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Abstract
Recursion is an important concept for any computer science student to master. Many first year 
students develop the viable copies mental model of recursion and can successfully trace the 
execution of a simple recursive function. This article discusses a study focused on determining 
whether the ability to successfully trace a recursive function means that the student understands 
recursion or whether they are simply “applying a formula”. The research question investigated 
was thus “To what extent do students with viable trace mental models understand the flow of 
control of recursive algorithms?” The research followed a phenomenological approach. A group 
of first year students with viable mental models was identified by classifying the mental models 
in their answers to test questions. Fifteen of these students were interviewed. The interviews 
involved the students talking aloud while they tackled various tasks. Each student’s understanding 
of the active flow, the limiting case and the passive flow was assessed. The results show that in 
most cases even these students have some difficulty with the active flow, are confused about the 
passive flow and have misconceptions about the limiting case. This implies that more careful 
thought needs to be given to the examples used in teaching recursion and how the concept is 
taught.

Keywords: Phenomenological study, recursion, mental models, flow of control.

Introduction
Recursion is an essential concept in computer science as it allows for the development of efficient 
and elegant solutions to many problems in the field. It is, however, widely acknowledged as a 
difficult concept to teach and learn and has been the subject of much research over the years (see 
for example Ginat & Shifroni, 1999; Levy & Lapidot, 2000; Stern & Naish, 2002; Mirolo, 2010). 
Typically, recursion is viewed as a process of breaking a problem down into smaller and smaller 
cases until the base or limiting case is reached and then building up the solution by solving the 
sub-problems (Wiedenbeck, 1988). A classic example of recursion is calculating the factorial of 
a number. Mathematically this is defined as factorial(n)  = n × factorial(n-1) with factorial(0) 
defined to have a value of 1. A recursive Python program for calculating the factorial of a given 
number is shown in Figure 1. For students to understand recursion, they must understand the 
flow of control in recursive functions. For the example in Figure 1 this flow of control would 
involve the process demonstrated in Figure 2 for a value of n = 4. The student would need to 
know how the problem is broken down into smaller instances of the same problem, what happens 
when the limiting case is reached and then how the solution is built up from the limiting case. 
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def factorial(n):
	 if n == 0:
		  return 1
	 else:
		  return n * factorial(n-1)

Figure 1. An example of a recursive program

factorial(4) = 4 * factorial(3)
factorial(3) = 3 * factorial(2)
factorial(2) = 2 * factorial(1)
factorial(1) = 1 * factorial(0)
factorial(0) = 1
factorial(1) = 1 * factorial(0) = 1 * 1 = 1
factorial(2) = 2 * factorial(1) = 2 * 1 = 2
factorial(3) = 3 * factorial(2) = 3 * 2 = 6
factorial(4) = 4 * factorial(3) = 4 * 6 = 24

Figure 2. The flow of control for factorial(4)

This article discusses a study which addresses the question of the extent to which first year 
students, who have acquired viable trace mental models, understand the flow of control of 
recursive algorithms. 

Background
A key factor in mastering recursion requires understanding the flow of control in recursive 
functions but the complexity of the flow of control mechanism makes it a difficult concept for 
students to comprehend (George, 2000). This flow of control has two parts: the active flow refers 
to the forward passing of control where a programmer has explicitly called the function while 
the passive flow refers to the backward flow where control is automatically passed back to the 
function at the point where it was suspended (George, 2000; Kurland & Pea, 1985). Novice 
programmers need to develop a viable mental model of recursion in order to be able to deal with 
recursive algorithms (Kahney, 1989). Here a viable model means an understanding of recursion 
which will allow the student to arrive at the correct answer, either in tracing or developing a 
recursive algorithm. Kahney’s (1989) work led to the identification of a viable mental model, the 
copies mental model, where the active flow, the limiting case and the passive flow are explicitly 
shown.  He also identified the looping (or loop) model where recursion is seen as a form of 
iteration with the recursion terminating once the base case is reached (and the passive flow 
is ignored). The looping model can be viable for recursive algorithms where it is possible to 
evaluate the solution at the base case. Kahney (1989) also identified the magic or syntactic model 
where a student is able to match on syntactic elements but has no clear idea of how recursion 
works and the odd model where many misunderstandings of various types are shown. The last 
two models are nonviable as they do not allow the student to predict program behaviour. Dicheva 
and Close (1996) confirmed the existence of the copies model as a viable model and concur that 
the loop mental model is a result of students’ misconceptions of recursion as a form of iteration. 
They also noted a number of nonviable mental models. George (2000) agrees that nonviable 
mental models are a result of idiosyncratic ideas of recursion and programming concepts.
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Early work on the teaching of recursion considered animation tools to graphically show the 
flow of control (Wilcocks & Sanders, 1994) and thereby help the students to develop the viable 
copies mental model (Kahney, 1989). In addition, the teaching of recursion uses methods such 
as tracing algorithms using the “boxes inside boxes method” of Goldschlager and Lister (1982).  
Such methods are intended to help students develop a copies model. Continuous efforts have 
been made to determine whether first year students do, in fact, build viable mental models of 
recursion by studying how students trace recursive functions, analogous to the work of Kahney 
(1989) and Dicheva & Close (1996). Traces in specific test and examination questions over a 
number of years were analyzed (Götschi, Sanders & Galpin, 2003; Sanders, Galpin & Götschi, 
2006). The students’ mental models were then determined based on their representation of 
the flow of control in the recursive functions.  Götschi et al. (2003) noted the existence of the 
copies, loop, magic and odd models, as identified by Kahney (1989), but identified an additional, 
sometimes viable, model (the active model) as well as additional nonviable models (step, return 
value and algebraic). In the active model the active flow is explicitly demonstrated but the 
passive flow is not shown, either because the solution has been evaluated at the base case, or 
because the passive flow has been implicitly dealt with. Götschi et al. (2003) also showed that 
the looping and active mental models could be considered as risky viable models: they can result 
in the correct solution for simple tail recursive functions (like factorial) but do not always lead to 
the correct solution. Götschi et al. (2003) argued that students who demonstrate the magic model 
have partial understanding of the recursive process as their traces show aspects of the active flow, 
limiting case and passive flow but with clear errors showing lack of understanding. The step, 
return value and algebraic models simply demonstrate various forms of confusion on the part 
of the student. Sanders et al. (2006) corroborated the findings of Götschi et al. (2003) as regards 
the first year students. Subsequent work (unpublished) identified the existence of a risky viable 
passive mental model of recursion where only the passive flow is shown. 

Many first year students do, in fact, develop viable copies mental models of recursion (Götschi 
et al., 2003; Sanders et al., 2006). These students can use a tracing method (e.g. Figure 2) and 
successfully trace the execution of a recursive algorithm given some input values. This approach 
works particularly well for mathematically defined recursive functions. In this sense trace 
methods can be viewed as a “formula” to solve a problem since the trace methods can be applied 
in a mechanical fashion. A student who cannot correctly produce a trace of a recursive function 
clearly has very little understanding of recursion. This raises the question of whether a student 
who can successfully trace a recursive function has a deep understanding of recursion or whether 
such a student is simply mimicking the approaches used in lectures for showing how recursive 
functions execute. Ginat and Shifroni (1999) argue that an understanding of the basic computing 
model (or having a viable mental model) is not enough for students to really understand recursive 
formulations. They argue for a more abstract problem-level based approach.  Mirolo (2010) 
sought to gain a better understanding of the problems that students face in mastering recursion. 
He devised a study to investigate whether students who had developed competency with the 
mechanics of the recursive process could deal with higher level skills like establishing relations 
in the problem domain, dealing with recursive structures and coping better with abstraction. He 
found that students coped quite well with the more mechanical tasks like performing recursive 
traces, but did not do that well in higher level tasks. This article discusses a study which addresses 
the matter of deeper understanding.  In particular, the research focused on answering the research 
question:

To what extent do students with viable trace mental models understand the flow of control in 
recursive algorithms?
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This question can be answered by investigating the following sub-questions:

To what extent do they understand the active flow?

To what extent do they understand the passive flow?

To what extent do they understand the limiting case?

Research Methodology
An appropriate methodology to study students’ cognition in this context was phenomenology 
(Creswell, 2009; Cohen, Manion & Morrison, 2005). Phenomenology is both an underlying 
philosophy and a method of data collection. It is a strategy of inquiry in which the researcher 
identifies the ‘essence of human experiences’ (Creswell, 2009: 13) regarding phenomena, and 
does so by obtaining information directly from participants, who describe their lived experiences. 
The process involves extensive engagement with a small sample of participants. The researcher 
then studies the expressed experiences at face value, analyses statements, and generates units of 
meaning to identify patterns in the experiences. These meanings are determined retrospectively 
by looking back reflectively at what has been occurring. 

The research involved two phases: identifying students who showed a viable trace mental 
model and then assessing whether those students understood the flow of control. Similar to 
previous studies, first year students were given recursive algorithms to trace in a revision test. 
Their traces were categorized into the mental models of recursion defined previously (Scholtz 
& Sanders, 2010) and fifteen students who showed viable trace mental models for all three test 
questions were chosen.  The second phase differed from previous research in that it had a clear 
phenomenological nature. Two tasks were explicitly designed to assess students’ understanding, 
and the fifteen participants were monitored in “talk aloud” interviews as they tackled the tasks.  
This approach went beyond a conventional semi-structured interview, in that it implemented a 
phenomenological paradigm which elicited participants’ spontaneous perceptions and reasoning 
processes during lived experiences of recursion. In line with the view of Guest, MacQueen and 
Namey (2012), the approaches of open-ended questions and conversational inquiry were used to 
support the students in articulating topics in their own words. 

Talking aloud tasks
Task 1 required each student to “Describe in general what happens when a recursive function 
bubbles out”. To be able to answer this question a student should explain that bubbling out occurs 
after the active flow has completed by reaching the limiting case, and the solution is built up 
as each instantiation returns control to the instantiation that invoked it at the point where that 
instantiation suspended (the passive flow). A student’s response to this task can then be evaluated 
to determine to what extent they understand the flow of control. Task 2 dealt with recursive 
functions. It required the students to determine the output of a recursive Python program (Figure 
3) which uses Python’s turtle module. The program takes a number n and a distance value dist 
as input. The pattern drawn is a square spiral as shown in Figure 4 (note that the program does 
not produce the annotations on the figure). This program was chosen as the active flow simply 
reduces the problem to the limiting case, the limiting case is essentially a switch from the active 
to the passive flow without returning any values and the main work of the program is done in 
the passive flow. If a student was able to generate the correct output then they would be showing 
understanding of the flow of control. 
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Each student was asked to evaluate the given program for n = 10 and dist = 100. They 
were given a pencil and paper which they could use to follow the flow of control of the program 
and draw the output. The students were familiar with Python, however they had not used the 
turtle module and were thus given a short introduction based on a sequential program using 
the same commands. This was done so as not to distract from a focus on recursion as such. 
The students were required to explain the limiting case, state the values of inputs at each new 
instantiation, and reflect aloud on the direction and distance moved by the turtle while they were 
working through the task.

Draw(n, dist):
	 if n == 0:
		  then return
	 else:
		  Draw(n-1, dist-10)
		  turtle.forward(dist)
		  turtle.left(90)
		  turtle.forward(dist)

Figure 3. The program given in the Task 2

Figure 4. Solution to Task 2 for n = 10 and dist = 100

At the beginning of the interview, the student was asked about their prior use of recursion, 
and some general questions for demographic information.  The interviewer emphasized that the 
interview was completely voluntary and that all information gathered would remain confidential.  
Students, who chose to participate, were given an informed consent form to sign.  In order 
to assess a student’s understanding, the individual talking aloud whilst solving the tasks and 
concurrent interviews were audio-recorded and transcribed by the interviewer. In addition, the 
interviewer made notes in real time during the interview. 
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Data analysis
The students were rated on their understanding of each aspect of the flow of control (a score 
from 0 to 2). In order to cope with this task, a student had to understand the active flow, limiting 
case and passive flow of the algorithm. To demonstrate understanding of the active flow they 
had to make it evident that they realised that the drawing of the spiral would not occur in the 
forward flow of control of the algorithm. If their verbalizations and actions indicated that they 
saw that the function call Draw(n-1, dist-10) would initiate a new recursive instantiation 
each time (and not do anything else), it was deemed that they understood the active flow. For 
understanding of the limiting case, their utterances needed to demonstrate that they realised it 
does not return a specific value but changes control to the passive flow. To show understanding 
of the passive flow their talk-aloud cognitive processes had to show a clear understanding of 
how the figure was drawn as the recursion bubbles out or unwinds. 

The original intention was that students would not be allowed to explicitly trace the algorithm. 
The purpose of this was to determine whether they could solve the problem without using tracing 
methods. However there were students whose verbalized reasoning indicated that they struggled 
to solve the problem, and some of these asked if they could trace the algorithm. A note was 
made if a student traced the algorithm and this was taken into consideration when rating their 
understanding.

Participants’ spontaneous descriptions of their cognitive experiences did not always make it clear 
whether they were struggling with understanding the flows of recursion or with the syntax of the 
programming language. Since the aim of the task was not to test whether they understood Python 
or the turtle module, aspects of these were explained to them if necessary. A note was made of 
the students who struggled with the programming concepts.

Results

Students’ trace mental models
The sample of 15 students was made up of 4 females and 11 males. Three of the students had 
done computing in school but none had prior experience in tracing or designing recursive 
functions. Table 1 shows the information about the trace mental models of these students. To 
ensure the privacy of the participants each one has been given a pseudonym that is representative 
of their race and gender. Eight students showed viable copies trace mental models of recursion 
in all three of the test questions. Three students showed three viable active trace mental models 
and two showed three viable looping trace mental models. There were three students who had a 
mixture of viable copies, active, looping and passive trace mental models. 
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Table 1. Students’ trace mental models of recursion for the test questions.

Pseudonym Trace for Question 
1

Trace for Question 
2

Trace for Question 
3

Trevor Copies Copies Copies

Mark Looping Copies Active

Thandi Copies Copies Copies

Neeshen Copies Copies Copies

Eddy Copies Copies Copies

Khan Looping Looping Looping

Suresh Copies Copies Copies

Kyle Copies Copies Copies

Jeng Copies Copies Copies

Bongani Active Active Active

Fatima Active Active Copies

Sizwe Looping Looping Looping

Zinzi Copies Copies Passive

Zandile Active Active Active

Thabo Copies Copies Copies

Understanding of flow of control expressed in Task 1
None of the students was able to give a succinct articulation of Task 1 (see Table 2). 

Table 2. Students’ descriptions for Task 1.

Trevor It means you evaluate the passive flow and back substitute your answers in

Mark It’s when the function goes back to the previous values functions, it can’t 
calculate the values so it uses the previous functions values

Thandi The first thing you gonna get is you gonna solve the bigger problems by solving 
the smaller problems first. So when it bubbles out you going to find the solution 
to the small problem and you will substitute it into the bigger problem to solve.

Neeshen I think it depends on the problem. As your recursion goes, as you go through the 
function for a certain input the function calls on itself more and more goes up 
till you reach your terminating case. 

Eddy What it means is it will keep on recurring. The passive flow I think.

Khan I think it’s when it reaches the limiting case it will eventually go through 
different values until it reaches the limiting case. 

Suresh I think once you get to your base case and then what the passive flow and after 
that it’s when it bubbles out
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Kyle It calls on itself. When in the function it receives itself as a function and calls 
itself, it basically does a loop

Jeng It means you will eventually get to the right answer after a few steps

Bongani You find the limiting case once you get it you are able to solve the other steps.

Fatima I think, I think, isn’t it when the algorithm basically comes to an end? You finish 
step through the entire function and there’s no more conditions to go through.

Sizwe I just think, when you say it bubbles out it’s like, you have, cause if you work 
from the outside, you’ll work from the outside gathering certain equations or 
values that like where you still have things you don’t know, cause like you have 
your active flow. 

Zinzi That’s when you finally like in an algorithm of length you take your numbers 
each number you go back to the first statement. You keep on taking your 
numbers when you reach the limiting case that’s when you substitute the 
numbers you’ve got on the top statement then until you get your final answer.

Zandile I think that it bubbles out when it has reached the limiting case and there’s no 
other algorithms to run. 

Thabo I’ve forgot what this bubbling out is. ... If it reaches the limiting case, it goes 
back again to the passive flow...

Most verbalisations show some glimmers of understanding and some students do mention 
appropriate words, but clearly no one holds a true grasp of the concepts. Trevor’s description 
seems to indicate that he knows that bubbling out is a term for the passive flow, but he does 
not show that he really understands how the passive flow works. His phrase “back substitute 
the answer in” seems to indicate a perception that values must be passed back and that these 
values in some combination define the solution. This is not always the case. Thandi refers to 
“solv[ing] bigger problems by solving smaller problems”, Neeshen and Kyle refer to a function 
calling itself and Bongani says that once the limiting case is reached other “steps” can be solved. 
In addition, some students’ responses do seem to indicate that they know that you build up 
the solution by using solutions to other instantiations (Trevor, Mark, Thandi and Zinzi). Siswe 
mentions the active flow. Trevor, Eddy, Suresh and Thabo refer to the passive flow. Neeshen, 
Khan, Zinzi, Zandile and Thabo refer to the limiting (terminating) or base case. 

Understanding of flow of control expressed in Task 2
Table 3 shows the scores that each student was given for their understanding of the three phases 
in Task 2. Two students (Kyle, Kahn) managed to work through the algorithm relatively easily 
and determine what output it was going to produce. Two others (Trevor, Mark) realised quite 
rapidly that the algorithm would draw a spiral shape (because of the left turn commands) but 
assumed that drawing would be done using decreasing values of dist rather than increasing 
values. That is, they simply assumed (although they probably did not realise it) that the drawing 
would happen in the active flow of the algorithm.  The majority of the students, however, needed 
quite a bit of help to understand the algorithm.
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Table 3. Students’ scores for the active flow, limiting case and passive flow for Task 2.

Name Active 
flow

Limiting  
case

Passive 
flow

Total (out of 
6)

Trevor 2 2 1 5

Mark 2 2 1 5

Thandi 1 0 1 2

Neeshen 0 1 0 1

Eddy 1 2 0 3

Khan 2 2 2 6

Suresh 1 0 0 1

Kyle 2 2 2 6

Jeng 1 1 0 2

Bongani 1 0 1 2

Fatima 1 2 1 4

Sizwe 0 2 1 3

Zinzi 1 1 0 2

Zandile 0 1 0 1

Thabo 0 0 0 0

The active flow The active flow is “active” only in the sense that the problem size is reduced to the 
limiting case. This clearly confused many of the students. They thought about or started drawing 
the figure with dist = 100 (Thandi, Neeshen, Suresh, Jeng, Bongani, Fatima, Sizwe, Zinzi, 
Zandile and Thabo). Once the interviewer had corrected their misconceptions they handled this 
flow much better and realised that a number of recursive calls with the effect of reducing dist 
were being made. 

The limiting case Eight of the students were completely baffled by the fact that the algorithm did 
not return a value at the limiting case (Thandi, Neeshen, Suresh, Yeng, Bongani, Fatima, Zinzi 
and Thabo). For example, Thandi said “But then, how are you going to evaluate the function if 
you not returning anything here to evaluate it with?” The interviewer had to explain the limiting 
case to them more than once. These students said that they were used to returning a number at 
the limiting case of recursive functions. Thandi, Suresh and Thabo thought that only the number 
1 is returned at the limiting case of functions. Bongani thought that the algorithm would stop 
since it returns nothing at the limiting case. He later explained that he was used to relating the 
limiting case value to the other function calls. As a result he was unsure what he would have 
to substitute into the other function calls. Similarly Suresh said that he could not see how the 
algorithm would add a 1 to the answer. It had to be explained to these students that the limiting 
case does not necessarily have to return something, it provides a condition that changes the flow 
of control from the active flow to the passive flow and might also return the solution for the 
smallest instance of the problem. 



357

African Journal of Research in MST Education, Volume 16 (3) 2012, pp. 348–362

The passive flow The students were asked to determine the shape drawn by the algorithm 
Draw(n, dist) for n=10 and dist=100. The shape is only drawn in the passive flow of 
the algorithm after the recursive call Draw(9,90)has been executed. Ten students (Thandi, 
Neeshen, Suresh, Jeng, Bongani, Fatima, Sizwe, Zinzi, Zandile and Thabo) ignored this recursive 
call and wanted to start drawing the shape immediately even though they did notice that it would 
call Draw(9,90) (and they even read this out to the interviewer). The interviewer had to stop 
them and explain that this was a new recursive call that had to be evaluated first. Some of the 
students were also confused about the values of the variables as the program comes out of the 
recursion. Jeng had no idea that you go back to the previous values (Draw(1, 10)). Zandile 
thought that the values in the passive flow would be the initial values (Draw(10,100)). 
Others could not possibly see how the algorithm goes back to draw the figure. In particular, 
Suresh stated that he did not know that recursive algorithms had this backward flow.  Eddy said 
that he ignored the passive flow. 

Discussion

To what extent do students understand the active flow?
Students with copies, looping or active trace mental models should understand the active flow. 
The students’ verbalizations in Task 1 showed very little evidence of this understanding except 
that some students commented on breaking down the problem into smaller instances. Only four 
students showed a good understanding of the active flow for Task 2. The rest of the students 
seemed to be confused that nothing was actually done in the active flow other than reducing the 
recursive calls. Limited prompting from the interviewer helped the students to deal with this 
aspect better but clearly they do not have deep understanding.

To what extent do students understand the limiting case?
The responses for Task 1 indicate that some students realize that recursive algorithms should 
have a limiting case and when this is reached the recursion stops or switches control but in 
general it is difficult to conclude anything else about their understanding. 

The algorithm in Task 2 was different to the algorithms the students had seen before because it 
did not return a value at the limiting case. The algorithms they had seen would typically return a 
number (often 0 or 1) or an empty list (see Figures 5 and 6). The students’ responses showed that 
they expected some value to be returned once the limiting case was reached. In fact, a number of 
students expected a 1 to be returned. They also expected that this returned value would be used 
in calculating the final solution (which is not always the case). This shows clear misconceptions 
about the limiting case which might return a directly calculated solution but could also simply 
be a switch in the flow of control. These data agree with the findings of Haberman & Averbuch 
(2002) that students have difficulty with identifying and handling the base or limiting case.
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Algorithm(numlist):
	 if numlist is empty:
		  then return 1
	 else:
		  return 2 * numlist || Algorithm1(tail(numlist))

Note: Remember that || means concatenation (joining) of two lists

Figure 5. A simple list manipulation algorithm.

c(n):
	 if n = 1:
		  then return 1
	 else:
		  return 4c(n/2) + 3

Figure 6. A simple recurrence relation algorithm.

To what extent do students understand the passive flow?
In general, Task 1 showed little evidence of understanding of the passive flow although students 
with copies and passive trace mental models should have understood it.

The algorithm for Task 2 is an embedded recursive function with executable commands after 
the recursive call. There is an explicit suspension of an instantiation while further instantiations 
are dealt with before control returns to the point where it was suspended to continue executing 
any commands that appear after the recursive call. Prior to the interviews the students had only 
seen recursive algorithms where the recursive call is part of the last line of the function (see 
Figures 5 and 6). It is not a separate line of code followed by still more lines of code. During the 
passive flow of these functions students merely substituted in the values returned by the previous 
instantiation. Most of the students tried to use a similar approach for Task 2 but were unsure 
about the order in which the lines of code are executed and were confused about what values to 
use. 

Students with copies mental models should have been able to cope with this new type of 
algorithm as they had shown the passive flow in their traces. This was not the case. For example, 
Eddy had shown three viable copies trace mental models but his verbalizations showed that he 
did not understand when the passive flow occurred or how it contributed to solving the problem. 
Active and looping mental models should have been insufficient for understanding the passive 
flow, but Mark and Khan showed that they understood it. The three students with active mental 
models, which would have been sufficient for the test questions, did not cope well with Task 
2. This was to be expected as their mental models are risky viable and could be illustrative of 
misconceptions.

Extent of students’ understanding
In analyzing the students’ responses and articulations and in identifying patterns in their 
experiences, the overall findings were disappointing. It had been hoped that the students who 
could successfully trace recursive algorithms would have shown a deeper level of understanding 
but this research shows that the majority of the students (11 out of 15) could not make the 
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conceptual jump from the correct application of rote procedures to mastery of the concept. This 
result is consistent with the work of Mirolo (2010) who found that students coped quite well with 
recursive traces but did not do so well in higher level tasks.

The four students who dealt best with Task 2 were Trevor, Mark, Khan and Kyle. Trevor and 
Kyle had shown copies mental models in all three test questions so it was expected that they 
should understand the algorithm. There were, however, other students with three copies models 
who could not cope with the new algorithm. Khan had shown three looping mental models so 
there was an expectation that he would struggle with the new algorithm. He did not. Mark had 
shown three different trace mental models which may indicate a deeper understanding and an 
ability to select an appropriate trace mental model. These data (although from a small sample) 
show that deeper understanding is not necessarily related to a particular trace mental model or to 
consistency in using one trace mental model. This result supports a hypothesis by Götschi et al. 
(2003) that students who understand the process use “appropriate” trace methods in answering 
test questions. 

Reflections on the validity of the study
No pilot study (cf. Gall, Gall & Borg, 2010) was done as it was expected that the number of 
students who would be able to successfully trace all of the given questions would be small and 
that it would be difficult to get enough students for the study. 

A concern in all interviews is that the interviewer could lead the participants and thus invalidate 
the data (Gall, Gall & Borg, 2010). In this study, some of the students were very weak and the 
interviewer had to prompt and guide them to make progress. This could be seen to be biasing 
the results but the students displayed a lack of understanding of recursion and the interviewer’s 
interventions did not affect this.

As mentioned above most of the recursive algorithms seen by the first year students are either 
simple list manipulation algorithms or recurrence relations. The algorithm used in the interview 
looks very different and may have been too much of a jump for the students. An additional 
problem was that the students could not step away from the details of programming language 
syntax even though they were told that the intention was not to test their knowledge of syntax. 
This was compounded by that fact that Python was used but the students were being taught 
Pascal by the time the interviews were done. 

Implications for teaching
This research on students’ experiences and patterns in dealing with recursion (though conducted 
on a small sample) indicates strongly that the students are not developing a deeper understanding 
of the flow of control in recursion. Many of them can trace the execution of recursive algorithms 
and “get the right answer” but they do this more in a sense of following a recipe or applying 
a formula. They do not really understand what they are doing. Obviously being able to trace 
recursive algorithms is an important skill but they should master the process and need to be able 
to develop their own recursive solutions to problems. 

Some changes have already been made in the teaching of recursive algorithms to the first years. 
In particular, the obvious, “more simple”, recursive algorithms like factorial are not the first 
examples covered in class and an attempt has been made to try to introduce recursive algorithms 



First year students’ understanding of the flow of control in recursive algorithms

360

which require understanding of both the active and passive flow (Sanders et al, 2006). In 
algorithms such as those shown above (Figures 5 and 6) the solution is built up in the passive 
flow. It was thought that such algorithms would be beneficial in helping the students develop a 
viable mental model of recursion but it seems that even those algorithms do not force the students 
to really think about the passive flow. They can determine the correct solution for given instances 
of the algorithm without really understanding the passive flow by just “dropping in” values 
which they can calculate. In order to teach the students to understand the passive flow better, 
more explicitly embedded recursive algorithms similar to the one used in Task 2 should be used 
early in the course. Different types of recursive algorithms and different approaches to teaching 
recursion should also be investigated. For example, Gordon (2006) and Stephenson (2009) 
argue that visual displays, as in the drawing of fractals, will assist students in understanding 
that computation could happen as a function goes into and comes out of recursion as well as at 
the limiting case. Edgington (2007) argues that recursion can be seen as task delegation which 
highlights the breaking down of the tasks into smaller tasks and the solution of the task using 
the solutions to the subtasks. Wirth (2008) uses the idea of parking cars to illustrate the concept 
of “divide and conquer”. Approaches to teaching the students how to design their own recursive 
algorithms must also be investigated. 

Future work
This research has shown some difficulty in coping with the active flow, some confusion about the 
passive flow and highlighted misconceptions at the limiting case. A further study should be done 
using recursive algorithms which are somewhat closer to the students’ prior exposure but which 
allow for interrogation of the students’ understanding of the limiting case and the passive flow. 
Other research envisaged involves studying how more senior computer science students cope 
with recursion in line with the work done by Ginat (2004) who showed that senior students do 
not always produce recursive solutions even when those would be the most appropriate solutions. 

Conclusion
The present research set out to establish the extent to which first year students understand the 
flow of control in recursion. In an effort to do this, researchers conducted open-ended interviews 
with students while they were working on problems that implemented recursion. The students 
were required simultaneously to articulate their experiences as they worked through the tasks. 
Guest, MacQueen & Namey (2012) point out the value of such phenomenological research, 
where participants’ perceptions and lived experience are the prime objects of study. The findings 
show that even students who have developed viable trace mental models are still confused by 
recursion. They have some difficulty in dealing with the active flow; are confused about what 
happens in the passive flow; and have misconceptions about what happens at the limiting case. 
In addition, the research highlighted the fact that understanding of the process is not related to 
the demonstrated trace mental model. Previous research has indicated that the supposedly simple 
tail recursive algorithms should be avoided because these can make students think of recursion 
as a “loop” (Sanders et al, 2006). This research shows that embedded recursive functions, where 
there are executable lines of code both before and after the recursive call, should be used as the 
first examples in teaching the concept.
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