible. •

Theorem 5.14 For all positive integers n,
(1) $\operatorname{gcd}(D(n, 1), D(1,1))=1(n>2)$,
(2) $\operatorname{gcd}(\mathrm{D}(1, \mathrm{n}), \mathrm{D}(1,1))=1 \quad(\mathrm{n}>2)$,
(3) $\quad \operatorname{lcm}(\mathrm{D}(2 \mathrm{n}+1,1), \mathrm{D}(1,1))=2(\mathrm{n}+1)^{2}$,
(4) $\quad \operatorname{lcm}(\mathrm{D}(4 \mathrm{n}+2,1), \mathrm{D}(1,1))=(2 \mathrm{n}+2)(4 \mathrm{n}+3)$,
(5) $\quad \operatorname{lcm}(\mathrm{D}(4 \mathrm{n}, 1), \mathrm{D}(1,1))=(2 \mathrm{n}+2)(4 \mathrm{n}+1)$.

Proof (1) The only divisors of $D(1,1)$ are $S(1,1)$ and $D(1,1)$. However, $D(1,1)$ is not a divisor of $D(n, 1)$. Therefore, 1) is the only common divisor of $\mathrm{D}(\mathrm{n}, 0)$ and $\mathrm{D}(1,1)$. Hence, $\operatorname{gcd}(\mathrm{D}(\mathrm{n}, 1), \mathrm{D}(1,1))=1$.
(2) This can be shown similarly.
(3) Let D be a digraph that is both $\mathrm{D}(2 \mathrm{n}+1,1)$-decomposable and $\mathrm{D}(1,1)$ decomposable. We show that $\operatorname{IE}(\mathrm{D}) \mid>2(\mathrm{n}+1)^{2}$. Let D^{\prime} be a copy of $\mathrm{D}(2 \mathrm{n}+1,1)$ in a $\mathrm{D}(2 \mathrm{n}+1,1)$-decomposition of D . Now consider a $\mathrm{D}(1,1)$-decomposxtion of D . Observe that there is at most one copy F of $\mathrm{D}(1,1)$ in D^{\prime} having one arc to the $(2 n+1,1)$ vertex of D^{\prime} and one arc from this vertex. Furthermore, by Lemma 5.13, for every copy $\mathrm{D}^{\prime \prime}$ isomorphic to $\mathrm{D}(2 \mathrm{n}+1,1)$ in D other than D^{\prime} at most two central in arcs of D^{\prime} and two central in arcs of $\mathrm{D}^{\prime \prime}$ can be used to produce copies of $\mathrm{D}(1,1)$ distinct from F in D . Since each edge of D^{\prime} belongs to a copy of $\mathrm{D}(1,1)$ in D, at least n other copies (apart from $\left.D^{\prime}\right)$ of $D(2 n+1,1)$ in D exist. Hence, $\operatorname{IE}(\mathrm{D}) \mid>(\mathrm{n}+1)(2 \mathrm{n}+2)=2(\mathrm{n}+1)^{2}$

Now we construct a digraph D having size $2(n+1)$ that is both $\mathrm{D}(2 \mathrm{n}+1,1)$-decomposable and $\mathrm{D}(1,1)$-decomposable. Define $\mathrm{F}=\mathrm{K}_{\mathrm{n}+1}$, where $\mathrm{V}(\mathrm{F})=\left(\mathrm{vp} \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}+1}\right)$. We construct the digraph D from F by adding $(n+2)(n+1)$ new vertices $W_{j} \wedge W_{i 2}, \quad, w_{i n+2}$ for $i=1,2, \ldots, n+1$, together with the $\operatorname{arcs}\left(\mathrm{w}^{\wedge}, \mathrm{v}^{\wedge},\left(\mathrm{w}_{\mathrm{i} 2}, \mathrm{~V}_{\mathrm{j}}\right), \ldots,\left(\mathrm{w}_{\mathrm{ijl} 1+1}, \quad\right.\right.$ and the $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i} \text { ? }} \mathrm{w}_{\mathrm{in}+2}\right)$. (See Figure 5.21 for case $\mathrm{n}=2$.)

D
Figure 5.21 A digraph that is $\mathrm{D}(5,1)$-decomposable and $\mathrm{D}(1,1)$-decomposable

The digraph D is $\mathrm{D}(2 \mathrm{n}+1,1)$-decomposable into $\mathrm{n}+1$ copies of $\mathrm{D}(2 \mathrm{n}+1,1)$, the i-th copy having vertices $. \mathrm{v}_{1 \mathrm{~s}} \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}+1}$ and $\mathrm{Wj} \mathrm{j}, \mathrm{w}_{\mathrm{i} 2}$, $w_{i n+2}{ }^{\text {eac^ }} \mathrm{i}=1,2, \ldots, n+1$, together with the $\operatorname{arcs}\left(v j, v^{\wedge}\right)$, where $j * i$ and $1<\mathrm{j}<\mathrm{n}+1$, the $\operatorname{arcs}\left(\mathrm{w}_{\mathrm{u}}, \mathrm{v}^{\wedge},\left(\mathrm{w}_{\mathrm{i} 2}, \mathrm{v}_{\{ }\right), \ldots,\left(\mathrm{w}_{\mathrm{in}+1}, \mathrm{vj}\right)\right.$ and the $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i} \text { ? }} \mathrm{w}_{\mathrm{in}+2}\right)$.

The digraph D is $\mathrm{D}(1$, Indecomposable into $\mathrm{n}+1$ copies of $\mathrm{D}(1,1)$, the i th copy having vertices $w^{\wedge}-_{v} v j, w j_{n+2}$ together with the $\operatorname{arcs}\left(w_{i ? i}, v^{\wedge}\right.$ and $\left(v^{\wedge}\right.$ $w_{i n+2}$), and $n(n+1)$ copies of $D(1,1)$ having vertices w^{\wedge}., $v_{i ?} v_{k}$, where $k * i$, $1<\mathrm{k}<\mathrm{n}+1$, and the $\operatorname{arcs}\left(\mathrm{wj}_{\mathrm{k}}, \mathrm{v}^{\wedge}\right.$ and $\left(\mathrm{v}^{\wedge} \mathrm{v}_{\mathrm{k}}\right)$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}+1$. Now since $\operatorname{IE}(D) I=2(n+1)^{2}$, it follows that $. \operatorname{lcm}(D(2 n+1,1), D(1,-1))<2(n+1)^{2}$, completing the proof.
(4) Let D be a digraph that is both $\mathrm{D}(4 \mathrm{n}+2,1)$-decomposable and $\mathrm{D}(1,1)$ decomposable. We show that $|E(D)|>(2 n+2)(4 n+3)$. Let D' be a copy of $D(4 n+2,1)$ in a $D(4 n+2,1)$-decomposition of D. Now consider a $D(1,1)$ decomposition of D. Observe that there is at most one copy F of $D(1,1)$ in D^{\prime}
having one arc to the $(4 n+2,1)$ vertex of D^{\prime} and one arc from this vertex. Furthennore, by Lemma 5.13, for every copy $D^{\prime \prime}$ isomorphic to $D(4 n+2,1)$ in D other than D^{\prime} at most two central in arcs of D^{\prime} and two central in arcs of $\mathrm{D}^{\prime \prime}$ can be used to produce copies of $\mathrm{D}(1,1)$ distinct from F in D . Since each edge of D^{\prime} belongs to a copy of $\mathrm{D}(1,1)$ in D , at least $2 \mathrm{n}+1$ other copies of $\mathrm{D}(4 \mathrm{n}+2,1)$ in D exist. Hence, $|E(D)|>(2 n+2)(4 n+3)$.

Now we construct a digraph D having size $(2 n+2)(4 n+3)$ that is both $\mathrm{D}(4 \mathrm{n}+2,1)$-decomposable and $\mathrm{D}(1,1)$-decomposable. Define $\mathrm{H}^{\wedge} \mathrm{K}^{\wedge} \wedge$, where $\mathrm{V}(\mathrm{H})=\left\{\mathrm{v}_{13} \mathrm{v}_{2}, \ldots, \mathrm{v}_{2 \mathrm{n}+2}\right\}$. We construct the digraph D from H by adding $(2 n+2)(2 n+2)$ new vertices $\mathrm{w}^{\wedge}, \mathrm{w}^{\wedge}{ }_{2}, \ldots, \mathrm{Wi}_{2 \mathrm{n}+2}$ for $\mathrm{i}=1,2, \ldots, 2 \mathrm{n}+2$, together with the $\operatorname{arcs}\left(\mathrm{w}^{\wedge} \mathrm{j}, \mathrm{Vj}\right),\left(\mathrm{wi}_{2}\right.$ » vj$), \ldots,\left(\mathrm{wj} 2 \mathrm{n}+{ }^{\mathrm{l}}>^{\mathrm{v}} \mathrm{i}\right)$
(${ }^{\mathrm{i}}>{ }^{\mathrm{w}}{ }_{\mathrm{i}, 2 \mathrm{n}} \mathrm{n}+2$)- (See Figure 5.22 for case $\mathrm{n}=2$.)

Figure 5.22 A digraph that is $\mathrm{D}(10,1)$-decomposable and $\mathrm{D}(1,1)$-decomposable

The digraph D is $\mathrm{D}(4 \mathrm{n}+2,1) \sim$ decomposable into $2 \mathrm{n}+2$ copies of $\mathrm{D}(4 \mathrm{n}+2,1)$, the $\mathrm{i}-\mathrm{th}$ copy having vertices $\mathrm{vj}, \mathrm{V} 2, \ldots, \mathrm{v}_{2 \mathrm{n}+2}, \mathrm{w}^{\wedge} \mathrm{j}, \mathrm{w}^{\wedge} 2, \ldots$, $\mathrm{w}_{\mathrm{i}, 2 \mathrm{n}+2>} \quad \wedge \mathrm{cs}\left(\mathrm{v}_{\mathrm{k}}, \mathrm{Vj}\right)$, where $\mathrm{k} \wedge \mathrm{i}, 1<\mathrm{k}<2 \mathrm{n}+2$, and $\left(\mathrm{w}^{\wedge}, \mathrm{v}^{\wedge}\right)$ for each $\mathrm{i}=1$, $2, \ldots, 2 n+1$, together with the $\operatorname{arc}\left(v^{\wedge}, w_{2 n+2}\right)$. We show that D is $D(1,1)-$ decomposable into $(\mathrm{n}+1)(4 \mathrm{n}+3)$ copies of $\mathrm{D}(1,1)$.

Consider the pair of vertices $\mathrm{v}_{2} \mathrm{i} _\mathrm{i}$ and $\mathrm{v}_{2} \mathrm{j}$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}+1$, and the subdigraphs Hj of D having symmetric $\operatorname{arcs}\left(\mathrm{v}_{2 \mathrm{i}} \mathrm{j}, \mathrm{v}_{2} \mathrm{j}\right)$ and $\left(\mathrm{v}_{2} \mathrm{j}, \mathrm{v}_{2} \mathrm{i} _i\right)$ together
 for $\mathrm{i}=1,2, \ldots, \mathrm{n}+1$. It is clear that each subdigraph $\mathrm{Hj}(1<\mathrm{i}<\mathrm{n}+1)$ is $\mathrm{D}(1,1)$ decomposable into three copies of $\mathrm{D}(1,1)$. (See Figure 5.23.)

Hi

Figure 5.23 The subdigraph Hj corresponding to three copies of $\mathrm{D}(1,1)$
We remove the arcs of subdigraphs $H^{\wedge}, H_{2}, \ldots, H_{n+1}$ from D. Then for each $\mathrm{t}=1,2, \ldots, 2 \mathrm{n}+2$, corresponding to each vertex v_{t} there are 2 n copies of $\mathrm{D}(1,1)$, using the $2 \mathrm{n} \operatorname{arcs}\left(\mathrm{w}_{\mathrm{t}} \mathrm{j}, \mathrm{v}_{\mathrm{t}}\right),\left(\mathrm{w}_{\mathrm{t} 2}, \mathrm{v}_{\mathrm{t}}\right), \ldots,\left(\mathrm{w}_{\mathrm{t} 2 \mathrm{n}}, \mathrm{v}_{\mathrm{t}}\right)$ and the $2 \mathrm{n} \operatorname{arcs}$ $\left(\mathrm{v}_{\mathrm{t}}, \mathrm{vj}\right)$, where $1<\mathrm{j}<2 \mathrm{n}+2$ and when t is odd, $\mathrm{j} 4\{\mathrm{t}, \mathrm{t}+1\}$ and when t is even $(t-1, t)$.

Therefore, D is $D(1,1)$-decomposable. Since $|H(D)|=(2 n+2)(4 n+3)$, it follows that $\operatorname{lcm}(\mathrm{D}(4 \mathrm{n}+2,1), \mathrm{D}(1,1))<(2 \mathrm{n}+2)(4 \mathrm{n}+3)$.
(5) Let D be a digraph that is both $\mathrm{D}(4 \mathrm{n}, 1)$-decomposable and $\mathrm{D}(1,1)$ decomposable. We show that $\operatorname{IE}(\mathrm{D}) \mathrm{I}>(2 n+2)(4 n+1)$. Let D^{\prime} be a copy of $D(4 n, 1)$ in a $D(4 n, 1)$-decomposition of D. Consider a $D(1,1)$-decomposition of D. Observe that there is at most one copy F of $\mathrm{D}(1,1)$ in D^{\prime} having one arc to the $(4 n, 1)$ vertex of D^{\prime} and one arc from this vertex. Furthermore, by Lemma 5.13, for every copy $\mathrm{D}^{\prime \prime}$ isomorphic to $\mathrm{D}(4 \mathrm{n}, 1)$ in D other than D^{\prime} at most two central in arcs of D^{\prime} and two central in arcs of $\mathrm{D} "$ can be used to produce copies of $\mathrm{D}(1,1)$ distinct from F in D . Since each edge of D^{\prime} belongs to a copy of $\mathrm{D}(1,1)$ in D , at least 2 n other copies of $\mathrm{D}(4 \mathrm{n}, 1)$ in D exist. Now since the size of $2 \mathrm{n}+1$ copies of $D(4 n, 1)$ is odd, it follows that D contains at least $2 n+2$ copies of $D(4 n, 1)$. Hence, $|\mathrm{E}(\mathrm{D})|>(2 \mathrm{n}+2)(4 \mathrm{n}+1)$.

We construct a digraph D having size $(2 \mathrm{n}+2)(4 \mathrm{n}+1)$ that is both $\mathrm{D}(4 \mathrm{n}, 1)$ decomposable and $D(1,1)$-decomposable. Define $F=K 2_{n}+i$, where $V(F)=\{v j$,
 $\mathrm{i}=1,2, \ldots, 2 \mathrm{n}+1$ together with the $\operatorname{arcs}(\mathrm{wj} \mathrm{i}, \mathrm{vj}),\left(\mathrm{Wj}_{2}, \mathrm{Vj}_{\mathrm{j}}\right), \ldots,\left(\mathrm{Wi}_{\mathrm{i} \mathrm{In}^{\prime \prime}}{ }^{\mathrm{v}} \mathrm{i}\right)^{\text {arK* }}$ ($\left.v_{i}, W j 2 n+i\right)-$ Finally, add a new vertex x together with the $\operatorname{arcs}\left(v_{i s} x\right)$ and $\left({ }^{\mathrm{w}} \mathrm{i}, \mathbf{2 n + 1 >}{ }^{\mathrm{x}}\right) \mathrm{f}^{\text {oreac } \wedge} \mathrm{i}=1,2, \ldots, 2 \mathrm{n}$ and the arc $\left(\mathrm{x}, \mathrm{v}_{2 \mathrm{n}+\mathrm{i}}\right)$, resulting in the digraph D. (See Figure 5.24.)

D
Figure 5.24 A digraph that is $\mathrm{D}(4 \mathrm{n}, 1)$-decomposable and $\mathrm{D}(1,1)$-decomposable

We show that D is both $\mathrm{D}(4 \mathrm{n}, 1)$-decomposable and $\mathrm{D}(1,1)$-decomposable.
We consider the following $2 n+2$ copies of $D(4 n, 1)$ in D. One copy of $\mathrm{D}(4 \mathrm{n}, 1)$ has x as its $(4 \mathrm{n}, 1)$ vertex and $\operatorname{arcs}(\mathrm{vj}, \mathrm{x})$ and $\left(\mathrm{wj} \wedge^{\mathrm{n}}+\mathrm{b}^{\mathrm{x}}\right) \mathrm{f}^{\circ \mathrm{r}} 1 \wedge \wedge^{\wedge} \wedge$ $2 n$ together with the arc $\left(x, v_{2 n+1}\right)$. The other $2 n+1$ copies of $D(4 n, 1)$ have their $(4 \mathrm{n}, 1)$ vertices at $\mathrm{Vj}(\mathrm{i}=1,2, \ldots, 2 \mathrm{n}+1)$ with $\operatorname{arcs}\left(\mathrm{Wjj}, \mathrm{v}^{\wedge}\right),\left(\mathrm{wi}_{2}, \mathrm{Vj}\right), \ldots$, $\left(\mathrm{w}_{\mathrm{i}>2 \mathrm{n}}, \mathrm{vj}\right)$, and $(\mathrm{vj}, \mathrm{Vj})$ for all $\mathrm{j}(1<\mathrm{j}<2 \mathrm{n}+1, \mathrm{j} * \mathrm{i})$ and the $\operatorname{arc}\left(\mathrm{v}_{\mathrm{i} 9} \mathrm{w}_{\mathrm{i} 2 \mathrm{n}+1}\right)$.

Further, D is $\mathrm{D}(1,1)$-decomposable: One copy of $\mathrm{D}(1,1)$ has vertices x , $\mathrm{v}_{2 \mathrm{n}+1}$, and $\mathrm{w}_{2 \mathrm{n}+1) 2 \mathrm{n}+1}$ with $\operatorname{arcs}\left(\mathrm{x}, \mathrm{v}_{2 \mathrm{n}+1}\right)$ and $\left(\mathrm{v}_{2 \mathrm{n}+1}, \mathrm{w}_{2 \mathrm{n}+1) 2 \mathrm{n}+1}\right)$. Another 2 n copies of $\mathrm{D}(1,1)$ have vertices $\mathrm{v}_{-\mathrm{v}} \mathrm{Wi}_{2 \mathrm{n}+\mathrm{i}} \mathrm{i}$, and x for $\mathrm{i}=1,2, \ldots, 2 \mathrm{n}$ and arcs ($\mathrm{i}>\mathrm{w}_{\mathrm{i}>2 \mathrm{n}+1}$) and ($\mathrm{w}_{\mathrm{i}>2 \mathrm{n}+1}, \mathrm{x}$).

There are 3 n copies of $\mathrm{D}(1,1)$ in the n subdigraphs Dj induced by $\{\mathrm{x}$,

X

Figure 5.25 Three copies of $\mathrm{D}(1,1)$ in the digraph D of Figure 5.24

Centred at the vertex $\mathrm{v}_{2 \mathrm{n}+1}$ there are 2 n copies of $\mathrm{D}(1,1)$ using arcs
 $\left({ }^{\vee} 2 n+1 »{ }^{\mathrm{v}} 2\right)>->\left({ }^{\mathrm{v}} 2 \mathbf{n}+1 » .^{\mathrm{v} 2 n}\right.$)- $\quad\left({ }^{\text {See }}\right.$ Figure 5.26.)

Figure 5.262 n copies of $\mathrm{D}(1,1)$ in the digraph D of Figure 5.24

Finally, there are $2 n(2 n-1)$ copies of $D(1,1), 2 n-1$ of which are centred at each of the vertices $v_{15} v_{2}, \ldots, v_{2 n}$. For each i, the arcs of these copies of $D(1,1)$ are (WJJ, VJ), $\left.\left(\mathbf{W J}_{2}, \mathbf{V}\right\}\right), \ldots,\left(\mathbf{W J}_{2 n} _\mathbf{i}, \mathbf{V J}\right)$ together with the remaining $2 \mathrm{n}-1 \operatorname{arcs}$ from the vertex Vj , namely, (vj, vj), where $1<\mathrm{j}<2 \mathrm{n}, \mathrm{j}$ \& i and when i is odd $\mathrm{j} \wedge \mathrm{i}+$ 1 and when i is even $\mathrm{j} \mathrm{i}-1$. (See Figure 5.27.)

Figure $5.27 \quad 2 \mathrm{n}-1$ copies of $\mathrm{D}(1,1)$ corresponding to each vertex $\mathrm{Vj}(\mathrm{i}=1,2, \ldots, 2 \mathrm{n})$

Therefore, there are $1+2 n+3 n+2 n+2 n(2 n-1)=4 n^{2}+5 n+1$ copies of $D(1,1)$ producing $2\left(4 n^{2}+5 n+1\right)=(2 n+2)(4 n+1)$ arcs. It follows that $\operatorname{lcm}(\mathrm{D}(4 \mathrm{n}, 1), \mathrm{D}(1,1))<(2 \mathrm{n}+2)(4 \mathrm{n}+1)$, completing the proof.

5.3 The Greatest Common Divisor Index of a Digraph

As with graphs, we define, for a given digraph D of size q , the greatest common divisor index $\mathrm{i}(\mathrm{D})$ as the greatest integer n for which there exist digraphs $D j$ and D_{2}, both of size at least $n q$, such that $\operatorname{GCD}\left(D_{15} D_{2}\right)=\{D\}$. If "no such n exists, then we define this index to be $«>$.

Proposition 5.15 For every positive integer n,

$$
\mathrm{i}(\mathrm{nD}(0,1))=\mathrm{co} .
$$

Proof The result is immediate when we follow the technique of the proof of Proposition 4.18. •

Proposition 5.16 For all nonnegative integers m and n, with $(m, j i)^{\wedge}(0,0)$,

$$
\mathrm{i}(\mathrm{D}(\mathrm{~m}, \mathrm{n}))=
$$

Proof Suppose, to the contrary, that $\mathrm{i}(\mathrm{D}(\mathrm{m}, \mathrm{n})$) is finite, say $\mathrm{i}(\mathrm{D}(\mathrm{m}, \mathrm{n}))=\mathrm{t}$. Let r $(>\mathrm{t})$ be an integer and p^{\wedge} and p_{2} be-distinct primes so that $(\mathrm{m}+\cdot \mathrm{n}) \mathrm{pj}$ and $(\mathrm{m}+\mathrm{n}) \mathrm{p}_{2}$ are at least r . Define $\left.D_{l}=\mathrm{D}^{\wedge} \mathrm{m}, \mathrm{p}^{\wedge}\right)$ and $\mathrm{D}_{2}=\mathrm{D}\left(\mathrm{p}_{2} \mathrm{~m}, \mathrm{p}_{2} \mathrm{n}\right)$. Then $\operatorname{GCD}\left(\mathrm{Dj}, \mathrm{D}_{2}\right)=\{\mathrm{D}(\mathrm{m}, \mathrm{n})\}$, implying that $\mathrm{i}(\mathrm{D}(\mathrm{m}, \mathrm{n}))>\mathrm{r}>\mathrm{t}$, contrary to hypothesis. Therefore, $\mathrm{i}(\mathrm{D}(\mathrm{m}, \mathrm{n}))=«$. •

Now we generalize the former two propositions.

Proposition 5.17 For positive integers a, b, and c

$$
\mathrm{i}(\mathrm{a} \mathrm{D}(0,1) \mathrm{u} \mathrm{D}(\mathrm{~b}, \mathrm{c}))=\mathrm{oo} .
$$

Proof Suppose, to the contrary, that $\mathrm{i}(\mathrm{a}(0,1)$ vj $(\mathrm{b}, \mathrm{c}))=\mathrm{t}$, where $\mathrm{t} € \mathrm{~N}$. Let r $(>\mathrm{t})$ be an integer, and let pj and p_{2} be distinct odd primes, where $\mathrm{pj}(\mathrm{a}+\mathrm{b}+\mathrm{c})>\mathrm{r}$ for $\mathrm{i}=1,2$. Let $\mathrm{Dj}=\mathrm{p}_{\mathrm{a}} \mathrm{a} \mathrm{D}(0,1) \mathrm{u} \mathrm{D}\left(\mathrm{p}_{\mathrm{x}} \mathrm{b}, \mathrm{p}_{\mathrm{x}} \mathrm{c}\right)$ and D_{2} a $\mathrm{p}_{2} \mathrm{a} \mathrm{D}(0,1) \mathrm{u}$ $\mathrm{D}\left(\mathrm{p}_{2} \mathrm{~b}, \mathrm{p}_{2} \mathrm{c}\right)$. Then $\operatorname{GCD}\left(\mathrm{D}_{\mathrm{x}}, \mathrm{D}_{2}\right)=\{\mathrm{a} \mathrm{D}(0,1) \mathrm{u} \mathrm{D}(\mathrm{b}, \mathrm{c})\}$. and $\mathrm{i}(\mathrm{a} \mathrm{D}(0,1) \mathrm{u}$ $\mathrm{D}(\mathrm{b}, \mathrm{c}))>\mathrm{r}>\mathrm{t}$, contrary to hypothesis. Therefore, $\mathrm{i}(\mathrm{a} \mathrm{D}(0,1) \mathrm{u} \mathrm{D}(\mathrm{b}, \mathrm{c}))=$

The next propositions are immediate.

Proposition 5.18 For all positive integers $\mathrm{bj}, \mathrm{b}_{2}, \mathrm{~b}_{\mathrm{n}}$ and $\mathrm{Cj}, \mathrm{c}_{2}, \mathrm{c}_{\mathrm{n}}$,

$$
\mathrm{i}\left(D\left(b_{v} c_{x}\right) \text { u D }\left(\mathrm{b}_{2}, \mathrm{c}_{2}\right) \text { u } \quad \text { u } \mathrm{D}\left(\mathrm{~b}_{\mathrm{n}}, \mathrm{c}_{\mathrm{n}}\right)\right)=\langle<\rangle .
$$

Proposition 5.19 For all positive integers a , ty, and $\mathrm{c}^{\wedge}(1<\mathrm{i}<\mathrm{n})$, where $\mathrm{n}>2$,

$$
\text { i (a } D(0,1) \text { u } D\left(b_{x}, c_{x}\right) \text { u } D\left(b_{2}, c_{2}\right) \text { u «• u } D\left(b_{n}, c_{n}\right)-
$$

The directed path P_{n} on n vertices is a digraph obtained from assigning direction to the path P_{n} so that it forms a (directed) path of length $\mathrm{n}-1$.

Proposition 5.20 For $\mathrm{n}=2,3,4,5$,

$$
\mathrm{i}\left(?_{\mathrm{n}}\right)=
$$

Proof The result follows directly from the corresponding result for graphs. •

For integer $\mathrm{n}(>3)$ we let (* be a directed cycle on n vertices. As with graphs we have the following propositions.

Proposition $5.21 \mathrm{i}\left(\left({ }_{3}\right)=1\right.$.

Proposition $5.22 \quad \mathrm{i}\left(<?_{4}\right)=$

We have shown for graphs $\mathrm{i}\left(\mathrm{K}_{3}\right)=1$ and for digraphs $\mathrm{i}\left(\mathrm{C} ?_{3}\right)=1$, but for the tournaments the result is not similar. For example, we show that $\mathrm{i}(\mathrm{T})={ }^{00}$ for the tournament T of Figure 5.28 .

T

Figure 5.28 A transitive tournament T of order 3
Note that a result for digraphs similar to Lemma 2.13 does not hold for
 ($\mathrm{P}_{3} \mathrm{u} \quad \mathrm{P}_{2}$)-decomposable.

Figure 5.29 A digraph that is T-decomposable but not $\left(\hat{\mathrm{P}}_{3}\right.$ u $\left.\overline{\mathrm{P}}_{2}^{\prime}\right)$-decomposable

Proposition 5.23 For the tournament T of Figure 5.28,

$$
i(T)=
$$

Proof Suppose, to the contrary, that $i(T)=t$, for some te N. Let $m(>t)$ be an integer, and let pj and p_{2} be primes so that $\mathrm{p}_{2}>\mathrm{p}!>\mathrm{m}$. Let $\mathrm{D}_{\mathrm{x}}=\mathrm{pjT}$ and D_{2} be the digraph of Figure 5.30 with $\mathrm{k}=\mathrm{p}_{2}$. We show that $\operatorname{GCD}\left(\mathrm{D}_{15} \mathrm{D}_{2}\right)=\{\mathrm{T}\}$.

Figure 5.30 The greatest common divisor of Dj and D_{2} is T

It is sufficient to show that D_{2} is not D -decomposable into k copies of D for any element D of the set $<D=\left\{\mathrm{D}(2,0) \mathrm{u} ?_{2}, \mathrm{D}(0,2) \mathrm{u} \quad \mathrm{D}(1,1) \mathrm{u} ?_{2}\right\}$.

Suppose, to the contrary, that D_{2} is D -decomposable into k copies of D for some $\mathrm{De} \quad$ Since z is a vertex of every copy of $\mathrm{D}(2,0), \mathrm{D}(0,2)$, and $\mathrm{D}(1,1)$, none of the arcs incident to or from z can be an arc of P_{2} in a copy of D. Therefore, all $\operatorname{arcs}\left(\mathrm{xj}, \mathrm{y}^{\wedge}\right.$ for $1<\mathrm{i}<\mathrm{k}$ are the arcs of the k copies of P_{2}, and the arcs incident from or to z are the arcs of the k copies of one of the digraphs $D(2,0), D(0,2)$, and $\mathrm{D}(1,1)$, implying that z must be a $(2 \mathrm{k}, 0)$-vertex, a $(0,2 \mathrm{k})$-vertex, or a (k, k)-vertex, respectively. However, $\mathrm{idz}=2(\mathrm{k}-1)$ and $\mathrm{odz}=2$, a contradiction since $\mathrm{k}>2$. Now since D_{x} and D_{2} are T-decomposable, $\left.\operatorname{GCDCD}^{\wedge} D_{2}\right)=\{T\}$ and $i(T)>m>t$, contrary to hypothesis. Therefore, $\mathrm{i}(\mathrm{T})=$

As with graphs, the following lemma, whose proof is omitted, will be useful.

Lemma 5.24 Let $p(>3)$ be an integer. If D is a nontrivially K^{*}-decomposable digraph, then D is also $\left((\mathrm{Kp}-\mathrm{e}) \mathrm{u}^{\mathrm{P}}\right.$ - -decomposable, where e is any arc of Kp .

A direct result of this lemma is the next proposition.

Proposition 5.25 For every integer p (> 3),

$$
\mathrm{i}(\mathrm{Kp})=1
$$

In general, the problem of determining the greatest common divisor index of a digraph appears to be difficult and it is unknown whether digraphs D, with $1<$ $\mathrm{i}(\mathrm{D})<$ oo, exist.

REFERENCES

[CEK] G. Chartrand, P. Erdos and G. Kubicki, Absorbing common subgraphs. Graph Theory, Combinatorics, Algorithms, and Applications (ed. Y. Alavi, F. R. K. Chung, R. L. Graham, and D, F. Hsu). SIAM, Philadelphia (1991) 96-105.
[CHKOSZ] G. Chartrand, H. Hevia, G. Kubicki, O. R. Oellennann, F. Saba and H. B. Zou, Least common supergraphs of graphs. Congress. Numer. 72 (1990) 109-114.
[CHKS] G. Chartrand, L. Hansen,, G. Kubicki, M. Schultz, Greatest Common Divisors and Least Common Multiples of Graphs. To appear.
[CJO] G. Chartrand, M. Johnson and O.R. Oellermann, Connected graphs containing a given connected graph as a unique greatest common subgraph. Aequationes Math. 31 (1986) 213-222.
[CL] G. Chartrand and L. Lesniak,- Graphs \&. Digraphs, Second Edition. Wadsworth \& Brooks/Cole, Monterey CA (1986).
[COSZ] G. Chartrand, O. R. Oellermann, F. Saba and H. B. Zou, Greatest common subgraphs with specified properties. Graphs Combin. 5 (1989) 1-14.
[CPS] G. Chartrand, A. D. Polimeni and M. J. Stewart, The existence of 1-factors in line graphs, squares, and total graphs. Indag. Math. 35 (1973) 228-232.
[CSZ1] G. Chartrand, F. Saba and H. B. Zou, Edge rotations and distance between graphs. Easopis P\#st. Mat. 110 (1985) 87-91.
[CSZ2] G. Chartrand, F. Saba and H.B. Zou, Greatest common subgraphs of graphs. Hasopis PXst. Mat. 112 (1987) 80-88.
[CZ] G, Chartrand and H. B. Zou, Trees and greatest common subgraphs. Scientia 1 (1988) 33-39.
[K] G. Kubicki, Greatest common subgraphs. Ph. D. Dissertation, Western Michigan University (1989).
[W] R.Wilson, Decompositions of complete graphs into subgraphs, Proceedings. of the Fifth British Combinatorial Conference, Congressus Numerantium XV, Utilitas Math. Winnipeg (1976) 647 659.

