
THE FORMATION OF THE

CEREBROSPINAL FLUID
(A case study of the cerebrospinal fluid system)

by

SUNDAY FALEYE

submitted in part fulfilment of the requirements

for the degree of

MASTER OF SCIENCE

in the subject of

APPLIED MATHEMATICS

at the

UNIVERSITY OF SOUTH AFRICA

SUPERVISOR: DR R MARITZ

OCTOBER 2006



Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Whole blood . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Blood as a Viscoelastic Fluid . . . . . . . . . . . . . . 3

1.1.3 Brief Description of Blood flow up to the Brain . . . . 4

1.1.4 Paths of Blood Circulation . . . . . . . . . . . . . . . . 5

1.1.5 The Pulmonary Circuit . . . . . . . . . . . . . . . . . . 7

1.1.6 Systemic Circuit . . . . . . . . . . . . . . . . . . . . . 7

1.1.7 Blood Flow in The Brain . . . . . . . . . . . . . . . . . 8

1.1.8 Blood Flow in the Capillaries . . . . . . . . . . . . . . 14

1.1.9 The Specialised Capillary System . . . . . . . . . . . . 14

1.1.10 Cerebrospinal Fluid Production and Circulation . . . . 15

i



ii CONTENTS

1.2 Intracranial Pressure . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Objective of study . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Aim of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Definition of Medical Terms Used . . . . . . . . . . . . . . . . 21

2 Cardiovascular and Intracranial Eq. 27

2.1 Cardiovascular Equations . . . . . . . . . . . . . . . . . . . . . 27

2.2 Shear-Thinning Viscoelastic Constitutive Eq. . . . . . . . . . . 30

2.2.1 The Solid Volume Phase . . . . . . . . . . . . . . . . . 33

2.2.2 The Liquid Volume Phase . . . . . . . . . . . . . . . . 34

2.3 Intracranial Volume Equation . . . . . . . . . . . . . . . . . . 35

3 Mathematical Formulation 39

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Method of Study . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Presentation of the Problem . . . . . . . . . . . . . . . . . . . 40

3.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Notations, Definitions and Spaces . . . . . . . . . . . . 45

3.5 Equation of motion inside Ω . . . . . . . . . . . . . . . . . . . 49

3.6 At the Boundary . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6.1 The Deformation Tensor at the Boundary . . . . . . . 51

3.6.2 At the Interface . . . . . . . . . . . . . . . . . . . . . . 59

3.7 Existence Theory . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.7.1 The Weak Formulation . . . . . . . . . . . . . . . . . . 62

3.7.2 Existence of a Weak Solution . . . . . . . . . . . . . . 67



CONTENTS iii

4 Result and Conclusion 75

4.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



Dedication

This work is dedicated to God Almighty, for His mercy endureth forever. Also

to my dear wife, Faleye Adeseye Abimbola and children (Oluwatosin

Paul, Esther Olajumoke, and Ayomide), who throughout the period of

this programme did not set their eyes on me. I, sincerely, thank them for

their understanding, patience and love.

iv



Acknowledgement

This work was made possible by Almighty God who used the people men-

tioned hereunder at various stages of the work to accomplish this task.

I want to express my appreciation to the entire staff of the Department of

Mathematical Sciences, University of South Africa, South Africa, for their

unflinching support, financially and otherwise, throughout the period of this

work.

I most especially, acknowledge the invaluable contribution of my supervisor,

Dr. R. Maritz, to this work. Her timely constructive criticism and critical

evaluation, at each stage of the work, helped me, in no small measure, to

understand the material. I appreciate the time to time directive and advice

of Dr. J.M.W. Munganga.

I wish to acknowledge the contribution of Prof. Niko Sauer, for valuable

discussion on the work, Dr. Adewale Adedipe (Neurosurgeon) for giving the

expository materials that gave me a leadway to understanding the neurosur-

gical part of my work, Ms. Stella Mugisha, Mr. Clovis Oukouomi Noutchie,

Ms. Corlia Beeslaar, and Ms. Dorothy Ngozo.

v



Abstract

Key Words: Navier Stokes, Blood Flow, Cerebrospinal Fluid, Permea-

bility,Weak Solution.

It was generally accepted that the rate of formation of cerebrospinal fluid

(CSF) is independent of intraventricular pressure [26], until A. Sahar and

a host of other scientists challenged this belief. A. Sahar substantiated his

belief that the rate of (CSF) formation actually depends on intraventricular

pressure, see A. Sahar, 1971 [26].

In this work we show that CSF formation depends on some other factors,

including the intraventricular pressure. For the purpose of this study, we

used the capillary blood flow model proposed by K.Boryczko et. al., [5] in

which blood flow in the microvessels was modeled as a two-phase flow; the

solid and the liquid volume phase.

CSF is formed from the blood plasma [23] which we assume to be in the

liquid volume phase. CSF is a Newtonian fluid [2, 23].

The principles and methods of “effective area” developed by N. Sauer and

R. Maritz [21] for studying the penetration of fluid into permeable walls was

used to investigate the filtrate momentum flux from the intracranial capillary

wall through the pia mater and epithelial layer of the choroid plexus into the

subarachnoid space. We coupled the dynamic boundary equation with the

Navier-Stoke’s constitutive equation for incompressible fluid, representing the

fluid flow in the liquid volume phase in the capillary to arrive at our model.
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Chapter 1

Introduction

1.1 Background

For a long time, physiologists and medical scientists have been concerned

with the study of the intracranial vault (ICV) dynamic systems. The study

of the intracranial vault (ICV) came much later after people like Aristotle

(384 - 322 BC), who first identified the role of blood vessels in transferring

‘animal heat’ from the heart to the periphery of the body. Galen (c.130 -

200 AD) was the first to observe the presence of blood in the arteries. Many

others followed, who initiated the study of blood flow. The result of their

various works was a forerunner to the study of intracranial (IC) dynamics.

Ever since then, there have been much research work on pressure-volume

[12, 15, 18], and pressure-cerebrospinal formation relationships of the cra-

nial contents [16, 19, 20, 26, 29, 30]. It was observed that the intracranial

pressure (ICP) changes may have a serious impact in the course of various

1



2 CHAPTER 1. INTRODUCTION

neurosurgical disorders such as caused by brain injury or brain tumors. The

general focus was to understand the intracranial vault (ICV) better, so that

the intracranial pressure (ICP) can be better managed.

In view of the above, we present a mathematical model in which all the

parameters involved in CSF formation can be controlled. This may be a

valuable tool for a better understanding of the cerebral vascular system.

The previous mathematical modelling of the cerebral circulation focussed on

the cranial arterial structure, which was considered either as an equating

system for pressure and flow or as an anastomotic system which only func-

tion in pathological conditions. This belief was first proposed by Willis in

1664. The two hypotheses have given rise to several models by Rogers, 1947;

Avmann and Bering, 1961; Murray 1964; Himwich et al, 1965; Clark et al,

1967, 1968; Himwich and Clark, 1971; Chao and Hwang, 1971.

Current researchers believe that the circle of Willis plays only a limited part

of the cerebral dynamics. The pia mater vascular network, the intra cere-

bral arteries, the micro circulation (like cerebrospinal fluid) and the venous

network, all play an important role in the regulatory process of the cerebral

dynamics. Many papers have been published in recent times in line with

this new belief, some of which are Anthony Marmarou et al, 1978; Eugeny

I. Paltsev et al, 1982; H.A. Guess et all, 1984; Mokhtar Zagzoule and Jean-

Pierre, 1986; Mauro Ursino, 1987, 1988; Z.M. Kadas et al, 1997; Andreas

Jung, 2002; Linninger, A.A. et al, 2004; to mention but a few.
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1.1.1 Whole blood

As presented by K. Rajagopal et al. [25, 31], whole blood consists of gel-like

‘cell’ matter in an aqueous plasma solution. The cell matter (which makes

up around 46% of the total blood volume) consist of red blood cells (RBCs)

or erythrocytes, white blood cells (WBCs) or leukocytes, and platelets. The

volume concentration of RBCs in whole blood is termed hematocrit. Plasma

consists primarily in water (92% – 93%) in which various proteins are dis-

solved along with various ions (sodium (Na+), potassium (K+), calcium

(Ca+2), magnesium (Mg2+), etc.). Plasma is a Newtonian liquid with a

viscosity of approximately 1 · 2 cP. Erythrocytes are biconcave deformable

discs with no nuclei. The RBC membrane comprises 3% by weight of the en-

tire RBC and consist of proteins (spectrin) and lipids. The RBC cytoplasm

is a solution of hemoglobin in water (32 g/100 ml). Evans and Hochmuth

performed micropipette aspiration experiments which showed that RBCs dis-

play viscoelastic behaviour. They also claimed that the viscoelastic nature

of the RBC is only due to the viscoelastic properties of the RBCs mem-

brane. The leukocytes are further divided into granulocytes, monocytes and

lymphocytes, and together form less than 1% of the blood volume of blood.

1.1.2 Blood as a Viscoelastic Fluid

Blood is a complex fluid with flow properties significantly affected by the

arrangement, orientation and deformability of red blood cells (RBCs).

Viscoelasticity is a rheological parameter that describes the flow properties

of complex fluids like blood. There are two components to the viscoelastic-
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ity; the viscosity and the elasticity. The viscosity is related to the energy

dissipated during flow primarily due to slicking and deformation of red blood

cells and red blood aggregates. The elasticity is related to the energy stored

during flow due to orientation and deformation of red blood cells (RBCs).

Blood flow in the circulation is pulsatile. With each beat, the heart pumps

energy into the blood. This energy is dissipated the stored. How the blood

will dissipate and stored energy is related to both the viscosity and elasticity

of the blood. Red blood cells (erythrocytes) plays a dominant role in blood

viscoelasticity and its response to pulsatile flow.

Steady flow (in which we are interested) do not replicate the pulsatility in

the circulation and is blind to the significant parameter of elasticity.

Blood is classified as a viscoelastic fluid with its rheological properties, viscos-

ity and elasticity, dependend on the rate of flow or shear rate. The changes

in viscosity and elasticity are as a result of changes in the arrangement,

orientation and stretching of the red blood cells (RBCs).

1.1.3 Brief Description of Blood flow up to the Brain

The cardiovascular system is the portion of the circulatory system that in-

cludes the heart and blood vessels. The heart pumps blood to the body cells

and organs of the integumentary, reproductive, musculoskeletal, digestive,

respiratory and urinary systems that communicate with external environ-

ment. In performing this function, the heart acts as a pump that forces

blood through the blood vessels.
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The blood vessels are arranged as a closed system of ducts which transport

the blood and allow exchange of gases, nutrients, and waste products between

the blood and the body cells; see figure 1 below [3].

1.1.4 Paths of Blood Circulation

The blood vessels of the cardiovascular system can be divided into two ma-

jor pathways. These are the pulmonary circuit and systemic circuit. The

pulmonary circuit consists of those vessels that carry blood from the heart

to the lungs and back to the heart. The systemic circuit is responsible for

carrying the blood from the heart to all other parts of the body and back

again to the heart [3].
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Fig 1 The cardiovascular system
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1.1.5 The Pulmonary Circuit

The blood enters the pulmonary circuit as it leaves the right ventricle through

the pulmonary trunk. The blood in the arteries and arterioles of the pul-

monary circuit has a relatively low concentration of oxygen and a relatively

high concentration of carbon dioxide, gaseous exchange occurs in the lungs

between the blood and inhaled air as the blood moves through the pulmonary

capillaries. Because the right ventricle contracts with less force than the left

ventricle, the arterial pressure in the pulmonary circuit is less than that in

the systemic circuit. The pulmonary vascular system carries the same vol-

ume of blood as the systemic circulation. Pulmonary vascular resistance is

lower. Thus the pulmonary pressure is lower. Consequently, the pulmonary

capillary pressure is relatively low. Oxygenated blood is returned back into

the left atrium of the heart, thereby completing the pulmonary circulation

[3].

1.1.6 Systemic Circuit

The freshly oxygenated blood received by the left atrium is forced into the

systemic circuit by the contraction of the left ventricle. The circuit includes

the aorta and its branches that lead to all parts of the body tissues, as well

as the companion system of veins that returns the blood to the right atrium,

via the superior and inferior venae cavae [3].
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1.1.7 Blood Flow in The Brain

The blood supply to the neck, head and the brain takes place via the left

and right carotid arteries. (See figure 2.) Blood is supplied to these parts

through the branches of the subclavian and common carotid arteries. The

main divisions of the subclavian artery to these regions are the vertebral,

thyrocervical and costocervical arteries. Within the cranial cavity, the left

and right vertebral arteries unite to form a single basilar artery. This vessel

passes along the ventral brain stem and gives rise to branches leading to the

pons, midbrain and cerebellum.

Blood from these regions is drained by external and internal jugular veins

which return deoxygenated blood to the heart, see figure 3. The fluid ex-

change in the intracranial vault (ICV) takes place in the cerebral capillaries,

some of which produce the cerebrospinal fluid, see figure 4.

Thirty percent (30%) of the blood in our body flows through the brain to

guarantee a sufficient supply with oxygen. The whole of the brain compart-

ment is called the cranial vault. This vault can be divided into 4 compart-

ments namely; brain parenchyma, arterial, cerebrospinal fluid ventricular

and venous compartments. Figure 5 is a compartmental model of the cranial

vault [14, 3].
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Fig 2 shows the subclavian and common carotid arteries that

supply blood to upper parts of the body
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Fig 3 shows the sinuses and the jugular veins that carry blood

back to the heart
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Fig 4 shows some of the cerebral arteries where fluid exchange

takes place and some of these arteries produce the cerebrospinal

fluid. The blood vessels in red are small cerebral arteries while

the blue ones are the sinuses.
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Fig 5 is the compartmental model of the cranial vaunt
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Fig 6 is human red blood cells flowing in glass tubes of

approximate diameters 4.5 µm (top) and 7 µm (bottom). The

diameters of the tubes are comparable to that of the capillaries

which is about 4 µm to 10 µm. This shows a single-file motion of

red blood cells in the capillaries.
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1.1.8 Blood Flow in the Capillaries

The capillaries are the terminal branches of the arteries and venous vascular

trees, and the primary site of oxygen and other nutrients exchange with the

tissues. They are blood vessels with very small diameter, of the order of

micrometer. They can be as small as 4 µm. The RBCs whose unstressed

diameter are about 8 µm must undergo large deformation in order to enter

the smallest capillaries. In fact, the deformed RBCs almost entirely fill a

capillary and typically move in a single file (see Figure 6) as given by T.W.

Secomb, 2003 and S. Chinen et al., 1984. [27, 28]

T.W. Secomb, 2003, noted that the analysis of blood flow in the microvessels

present intricate problems combining fluid and solid mechanics.

Furthermore, K. Borycko . et. al., 2003, [5] also observed that blood dy-

namics in the microscale must be studied as a two-phase, nonhomogeneous

fluid, consisting of a liquid plasma phase and the deformable RBCs phase.

The RBCs flow stand for the phase volume with elastic properties while the

rest of the blood (plasma) represent the colloidal suspension. The RBCs flow

is referred to as the solid volume phase, while the plasma suspension is the

liquid volume phase. Also see [2].

1.1.9 The Specialised Capillary System

Please note that in some capillaries, the exchange of nutrients and gasses

does not take place. The fenestrated walls of the capillaries encourages the

filtration of selected components of plasma across the capillary walls into the
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relevant tissues or systems, while the permeation of RBCs, nutrients and the

remaining contents of the blood are hindered. We call this type of capillary

system a specialised capillary.

The filtrate predominantly consists of water from the blood plasma. We

discovered that this type of capillary system can only be found in

(i) sweat production system, in the dermis under the skin,

(ii) urine production system, in the kidney, and

(iii) the cerebrospinal fluid production system in the brain.

This work shall only be concerned with the production of cerebrospinal fluid.

1.1.10 Cerebrospinal Fluid Production and Circula-

tion

Cerebrospinal fluid is a colorless fluid, low in cells and proteins, but gen-

erally similar to plasma in its ionic composition. It contains mainly Na+

and k+ ions. It is called the brain water. The fluid is produced by ‘special-

ized’ cerebral capillaries of the choroid plexus that selectively transfer certain

substances from the plasma into the cerebrospinal fluid compartment by fa-

cilitated diffusion. The passage of water soluble substances, red blood cells

and protein are hindered [14, 23].

Figure 7 is the enlarged microscopic structure of the choroid plexus and the

pathway of cerebrospinal fluid production. Most of the cerebrospinal fluid
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arises from the two lateral ventricles, from where it circulates slowly into the

third and fourth ventricles and then fills the subarachnoid space.

Figure 8 shows the intracranial vault and its contents. The fourth ventricle

where some CSF is formed is indicated by a plus sign.

About 0.35 milliliters of CSF is produced per minute and about 500 milli-

liters of CSF is produced daily. However, only about 140 milliliters is present

around the nervous system at any time, because cerebrospinal fluid is contin-

uously being reabsorbed through tiny, finger-like structures called arachnoid

granulations that project from the subarachnoid space into the blood filled

dural sinuses of the brain. The circulation of CSF is shown in Figure 10,

[14].

Excessive CSF in the cranial vault results in a condition termed HYDRO-

CEPHALUS. This may be caused by excessive production of CSF, blockage

of the sinuses (the venous structures through which CSF is reabsorbed back

into the blood system) or infection. This condition is common in infants.

Also blockage of foramina (Magendi, Luschk, Monroe, aqenduct of sylcius).
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Fig 7 is the microscopic structure of the region where CSF is

produced. It is assumed that it is axisymmetrical.
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Fig 8 The cranial vault and its content. The plus (+) sign

indicates the region in the cranium where CSF is produced
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Fig 9 shows the circulation and reabsorbtion of CSF back into the

blood vessels. The white arrows indicate the circulation of fresh

CSF while the black arrows indicate the CSF going into

the sinuses.

Black arrows = production of CSF

White arrows = resorption of CSF
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1.2 Intracranial Pressure

The space inside the cranium is occupied by the brain parenchyma and its

coverings, blood vessels (arteries and veins), and Cerebrosphinal fluid. The

sum of these four volumes is normally equal to zero, so that an increase

in any one occurs at the expense of the others. Since the skull is rigid,

the space available is finite, increase in intracranial mass causes an increase

in intracranial pressure (ICP). As intracranial pressure rises, cerebral blood

flow (CBF) falls, there is progressive depression of consciousness, increase in

systemic arterial blood pressure leading to irregular breathing, with eventual

deep coma [18].

Hence, good management of ICP is of great importance.

1.3 Objective of study

The cerebrospinal fluid completely surrounds the brain and spinal cord. In

effect, the central nervous system float in the fluid that supports and protects

them by absorbing mechanical forces that might otherwise jar and damage

their delicate tissues.

Anthony Marmarou et al., [18], stated that the biological sequence of events

leading to a relentless increase of intracranial pressure (ICP) and eventual

neurological death are poorly understood. They further explained that if

fluid is added to or withdrawn from the cerebrospinal fluid space, pressure

will change transiently from its initial value, followed by a gradual return to

the pre-disturbance level. In addition, they recognized that the magnitude
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of pressure change and overall stability of the system was somehow related

to the IC elasticity and the persistent seepage of fluid into or out of the

cerebrospinal fluid space. Therefore, rate of cerebrospinal fluid production

and absorption is one of the major factors that cause changes in intracranial

pressure (ICP).

It is in the light of the above that this research work was undertaken to study

the production and filtration rate of the cerebrospinal fluid, so that a math-

ematical model, based on the fluid mechanics concept, can be formulated.

1.4 Aim of Study

Our aim is to formulate a mathematical model for the rates of formation of

cerebrospinal fluid (CSF) in which all the parameters that are involved in

the production are present. We shall also compare our result with previous

clinical experimental results. The result of this research work may be of use

to clinical practitioners.

1.5 Definition of Medical Terms Used

1. Aorta – the main artery of the body, from which all other systemic

arteries derive.

2. Arachnoid membrane – the middle of the three membranes covering

the brain and spinal cord, which has a fine, almost cobweb-like tex-

ture. Between it and the pia mater within lies the subarachnoid space,
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containing cerebrospinal fluid (CSF) and some large vessels.

3. Arteriole – small branch of an artery leading into many smaller vessels

called capillaries.

4. Artery – blood vessels carrying blood away from the heart.

5. Atrium – either of the two upper chambers of the heart.

6. Basilar artery – an artery in the base of the brain, formed by the union

of the two vertebral arteries.

7. Capillary – an extremely narrow blood vessel, of approximately

5− 20 µm in diameter.

8. Cardiovascular system – the heart together with the two networks of

blood vessels (the systemic circulation and pulmonary circulation).

9. Carotid artery – either of the two main arteries in the neck whose

branches supply the head and neck.

10. Cerebellum – the largest part of the hindbrain bulging back behind the

pons and medulla oblongata and overhung by the occipital lobes of the

cerebrum.

11. Cerebral tumor – an abnormal multiplication of brain cells.

12. Cerebrospinal fluid (CSF) – the clear watery fluid that surrounds the

brain and spinal cord.

13. Choroid plexus – a rich network of blood vessels, derived from the pia

mater, in each of the brain ventricles.
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14. Circulatory system – network of blood vessels.

15. Cranium – the hard part of the skull enclosing the brain.

16. Cranial vault – within the skull.

17. Digestion – the process in which ingested food is broken down in the

alimentary canal.

18. Duct – a tube-like structure or channel.

19. Epithelium – the tissue that covers the external surface of the body or

organs.

20. Endothelium lines – the inside of all hollow organs, including blood

vessels.

21. Filtration – the process of filtering liquid.

22. Granulations – small rounded outgrowths, made up of small blood ves-

sels and connective tissue on the healing surface of a wound.

23. Hydrocephalus – an abnormal increase in the amount of cerebrospinal

fluid (CSF) within the ventricles of the brain.

24. Hypertension – high blood pressure.

25. Integument – of a membrane or layer of tissue covering any organ of

the body within the skull.

26. Intracranial pressure – pressure within the skull.

27. Jugular – veins draining blood from the head (and brain).
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28. Jugular Vein – any of three veins that carry blood from the head and

neck towards the heart.

29. Midbrain – the small portion of the brainstem excluding the pons and

the medulla, that joins the hindbrain to the forebrain.

30. Morphology – study of form and structure.

31. Neurology – the study of the structure, function and diseases of the

nervous system (including the brain, spinal cord, and all the peripheral

nerves).

32. Parenchyma – the functional part of an organ, as opposed to the sup-

porting tissue.

33. Physiology – the science of the functioning of living organisms and of

their component parts.

34. Pia matter – the innermost of the three membranes surrounding the

brain and spinal cord.

35. Plasma – the straw-colored fluid in which blood cells are suspended.

36. Pons – the part of the brainstem that links the medulla oblongata and

the thalamus, bulging forwards in front of the cerebellum from which

it separated by the fourth ventricle.

37. Pulmonary – relating, associated with or affecting the lungs.

38. Pulmonary Circuit – a system of blood vessels for transport of blood

between the heart and lungs.
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39. Respiratory system – the combination of organs and tissues associated

with breathing.

40. Spinal cord – the portion of the central nervous system enclosed in

the vertebral column, consisting of nerve cells and bundles of nerves

connecting all parts of the body within the brain.

41. Subarachnoid space – the space between the arachnoid and pia meninges

of the brain and spinal cord, connecting circulating cerebrospinal fluid

(CSF) and large blood vessels.

42. Subclavian-artery – either of two arteries supplying blood to the neck

and arms.

43. Systemic Circuit – the system of blood vessels that supplies all parts

of the body except the lungs.

44. Tissue – a collection of cells specialized to perform a particular function.

45. Traumatic – a serious injury.

46. Trunk – the main part of a blood vessel, lymph vessel, or nerve, from

which branches arise.

47. Tumor – any abnormal growth in or on a part of the body. A swelling

may contain water and is not always a tumor.

48. Vein – a blood vessel conveying blood towards the heart.
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49. Ventricle – either the two lower chambers of the heart, which have thick

muscular walls. Ventricle is a cavity: eg in the heart or in the brain.

Source: Concise Medical Dictionary (Third Edition), Oxford University Press,

New York (1990) [8].



Chapter 2

Cardiovascular and Intracranial

Equations

The physiological description of the cardiovascular and intracranial vault that

was given in Chapter One is hereby complemented by their corresponding

mathematical equations for better morphological understanding.

2.1 Cardiovascular Equations

a. A geometrical argument

The relationship between linear mean velocity v and the blood flow in one

unit of time, (the flux Q), is determined by the cross sectional area A:

Q = vA

b. Bernoulli’s equation

The Bernoulli’s equation states that the total driving energy Etotal , applied

27
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to a continuously flowing, small, ideal fluid volume dV , which is flowing

frictionless and laminar, equals the sum of 3 types of energy the kinetic

energy, and the laterally directed energy (ie, the lateral pressure, P, directed

towards the walls).

Etotal = dV

(
1

2
ϕv2 + hϕ G + P

)
.

c. Poiseuilles law

The volume rate V o is equal to the driving pressure. In the left ventricle, the

blood flow is described by the cardiac output Q, so that the equation reads:

Q =
∆P

TPV R
.

Where the driving pressure ∆P is the mean arterial pressure. MAP minus

the atrial pressure, and TPVR is the total peripheral vascular resistance.

TPVR is directly related to the blood viscosity µ and to the length L of the

vascular system, and inversely related to its radius in the 4th power:

TPV R =
8µL

πr4
.

Doubling the length of the system only doubles the resistance, whereas dou-

bling the radius increases TPV R sixteen-fold.

d. Vascular Resistance in parallel organs.

In the systemic or peripheral circulation the resistance in single organs is

mainly placed in parallel, and the resistance of all organs R1 to Rn are related

to the TPVR by the following relation:

1

TPV R
=

1

R1

+
1

R2

+ ... +
1

Rn

.
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e. Vascular Resistance in Portal Circulations

There are only a few serially connected elements (portal circulation): Spleen/

liver, gut/liver, pancreas/liver and hypothalamus/pituitary. For serial arranged

resistance, the formula is:

Rtotal = R1 + R2 + ... + Rn.

f. The Law of Laplace

Since blood vessels are distenisible, an increase in pressure causes an increase

in diameter.

Laplace law:

The larger the vessel radius, the larger the wall tension (T) required to

withstand a given internal fluid pressure.

From this we deduced that, if (r1, r2) are the two principal radii of the

curvature of the wall, the tension (T) is given in terms of the pressure P ,

and radius (r), as follows:

T = P

[
r1r2

r1 + r2

]

and also the pressure is given by

P = T

[
1

r1

+
1

r2

]

in the case of a sphere of radius r, it can be shown that the equation becomes

P =
2T

r
.

In a cylinder such as a blood vessel, one of the two radii can be considered

as being infinite and the effect on P and T would thus be defined entirely
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by the finite radius at right angles to the infinite one so that

P =
T

r
.

(Source: http://hyperphysics-astrogsu.edu/Hbase/ptens.html#lap).

g. The Starling Equation

In 1896, Starling determined the transvascular fluid flow Jf by the combined

effect of the Starling forces, shown in the following equation:

Jf = Capf [(Pc − Pt)− σ(πc − πt)]

where Capf is the capillary filtration coefficient (ml of fluid per min per

kPa in 100g of tissue) and the Starling forces are the pressure differences in

brackets. Pc is the capillary hydrostatic pressure, Pt is the tissue hydrostatic

pressure (assumed to be zero), Πc is the capillary colloid osmotic pressure

(3.6kPa or 27mmHg), Πt is the tissue colloid osmotic (0.5 kPa), and σ is the

capillary protein reflection coefficient.

2.2 A Shear-Thinning Viscoelastic Constitu-

tive Equation for describing the Blood

Flow

A shear-thinning viscoelastic model with a deformation dependent relaxation

time has been developed for describing blood flow [4, 25]. This model (ac-

cording to [25], page 25-27) is defined through the following set of equations:
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Let κR(B) and κt(B) denote the reference and the current configuration of

the body B at time t, respectively. We let kp(t)(B) denote the stress-free

configuration that is reached by instantaniously unloading the body which is

at the configuration kt(B). As the body continues to deform these natural

configurations, kp(t)(B) can change, (the suffix p(t) is used in order to high-

light that it is the preferred stress-free state corresponding to the deformed

configuration at time t).

By the motion of a body we mean a one-to-one mapping that assigns to each

point X ∈ kR(B), a point x ∈ kt(B), for each t, i.e.

x = χkR
(XkR

, t),

where χkR
is the motion of the fluid at time t assigns to each position in a

reference configuration.

We assume that the motion is sufficiently smooth and invertible. We suppress

B in the notation kR(B), etc., for the sake of convenience.

The deformation gradients FkR
, and the left and right Cauchy-Green stretch

tensors, BkR
and CkR

, are defined through:

FkR
=

∂χkR

∂XkR

, BkR
= FkR

FT
kR

and CkR
= FT

kR
FkR

.

The left Cauchy-Green stretch tensor associated with the instantaneous elas-

tic response from the natural configuration kp(t) is defined in like fashion:

Bkp(t)
= Fkp(t)

FT
kp(t)

.

The shear-thinning viscoelastic stress tensor is given by

T = −pI + S
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where

S = µbBkp(t)
+ ηb

1D.

The upper convected Oldroyd derivative of Bkp(t)
,
5
Bkp(t)

, is given by

5
Bkp(t)

= −2

(
µb

αb

)1+2nb (
tr(Bkp(t)

)− 3λ
)nb [

Bkp(t)
− λI

]

λ =
3

tr(B−1
kp(t)

)

nb =
γb − 1

1− 2γb
: nb > 0.

The above model is a generalization of the classical Oldroyd-B model. Upon

rearranging the terms in the above expression, the model can be expressed

through:

T = −pI + S

S +
1

χ(S, 1)

5
S = η1

[
D +

1

χ(S,D)

5
D

]
+

3

tr(S− η1D)−1
I. (2.1)

Where

S = µbBkp(t)
+ ηb

1D. (2.2)

This implies that

Bkp(t)
=

1

µb
S− ηb

1

µb
D

χ(S,D) = χ∗(Bkp(t)
) = 2

(
µb

αb

)1+2nb (
tr(Bkp(t)

)− 3λ
)nb

λ =
3

tr(B−1
kp(t)

)
,



2.2. SHEAR-THINNING VISCOELASTIC CONSTITUTIVE EQ. 33

where S is the extral tensor, µb is the elastic modulus, ηb
1 is viscosity and D

is the deformation tensor.

The above model describes the flow of blood in the macroscale vessels. In

the microscale, the flow is reduced to the capillary blood flow described in

Chapter 1, Section 1.1.8, where two-phase flow is proposed for blood flow in

the capillary. The solid phase flow is characterised by purely elastic behaviour

induced when a RBC squeezes itself through the capillary tube and the liquid

volume phase is dominated by incompressible Newtonian fluid.

2.2.1 The Solid Volume Phase

In the microvessels blood circulation, RBCs undergo large deformation and

typically entirely fill the capillary. This situation forces the RBCs in the

microvessels to flow in files and fill the entire capillary. This volume phase,

therefore, exhibit purely elastic behaviour. The limiting case of the constitu-

tive equation given in Section 2.2 as given by Rajagopal et al., 2000, [24] was

applied to obtain a constitutive equation for blood flow with purely elastic

behaviour as follows:

It is assumed that η tends to infinity while µ is finite, with all the other

Kinematical quantities remaining finite. Thus, the deviatoric part of T is

finite and Dkp(t)
→ 0, and Bkp(t)

→ BkR
. The stress tensor was given as

T = µBkR
− pI

It is assumed that the dissipation (ζ) vanishes and ∆kp(t)
→ 0, while T
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remains finite. The stress power was given as

T ·D = Ẇ where W = Ŵ(BkR
).

The above equation also describes a neo-Hookean solid flow.

2.2.2 The Liquid Volume Phase

It is generally assumed that plasma has Newtonian rheology. We shall con-

sider a 3D, Newtonian, incompressible flow satisfying the Navier-Stokes equa-

tion for this phase volume flow. Thus, the constitutive equation shall be

T = −pI + 2µD(v).

The forces among the particles are also modeled, which we believe also play

a major role in this phase volume.

K. Boryczko et al., 2003, [5] used the fluid-particle model (FPM) to model

the flow in terms of the forces among the particles. The interaction between

the particles are represented by the collision operator

ψi =
∑
Type

FType (rij, vij, wij) · [ω(rij)− ω(rij −Rout)]

for two particles i and j interacting with each other by a collision operator ψij,

these particles have several attributes such as mass mi, moment of inertial

Ij, position rij, both translational vi and angular wj velocities and different

types of forces. The collision operator is defined as the sum of vector forces

fC , fT , fR, where fC is the conservative force, fT is the dissipative, noncentral,

translational component force, fR is the dissipative, noncentral, rotational
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component force and f is the Brownian force. Therefore, the collision operator

can be expressed as

ψij = {−pi · v′(rij) · eij − λ ·m(A(rij)I + B(rij)eij)

◦(vi + (rij × (w̃i + w̃j))eij) + (A′(rij)dW̃ S
ij + B′(rij)

1

D
tr[dW ]I

+C ′(rij)dW̃A
ij ) ◦ eij} · [ω(rij)− ω(rij −Rcut)]

where

rij = ri − rj

is a vector pointing from particle i to particle j and

eij =
ri

rj

D is the model dimension, dt is the time step, r is a scaling factor for dis-

sipation forces dWA, dWB, tr[dW ]I are respectively the symmetric, anti-

symmetric and trace diagonal of the random matrices of the independent

Wiener integral increment and A(r), B(r), C(r), A′(r), B′(r), V ′(r) are nor-

malised weight functions dependant on the separation distance rij.

2.3 Intracranial Volume Equation

The intracranial vault (ICV) volume is governed by Moronkelli’s hypothesis

which states that:

if the intracranial vault (ICV) is divided into four compartments namely;

artery, venous, tissue and cerebrospinal fluid (CSF) compartments. The

constancy of the resulting total intracranial volume can be expressed by a

differential equation given below:
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Va is the volume of the arterial compartment,

Vv is the volume of the venous compartment,

Vtiss is the tissue volume of the intracranial vault, (ICV) tissue

and

Vcsf is the volume of the CSF compartment.

This means that:

dVa

dt
+

dVv

dt
+

dVtiss

dt
+

dVCSF

dt
= 0 (2.3)

If each compartment is considered separately, we then find the value of each

compartment volume in terms of their compliance.

The arterial compartmental volume is given by:

dVa

dt
= Cai

d(Pa − Pic)

dt

Cai =
1

Ka(Pa − Pic)
.

Therefore

dVa

dt
=

1

Ka

d(Pa − Pic)

(Pa − Pic)dt

dVa =
1

Ka

d(Pa − Pic)

(Pa − Pic)

and

Va =
1

Ka

ln(Pa − Pic) + Vai.
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For the venous compartment:

dVv

dt
= Cvi

d(Pa − Pic)

dt

Cvi =
1

Kv(Pv − Pic − Pv1)

dVv

dt
=

1

kv(Pv − Pic − Pv1)

d(Pv − Pic)

dt

dVv =
d(Pv − Pic)

Kv(Pv − Pic − Pv1)

and

Vv =
1

Kv

ln(Pv − Pic − Pv1) + Vvi.

For the tissue compartment:

dVtiss

dt
= −Ctiss

dPic

dt

Ctiss =
1

KE[Pic + ( Pic

Po1
)2]dt

.

Therefore,

dVtiss

dt
= − d(Pic)

KE[Pic + ( Pic

Po1
)2]dt

dVtiss = −(Po1)
2

KE

[
d(Pic)

Pic(Po1)2 + (Pic)2
]

and

Vtiss = −(Po1)
2

KE

ln((Pic)
2 + (Po1)

2Pic)

2Pic + (Po1)2
+ Vtiss.



38 CHAPTER 2. CARDIOVASCULAR AND INTRACRANIAL EQ.

For the cerebrospinal compartment: Therefore, from equation (2.3)

VCSF = −(Va − Vai)− (Vv − Vvi)− (Vtiss − Vtiss) + VCSFi. (2.4)

(See M. Ursino, [29].)



Chapter 3

Mathematical Formulation

3.1 Introduction

Blood flow in the capillaries was discussed in Section 1.1.8 as consisting of

a two-flow-phase, as the deformed RBCs move in a single file along these

microvessels. That is, the solid phase and the liquid phase. The flow of

elastic deformable RBCs constitute the solid volume phase, while the flow of

blood plasma and the rest of the blood composition form the liquid volume

phase. In addition, we shall also recall from Section 1.1.10 where we stated

that the CSF is formed from the blood plasma in such a way that the plasma

filters through the specialised capillary walls and the RBCs remain in the

capillaries. In view of the above, we shall assume that the formation of

CSF takes place at the liquid volume phase of blood flow in the specialised

capillary systems.

39
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3.2 Method of Study

As stated above, we assumed that CSF is formed from the liquid volume

phase of blood in the specialised capillaries and that the filtration of nutri-

ents and the release of oxygen from the RBCs are inhibited in this type of

capillaries [14, 23]. Therefore, the theoretical effect of RBCs on the flow in

this region is ignored in this study. The flow of CSF in the subarachnoid

space is assumed to be very slow, to such an extent that we assume it is at

rest in this study. Since filtration of CSF takes place mainly at the liquid

volume phase, the portion of the capillary involved in our study shall be the

space between two consecutive deformed RBCs in the capillary (diagram 3

refers). We shall apply the “freezed” method [5] to the segment to be stud-

ied. However, the fluid particles are frozen only along the flow direction and

can move along the sagittal directions. We can now model the quasielastic

nature of the capillary wall.The axial elasticity is less important and can be

neglected. This method is considered to be physically correct because in the

real blood vessels, the capillary wall consist of a layer of endothelial cells.

These cells cannot move, but can deform. This method was also used by

Boryczko K. et. al., [5] to study blood flow in the capillary.

3.3 Presentation of the Problem

The space, with its permeable wall, between two consecutive RBCs, where

CSF is assumed to be formed, will be studied intensively. The interior of the

specialised intracranial capillary, the space between two consecutive deformed
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RBCs shall be denoted by Ω and the subarachnoid space (SAS), where the

CSF is assumed to be at rest after formation, is denoted by Ωo. The arterial

end of Ω shall be denoted by Γ1 while its venous end shall be denoted by Γ2.

Γ1 Γ2

Γ3

Ω

Γ1 and Γ2 are assumed to be artificial boundaries. Let v(x)in be the fluid

velocity in through Γ1 at x ∈ Γ1 and v(y)out be the fluid velocity out through

Γ2 at y ∈ Γ2. The permeable wall of the capillary together with the passage

(the pia mater and epithellial layer) is referred to as the permeable interface,

and it is denoted by Γ3. We assume that this boundary condition takes into

account a “type” of periodic flow in the capillary in such a way that we can

assume “vin = vout”. We shall take an arbitrary patch from Γ1 which is

congruent to a patch in Γ2 to validate this assumption. If Γ∗1 and Γ∗2 be these

two patches respectively, then

∫

Γ3

ργovin · n ds =

∫

Γ2

ργovout · n ds = 0.

The net effect of various pressures responsible for filtration in the capillary

is denoted by p and in the subarachnoid space by po.

The diagrams below give a visual representation of the geometry of the whole

process.
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Γ2

Γ1

subarachnoid space

subarachnoid space

Γ3

Γ3

pia mater

pia mater
n

nn

Ω capillary

Deformed RBC

Deformed RBC

Diagram 1 A schematic diagram of CSF production

Σ
Ωo

Γ

n

3

Ω

Diagram 2 Cross-sectional diagram of diagram 1
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Γ3

Γ3

Γ2
Ω

Deformed RBC Deformed RBC

Γ1

Diagram 3 Extract of the cerebral capillary from diagram 1.

3.4 Preliminaries

In the light of our discussion in Section 3.1, CSF is assumed to be formed

only at the liquid volume phase of blood flow in the specialised capillaries.

Specifically, it is formed from the blood plasma which is generally accepted

to be a Newtonian fluid [2, 25, 28]. Hence, our constitutive equation for

the flow of blood plasma inside Ω shall be the Navier-Stokes’ constitutive

equation for incompressible fluid.

Blood flow in the capillaries largely depend on the diameter of the capillar-

ies. RBCs which are about 8 µm in diameter [9] undergo deformation to

enter into capillaries of which the diameter can be as small as 4 µm [2]. It is

important to note that RBCs will flow with less restriction in the capillaries

with diameter of 8 µm and above. We shall limit the scope of this study

to capillaries of diameter ranging from 4 µm to 8 µm. In which case, de-

formed RBCs will typically fill the capillaries and will be squeezed through

the capillary tubes. The flow will be assumed to be greatly restricted and

very slow. Our mathematical model for this flow shall be the linear Stokes’

equation with the appropriate boundary conditions.
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3.4.1 Assumptions

Movement of body fluid across membranes is a basic physiological require-

ment. Mathematical analysis of these movements would be highly complex

without the use of simplifying models and assumptions about the micro-

filtration. Therefore, the following assumptions are considered:

1. The cerebral capillary is modelled as a curved fixed tube.

2. The rate of flow across the wall of the cerebral capillary, per unit area

of the wall surface, is small.

3. The flow of Cerebrospinal Fluid (CSF) in the Cerebrospinal Fluid

(CSF) compartment is very slow, in such a way that we assume it

to be constant, and the CSF compartment is always filled with fluid.

4. The (CSF) is a homogeneous Newtonian fluid that acts much like water.

5. The pathway of fluid across the capillary wall through the pia mater

and epithelium into the subarachnoid space is distributed continuously

through the walls of these specialized capillaries.

6. The motion of fluid is steady.

7. The intracranial pressure (the pressure of the cranium vault) is the

same as the pressure of the CSF in the SAS.

8. At the wall of the tube, there is a no-slip condition of the fluid.

9. The flow through the permeable boundary is always in the direction of

the outward normal, n, to the boundary Γ3.
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10. The body forces which act on the fluid inside Ω and on the boundary

Γ3 will be modelled as the collision operator which is defined as the

sum of vector forces fC , fT , fR, where fC is the conservative force, fT

is the dissipative, noncentral, translational component force, fR is the

dissipative, noncentral, rotational component force. We assume that

these forces are known entities and that each force will affect the force

which acts on the boundary. We denote the total force inside Ω as a

constant force at each x ∈ Ω as fΩ and the total force, associated with

fΩ on the fluid inside the boundary as γo(fΩ) = fΓ3n. (This is discussed

in section 2.2.2).

3.4.2 Notations, Definitions and Spaces

In this section we wish to explain the symbols and notations used in this

work. In the second part of this section we focus on the structure or the

environment to which the vector-valued function v, its trace and derivatives

belong.

The units for some quantities are in brackets.

Ω, Ωo : bounded domain in R3

x = (x1, x2, x3) : position in 3-dimensional space

v(x) : the velocity field in the fluid (ms−1) at x ∈ Ω

ρ : blood volume density (kgm3) in Ω

ρo : filtrate volume density in Ωo
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µ : coefficient of blood viscosity (Nm2s) in Ω

µo : coefficient of filtrate viscosity (Nm2
s ) in Ωo

ds : Lebesgue measure of surface area on Γ3(m
2)

da(x) : the effective area measure on Γ3

ζ(x) : density function in terms of the area measure da,

i.e. da = ζds; 0 < ζ(x) < 1

δ(y) : surface thickness at any point y ∈ Γ3(m)

σ(y) : surface density of the fluid at any y ∈ Γ3(kg−2),

i.e. σ(y) = δ(y)ζ(y)ρ

p : pressure (Nm−2) of blood in Ω

po : pressure (Nm−2) of CSF in Ωo

ηv(y)n : the normal velocity component at y ∈ Γ3

[∇v]i,j = ∂jvi : the velocity gradient (s−1)

ω = ∇∧ v : the vorticity (s−1) (wedge denotes vector product)

fΩ : the body force acts on the fluid inside Ω

fΓ3 : the body force acts on the fluid trough the boundary Γ3.

Ω is a bounded domain in Rn, n = 2, 3 with a smooth (at least C2) boundary.

Let n = n(y) denote the unit exterior normal to Γ3 at y. We shall be

concerned with smooth vector fields v = v(x) defined on Ω such that on Γ3,

it has the form

γo v(y) = −η(y)n(y), y ∈ Γ3

where γo is the trace operator denoting boundary values and η is a smooth

scalar field defined on Γ3.
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Lp and Sobolev spaces : Lp(Ω) will denote the space of functions f , whose

pth power, |f|p, is integrable in Ω. The norm in Lp(Ω) will be denoted by

|| · ||Lp(Ω). The scalar product and norm in L2(Ω) will be denoted with

(· , ·)L2(Ω) and || · ||L2(Ω) respectively (both for scalar and vector functions).

For s ∈ N, Hs(Ω) will denote the Sobolev space of functions v ∈ L2(Ω) such

that all their (distributional) derivatives of order up to s are functions of

L2(Ω).The norm and the inner product in L2(Ω) are defined as

(u,v)L2(Ω) =

∫

Ω

uvdx for u,v ∈ L2(Ω)

and

‖u‖2
L2(Ω) =

∫

Ω

u2dx for u ∈ L2(Ω)

The norm in Hs(Ω) will be denoted by || · ||s.
Hm(Ω) is the closure of Cm(Ω) in Wm(Ω) with respect to the norm of

Wm(Ω). Hm(Ω) is a Hilbert space, Hm(Ω) = Wm(Ω).

Trace spaces : If Γ ⊂ ∂Ω is open and non empty, then the trace space of

Hs(Ω), (s ≥ 1), i.e. the space of functions defined on Γ which are traces of

functions belonging to Hs(Ω), is indicated by Hs− 1
2 (Γ). The trace operator

γo is such that

γo : Hs(Ω) → Hs− 1
2 (Γ)

is surjective and continuous and there exist an injective, linear, and con-

tinuous map L : Hs− 1
2 → Hs(Ω) called lifting, such that λ = γoLλ for all

λ ∈ Hs− 1
2 (Γ). In particular, there exist a constant β such that the following

trace inequality holds:

||γoΦ||H 1
2 (Γ3)

≤ β||Φ||1 ∀ Φ ∈ H1(Ω).
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We assume v ∈ H1(Ω), where H1(Ω) is a Sobolev space of vector valued

functions.

We denote the scalar product and norm in L2(Γ) by (·, ·)Γ and || · ||Γ respec-

tively.

The norm and the inner product of the Trace spaces in Hm(Γ) will be indi-

cated by || · ||m,Γ and ( , )m,Γ, respectively.

Let W(Ω) denote the subspace of test functions in H1(Ω) with respect to

the Sobolev norm ‖ · ‖1. The weak solution will also be in W(Ω). See [1].

Definition 3.1 Let W(Ω) be a space such that for v(x) ∈ W(Ω), then:

(i) v ∈ H1(Ω)

(ii) ∇ · v = 0

(iii) γov = −ηvn on Γ3

(iv) γov = 0 on Γ1 ∪ Γ2

(v) ηv ∈ H1
o (Γ3)

The norm of γov ∈ L2(Γ3) on the boundary Γ3 is chosen as

‖γov‖2
Γ3

= ‖η‖2
Γ3

=

∫

Γ3

|γov|2ds.

The associated scalar product is

(γou, γov)Γ3 =

∫

Γ3

γou · γovds.
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We shall assume throughout that the mass density of the fluid in the interface

σ(x) = ζρ is bounded and bounded away from zero: i.e. there exist constants

s and S such that

0 < s ≤ σ(x) ≤ S for all x ∈ Γ

and

ρ(
1

2
− ζ) < S.

It is assumed that the function σ ∈ C∞(Γ).

The constant C which appears in inequalities denotes a generic positive con-

stant. This means that C may take different values even in the same calcula-

tion. Sometimes it is necessary to indicate the quantities on which a constant

depends in brackets or by a subscript.

3.5 Equation of motion inside Ω

Let v and p denote the velocity and pressure fields at x ∈ Ω. The constitutive

equation of motion is giving by:

ρDtv = ∇ ·T(p,v) + fΩ (3.1)

with the stress tensor T

T(p,v) = −pI + µA(v), (3.2)

and the material derivative Dt is defined as

Dt := ∂t + v · ∇.
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ρ > 0 denotes the density of the fluid, and µ > 0 the viscosity, which are

both assumed to be constant. fΩ is the the sum of the vector forces fC , fT ,

and fR defined in Section 2.2.2.

D(v) =
A(v)

2

is the rate of the deformation tensor in the liquid phase and A(v) is defined

as

A(v) = ∇v + (∇v)T .

In the constitutive equation (3.1) we need to obtain the divergence of the

stress tensor T:

∇ ·T(p,v) = ∇ · (−pI + µ(∇v + (∇v)T )

= −∇ · (pI) + µ∇ · (∇v + (∇v)T )

= −∇p + µ(∆v +∇(∇ · v))

= −∇p + µ∆v (3.3)

since ∇ · v = 0.

The assumption is a steady flow inside Ω, through the pia mater boundary

layer, Γ3. Our constitutive equation for describing blood flow in the capillary

shall be given as follows:

Since we are considering capillaries with diameter less than 8 µm, we expect

a slow, laminar and steady flow, i.e. creeping flow, hence the term

ρ(v · ∇)v = 0

and in view of (3.2) and (3.3), (3.1) becomes

−µ∆v = −∇p + fΩ in Ω (3.4)
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with the equation of continuity

∇ · v = 0 in Ω.

3.6 At the Boundary

3.6.1 The Deformation Tensor at the Boundary

In this section we derive expressions at the boundary Γ3 for the gradient of

vector fields which satisfy γov = −ηvn as well as other associated tensors.

The unit outward normal to Γ3 is given by n and γo is the trace operator

used to restrict v, the velocity field, to the boundary interface, Γ3. Towards

this goal, we assume there exist a local orthogonal system, in Γ3, consisting

of normal curves y1(s1) and y2(s2) where y ∈ Γ3 and s1, s2 denote the arc

length. Let τκ = y′κ (κ = 1, 2) denote the unit tangent vectors to the curve

yκ.

τ1 and τ2 are chosen such that τ1 ∧ τ2 = n.

In such a coordinate system the surface gradient of a scalar field f on Γ3 is

defined as

∇sf =
∂f

∂s1

τ1 +
∂f

∂s2

τ2. (3.5)

For a function defined on Ω, the relationship between gradient and surface

gradient is given by:

γo∇f = ∇sγof + [γ1f ]n, (3.6)

where γ1f :=
∂f

∂n
denotes the normal derivative.
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The surface gradient of vector field f on Γ3 is defined as

∇sf =
∂f

∂s1

⊗τ1 +
∂f

∂s2

⊗τ2. (3.7)

The relationship between gradient and surface gradient for the vector field f

is given by:

γo∇f = ∇sγof + [γ1f]⊗n. (3.8)

Similarly, for the vector field f, we have the following definitions and rela-

tionships

∇s ∧ f := τ1 ∧ ∂f

∂s1

+ τ2 ∧ ∂f

∂s2

(3.9)

γo∇∧ f = ∇s ∧ γof + n ∧ γ1f (3.10)

∇s · f = τ1 · ∂f

∂s1

+ τ2 · ∂f

∂s2

(3.11)

γo∇ · f = ∇s · γof + n · γ1f (3.12)

See [21].

By (3.6), (3.8), (3.10) and (3.12) taking into account, the Serret-Frenet for-

mulas for curves without torsion as well as the chosen orientation of tangent
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vectors, we derive the following expressions:

∇s[ηvn] =
∂(ηvn)

∂s1

⊗τ1 +
∂(ηvn)

∂s2

⊗τ2 from (3.10)

=

(
∂ηv

∂s1

n + ηv
∂n

∂s1

)
⊗τ1 +

(
∂ηv

∂s1

n + ηv
∂n

∂s2

)
⊗τ2

=
∂ηv

∂s1

n⊗τ1 + ηv
∂n

∂s1

⊗τ1 +
∂ηv

∂s1

n⊗τ2 + ηv
∂n

∂s2

⊗τ2

=
∂ηv

∂s1

n⊗τ1 +
∂ηv

∂s2

n⊗τ2 + ηv(−κ1τ1)⊗ τ1 + ηv(−κ2τ2)⊗ τ2

= n⊗∂ηv

∂s1

τ1 + n⊗∂ηv

∂s2

τ2 − ηv[κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2]

= n⊗
[
∂ηv

∂s1

τ1 +
∂ηv

∂s2

τ2

]
− ηv [κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2]

= n⊗∇sηv − ηv[κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2]

(3.13)

where κ1, κ2 are the curvatures of the orthogonal normal curves in Γ3 and κ,

the mean curvature, in the sense that κ1 + κ2 = κ. We also have:

∇s ∧ [ηvn] = τ1 ∧ ∂(ηvn)

∂s1

+ τ2 ∧ ∂(ηvn)

∂s2

from (3.12)

= τ1 ∧
(

∂ηv

∂s1

n + ηv
∂n

∂s1

)
+ τ2 ∧

(
∂ηv

∂s2

n + ηv
∂n

∂s2

)

= τ1 ∧
(

∂ηv

∂s1

n− ηvκ1τ1

)
+ τ2 ∧

(
∂ηv

∂s2

n− ηvκ2τ2

)

=
∂ηv

∂s1

(τ1 ∧ n)− ηvκ1(τ1 ∧ τ1) +
∂ηv

∂s2

(τ2 ∧ n)− ηvκ2(τ2 ∧ τ2)

=

(
∂ηv

∂s1

τ1 +
∂ηv

∂s2

τ2

)
∧n

= ∇sηv ∧ n

(3.14)



54 CHAPTER 3. MATHEMATICAL FORMULATION

∇s · [ηvn] = τ1 · ∂(ηvn)

∂s1

+ τ2 · ∂(ηvn)

∂s2

from (3.14)

= τ1 ·
(

∂ηv

∂s1

n− ηvκ1τ1

)
+ τ2 ·

(
∂ηv

∂s2

n− ηvκ2τ2

)

= −ηvκ1 + (−ηvκ2)

= −ηvκ. (3.15)

From ∇ · v = 0, we have γo∇ · v = 0.

Therefore,

γo∇ · v = ∇s · γov + n · γ1v = 0. from (3.12)

Hence,

n · γ1v = −∇s · γov

= −∇s · (−ηvn)

= ∇s · (ηvn)

= −ηvκ (3.16)

For the vorticity w, we have from (3.10)

γow = γo∇∧ v

= ∇s ∧ γov + n ∧ γ1v

= ∇s ∧ (−ηvn) + n ∧ γ1v

= −∇s ∧ (ηvn) + n ∧ γ1v

= −∇sηv ∧ n + n ∧ γ1v

= −n∧∇sηv + n ∧ γ1v

= n ∧ [−∇sηv + γ1v]. (3.17)
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Now

γow ∧ n = n ∧ [γ1v−∇sηv]

= n · n(γ1v−∇sηv)− n · (γ1v +∇sηv)n

= γ1v−∇sηv − (n · γ1v + n · ∇sηv)n

= γ1v−∇sηv − (n · γ1v)n, (3.18)

From this, we have that

γ1v = γow ∧ n−∇sηv + (n · γ1v)n

= γow ∧ n−∇sηv − ηvκn
(3.19)

Therefore,

∇sγov = ∇s(−ηvn)

= ηv[κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2]− n⊗∇sηv

(3.20)

But γo∇v = ∇sγov + [γ1v]⊗ n.

Thus,

γo∇v = ηv[κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2]− n⊗∇sηv

+ [γow ∧ n]⊗ n− [∇sηv + ηvκn]⊗ n
(3.21)

From (3.21), we derive an explicit expression for γoD(v) as follows: We first

observe that

γo∇Tv = ηv[κ1τ1⊗τ1+κ2τ2⊗τ2]−∇sηv⊗n+n⊗(γow∧n)−n⊗[∇sηv+ηvκn].
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Therefore

γoD(v) =
1

2
[γo(∇v +∇Tv)]

= ηv[κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2 − ηvκn⊗ n]

+
1

2
[γow ∧ n− 2∇sηv]⊗ n

+
1

2
n⊗ [γow ∧ n− 2∇sηv]. (3.22)

Hence

γoD(v) = ηv[κ1τ1 ⊗ τ1 + κ2τ2 ⊗ τ2 − κn⊗ n] +
1

2
ψ ⊗ n +

1

2
n⊗ ψ

= −ηv[κn⊗ n− κ1τ1 ⊗ τ1 − κ2τ2 ⊗ τ2] +
1

2
(ψ ⊗ n + n⊗ ψ)

= −ηvM +
1

2
N,

(3.23)

where the tensors M and N are defined by

M := κn⊗ n− κ1τ 1 ⊗ τ1 − κ2τ2 ⊗ τ2 (3.24)

N := n⊗Ψ + Ψ⊗ n (3.25)

and

Ψ = w ∧ n− 25s η. (3.26)

It will be noted that Ψ is a sum of tangential vectors, and therefore tangential.

In addition, γoD is symmetrical.



3.6. AT THE BOUNDARY 57

It is also necessary to obtain an expression for the normal component of de-

formation at the boundary Γ3, we therefore deduce from (3.23) the following

relations:

γoD(v)τ1 = ηvκ1τ1 +
1

2
(ψ · τ1)n (3.27)

γoD(v)τ2 = ηvκ2τ2 +
1

2
(ψ · τ2)n (3.28)

and

γo[D(v)]n = −η(κn⊗ n− κ1τ1 ⊗ τ1 − κ2τ2 ⊗ τ2)n

+
1

2
(n⊗Ψ + Ψ⊗ n)n

= −η(κn ∧ n− κ1τ1 ∧ τ1 − κ2τ2 ∧ τ2)n

+
1

2
(n ∧Ψ + Ψ ∧ n)n

= ηκn +
1

2
Ψ +

1

2
Ψ

= −ηκn + Ψ. (3.29)

From above and the tangentiality of Ψ it follows that

n · γo[D(v)]n = −ηvκ + n ·Ψ
= −ηvκ

(3.30)

We shall use the expression (3.27), (3.28) and (3.29) to obtain the matrix

representation of the tensor γoD, (deformation of the epithelial membrane

and matter layer), as well as the symmetry of γoD as follows:
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γo[Dv] =
1

2




τ1 ·Dτ1 τ2 ·Dτ1 n ·Dτ1

τ1 ·Dτ2 τ2 ·Dτ2 n ·Dτ1

τ1 ·Dn τ2 ·Dn n ·Dn




=
1

2




2ηvκ1 0 (n ∧w− 2∇ηv) · τ1

0 2ηvκ2 (n ∧w− 2∇ηv) · τ2

(n ∧w− 2∇ηv) · τ1 (n ∧w− 2∇ηv) · τ2 ∇ · v− 2ηvκ




= −ηv




−κ1 0 0

0 −κ2 0

0 0 κ


 +

1

2




0 0 ψ · τ1

0 0 ψ · τ1

ψ · τ1 ψ · τ2 0




We make use of (3.2) and (3.30) to obtain

γo(n ·Tn) = n · γo(−pI + 2µD(v))n

= −n · (−γopIn + 2µD(v)n)

= −γop(n · I) + 2µn · γo(D(v))n

= −γop + 2µ(−κη)

= −(γop + 2µκη). (3.31)

It is important to note that since the fluid in Ωo is at rest for steady flow,

the pressure po is a constant and

n · γoTon = po (3.32)
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3.6.2 At the Interface

We use the first Rivlin-Erickson tensor given in Section 3.6.1 to describe the

flow through the interface. Let the unit outward normal to Γ3 be denoted by

n, and the trace operator γo will be used to denote restriction of v to Γ3. It

is assumed that the flow through the permeable boundary is always in the

direction of the outer normal, i.e.

γov = −ηn on Γ3. (3.33)

The scalar-valued function η defined on Γ3 is unknown. The interface is

thought of as a grid with an irregular grating. This is modelled by introdu-

cing an effective surface measure da on Γ3, related to the Lebesgue-induced

measure ds by the relation

da = ζ(y)ds(y)

with ζ(y), a measurable function defined on Γ3 such that 0 ≤ ζ(y) ≤ 1
2

for

y ∈ Γ3.

The effect of this modelling is that the mass density of the fluid in the

interface is replaced by ζ(y)ρ. In addition, we introduce the virtual thickness

of the interface as a positive function δ > 0 defined on Γ3.

Having the above quantities, we define the virtual surface density of the fluid

in Γ3 as

σ(y) := ζ(y)δ(y)ρ.

We also impose the condition of “perfect contact” at the interface which

states that the velocity field γov at Γ3 equals the velocity field in the interface
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layer. Thus, if the velocity field in the interface is of the form v∗ = −ηn then

η = ηv

for the material in the boundary.

It is assumed that the filtration is through holes.

For every measurable boundary patch Γ′3 ⊂ Γ3, we propose the following

balance of linear momentum, for a steady flow.

∫

Γ′3

ζρηηvn−
∫

Γ′3

∇s ·TΓ3 =

∫

Γ′3

γoTn +

∫

Γ′3

γoTon +

∫

Γ′3

fΓ3n (3.34)

where

TΓ3 = stress tensor for material in the surface

To = stress tensor for the fluid in Ωo

TΓ3 is to be chosen: We define a “Rivlin-Erickson tensor” for the surface

material by

AΓ3(η) = 2[∇sη ⊗ n + n⊗∇sη]

and make the choice

TΓ3(η) = µΓ3AΓ3 .

In addition, we take the scalar product of (3.34) with n, substitute for TΓ3

and AΓ3 and use (3.31) to obtain the following for any arbitrary patch

Γ′3 ⊂ Γ3:

ζρη2
v − 2µΓ3∆sηv + po − n · γoTn = fΓ3 (3.35)

with ∆s = ∇s · ∇s the Laplace-Beltrami operator.
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The positive constant µΓ3 differ in dimensionality from the corresponding

‘volume’ constant µ in the fluid, since µ is 3-dimensional and µΓ3 is 2-

dimensional. Let

θµ =
µΓ3

µ
.

We make use of (3.31) and substitute for µΓ3 so that (3.35) becomes

ζρη2
v + 2µκηv − 2µθµ∆sηv + γop + po = fΓ3 .

Therefore, passage of fluid across the boundary interface, Γ3, shall be repre-

sented by:

ζρη2
v + 2µκηv − 2µθµ∆sηv + γop = −po + fΓ3 . (3.36)

The linearised form of (3.36) is derived by assuming that all the velocities

are “small” so that products of terms with v in them may be considered

negligible. The linearised form of (3.36) is therefore given as:

2µκηv − 2θµµ∆sηv + γop = −po + fΓ3 . (3.37)

3.7 Existence Theory

In view of (3.4) and (3.37), we have

−µ∆v = −∇p + fΩ in Ω

2µκηv − 2µθµ∆sηv + γop + po = fΓ3 on Γ3

∇ · v(x) = 0 x ∈ Ω





(3.38)

subject to the constraints

ηv = 0 on Γ1 ∪ Γ2 :

ηv = 0 on ∂Γ3 = (Γ1 ∪ Γ2) ∩ Γ3



 (3.39)
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Definition 3.2 We denote the body force on the fluid in the boundary Γ3 in

a similar way as the velocity through the boundary, and that is as follows:

γo(fΩ) = fΓ3n.

3.7.1 The Weak Formulation

W(Ω) = {v ∈ H1(Ω) : v ∈ C∞(Ω), ∇ · v = 0 in Ω, γov = −ηvn ∈ L2(Γ3),

γov = 0 at the curve c, where Γ1 and Γ2, Γ2 and Γ3 meet respectively, γov = 0

on Γ1 and Γ2}.

Lemma 3.7.1a For v ∈ W(Ω),

||D(v)||2L2(Ω) =
1

2

[
||∇v||2L2(Ω) +

∫

Γ3

κ(y)η2
v(y)ds(y)

]
.

Proof.

D(v) =
1

2

[∇v + (∇v)T
]
,

taking the inner product of D(v) with itself in L2(Ω) gives

(D(v),D(v))L2(Ω) =
1

4

(∇v + (∇v)T ,∇v + (∇v)T
)
L2(Ω)

=
1

4

[
||∇v||2L2(Ω) + 2

(∇v, (∇v)T
)
L2(Ω)

+ ||(∇v)T ||2L2(Ω)

]

=
1

4

[
2||∇v||2L2(Ω) + 2

(∇v, (∇v)T
)
L2(Ω)

]
.

Next, we derive an expression for (∇v,
(∇v)T

)
L2(Ω)

, using the Gauss diver-

gence theorem:

(∇v, (∇v)T
)
L2(Ω)

=
3∑
i,j

∫

Ω

∂ivj∂jvidx

=
3∑
i,j

∂i[vj∂jvi]dx
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since ∇ · v = 0. However,
∫

Ω

∂i[vjvj]dx =

∫

Γ3

nivj∂jvids

by the divergence theorem. Therefore,

(∇v, (∇v)T
)
L2(Ω)

=
3∑
i,j

∫

Γ3

nivj∂jvids

= −
3∑
i,j

∫

Γ3

ηvninj(∂jvi)ds

=

∫

Γ3

ηvn · (∇v)nds

=

∫

Γ3

ηvn ·
[
1

2
(∇v + (∇v)T

]
nds

=

∫

Γ3

ηvn ·D(v)nds

=

∫

Γ3

ηv(−κηv)ds,

we then have

(D(v),D(v))L2(Ω) =
1

4

[
2||∇v||2L2(Ω) − 2

∫

Γ3

ηv(−κηv)ds

]

=
1

2

[
||∇v||2L2(Ω) +

∫

Γ3

κη2
vds

]

(D(v),D(v))L2(Ω) = ||D(v)||2L2(Ω)

=
1

2

[
||∇v||2L2(Ω) +

∫

Γ3

κη2
vds

]

¥

Corollary 3.7.1 For any v ∈ W(Ω),

||A(v)||2L2(Ω) = 2

(
||∇v||2L2(Ω) +

∫

Γ3

κη2
vds

)
.
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Proof.

Since

D(v) =
A(v)

2
,

the proof is part of the proof for Lemma 3.7.1.

Lemma 3.7.1b (A sharp Poincaré Inequality)

There exist constants Cp > 0 and cp > 0 such that

||∇v||2Ω ≥ Cp||v||2Ω
||∇sηv||2Γ3

≥ cp||ηv||2Γ3
for all v ∈ W(Ω).

This is possible because γov = 0 on Γ1 ∪ Γ2 and ηv ∈ H1
o (Γ3).

Definition 3.3 We define the traditional norm in H1(Ω) as

||v||21 = ||∇v||2Ω + Cp||v||2Ω.

In Ω:

We recollect from (3.38)1 that the equation of the fluid flow inside Ω is given

by

−µ∆v = −∇p + fΩ in Ω.

Let ϕ ∈ W(Ω) be a test function. It has the following properties:

(i) ϕ ∈ C∞(Ω) sufficiently differentiable.

(ii) ∇ · ϕ = 0 in Ω

(iii) γoϕ = 0 on Γ1 ∪ Γ2

(iv) γoϕ = 0 on Γ1 and Γ2

(v) ηϕ ∈ H1
0 (Γ3).
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We take the scalar product of (3.38)1, with ϕ ∈ W(Ω) to obtain

−(µ∆v, ϕ)L2(Ω) = −(∇p, ϕ)L2(Ω) + (fΩ, ϕ)L2(Ω). (3.40)

We now calculate each term of (3.40): The flow is divergence free, therefore

∇ ·A(v) = [∂i(∂jvj) + ∂i(∂ivj)]

= [∂j(∇ · v) + ∆vj] = ∆v.

Therefore,

(∆v, ϕ) =

∫

Ω

∆v · ϕdx =

∫

Ω

ϕ · ∇ ·A(v)dx

=

∫

Γ

γoϕ · γoA(v)nds−
∫

Ω

∇ϕT : A(v)dx

= −
∫

Γ3

ηϕn · γoA(v)nds− 1

2

∫

Ω

A(v) : A(ϕ)dx

= 2

∫

Γ3

κηvηϕds− 1

2

∫

Ω

A(v) : A(ϕ)dx

∴ −(µ∆v, ϕ) = −µ

∫

Ω

∆v · ϕdx

= −2µ

∫

Γ3

κηvηϕds +
µ

2

∫

Ω

A(v) : A(ϕ)dx

(3.41)

(∇p, ϕ) =

∫

Ω

∇p · ϕdx

=

∫

Γ

γop(γo, ϕ · n)ds−
∫

Ω

p∇ · ϕdx

= −
∫

Γ3

γopηϕds

∴ −(∇p, ϕ)Ω = −
∫

Ω

∇p · ϕdx

=

∫

Γ3

γopηϕds (3.42)
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In view of (3.41) and (3.42), we rewrite (3.40) in scalar-product notation as

µ

2
(A(v),A(ϕ))Ω − 2µ(κηv, ηϕ)Γ3 = (γop, ηϕ)Γ3 + (fΩ, ϕ)Ω (3.43)

At the Boundary interface Γ3:

The equation of the fluid flow across the boundary Γ3 was given as (3.38)2

which we recall as follows:

2µκηv − 2µθµ∆sηv + γop + po = fΓ3 on Γ3.

The scalar product of the above with ηϕ gives:

2µ(κηv, ηϕ)Γ3 − 2µθµ(∆sηv, ηϕ)Γ3 + (γop, ηϕ)Γ3 + (po, ηϕ)Γ3

= (fΓ3 , ηϕ)Γ3 (3.44)

We combine (3.43) with (3.44) and rearrange to obtain

µ

2
(A(v),A(ϕ))Ω − 2µθµ(∆sηv, ηϕ)Γ3 = (fΩ, ϕ)Ω + (fΓ3 , ηϕ)Γ3 (3.45)

But

∇ · ϕ = 0

implies

0 =

∫

Ω

∇ · ϕdx =

∫

Γ

γoϕ · nds

= −
∫

Γ3

ηϕds.

Now

(∇sηv, ηϕ)Γ3 =

∫

C

(τ · ∇sηvηϕ)d`− (∇sηv,∇sηϕ)Γ3

where c = curves where Γ1, Γ2 and Γ3 meet. We shall assume that on these

curves ηϕ = 0.
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Γ3

Γ3

Γ1
Γ2

c c

Then the line integrals vanish.

Thus, from (3.45) the weak formulation of (3.38) is given as

2µθµ(∇sηv,∇sϕ)Γ3 +
µ

2
(A(v),A(ϕ))Ω

= (fΩ, ϕ)Ω + (fΓ3 , ηϕ)Γ3 (3.46)

with ϕ ∈ W(Ω).

The Energy Identity

(3.46) holds for all v(x) ∈ W(Ω). We deduce from Corollary 3.7.1 that

(A(v),A(ϕ))Ω = 2(∇v,∇ϕ)Ω + 2(κηv, ηϕ)Γ3 . (3.47)

We substitute (3.47) into (3.46) to obtain

µ(∇v,∇ϕ)Ω + 2µθµ(∇sηv,∇sηϕ)Γ3 + µ(κηv, ηϕ)Γ3

= (fΩ, ϕ)Ω + (fΓ3 , ηµ)Γ3 (3.48)

(3.48) is our energy identity.

3.7.2 Existence of a Weak Solution

We shall base our definition of of weak solution on the energy identity (3.48)

above. It should be noted, however, that (3.48) does not contain second or-
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der derivatives, and we observe that (3.48) makes sense in space W(Ω).

An additional restriction on v is that we look only at v ∈ H1(Ω) for which

ηv ∈ H1
0 (Γ3).

We also observe that v ∈ W(Ω) satisfy the boundary condition (3.39). In

fact, we endow W(Ω) with the inner product

(v, ϕ)W = (v, ϕ)H1(Ω) + (ηv, ηϕ)H1(Γ3).

and denote the norm associated with (·)W by || · ||W (||v||2W = (v,v)W ).

Let B be a bilinear form defined by

B(v, ϕ) := µ(∇v,∇ϕ)Ω + 2µθµ(∇sηv,∇sηϕ)Γ3 + µ(κηv, ηϕ)Γ3 . (3.49)

Lemma 3.7.2a There exist a constant CB > 0 such that

|B(v, ϕ)| ≤ CB||v||W ||ϕ||W for all v, ϕ ∈W(Ω) (3.50)

for B defined by (3.49).

Proof.

From (3.49),

B(v, ϕ) = µ(∇v,∇ϕ)Ω + 2µθµ(∇sηv,∇sηϕ)Γ3 + µ(κηv, ηϕ)Γ3

|B(v, `)| ≤ µ||∇v||Ω||∇ϕ||Ω + 2µθµ||∇sηv||Γ3||∇sηϕ||Γ3

+µκ||ηv||Γ3||ηϕ||Γ3 by Cauchy Schwarz

≤ µ||v||1||ϕ||1 + 2µθµ||ηv||1||ηϕ||1 + µκ||ηv||1||ηϕ||1
≤ µ||v||W ||ϕ||W + 2µθµ||v||W ||ϕ||W + µκ||v||W ||ϕ||W
= (µ + 2µθµ + µκ)||v||W ||ϕ||W .
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Let there exist a positive constant CB > 0 such that

CB = µ + 2µθµ + µκ

then

|B(v, ϕ)| ≤ CB||v||W ||ϕ||W .

Lemma 3.7.2b The space W(Ω) equipped with the norm || · ||W is complete

and therefore a Hilbert space.

Proof.

By definition

W(Ω) = {v ∈ H1(Ω) : ∇ · v = 0, γov = −ηvn on Γ3,

γov = 0 on Γ1 ∪ Γ2, ηv ∈ H1
o (Γ3)}.

W(Ω) is endowed with the inner product

(v, ϕ)W := (v, ϕ)H1(Ω) + (ηv, ηϕ)H1(Γ3)

and with the norm

||v||2W = ||v||21 + ||ηv||21
= ||v||2Ω + ||∇v||2Ω + ||ηv||2Γ3

+ ||∇sηv||2Γ3

For W(Ω) to be complete, we need to show that every Cauchy sequence in

W(Ω) converges. Consider any Cauchy sequence in W(Ω), i.e. there exist

N such that for m,n ≥ N ,

||vm − vn||W < ε for all m,n > N.
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This implies that

||vm − vn||2W = ||vm − vn||21 + ||ηvm − ηvn ||21 < ε,

for all m, n > N . Hence

||vm − vn||21 < ε and ||ηvm − ηvn||21 < ε.

Thus {vm} is a Cauchy sequence in H1(Ω) and {ηvm} is a Cauchy sequence

in H1(Γ3) which is complete.

Therefore, there exist v ∈ H1(Ω) and ηv ∈ H1(Γ3) such that

||vm − v||21 < ε and ||ηvm − ηv||21 < ε for all m > N

and

||vm − v||2W = ||vm − v||21 + ||ηvm − ηv||21 < 2ε for all m > N.

Lemma 3.7.2c If fΩ ∈ L2(Ω) and fΓ3 ∈ L2(Γ3) and there exist a maximum

value CΩF for fΩ and CΓ3F for fΓ3 such that

||fΩ||Ω < CΩF

and

||fΓ3||Γ3 < CΓ3F .

Then linear functional F : ϕ ∈ W(Ω) 7→

〈F, ϕ〉 := (fΩ, ϕ)Ω + (fΓ3 , ηϕ)Γ3

is bounded with respect to || · ||W .



3.7. EXISTENCE THEORY 71

Proof.

F(ϕ) = 〈F, ϕ〉 = (fΩ, ϕ)Ω + (fΓ3 , ηϕ)Γ3

|F(ϕ)| ≤ ‖fΩ‖Ω||ϕ||Ω + ‖fΓ3‖Γ3||ηϕ||Γ3

≤ CΩF ||ϕ||Ω + CΓ3F‖ϕ‖Ω

≤ (CΩF + CΓ3F )||ϕ||W .

We shall define the weak solution as follows:

Definition 3.4 v(x) ∈ W(Ω) is a weak solution of the boundary valued

problem (3.38) and (3.39) if the functional equation

B(v, ϕ) = 〈F, ϕ〉 for all ϕ ∈ W(Ω)

is satisfied.

However, to arrive at the existence of weak solution, we need find a suitable

lower bound for the quadratic form which shall be denoted by B̂ and defined

by

B̂(v) = B(v,v). (3.51)

In view of (3.49), (3.51) is given by

B̂(v) = B(v,v) = µ(∇v,∇v)Ω + 2µθµ(∇sηv,∇sηv)Γ3 + µ(κηv, ηv)Γ3 .

Lemma 3.7.2d If the condition

sup
y∈Γ3

[−κ(y)

cpθµ

]
≤ δ < 1 (3.52)

is satisfied, then there exist a constant Cµ such that

B̂(v) ≥ Cµ‖v‖2
W for all v ∈ W (Ω). (3.53)



72 CHAPTER 3. MATHEMATICAL FORMULATION

Proof.

B̂(v) = B(v,v) = µ||∇v||2Ω + 2µθµ||∇sηv||2Γ3
+ µκ||ηv||2Γ3

.

=
µ

2
||∇v||2Ω +

µ

2
||∇v||2Ω + µθµ||∇sηv||2Γ3

+µθµ||∇sηv||2Γ3
+ µκ||ηv||2Γ3

.

We now apply Lemma 3.7.1b, the Poincaré inequalities to obtain the follow-

ing:

B̂(v) ≥ µ

2
||∇v||2Ω +

µ

2
Cp||v||2Ω + µθµ||∇sηv||2Γ3

+µθµcp||ηv||2Γ3
+ µκ||ηv||2Γ3

=
µ

2
||∇v||2Ω +

µ

2
Cp||v||2Ω + µθµ||∇sηµ||2Γ3

+([µθµcp + µκ]ηv, ηv)Γ3 .

This implies

B̂(v) ≥ µ

2
||∇v||2Ω +

µ

2
Cp||v||2Ω + µθµ||∇sηv||2Γ3

+([µθµcp + µκ]ηv, ηv)Γ3 . (3.54)

The last term in (3.54) will be positive if the condition

sup
y∈Γ3

[−κ(y)

cpθµ

]
≤ δ < 1

is satisfied.

If (3.52) is satisfied, then

B̂(v) ≥ µ

2
||∇v||2Ω +

µ

2
Cp||v||2Ω + µθµ||∇sηv||2Γ3

≥ µ

2
||∇v||2Ω +

µ

2
Cp||v||2Ω +

µ

2
θµ‖∇sηv‖2

Γ3
+

µ

2
θµcp‖ηv‖2

Γ3

=
µ

2
(||∇v||2Ω + Cp||v||2Ω) +

µ

2
θµ(||∇sηv||2Γ3

+ cp‖ηv‖2
Γ3

)

=
µ

2
‖v‖2

1 +
µ

2
θµ‖ηv‖2

1.
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Let Cµ = min
(

µ
2
, µ

2
θµ

)
, then

B̂(v) ≥ Cµ||v||2W for all v ∈ W (Ω).

¥

Now if the condition (3.52) is satisfied, we define the inner product

[v, ϕ] := B(v, ϕ) for ϕ ∈ W(Ω).

Let [| · |] be the norm defined by the quadratic form B̂. That is

[|v|]2 := B̂(v) = B(v,v).

Theorem 3.7.2 The functional equation

B(v, ϕ) = 〈F, ϕ〉 for all ϕ ∈ W(Ω)

has a unique weak solution in W(Ω), provided that (3.52) is satisfied.

Proof.

From (3.50) and (3.53), it is seen that the norms ||·||W and [|·|] are equivalent.

This means that the linear functional F considered above is also bounded in

[| · |].

Also the functional equation

B(v, ϕ) = 〈F, ϕ〉

reduces to

[v, ϕ] = 〈F, ϕ〉 for all ϕ ∈ W(Ω). (3.55)

By Riesz Representation Theorem ([22], p. 346) there exist a unique vF such

that

[vF , ϕ] = 〈F, ϕ〉.
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Thus, the function vF is the unique weak solution of the boundary valued

problem (3.38) and (3.39). ¥



Chapter 4

Result and Conclusion

4.1 Result

Firstly, we noted that the value of blood plasma viscosity (µ) is very impor-

tant in the process of cerebrospinal fluid formation. The higher the value of

µ in the liquid volume phase in the cerebral capillary, the parametric proper-

ties of the liquid volume phase tend to that of the solid volume phase, since

the ratio of the shear stress and shear rate will increase.

Secondly, in addition to the viscosity of the blood plasma, we observe from

equation (3.52) that the cerebrospinal fluid viscosity (µΓ3), i.e. the filtrate,

and the mean curvature (κ) of the permeable interface play a very important

role in the cerebrospinal fluid formation.

75



76 CHAPTER 4. RESULT AND CONCLUSION

4.2 Conclusion

Our models involve all the parameters that are naturally present in the cere-

brospinal fluid formations. This is an extension of the work of A. Shara

[26].

Understanding the basic parametric formation of CSF is paramount to under-

standing and treatment of various life-threatening diseases associated with

cerebrospinal fluid and intracranial pressure po. In this work, we have pre-

sented a mathematical model of cerebrospinal fluid formation in which all

the parameters can be controlled. Our concept can be compared with var-

ious previous publication listed in our bibliography. Since all the filtration

parameters are present in the model, we believe that within prescribed mor-

phological and physiological properties of the microvascular environment, our

model is adaptable to real life situations. We therefore hope that the clinical

researchers will find this piece useful and as an open way for further research

work.
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