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SUMMARY 

Chapter I begins with a brief history of the topic of greatest common subgraphs. 

Then we provide a summaiy of the work done on some variations of greatest common 

subgraphs. Finally, in this chapter we present results previously obtained on greatest 

common divisors and least common multiples of graphs. 

In Chapter II the concepts of prime graphs, prime divisors of graphs, and prime-

connected graphs are presented. We show the existence of prime trees of any odd size 

and the existence of prime-connected trees that are not prime having any odd composite 

size. Then the number of prime divisors in a graph is studied. Finally, we present 

several results involving the existence of graphs whose size satisfies some prescribed 

condition and which contains a specified number of prime divisors. 

Chapter III presents properties of greatest common divisors and least common 

multiples of graphs. Then graphs with a prescribed number of greatest common 

divisors or least common multiples are studied. 

In Chapter IV we study the sizes of greatest common divisors and least common 

multiples of specified graphs. We find the sizes of greatest common divisors and least 

common multiples of stars and that of stripes. Then the size of greatest common 

divisors and least common multiples of paths and complete graphs are investigated. In 

particular, the size of least common multiples of paths versus K3 or K4 are 

determined. Then we present the greatest common divisor index of a graph and we 

determine this parameter for several classes of graphs. 
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In Chapter V greatest common divisors and least common multiples of digraphs 

are introduced. The existence of least common mutliples of two stars is established, 

and the size of a least common multiple is found for several pairs of stars. Finally, we 

present the concept of greatest common divisor index of a digraph and determine it for 

several classes of digraphs. 
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CHAPTER I 

History and Background 

Our subject began in 1987 with the study of greatest common subgraphs. In 

the first section of this chapter, we provide a brief history of this topic. In the second 

section, we summarize work done on some variations of greatest common subgraphs 

of graphs. In the third and final section, we summarize results obtained on greatest 

common divisors and least common multiples of graphs, the main topics of this 

dissertation. All terms and notation not defined or described in this dissertation may be 

found in Chartrand and Lesniak [CL]. 

1.1 Greatest Common Subgraphs 

The concept of greatest common subgraphs of graphs was introduced by 

Chartrand, Saba, and Zou [CSZ1]. A graph G without isolated vertices is called a 

greatest common subgraph of a set Q = {Gj, Q^ ... , Gn), n > 2, of graphs having 

the same size if G is a graph of maximum size that is isomorphic to a subgraph of each 

graph Gi, 1 < i < n. The set of all greatest common subgraphs of Q is denoted by 

gcs Q or gcs(G1, G2> ...» Gn). For example, if Q - {Gj, G2) for the graphs of 

Figure 1.1, then gcs Q- { H ^ ^ } . 
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Figure 1.1 Greatest common subgraphs of graphs 

Thus, it is clear that a greatest common subgraph'may not be unique. In fact, it 

is not unusual for a set Q of two or more graphs of equal size to have several greatest 

common subgraphs. The following result was established in [CSZ2]. 

Theorem 1A For every pair m, n of positive integers with n > 2, there exist n 

pairwise nonisomorphic graphs Gj, G 2 , G n of equal size such that 

Another related problem is to find, for a given graph G, two nonisomorphic 

graphs Gj and G2 of equal size (or a set Q of graphs of equal size) such that G is 

the unique greatest common subgraph of Gx and G2 (respectively, of Q). The 

following result was obtained in [CSZ2], and we state it for future reference. 

Theorem IB If G is a graph without isolated vertices, then there exist non-

isomorphic graphs Gi and G2 of equal size such that gcs(Gi, G2) = {G}. 

In the proof of Theorem IB, one of Gi and G2 is connected while the other 

graph is disconnected. However, Chartrand, Johnson, and Oellermann [CJO] proved 

that if G is connected but not complete, then there are nonisomorphic connected 

I gcs(Gx, G 2 , G n ) | =m. 
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graphs Gi and G2 of equal size such that gcs(Gi, G2) = {G}. Later, a more general 

class of problems was investigated. 

Let P be a graphical property. For a given graph G without isolated vertices 

and having property P, do there exist non-isomorphic graphs Gi and G2 of equal 

size having property P such that gcs(Gi, G2) = {G}? If P is the property of being 

2-connected, then the following characterization was given in [COSZ], For a 2-

connected graph G, there exist non-isomorphic 2-connected graphs Gj and G2 of 

equal size such that gcs(Gi, G2) = {G} if and only if G ^ Kn (n > 3) and G ^ 

Kn - e (n > 4). In the same paper, it was shown that for every n-chromatic graph G 

(n > 2), there exist non-isomorphic n-chromatic graphs Gi and G2 of the same size 

such that gcs(Gj, G2) = {G}. 

Chartrand and Zou [CZ] characterized trees that are unique greatest common 

subgraphs of two suitably chosen nonisomorphic trees of equal size. Let D(t) denote 

a tree consisting of two stars K(l, t) whose central vertices are connected by a path of 

length 3. If T is a tree, then gcs(Ti, T2) = {T) for some nonisomorphic trees Ti 

and T2 of equal size if and only if T ^ Pn, n = 2, 4, 5, ... and T £ D(t), t > 2. 

When the property P is that of being connected outerplanar, connected planar, or 

unicyclic, then the problem was solved as well, by Kubicki [K], 

There are several concepts closely related to greatest common subgraphs that 

have been studied. Greatest common induced subgraphs have been considered in 

[CJO], [COSZ], and [CZ], and this concept has proved to be considerably easier than 

the greatest common subgraph. Also, related problems for digraphs have been 

considered in [CJO]. 

Let Q be a set of graphs without isolated vertices, all having the same size. A 

graph G without isolated vertices is a least common supergraph of Q if G is a graph 



4 

of minimum size that is isomorphic to some supergraph of every graph in G. The set 

of all least common supergraphs of Q is denoted by lcs Q. For the graphs Gx and 

G2 of Figure 1.2, lcs(Gl5 G2) consists of the three graphs Hj, H2, and H3, also 

shown in Figure 1.2. 

Figure 1.2 Least common supergraphs of graphs 

The next result [CHKOSZ] shows a relationship among the size of two given 

graphs (of equal size) and the sizes of a greatest common subgraph and a least common 

supergraph of the two given graphs. 

Theorem 1C Let Gj and G2 be graphs without isolated vertices and having size 

q. If G e gcs (Glt G2) and H e lcs (Glf G2), then 

q(G) + q(H) = 2q. 

In order to present a characterization [CHKOSZ] of graphs that can be least 

common supergraphs of two graphs, we present a definition. A nonempty graph G is 

edge-symmetric if G - e = G - f for all e , f e E(G). 
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Theorem ID Let G be a graph without isolated vertices. Then G is a least 

common supergraph of two nonisomorphic graphs of equal size if and only if G is not 

edge-symmetric. 

The dual nature of greatest common subgraphs and least common supergraphs was 

described in more detail in [CHKOSZ]. First, some additional notation is useful. For 

a given graph G, let p be an integer with p>p(G). The graph G(p) is defined by 

G ^ s G u C p - p C O l K x , 

that is, G(p) is obtained by adding p - p(G) isolated vertices to G. 

In what follows, least common supergraphs are permitted to have isolated vertices. 

Theorem IE Let Q = {G ,̂ G2,...» Gn} be a family of graphs of equal size and let 

p = max {p(H) | H e lcs Q and H has no isolated vertices}. Then H e lcs Q if and 

only if H(p) e gcs ( G^p) , G2(p) > Gn(p) ). 

The following is a consequence of Theorems ID and IE. 

Theorem IF Let G be a graph of order p without isolated vertices. Then G is a 

greatest common subgraph of two nonisomorphic graphs of equal size having order p 

if and only if G is not edge-symmetric. 

The final result of this section follows immediately from Theorems 1A and IE. 

Theorem 1G For every pair m, n of integers with m > 2 and n > 1, there exists a 

set Q of m pairwise nonisomorphic graphs of equal size such that I lcs q\ — n. 
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1.2 Maximal Common Subgraphs and Absorbing Common Subgraphs 

Let Gi and G2 be nonisomorphic graphs of the same size. The set of all 

common subgraphs of Gj and G2 can be considered as a set partially ordered by the 

relation "is a subgraph o f . Maximal common subgraphs are the maximal elements in 

this partially ordered set. More formally, a graph H without isolated vertices is a 

maximal common subgraph of Gj and G2 if H is (isomorphic to) a subgraph of G^ 

and G2, and there is no graph F without isolated vertices that is a common subgraph 

of Gj and G2 such that H is a proper subgraph of F. The set of all maximal 

common subgraphs of Gj and G2 is denoted by mcs(Gls G2). If Gj = K(3, 3) 

and G2 s K(l, 3) u K4, then mcs(Glf G2) = {H2, H2, H3}, where Ht s K(l, 3), 

H2 = 2K(1, 2), and H3 = C4 u K2 (see Figure 1.3). 

G. 

o o 

o o 
Hi H. H, 

Figure 1.3 Maximal common subgraphs 
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In this example, the graphs Hj, H2, and H3 have different sizes (namely 3, 4, 

and 5, respectively), so H3, having maximum size, is the unique greatest common 

subgraph of Gx and G2. 

It was shown in [K] that the difference between the sizes of a greatest common 

subgraph and a maximal common subgraph can be arbitrarily large. 

Theorem 1H For every positive integer M, there exist graphs Gx and G2 of 

equal size and graphs G e gcs(Gj, G2) and H e mcs(Gj, G2) such that 

q ( G ) - q ( H ) > M . 

The set of maximal common subgraphs of two graphs can have arbitrarily large 

cardinality; indeed, a wide range of sizes for maximal common subgraphs is possible 

[K]. 

Theorem II For every positive integer N, there exist graphs Gx and G2 of equal 

size and N graphs Hj, H 2 , H N with qCHj) * q(Hj) for 1 < i < j < N such that 

{H1,H2, ...,Hn} Q mcs(G1, G2). 

In [K] graphs are characterized that are maximal common subgraphs of a certain 

pair of graphs but not greatest common subgraphs of the same pair of graphs. 

Theorem 1J Let G be a graph without isolated vertices such that G £ K(l, r) 

(r = 1, 2). Then there exist nonisomorphic graphs Gj and G2 of equal size such that 

G e mcs(Gj, G2), but G 4 gcs(Gj, G2). 

A graph G without isolated vertices is an absorbing common subgraph of two 

nonisomorphic graphs Gj and G2 if (1) G is (isomorphic to) a subgraph of Gx 

and G2 and (2) whenever a graph H (without isolated vertices) is a common 
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subgraph of G^ and G2, then H is a subgraph of G. Informally, an absorbing 

common subgraph of Gj and G2 is a common subgraph of Gi and G2 that 

"absorbs" every other common subgraph of Gi and G2. This concept was 

introduced by Chartrand, Erdos, and Kubicki [CEK]. 

Two graphs of equal size need not have an absorbing common subgraph. 

However, if an absorbing common subgraph of Gj and G2 exists, then it is unique 

and is denoted by acs (Gj, G2). In fact, when G is the unique maximal common 

subgraph of graphs Gi and G2, then G is the absorbing common subgraph of Gi 

and G2, and vice versa, as shown in [CEK]. 

Theorem IK A graph G is an absorbing common subgraph of two nonisomorphic 

graphs Gi and G2 of equal size if and only if G is the unique maximal common 

subgraph of Gj and G2. 

From Theorem IK, it then follows that if G is an absorbing common subgraph of 

two nonisomorphic graphs Gj and G2, then it is the unique greatest common 

subgraph of Gj and G2. 

Thus, the graphs Gj and G2 of Figure 1.3 do not have an absorbing common 

subgraph since Gj and G2 have more than one maximal common subgraph. 

It is not difficult to show that no complete graph of order at least 3 is an 

absorbing common subgraph. The situation for complete bipartite graphs is presented 

in [CEK]. 

Theorem 1L Let G = K(m, n), where m < n. Then G is an absorbing common 

subgraph if and only if m = 1, m = 2, or n = m + 1. 
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Various other classes of graphs that are (or are not) absorbing common subgraphs 

are also given in [CEK]. 

1.3 Greatest Common Divisors and Least Common Multiples 

A variation of greatest common subgraphs and least common supergraphs with 

number-theoretic overtones was introduced in Chartrand, Hansen, Kubicki, and 

Schultz [CHKS]. A nonempty graph G is said to be decomposable into the subgraphs 

Gi, G 2 , G n of G if no graph Gi, 1 < i < n, has isolated vertices, and the edge set 

E(G) of G is partitioned into ECGj), E(G2), E(Gn)- If G i = H for every i 

(1 < i < n), then G is said to be H-decomposable. In fact, this is a generalization of 

r-factorable graphs, for a positive integer r. If G is H-decomposable into two or 

more copies of H, and H £ K2, then we say G is nontrivially H-decomposable. 

The following observation will prove useful to us later. 

Proposition 1.1 If a graph G is decomposable into subgraphs G1} G2, ... , Gn 

(n > 2) and each subgraph G^ (1 < i < n) is decomposable into subgraphs F^ Fi2, 

..., Fjmi (mf > 2), then G is decomposable into the subgraphs F n , F 1 2 , . . . , F l m i , 

F21> F22> » F2m2> - ' Fnl> Fn2> ••• » Fnmn -

This result has the following immediate consequence. 

Corollary 1.2 If a graph G is decomposable into subgraphs G l s G2, ... , Gn 

(n > 2), each of which is F-decomposable, then G is F-decomposable. 

Finally, we have the following result. 
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Corollary 1.3 If a graph G is F-decomposable and F is H-decomposable, then 

G is H-decomposable. 

If a graph G is H-decomposable, then H is said to divide G and is a 

divisor of G. If H divides G, we write H | G. It is clear that for every graph G of 

size at least 2, we have K21G and G | G. For such a graph G, the graphs K2 ajid 

G are called the trivial divisors of G. A graph H is said to be a proper divisor of G 

if G is nontrivially H-decomposable, that is, if H | G and 1 < q(H) < q(G). 

If a graph G is H-decomposable, then q(H) | q(G). However, if H is a 

subgraph of G without isolated vertices such that q(H) | q(G), then G may not be 

H-decomposable. For example, in Figure 1.4, the graph G is Hj-decomposable but 

not H2-decomposable. 

o — o 

o o — o o — o 

G Hi H 2 

Figure 1.4 An Hj-decomposable graph G that is not H2-decomposable 

The following theorem, obtained in [CPS], will prove to be useful. 

Theorem 1M Every nontrivial connected graph of even size is P3~decomposable. 

In [CHKS], a graph G without isolated vertices is defined to be a greatest 

common divisor of two graphs and G2 if G is a graph of maximum size such 

that both Gj and G2 are G-decomposable. We also refer to this as a greatest 
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common divisor of Gj versus G2. For example, in the graphs of Figure 1.5, Hj is 

the unique greatest common divisor of Gj and G2, while H^ and H2 are the 

greatest common divisors of G2 and G3. 

o o — o o o 

o — o — o 6 — o o — o — o o o 

G 2 G3 H j H 2 

Figure 1.5 Greatest common divisors 

A greatest common divisor of a set Q = {Gj, G2, ..., Gn}, n > 2, of 

nonempty graphs is defined similarly. Since K2 is a divisor of every graph of Q, there 

exists a graph of maximum size that is a divisor of every graph of Q. Consequently, 

every set of two or more nonempty graphs has a greatest common divisor. 

The set of all greatest common divisors of a set Q ~ {Gj, G 2 , . . . , Gn), n > 2, 

of graphs is denoted by GCD Q. In this case, we also write GCD Q = GCD(G1} G2, 

... , Gn). The size of a greatest common divisor of a set (3 = {G1} G2 , . . . , Gn), n > 

2, of graphs is denoted by gcd Q or gcd(G1} G 2 , G n ) . 

In [CHKS], a graph H without isolated vertices is called a least common 

multiple of two nonempty graphs Gj and G2 if H is a graph of minimum size such 

that H is both Gj-decomposable and G2-decomposable. Similarly, a graph H 

without isolated vertices is called a least common multiple of a set Q = {Gj, G2, 

Gn}, n > 2, of graphs if H is a graph of minimum size such that H is Gp 

decomposable for all i (1 < i < n). 
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The set of least common multiples of a set Q - {Gj, G2, Gn), n > 2, of 

graphs is denoted by LCM Q or by LCMCG^ G2, Gn). The size of a least 

common multiple of a set Q - {Gj, G2, Gn}, n > 2 of graphs is denoted by 

lcm Q or lcm(Gj, G2, Gn). For the graphs Gj and G2 of Figure 1.6, the 

graphs Hj (1 < i < 5) are the least common multiples of Gj and G2. It is clear that 

lcm(G|, G2) = 8. This example shows that least common multiples need not be 

unique. 

O O 
o — o 

G 

H 

Figure 1.6 Least common multiples 
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While it is evident that every two (or more) graphs have a greatest common 

divisor, it is not obvious that they have a least common multiple. It was verified in 

[CHKS] that every two nonempty graphs do indeed have a least common multiple. 

The proof of this result made use of the following theorem of Wilson [W]. 

Theorem IN Let F be a graph of size q (> 1) without isolated vertices. Then 

f | k d provided n is sufficiently large, q | ( 2 ) , and d| (n - 1), where d is the 

greatest common divisor of the degrees of the vertices of F. 

With the aid of Theorem IN, we show that every (finite) set of two or more 

graphs has a least common multiple. 

Theorem 1.4 For graphs Gi, G 2 , G m (m > 2) without isolated vertices, there 

exists a graph H that is Gi-decomposable for all i (1 < i < m). 

Proof Suppose Gj has size qi (1 < i < m), and let d[ = gcd {deg v : v e V(Gi)} 

for all i(1 < i < m). By Theorem IN, for all i (1 < i < m), there exists an integer Ni 

such that if 

(i) n > Ni, 

(ii) n(n - 1) = 0 (mod 2qi), and 

(iii) (n - 1) = 0 (mod dj), 

then Kn is Gi-decomposable. 

Then define t = lcm {di> d2, dm, qh q2, qm}. Choose k sufficiently 

large so that 2kt+ 1 > max {Ni, N2, ..., Nm}, and let n = 2kt + 1. Now di 11 and 

qi 11 for all i (1 < i < m), and conditions (i) - (iii) of Theorem IN are satisfied and, 

therefore, H = Krt is Gj-decomposablefor all i ( l < i < m ) . • 
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Theorem 1.4 has the immediate consequence. 

Theorem 1.5 Every set of two or more nonempty graphs has a least common 

multiple. 

Proof Let Q = {G|, G2, Gm), m > 2, be a set of nonempty graphs. Theorem 

1.4 shows the existence of a graph H that is Gj-decomposable for all i (1 < i < m). 

Therefore, H is a common multiple of Q. Consequently, there exists a graph of 

smallest size that is Gj-decomposable for all i (1 < i < m), implying that a least 

common multiple of Q exists. • 

It is a well-known fact from number theory that for every pair a, b of positive 

integers, a-b = gcd(a, b>lcm(a, b). It may have been anticipated that there is some 

relationship between q(Gj)-q(G2) and gcd (Gj, G2)*lcm (Gj, G2). However, it 

was shown in [CHKS] that for every positive integer N, there exist graphs Hj and 

H2 such that q(H1)-q(H2) > N-gcd (H1,.H2)-lcm (H^ H2) and graphs Fj and F2 

such that gcd (F h F2)-lcm (Fi, F2) > N-q(F1)-q(F2). 

In [CHKS], 1cm (Cn, K(l, m)) was determined when n is even and m is 

arbitrary and when n = 3 and m is arbitrary. In forthcoming chapters, properties of 

greatest common divisors, least common multiples, and related concepts are 

investigated further. 



CHAPTER n 

PRIME GRAPHS AND 

PRIME DIVISORS OF GRAPHS 

In this chapter we present the concepts of prime graphs, prime divisors of 

graphs, and prime-connected graphs. We begin by showing the existence of prime 

trees of any odd size and the existence of prime-connected trees that are not prime and 

having any odd composite size. Furthermore, prime double stars, prime-connected 

double stars, and prime-connected caterpillars of diameter 4 or 5 are characterized. 

We then investigate the number of prime divisors in a graph. In particular, it is 

shown that trees and cyclic graphs of every composite size, having a unique prime 

divisor, exist. Furthermore, this problem is considered for trees and cyclic graphs (of 

composite size) having exactly two prime divisors. We conclude the chapter by 

presenting a collection of results involving the existence of graphs (some of which are 

required to be more highly connected) whose size often satisfies some prescribed 

condition and which contain a specified number of prime divisors. 

2.1 Prime and Prime-Connected Trees 

Recall that K2 and G are the trivial divisors of a nonempty graph G. If G 

has no isolated vertices and has size at least 2, then G is called a prime graph, or 

simply a prime, if it has no nontrivial divisor. If the size of a graph is prime, then the 

graph is prime. However, the size of a prime graph need not be prime. For example, 
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the graphs K(l, 3) u K2 and K3 u K2 are prime graphs of size 4. In fact, for every 

composite integer q (> 4), there exists a prime graph of size q, namely K2 u 

K(l, q- 1). Note, however, that Theorem 1M implies that there are no connected 

prime graphs of even size at least 4. A composite graph is a graph of size 2 or more 

that is not prime. A divisor that is prime is called a prime divisor. 

Among all graphs of size 2, 4, or 6, the graphs Gj, 1 < i < 7, in Figure 2.1 

are the only prime graphs, as can easily be seen by using Theorem 1M and by checking 

all remaining cases. 

O O O O O O Q O 

O O 

Gi 

o — o 

Go 

O O 

G, 

O-

G< G, 

Figure 2.1 Prime graphs of size 2, 4, and 6 

G7 

A connected graph G of size at least 2 is prime-connected if its only 

connected divisors are K2 and G. By Theorem 1M, every prime-connected graph of 

size at least 3 must be of odd size. Observe that a connected graph that is prime is also 

prime-connected. However, the converse is not true in general. The tree T in Figure 

2.2 is an example of a prime-connected tree which is not prime, since P3 u K2 and 

3K2 are the only nontrivial divisors of T. 
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o — o — o — o — o — o — o — 

T 

Figure 2.2 A prime-connected tree that is not prime 

We have already indicated that K2 u K(l, q - 1) is prime for every integer 

q > 2. Of course, this graph is disconnected. We show that for every odd integer q > 

3, there is a connected prime graph of size q. Indeed, we prove that prime trees of size 

q exist for all odd integers q > 3, and that prime-connected trees of size q that are not 

prime exist for all odd composite integers q. We begin with a lemma. 

Lemma 2.1 A graph of size at least 2 containing an edge adjacent to all other edges 

lias no disconnected divisor. 

Proof Let G be a graph of size at least 2 containing an edge, say e, adjacent to all 

other edges. Suppose, to the contrary, that H is a disconnected divisor of G. 

Observe that in any H-decomposition of G, there exists a copy H' of H containing 

the edge e. Let Ht be a component of H' containing the edge e. Now since any 

edge of H' other than the edges of Hj is adjacent to e, it follows that no component 

other than Hj exists. Therefore, H is connected. • 

Theorem 2.2 Let q (> 3) be an integer. There exists a prime tree of size q if and 

only if q is odd. 

Proof By Theorem 1M, there does not exist a prime tree of even size q (> 4). The 

result for q odd holds when q is a prime number, since every tree of prime size is a 
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prime tree. Let q (> 9) be an odd composite number, and let T be the tree 

constructed by joining the central vertices u and v of two copies of K(l,r), where 

r = (q - l)/2, by the edge e = uv. Observe that diam T = 3. Suppose that T is In-

decomposable for some graph H, where 1 < q(H) < q. Since e is adjacent to all 

other edges of T, Lemma 2.1 implies that H is connected. 

If diam H = 3 and H £ T, then e belongs to some copy of H, and T -

E(H) is disconnected, implying that diam H < 2 in other copies of H — a 

contradiction. If diam H < 2, then H = K(l, t), for some t > 1. Suppose that mj 

and m2 copies of H have central vertex at u and v, respectively. Without loss of 

generality, let e be an edge of a copy of H having v as its central vertex. Then 

m 2 t - mjt = 1, that is, (m2 - mj)t = 1, implying that m2 - mj = 1 and t = 1. 

Hence, m2 = nij + 1 and H s K2, implying that T is a prime tree. • 

We now generalize the tree T depicted in Figure 2.2 to prove the existence of a 

prime-connected tree of size q that is not prime, where q is any odd composite 

integer. 

Theorem 2.3 For every odd composite integer q, there exists a prime-connected 

tree of size q that is not prime. 

Proof Let q = rs, where r is the smallest prime factor of q. We construct a tree T 

of size q by identifying an end-vertex of the path P j with the central vertex of the 

path P3. We label the edges of T as indicated in Figure 2.3. 
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O 
e 

O 
q 

T 

Figure 2.3 A prime-connected tree that is not prime 

We show that T is a prime-connected tree that is not prime. First we show that 

T is not prime. Observe that T is (Pr u K2)-decomposable into s copies (s > r > 3) 

of (Pr u K2) containing edges e (m_1) ( r_1)+1, e (m_1)(r_1)+2, t { m r _ m _ l ) + r _ v and 

Next, we show that T is prime-connected. Let Tj be a nontrivial divisor of 

T. Suppose, to the contrary, that Tj is connected. Since A(T) = 3, it follows that 

A(Tj) < 3. But Tj is nontrivial, so A(Tj) * 1. Observe that T has exactly one 

vertex of degree 3, so that A(Tj) * 3. Therefore, A(Tj) = 2 and Tl = Pk for some 

Since k - 1 > r (> 3), it follows that eq_2 and one of eq_j and eq belong to 

the same copy of Pk in any Pk-decomposition of T. Suppose, without loss of 

generality, that eq„2 and eq - 1 belong to the same copy of Pk. Therefore, the edge eq 

can only belong to a disconnected divisor of T — a contradiction. Hence Tj is 

disconnected and T is prime-connected but not prime. • 

We next consider some specific classes of trees. First, we note that the star 

K(l, m), m > 2 , is prime and prime-connected if and only if m is prime. We now 

turn our attention to double stars. A double star is a tree containing exactly two vertices 

that are not end-vertices. If these two vertices have degrees a and b, we denote this 

double star by S(a, b) (see Figure 2.4). 

e, q-s+m for m = 1, 2 , s . Therefore, T is not prime. 

integer k (> 4), where (k - 1) | q. 
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1 1 
2 

a - 1 b - 1 

Figure 2.4 The double star S(a, b) 

We are now prepared to characterize prime double stars. 

Proposition 2.4 For integers a, b (> 2), the double star S(a, b) is prime if and 

only if gcd(a, b - 1) = gcd(a - 1, b) = 1. 

Proof Assume that the double star S(a, b) is a prime graph. We show that 

gcd(a, b - 1) = gcd(a - 1, b) = 1. If gcd(a, b - 1) = m (> 2), then S(a, b) is 

K(l, m)-decomposable and, therefore, S(a, b) is not a prime graph — contrary to 

hypothesis. Similarly, gcd(a - I, b) = 1. 

Conversely, assume that gcd(a, b - 1) = gcd(a - 1, b) = 1. Suppose, to the 

contrary, that S(a, b) is not a prime graph. Then S(a, b) is H-decomposable for 

some graph H such that H £ K2 and H ^ S(a, b). Since the edge e = uv, where 

deg u = a and deg v = b, is adjacent to all other edges of S(a, b), Lemma 2.1 implies 

that H is connected. Therefore, H = K(l, r) for some integer r (> 2). Then (1) r | a 

and r| (b - 1), or (2) r | (a — 1) and r| b. Therefore, gcd(a, b - 1) * 1 or 

gcd(a - 1, b) ^ 1 — contrary to hypothesis. • 

We now show that a double star is prime if and only if it is prime-connected. 

Proposition 2.5 . For integers a, b (> 2), the double star S(a, b) is prime if and 

only if S(a, b) is prime-connected. 



21 

Proof Let the double star S(a, b) be prime for integers a, b (> 2). Clearly, S(a, b) 

is prime-connected. 

Conversely, if S(a, b) is prime-connected, then it has no connected nontrivial 

divisors, and by Lemma 2.1, also no disconnected divisors. Hence, S(a, b) is prime. 
• 

The following characterization of prime-connected double stars is now obvious. 

Proposition 2.6 For integers a, b (> 2), the double star S(a, b) is prime-

connected if and only if gcd(a, b - 1 ) = gcd(a - 1 , b) = 1. 

Finally, we present a result on double stars having divisors of size 3. 

Proposition 2.7 Let T= S(a, b) be a double star of size 3n (> 9). Then T is not 

decomposable into any graph of size 3 if and only if a = 2(mod 3) and b = 2(mod 3). 

Proof Suppose that T is not decomposable into any graph of size 3. If it is not the 

case that a = 2(mod 3) and b = 2(mod 3), then either (i) a = 0(mod 2) and b = 

l(mod 3), or (ii) a ^ l(mod 3) and b = 0(mod 3). Suppose that (i) holds and that 

u, v e V(T) with deg u = a = 3k and deg v = b = 3k' + 1 for some positive integers 

k and k'. Then u is the central vertex of k edge-disjoint stars K(l, 3), one of 

which contains the edge uv, and v is the central vertex of k' edge-disjoint stars 

K(l, 3) (not containing uv). Thus, T is K(l, 3)-decomposable, contrary to 

hypothesis. 

Case (ii) can be proved similarly to case (i). Therefore, a = 2(mod 3) and b = 

2(mod 3). 

Suppose next that a = 2(mod 3) and b = 2(mod 3). The only possible 

subgraphs of size 3 in T are P4, K(l, 3), and P3 u K2. We first show that T is 
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not P4-decomposable. Note that T £ P4 since T has size at least 9. Suppose, to the 

contrary, that T is P^decomposable. Then the removal of a copy of P4 from T 

results in a disconnected graph in which each component has diameter at most 2, 

implying that the resulting graph is not P4-decomposable — a contradiction. 

Therefore, T is not P4~decomposable. Next, we show that T is not K(l, 3)-

decomposable. Suppose, to the contrary, that T is K(l, 3)-decomposable. Then the 

central vertex of each copy of K(l, 3) in every K(l, 3)-decomposition of T is either 

at u or at v, implying that the degree of one of u and v is a multiple of 3, contrary 

to the hypothesis. That T is not (P3 u K2)-decomposable follows from Lemma 2.1. 

Therefore, T is not decomposable into any graph of size 3. • 

Next we consider a class of trees that are generalizations of double stars. 

Let a1? a 2 , a n (n > 2) be integers greater than 1. The caterpillar C(ai, a2, 

..., an) is the tree obtained from the path Pn: x lf x 2 , x n by joining the vertices xj 

and xn to aj - 1 and to an - 1 new vertices, respectively, and the vertex xj to 

a^ - 2 new vertices for each i (2 < i < n - 1). Figure 2.5 shows C(3, 4, 5, 2). Note 

that the double star S(a, b) is isomorphic to the caterpillar C(a, b). 

C(3, 4, 5, 2) 

Figure 2.5 The caterpillar C(3, 4, 5, 2) 

We now characterize prime-connected caterpillars of the type C(als a2, a3). 
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Proposition 2.8 The caterpillar C(aj, a2, a3) is prime-connected if and only if the 

following conditions hold: 

(i) g c d ( a 1 , a 2 - l , a 3 - l ) = l, 

(ii) gcd(a: - 1, a2 - 1, a3) = 1, 

(iii) gcd(a 1 , a 2 -2 , a 3 )= 1, 

(iv) gcd(aj - 1 , a^ a3 - 1 ) = 1, 

(v) a1 * a3, or a2 = 2 or an odd integer at least 3, 

(vi) a2 ^ aj + a3. 

Proof Assume that C(aj, a^ a3) is a prime-connected caterpillar. If gcd(a1} a 2 - l , 

a3 - 1) = ir^ & 1, then C(aj, a2, a3) is K(l, n^)-decomposable — a contradiction. 

Hence, condition (i) holds. Similarly, conditions (ii), (iii), and (iv) hold. Now 

suppose, to the contrary, that condition (v) does not hold. Then it follows that aj = 

a3 and is an even integer at least 4. In this case, C(ais a2, a3) is S(aj, a2/2)-

decomposable, contrary to hypothesis. Finally, suppose, to the contrary, that the 

condition (vi) does not hold. Then it follows that a2 = al + a3, implying that 

C(a1? a2, a3) is S(aj, a3)-decomposable, contrary to hypothesis. 

Conversely, suppose that conditions (i) - (vi) hold and that C(aj, a2, a3) is 

not prime-connected. Let H be a connected graph such that C(aj, a2, a3) is 

nontrivially H-decomposable. 

Case 1 Assume that the graph H is isomorphic to K(l, m) for some integer 

m (> 2). In this case at least one of the following conditions (a) - (d) must hold: 

(a) m|a x and m | ( a 2 - l ) and m | ( a 3 - l ) , 

(b) m l f a j - l ) and m | ( a 2 - l ) and m|a 3 , 

(c) m | ax and m | (a2 - 2) and m | a3, 
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(d) m I (ax - 1) and m^ and m | ( a 3 - l ) . 

This, in turn, implies that at least one of the conditions (i) - (iv) fails, contrary to 

hypothesis. 

Case 2 Assume that the graph H is isomorphic to S(a, b) for some integers a * 1 

and b ^ 1. In this case, one of the following conditions holds: 

(e) C(aj, a2, a3) = C(a, 2b, a) having size aj + a2 + a3 - 2 = 2a + 2b - 2, 

(f) C(a1} a2, a3) = C(a, a + b, b) having size ^ + a2 + a3 - 2 = 2a + 2b - 2. 

But, then 

(e') ax = a3 (= a) and a2 = 2b (that is, d^ is an even integer at least 4), 

(f) ~ a i + a3-

Therefore, at least one of the conditions (v) and (vi) fails — contrary to hypothesis. 

These two cases are exhaustive and the result follows. • 

Necessary and sufficient conditions for the caterpillar C(aj, a2,..., a^) to be 

prime-connected appear complicated to obtain for large n; however, we do state such a 

result (without proof) for n = 4. 

Proposition 2.9 The caterpillar C(a1, a2, a3, a4) is prime-connected if and only if 

the following conditions hold: 

(i) gcd(aj, a2 - 1, a3 - 2, a4) = 1, 

(ii) gcd(aj, a2 - 2, a3 - 1, a4) = 1, 

(iii) gcd(ax - 1, a2, a3 - 1, a4 - 1) = 1, 

(iv) g c d ( a 1 - l , a 2 - l , a 3 , a 4 - l ) = l, 

(v) aj & a3 or a2 * a4, 

(vi) a j * a 4 or a2^a 3 . 
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respectively. Thus, if Gg LCM(W5, K 5 - e ) , then q(G) = 72k for some integer k> 

1. Let Gj be a copy of W5 with E ^ ) = {e1} e2 , . . . , e8} and denote the end-

vertices of each ej by r(ej) and sCej). Let G be the graph obtained from G2 by 

adding, for each edge ej of Gj, the vertices uj, vj, and wj, joining each of these 

new vertices to each of r(ej) and s(ej), and Vj to Uj and wv Then q(G) = 72 and 

G is \V5-dec0mp0sable into nine copies of W5, namely Gj and ({r(ej), s(ei), u-v v ,̂ 
w i ) ) - ei for each i (1 < i < 8). Also, G is (K5 - e)-decomposable into eight copies 

of K5 - e, namely {{r(ej), s(ei), Uj, v-v wj}) for each i (1 < i < 8). Thus, G e 

LCM(W5, K5 - e). However, G is not 3-connected since {r(ej), s(ej)} is a cut-set of 

G for each i. 



CHAPTER IV 

SIZES OF GREATEST COMMON DIVISORS AND 

LEAST COMMON MULTIPLES OF SPECIFIED GRAPHS 

In this chapter we study the sizes of greatest common divisors and least 

common multiples for several classes of graphs. In particular, we determine the size of 

the greatest common divisor and least common multiple of any path and K3, and of 

any path and K4. A lower bound for the size of a least common multiple of a path and 

a complete graph of any order is established. 

The greatest common divisor index is introduced in this chapter. This 

parameter is determined for any collection of stars and stripes, for paths Pn (2 < n < 

5), for all complete graphs, and for the cycle C4, for example. 

In [CHKS] much interest was shown in the sizes of greatest common divisors 

and least common multiples of graphs. For graphs Gi and G2, the size of a greatest 

common divisor of Gi and G2 is denoted by gcd (Gi, G2) and the size of a least 

common multiple by 1cm (Gi, G2). 

4.1 Greatest Common Divisors and Least Common Multiples of Stars and Stripes 

The sizes of a greatest common divisor and least common multiple of two 

matchings (stripes) or of two stars were found in [CHKS]. 
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Theorem 4A For integers m, n > 1, 

(1) gcd (mK2, nK2) = gcd (m, n); 

(2) 1cm (mK2, nK2) = 1cm (m, n); 

(3) gcd (K(l, m), K(l, n)) = gcd (m, n); and 

(4) 1cm (K(l, m), K(l, n)) = 1cm (m, n). 

These results can be generalized to an arbitrary number of matchings and to an 

arbitrary number of stars as follows. 

Proposition 4.1 For all positive integers m l s m 2 , m n (n > 2), 

(1) gcdCmxK^ m2K2 mnK2) = gcd(mlt m 2 > m n ) ; 

(2) lcm(mjK2i m2K2 mnK2) = lcm(mlt m2> mn); 

(3) gcd(K(l, mj), K(l, m2), K(l, mn)) = gcd(m1}m2, ...,mn); 

(4) lcm(K(l, mx)t K(l, m2), K(l, mn)) = lcm(mLm2 i ...t mn). 

Proof (1) For every i (i = 1, 2, ..., n), the graph m|K2 is rK2-decomposable, 

where r = gcd(m1} m2, ..., mn). Therefore, 

gcd(m1K2tm2K2 mnK2) > gcdfmj, m2,..., mn). 

From the definition of the greatest common divisor of graphs it follows that 

gcd(mjK2 )m2K2 mnK2) < gcdCmj, m2,..., mn). 

Therefore, gcd(m1K2, m2K2> mnK2) = gcd(mls m 2 , m n ) . 

(2) For i = 1, 2, ..., n, the graph rK2 is miK2-decomposable, where 

r= lcm(mj, m2, ..., mn). Therefore, 

lcm(m1K2>m2K2 mnK2) < lcm(ml5 m2, mn). 
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From the definition of the least common multiple of graphs it follows that 

lcm(m1K2, m2K2,.... mnK2) > lcmOnj, m 2 , m n ) . 

Therefore, lcmCmjK^ m2K2> f mnK2) = lcm(m], m 2 , m n ) . 

(3) For every i (i = 1, 2, . . . , n), the graph K(l, m^ is K(l, r)-

decomposable, where r = gcd(m1} m 2 , m n ) . Therefore, 

gcd(K(l, m1)> K(l, m2), .„, K(l, mn)) > gcdCmx, m2, mn). 

From the definition of the greatest common divisor of graphs it follows that 

gcd(K(l, m^ K(l, m2),.... K(l, mn)) < gcdCmj, m2, mn), 

and equality follows. 

(4) For i = 1, 2 , n , the graph K(l, r) is K(l, mi)-decomposable, 

where r = lcm(mi, m 2 , m n ) . Therefore, 

lcm(K(l, m i ) K ( l t m2) K(l, mn)) < lcm(m1} m2, mn), 

and the desired result follows from the definition of the least common multiple of 

graphs. • 

Proposition 3 of [CHKS] gives examples of graphs G^ and G2 such that 

gcd(G1,G2) = gcd(q(G1),q(G2)) and \cm(Gh G2) = l c m ^ ^ ) , q(G2)). Therefore, 

Proposition 4.1 can be considered as a generalization of the aforementioned 

proposition. 
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For positive integers m and n, we have gcd(m, n)lcm(m, n) = mn. For 

several classes of graphs and G2 we have gcd(Gj, G2)lcm(Gi, G2) = 

q(Gi)q(G2>, namely 

(1) gcd(mK2, nK2)lcm(mK2> nK2) - mn, 

(2) gcd(K(l, m), K(l, n))lcm(K(l, m), K(l, n)) = mn. 

We now establish some related results. 

Proposition 4.2 For positive integers m and n, 

(1) gcd (mK2, K(l, n)) = 1, 
(2) lcm(mK2, K(l, n)) = mn. 

Proof (1) The divisors of mK2 are rK2, where r | m, and the divisors of 

K(l, n) are K(l, t), where tin. Therefore, the unique common divisor of mK2 and 

K(l, n) is obtained when r = t = 1. Hence, GCD(mK2, K(l, n)) = {K2}, and 

gcd(mK2, K(l, n)) = 1. 

(2) The result is clear when at least one of m or n is 1. Therefore, we 

may assume that m and n are at least 2. Let G be a graph of smallest size that is 

both mK2-decomposable and K(l, n)-decomposable. Suppose that G can be 

decomposed into r copies of mK2 and into t copies of K(l, n). Since no copy of 

K(l, n) can contain more that one edge of mK2, it is clear that r > n. Furthermore, no 

copy of mK2 can contain more than one edge of K(l, n), so t > m. Therefore, G 

can be decomposed into at least n copies of mK2 and into at least m copies of 

K(l, n). Hence, q(G) > mn. Now since mK(l, n) is both mK2-decomposable and 

K(l, n)-decomposable, it follows that lcm(mK2, K(l, n)) - mn. • 

Next we generalize the first result of Proposition 4.2 by the next proposition. 
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Proposition 4.3 For positive integers n, ni, n2 nt, 

gcd(nK2, K(l,ni), K(l, n2), .... K(l, nt)) = 1. 

Proof Observe that for every positive integer s, the divisors of K(l, s) are the 

graphs K(l, r), for every r such that r | s. Furthermore, the divisors of nK2 are of 

the form mK2, where m | n. Therefore, K2 is the only common divisor of all graphs 

nK2 , K(l,nj), K(l, n2), . . . . K(l, nt). Hence, gcd(nK2, Ka .nj), K(l, n2), . . . . 

K(l,n t)) = l. • 

4.2 Least Common Multiples of Paths and Complete Graphs 

We determine gcd (Pn, K3), 1cm (Pn, K3), and 1cm (Pn, K4) for all n > 2. 

Proposition 4.4 For all integers n > 2, gcd (Pn, K3) = 1. 

Proof The only divisors of K3 are K2 and K3. The divisors of Pn are Pm 

where (m - l)I(n - 1). However, K3 is not a divisor of Pn, implying that K2 is the 

only divisor of Pn and K3 . Therefore, GCD (Pn, K3) = (K2) and gcd (Pn, K3) = 

1, for all integers n > 2. • 

Next we present a useful proposition that gives a lower bound for the size of a 

least common multiple of paths versus complete graphs. 

Proposition 4.5 For all integers n > 2 and p > 3, 

(1) lcm(Pn, Kp) > ( P ) if n < p and n - 11 ( j ) , 

(2) lcm(Pn, KD) > ML otherwise, where 
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L = lcm(n - 1, (§ ) ) and M = max{[(p - l)(n - 1)/L], [p(n - 1)/2L]}. 

Proof The result is clear when n < p and n — 1 {(JJJ. Now suppose n > p or n -

1 does not divide ( j ) . 

(i) Let q = mL, where L = lcm(n - 1, ( 2 ) ) and m is an integer such that 

m < ["(p - l)(n - 1)/L|. Suppose G is a connected graph of size q and order at least 

n such that G is Kp-decomposable. Then G contains a vertex v of degree at least 

2 ( p - l ) but at most p - 2 paths Pn. Hence, G is not Pn-decomposable, for v lies 

on at least p - 1 paths in any decomposition of G into paths. 

(ii) Suppose q = mL, where m is an integer such that m < |~p(n - 1)/2L]. Let 

G be a connected graph of size mL that is Kp-decomposable. We show that G has 

at most n - 1 vertices: Note that G contains s = m L / ^ 0 edge-disjoint copies of 

Kp. The maximum number r of vertices of G occur when G consists of s copies 

Hj , H2, ... , Hs of Kp where for each i = 1, 2, ... , s - 1, Hj has one vertex in 

common with and with no other Hj, j & i + 1. Hence, r = p + (s - l)(p - 1) = 

s ( p - l ) + 1 = (2mL/p) + 1 < n. Thus, G has at most n - 1 vertices. Therefore, Pn 

is not a subgraph of G, and therefore, G is not Pn-decomposable. • 

Theorem 4.6 For all integers m > 2, 

(1) lcm(Pm, K3) = 3(m - 1) for m = 0 or 2(mod3), 

(2) lcm(Pm, K3) - 2(m 1) for m = l(mod 3). 

Proof (1) Assume that m = 2(mod 3), where m > 2. Let m = 3 n - l for some 

integer n > l . Since q(P3n-i) = 3n - 2 and the integers 3 n - 2 and 3 are relatively 

prime, it follows that lcm(P3n_1, K3) > lcm(3n - 2, 3) = 3(3n - 2). 



65 

Next we show that the graph Gj of Figure 4.1 is both P3n-1-decomposable 

and K3-decomposable. Observe that Gj is K3-decomposable into 3 n - 2 copies of 

K3 having vertices Vj, Uj, and for all i ( 1 < i < 3n - 2). Moreover, Gj is 

P3n_ 1 -decomposable into 3 copies of P3n_i. Consider the path v1? v2 , . . . , v3 n_j. 

Then let r = [(3n- 1)/2*|. When n is even, consider the paths v1} u l f v2, u 2 , . . . , vr 

and vr, ur, v r+1 , u r + 1 , . . . , v3n_i. When n is odd, consider the paths vj , uj , v2, u2, 

... , ur and ur, v r + 1 , u r+1 , ... , v3n_1. 

vx v2 v3 v4 ... v3n_2 v3 n . ! 

Gi 

Figure 4.1 A P3n_1-decomposable and K3-decomposable graph 

Next, assume that m = 0(mod 3), where m > 2. Let m - 3n for some 

positive integer n. In this case, q(P3n) = 3n - 1. Then lcm(P3n, K3) > 

lcm(3n - 1 , 3 ) = 3(3n - 1). Now we consider the graph G2 of Figure 4.2, that is 

both P3n-decomposable and K3-decomposable into (3n - 1) copies of K3 having 

vertices v ,̂ uj, and vj+ 1 for all i (1 < i < 3n — 1). Moreover, G2 is P 3 n -

decomposable into 3 copies of P3n. Let r = [3n/2]. When n is even, consider the 

paths vj , Uj, v2, u2, ..., vr, ur and ur, v r + 1 , u r + 1 , v r + 2 , ur+2... , v3n and Vj, v2, ... 

, v3 n . When n is odd, consider the paths v2, u1? v2, u2 , . . . , u r_j, vr; vr, ur, v r + 1 , 

ur+l> - > v 3 m a n d v l> v2> - > v3n-

uj u2 u3 u 3n-2 
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G 2 

Figure 4.2 A P3n-decomposable and K3-decomposable graph 

(2) Assume that m = l(mod 3), where m > 2. Let m = 3n + 1 for some 

positive integer n. Since P3n+i is not K3-decomposable, it follows that a least 

common multiple of P3n+i and K3 has at least 2(3n) = 6n edges. Next, we show 

that the graph G3 of Figure 4.3 is both P3n+1-decomposable and K3-decomposable. 

g 3 

Figure 4.3 A P3n+j-decomposable and K3-decomposable graph 

Observe that G3 is K3-decomposable into 2n copies of K3 having vertices 

Vj, Up Vi+i for all i ( 1 < i < 2n). Moreover, G3 is P3n+1-decomposable into two 

copies of P 3 n + j , one of which is the path v1} uj, v2, u 2 , . . . , vn + 1 , vn + 2 , . . . , v 2 n + 1 

and the other path is obtained from removal of the edges of the aforementioned path. 
• 
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For n = 2, 3, 4, the graph K4 is Pn-decomposable, implying that 

lcm(Pn, K4) = 6. We now determine lcm(Pn, K4) for all integers n (> 5) in the 

following results. 

Proposition 4.7 lcm(P5, K4) = 12. 

Proof Since q(P5) = 4 and q(K4) = 6, it follows that lcm(P5, K4) > 1cm(4, 6) = 

12. Furthermore, lcm(P5, K4) < 12, since the graph G of Figure 4.4 is K4-

decomposable and P5-decomposable, into the following three p5's in G: 

(i) 3-5-2-1-6; (ii) 5-4-2-7-1; (iii) 4-3-2-6-7. • 

1 3 

G 

Figure 4.4 A P5-decomposable and K^-decomposable graph 

We now present an easy proof that lcm(Pg, K4) - 30; a more general result can 

be found in Theorem 4.17. 

Proposition 4.8 lcmtPg, K )̂ = 30. 

Proof Since q(P6) = 5 and q ^ ) = 6, it follows that lcm(P6,1^) > lcm(5, 6) = 

30. Furthermore, lcm(P^, K4) < 30, since the graph G of Figure 4.5 is both I n -

decomposable and Pg-decomposable, into the following six P6's in G: 
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1 2 3 4 

G 

Figure 4.5 A Pg-decomposable and K4-decomposable graph 

2-1-6-7-3-4, 1-5-6-11-16-15, 5-2-6-10-14-13, 8-4-7-10-13-9, 14-9-10-11-12-16, 

and 3-8-7-11-15-12. • 

Observe that the minimum number of paths needed to partition E(G) is equal to 

half the number of odd vertices of G. This provides a lower bound on the number of 

paths required, that is, an upper bound on the number of odd vertices graphs which are 

candidates for LCM(Pn, Kp), for n > 2 and p > 3, can have. 

Proposition 4.9 lcm(P7, K4) =18. 

Proof Since q(P7) = 6 and q(K4) = 6, it follows from Proposition 4.5 that 

lcm(P7, K4) > 18. Futhermore, lcm(P7, K4) < 18, since the graph G of Figure 4.6 

is both ^-decomposable and P7-decomposable, into the following three P^s in G: 
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3 

G 

Figure 4.6 A p7-decomposable and ^-decomposable graph 

6-7-1-2-5-3-4, 3-2-4-5-7-9-8, and 1-6-2-7-8-5-9. • 

Proposition 4.10 lcm(P8, K4) = 42. 

Proof Since q(P8) = 7 and q(K4) = 6, it follows that lcm(P8, K4) > lcm(7, 6) = 

42. Furthermore, lcm(Pg, K4) < 42, since the graph G of Figure 4.7 is both K4-

decomposable and Pg-decomposable, into the following six Pg's in G: 
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1 2 3 

Figure 4.7 A Pg-decomposable and ^-decomposable graph 

1-5-2-3-8-9-14-15, 3-7-2-6-5-11-4-10, 2-.8-7-6-13-12-16-17, 

4-5-10-11-12-17-13-18, 9-15-8-14-18-17-11-16, and 2-1-6-12-7-13-14-17. • 

(Also see Theorem 4.17 for a more general result.) 

Proposition 4.11 lcm(P9, K4) = 24. 

Proof Since q(P9) = 8 and q(K4) = 6, it follows that lcm(P9, K4) > lcm(8, 6) = 

24. Furthermore, lcm(p9, K4) < 24, since the graph G of Figure 4.8 is both K4-

decomposable and P9-decomposable, into the following three copies of P9 in G: 
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1 2 

G 

Figure 4.8 A Pp-decomposable and K4-decomposable graph 

1-7-2-8-9-10-6-4-5, 3-4-11-10-8-1-2-6-9, and 7-8-6-3-2-4-10-5-11. • 

Proposition 4.12 lcmCPjQ, K4) =36. 

Proof Since q(Pio) = 9 and q(K4). = 6, it follows by Proposition 4.5 that 

lcm(P10, K4) > 36. 

Observe that lcm(Pio, K4) < 36, since the graph G of Figure 4.9 is K4-

decomposable and PjQ-decomposable, into the following four copies of Pjq in G: 
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1 2 

Figure 4.9 A Pig-decomposable and ^-decomposable graph 

9-7-8-10-12-11-5-1 -4-3, 9-10-6-12-5-2-4Tl 1-1-3, 5-7-6-8-12-1-2-3-9-11, and 

5-6-2-7-3-8-9-4-10-11. • 

Proposition 4.13 lcm(P n , K4) = 30. 

Proof Since q(Pn) = 10 and q(K4) = 6, it follows that lcm(Pn , K4) > 

lcm(10, 6) = 30. Furthermore, lcm(P11, K4) < 30, since the graph of Figure 4.10 is 

both K4-decomposable and P^-decomposable, into the following three copies of 

P n in G: 
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1 2 

11 

G 

Figure 4.10 A P^-decomposable and ^-decomposable graph 

1-3-4-2-10-5-7-9-8-6-11, 1-2-3-7-4-9-5-6-10-8-11, and 1-4-8-7-6-3-5-2-9-10-11. 
• 

We now obtain lcm(Pn+i, K4), where n is an even integer at least 12. 

Theorem 4.14 lcm(Pn+1, K4) - 3n, where n (> 12) is an even integer. 

Proof First, we show that lcm(Pn+1, K4) > 3n. Observe that a connected graph that 

is nontrivially ^-decomposable must have a vertex of degree at least 6. Therefore, a 

graph that is both Pn+j-decomposable and K^-decomposable is decomposable into at 

least 3 copies of Pn+i- This implies that icm(Pn+i, K4) > 3n, when n>12. 



74 

Next, we show that lcm(Pn+1, K4) < 3n. We construct the graph Gj of 

Figure 4.11 that is obtained by identifying some of the vertices of n/2 copies of K4 

as indicated, where r = n/2. 

Vi v« v r - 2 vr~l v r 
Gi 

Figure 4.11 The graph used in the construction of a Pn+i-decomposable 

graph, where r = n/2 is even 

Then consider the following cases. 

Case 1 Assume that r is even. We construct the graph G of Figure 4.12 by 

identifying some of the vertices of Gi as indicated by the vertices of the same labels. 

ur_4 ur_3 ur_2 ur_x 

w r+1 

r l v 2 = u 4 v 3 = u 5 v M vr_3 vr_2 vr_! 
( = u r _ 2 ) ( = u r - l ) ( = u r ) (=U2) 

G 

Figure 4.12 A Pn+1-decomposable and K4-decomposable graph, where r is even 

Observe that G is K4-decomposable into r copies of K4 having vertices Uj, 

W|, Vj, and wj+ 1 for each i (1 < i < r). Next, we show that G is Pn +}-

decomposable into 3 copies of Pn + 1 as indicated in Figures 4.13 to 4.15. 
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»r-l u, 

4 * • * w r - l w r wr+l 

Figure 4.13 The first copy of P n + j in a Pn+1-decomposition of G 

w r - l w. 

1 V2 v3 vr_2
 vr-l vr 

Figure 4.14 The second copy of P n + j in a Pn+j-decomposition of G 

u 2 

o 
Wi W' 

u 3 

o 
WC 

o 

u4 

O 

O 

ur-2 u r - l "r 

0 0 0 0 

O -o-
Wr-1 

- O 

w r 

O 
w r+l 

6 0 0 0 0 0 
v 2 ~ u 4 v 3 = u 5 v 4 = u 6 vr-3 V 2 v r - l v r 

( = u r - l ) (=U r ) (=U 2 ) 

Figure 4.15 The third copy of Pn+i in a Pn+1-decomposition of G 

Therefore, lcm(Pn+1, K4) < 3n, where n = 2r (> 12) and r is even. 

Case 2 Assume that r is odd. We construct the graph H of Figure 4.16 by 

identifying some of the vertices of Gj as indicated by the vertices of the same labels. 
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u j u2 u3 U r-3 u r - 2 ur-~l 

Wr+i 

V1 v2~u4 v3~u5 vr-3 vr-2 V l v i 
( — u ) ( - u r ) ( = U 3 ) 

H 

Figure 4.16 A Pn+i-decomposable and ^-decomposable graph, where r is odd 

Trivially, H is K^-decomposable into r copies of K4 having vertices Uj, Wj, 

Vj, and Wi+i for each i (1 < i < r). Finally, we show that H is Pn+i-decomposable 

into 3 copies of Pn + 1 as indicated in Figures 4.17 to 4.19. 

ur_! u r 

w r - l Wj Wr+1 

Figure 4.17 The first copy of Pn+1 in a Pn+1-decomposition of H 

w r - l w . 

v r - 2 v r - l 

Figure 4.18 The second copy of P n + j in a Pn+i-decomposition of H 
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u 2 

o 
W1 
o 

W' 
o 

u 3 

o 
w 3 

o -

u 4 
o 

W4 
o 

u 5 
o 

o - o-

ur_3 ur_2 

o o 
w r -2 
- o -

u r - l 
o 

Wr-1 -o-
o 

w r -o-
wr+l 

o o o o o o o 
v2= u4 v 3 = u 5 v4~u6 v5=u7

 vr-3=ur-l vr_2=ur vr_1=u3 v r 

Figure 4.19 The third copy of Pn + 1 in a Pn+1-decomposition of H 

Therefore, lcm(Pn+1, K4) < 3n, where n = 2r (> 12) and r is odd. 

Hence, lcm(Pn+1, K4) = 3n, where n (> 12) is an even integer. • 

Next, we obtain lcm(Pn+1, K4), where n (> 11) is an odd integer that is not a 

multiple of 3. 

Theorem 4.15 lcm(Pn+i, K4) = 6n, where n (> 11) is an odd integer that is not a 

multiple of 3. 

Proof Observe that lcm(Pn+1, K4) > lcm(q(Pn+1), q(K4)) = lcm(n, 6) = 6n. Next, 

we consider the graph Gi of Figure 4,20 that is obtained by identifying some of the 

vertices of n copies of K4 as indicated in this figure, where r = (n + l)/2. 

1 2 v3 vn-2 v n- l v n 

Figure 4.20 The graph used in the construction of a Pn+j-decomposable 

graph, where r = (n + l)/2 
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Then we construct the graph G of Figure 4.21 by identifying some of the 

vertices of Gj as indicated by the vertices of the same labels. 

wn+i 

V1 v 2 v 3 
vr-l v r Vj 

G 

vr-3 vr-2 V l 

Figure 4.21 A Pn+j-decomposable and K^-decomposable graph, 

where n is an odd integer that is not a multiple of 3 

Note that G is ^-decomposable into n copies of K4. Next, we show that 

G is Pn+rdecomposable into 6 copies of Pn+i- Consider the following 6 copies of 

Pn+1 as indicated in Figures 4.22 to 4.27. 

Figure 4.22 The first copy of Pn+1 in a Pn+1-decomposition of G 

W1 w 2 
o — o -

W 3 wn w n + 1 

- o o — o o • • • o o — o 

Figure 4.23 The second copy of Pn+i in a Pn+^decomposition of G 
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1 2 

WT 

Figure 4.24 The third copy of Pn+i in a Pn+1-decomposition of G 

w- W' w- w. 

Vr-1 

Figure 4.25 The fourth copy of P n + j in a Pn+j-decomposition of G 

u r-i 

wf w n + l 

Figure 4.26 The fifth copy of Pn+1 in a Pn+1-decomposition of G 

w, n-1 wT w n + l 

r̂-2 T-l 

Figure 4.27 The sixth copy of Pn+i in a Pn+1-decomposition of G 

Therefore, lcm(Pn+1, K4) < 6n, where n (> 5) is an odd integer that is not a multiple 

of 3. 
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Hence, lcm(Pn+i, K4) = 6n, where n (> 5) is an odd integer that is not a 

multiple of 3. • 

When n is an odd multiple of 3, we have the following result. 

Theorem 4.16 lcm(Pn+i, K4) = 4n, where n (> 9) is an odd integer that is a 

multiple of 3. 

Proof Let n = 3(2k +1), where k is a positive integer. Then, by Proposition 4.5, 

we have lcm(Pn+1, K4) > ML, where L = lcm(n, Q ) ) = lcm(3(2k + 1), 6) - 6(2k + 

1). Moreover, M = max{|*3(3)(2k + l)/6(2k + 1)1, [4(6k + 3)/12(2k + 1)1) = 2. 

Therefore, lcm(Pn+1, K4) > 12(2k + 1) = 4n. 

It remains to show that there exists a graph of size 4n that is both Pn+i~ 

decomposable and K4-decomposable. We consider the graph Gj of Figure 4.28 that 

is obtained by identifying those pairs of vertices of 2n/3 = 2(2k + 1) copies of K4 

indicated in the figure. 
V1 v2 v3 • • • v 2 k - 2 v 2 k - l v2k v 2k+l 

Gl 

Figure 4.28 The graph G2 used in the construction of a Pn+i-decomposable 

graph, where n (> 9) is an odd multiple of 3 
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Now let G be the graph of Figure 4.29 obtained from Gj by identifying those 

pairs of vertices of Gj having the same labels. 

V1 v2 v3 • • • v 2k-2 v 2 k - l v2k v 2k+l 

u '1=v2 u2=v3 U 3 = V 4 U4=V5 • - • u2k-l u2k u2k+l 
(=v2k) (=v2k+1) 

G 

Figure 4.29 A Pn+i-decomposable and K^-decomposable graph, 

where n (> 9) is an odd multiple of 3 

Observe that this construction creates no multiple edges, so G is indeed a 

graph. 

We show that G is Pn+1-decomposable into four copies of Pn+i- Note, 

firstly, that Gj can be decomposed into the four subgraphs shown in Figures 4.30 -

4.33. 
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'2k-l v2k v2k+l 

ui u2 u3 . . . u2k_2 u2k_x u2k u2 k + 1 

Figure 4.30 The first copy of Pn+i in a Pn+ ̂ -decomposition of G 

u2k-2 u2k-l u2k 

• / 2k+l /w2k+2 

°2k-2 u2k-l "2k u2k+l 
(=^2k-l) (=v2k) (=v2k+l) 

UL=V2 U2=V3 U3=V4 

Figure 4.31 The second copy of P n + j in a Pn+i-decomposition of G 

2k-l v2k+l 

• • W2k-K w2k w 2 k \ w2k+2 

Q u2k-l D u2 k + 1 

. . w w2k+l 

U2=V3
 u 4 = v 5 ' ' ' u2k=v2k+l 

H 2 Hk H k + 1 

Figure 4.32 The third copy of Pn+1 in a Pn+1-decomposition of G 
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2k-2 

w3 • ' • w2k-zV w2k-l wA w2k+1 

u 2 <^u2k-2 \ u 2 k 

w4 ' ' ' w 2 k - l \ w2k w2k+2 

u'1 = v2
 u 3 = v4 * •• u2k-l=v2k U2k+1 

Figure 4.33 The fourth copy of Pn+1 in a Pn+1-decomposition of G 

Observe that the two paths shown in Figures 4.30 and 4.31 are paths in G as 

well as in Gj. Moreover, because of the manner in which the vertices are identified to 

produce G from G l s the unions of paths shown in Figures 4.32 and 4.33 are, in fact, 

paths in G. For example, the path of G produced by the union of the paths Hj, H2, 

... , Hk + i in Figure 4.32 is obtained by.successively taking the vi ~ v 3 path Hi 

followed by the v3 - v5 path H2, etc., finally concluding with the v2 k + 1 - u 2 k + 1 

path Hk+1. 

Since G is obviously K4-decomposable and since q(G) = 4n < lcm(Pn+1, 

K4), it follows that G e LCM(Pn+1, K4) and that lcm(Pn+1, K4) = 4n. • 

We summarize the previous three results in the next theorem. 

Theorem 4.17 For each integer m > 2, 

(1) lcm(Pm, K4) = 6 for m = 2, 3, 4 

(2) lcm(Pm, K4) = 3 (m- 1) for m = 1, 3, or 5 (mod 6) 

(3) lcm(Pm, K4) = 6(m - 1) for m = 0 or 2 (mod 6) 
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(4) lcm(Pm, K4) = 4(m 1) for m = 4(mod 6), m > 10. 

4.3 The Greatest Common Divisor Index of a Graph 

For a graph G of size q, define the greatest common divisor index i(G) of 

G, or simply the index of G, as the greatest positive integer n for which there exist 

graphs Gi and G2, both of size at least nq, such that GCD(Gj, G2) = {G}. If no 

such n exists, then we define this index to be 

We show that the index of stripes (that is, disjoint copies of K2) is infinite. 

Proposition 4.18 For every integer n (> 1) 

i(nK2) = oo. 

Proof Let G = niC2 and suppose, to the contrary, that i(G) = t is finite. Now let 

m (> t) be an integer and pi and p2 be distinct primes so that pjn and p2n are at 

least m. Then for graphs G2 = PinK2 and G2 = p2nK2, having size p^n and p2n 

respectively, it is clear that GCD(Gj, G2) = {G}. Therefore, i(G) > m (> t), contrary 

to the hypothesis. Hence, i(nK2) = oo. • 

Next we show that the index of stars is infinite as well. 

Proposition 4.19 For every integer n (> 1), 

i(K(l, n)) = oo 

Proof Let G = K(l, n) and suppose, to the contrary, that i(K(l, n)) = t is finite. 

Let m(>t ) be an integer and pj and p2 be distinct primes so that p2n and p2n .are 
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at least m. Then for graphs Gj = K(l, pjii) and G2 = K(l, p2n), having size pxn 

and p2n respectively, it is clear that GCD(GX, G2) = {G}. Therefore, i(G) > m 

(> t)—contrary to the hypothesis. Hence, i(K(l, n)) = 00. • 

We combine the previous results in the next proposition. 

Proposition 4.20 For all integers a,b (> 1), 

i(aK2 u K(l, b)) = 

P r o o f Let G = • (aK2 u K(l, b)) and suppose, to the contrary, that 

i(aK2 uK( l , b ) ) = t is finite. Let m (> t) be an integer and pj and p2 be distinct 

primes so that pxa + p^b and p2a + p2b are at least m. The graphs Gt = 

( p j a K 2 u K(l, pjb)) and G2 = (p2aK2 u K(l, p2b)) provide the desired 

contradiction. • 

We next present a result for the index of an arbitrary number of stars. 

Proposition 4.21 For all positive integers nj , n2, nm, 

i(K(l, nj) u K(l, n2) u ... u K(l, nm)) = -

Proof Let G = K(l, nj) u K(l, n2) u ... K(l, nm) and suppose, to the contrary, 

that i(G) = t is finite. Let m ( > t) be an integer and p1} p2 > m be distinct primes. 

In this case, the graphs Gi =K(1, Pinj) u K(l, pxn2) u ... u K(l, pinm) and G 2 s 

K(l, p2nj) u K(l, p2n2) u ... u K(l, p2nm) satisfy GCDCGj, G2) = {G}, again a 

contradiction. • 

We now generalize Propositions 4.20 and 4.21 by finding the index of stars 

and stripes. 
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Proposition 4.22 For all positive integers a, m, and n, 

i(aK2 u K(l, n{) u K(l, n2) u ... u K(l, nm)) = 

Proof The result follows as before by considering the integer m > t, distinct primes 

Pl and p2 such that p2(a + n2 + n2 + ... + nm) and p2(a + nj + n2 + ... + nm) are at 

least m, and the graphs Gj = PiaK2 u K(l, pjnj) u K(l, p ^ ) u ... u K(l, pinm) 

and G2 S p2aK2 U K(l, p2nx) U K(l, p2n2) u . . . u K ( l , p2nm). • 

Now we present the index of paths of size 1, 2, 3, and 4. 

Proposition 4.23 For n = 2, 3, 4, 

i(Pn) = 

Proof Since i(K(l, m)) = <*•, for every integer m (> 1), it follows for m = 1 and 

m = 2 that i(P2) = <*> and i(P3) = respectively. 

To show that i(P4) = <*>, suppose, to the contrary, that i(P4) = t is finite. Let 

m (> t) be an integer and pj and p2 be distinct primes, each of which is at least m. 

Now for the graphs Gj = p^ and G2 described in Figure 4.34, having k = p2, 
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G2 

Figure 4.34 The greatest common divisor of Gj and G2 is P4 

we will show that GCD(G l t G2) — {P4}- We observe that gcd(3plt 3p2) = 3, since 

pi and p2 are distinct primes. For the graph Gj the divisors of size 3 are P4, P3 u 

K 2 , and 3K2. However, by Lemma 2.1, the graph G2 is not (P3 u K2)-

decomposable, since the edge uy^ is adjacent to all other edges of G2. Similarly, G2 

is not 3K2-decomposable. Observe that G2 is P4-decomposable into paths x-v u, yi5 

y1 for all i (2 < i < k) and finally the path xj, u, yj, v. Therefore, the path P4 is the 

only divisor of size 3 for the graph G2. Hence, GCD(Gj, Gq) = {P4} implying that 

i(P4) > m (> t)—contrary to the hypothesis. Therefore, i(P4) = • 

We determine the index of P5 in the next result. 

Proposition 4.24 i(P5> = 

Proof Suppose, to the contrary, that KP5) = a, where a e N. Let m (> a) be an 

integer, and let pj and p2 be distinct primes, where pj > p2 > m and p2 = 2k + 1 

for some positive integer k. Let G = P1P5 and let G2 be the graph of Figure 4.35, 

where the vertices of G2 are labeled as indicated. 
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x z 

G2 

Figure 4.35 The greatest common divisor of Gi and G2 is P5 

We show that GCD(G l t G2) = (P5): Observe that gcd(Glf G2) < 

gcd(4pj, 4p2) = 4. The graph G2 is P5-decomposable into p2 paths, namely UpX, 

Vj, y, u i+1 for i = 1, 2 , 2 k - 1 together with the path u2k, x, v2k, y, m and z, x, 

y, w, t. The graph Gj is P5-decomposable. Hence, {P5) c GCD(G1, G2). 

Observe that for the graph Gi the divisors of size 4 are P5, P4 u K2, 2P3, P3 u 

2K2, and 4K2. Every edge of G2 different from xy and wt is incident with x or 

y, so Pi(G2 - wt) = 2. Therefore, G2 is not G-decomposable, for G e {P4 u K2, 

P3 u 2K2, 4K2}. Also, G2 is not 2P3-decomposable, for otherwise the edge xy is 

an edge of P3 in some copy H of 2P3, but no other disjoint copy of P3 in H 

exists, producing a contradiction. Hence, G2 is not 2P3~decomposable. Hence, 

GCD(Gj, G2) = {P5} and i(P5) > m (> a), contrary to hypothesis. • 

The index of a path Pn for n > 6 is not known and it appears to be difficult to 

obtain. 
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Next, we present another class of graphs and we obtain the index of some 

special cases of such graphs. 

The broom B(n, k) for which each of the integers n and k is at least 2 is 

constructed by identification of the central vertex of the star K(l, n) and an end-vertex 

of the path Pk. Figure 4.36 shows B(4, 2) and B(2, 3). 

Proposition 4.25 i(B(n, 3)) = 

Proof We suppose, to the contrary, that i(B(n, 3)) = t is finite. Let m ( > t) be an 

integer and pi, p2 ^ m be distinct primes. Now for graphs Gj s piB(n, 3) and G2 

described in Figure 4.37, where k = p2n, we show that GCD(Gx, G2) = {B(n, 3)}. 

Since pi and p2 are distinct primes, it follows that gcd(pj(n + 2), 

p2(n + 2)) = n + 2. Certainly, Gj is B(n, 3)-decomposable. Also, G2 is B(n, 3)-

decomposable, which can be seen by selecting copies of B(n, 3) with vertices xj, x2, 

xn, u, yj, v and p2 - 1 other copies of B(n, 3) having vertices X J N + 1 , X I N + 2 , 

*in+n> u> yi+l» yi. f o r all i (1 < i < P2 - 1). Thus B(n, 3) e GCD(G!, G2) and 

B(4,2) = K(1,5) B(2, 3) 

Figure 4.36 The brooms B(4, 2) and B(2, 3) 
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XJ X 2 XK 

G2 

Figure 4.37 The greatest common divisor of Gj and G2 is B(n, 3) 

gcd(Gj, G2) = n + 2. Let H be any greatest common divisor of Gj and G2 ; so 

q(H) = n + 2. The edge uyj in the graph G2 is adjacent to all other edges, implying, 

by Lemma 2.1, that H is connected. So H must be a subgraph of each component of 

Gi- However, each component of Gj is isomorphic to B(n, 3) and so has size n + 

2. Thus H= B(n, 3), implying that GCD(Gb G2) = {B(n, 3)). Therefore, i(B(n, 

3)) > m (> t). Hence i(B(n, 3)) = • 

Next, we find the index of the cycle C4. 

Proposition 4.26 i(C4) = <*>. 

Proof Suppose, to the contrary, that i(C4) = t is finite. Let m (> t) be an integer 

and pi and p2 primes with p2 > pj > m. Let Gj s PiC4 and let G2 be the graph 

of Figure 4.38, where the vertices of G2 are labeled as indicated with k = p 2 - l . In 
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other words, G2 is obtained by identifying a vertex of degree 2k in K(2, 2k) with 

the vertex u of the cycle C: v, u, w, z, v and identifying the other vertex of degree 

2k with vertex v of C. 

v 

G2 

Figure 4.38 The greatest common divisor of and G2 is C4 

Then gcdCG^ G2) ^ gcd(4p1> 4p2) = 4. We show that GCD(Gl5 G2) = 

{C4}. For i = 1, 2 , k , define Hj to be the 4-cycle u, Xj, v, y^ u and let H k + 1 

be the 4-cycle u, v, z, w, u. Then we see that G2 is decomposable into the 4-cycles 

Hj (1 < i < k + 1). Now since Gx is C4-decomposable, it follows that C4 e 

GCD(Gx, G2). Observe that graphs C4, P4 u K2, 2P3, P3 u 2K2> and 4K2 are the 

divisors of size 4 for the graph Gj. Every edge of G2 different from zw is incident 

with u or v; so (G2 - zw) = 2. Notice that the only edge of G2 not adjacent to 

uv is zw, that is, uv does not belong to an independent set of three edges. Therefore, 

G2 is not G-decomposable, for every G e {4K2, (P3 u 2K2), P4 u K2}. Since any 

edge adjacent to zw is also adjacent to uv, there can be no copy of P3 disjoint from a 

copy of P3 containing zw, that is, G2 is not 2P3-decomposable. Hence, 

GCD(Gi, G2) = {C4} and i(C4) > m (> t), contrary to the hypothesis. Therefore, 

i(C4) = 00. • 

The index of a cycle Cm, for m > 5, is not known. 
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Every class of graphs we have considered thus far has been shown to have 

infinite index. This is not always the case, since the complete graph Kn (n > 3) has 

index equal to 1, a fact which follows directly from Lemma 2.13. 

Proposition 4.27 For every integer n (> 3), 

i(Kn) = 1. 

In general, the problem of determining the greatest common divisor index of a 

graph appears to be difficult and it is unknown whether graphs G, with 1 < i(G) < 

exist. 



CHAPTER V 

ON GREATEST COMMON DIVISORS AND 

LEAST COMMON MULTIPLES OF DIGRAPHS 

In this chapter we introduce the concepts of greatest common divisors and least 

common multiples for digraphs. It is proved that least common multiples of two 

directed stars exist. For several pairs of directed stars, the size of a least common 

multiple is determined. Finally, the greatest common divisor index of a digraph is 

introduced, and this parameter is found for several classes of digraphs, including 

directed stars and stripes, directed paths P^ (2 < n < 5), directed cycles C3 and C4, 

and the complete symmetric digraph Kp, for all integers p (> 3). 

5.1 Introduction 

A digraph D is said to be decomposable into the subdigraphs Di, D 2 , D n , 

n > 1, of D if no Di (i = l,2,...,n) has isolated vertices and the arc set E(D) of D 

is partitioned into E(Di), E(D2), E(Dn). IfDi = H for each i (1 < i < n), then D 

is said to be H-decomposable, and H is said to divide D and be a divisor of D. If 

H divides D, we write H | D. Of course, if a digraph D is H-decomposable, then 

q(H) I q(D). As with graphs, if H is a subdigraph of D without isolated vertices such 

that q(H) | q(D), then D need not be H-decomposable. For example, in the digraph 

D of Figure 5.1, Hi, H2 and H3 are all subdigraphs of D such that q(H^) | q(D) for 
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1 = 1,2,3. While D is Hi-decomposable, D is neither H2-decomposable nor In-

decomposable. 

rs FC- Q 
o — • O - 4 - O 

O-P-O 

D Hi H2 H3 

Figure 5.1 Digraphs having q(Hi) | q(D) for i = 1, 2, 3 so that only Hj divides D 

For positive integers m and n, let t ( m, n) be the digraph whose vertex set 

can be partitioned into sets Vi and V2, where | Vj I = m and | V21 = n so that 

every vertex of Vj is adjacent to every vertex of V2. Observe that every nonempty 

digraph is l)-decomposable, where l t ( l , 1) is the unique connected digraph of 

order 2 and size 1. 

A digraph D without isolated vertices is called a greatest common divisor of 

two digraphs Di and D2 if D is a digraph of maximum size such that both Di and 

D2 are D-decomposable. If Dj and D2 are nonempty digraphs, then they are both 

Indecomposable. Hence there exists some digraph D of maximum size such 

that Di and D2 are D-decomposable. Consequently, every two nonempty digraphs 

have a greatest common divisor. For the digraphs Di and D2 of Figure 5.2, Hi is 

the unique greatest common divisor of Di and D2, while Hi and H2 are the greatest 

common divisors of D2 and D3. 
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Dl D2 D 3 HI H2 

Figure 5.2 Digraphs for which GCDCD^ D2) = {Hx} 

and GCD{D2, D3} = {Hx, H2} 

A greatest common divisor of a set D - {D^, D2,..., Dn}, n > 2 of digraphs 

is defined similarly, and it follows, as before, that every set of two or more nonempty 

digraphs has a greatest common divisor. 

A digraph H without isolated vertices is called a least common multiple of two 

digraphs Di and D2 if H is a digraph of minimum size such that it is both Di-

decomposable and D2-decomposable. For the digraphs Dj and D2 of Figure 5.3, 

Hi, H2, H3, H4, and H5 are the least common multiples of Di and D2. 
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O — • - O 

Dl D2 

HI H2 H3 

H4 H5 

Figure 5.3 The least common multiples of and D2 are HJ, H2 , . . . , H5 

Note that Wilson's result (Theorem IN), which is used to prove the 

corresponding existence result for graphs, does not hold for digraphs and that no 

similar result is known for digraphs. Therefore, whether every two nonempty digraphs 

Di and D2 have a least common multiple is unknown. 

For digraphs Di and D2, we denote by gcd (Di, D2) the size of a greatest 

common divisor of Di and D2 and by 1cm (Di, D2) the size of a least common 

multiple of Di and D2 (if it exists). It is clear that gcd (Di, D2) < gcd(q(Di), q(p2)) 

and 1cm (Di, D2) ^ 1cm (q(Di), q(D2)). There are some digraphs Dj and D2 for 
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which equality holds in both cases. For example, when Dj s (the directed path of 
— > 

length m - 1 ) and D2 = P n , we have 

(i) gcd(?m , ? n ) = gcd(q(?m), q (?„)) = gcd(m - 1, n - 1) and 

(ii) lcrn(?m, t n ) = lcm(q(?m), q (?„)) = lcm(m - 1, n - 1). 

The set of all greatest common divisors of two digraphs DI and D2 is 

denoted by GCD (DI, D2). Similarly, the set of all least common multiples of two 

digraphs DI and D2 is denoted by LCM(DI,D2). We define GCD (DI, D2, ..., 

DN), L C M (DI, D 2 , D N ) , gcd (Dh D 2 , . . . , DN) , and 1cm ( D B D 2 , DN), i n the 

expected manner. 

5.2 Least Common Multiples of Directed Stars 

A directed star D(m, n), for nonnegative integers m and n, is a digraph 

obtained by joining m vertices to a vertex and joining this vertex to n new vertices. 

A vertex of D(m, n) with indegree r and outdegree s is called an (r, s) vertex. 

Thus, D(m, n) is a digraph having one vertex with indegree m and outdegree n, an 

(m, n) vertex, m vertices having indegree 0 and outdegree 1, the (0,1) vertices and 

n vertices having indegree 1 and outdegree 0, the (1, 0) vertices (see Figure 5.4). 

In Figure 5.4 the vertex v is an (m, n) vertex. Therefore, the digraph 1^(1, 1) is the 

directed star D(0, 1) or, equivalently, the directed star D(l% 0) with one (0, 1) 

vertex and one (1,0) vertex. 
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1 2 3 m 

1 2 3 n 

D(m, n) 

Figure 5.4 The digraph D(m, n) 

Next, we show that least common multiples of D(m, n) and D(r, s) exist for 

all positive integers m, n, r, and s. 

Theorem 5.1 For all positive integers m, n, r, and s, LCM(D(m, n), D(r, s)) is 

nonempty. 

Proof It suffices to verify the existence of a digraph D that is both D(m, n)-

decomposable and D(r, s)-decomposable, implying that LCM(P(m, n), D(r, s)) is 

nonempty and that lcm(D(m, n), D(r, s)) < I E(D) |. We suppose, without loss of 

generality, that m > r. 

Case 1 Assume that ms = nr. Let D = D(mr, ms). Thus, D is decomposable into 

m copies of D(r, s). By hypothesis D(mr, ms) = D(mr, nr), so that D is 

decomposable into r copies of D(m, n). Therefore, D is both D(r, s)-decomposable 

and D(m, n)-decomposable. In this case lcm(D(m, n), D(r, s)) < m(r + s). 

Case 2 Assume that ms > nr. First, let H = D(mr, ms) = D(mr, nr + ms - nr). If 

m s - n r (1,0) vertices and their corresponding arcs are removed from H, then the 
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resulting digraph is D(mr, nr), which is D(m, n)-decomposable into r copies of 

D(m, n). Therefore, we may present and label the vertices of H as indicated in Figure 

5.5, where the encircled part represents a copy of D(mr, nr) whose (mr, nr) vertex is 

joined to ms - nr vertices outside of the encircled area. 

1 2 ms - nr 

H = D(mr, ms) = D(mr, nr + ms - nr) 

Figure 5.5 The digraph H is D(r, s)-decomposable into m copies of D(r, s) 

Next, let t = ms - nr and consider mt disjoint digraphs Hj = H for 1 < i < 

mt. Label the (mr, ms) vertex of Hj by .xj and t of the (1,0) vertices of Hj by 

Yil> yj2, Yit f ° r each i ( 1 < i < mt). Now we consider the digraph H' of Figure 

5.6 obtained by identifying, for every k (1 < k < t), the mt vertices y^, i = 1, 2 , . . . , 

mt, and denoting the resulting vertex by y^. Observe that yk is an (mt, 0) vertex for 

all k (1 < k < t). This completes the construction of H'. 
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H' 

Figure 5.6 Digraph H' used in the construction of D 

Now consider the digraph H" s D(nmr, nms) of Figure 5.7, and let H'f, HJ, 

... , H'{ be t copies of H". Moreover, let F" = D(nmr, n2r) and F£ s F" for eveiy 

k (1 <k < t), where we consider F£ to be a subdigraph of H£ for each 1 < k < t. 

Observe that F" is D(m, n)-decomposable into nr copies of D(m, n). 

1 2 • • • nt 
r> 

H" = D(nmr, nms) = D(nmr, n r + nt) 

Figure 5.7 A digraph that is D(r, s)-decomposable into nm copies of D(r, s) 
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Finally, we construct the digraph D (see Figure 5.8) by identifying for each k 

(1 < k < t) the vertex yk of H' and the unique vertex of maximum degree of Hk . 

(The digraph D for the case m = s = 2, n = r= l is also illustrated in Figure 5.9.) 

\ xi Xmt/ 

D 

Figure 5.8 A digraph that is D(m, n)-decomposable and D(r, s)-decomposable 

By construction, D is D(m, n)-decomposable with r copies of D(m, n) 

centered at each vertex Xj (1 < i < mt) and with t + nr copies of D(m, n) centered at 

each vertex yk (1 < k < t). D is D(r, s)-decomposable with m copies of D(r, s) 

centered at each vertex x{ (1 < i < mt) and with mn copies of D(r, s) centered at 

each vertex yk ( l < k < t). The size of D is m(m + n)(r + s)(ms -nr) , implying that 

lcm(D(m, n), D(r, s)) < m(m + n)(r + s)(ms - nr). 
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Case 3 Assume that ms < nr. Construct a digraph H by identifying the (r, s) 

vertices of n copies of D(r, s). Therefore, H = D(nr, ns) = D(nr - ms + ms, ns). If 

nr - ms (0, 1) vertices and the corresponding arcs are removed from H, then the 

resulting digraph is D(ms, ns) which is D(m, n)-decomposable into s copies of 

D(m, n). Now we follow the technique we used in Case 2 to construct a digraph which 

is both D(m, n)-decomposable and D(r, s)-decomposable. • 

The above theorem provides an upper bound for the size of a least common 

multiple of two directed stars. However, the size of a least common multiple of two 

directed stars can be relatively small. 

For example, by Theorem 5.1, lcm(D(2, 1), D(l, 2)) < 54. (see Figure 5.9.) 

The digraph D' of Figure 5.10 is both D(2, l)-decomposable and D(l, 2)-

decomposable as indicated. Of course, D' is a digraph of smallest size with this 

property, implying that lcm(D(2, 1), D(l, 2)) = 6. 
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1 2 

33 34 ' 35 36 

D 

Figure 5.9 A digraph that is D(2, l)-decomposable and 

D(l, 2)-decomposable, having 54 arcs 



104 

1 2 1 2 1 2 1 2 1 2 

4 4 4 4 4 

D(l, 2) D(l, 2) D(2, 1) D(2, 1) 

Figure 5.10 A smallest digraph that is D(2, l)-decomposable 

and D(l, 2)-decomposable 

The converse D of a digraph D is that digraph with V(D) = V(D) such that 

(u, v) e E(D) if and only if (v, u) e E(D). In addition to the converse of a digraph, 

one can also refer to the converse of a concept dealing with digraphs. More 

specifically, the converse of a concept is the concept that results when the original 

concept is applied to the converse of a digraph. For example, "adjacent from" is the 

converse of "adjacent to", "incident from" is the converse of "incident to", and 

"indegree" is the converse of "outdegree". An elementary, but often useful, 

observation is the folowing. 

Principle of Directional Duality For each theorem concerning digraphs, there 

is a corresponding theorem obtained by replacing each concept in the theorem by its 

converse concept. 

We illustrate the above ideas with the following result. 

Proposition 5.2 For all integers m, n (> 1), 

(1) gcd(D(m, 0), D(n, 0)) = gcd(m, n), 

(2) gcd(D(0, m), D(0, n)) = gcd(m, n), 
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(3) lcm(D(m, 0), D(n, 0)) = lcm(m, n), 

(4) lcm(D(0, m), D(0, n)) = lcm(m, n). 

Proof (1) Observe that a common divisor of D(m, 0) and D(n, 0) is of the form 

D(k, 0), where k is a common divisor of m and n. Let k* = gcd(m, n). Since 

D(k*, 0) is a common divisor of D(m, 0) and D(n, 0), it follows that gcd(D(m, 0), 

D(n, 0)) = k* = gcd(m, n). 

(2) This result follows by the Principle of Directional Duality. 

(3) Any common multiple of D(m, 0) and D(n, 0) is of the form D(j, 0), 

where j is a common multiple of m and n. Let j* = 1cm (m, n). Since D(j*,0) is a 

common multiple of D(m, 0) and D(n, 0), we have lcm(D(m, 0), D(n, 0)) = j* = 

lcm(m, n). 

Equality (4) follows by the Principle of Directional Duality. • 

The former results can be generalized as follows — the proofs are similar to 

those above and are omitted. 

Proposition 5.3 For all positive integers m1? m2,... , mn, with n > 2, 

(1) gcd(D(mj, 0), D(m2, 0), ... , D(mn, 0)) = gcd(m1} m 2 , . . . , mn), 

(2) gcd(D(0, mj), D(0, m2) , . . . , D(0, mn)) = gcdCmj, m2 , . . . , mn), 

(3) lcmCDCm!, 0), D(m2> 0) , . . . , D(mn, 0)) = lcmCmx, m2,... , mn), 

(4) lcm(D(0, mj), D(0, m2) , . . . , D(0, mn)) = IcmCm^ m2 , . . . , mn). 

Proposition 5.2 considers the stars D(m, n{) and D(m2, n2) in which mj = 

m2 = 0 or nj = n2 = 0. We now consider those stars for which mj = n2 = 0 or m2 = 

n } = 0 . 
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Proposition 5.4 For all positive integers m and n, 

(1) gcd(D(m,0),D(0,n)) = l, 

(2) lcm(D(m, 0), D(0, n)) = mn. 

Proof (1) Since only a star is a common divisor of two stars, it follows that, 

1) is the only divisor of both D(m, 0) and D(0, n), implying that gcd(D(m, 0), 

D(0, n)) = 1. 

(2) Suppose that lcm(D(m, 0), D(0, n)) = k and that D is a digraph of size k 

that is both D(m, 0)-decomposable and D(0, n)-decomposable. Let F be a 

subdigraph isomorphic to D(m, 0) in D. Then every two arcs of F belong to distinct 

copies of D(n, n). Therefore, k > mn. The digraph n) has size mn and is both 

D(m, 0)-decomposable and D(0, n)-decomposable, implying that k < mn, and 

completing the proof. • 

We conjecture that these results can be generalized as follows: 

Conjecture 5.5 For positive integers mj, m 2 , . . . , mn and tj , t 2 , . . . , tk, with n > 

2, 

(1) gcd(D(mls 0), D(m2, 0), ..., D(mn, 0), D(0, t^, D(0, t2),... , D(0, tk)) = 1, 

(2) lcm(D(mi , 0), D(m2, 0) , . . . , D(mn, 0), D(0, tj), D(0, t2),... , D(0, tk)) = 

lcmCmj, m2,... , mn)lcm(tlf t2, ..., tk). 

For (2) consider the digraph ^(r , s), where r = lcm(mi, m 2 , . . . , mn), and 

s = lcm(t!, t2, ... , tk). 

Next, we consider results related to another kind of directed stars. 
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Theorem 5.6 For every positive integer n, 

(1) gcd(D(n,0),D(l, 1)) = 1, 

(2) gcd(D(0, n), D(l,l)) = 1, 

(3) lcm(D(2n, 0), D(l, 1)) = 4n2, 

(4) lcm(D(2n+l, 0), D(l, 1)) = (2n + 1) (2n + 2). 

Proof (1) The only divisors of D(l, 1) are 1) and D(l, 1). But, D(l, 1) is 

not a subgraph of D(n, 0). Therefore, 1) is the only common divisor of D(n, 0) 

and D(l, 1). Hence, gcd(D(n, 0), D(l, 1)) = 1. 

(2) This can be shown similarly. 

(3) For a digraph which is both D(2n, 0)-decomposable and D ( l , l ) -

decomposable, eveiy two arcs of a copy of D(2n, 0) belong to two different copies of 

D(l, 1) and vice versa. Therefore, such a digraph must contain at least 2n copies of 

D(2n, 0). Hence, lcm(D(2n, 0), D(l, 1)) >4n 2 

We construct a digraph D having 4n2 arcs such that D is both D(2n, 0)-

decomposable and D(l, l)-decomposable. Consider two copies of the complete 

symmetric digraph K* having vertex sets {u^, u2, ... , un} and {vj, v2, ... ,vn), 

respectively. For every i (1 < i < n) join Uj and v^ by a symmetric pair of arcs. We 

add 2n new vertices x^ x 2 , . . . , xn and yj, y2,..., yn and join x^ to Uj and join 

yi to Vj for l < i < n . Next, we add new vertices wy (1 <i, j <n, i ^j) and 

join wy to both Uj and vj. This completes the construction of D, which then has 

size 4n2 (See Figure 5.11). 
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« — o yi 

« — o y2 

« — o yn 

D 

Figure 5.11 A digraph that is D(2n, 0)-decomposable and D(l, l)-decomposable 

Observe that for every i (1 < i < n), the vertex uj is adjacent from n - 1 
* • 

vertices in its copy of Kn and from xi, v*, and wij (i ^ j, and 1 < j < n). Hence, 

id(uj) = 2n for each i (1 < i < n). Similarly, id(Vi) = 2n for all i (1 < i < n). Thus, 

D is D(2n, 0)-decomposable such that each (2n, 0) vertex of D(2n, 0) is at vertices 

u 1, u2, un, vi, v 2 , v n . It remains to show that D is D(l, l)-decomposable. 

The paths xj, uj, vi and yu vj, ui are 2n copies of D(l, 1) and wy, uj, uj (i ^ j) 

where l < i < n , l < j < n are n(n - 1) copies of D(l, 1). Finally, wij, vi, vj (i ^ j) 

with 1 < i <.n, 1 < j < n are n(n - 1) copies of D(l, 1), producing 2n + n(n - 1) + 

n(n - 1) = 2n2 copies of D(l, 1) having a total of 4n2 arcs. Therefore, lcm(D(2n, 

0), D(l, 1)) < 4n2, completing the proof. 

(4) In a digraph D which is both D(2n+1, 0)-decomposable and D(l, 1)-

decomposable, every two arcs of a copy of D(2n+1, 0) are arcs of two different 

copies of D(l, 1) and vice versa. Therefore, D must contain at least 2n + 1 copies 
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of D(2n+1,0). Since D is D(l, l)-decomposable, it must contain an even number of 

arcs. Hence, D must contain at least 2n + 2 copies of D(2n+1, 0), implying that 

lcm(D(2n+l, 0), D(l, 1)) > (2n + 1) (2n + 2). We construct a digraph D having 

(2n+l ) (2n + 2) arcs such that D is both D(2n+1, 0)-decomposable and D(l, 1)-
•Jr 

decomposable. Consider a copy of the complete symmetric digraph K2n+i having 

vertices vj, v2 , . . . , v2n+i and add vertices uj, u 2 , u 2 n + i such that each vertex Uj 
* 

(1 < i < 2n + 1) is adjacent to the vertex vi of K2n+i. Then add a new vertex w 
• 

adjacent from all vertices Vj (1 < i < 2n + 1) of K 2 n + i . This completes the 

construction of D (see Figure 5.12). 

D 

Figure 5.12 A digraph that is D(2n + 1, 0)-decomposable 

and D(l, l)-decomposable 

Thus, D has (2n + 1) (2n + 2) arcs. It is straight forward to show that D is 

both D(2n+1, 0)-decomposable and D(l, l)-decomposable. Therefore, 

lcm((D(2n+l, 0), D(l, 1)) < (2n + 1) (2n + 2) and thus completing the proof. • 

The next result follows immediately from the Principle of Directional Duality. 
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Corollary 5.7 For all positive integers n, 

(1) lcm(D(0, 2n), D(l, 1)) = 4n2, 

(2) lcm(D(0, 2n+l), D(l, 1)) = (2n + 1) (2n + 2). 

Based on these results we have the following conjectures. 

Conjecture 5.8 For positive integers nj, n 2 , . . . , nk, where k > 2, 

(1) lcm(D(0, 2nj), D(0, 2n2), ... , D(0, 2nk), D(l, 1)) = r2, 

where r = lcm(2n1, 2n2, ... , 2nk). 

(2) lcm(D(0, 2nx + 1), D(0, 2n2 + 1), ... , D(0, 2nk + 1), 

D(l, 1)) = r(r + 1), where r = lcm(2n1 + 1, 2n2 + 1,... , 

2nk + 1). 

Now by the Principle of Directional Duality we have: 

Conjecture 5.9 For positive integers n^ n 2 , . . . , nk> where k > 2, 

(1) lcm(D(2n1, 0), D(2n2> 0), ... , D(2nk, 0), D(l, 1)) = r2, 

where r = lcm(2n| , 2n2 , ... , 2nk). 

(2) lcm(D(2n1 + 1, 0), D(2n2 + 1, 0), ... , D(2nk + 1, 0), 

D(l, 1)) = r(r + 1), where r = lcm(2n1 + 1, 2n2 + 1, ... , 

2nk + 1). 

Since D(2, 1) is not a subdigraph of D(n, 0) or D(0, n) for n > 1, we have 

the following result. 

Proposition 5.10 For all positive integers n, 

(1) gcd(D(n, 0), D(2, 1)) = 1, . 



(2) gcd(D(0, n), D(2, 1)) = 1. 

I l l 

Next we determine lcm(D(m, 0), D(2,1)) for some small values of m. 

Proposition 5.11 (1) lcm(D(2, 0), D(2, 1)) = 6, 

(2) lcm(D(3, 0), D(2, 1)) = 6, 

(3) lcm(D(4, 0), D(2, 1)) = 12, 

(4) lcm(D(5, 0), D(2, 1)) = 30. 

Proof (1) Since the sizes of D(2, 0) and D(2, 1) are 2 and 3, respectively, 

lcm(D(2, 0), D(2, 1)) >. 6. The digraph of Figure 5.13, that is both D(2, 0)-

decomposable and D(2, l)-decomposable, shows that lcm(D(2, 0), D(2,1)) < 6. 

Figure 5.13 A digraph that is D(2,0)-decomposable and D(2, l)-decomposable 

(2) Since | E(D(3, 0)) I = 3 and I E(D(2, 1)) I = 3, it follows that 

lcm(D(3, 0), D(2, 1)) > lcm(3, 3) = 3. However, D(3, 0) is not D(2, 1)-

decomposable, implying lcm(D(3,0), D(2,l)) > 6. The digraph of Figure 5.14 

shows that lcrri(D(3, 0), D(2, 1)) < 6. Therefore, lcm(D(3, 0), D(2,1)) = 6. 
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D2 

Figure 5.14 A digraph that is D(3,0)-decomposable and D(2, l)-decomposable 

(3) The digraph D3 of Figure 5.15 shows that lcm(D(4,0), D(2,1)) = 12. 

D3 

Figure 5.15 A digraph of smallest size that is D (4,0)-decomposable 

andD(2, Indecomposable 

(4) It is straight forward to show that the digraph D4 having size 30 in 

Figure 5.16 is both D(2, Indecomposable and D(5, 0)-decomposable, so that 

lcm(D(5, 0), D(2,1)) <30. 



D4 

Figure 5.16 A digraph of smallest size that is D(5, 0)-decomposable 

and D(2, l)-decomposable 

We show that lcm(D(5, 0), D(2,1)) * lcm(5, 3) = 15. 

Suppose to the contrary, that there is a digraph of size 15 that is both D(5, 0)-

decomposable and D(2, l)-decomposable. We show that the vertices of three copies 

of D(5, 0) cannot be identified in such a way that the resulting digraph D is also 

D(2, l)-decomposable. Let D2, and D3 be these three copies of D(5, 0) in any 

D(5, 0)-decomposition of D. We consider the.following cases. 

Case 1 Assume that the three (5, 0) vertices of the copies of D(5, 0) are identified. 

In this case the (0, 1) vertices of copies of D(5, 0) cannot be identified without 

causing multiple arcs, and the resulting digraph is not D(2, l)-decomposable. 

Case 2 Assume that two of the (5, 0) vertices of two copies of D(5, 0) are 

identified.. Without loss of generality, let D^ and D2 be the two copies whose (5, 0) 

vertices are identified. Suppose firstly that one (2, 1) vertex of a copy of D(2, 1) is 

at the (5,0) vertex of D^ and two (2, 1) vertices of two copies of D(2, 1) are at 
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the (5, 0) vertex of D2. Then two (2,1) vertices of two copies of D(2, 1) are at the 

(5, 0) vertex of D3. This implies that only one arc of D3 is available to be used for 

three arcs for the three copies of D(2, 1) of and D2, which is impossible. 

Therefore, two (2, 1) vertices of two copies of D(2,1) are at the (5, 0) vertex of 

T>i and two (2,1) vertices of two copies of D(2,1) are at the (5,0) vertex of D2. 

Then one (2, 1) vertex of a copy of D(2, 1) is at the (5, 0) vertex of D3. This 

implies that only three arcs of D3 are available to be used for the four copies of D(2, 

1) of D} and D2, which is impossible. 

Case 3 Assume that none of the (5, 0) vertices of copies of D(5, 0) are identified. 

In this case, at least one arc to the (5, 0) vertex of a copy of D(5, 0) is not an arc 

from the (2, 1) vertex of any copy of D(2, 1) in any D(2, l)-decomposition of D. 

Therefore, D is not D(2, l)-decomposable. • 

For n > 6, the determination of lcm(D(n, 0), D(2,1)) is still an open problem. 

We now turn our attention to lcm(D(0, n), D(2,1)) for n = 2, 3. 
* 

Proposition 5.12 (1) lcm(D(0, 2), D(2, 1)) = 6, 

(2) lcm(D(0, 3), D(2, 1)) = 9. 

Proof (1) Since I E(D(0, 2)) | =2 and | E(D(2, 1)) I = 3, it follows that 

lcm(D(0,2), D(2, 1)) > lcm(2, 3) > 6. The result follows by considering the digraph 

D of size 6 in Figure 5.17 which is both D(0, 2)-decomposable and D(2,l)-

decomposable. 
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D 

Figure 5.17 A digraph of smallest size that is D(0,2)-decomposable 

and D(2, l)-decomposable 

(2) Let H be a digraph that is both D(0, 3)-decomposable and D(2, 1)-

decomposable. Since the out-degree of each vertex of D(2, 1) is at most 1 and 

D(0, 3) has a vertex with out-degree equal to 3, it follows that H contains at least 

three copies of D(2, 1). Therefore, lcm(D(0, 3), D(2, 1)) > 9. 

Consider the digraph H of Figure 5.18, having |E(H)| =9. 

1 

H 

Figure 5.18 A digraph that is D(0, 3)-decomposable and D(2, l)-decomposable 

Observe that H is D(0, 3)-decomposable into three copies of D(0, 3) as 

described in Figure 5.19. 



116 

O 
2 

Figure 5.19 A D(0, 3)-decomposition of the digraph H of Figure 5.18 

Furthermore, the digraph D is D(2, l)-decomposable into three copies of 

D(2, 1) as described in Figure 5.20. 

1 1 1 

Figure 5.20 A D(2, l)-decomposition of the digraph H of Figure 5.18 

Since the digraph H having | E(D) | = 9 is both D(0, 3)-decomposable and 

D(2, l)-decomposable, it follows that lcm(D(0, 3), D(2,1)) < 9, completing the proof. 

Next we find the size of a greatest common divisor and a least common multiple 

of the digraphs D(m, 1) and D(l, 1) for m > 2. In this connection, the following 

lemma will be helpful. 

In the directed star D(m, n), where m, n > 0, an arc from the (m, n) vertex to 

a (1,0) vertex is called a central out arc, while an arc from a (0, 1) vertex to the 

(m, n) vertex is called a central in arc. 
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Lemma 5.13 Let D1} D 2 , . . . , Dk be k (> 2) copies of D(m, 1), m > 2. Then in 

any identification of the vertices of Dj with those of Dj (i & j), where distinct vertices 

of Dj are identified with distinct vertices of Dj, at most two copies of D(l, 1) can be 

produced that do not use central out arcs of Dj and Dj. 

Proof Let C| and c2 be the central vertices of Dj and Dj (i ^ j), respectively. For 

t = 1, 2, 3, let Ht be a copy of D(l, 1) having vertices ut, vt, and wt and arcs 

(ut, vt) and (vt, wt). Suppose that H l s H2, and H3 are three edge-disjoint copies of 

D(l, 1) that do not use central out arcs. Then the arcs of Hj, H2, and H3 are all 

central in arcs. This implies that the vertices vt and wt are central (distinct) vertices 

of Dj or Dj. Furthermore, at least two of the vertices vx, v2, or v3 must be the 

same. .Without loss of generality, let vj and v2 be the central vertex Cj. Then w^ 

and w2 are the central vertex c2, implying that there are two arcs (vj, Wj) and (v2, 

W2) from the vertex cj to the vertex c2 which is impossible. • 

Theorem 5.14 For all positive integers n, 

(1) gcd(D(n, 1), D(l, 1)) = 1 (n > 2), 

(2) gcd(D(l, n), D(l, 1)) = 1 (n>2), 

(3) lcm(D(2n + 1,1), D(l, 1)) = 2(n + l)2, 

(4) lcm(D(4n + 2, 1), D(l, 1)) = (2n + 2)(4n + 3), 

(5) lcm(D(4n, 1), D(l, 1)) = (2n + 2)(4n + 1). 

Proof (1) The only divisors of D(l, 1) are S ( l , 1) and D(l, 1). However, 

D(l, 1) is not a divisor of D(n, 1). Therefore, 1) is the only common divisor 

of D(n, 0) and D(l, 1). Hence, gcd(D(n, 1), D(l, 1)) = 1. 
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(2) This can be shown similarly. 

(3) Let D be a digraph that is both D(2n + 1, l)-decomposable and D(l, 1)-

decomposable. We show that I E(D) | > 2(n + l)2. Let D' be a copy of D(2n + 1,1) 

in a D(2n + 1, l)-decomposition of D. Now consider a D(l, l)-decomposxtion of D. 

Observe that there is at most one copy F of D(l, 1) in D' having one arc to the 

(2n +1 ,1 ) vertex of D' and one arc from this vertex. Furthermore, by Lemma 

5.13, for every copy D" isomorphic to D(2n+1, 1) in D other than D' at most two 

central in arcs of D' and two central in arcs of D" can be used to produce copies of 

D(l, 1) distinct from F in D. Since each edge of D' belongs to a copy of D(l, 1) 

in D, at least n other copies (apart from D') of D(2n + 1,1) in D exist. Hence, 

I E(D) | > (n + l)(2n + 2) = 2(n + l)2 

Now we construct a digraph D having size 2(n + 1) that is both 

D(2n + 1, l)-decomposable and D(l, l)-decomposable. Define F = Kn + 1 , where 

V(F) = (vp v2 , ... , v n + 1 ) . We construct the digraph D from F by adding 

(n + 2)(n + 1) new vertices Wj ^ wi 2, , wi n + 2 for i = 1, 2,... , n + 1, together 

with the arcs (w^ , v^, (wi 2, Vj), ... , (w i j l + 1 , and the arc (vi? wi n + 2). (See 

Figure 5.21 for case n = 2.) 
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w l , 2 w l , 3 

D 

Figure 5.21 A digraph that is D(5, l)-decomposable and D(l, l)-decomposable 

The digraph D is D(2n + 1, l)-decomposable into n + 1 copies of 

D(2n + 1, 1), the i-th copy having vertices . v l s v2, ... , v n + 1 and Wj j, w i 2 , 
wi n+2 e a c ^ i = 1, 2, ... , n + 1, together with the arcs (vj, v )̂, where j * i and 

1 < j < n + 1, the arcs ( w u , v^, (wi 2, v{),..., (w i n + 1 , vj) and the arc (vi? wi n + 2). 

The digraph D is D(l, Indecomposable into n + 1 copies of D(l, 1), the i-

th copy having vertices w^ -v vj, wj n + 2 together with the arcs (wi?i, v^ and (v^ 

w i n + 2 ) , and n(n + 1) copies of D(l, 1) having vertices w^., vi? vk, where k * i, 

1 < k < n + 1, and the arcs (wj k, v^ and (v^ vk) for i = 1, 2, ... , n + 1. Now 

since I E(D) I = 2(n + l)2, it follows that .lcm(D(2n + 1, 1), D(l,- 1)) < 2(n + l)2 , 

completing the proof. 

(4) Let D be a digraph that is both D(4n + 2, l)-decomposable and D(l, 1)-

decomposable. We show that | E(D) | > (2n + 2)(4n + 3).' Let D' be a copy of 

D(4n + 2, 1) in a D(4n + 2, l)-decomposition of D. Now consider a D(l, 1)-

decomposition of D. Observe that there is at most one copy F of D(l, 1) in D' 
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having one arc to the (4n + 2, 1) vertex of D' and one arc from this vertex. 

Furthennore, by Lemma 5.13, for every copy D" isomorphic to D(4n + 2, 1) in D 

other than D' at most two central in arcs of D' and two central in arcs of D" can be 

used to produce copies of D(l, 1) distinct from F in D. Since each edge of D' 

belongs to a copy of D(l, 1) in D, at least 2n + 1 other copies of D(4n + 2,1) in D 

exist. Hence, |E(D) | > (2n + 2)(4n + 3). 

Now we construct a digraph D having size (2n + 2)(4n + 3) that is both 

D(4n + 2, l)-decomposable and D(l, l)-decomposable. Define H ^ K ^ ^ , where 

V(H) = {vl3 v2, ... , v2 n + 2}. We construct the digraph D from H by adding 

(2n + 2)(2n + 2) new vertices w ^ , w^2, ... , Wi 2 n + 2 for i = 1, 2, ..., 2n + 2, 

together with the arcs (w^j, Vj), (wi2» vj), ... , (wj 2n+l> v i) 3 1 0 

(vi> wi,2n+2)- (See Figure 5.22 for case n = 2.) 

W U W1,2 • ' * wl,5 wl,6 

D 

Figure 5.22 A digraph that is D(10, l)-decomposable and D(l, l)-decomposable 
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The digraph D is D(4n + 2, l)~decomposable into 2n + 2 copies of 

D(4n + 2, 1), the i-th copy having vertices v j , V2, ... , v 2 n + 2 , w^j, w^ 2, ... , 
wi,2n+2> ^cs (vk, Vj), where k ^ i, 1 < k < 2n + 2, and (w^, v )̂ for each i = 1, 

2, ... , 2n + 1, together with the arc (v ,̂ w2 n + 2). We show that D is D(l, 1)-

decomposable into (n + l)(4n + 3) copies of D(l, 1). 

Consider the pair of vertices v2i_i and v2j for i = 1, 2,... , n + 1, and the 

subdigraphs Hj of D having symmetric arcs (v2i_j, v2j) and (v2j, v2i_i) together 

with arcs (w2i_1)2n+i, v2i_i), ( v 2 M , w2 i_ l j 2n+2), (w2i,2n+b v2i)> and (v2i> w2 i j2n+2) 

for i = 1, 2, . . . , n + 1. It is clear that each subdigraph Hj (1 < i < n + 1) is D(l, 1)-

decomposable into three copies of D(l, 1). (See Figure 5.23.) 

Hi 

Figure 5.23 The subdigraph Hj corresponding to three copies of D(l, 1) 

We remove the arcs of subdigraphs H^, H2 , . . . , H n + 1 from D. Then for 

each t = 1, 2, ... , 2n+2, corresponding to each vertex vt there are 2n copies of 

D(l, 1), using the 2n arcs (w t j , vt), (wt 2, vt), ... , (wt 2 n , vt) and the 2n arcs 

(vt, vj), where 1 < j < 2n + 2 and when t is odd, j 4 {t, t + 1} and when t is even 

( t - l , t ) . 

Therefore, D is D(l, l)-decomposable. Since |H(D)| = (2n + 2)(4n + 3), 

it follows that lcm(D(4n + 2, 1), D(l, 1)) < (2n + 2)(4n + 3). 
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(5) Let D be a digraph that is both D(4n, l)-decomposable and D(l, 1)-

decomposable. We show that I E(D) I > (2n + 2)(4n +1). Let D' be a copy of 

D(4n, 1) in a D(4n, l)-decomposition of D. Consider a D(l, l)-decomposition of 

D. Observe that there is at most one copy F of D(l, 1) in D' having one arc to the 

(4n, 1) vertex of D' and one arc from this vertex. Furthermore, by Lemma 5.13, for 

every copy D" isomorphic to D(4n, 1) in D other than D' at most two central in 

arcs of D' and two central in arcs of D" can be used to produce copies of D(l, 1) 

distinct from F in D. Since each edge of D' belongs to a copy of D(l , 1) in D, at 

least 2n other copies of D(4n, 1) in D exist. Now since the size of 2n + 1 copies 

of D(4n, 1) is odd, it follows that D contains at least 2n + 2 copies of D(4n, 1). 

Hence, |E(D) | > (2n + 2)(4n + 1). 

We construct a digraph D having size (2n + 2)(4n + 1) that is both D(4n, 1)-

decomposable and D(l, l)-decomposable. Define F = K2n + i , where V(F) = {vj, 
v 2' — > v2n+l Add 2n + 1 new vertices WJJ, Wj 2> — > wi,2n> wi,2n+l f ° r e a c ^ 

i = 1, 2, ... , 2n + 1 together with the arcs (wj i, vj), (Wj2, Vj), ... , (Wii2n» vi) arK* 

(Vi, Wj 2n+i)- Finally, add a new vertex x together with the arcs (vis x) and 

(wi,2n+l> x) f ° r e a c ^ i = 1, 2,... , 2n and the arc (x, v2 n + i) , resulting in the digraph 

D. (See Figure 5.24.) 
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D 

Figure 5.24 A digraph that is D(4n, l)-decomposable and D(l, l)-decomposable 
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We show that D is both D(4n, l)-decomposable and D(l, l)-decomposable. 

We consider the following 2n + 2 copies of D(4n, 1) in D. One copy of 

D(4n, 1) has x as its (4n, 1) vertex and arcs (vj, x) and (wj^n+b x) f ° r 1 ^ i ^ 

2n together with the arc (x, v2n+1). The other 2n + 1 copies of D(4n, 1) have their 

(4n, 1) vertices at Vj (i = 1, 2, ... , 2n + 1) with arcs (Wjj, v^), (wi2 , Vj), ... , 

(wi>2n, vj), and (vj, Vj) for all j (1 < j < 2 n + 1, j * i) and the arc (vi9 w i 2 n + 1 ) . 

Further, D is D(l, l)-decomposable: One copy of D(l, 1) has vertices x, 

v2 n + 1 , and w 2 n + 1 ) 2 n + 1 with arcs (x, v2 n + 1) and (v2n+1, w2 n + 1 ) 2 n + 1) . Another 2n 

copies of D(l, 1) have vertices v-v Wi 2 n + i , and x for i = 1, 2, ... , 2n and arcs 

(vi> w i>2n+l) and (wi>2n+1, x). 

There are 3n copies of D(l , 1) in the n subdigraphs Dj induced by {x, 

v2i-l» v2i> w2i-l ,2n> w2i ,2n) f o r i = 2, ... , n. (See Figure 5.25.) 

w 2 i - l , 2 n w2i,2n 

Figure 5.25 Three copies of D(l, 1) in the digraph D of Figure 5.24 

Centred at the vertex v 2 n + 1 there are 2n copies of D(l , 1) using arcs 

(W2n+l,l» v2n+l)> (w2n+l,2> v 2 n + i ) . - , (w2n+l,2n> v2n+l) and arcs (v2 n + 1 , vx), 

(v2n+l» v2)> - > (v2n+l».v2n)- ( S e e Figure 5.26.) 
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w 2 n + l , 2 ••• 

V 1 v 2 - v 2n v 2n+l 

Figure 5.26 2n copies of D(l, 1) in the digraph D of Figure 5.24 

Finally, there are 2n(2n - 1) copies of D(l, 1), 2n -1 of which are centred at 

each of the vertices v l5 v2 , . . . , v2n. For each i, the arcs of these copies of D(l, 1) 

are (WJJ, VJ), (WJ2, V}), ... , (WJ 2n_i, VJ) together with the remaining 2n - 1 arcs 

from the vertex Vj, namely, (vj, vj), where 1 < j < 2n, j & i and when i is odd j ^ i + 

1 and when i is even j i — 1. (See Figure 5.27.) 

w i , l w i , 2 • * • w i , 2 n - l 

v i v j v 2n+l 

Figure 5.27 2 n - l copies of D(l, 1) corresponding 

to each vertex Vj (i = 1, 2, . . . , 2n) 

Therefore, there are 1 + 2n + 3n + 2n + 2n(2n - 1) = 4n2 + 5n + 1 copies of 

D(l, 1) producing 2(4n2 + 5n + 1) = (2n + 2)(4n + 1) arcs. It follows that 

lcm(D(4n, 1), D(l, 1)) < (2n + 2)(4n + 1), completing the proof. • 
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5.3 The Greatest Common Divisor Index of a Digraph 

As with graphs, we define, for a given digraph D of size q, the greatest 

common divisor index i(D) as the greatest integer n for which there exist digraphs 

Dj and D2, both of size at least nq, such that GCD(Dl5 D2) = {D}. If "no such n 

exists, then we define this index to be «>. 

Proposition 5.15 For every positive integer n, 

i(nD(0, 1)) = co. 

Proof The result is immediate when we follow the technique of the proof of 

Proposition 4.18. • 

Proposition 5.16 For all nonnegative integers m and n, with (m,.ji) ^ (0, 0), 

i(D(m, n)) = 

Proof Suppose, to the contrary, that i(D(m, n)) is finite, say i(D(m, n)) = t. Let r 

(> t) be an integer and p^ and p2 be-distinct primes so that (m +• n)pj and 

(m + n)p2 are at least r. Define Dl = D ^ m , p ^ ) and D2 = D(p2m, p2n). Then 

GCD(Dj, D2) = {D(m, n)}, implying that i(D(m, n)) > r > t, contrary to hypothesis. 

Therefore, i(D(m, n)) == «>. • 

Now we generalize the former two propositions. 

Proposition 5.17 For positive integers a, b, and c 

i (a D(0, 1) u D(b, c)) = oo. 
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Proof Suppose, to the contrary, that i (a D(0, 1) vj (b, c)) = t, where t € N. Let r 

(>t) be an integer, and let pj and p2 be distinct odd primes, where pj(a + b + c) > r 

for i = 1, 2. Let Dj = p : a D(0, 1) u D(pxb, pxc) and D2 a p2a D(0, 1) u 

D(p2b, p2c). Then GCD(DX, D2) = {a D(0, 1) u D(b, c)}. and i (a D(0, 1) u 

D(b, c)) > r > t, contrary to hypothesis. Therefore, i (a D(0, 1) u D(b, c)) = • 

The next propositions are immediate. 

Proposition 5.18 For all positive integers bj, b2, bn and Cj, c 2 , c n , 

i (D(bv cx) u D(b2, c2) u u D(bn, cn)) =«». 

Proposition 5.19 For all positive integers a, ty, and c^ (1 < i < n), where n > 2, 

i (a D(0,1) u D(bx, cx) u D(b2, c2) u «• u D(bn, cn) -
—> 

The directed path P n on n vertices is a digraph obtained from assigning 

direction to the path Pn so that it forms a (directed) path of length n - 1. 

Proposition 5.20 For n = 2, 3, 4, 5, 

i (? n ) = 

Proof The result follows directly from the corresponding result for graphs. • 

For integer n (> 3) we let (* be a directed cycle on n vertices. As with 

graphs we have the following propositions. 

Proposition 5.21 i((*3) = l. 

Proposition 5.22 i(<?4) = 
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We have shown for graphs i(K3) = 1 and for digraphs i(C?3) = 1, but for the 

tournaments the result is not similar. For example, we show that i(T) = 00 for the 

tournament T of Figure 5.28 . 

T 

Figure 5.28 A transitive tournament T of order 3 

Note that a result for digraphs similar to Lemma 2.13 does not hold for 

tournaments in general, since the digraph D of Figure 5.29 is T-decomposable but not 
—> —> 

(P3 u P2)-decomposable. 

D 
— > — > 

Figure 5.29 A digraph that is T-decomposable but not (P3 u P2)-decomposable 

Proposition 5.23 For the tournament T of Figure 5.28, 

i(T) = 

Proof Suppose, to the contrary, that i(T) = t, for some te N. Let m (> t) be an 

integer, and let pj and p2 be primes so that p 2 > p ! > m . Let D x = p j T and D2 be 

the digraph of Figure 5.30 with k = p2. We show that GCD(Dl5 D2) = {T}. 
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y3 

D2 

Figure 5.30 The greatest common divisor of Dj and D2 is T 

It is sufficient to show that D2 is not D-decomposable into k copies of D for 

any element D of the set <D = {D(2,0) u ? 2 , D(0, 2) u D(l, 1) u ? 2 } . 

Suppose, to the contrary, that D2 is D-decomposable into k copies of D for 

some D e Since z is a vertex of every copy of D(2, 0), D(0, 2), and D(l, 1), 
— > 

none of the arcs incident to or from z can be an arc of P 2 in a copy of D. Therefore, 
— > 

all arcs (xj, y^ for 1 < i < k are the arcs of the k copies of P 2, and the arcs incident 

from or to z are the arcs of the k copies of one of the digraphs D(2,0), D(0,2), and 

D(l, 1), implying that z must be a (2k, 0)-vertex, a (0, 2k)-vertex, or a (k, k)-vertex, 

respectively. However, idz = 2(k - 1) and odz = 2, a contradiction since k > 2. 

Now since Dx and D2 are T-decomposable, GCDCD^ D2) = {T} and i(T) > m > t, 
contrary to hypothesis. Therefore, i(T) = • 

As with graphs, the following lemma, whose proof is omitted, will be useful. 
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Lemma 5.24 Let p (> 3) be an integer. If D is a nontrivially K*-decomposable 

digraph, then D is also ((Kp - e) u P^-decomposable, where e is any arc of Kp. 

A direct result of this lemma is the next proposition. 

Proposition 5.25 For every integer p (> 3), 

i(Kp) = 1. 

In general, the problem of determining the greatest common divisor index of a 

digraph appears to be difficult and it is unknown whether digraphs D, with 1 < 

i(D) < oo, exist. 
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