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RESEARCH SUMMARY 

The purpose of this thesis is to investigate opportunities to learn (OTL) algebra by grade 
ten learners at three Catholic secondary schools in South Africa. Performance in 
mathematics is poor and is a great cause for concern. Despite the government’s effort 
to make education open and available to all, underperformance has continued among 
the black majority who were previously marginalised in the former regime. This thesis 
focuses on the OTL which are afforded learners who are given the chance to attend 
classes. 

This thesis met its aims through an extensive review of related literature and the 
implementation of practical research. The latter was carried out through case studies 
conducted in three schools where lessons were observed and interviews conducted 
with the respective teachers. Literature on how OTL mathematics are created is lacking 
in South Africa. Real OTL still needs to be created if the expected level of performance 
is to be achieved. 

The research produced a number of key findings: the learners were given the right to 
attend class but were subjected to different OTL, learning to convert within and between 
the different registers of representation of algebraic concepts is necessary to provide 
learners with OTL, it is not enough for learners to master certain facts and procedures, 
and learning is enhanced if the means to make the conversion necessary for concept 
building is developed and the OTL provided. The teacher’s approach influences the way 
OTL are realised and utilised by learners. 

The main conclusion drawn from this research is that the OTL afforded the grade ten 
learners were not the same and that different chances to make conversion within and 
between registers of representation of algebra concepts were given. Giving the teachers 
guidelines without expounding the meaning of specific terms such as ‘convert’ leaves 
gaps in their practices and results in some learners receiving adequate OTL and others 
not.  

This research argues for a more involved capacity building programme for in-service 
teachers to acquaint them with the expected learner-centred approaches to lesson 
delivery as well as familiarise them with the terminology used in defining terms in the 
syllabus. 

Key terms: 

Opportunities to learn, Algebra, Teaching and Learning, Intended and enacted 
curriculum, Procedural, Constructivism, Registers of Representation, Mathematical 
Knowledge. 
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CHAPTER ONE 

 

STUDY BACKGROUND 

 

1.1 Introduction 
 

I loved grade ten algebra. 

I’ve never been more sure 

About the world and my place in the world 

Than I was in grade ten math class. 

I teased out intricate equations 

With unknowns of x and y, 

And glowed with the confident knowledge 

I could always find the correct answers 

In the back of the book.  

(Poem by Leggo, 2008:187, in response to Skovsmose, (2008:168) ) 

 

The learner in the above poem loved grade ten algebra because he could “tease out 

intricate equations with unknowns of x and y.” Is this all there is to grade ten 

algebra? The grade ten math class described sounds like a mysterious place where 

one performs tricks of seemingly no value as the answers were printed at the back of 

the book. The learner’s confidence depends on this knowledge. The learner 

appreciates the opportunity for self-evaluation because he can find the answers in 

the back of the book. It seems as though the learner has little understanding about 

what is actually taking place and is consequently denied the opportunity to learn 

algebra meaningfully. The educator is absent from the poem and the textbook is the 

only authority recognized, especially as it confirms his learning. It is possible that this 

is the kind of learner who is independent and frequently works out problems on his 

own during the mathematics lessons. The learner’s situation must be understood in 

the context of the view that education is a multilevel, complex and highly 

contextualized system (Gau, 1997). The question to ask is to what extent is this 

learner’s experience and practice typical of most grade ten learners? 
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1.2 Motivation 
 

My interest is in studying curriculum in general and the learning and teaching of 

secondary school mathematics in particular. Within the subject of mathematics, 

algebra is of special concern. Early on in my teaching career, I realized that algebra 

plays an important role in the general performance of learners of mathematics. 

Consequently, I often used an algebra test to select students for any advanced level 

mathematics course. These days I teach in an education system where the 

screening of learners on the grounds of performance in algebra is neither desirable 

nor permitted. I am motivated to provide opportunities to learn (OTL) mathematics to 

all our learners. 

 

Though the term OTL will be explained in greater detail in the chapters that follow, it 

is appropriate to refer to it as an ideal for the learning situation. As a concept in 

education OTL can help in the pursuit of good practice in the learning and teaching 

situation because it takes into consideration all stakeholders, from those who make 

decisions about what is to be taught, those who implement it, to the learner and the 

supporting materials available to all. For this reason, I wished to better understand 

how groups of grade ten learners comprehend and learn algebra, an important 

section of mathematics. Three secondary Catholic schools in South Africa were 

identified in which this study could take place. Many questions were posed, for 

example, what opportunities does the system provide to actually develop 

competence in this area of mathematics? 

 

Algebra is one of the main branches of mathematics to which learners are gradually 

exposed throughout high school. It is described as a generalized form of arithmetic 

where symbols, letters and signs are used in place of or together with numbers. 

These symbols have different meanings and interpretations in different situations. 

Many students seem to have different perceptions about these symbols, letters and 

signs and this affects their understanding of the mathematics involved. In South 

Africa for example, within the Further Education and Training (FET) band (Grades 

10-12), as part of Learning Outcome 2 (Functions and Algebra), learners are 

expected to multiply, factorize, and simplify different algebraic expressions up to and 

including trinomials, solve linear equations, quadratic equations by factorisation, 
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exponential equations of the form kax+p = m, linear inequalities in one variable and 

illustrate the solution graphically, and linear equations in two variables 

simultaneously (numerically, algebraically and graphically) (Department of 

Education, 2005). This suggests a skills-based perspective on algebra. 

 

From the above, it is clear that knowledge of algebra is a critical part of mathematical 

achievement. Furthermore, the skills required are needed when handling other topics 

such as geometry and trigonometry because at some stage these problems demand 

algebraic manipulation. It follows then that a weak mastery of algebra disadvantages 

learners in the other topics and indeed in all areas that require the problem solving 

skills that are developed during algebra classes. Although not every learner is 

expected to reach a high level of proficiency in algebra, it is important that they be 

afforded the opportunity to learn it. If learners acquire knowledge of algebra they can 

apply or use it in other areas where such knowledge is a prerequisite or an 

advantage. 

 

The research challenge therefore is to examine how algebra can be learnt and 

understood so that there can be a general improvement in performance in 

mathematics. This study explores what opportunities are provided for grade ten 

learners in selected schools to learn algebra. Once again, algebra is important 

because it is useful in linking different areas of mathematics and in preparing 

students for college, the workforce, and citizenship. 

 

In this study, the officially prescribed algebra content is compared with what actually 

takes place in the classrooms. Is what is expected reflected in the learners’ 

workbooks as well in the educator’s schedules? It is important to find out what 

intellectual sense the FET learners make of the algebra they are expected to learn. 

What do they actually learn in class? How do they learn this algebra? This study 

explores the learning of algebra, analyses the results and formulates a picture of the 

opportunities that students in some classrooms in South Africa have. 

 

I have chosen Catholic secondary schools because the Catholic Church has long 

been involved in schooling in South Africa: their first school opened in 1949 (Grace, 

2010). Potterton and Johnstone (2007) note that Catholic schools form a small 
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fraction of the total number of schools in South Africa, yet their influence has been 

both remarkable and enduring. Catholic schools in South Africa are distinctive 

because of the philosophy underpinning their approach to education. The dignity of 

the child is seen as central to process of education. 

 

Worldwide, the Catholic Church encourages co-operation and co-existence of 

diverse educational institutions in order to safeguard her objectives in the face of 

cultural pluralism (The Catholic School, 1997). Thus, while policies and opportunities 

differ from place to place, a Catholic school has a place in any national school 

system (Vatican II, 1966).The Catholic church, particularly through her schools, is 

interested in promoting the common good (Grace, 2010) and this is in line with the 

overall goals in teaching mathematics in the sense that proficiency in the subject 

opens doors to many opportunities in life. It is from among the Catholic secondary 

schools in South Africa that the three schools for inclusion in the study were chosen. 

 

Another motivation in undertaking this research is that the national government in 

South Africa has identified the learning and teaching of mathematics and science as 

a priority in the educational needs of the country (Teachers Without Borders, 2010). 

The Government is faced with the challenge to encourage capability in mathematics 

and science. This starts at school and must be firmly established before it can 

translate into a useful skill in the work place. Learners need be given the opportunity 

to learn effectively. At present harsh disparities are still observable in the conditions 

under which education takes place in the country. Such disparities can no longer be 

blamed on apartheid (Do Soweto kids need Blackwash Black Consciousness? 

Tuesday, January 12, 2010) For example, it has been noted that the teachers at 

former Model C schools work for seven to eight hours a day while at many schools in 

the townships, teachers teach for half that duration per day. Against this background 

it is worthwhile to study how the opportunities to learn vary at the selected schools. 

These findings provide useful information which contributes towards the 

understanding of OTL. 

 

On a more personal level, as a mathematics educator who has taught in three 

different countries over the last twenty five years, I am keen to make a contribution in 

this area by drawing on my experience, observations and practices of teaching 
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mathematics in varied contexts. I seek to engage with how OTL mathematics are 

created and can be improved in different conditions.  

 

Evidence from the current study will help develop new knowledge from what is 

observed, heard and learnt from the encounters with the respondents. I hope to 

make a contribution to scholarship in the field of mathematics education, and in 

particular to the teaching and learning of algebra in ways that seek to embrace the 

experiences of all learners, especially those previously marginalized in the 

mathematics classrooms.  

 

1.3 Background  
 

South Africa has a history that is strongly influenced by racial prejudice and 

discrimination (Mazibuko, 2000). Education in South Africa is very closely linked to 

the political history of South Africa. By 1912 when the Union of South Africa was 

established, South Africa had evolved politically as a racially segregated and 

discriminatory country. When the 1912 constitution came into effect, black people 

were not given any political rights. Education was also already segregated. The 

government provided education for white people in state run schools and no 

provision was made for the indigenous people. A few were tolerated in the existing 

schools, but the majority had to be catered for by various religious organizations, that 

is, non-governmental organizations. Until 1953, almost all education for the African 

population of South Africa was provided by non-governmental organizations. The 

Roman Catholic Church and the Anglican Church were the main providers of 

education for Africans in South Africa. Other churches also made important 

contributions. 

 

In 1953 apartheid’s architect, Hendrik Verwoerd said it was no use teaching the 

Bantu mathematics when they could not use it in practice (Vithal, Alger and Keitel, 

2005). As a result of this pronouncement two differently resourced education 

systems evolved in South Africa: a well-resourced education system for whites and a 

comparatively poor one for the majority. Mathematics was not seen as part of the 

curriculum for the black majority. This legacy of inferior education lasted until the 

introduction of a single education system in 1994 but the effects appear to have lived 
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on for much longer. For this reason, South Africa’s education system is said to be at 

a critical juncture in its history (Teachers Without Borders, undated). Though the past 

cannot be undone, some of the experience gained can provide insight on how to 

handle the situation today.  

 

According to Moloi (2005), the shortage both in intake and success in school 

mathematics in South Africa can largely be blamed on a curriculum that was patently 

skewed in favour of a small minority of learners who would proceed to university 

training in areas such as engineering, manufacturing, medicine and other so called 

‘hard skills.’ It provided little to no opportunity to learners who only needed to apply 

mathematical skills in ordinary life situations. The curriculum was heavily content-

laden, encouraged rote learning of mathematical techniques and algorithms and lent 

itself to very little application in the everyday experiences of learners.  

 

Moloi (2005) observes that besides the universally known cognitive challenges that 

learners have to contend with in learning mathematics, in South Africa the then 

apartheid regime made access to this learning area particularly difficult on three 

fronts. First, discriminatory provision for education on the basis of race limited 

severely the availability of adequate and appropriate resources for Black learners 

who constituted the majority of the learner population in the country. Second, 

whatever learning support materials (LSM), particularly textbooks, were available 

were based on western philosophies and were found not adaptable to local 

indigenous knowledge systems. The locus of the underlying pedagogy was on 

teaching rather than learning. Consequently, the curriculum was packaged into time-

bound subject syllabi which required highly contrived and theoretical contexts in 

order to be accessed cognitively. Third, the use of imposed foreign languages for 

instruction affected the acceptability of the curriculum, made learning in general very 

difficult and the learning of mathematics in particular virtually impossible, (Moloi, 

2005).  

 

In South Africa broad participation (access) and quality achievement in mathematics 

have been prioritized for equity and general redress of historical inequalities 

(Department of Education, 2004). But the fact that the learners have access to 

mathematics education does not necessarily translate into an opportunity to learn. 
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According to Moloi (2005), it appears that alongside the challenges of social 

transformation, South Africa faces a challenge of improving the quality of learning 

outcomes, particularly in mathematics. Moloi further claims that, although there is 

overall unsatisfactory achievement of outcomes by learners of mathematics, the 

problem affects certain sectors of the population more than others. He mentions that 

learners in rural settings and learners from low socio-economic status seem to be 

the most vulnerable.  

 

There were attempts during the apartheid era to introduce an alternative 

mathematics curriculum to replace the one prescribed for the black majority. For 

example, People’s Education for People’s Power became one of the key action 

fighting plans, (Bopane, undated). People’s Mathematics for People’s Power was 

one of the products of this strategy. People’s Mathematics was part of People’s 

Education, a counter-hegemonic movement to remedy the crisis in education in 

South Africa then. The significance of mathematics stems from its role as a 

gatekeeper (Bopane, undated) and it is still one today.   

 

In an attempt to redress the long standing inequalities, the democratic government 

has developed a new curriculum (White paper, 1995). Access to mathematics is 

explicitly defined as a human right in itself (Vithal et al, 2005). The Constitution of 

South Africa is very clear about the intention of creating a new frame of reference in 

all spheres of life and in mathematics education in particular.  

 

To ensure that every learner has access to mathematics learning, a new subject 

called ‘mathematical literacy’ was introduced into the curriculum to cater for those 

who do not have the need to pursue mathematics to an advanced level 

(Sidiropoulos, 2008). It is my experience that those who are challenged by 

mathematics tend to opt for the seemingly ‘user friendly’ mathematical literacy 

course. Sidiropoulos (2008) investigated the Government’s fundamental commitment 

to the provision of mathematics and mathematical literacy for every learner in the 

South African system. She remarks that the opportunity for all learners to become 

mathematically literate requires an understanding of how teachers understand and 

implement the curriculum within the unequal and demanding contexts of schools 

after apartheid. This study examines to what extent this commitment by the 
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government translates into meaningful OTL mathematics in the grade 10 classroom 

in three Catholic secondary schools in South Africa.  

 

From my experience as a learner and teacher of mathematics, learning with 

understanding involves many different aspects that help to explain it. No single 

definition can capture it completely for understanding comprises many aspects such 

as comprehension of concepts, skills in carrying out procedures efficiently, problem 

solving, capacity for logical thought, and a disposition to consider mathematics as a 

worthwhile endeavour. The National Council of Teachers of Mathematics (NCTM) 

(June, 2009) observes that mathematics consists of different topical strands which 

are interconnected, such as geometry and algebra. They suggest that in order to 

enable students to learn with understanding, it is advisable to have a coherent 

curriculum that effectively organizes and integrates important mathematical ideas so 

that students can see how the ideas build on or connect with other ideas, thus 

enabling the development of skill proficiency and problem solving abilities. This 

advice is tantamount to saying that learners should be helped to learn algebra in 

ways that help them to build the skills that are demanded of them in life. 

 

All the aspects from the NCTM mentioned above lead to the development of 

confidence in the process of learning. In most classrooms learners often lack the 

opportunity to engage in learning with understanding. Their learning of mathematics 

is imposed rather than acquired through their own experience (Ojose, 2008). As a 

result, the learners do not own their mathematics as it is like a foreign language to 

them. It appears that the majority of students in secondary schools are not able to 

connect by themselves the knowledge domains that constitute manipulative algebra 

on the one hand and instrumental algebra for problem-solving on the other. 

 

Students must learn mathematics with understanding and so actively build new 

knowledge from experience and prior knowledge. Learning mathematics with 

understanding is essential (NCTM, 2009). According to Kim and Kasmer (2006), 

reasoning mathematically is fundamental to learning mathematics with 

understanding. When reasoning is effectively promoted and fostered through 

predicting and justifying results and making sense of observed phenomena, students 

develop a deeper understanding and connection of mathematical ideas. How many 
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learners are given the opportunity to develop efficient reasoning in the classroom? 

Malloy (2002:18) notes that though learning is supposed to be a pleasurable 

experience it is rarely so for many children when it comes to mathematics: “learning 

mathematics for intellectual pleasure is not wide spread; it tends not to happen for 

most children.” According to her, children often like mathematics in the lower grades 

and they gradually willingly or are forced to withdraw from mathematics by the time 

they leave middle school. The fact that this does not happen with other subject areas 

means that there is something about mathematics that discourages or scares 

learners off.  

 

Moloi (2005) reports that when in 2000 South Africa participated in the second study 

conducted by the Southern Africa Consortium for Monitoring Educational Quality 

(SACMEQ), a project known as SACMEQ II, in which 15 countries from southern 

and eastern Africa participated, the learners performed particularly poorly in 

mathematics. Although only Grade six learners were involved in the SACMEQ II 

study, the pattern has not been different from that shown by other international 

comparative studies of mathematical achievement. The lack of achievement in 

mathematics by learners leaves important gaps in their education and tends to 

narrow the range of career options open to them as more and more careers have 

mathematics as one of their entry requirements. According to a PROM/SE 

(Promoting Rigorous Outcomes in Mathematics and Science Education) report 

(2009) ‘opportunity to learn’ is one of the most important factors influencing student 

achievement and, if students are provided with an opportunity to learn, they will do 

so. It is therefore important to understand how opportunities to learn mathematics 

are distributed in the classroom and how the learner’s experience them during 

algebra lessons.  

 

It has already been said that algebra is often cited as one of the most difficult topics, 

yet it is an important area within the subject as it affects the learning of other areas 

within mathematics. This raises important issues with respect to student’s access to 

mathematics and mathematical ideas generally. As Jonassen and Land (2000) 

asserts, it is an undisputed fact that many students who are capable of learning 

algebra are not doing so. This is of particular concern with the historically 
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marginalized students who in the context of South Africa are mostly black and 

female. 

 

Reeves and Muller (2005) cite recent research which contains evidence that in South 

Africa there is a high level of under-performance, particularly amongst learners at 

schools in high poverty areas. But as McDonnell (1995) says, students can only be 

held accountable for their academic performance to the extent that the community, 

broadly defined, has offered them the tools to master the content expected of them. 

Similarly the PROM/SE report stresses that it is equally important that the 

opportunity to learn curriculum content is available to all students in all schools. The 

present study seeks to explore in the context of South African grade ten classrooms 

how OTL is characterised in the selected Catholic schools.   
 

Vithal and Volmink (2005) trace the development of the mathematics curriculum in 

South Africa from early apartheid years to the recent Revised National Curriculum 

Statement. During the apartheid era access to mathematics education was restricted 

for the Black majority. Now, in the new Official Curriculum access to mathematics is 

explicitly defined as a human right in itself and linked to a definition of mathematics 

as a human activity and a product of investigation of different cultures. Because of 

this awareness, every learner in South Africa has to engage in mathematics 

education. In grade ten, a learner must take either pure mathematics or 

mathematical literacy. 

 

1.4 Statement of the problem 
 

Fifteen years after the end of apartheid, the majority of learners in secondary schools 

still have problems learning mathematics and tend to underperform. Sidiropoulos 

(2008) notes that most studies point to the fact that the country’s students do not 

measure up globally in mathematics and mathematical literacy competencies. While 

facilities have ‘improved’ and access to education is more open, learners still appear 

to lack the opportunity to learn and achieve the expected standards. In spite of the 

fact that access is now relatively open, the majority of learners still do not perform 

well, and especially not at the end of the secondary school when they write public 

examinations. The course that is examined at the end of the secondary schooling 
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actually begins in grade ten, which is why the present study focuses on the grade ten 

learning of mathematics and in particular the learning of algebra. 

 

Given that access to learn mathematics is relatively open, the problem of 

underperformance can perhaps be traced to the actual “opportunity to learn” in the 

classroom itself. In other words, what is it that learners do in the name of learning 

mathematics when they are in the classroom?  

 

In general many students in secondary school find mathematics uninteresting and 

difficult to learn and comprehend. Conceptual understanding is of central concern for 

mathematics education world-wide (Mwakapenda, 2005). He argues that while 

attention has been paid to exploring the understanding in mathematics, only a few 

studies have researched student understanding of specific concepts. This study is 

interested in the specific topic of algebra and how it is taught to and learnt by grade 

ten learners at three Catholic secondary schools in South Africa. For Lew (1999), 

algebra seems to be far more difficult for students than is expected. Research shows 

that the concepts of variables and functions make serious epistemological obstacles 

for many students and even teachers. Could these issues be the real obstacles to 

providing the OTL mathematics for the South African learners as well? 

 

 

Having reviewed more than a decade of Conference Proceedings of the Southern 

African Association for Research in Mathematics and Science Education 

(SAARMSE), Vithal and Volmink (2005) found no research that spoke directly to 

mathematics curriculum reforms at a systemic level, with a few exceptions such as 

the research related to the Third International Mathematics and Science Study 

(TIMSS). They observed that while the South African curriculum reforms have been 

shaped and changed by both international and national shifts and developments in 

mathematical education, theory and practice, very little evidence exists that research 

has played any significant role in the direction or form taken by curriculum over time. 

National Studies specific to South Africa, with indigenous research designs 

developed to recognize and respond to the vast inequality and diversity of teaching 

and learning conditions in the country, which could help to theoretically explain the 

situation that exists, have not been conducted (Vithal et al, 2005). Such research 
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would need to be a combined effort of seasoned and experienced researchers, not 

the work of a single researcher. They also concluded that many of the present and 

past curriculum reforms were driven largely by conjecture, stereotypes, intuition, 

assertion and a host of untested assumptions rather than by research. This research 

is an attempt to contribute to the call to have research that can help explain the 

situation that prevails in the chosen Catholic schools with regards to the 

opportunities to learn grade ten algebra. 

 

Vithal and Volmink (2005) examine theories and practices that have informed 

particular reforms in South Africa. These they called ‘curriculum roots.’ They identify 

historical events such as colonialism, apartheid and democracy as having influenced 

mathematics education respectively. Curriculum developments in the Western 

countries have played a part in influencing curriculum development, sometimes 

without scrutiny as to their applicability to the South African context. People’s 

Mathematics was also identified as a root because it left its marks on post-apartheid 

mathematics reform. Problem solving approaches introduced in the late 1980s and 

early 1990s also left their mark though they did not reach all classrooms partly 

because of the differential allocation of resources and large classes. They argue that 

constructivism which took root as a strong epistemology but with weak pedagogy, 

could not be applied in the mathematics classrooms due to its diverse and unequal 

conditions. This failed because of its weak social construction. As a curriculum root 

constructivism led to a theoretically driven mathematics curriculum reform but had 

limited impact because it failed to develop a praxis that factored in the socio-

economic and political dimensions of the apartheid education as a whole. Taking 

cognizance of the curriculum roots is important for the current study because a better 

understanding of the system can be obtained by considering the historical 

experiences that have shaped it over the years. Mathematics education has passed 

through a number of stages of development which have all left their mark and which 

cannot be ignored when opportunities to learn are to be considered at any level of 

education. Their influence continues to this day. 

 

Existing research has dealt with different factors that influence the teaching and 

learning of mathematics, such as, political and economic factors (Vithal, Alder and 

Keitel, 2005), mathematics anxiety (Chinn, 2008), coherence and focus (Watanabe, 
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2007) and teacher beliefs (Jenkins, 2007). According to Lins and Kaput (2004), 

much research has been conducted in the past concerning students’ error patterns 

and misconceptions concerning levels of development. Few questions regarding 

what sense they make of the condition, however, seem to have been posed to the 

students themselves, especially those who are failing. Research on students’ beliefs 

has usually been directed to general beliefs about mathematics, not algebra. This 

means it is worthwhile to look at what students are actually thinking about and with, 

rather than what they are failing to do and checking this against what they are 

expected to do. Capturing and making sense of the experiences of learners inside 

the mathematics, and, in particular, the algebra classroom is an important goal of the 

present research. Consequently, further study is needed to clarify the relationship 

between OTL and algebra achievement for grade ten learners in South Africa. 

 

1.5 Research Questions 
 

In more specific terms, the focus of the present study is in answering the following 

research questions: 

1. What is the content and context of the official mathematics curriculum in 

grade ten? 

2. How is the curriculum enacted in the selected grade ten classrooms? 

3. How can the Opportunities to Learn (OTL) grade ten mathematics be 

characterized and explained from the official and enacted curricula? 

 

In the first question, I explore the following sub-questions: 

a) What are the key content themes that are prescribed for the grade ten 

learners? 

b) What is the rationale for including the themes in the grade ten curriculum? 

c) How are the themes to be taught in the classroom?  That is, what guidelines 

and/or suggestions are provided to the teachers in terms of approaches, 

resources, and assessments? 

 

In the second question, I explore the following sub-questions: 

a) How do teachers translate the prescribed work into the enacted mathematics 

curriculum in their classrooms? 
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b) What do grade ten learners learn from the prescribed official mathematics 

curriculum in South Africa? 

c) What are the relations between what the standards require, what teachers 

teach and what is tested? 

 

In the third question, I explore the following sub-question: 

How can the concept of OTL be used to understand and explain the teaching 

and learning of mathematics in the grade ten classrooms?   

 
1.6 Objectives of the study 
 

The objectives of this study are: 

1. to gain insight into how the concept of opportunities to learn can be used to 

explain the teaching and learning of grade ten algebra; 

2. to explore the relationship between the official and the enacted curricula in 

South Africa; and 

3. to understand the structure and practice of mathematics teaching and learning 

in selected classrooms in South Africa with regard to the chances given to 

learners to learn the subject. 

 
 
1.7 Delimitations of the study 
 

As discussed earlier, the study focuses on Catholic schools in South Africa. The 

researcher has extensive experience of working within this sector of schools both in 

this country and abroad.  In some ways the study seeks to explore the question of 

how successful these schools are in providing real access to mathematics by 

examining what OTL are provided in the grade ten mathematics classrooms.  

 

The study will cover three Catholic Secondary schools in South Africa. One school is 

in the township area of Pretoria. Learners who attend these schools have to pay fees 

for their tuition because the schools are classified as private. One of the schools 

enrols about four hundred learners and it is co-educational. It has three grade ten 

mathematics classes: two for mathematics and one for mathematical literacy. The 
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learners can choose which subject they wish to take. The other two are convent 

schools located in the city. The convent school teaches learners from grade R to 

grade twelve on the same premises. 

 

The study is concerned primarily with the opportunity for grade ten learners to learn 

mathematics and in particular algebra in different contexts and environments. A 

curriculum analysis and an empirical investigation with teachers, learners and 

mathematics subject advisors were done. Class observations and interviews have 

constituted an integral part of the investigation. They have provided insight into 

better understanding the challenges of teaching and learning mathematics. The 

methodology employed will be discussed in Chapter three. 

 

1.8 Limitations of the study 
 

The study has been undertaken during a relatively unstable period in the history of 

the education system in South Africa. Many changes are taking place. It is possible 

that recommendations that emanate from the study might be overtaken by events 

because major movements in the practice of education are anticipated and the 

direction at this time is not very clear. To minimize these possible limitations, the 

researcher has been careful to explore OTL as a key concept in the study and only 

use the context of South Africa as a case in point.  The key questions around access 

to powerful mathematical ideas for learners (Ball, 2008) are perennial questions in 

mathematics education both in South Africa and elsewhere on the globe. Vithal and 

Volmink (2005) have warned that there are severe limitations on the extent to which 

educational research can inform policy and implementation. The reasons for this are 

many and include the fact that research does not extend much beyond academic 

circles, that change is affected by other factors besides education and that some 

research findings are overtaken by events. 

 

In this particular study, it is also possible that data might be influenced by the fact 

that the researcher is a member of the Catholic Church, presently teaches at one of 

the selected schools and has in the past taught at one of the other schools for two 

and a half years. However, through careful planning by the researcher and 

professional guidance by the research supervisor, it is hoped that these limitations 
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will not handicap the success of the study.  Member checking, validation and 

reliability techniques that are explored in Chapter Three have helped to minimize 

these potential liabilities. 

 

1.9 Feasibility of the Study 
 

Access to respondents who provided the data essential to the study was easily 

obtainable. I was ready to undertake the study because of previous experience in 

research. The skill of critically evaluating research gained on a previous course of 

study was useful. Networking with other students of research boosted and refined 

the skills essential for the success of the study. 

 

1.10 Organization of the study 
 

The following organizational structure was used to present the study and its findings: 

 

Chapter 1 describes the problem and places it in perspective by giving an outline of 

the context, background and key questions. It also provides the rationale for the 

study as well as its objectives, justification, scope and limitations. 

 

Chapter 2 consists of a review of related literature pertaining to the concept of OTL 

as applied to the teaching and learning of mathematics. The importance of a review 

of literature is to help develop a conceptual framework for the study. The literature 

has helped the researcher to gain insight into the problem and become acquainted 

with existing research so as to avoid duplication. 

 

The research design and methodology is explained in Chapter Three. The way the 

research was carried out and how the results were analysed is clarified. 

 

Data collected is presented and analysed in Chapter Four.  

 

The findings of the research are discussed in Chapter Five. 
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Finally, a summary, conclusions and recommendations are presented in Chapter 

Six. A list of references and appendices are provided thereafter. 

 

1.11 Conclusion 
In this chapter I introduced the problem and posed questions which this study seeks 

to answer. I now move on to review literature on the various aspects of topic in the 

next chapter. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 Introduction 

 

Curriculum is understood in many ways and has been the subject of study from a 

number of perspectives (Murphy and Hall, 2008). Curriculum is a broad field and 

covers a number of distinct bodies of scholarship. In this review, I examine three that 

have influenced curriculum thinking in terms of curriculum design, implementation 

and development in schools with reference to South Africa. First, I describe the 

Curriculum in South Africa; its history, development and the structure of the 

education system. Then the concept of opportunity to learn is reviewed in as far as it 

relates to mathematics teaching and learning. This is followed by a section exploring 

the teaching and learning of mathematics in general and of algebra in particular. 

Finally the conceptual and theoretical frameworks guiding the study are presented 

and a conclusion drawn. 

 

Lewy (1991) describes curriculum as a massive, comprehensive and ill-defined field 

and says that any effort to conceptualize it is necessarily arbitrary. There is no single 

definition and so no single line of inquiry on curriculum matters. Apparently there is 

much more to curriculum as a field of study than the products of the process that 

produces curriculum materials. There are competing ideologies, legal considerations, 

processes, bureaucratic regulations, financial restraints and other factors that 

impinge on and to a considerable degree determine what is taught. Still, curriculum 

remains one of the most important means to meet the needs of any country or nation 

because it grooms its future citizens. This makes the study of curriculum a 

worthwhile endeavour. 

 

Connelly et al. (2008) regard curriculum and instruction as multi-dimensional and 

engage in a dynamic interplay between practice, context and theory. It follows that this 

dialogue shapes and is shaped by experiences of curriculum stakeholders such as 

students, parents, teachers, educators, curriculum policy makers and administrators. In 

this study attention is paid particularly to the classroom where learners interact with the 
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prescribed content together with their teachers in order to develop the desired 

competences for their benefit and that of the country at large. What happens in the 

classroom is of interest to all stakeholders. 

 

2.2 The Curriculum in South Africa 

 

The curriculum in South Africa is shaped by politics. South Africa has gone through 

three different forms of government: colonialism, apartheid and democracy. After the 

end of the apartheid era the new democratic government committed itself to the 

transformation of education. Key policy documents and legislation stress the 

principle of education as a basic human right enshrined in the Constitution. 

According to the Bill of Rights contained in the Constitution of the Republic of South 

Africa, 1996 (Act 108 of 1996), everyone has the right to basic education. This 

includes adult basic education and further education which the State, through 

reasonable measures, must make progressively available and accessible. 

 

The Department of Education (2003a:2) holds that The Constitution of the Republic 

of South Africa forms the basis for social transformation in our post-apartheid 

society.  Education influences social transformation by ensuring that the educational 

imbalances of the past are redressed, and that equal educational opportunities are 

provided for all sections of the population. If social transformation is to be achieved, 

all South Africans have to be educationally affirmed through the recognition of their 

potential and the removal of artificial barriers (OTL) to the attainment of qualifications 

(The New Constitution, 1996). What the Constitution is calling for can only be 

achieved through appropriate curriculum, one which addresses the needs of society 

and is accessible to everybody. 

 

2.3 Education Structures in South Africa 

 
This section offers an overview of the education system in South Africa and provides 

the context under which algebra is taught and learnt by grade ten learners. 

 

South Africa has a single national education system, organized and managed largely 
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by nine provincial subsystems. The Ministry of Education was established in May 

1994 to handle education and training at national level. It is assisted by the 

Department of Education. 

 

In 1995, the South African government through the Department of Education 

revamped the Education System emerging from the apartheid era by shifting from 

content-based to outcomes-based education (OBE) (Vithal, et al, 2005). The 

Department of Education determines the curriculum which is issued in National 

Curriculum Statements (NCS) together with the corresponding subject assessment 

guidelines. The Department of Education provides the schools and therefore the 

teachers with specifications that should be met and also gives a broad, flexible time 

frame. For example, commencing from January 2009 schools in the Gauteng 

Province are issued with work schedules for the mathematics learning area, for 

grades 10-12, complete with expected dates of completion.  

 

The NCS grades 10-12 (general) adopt an inclusive approach. Although it specifies 

the minimum requirements for all learners it aims to develop a high level of 

knowledge and skills. To help the learners achieve the expected level of 

competence, the school should provide the necessary conditions for this to take 

place. It is acknowledged that all learners should develop to their full potential 

(Prinsloo, 2001). This takes place if learners receive the necessary support in terms 

of quality instruction and appropriate resources used in a supportive environment. 

 

Mathematics is described in the NCS as a key subject and it is compulsory up to 

Grade 9; there after learners choose either Maths or Maths Literacy. Either way 

mathematics provides access to a wide variety of learning. Moreover, being literate 

in Mathematics is an essential requirement for the development of the responsible 

citizen, the contributing worker and the self-managing person. To meet this 

requirement all learners in grade ten attend mathematics classes. In this way 

learners are given the opportunity to develop the required mathematics competences 

by the school they attend. However, this is not always accompanied by the 

corresponding opportunity to learn the designated material in an effective manner.  

 

Vithal and Volmink (2005:5) observe that in South Africa, “successive curriculum 
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reforms may be characterized as waves of change, each bringing in a tide of new 

ideas and practices, taking some away, leaving some behind, and changing some.” 

They aptly describe how and why the teaching and learning of mathematics has 

changed over the years. They coined the term ‘curriculum roots’ which refer to 

different theoretical and philosophical underpinnings brought about by each wave of 

change. The curriculum as they see it was influenced by developments in Western 

countries imported into the South African system at different times. However, the 

implementation of these imported theories was also strongly influenced by internal 

forces such as colonialism, apartheid and more recently, democracy. The theories 

were implemented where people were divided on racial grounds and three separate 

educational systems existed in which schools did not enjoy an equal distribution of 

resources. The intended curriculum was the same, but the implemented curriculum 

was not the same, for the Black majority, mathematical education was largely 

inferior.  

 

The late 1980s and early 1990s saw a concerted effort on the part of all mathematics 

educators to transform the teaching and learning of mathematics (Vithal et al. 2005). 

There was an indigenous response in the form of people’s mathematics, developed 

as an opportunity for the black majority to study relevant mathematical skills. 

People’s Mathematics (PM) was an independent development in South Africa and 

differed from other varieties in that it not only adopted the stance of critique but also 

emphasized action against those practices which inhibit human possibility (Julie, 

2004). The broad umbrella goals of People’s Mathematics were political, intellectual 

and mathematical empowerment.  

 

The end of apartheid also saw the introduction of yet another western theory: the 

principle of constructivism (Vithal and Volmink, 2005). Constructivism is 

internationally recognized as a theory with much to offer mathematics education 

(Jarworski, 1994 and Matthews, 1998). The constructivist view recognizes the 

dependence of what is learned on previous knowledge and the experience of the 

learner. Learners do not passively receive knowledge but actively construct new 

knowledge based on prior knowledge and meaningful learning requires active 

involvement (Cobb and Steffe, 1983; Fennema and Romberg, 1999). 
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In South Africa constructivism is not mentioned directly as the adopted theory but is 

implied in statements such as this one: “Knowledge in mathematical sciences is 

constructed through the establishment of descriptive, numerical and symbolic 

relationships” (National Curriculum Statement, NCS Grades 10-12, (General), and 

2003: 2 and Mwakapenda, 2005). Constructivism seems to fit with another statement 

in the NCS (2003) which says: “OBE encourages a learner-centred and activity-

based approach to education.” In a learner-centred approach the role of the teacher 

changes from one of transmitter to one of facilitator, coach, mediator, prompter and 

someone that helps students develop and assess their understanding. The learner 

thus plays a more active part in the process of building new knowledge. According to 

Fennema and Romberg (1999), it is important that learners build new mathematical 

knowledge by reflecting on their thinking and actions while they solve problems 

because they construct meaning for a new idea or process by relating it to ideas or 

processes that they already understand. They add that for an idea to be understood 

it must be related to other ideas. 

 

2.4 Constructivism 

 

Psychology helps us to understand how people learn and therefore it is of vital 

importance that the classroom practitioner heeds this knowledge. However, many 

theories have been put forward by different psychologists. This study adopts the 

constructivist approach to teaching and learning. Constructivism began with Vico 

(1668-1744) who pointed that “the only possible knowledge we can have is about 

what we construe” (Constructivist Psychology, undated). There are three major 

constructivist traditions: educational constructivism, philosophical constructivism and 

sociological constructivism. Educational constructivism is relevant to this study. 

Educational constructivism includes personal constructivism and has its origin with 

Piaget (1970, 1980). In the present day it is most clearly enunciated by Glaserfeld 

(1995) and social constructivism which has its origins with Vygotsky (Matthews, 

1998).   

 

According to Piaget, knowledge is built during the process of disequilibrium where 

individuals internally experience cognitive conflict when confronted with new 

information. During disequilibrium, prior knowledge cannot explain new experiences. 

http://www.usefulweb.demon.co.uk/constructivist/index.htm
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Therefore, through accommodating new knowledge and assimilating it with prior 

knowledge, individuals build internal structures of knowledge unique to them (Piaget, 

1970). Piaget (1970) claims that interactions in the classroom can facilitate 

knowledge development because interaction creates cognitive conflict which can 

change thinking. Piaget claimed that peer interactions stimulate student reflections 

about ideas that other students present.  

 

Piaget (1971) claims that human beings normally pass through four stages of 

cognitive development roughly defined according to age. The fourth and final stage 

which he termed the ‘formal operational stage’ (age 11-16 and onwards), is when 

human beings begin to think abstractly, reason logically and draw conclusions from 

the information available, as well as apply all processes to hypothetical situations. 

Children develop abstract thought and can easily conserve and think logically in their 

mind. This is the stage where most grade ten learners are expected to be by virtue of 

their age. It is appropriate that they learn algebra because it requires that learners 

think abstractly and logically so they are prepared for what follows in their life. 

Piaget’s theory of constructive learning has a wide ranging impact on teaching and 

learning methods in education and is an underlying theme of many educational 

reform movements. 

 

Vygotsky (1896-1934) says that individuals construct knowledge in the zone of 

proximal development through social interaction with more knowledgeable others, 

peers, teachers or acquaintances (1935). The zone of proximal development is the 

difference between what the learner can do without help and what he/she can do 

with help. When interacting with others, individuals learn as they communicate their 

thinking. For Vygotsky the interaction between pupils in the social context of the 

classroom is important for knowledge development. Learning happens when 

individuals construct their own interpretations through language, and to gain 

knowledge one needs an encounter with another person (not always a teacher), 

book or event. Vygotsky (1978) noted that social interaction not only initiates 

changes in thinking but also alters current thinking. Individuals gradually internalize 

the talk that occurs during interactions. For Vygotsky one expands knowledge and 

for Piaget one builds knowledge. For Vygotsky, further development is cultural but 

for Piaget it is biological. This issue is further elaborated below.  



24 
 

 

In one of his lectures Vygotsky explained: 

The environment is the source of development of these specifically human 
 traits and attributes, most importantly because these historically evolved traits 
 of human personality, which are latent in every human being due to the 
 organic makeup of heredity, exist in the environment, but the only way they 
 can be found in each individual human being is on the strength of his being a 
 member of a certain social group… and during the course of their 
 development children acquire, as their personal property, that which originally 
 represented only a form of their external interaction with the environment. 

 (The Vygotsky Reader, 1935:338-354) 
 

Vygotsky believed educators’ role was to give children experiences that were within 

their zone of proximal development, thereby encouraging and advancing their 

individual learning (Wikipedia.org/wiki/zone_of_proximal_development). 

 

Learning is a social and cognitive process in which children share their thinking. Both 

perspectives, the cognitive and the socio-cultural, are essential in the learning 

process and complement one another (Cobb, 1994). This line of thinking is called 

social constructivism and puts great emphasis on communicating and negotiating as 

a process of constructing knowledge (Cobb, Yackel and Wood, 1990). In the 

mathematics classroom, teachers and students continually use each other’s 

contributions to resolve disequilibrium and develop individual knowledge. However, 

during the process of negotiating and sharing with a knowledgeable teacher, 

students come to understand the mathematical meanings of the wider society, taken-

as-shared-meanings (Cobb, Yackel and Wood, 1991). Students adapt to the actions 

of others in the course of on-going interactions. When children are constructing their 

knowledge, teachers must be able to pose tasks that help children construct 

meaningful conceptual knowledge that builds on their prior understandings. 
 

2.5 Opportunity to learn 

 

“A major goal of school mathematics programs is to create autonomous learners” 

(Posametier and Jaye, 2006:14). Creation of autonomous learners is gradual and 

needs to be fostered by giving them the necessary opportunities to develop. The 

mathematics program should ideally help learners to gain the power to think and act 

independently. This power helps learners to have control over their performance and 
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helps them to develop autonomy in learning.  Just as in other countries, several 

factors influence the high school mathematics curriculum in South Africa. These 

include societal forces, the nature of mathematics as a subject and how children 

learn mathematics. Societal forces were dealt with in chapter one of this study. The 

way grade ten learners in three selected Catholic secondary schools learn 

mathematics, and in particular algebra, will be described in detail using data from 

observed lessons (see chapter four). The nature of the mathematics subject matter 

and to some extent how it is taught will be covered in this chapter. 

 

One of the most critical variables in determining students’ achievement is their 

opportunity to learn (OTL) (Thompson and Senk, 2009; PROM/SE Report, 2009). 

OTL is one of the most important factors influencing student achievement, 

(Kilpatrick, Swafford and Findell, 2001 and 2003). OTL is a powerful concept used 

principally to explain differences among students in comparative international studies 

of educational achievement and in some small-scale national research studies 

(Stevens, 1993).  This study seeks to understand OTL and its implications, 

especially as it is examined in the context of the teaching and learning of grade ten 

algebra in selected Catholic schools in South Africa. 

 

The concept of OTL is the subject of widely varied definitions. For example, OTL is 

described as: “the degree of overlap between the content of instruction and that 

which is tested” (Reeves and Muller, 2005), “equitable conditions or circumstances 

within the school or classroom that promote learning for all students” (Schwartz, 

1995; Cooper and Liou, 2007), the “absence of barriers that prevent learning” 

(Mereku et al, 2005), “conditions or circumstances within schools and classrooms 

that promote learning for all students” (Cooper and Liou, 2007), “conditions that may 

benefit students’ mathematics learning and achievement, provided for students by 

the educational system” (Gau, 1997). Wallace (2009) defines OTL as “what takes 

place in classrooms that enables students to acquire the knowledge and skills that 

are expected.” The dictionary adds that OTL can include what is taught, how it is 

taught, by whom and with what resources.  

 

From these definitions it is clear that OTL is concerned with factors that impact on 

learners’ performance. Most of the factors depend on the educator in the classroom 
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for he or she can influence directly what students learn as well the conditions under 

which the learning takes place. The teacher can also prevent learners from making 

the most of their time in class by his or her attitude. If the teacher encourages the 

learners, they are motivated to learn and can make good progress. If on the other 

hand the teacher is discouraging, learners may develop a negative attitude towards 

the subject, become discouraged and not realise the opportunity to learn anything. 

The ideas implied in OTL help create a conducive environment that can benefit every 

learner. OTL can give all learners the chance to learn with understanding. In this 

study, there is resonance with Schwartz’s (1995) definition which highlights that 

students must have access to high quality education in order to meet high standards. 

Though not expressing everything that this study is seeking to understand it gives 

the basis of where to look, that is, the classroom which is exactly where the data for 

this study will be gathered from.  

  

The definition that expresses concern for what is assessed at the end of a course of 

study is limited in scope. If a test or examination contains what was taught it does 

not necessarily mean every learner had the opportunity to learn it. Ideally every 

learner should perform well since they were all exposed to the content before the 

test or examination, but the situation is not that simple. This assumption ignores the 

likelihood that they may not have possessed the necessary conditions under which 

to learn. It also depends on how the material was delivered to them by the teacher. 

 

Though equitable conditions are not easy to specify to everyone’s satisfaction, what 

is implied helps to point to something positive. If the environment is positive, it is 

reasonable to expect a high chance of learners having OTL. It is possible to observe 

conditions under which instruction takes place in the classroom and this helps in the 

understanding of OTL. Schwartz (1995) asserts that common sense dictates that in 

order for students to achieve, they must have appropriate opportunities to learn. 

 

Generally barriers to learning come in different forms, they can be physical such as a 

disability that might hinder a learner from gaining access to the facilities open to 

other learners in his or her age group. Barriers could be cultural or social or both. A 

certain cultural practice may favour one portion of the population at the expense of 

another as is the case with gender issues where a course of study may be designed 
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specifically for boys or for girls. This would mean that one group is denied the 

opportunity to engage in whatever activity the other group is privileged to enter.  

 

In South Africa the Department of Education released “White Paper 6” in 2001 which 

spelt out a policy of inclusive education. White Paper 6’s position is that all children 

and youth can learn and that methodologies can be found to meet the needs of all 

learners. This is an idealistic view because it is not possible to meet the needs of all 

learners, but it does provide a direction to follow and an ideal to aspire for.  The 

paper acknowledges that there are differences in learners resulting from various 

factors such as age, gender, ethnicity, language, class, disability and illness. 

Consequently, the teacher must target learners in different ways. There are many 

things between the learners and knowledge and the teacher must help the learners 

get the means to acquire, for example, mathematical knowledge. 

 

Inclusive education also aims to maximise the participation of all learners in a culture 

and the curriculum of educational institutions and uncover barriers to learning. 

Implied in White Paper 6 is the view that all learners are to be given the opportunity 

to learn since it states that all children can learn and that their needs should be met 

by the system. Maximizing participation presupposes the existence or creation of the 

opportunity to learn. Starrati (2003) confirms the need for dealing with barriers if 

students are to have opportunities to learn. He further emphasizes the fact that when 

students have developmental, linguistic, cultural or other obstacles to learning, or 

encounter unfocused pedagogy, insufficient time-on-task and inappropriate 

curriculum material, a situation in which very little learning is possible exists. 

 

In short OTL is concerned with the conditions under which learners have to learn and 

is positively associated with achievement. In this research OTL is considered in the 

context of the learning of algebra at grade ten level in selected Catholic secondary 

schools in South Africa. 
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2.5.1 The History of OTL 

 

OTL was introduced as a means to ensure the validity and comparability of cross-

national comparison in the First International Mathematics Survey in the early 1960s 

(McDonnell, 1995; Gau 1997; Boscardin, Aguirre-Muñoz, Stoker, Kim, Kim and Lee, 

2005; Scherff and Piazza, 2005). McDonnell (1995) claims that opportunity to learn 

is rare among the many concepts that education researchers have used when 

depicting the complexity of the schooling process. It was introduced in studies of 

mathematics achievement conducted by the International Association for the 

Evaluation of Educational Achievement (IEA). OTL measured whether or not 

students had the opportunity to study the particular topic or learn how to solve a 

particular type of problem presented in the test (Husen, 1967). McDonnell (1995) 

agrees that ideas and concepts like opportunity-to-learn can play a critical role in 

defining policy problems and in framing solutions.  

 

OTL standards differ from country to country and depend on a particular nation’s 

economic and educational policies (Mereku et al., 2005). In cross-national studies 

the purpose of using OTL was to take into consideration the curriculum differences 

and the discrepancies in content coverage in comparing students’ mathematics 

achievement across different national systems. Thus it was important and fair to 

consider what each country was offering its students before students’ achievement 

could be compared. Indices of OTL in different schools, districts or regions within the 

same nation cannot be compared when those OTL standards are defined differently. 

To determine whether cross-national differences in students’ mathematics 

achievement were caused by differences in students’ learning experiences rather 

than in their ability to master the subject, measures were developed for quantifying 

the instruction that students had received in a subject prior to testing (Schwartz, 

2005). 

 

Knowing the stages of development of the concept as outlined above helps to put 

the study in context. The concept has developed and was adopted or used to answer 

the problems in the education system especially in racial equality related issues. The 

information on OTL that now exists can serve as reference while the term continues 

to gain acceptance and its application becomes more widespread and moves from 
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the developed world to the developing world. 

 

 
2.5.2 Applications of OTL 

 

2.5.2.1 OTL as a standard to measure school effectiveness 

 

At first OTL was used simply as a yardstick to measure the effectiveness of 

federally-funded educational programs in the United States (Schwartz, 1995; Abedi 

et al., 2004). OTL standards are defined as the criteria for and basis of assessing the 

sufficiency or quality of the resources, practices and conditions necessary at each 

level of the educational system (schools, local educational agencies, and states) so 

as to provide all students with an opportunity to learn the material in voluntary 

national content standards or state content standards (Mereku et al., 2005; and 

Schott Foundation, 2008). OTL standards are viewed as equivalent to school 

delivery standards, as part of systemic reform, as input conditions, and as a 

reference for time available. Problems surrounding OTL standards include how to 

define them, how to measure them, when and how they can be applied, the 

incorporating of them into existing procedures and the potential for confusing policies 

and increasing legal issues (Ysseldyke, Thurlow, and Shin. 1995). 

 

According to Scherff and Piazza (2005), OTL standards were a political development 

that received attention mostly in the 1990s. Scherff and Piazza (2005) based their 

explanation of the concept of OTL on the potential input resources (content, 

curriculum activities, and materials) to which students had access and exposure. 

These potential input resources are important when considering any educational 

endeavour because they are an essential part of any system whether effective or 

not. They do not, however, tell the whole story because they do not indicate who is 

responsible for what, when and how. OTL includes the multiplicity of factors that 

create the conditions for teaching and learning, such as curricula, learning materials, 

facilities, teachers and instructional experiences (Scherff and Piazza, 2005).   

 

Scherff and Piazza (2005) expand the concept of OTL to include a new factor – the 

distribution of information. They also argue that the distribution of information is a 
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critical component of the school culture that creates conditions for school-wide 

student achievement. Considering the distribution of information provides one more 

way through which OTL can be improved or better understood. Broadening the 

concept of OTL provides us with a new framework to better understand the problems 

students face during the transition into high school. These include poor attendance, 

discipline related problems and a decrease in extracurricular activities (Cooper & 

Liou, 2005). These researchers conclude by saying that access to information is an 

important condition influencing a student’s OTL.  

 

Schwartz (2005) maintains that OTL includes the provision of curricula, learning 

materials, facilities, teachers and instructional experiences that enable students to 

achieve high standards. Reeves and Muller (2005) say that although OTL has 

received attention in international comparative studies such as TIMSS and in 

developed countries such as the United States of America, its use in the developing 

countries has been limited.  

 

South Africa is a developing country where information on OTL is scarce (Revees & 

Muller, 2005). As such this study seeks to contribute understanding to the perceived 

benefits of engaging with the concept in the practice of mathematics education. It is 

possible for South Africa to adopt OTL with most or all its tenets as part of the policy 

in education. The concept of OTL provides a rich and vast reference that helps to 

address the present need for improving the performance of learners in the 

mathematics learning area in South Africa. Schwartz (2005) observes that in the 

USA, despite recent attention to OTL strategies, most schools do not view them as 

either standards to be met or as indicators of educational quality. In the South 

African situation, it remains to be seen whether some educators are even aware of 

such a concept let alone engage with it. OTL offers a means of describing school 

and classroom processes. Researchers can study how the subject materials are 

taught, and how students learn based on the framework of OTL. This helps to 

explain why students’ achievement may vary within a classroom (school) and across 

classrooms (schools). Scherff and Piazza (2005) conclude that if schools are to be 

held accountable for the equal delivery of educational opportunities, the core of the 

education performance indicator systems should include the data of school and 

classroom processes. 
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In recent decades, escalating demands for accountability and higher standards of 

student performance have led to renewed interest in the concept of OTL and 

encouraged researchers to expand conceptions beyond the consideration of time to 

include the nature and quality of instruction and its prerequisites (Herman and Abedi, 

2004). 

 

2.5.2.2 OTL as a research concept  
 

According to Boscardin et al. (2005), OTL as a research concept, was first 

introduced in the early 1960s, in the First International Mathematics Survey. By the 

mid-1980s the notion of OTL had gone through substantial revisions, for example the 

Second International Mathematics Study conceptualized OTL in terms of curriculum, 

(Gau, 1997). The implemented curriculum was termed OTL. By 1994 OTL was linked 

to accountability, that is, ensuring that all students have a guaranteed right to the 

core resources needed to provide a fair and substantive opportunity to learn. This is 

based on the manner in which OTL standards are defined (Schott Foundation, 

2008). Accountability also entails that tools have to be put in place for monitoring 

potential differences in OTL among various groups of students.  OTL can provide the 

necessary standard to study students’ educational opportunity and to evaluate 

schools’ provision of educational opportunities, as well as provide detailed 

explanatory information regarding student achievement (Schott Foundation, 2008).  

 

Boscardin et al. (2005) identify three variables which show the impact of OTL on 

student outcomes. They are: curriculum content, instructional strategies and 

instructional resources. ‘Curriculum content’ focuses on how much students are 

exposed to specific subjects and topics that are being assessed. Different 

dimensions of curriculum content in OTL include content coverage, content 

exposure, and content emphasis (McDonnell, 1995). Content coverage is the most 

frequently studied dimension and has been measured in various ways, including 

teachers’ self-reports, direct observations and analysis of the content of curriculum 

materials. Content exposure is usually measured by direct observation to see the 

amount of time a teacher spends covering the specific content. Content emphasis 

concerns the issue of how a content area is treated: as a major topic, a minor review 
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or not taught at all. The more assessment tasks resemble the curriculum, the better 

the assessment will be at detecting the impact of instruction. 

 

OTL issues addressed through instructional strategies include whether or not 

students have been exposed to the kinds of teaching and instructional experiences 

that would prepare them for success. This also includes the quality of instructional 

delivery, which is often measured by direct classroom observation. 

 

OTL issues addressed through instructional resource variables are concerned about 

whether there are appropriate resources to prepare students for success and the 

achieving of standards. Aspects of this dimension focus on teacher preparation, 

including level of education, amount of experience, type of experience, participation 

in in-service professional development, and attitude. School resources continue to 

be seen as an important OTL indicator because they can enable or constrain a 

school’s ability to provide a high-quality instructional program. Finally, unless results 

from these OTL studies can be used to inform policy decisions, the concept of OTL 

will remain a research concept with no direct impact on educational reform.  

 

2.6 How to study OTL 

 

Gau (1997) says that in the past the concept of OTL was often operationalized very 

narrowly as whether particular tested items were taught beforehand to the students 

who took the test. In those circumstances teachers’ reports of coverage was the sole 

indicator of OTL. This was criticized for being too narrow, bound to the specific items 

and more representative of teaches’ judgements of items rather than the content 

categories of which the item is an example (Gau, 1997). According to Gau (1997), 

despite the efforts made by researchers to broaden the operational definition of OTL, 

the results have not been that compelling. He concludes that there is room for 

improvement in studying the effects of OTL on students’ achievement and that 

finding the best means of measuring OTL remains a matter of concern for 

investigators. 

 

Gau (1997) seeks to understand the distribution and effects of a broadened 

conception of OTL on students’ mathematics achievements. Although school is an 
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organisation intended to provide learners with OTL, this is not always realised in 

practical terms because OTL tends to vary from school to school as well as within 

any one school. Gau’s study is of particular interest because it considered schools in 

the Catholic, non-Catholic and non-sectarian private sectors. The present study is 

concerned with OTL algebra in selected Catholic schools. It is possible that certain 

conditions may be the same as those found in Gau’s study. The present study is not 

going to compare OTL in different categories of schools but only between three 

schools which are in the same sector but in two different environments: inner-city 

and township. 

 

In Gau’s (1997) study, three constructs, teachers’ mathematical knowledge, content 

and level of instruction and school mathematical resources, were used to explain 

what was termed the expanded OTL. Gau points out that teachers’ knowledge may 

influence the quality of instruction and hence the kind and quality of opportunities the 

students have. Accordingly, the content and the level of instruction to which students 

are exposed may affect their achievement. Furthermore, a school’s mathematical 

resources influence the kind of classroom learning and instruction possible as well 

as the existence of extra curricula opportunity. Additionally other student 

characteristics such as gender and race and school characteristics may influence 

what is learnt from the opportunities provided. Gau’s study reveals that the 

distribution of OTL is not equal throughout different categories of schools (Gau, 

1997: 21). 

 

According to PROM/SE (2009) direct observation of classrooms over an extended 

period of time would provide a rich source of information about the implemented 

curriculum. However such studies are very costly and time consuming so they are 

infrequently employed by researchers. Self-report measures such as daily teacher 

logs of instruction, interviews and questionnaires have been frequently used to 

determine content coverage and implementation data. Such self-reports have 

limitations because people can exaggerate things and they may not have the same 

frame of reference as the researcher. 
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2.6.1 Examples of OTL Studies 

 

Reeves and Muller (2005) describe opportunity to learn as the degree of overlap 

between the content of instruction and what is tested. Underlying this OTL construct 

is the notion that curriculum frameworks and curriculum guides potentially act as 

inclusionary mechanism for ensuring that high status mathematical knowledge and 

skills are made equally available to all learners. Commenting on OTL in the current 

South African context, Reeves and Muller (2005) observe that given the recent 

revisions to the curriculum framework, it is plausible to anticipate that policy makers 

and others involved in schooling in the country will have a revitalized interest in the 

opportunities to learn that are being made available to low socioeconomic status 

(SES) populations of learners. Their observation is also that though OTL has 

received attention in international studies in developed countries, its use in 

developing countries has been limited. The present study is paying heed to the call 

to be involved in the consideration of OTL as a possible means of understanding 

how mathematics in general and algebra in particular is learnt. 

 

Although this study has come at a very unstable time in the history of the education 

system in South Africa, when many changes are taking place, the consideration of 

OTL can never be out of date because of what it inherently promises. The current 

study seeks to contribute positively to the discussion of issues, problems and 

dilemmas associated with the teaching and learning of algebra, paying particular 

attention to the opportunities available to learners to accomplish the desired ends. 

An understanding of the way learners learn is necessary to widen and enrich the 

analysis of today’s perceived problems in the learning of mathematics in general. 

 

In a working paper of the United States Agency for International Development 

(USAID, 2008), it states that sixteen years after the launch of the first Education for 

All Conference, the impact in terms of educational outcomes and in particular 

student learning, has not been impressive. The paper argues that the reason why 

students are not succeeding is the lack of the opportunity to learn (OTL). The paper 

further argues that resources are not the only determinant for quality education since 

it was observed that schools outside the government systems showed that children 

were achieving higher learning outcomes with equal or less resources.  
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The USAID paper (2008) identifies eight crucial elements that create what they refer 

to as a basic opportunity to learn. These elements are: total instructional time, the 

hours in a school year and days that the school is open, teacher attendance and 

punctuality, student attendance and punctuality, the teacher-student ratio, 

instructional materials per student, and the classroom time spent on the tasks and 

skills taught per grade. Consequently, without a strategy to track these elements 

more closely, and direct funding to ensure that a minimum level is attained, children 

cannot be provided with a basic opportunity to learn. This working paper further 

argues that the basic OTL index starts from a relatively simple premise: learning is to 

some degree a function of time and effort. Without adequate time on task, no 

learning is possible (USAID, 2008:4). Investments in teachers, materials, curricula, 

and classrooms are wasted if they are not used for a reasonable period of time.  A 

direct relationship between learning and OTL is assumed. 

 

The USAID paper “posits that a basic OTL for developing countries needs to focus 

on a number of more fundamental measures before the above elements become 

relevant” (2008:4). The Fundamental Quality Level (FQL) implemented in a number 

of African countries in the 1990’s system sought to establish the standards of inputs 

and infrastructure necessary to provide equality of school conditions. The FQL 

program provided a basis for dialogue about investment in education infrastructure. 

While extremely useful for informing investment decisions and choices, the FQL 

approach did not capture the management aspects of creating a genuine opportunity 

to learn. The paper further argues that the failure to focus on the fundamental OTL 

factors undermines all investments in higher level interventions (USAID, 2008:4). 

 

Foundational elements were identified by USAID (2008). These are the inputs and 

management available (including instructional time), the nearness of the school and 

availability of teachers and students at appointed times of the day and the 

instructional materials for use by each student. The USAID paper reports that an 

OTL study in Ghana found that the overly ambitious curriculum was poorly aligned 

with teacher capability and that less than half of the material was actually covered 

during the school year. 
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Opolot-Okurut (2008) investigated factors that hinder pupils’ opportunities to learn 

mathematics in primary schools in Uganda. He considered the challenges and 

problems that teachers face when they teach mathematics in primary schools. He 

identifies six relevant factors: (a) the personality of the teachers (b) the 

characteristics of the pupils (c) overcrowded classrooms (d) the nature of the 

curriculum and syllabus (e) government policies on education and (f) the learning 

environment and assessment methods. He explains that when teaching in large 

classes, teachers provide fewer exercises and practice so as to reduce the amount 

of marking that they have to do. There is also limited space to conduct group work 

that would ensure the effective coverage of content. Also, the overcrowded 

curriculum minimises the pupils’ opportunity to learn mathematics as teachers try to 

cover too much content in too little time.  

 

Opolot-Okurut (2008) recommends that these factors are examined and suggests 

that the implications of the problems and challenges identified in his study beg for 

further research, more focussed education policies and more support for teachers to 

improve pupils’ opportunity to learn. Though Opolot-Okurut was considering primary 

school mathematics, the factors he identified can apply to secondary school 

mathematics as well. In this study these factors will inform the construction of the 

instruments used. All of the factors have a bearing when it comes to observation of 

learners engaged in the learning of algebra and also when undertaking a document 

analysis of the intended curriculum. 

 

Scherff and Piazza (2005: 343) are of the opinion that “... now, more than ever, we 

need to talk about opportunity to learn” because, “while we hold students 

accountable to the same standards on high-stakes tests, a survey revealed 

unconscionable variation in the extent to which resources and instruction support 

their achievement.” They also bemoan the fact that the indicator of whether a school 

is considered successful is usually student achievement scores, yet a single score 

can mask the complexities of teaching and learning, as well as the factors that 

impact test results. This makes the concept of opportunity to learn (OTL) a promising 

idea that can guide the assessment of schools and place them in proper perspective, 

especially when striving not to leave any child behind (Scherff and Piazza, 2005). 
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Scherff and Piazza (2005) contend that for curricular standards to be accurately 

measured by mandated assessments, educators must ensure that students have 

more choice, ownership and commitment to the educational enterprise. For this 

reason they see it fit to study students’ perspectives as one viable way of shedding 

light on OTL, especially when considered against a social and political framework. 

Although students’ self-reports address only one component of the complex 

phenomena that is OTL, when interpreted against a backdrop of legislative 

mandates for standards and assessment they can help to explain how variation in 

access and exposure to content and curricular tasks and materials can be used to 

evaluate state and local strategies and provide data on progress toward equal 

access to learning (Scherff and Piazza, 2005). They further point out that until the 

underlying issues in regard to OTL are considered, some inequality will continue to 

exist in U.S. school systems. It follows that the inclusion of the students’ voice can 

serve as an important frame of reference for interpreting test scores and discussing 

the success or failure of schools. Scherff and Piazza (2005) stress that documenting 

factors associated with OTL and illuminating them in assessments and research 

studies such as theirs can provide a solid starting point. 

 

Cooper and Liou (2007) suggest that in an effort to bridge the gap that characterises 

racial achievement, one factor that warrants further investigation is the opportunity to 

learn. They argue that though this is not a new concept it has been silenced in the 

current discourse on how to close the achievement gap. They concur with Gordon 

(1992) who suggests that it was immoral to compare student outcomes before any 

serious engagement in investigating the distribution of inputs, that is, the 

opportunities and resources essential for the development of intellect and 

competence. 

 

Since 1988, OTL has been viewed as a viable tool to ensure equity in the distribution 

of educational resources and learning opportunities (McDonnell, 1995). OTL theory 

suggests that students’ differentiated learning experiences, both within and between 

schools, can be attributed to unequal learning conditions rather than students’ 

abilities to succeed (Schwartz, 1995). Research on OTL has focused on developing 

better ways to measure how elements of school culture such as school finance, 

student assessment and teacher quality are distributed and compared. 
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Cooper and Liou (2007) investigate whether all students have equal access to the 

type of information that can make the difference between dropping out of the 

educational system and staying in it. They view OTL as a powerful analytic tool that 

has the potential to enact the kind of progressive social policymaking that would 

transform the culture of schooling for children. They also recommend that the OTL 

framework be utilized within the context of reform efforts like No Child Left Behind 

(NCLB) so that policymakers and practitioners can better assess how learning 

opportunities are distributed between and across schools (Cooper and Liou, 2007). 

The NCLB Act requires states to develop assessments in basic skills to be given to 

all students in certain grades. Such an approach to reform requires the emphasis to 

be placed on exploring the ways unequal schooling conditions, including the 

distribution of high stakes information, serve as powerful indicators of the distribution 

of possibilities. At the National Opportunity to Learn Education summit held in 2008 it 

was concluded that: 

NCLB holds students, teachers, and administrators accountable for their 
performance. However, while NCLB may address the soft bigotry of low 
expectations, it does not address the hard bigotry of lack of resources for 
children facing de jure, but certainly de facto segregation in low-income 
communities. 

 

Cueto, Ramirez and Leon (2005) say that the distance between what is intended and 

what is implemented is due to many factors. These include the fact that the 

curriculum is too long, the students do not master some of the competencies and so 

the teachers do not have sufficient time to cover them all, and that the teacher may 

have different priorities regarding what should be taught. Furthermore, the teachers 

do not master some of the competencies to be taught and so do not include them in 

their classes, or the teachers do not have the educational material needed to teach 

some competencies (Cueto et al., 2005). 

 

In an investigation of Mathematics Textbooks and their use in English, French and 

German classrooms, Haggarty and Pepin (2002) conclude that learners in different 

countries are offered different mathematics and given different opportunities to learn 

that mathematics, both of which are influenced by textbooks and by teachers. In 

France, there is no grouping of pupils either by perceived ability or achievement 
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which means that all pupils in a particular class are given opportunities to learn the 

same mathematics, with each topic studied for the same amount of time by all pupils, 

from the same textbook supplied by the school. Teachers interviewed in France told 

them that they used the textbook most, if not all, of the time in their lessons, and as 

their main resource for lesson preparation. Textbooks are written by mathematics 

inspectors in France and therefore reflect the pedagogical concerns and emphases 

of those inspectors. All pupils in France were given opportunities to learn challenging 

mathematics and it seems to be their teachers’ aims to select stimulating exercises 

for them in order to give them the opportunity to engage in the process of doing 

mathematics (as opposed to result-driven, closed learning). 

 

Haggarty and Pepin (2002) claim that unless the learners have financial difficulties, 

the acquisition of German textbooks is the responsibility of learners. As a result of 

this arrangement, parents tend to pressurise teachers to stick to the same book 

every year to reduce the costs, especially when they have a number of children at 

school. This also means that pupils have access to the textbook both at school and 

at home since it literally belongs to them. The school itself decides on the textbooks 

to be purchased by parents from a list supplied by the Ministry of the Land Germany. 

Since teachers work from textbooks on an ‘approved list,’ they tend to assume that 

the books cover the National Curriculum sufficiently. The teachers rely mainly on the 

textbooks to determine what to teach. 

  

Herman and Abedi (2004) investigate issues identified in assessing the opportunity 

to learn mathematics amongst learners whose first language is not English. They 

contend that fairness demands that English Language Learners (ELL) be given 

equitable opportunity to learn that upon which they are assessed, especially if those 

assessments carry significant consequences for their future. Accordingly, OTL data 

can help provide guidance in these areas. The reality is that an ELL is unlikely to 

improve unless or until students have more effective opportunities to attain the 

expected performance standards. They question whether the students were given 

such opportunities and also wonder what effective opportunities look like. They 

argue that in the absence of data on OTL, policy makers will be missing critical 

evidence on which to base their decision-making and schools will be missing critical 

feedback. They further stress that data on ELL OTL can focus attention, stimulate 
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schools’ thinking about the strengths and weaknesses of their curriculum and course 

offerings, and encourage insight into priorities for professional development, 

materials acquisition and resource allocations just as with student performance data. 

 

While acknowledging that there are innumerable other potential and important uses 

of OTL, Herman and Abedi (2004) considered their list sufficient to motivate their 

purpose of exploring selected issues in the measurement of OTL to provide 

preliminary findings on the relationships between ELL status and OTL and to raise 

questions for future study. They observed that while attention is paid to the definition 

of OTL and ways to potentially measure it, relatively little consideration is given to 

the quality of the measures and so little attention is paid to OTL for ELL. Their study 

only draws on research examining OTL for the general population and on specific 

teaching and learning issues relevant to ELL. 

 

In the light of the strong relationship between OTL and student performance for ELL 

students, Herman and Abedi (2004) claim that their findings show that the 

relationship between language status and classroom-level OTL is significant. Their 

descriptive results indicate clear differences in OTL for ELL and non-ELL students in 

the study. Similarly the Hierarchical Linear Modelling (HLM) results show that the 

proportion of ELL students and OTL have important effects on student performance, 

even after controlling students’ prior ability and background. Their preliminary 

observation findings also suggest inequities in OTL for ELL and non-ELL students. 

These data confirm the need for current debates about bias in testing for ELL 

students to shift towards giving at least as much attention to bias in OTL. The data of 

Herman and Abedi suggest that differential OTL may indeed play a role in the 

depressed performance of ELLs. 

 

Herman and Abedi’s (2004) findings regarding the relationship between language 

proficiency and OTL suggest that only examining exposure is limited.  They found 

that exposure does not ensure effective access to curriculum and appropriate 

opportunities to learn. Herman and Abedi (2004) wonder if without such opportunities 

sufficient learning can occur. They encourage weighing the pros and cons of quantity 

versus quality and question whether it is desirable to pass as many as possible in 

the name of giving as many people as possible an opportunity. They conclude that 
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this means that quantity trumps quality. The many questions that Herman and Abedi 

(2004) asked have helped the present research to probe the same in the context of 

South Africa. 

 

Mereku et al. (2005) are concerned with the influence of content coverage (which 

they saw as analogous to ‘opportunity to learn’) on learners’ achievement. They point 

out that the literature on content coverage can be separated into two main strands. 

One strand explores the influence of content coverage on learner’s achievement and 

the other outlines studies which concern themselves with content coverage as part of 

a complex instructional component influencing the whole curriculum.   

 

Sileo and van Garderen (2010) consider the fate of students with disabilities who are 

now educated in general classroom settings as a result of the implementation of the 

No Child Left Behind Act of 2001 and Individuals with Disabilities Education 

Improvement Act of 2004 in the United States of America. Many of these students 

struggle academically in various subject areas, including mathematics. Sileo and van 

Garderen (2010) encourage the creation of optimal learning opportunities for 

everyone since the emphasis in education is to ensure that all students learn. They 

suggest that the combination of research-based instructional practices in 

mathematics and co-teaching models may create powerful learning environments 

that enable all students to develop mathematical understanding. Co-teaching is a 

means of providing the desired learning and teaching outcomes that can benefit both 

students and teachers. They conclude that, although co-teaching structures can 

enhance student learning, it is also important to consider the subject matter. General 

and special educators can work together to blend their knowledge bases. This 

relationship is invaluable because it weds content and strategy specialists and allows 

teachers an opportunity to meet all students’ mathematical learning needs (Sileo and 

van Garderen, 2010). 

 

Though writing nearly two decades ago Bass (1993) made a point that rings true 

even today. He points out that the curriculum was still organised in ways that 

prevented many students from gaining access to the mathematics they need. Bass 

brought in an element which is not clear in other studies, that of what student’s need 

rather than what is given to them irrespective of the relevance. The curriculum 
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should consist of what the learners find useful in their lives. This does not mean that 

the sole intention of the curriculum is to provide students with only what they need 

for that would make it narrow, but what they need can help to motivate them to want 

to learn. It can spark an interest in students to pursue mathematics further than the 

classroom. It is important to consider what the learners need so that they can find 

learning interesting and worthwhile.  

 

In seeking to understand the significance of context, Rousseau and Powell (2005) 

adopt a framework that was explicitly tailored to the examination of equity in 

mathematics education. They sought a framework that would highlight the 

connections between equity and reform. For this purpose, they drew upon the work 

of Tate (2004) who outlined the important variables that shape students’ opportunity 

to learn mathematics, namely time, quality, and design. Time and quality shape the 

vast differences in students’ opportunities to learn, ensuring that students of colour 

and students from low-income backgrounds receive fewer opportunities to learn high 

quality mathematics than others. 

 

According to Starratt (2003) it is unfair to test a student on material that they have 

not had enough time to prepare, especially when the failure of a test results in 

retention or the denial of a diploma. He views tests themselves as mere indicators of 

whether students have mastered the required material and says that it is up to 

teachers to identify the specific obstacles each student faces in his or her learning 

and to examine whether their own instruction is sufficiently reflective of curriculum 

standards to provide an adequate opportunity to learn. This shows the crucial role 

that teachers play in determining the future of their learners through preparing them 

for tests or examinations that channel them into different careers depending on their 

performance. Starratt (2003) concludes that the logical extension of the ‘all children 

shall learn’ policy is that no student should fail a test. In contrast to the above Starratt 

(2003) further stresses that judgments of learning should be based on multiple 

indices of learning and not be restricted to performance on standardized tests. 

 

According to the Wikipedia Encyclopaedia, curriculum is a set of courses with a 

specific content and is the foundation of the teaching-learning process whether it is a 

school, college, university or training organisation. Curriculum may be partly or 
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entirely determined by an authoritative body. In this study the algebra curriculum is 

determined by the Department of Education. The curriculum is more than a collection 

of activities; it must be coherent, focused on important mathematics, and well-

articulated across the grades (NCTM, 2006). This is a good guide to use when 

considering OTL mathematics in the classroom. It is important that the program of 

work shows coherent ideas which are focused on materials and activities that are 

important to the learners and that ideas grow in logical sequence. Curriculum is 

taken as a central consideration whenever decisions on policies are made. 

 

Stein, Smith, Henningsen, and  Silver, (2000)  claims that most debates about the 

improvement of mathematics teaching and learning centre on the curriculum, that is, 

what students learn, in what order and to what standards of proficiency. Cueto et al. 

(2008) say that theoretically, it is the implemented curriculum more than the intended 

curriculum that explains achievement. Achievement is referred to as the attained 

curriculum in the TIMSS framework.  

 

Rousseau and Powell (2005) point out that there are various time-related factors that 

shape students’ opportunity to learn such as time in class and planning time. These 

variables have in common their influence on content coverage and time-on-task in 

mathematics. In addition to influencing students’ opportunity to learn, class time 

shapes teachers’ efforts at reform. According to Rousseau and Powell (2005), 

teachers tend to stick to more procedural or rule-based teaching and learning, citing 

limited class time as the reason for them not to use reform-oriented practices. Both 

instructional and planning time shape teachers’ responses to reform. Yet, this 

emerges as a potential equity issue insofar as the availability of class and planning 

time may be related to the teaching context. Therefore time is very important to 

consider since its management influences what, when and how material is covered. 

  

Rousseau and Powell (2005) identify the adoption of a new curriculum as one of the 

key elements in the success of the ‘The Mathematics: Application and Reasoning 

Skills’ (MARS) project. Curriculum reform within this project began with the design of 

a new curriculum guide. Following the design of the curriculum guide, the district 

sought out and adopted instructional materials that supported the teaching and 
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learning of the objectives outlined in the curriculum guide. The curriculum guide and 

instructional materials were then used as key components of subsequent 

professional development efforts and served as crucial factors in the reform process 

(Rousseau and Powell, 2005). Also, access to high quality curricula and instructional 

materials is connected to issues of equity and fiscal adequacy. They cite a study 

where a strong relationship was found between students’ economic status and the 

level of resources provided for their classroom experience. They claim that one of 

the concerns related to equity and curriculum is the likelihood that financial 

conditions will impact on the availability of high quality instructional materials, 

particularly in urban and/or high poverty schools. 

 

The focus on high quality curriculum and instruction leads directly to another variable 

that must be considered in an examination of mathematics reform and equity-teacher 

preparation or teacher knowledge. According to Darling-Hammond (2000:37), 

“substantial evidence from prior reform efforts indicates that changes in course 

taking, curriculum content, testing or textbooks make little difference if teachers do 

not know how to use these tools well and how to diagnose their student’s learning 

needs.” Without adequately prepared and knowledgeable teachers, there is little 

chance that quality curriculum and instructional strategies will be effectively 

implemented. Barber and Mourshed (2009) pointed out that the best performing 

school systems across the world shared the following four clear lessons: The quality 

of education system cannot exceed the quality of its teachers; The only way to 

improve outcomes is to improve instruction; High performance requires every child to 

succeed; Every school needs a great leader. These lessons appear to suggest that 

learners should be provided with OTL. 

 

While there are a myriad of professional development programs designed to promote 

mathematics reform, there are far fewer that have made an explicit effort to address 

issues of equity (Rousseau and Powell, 2005). According to Rousseau and Powell 

(2005), many people in mathematics education have yet to take seriously the 

significant differences between teaching contexts with respect to mathematics 

reform. It is one thing to say that all students can learn (including students in urban 

and high-poverty schools), but without trying to understand the influences of reform 
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in these contexts, it will be meaningless to say that opportunities to learn cannot be 

realized under such circumstances. 

 

Like many countries of the world and particularly in developing countries, South 

Africa is faced with a critical shortage of mathematics teachers and a big challenge 

to develop a mathematically-skilled workforce in various fields (Moloi, 2005). On the 

supply side, statistics released by the Department of Education show that only three 

percent of all the students enrolled in institutions of higher learning in the year 2000 

were in mathematical sciences as an area of specialization (Department of 

Education, 2005). In prefacing a National Strategy for Mathematics, Science and 

Technology for 2005-2009, the Department (2004: 10) took cognizance of this 

limitation and further expressed concern that the teaching of mathematics in schools 

was almost never a first choice to talented mathematics graduates. Consequently, 

mathematics was often taught by inadequately qualified teachers and this led to a 

vicious cycle of poor teaching, poor learner achievement and a constant under-

supply of competent teachers. Evidently the current demand for mathematically 

competent workers in the country far outstrips both its supply and level of ability. 

Other than the ‘dipstick’ surveys that have pointed to low levels of achievement in 

numeracy, there has been no systematic attempt to research whether the curriculum 

is now accessible to all learners from different contexts (urban, rural and socio-

economic strata) so that success through the schooling system can be guaranteed to 

all learners. 

 

In South Africa in particular, broad participation (access) and quality achievement in 

mathematics have been prioritized for equity and general redress of historical 

inequalities (Department of Education, 2004). But educational equity is not likely 

without a range of opportunities to learn, opportunities that are wide enough to 

satisfy the diversity of talents of those who come to school (Eisner, 1994).  According 

to Prediger (Undated), diversity of talent might manifest in the same classroom 

where it is possible to find that, while some students have already solved the given 

mathematical problems and are asking for further challenges, others have not even 

taken up their pencil. Whereas some students are trying to solve new mathematical 

problems with enthusiasm and creativity, others cannot even start working and have 

no confidence in their own capabilities. Arguably, this diversity of students is one of 
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the major challenges we meet in mathematics classrooms where opportunities to 

learn might seem equal but achievement is varied. This has major implications for 

teaching and learning mathematics and especially for the teacher who must create 

conditions that enable the diverse students to learn. 

 

Mokhele (2007) conducted a study of Environmental Education OTL in the province 

of Mpumalanga in South African. She says that resources, both in terms of 

personnel and materials for Environmental education are inadequate and as a result 

the development of OTL Environmental Education is limited generally in the 

provincial schools. Schools in the province coped differently with the limitations 

imposed by provincial frameworks and this translated into differentiated OTL 

Environmental Education across the different schools. Mokhele (2007:127) has this 

to say, “In general, some schools have managed to create better opportunities for 

the learning and teaching of Environmental Education than others”. Mokhele’s study 

showed how some schools and teachers managed to create OTL Environmental 

Education in spite of the limitations in their own individual capacities. The mentioned 

study helps to shed light on OTL in the South African context. 

 

Another study conducted on OTL in the South African context was carried out by 

Sehlola (2007), also in the area of Environmental Education. Sehlola (2007) explores 

how one primary school in the Gauteng Province of South Africa provides OTL about 

the environment, in the light of recent policy changes.  Sehlola points out that one of 

the major limitations of the Department of Education’s program of implementation of 

the new environmental learning policy is the inability to provide teachers with enough 

time to learn and implement the new ideas of the revised national curriculum 

statement.   

 

Sehlola (2007) observes that the limiting factor at the school is the absence of 

properly qualified teachers in the field of Environmental education. However, though 

the teachers tended to limit the content of environmental lessons to topics covered at 

workshops, all the teachers observed made genuine attempts to include 

environmental themes and knowledge into their lessons. The school managed, 

through its own networks and initiatives, to create some latent capacity to provide 

significant OTL about the environment for its learners. For example, the school 
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formed partnerships with Non-Governmental Organisations to enhance professional 

development resulting in better delivery of lessons. Sehlola (2007) has therefore 

shown that it is possible to create OTL for learners even when the teachers are not 

all qualified. If the capacity building program (even through peer development) is in 

place then gradually the provision of OTL will improve. 

 

While official curricula generally point to the ideals and aspirations of education 

systems, in the final analysis it is what is taught and learnt in the classroom (the 

implemented curriculum) that eventually translates into observable and measurable 

outcomes, intended or otherwise. Besides learner characteristics (e.g. gender, age, 

intelligence), access in terms of the availability, adaptability and acceptability of 

learning support materials constitutes one major determinant of the level and quality 

of learner achievement in the education process. But as the PROM/SE (2009) report 

observes, measurement of the curriculum that teachers implement in the classroom 

is fraught with complexity. Furthermore, a comprehensive view of the curriculum 

implementation may require us to not only determine what content teachers cover 

but what they emphasize, what achievement standards they use, the effectiveness of 

their pedagogical strategies, and the syllabi, textbooks and other resource materials 

employed to support learning. There is also awareness of how socio-economic 

contextual factors can hinder or support access to and success in the curriculum 

(UNESCO, 2005; Ross and Zuze, 2004). 

  

2.7 The teaching and learning of mathematics. 
 

It is common knowledge that learning mathematics has always challenged students 

the world over. Most students have a hard time to acquire mathematical skills. This 

calls for an intensive effort on the part of the teachers and learners to improve 

performance as much as possible. The call is not to remove the problem as this 

intention would be futile, but to find ways to overcome it, at least in part. In dealing 

with the learning process it is important to bear in mind that it is not only about the 

conditions prevailing in the school or classroom but also about content and exposure 

to that content. 

 

In the process of mathematics education we have to consider what the learners are 
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learning and for what purpose. It is important to keep in mind the desired outcome 

such as the exit skills we hope to achieve. A host of factors must be taken into 

account, such as the context in which the teaching and learning takes place, the 

stakeholders involved, and the skills required by the market for which they are being 

developed. Assessment, both formative and summative is important to consider for it 

determines directly or indirectly how students learn and study. Formative 

assessment mainly involves what takes place in the classroom and includes 

exercises, assignments and portfolios which are used as evidence of learning. 

Activities outside the classroom, for example a visit to industry or any place that can 

expose a learner to practical mathematics, can also be part of the formative 

assessment which can help the learners to choose their future careers. Summative 

assessment involves mostly written examinations. All assessments must however 

support the development of mathematical proficiency (Kilpatrick and Swafford, 

2002). 

 

One of the most important ways of judging achievement in education is through 

assessment. Assessment and instruction are linked because assessment results 

have important implications for instruction. Porter (1995) says that school 

communities use assessment results in a formative way to determine how well they 

are meeting instructional goals and how to alter curriculum and instruction so that 

goals can be better met. (Although this is an old source it is still relevant today). But 

unless the content assessment and the format of assessment match what is taught 

and how it is taught, the results are meaningless, if not potentially harmful. The same 

is true if assessment tools are not of high quality. And there is also potential harm 

when decisions affecting students’ futures are made based on results of 

assessments made with tools that are not appropriate for the purpose (Porter, 1995).  

 

The language of instruction is another factor that impacts on curriculum. In South 

Africa the majority of the learners do mathematics in a language that is not their 

mother tongue. It is common knowledge that language is a major contributory factor 

in cognitive development as it is a vehicle for thought. Setati (2008) supports this 

idea and regards language as a tool for thinking and communicating. She 

investigates access to mathematics versus access to the language of power and 

exposes the struggle in multilingual mathematics classrooms. She reports that there 
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is a general view in South Africa that most parents want their children to be educated 

in English and that most learners would like to be taught in English. While there is no 

systematic research evidence, it is also widely held that many schools with an 

African student body choose to use English as the language of learning and teaching 

(LoLT) from the first year of schooling (Setati, 2008). Because the TIMSS results in 

South Africa were very poor, studies that have emerged from this argue that the 

solution to improving African learners' performance in mathematics is to develop 

their English language proficiency (Setati, 2008). 

 

Setati (2008) asserts further that decisions about which language to use in 

multilingual mathematics classrooms are not only pedagogic but also political. Most 

research on mathematics education in multilingual classrooms has argued for the 

use of the learner’s home language for learning and teaching mathematics. This 

provides a support while learners continue to develop proficiency in the other 

language of learning and teaching (e.g. English). Setati (2008) says the political role 

of language in mathematics education research and practice should not be ignored 

because doing so would imply that power relationships do not exist in society.  

 

Many African teachers and learners investigated by Setati (2008) associate the 

English language with mathematics learning since it is the language of mathematics 

textbooks and assessment. Secondary school mathematics textbooks have never 

been published in African languages in South Africa. According to policy, African 

languages can be used as languages of learning and teaching but English and 

Afrikaans are the only possible choices for teaching and learning mathematics. What 

is interesting is that none of the teachers challenged the choice of English or the fact 

that textbooks and examinations are given only in English even though learners are 

still developing sufficient fluency in it (Setati, 2008).  

 

Teachers and students in the Setati (2008) study have different views concerning the 

role of English in the teaching and learning of mathematics in South Africa. Some 

teachers are of the opinion that English should be used without question because it 

is an international language. According to these teachers using any other language 

would disadvantage the learners in the long run. One teacher argued that the 

mathematics classroom should be used as an opportunity for learners to gain access 
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to English. Other teachers believe that mathematics is a language in its own right 

and so it does not matter which language it is taught or learnt in. In other words the 

authority is in the mathematics, not in the language of instruction. Setati (2008) 

concluded by saying: 

Fluency in English, while necessary, is not a sufficient condition for improving 
performance or learning in mathematics. While successful learning of 
mathematics is only possible in contexts where the learners are fluent in the 
LoLT, it is also important to recognise the fact that success cannot only be 
attributed to the learners' proficiency in the LoLT. There are other factors such 
as the teacher's knowledge of the mathematics she is teaching, her 
knowledge of the learners and how she draws on the learner's fluency in the 
LoLT.  

 

Cocking and Mestre (1997) point out two issues related to language: first, whether 

inadequate preparation in English impedes the learning of mathematics and second 

whether students who are bilingual develop cognitive systems that facilitate the 

learning of mathematics. They claim that one of the problems in the study of 

language is the confusion of language with other processes that also affect learning. 

The effects of language should be differentiated from other characteristics of culture 

and from patterns of interaction within classrooms. 

 

2.7.1 Learning and teaching school algebra 

 

Algebra is often described as a gateway to higher mathematics, not least because it 

provides the language in which mathematics is taught (Chick, Kendal & Stacey, 

2004; MacGregor, 2004). But algebra is also known as a major stumbling block in 

school mathematics, both in the past and at present (Amerom, 2002). Accordingly, 

mathematics curricula all over the world are calling for greater understanding of the 

fundamentals of algebra and algebraic reasoning by all members of the society 

(Osta, 2004:3) Designing instruction to maximize learning opportunities also requires 

an in-depth understanding of the cognitive difficulties of learning algebra. This level 

of understanding can be achieved by studying the way that learners learn algebra 

from their point of view. Therefore, it is important to examine student and 

instructional factors related to algebra achievement in order to improve opportunities 

for success in mathematics. Ferrucci (2005) points out that teaching algebra and 

algebraic thinking is both complex and dynamic. Furthermore, various professional 
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organizations, researchers and educators have varied perspectives on the exact 

nature of the topics to be included in an algebra curriculum. 

 

There is no consensus amongst researchers on what algebra is or how it should be 

taught and learned. Problems with algebra can be ascribed to external factors like 

the teaching approach and a poor image, but also to the intrinsic difficulties of the 

topic which prevent many students from making sense of it (Amerom, 2002). It 

appears the majority of students are not able to connect by themselves the 

knowledge domains that constitute manipulative algebra because of language 

obstacles. Some have argued that the difficulties children have in algebra relate to 

the abstract nature of the elements in algebra (Samo, 2008).  Amerom (2002) points 

out that traditional school algebra is primarily a very rigid, abstract branch of 

mathematics which has few interfaces with the real world and it is often presented to 

students as a pre-determined and fixed mathematical topic with strict rules, leaving 

no room for their own input. 

 

Traditional instruction begins with the syntactic rules of algebra, presenting students 

with a given symbolic language which they do not relate to (Amerom, 2002, Kaput, 

1995). Students are expected to master the skills of symbolic manipulation before 

learning about the purpose and use of algebra (Stacey et al., 2004). In other words, 

the mathematical context is taken as the starting-point, while the applications of 

algebra (like problem solving or generalizing relations) are second place. Students 

are given little opportunity to find out the powers and possibilities of algebra for 

themselves. One can imagine that an average or below-average learner finds little 

satisfaction in practicing mathematics without a purpose or a meaning. Amerom 

(2002) points out that there is a rapid formalization of algebraic syntax in the 

traditional approach. 

 

Even though we all have an immediate idea of what students learn when they learn 

school algebra, it is not an easy task to give a clear-cut definition (Amerom, 2002). 

Algebra is the first mathematical discipline that students encounter that uses 

variables (Saeman, undated). For the student, all previous mathematics problems 

have nothing that is that varied; previously they were presented with some numbers 

and an operator (a plus, minus, multiplication, or division sign) and had to come up 
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with the answer. With algebra, the situation is much more subtle. Instead of simple 

math problems, algebra students are presented with equations. Now the students 

must not only calculate variables, but they must also determine which operators to 

use. The algebra tutor must help the student overcome this paradigm shift. Algebra 

has been described as generalized arithmetic, as a study of procedures for solving 

problems, as a study of relationships among quantities and a study of structures.   

 

Amerom (2002) lists typical topics of school algebra, these include simplifying 

algebraic expressions, the properties of number systems, linear and quadratic 

equations in one unknown, systems of equations in two unknowns, symbolic 

representations and graphs of different kinds of functions (linear, quadratic, 

exponential, logarithmic, trigonometric), and sequences and series. In most of the 

core activities we find aspects of algebraic thinking (mental processes like reasoning 

with unknowns, generalizing and formalizing relations between magnitudes and 

developing the concept ‘variable’) and algebraic symbolizing (symbol manipulation 

on paper). Generally it is agreed that students must acquire both competencies in 

order to have full algebraic understanding. 

 

Algebra is regarded as the language of mathematics and has its own vocabulary, 

which makes it an essential part of all school mathematics (Stacey, et al, 2004). It 

could be said that working confidently with symbolism in algebra is akin to using a 

second language fluently. In South Africa the majority of black learners learn 

mathematics in a second language, so algebra can be perceived as a third 

language. As a language, algebra can be introduced as a medium for expressing 

relationships between two variables (MacGregor & Stacey, 1997). Because of the 

nature of generalization and abstraction, algebra is considered to be a difficult area 

of mathematics. There is no best approach to algebra because it is not possible to 

find an approach that suits all classroom situations. Since there is no agreement on 

what algebra is or what it should be, some have suggested that it is better to 

consider algebra in terms of its roles in different areas of application instead. 

  

A variable that varies (as argument or parameter) is considered to be of a higher 

level of formality than the variable as generalized number or unknown, which is 

again more formal than the placeholder; at the top end we find the arbitrary symbol 
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(Amerom, 2002). This subtle variation of meanings of letters has been identified as 

one of the major obstacles in learning algebra. 

 

Algebraic skills are directed at translating and generalizing given relationships 

among numbers (Amerom, 2002). The introduction to algebra usually involves the 

study of algebraic expressions, equations, equation solving, variables and formulas 

(Amerom, 2002). According to Kieran (1989, 1992), student’s learning difficulties are 

centred on the meaning of letters, the change from arithmetical to algebraic 

conventions and the recognition and use of structure. Grade ten learners who are 

the main concern of this study would ideally have passed this stage, but those 

lagging behind might need reminding of these basic structures before they can 

proceed to new work. Students struggle to acquire a structural conception of algebra, 

which is fundamentally different from an arithmetical perspective (Amerom, 2002).  

 

Learners who experience difficulties with conceptualising the structures or 

symbolism of early algebra would need special attention from the teacher if they are 

to build up their understanding to the desired level of competence at their grade 

level. Therefore, it is important to consider how missed opportunities to learn can be 

compensated for, bearing in mind that it is difficult to teach what has been missed 

over a long period and still hope to cover the work required in the current grade. If 

the needs of the learner who is struggling are not catered for, the learner will not 

realise the opportunities to regain what he or she has missed.  

 

This and the next four paragraphs present a study by Panasuk (2010) who 

investigated learner’s conceptual understanding in algebra using multiple 

representations.  She wanted to find a consistent measure of student’s conceptual 

understanding so as to be able to assess whether students learn algebraic concepts 

beyond procedures. To achieve this Panasuk launched a longitudinal study which 

led to the formation of the three phase ranking framework of conceptual 

understanding of linear relationships with one unknown. She looked at how students 

used different representations to a) extract information from a situation, b) represent 

the information in other forms, c) manipulate with representations, and d) interpret 

and test the solutions of the linear equations with one unknown. 
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According to Panasuk (2010) students who have a conceptual understanding grasp 

the full meaning of knowledge and can discern, interpret, compare and contrast 

related ideas of the subtle distinctions among a variety of situations. Conceptual 

understanding in algebra can be characterized as the ability to recognize functional 

relationships between the known and unknown, independent and dependent 

variables, and to distinguish between and interpret different representations of the 

algebraic concepts. It is manifested by competency in reading, writing and 

manipulating both number symbols and algebraic symbols used in formulas, 

expressions, equations and inequalities. Fluency in the language of algebra 

demonstrated by confident use of its vocabulary and meanings and flexible operation 

upon its grammar rules (i.e. mathematical properties and conventions) are also 

indicative of conceptual understanding in algebra. 

 

Mathematical relationships, principles and ideas can be expressed in multiple 

representations including visual representations, verbal representations and 

symbolic representations. Each type of representation articulates different meanings 

of mathematical concepts. Representations are powerful communication tools for 

mathematical thinking. Each representational system contributes to effective 

communication of mathematical ideas by offering certain types of language. 

Mathematics students are continuously involved in the process of abstraction 

because they are engaged in transformation of their perceptions into mental images 

by means of different representations. If conceptual understanding is defined by the 

degree of abstraction, then the idea of adaptation to abstraction becomes critical, 

and the process of building mathematics conceptual understanding can be viewed 

as a transition between the levels of abstraction from lower to higher. 

 

Panasuk (2010) speculates that the students who do not demonstrate conceptual 

understanding have not been exposed to the 'culture' of multiple representations of 

the same concept. The algebraic symbol system provides an avenue for expressing 

mathematical principles, concepts and ideas in general forms by using mathematical 

models. It is the only system that offers opportunity to logically investigate, justify, 

generalize and prove mathematical hypotheses. Yet, the algebraic symbol system is 

too sophisticated for some students. All the representations integrated into teaching 

and learning would contribute to the development of a big mental picture of the 
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concepts studied. Even the student who is advanced and capable, has developed 

strong procedural skills and achieved some level of operational conception will 

benefit from learning multiple tools to communicate his/her cognitive skills. 

 

Panasuk (2010) concludes that the idea of multiple representations hardly needs 

advocacy to support its power, significance and vitality for mathematics and 

mathematics teaching. Given that mathematics is a science of patterns and multiple 

representations of these patterns, they should be an integral part of teaching and 

learning mathematics. Teaching through the multiple representations would require 

teachers to have a solid foundation in mathematical content, strong skills in a 

structural analysis of the concepts and tasks as well as sound knowledge in effective 

planning. Teachers skilled in seeing the big picture of the concept and small links 

between the sub-concepts are likely to be able to integrate multiple representations 

into their instructional practices and to use representations when teaching all 

students, rather than for remediation purposes only. Multiple representations availed 

to students are likely to stimulate in them the development of a conceptual 

understanding of mathematics. It is the duty of the teacher to expose students to 

multiple representations. With the encouragement and support of teachers, students 

will be able to internalize and integrate multiple representations into their cognitive 

structure and use the representations as a communications tool.  

 

2.8 OTL conceptual framework 

 

The problem of opportunities to learn mathematics can be understood by looking at 

the historical experiences that have shaped it over the years. Literature reviewed has 

shown that the problem is multi-dimensional and dynamic. Literature from other 

researchers has revealed that OTL holds a promise for improvement of educational 

performance all round. Most of the studies on the impact of OTL were carried out in 

the United States of America and their concern is mostly with the disadvantaged 

minorities. In South Africa the previously disadvantaged are in the majority. 

 

The literature review has revealed that OTL can be used to aid the understanding of 

the teaching and learning process. It is clear that most researchers connect students’ 

achievement with their opportunity to learn the content. Many researchers point out 
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that the study of students’ opportunities to learn provides great insights into variation 

in student achievement. Researchers have described the opportunity to learn in a 

variety of ways: a teacher’s reported content coverage, time allocated for instruction 

or instructional time that is actually used to deliver instruction. The achievement of 

students is not a simple issue of cause and effect for learners perform differently 

even under the same conditions. Some learners may not recognise the opportunities 

offered to them to learn because of other reasons that impact on them socially or 

otherwise.  

 

An assortment of factors affects the learner during the process of education. Stevens 

(1993) observed that OTL is a conceptual framework developed from information 

obtained from a series of international and national research studies. Four OTL 

variables that are prevalent in research include content coverage, content exposure, 

content emphasis and quality of instructional delivery (Stevens, Wiltz and Bailey, 

1998). However, when the OTL framework is used to determine whether or not 

students are provided with sufficient access and information to learn the curriculum 

at their age and grade level, it becomes a powerful concept of educational 

accountability. 

 

Stevens (1993) claims that research involving OTL variables provides insight into 

why some students perform at or above grade level and others do not. Though 

useful information can be derived from studying the aforementioned variables one at 

a time, Stevens recommends studying them simultaneously. Doing so gives a 

clearer picture of the nature of the relationship between classroom practices and 

academic achievement. She concludes that the OTL conceptual framework provides 

a more comprehensive explanation that can be used to bring about a far more 

positive impact on students’ academic achievement (Stevens, 1993). This can lead 

to more effective ways of improving teaching and learning. According to her the 

opportunity to learn the designated curriculum for a grade level or age group is a 

major equity issue for students who are at risk of not developing academically to 

their fullest potential. Classroom teaching practices are difficult to reform because 

educators and school administrators in the United States rarely use district-level 

assessment standards in their decision making (Stevens, 1993). Also, little or no 

data are collected or analysed about the activities that surround teaching and the 
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impact of classroom teaching practices on students’ academic achievement 

outcomes. More research on teaching processes and practices apparently has not 

filtered down to or changed many of the teaching practices of teachers in poor urban 

school classrooms (Stevens, 1993).   

 

Stevens goes on to blame teaching practices in many urban schools in the United 

States of America for not improving the already poor academic achievement of poor 

and minority students. Learners are given activities characterised by routines that do 

not allow room for creativity. Such practices deny learners the opportunity to learn 

the core curriculum appropriate at their age and grade level. Students in poor urban 

schools are described using terms that reveal their disadvantages emanating from 

their low socio-economic backgrounds which gives the impression that the schools 

are not responsible for their under-performance.  Stevens (1993) argued that the 

ascribed descriptions have no relevance to the problem of low academic 

achievement since they cannot be changed. 
 

Our understanding becomes clearer if student achievement is related to the 

opportunity to learn, regardless of family background. It becomes a more relevant 

issue to consider what happens in the classroom, that is, the teacher’s teaching 

practices and the quality of the delivery of lessons for these can be changed or 

improved (Stevens, 1993). She observes that whereas learners from the middle 

class can get supplementary help from home, those from working class backgrounds 

depend on what is offered in the classroom. That is why it is important to consider 

teacher practices. 

 

If teachers are assisted in implementing instructional models and programs that 

promote access to learning for poor and minority students, the result could be 

academic progress for those students (Stevens, 1993). If teachers themselves are 

not aware of the fact that their practices are unhelpful to the children’s improved 

performance, the situation will continue unresolved. Stevens laments that reforming 

classroom practices is difficult because educators do not keep abreast with research 

or other official material that comes from the department of education or district 

office. The problem is how to encourage them to embark on good practices that 

increase the learner’s opportunity to learn. Stevens (1993) uses a case study 
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approach to study “teachers learning and applying OTL assessment strategies” 

because of the nature of the questions posed, namely, asking how and why within 

real-life contexts when the boundaries between the phenomena and context are not 

clearly evident. 

 

2.9 The theoretical framework 

 

Though constructivism in general is the dominant discourse of mathematics teaching 

and has been interpreted as problem-based learning when it comes to the actual 

teaching and learning suggestion about how the knowledge is constructed, it is too 

general to reach the classroom directly. I think Duval (1995, 1999 and 2006) offers a 

practical approach that the educator can use in teaching for understanding. Duval is 

also a constructivist because he uses ideas from both Piaget and Vygotsky to 

produce a theory of how children learn mathematics. He developed a way of 

considering how children construct mathematical concepts based on the 

transformations of mathematical registers. Transformations refer to all manners of 

changes that a thing or person can undergo. States refer to the conditions or the 

appearances in which things or persons can be found between transformations. 

Piaget theorised that intelligence is active and constructive. Duval’s theory of 

learning is also active for it involves transformations of registers of representations in 

the process of constructing knowledge. 

 

According to Duval (1995) mathematical objects are a creation of the human mind; 

they do not exist out there. Drawing on Piaget (1973), he claims that children actively 

construct knowledge of the world by continually interacting with and adapting to their 

environment. Duval (1999) presents a framework that can be used to explain 

students’ mathematical thinking. He says that in order to explain how students 

construct knowledge it is necessary to understand what he called cognitive 

functioning of mathematical thinking and conditions of learning. He argues that in 

mathematics conceptual acquisition necessarily passes through articulation of at 

least two semiotic representations. This articulation manifests itself by the rapidity 

and the spontaneity of the activity of conversion between registers (Duval, 1995). 
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In particular, conceptual acquisition in mathematics requires the learner to manage 

the following semiotic functions: the choice of the distinguishing features of the 

concept represented, treatment that is a transformation in the same register and 

conversion which is the changing from one register to another (Duval, 1995). In 

algebra, examples of treatment are: making ‘x’ the subject of a given formula or 

simplifying and rephrasing a question or sentence. In this study, it is important that 

students work with different registers or forms of representations of algebra concepts 

in order to learn algebra effectively. Conversions are transformations that change the 

system while maintaining the same conceptual reference such as going from a 

geometric to an algebraic representation of the difference between two squares. The 

squares are drawn and the difference in their areas shown by shading or some other 

marking. An algebraic representation can then be derived or simply deduced.  

 

The combination of these three actions, formation, treatment and conversion, on a 

concept represents the construction of knowledge in mathematics but the 

coordination of these three actions is not spontaneous or easily managed (Duval, 

1995, 1999; Hitt, 2002). Conceptual understanding is characterised by a person’s 

flexible use of various representations of the same mathematical concept. The grade 

ten syllabus in South Africa aims to groom learners who can flexibly convert between 

the different representations algebra concepts. According to Duval (1995) the most 

difficult aspects of learning mathematics is the handling of conversions between 

registers. 

 

In the classroom it is important for the teacher to ask the right questions, such as 

asking the learners to explain what they are doing. This enables the learners to 

make the necessary conversions in the process of building up the required 

mathematical concept. Once the learners are able to move back and forth between 

the registers, it is reasonable to say that they have understood that which they are 

supposed to learn. Formation does not require preparation because this is already 

done in the textbooks. Treatment and conversion are important and the teacher 

should be able to distinguish between them because there is a danger that the 

teacher can dwell on treatment, such as solving problems, without progressing to the 

conversion. 
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Duval (2005) points out that a mathematical object always has more than one 

semiotic representation attached to it. Also it is very easy to see the mathematical 

object as being one of its representations. There is a danger then that this mistaken 

identity may lead to misconception or no learning at all, for example, one can take 

the graph to be the object but it is actually only a representation of the object. 

 

The implication for teaching is that the teacher should use a variety of 

representations of mathematical ideas, for example numeric, geometric, algebraic 

and oral. The reason is that various forms of representation are an integral part of 

doing mathematics and thus also of its teaching and learning (Hitt, 2002). Availability 

of multiple representations enables an entirely new perspective on a concept which 

is why the creation of a variety of representation of the same concept is essential if 

learners are to comprehend the required knowledge (Duval, 1995). It is from 

simultaneous access that representations in different registers provide multiple 

approaches to a problem.  

 

If teachers understand Duval’s structure of learning, that is, the three actions 

required in the construction of a concept, they can provide learners with the 

necessary experiences that lead to learning with understanding. By following the 

three conditions that Duval identified as essential for learning, the teacher can 

structure instruction logically. The way that an opportunity to learn is generated in the 

classroom is determined by the way instruction is structured and delivered. In the 

teaching of algebra the teacher has to facilitate the movement between different 

forms of representation. Algebra is based on the concept of variables which can be 

difficult for learners if different representations are not offered. Algebra is more than 

moving symbols around. Learners need to understand how the symbols come to be, 

how they are used to record ideas and gain insight into situations. 

 

If the educator exposes learners to the distinguishing features of any mathematical 

concept, gives them enough practice (treatment) and leads them to make the 

appropriate conversion between different registers of representation, it is reasonable 

to expect them to learn with understanding. Considering the way the concepts are 

acquired is useful when planning for teaching and reflecting on lessons taught. 

Tailoring lessons to accommodate formation, treatment and conversion would give 
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learners a real opportunity to learn. Lessons in translating verbal and/or numeric 

representations to symbolic algebra rely heavily on the ability of the learners to make 

the necessary conversions between registers. 

 

2.10 Conclusion 

One category of factors can be termed instructional and includes instructional time 

which is time spent on preparation and delivery. This can influence or determine the 

mastery of the concept. Determining time allocated to particular topics officially, 

locally and individually by practitioners is important when considering OTL because 

time shapes both the teacher’s and learner’s efforts. Instructional practices are 

another factor for they shape or create the environment under which teaching and 

learning takes place. The practices are influenced by a teacher’s content knowledge, 

beliefs and prior experience in teaching mathematics. This being the case, learners 

will experience different opportunities to learn because of a variation among the 

teachers in relation to their practices. This variation can become a serious concern in 

as much as it affects a student’s performance. 

 

Instructional materials support teaching and learning to a great extent as materials 

are connected to issues of equity. Provisions and the distribution of materials for use 

by students should take place in such a way that they reach all sections of society 

and so help to prepare students for success. In other words, a student’s opportunity 

to learn will improve with the adequate provision of appropriate instructional 

materials. 

 

The preceding literature review has revealed that OTL is an important concept when 

applied to the learning and teaching of mathematics. OTL has characteristics that if 

attended to can help improve the learning in mathematics classrooms. Variables that 

help to define OTL map out what can be said to be a beneficial practice.  

 

Considering what psychologists say about acquisition of concepts has helped me 

understand how human beings learn and so apply it to the teaching and learning of 

algebra. Having an understanding of child psychology enables one to identify 

important factors that impact on the learning of children. For example, the 

psychologist Duval (1999) has contributed a lot to the understanding of how students 
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achieve mathematical understanding. He presents a framework that can be used to 

explain students’ mathematical thinking. Duval (1999) states that mathematical 

understanding requires the coordination between at least two registers of 

representation. This informs teachers when they plan their lessons. 

 

In much algebra teaching, conceptual understanding of the objects of algebra has 

tended to be segregated from the development of manipulative skill. Few have 

espoused the position that students’ conceptual understanding grows as they 

engage in algebraic processes (Stacey et al., 2004:25). Algebra as a problem 

solving tool appears to be gaining significance. In various countries, problem solving 

by whatever means, has all but replaced traditional algebra. The hope was that, in 

focusing on algebraic understanding (however it might be defined) the techniques 

would take care of themselves. But it did not happen. Doing algebra is a process of 

acting on signs. Signs are the objects of the algebraic activity. Letter, expressions, 

graphs, written calculations, schemes, proofs, models and so on, are signs and are 

made of signs. Stacey et al., (2004) claimed that semiotics lies in the core of algebra, 

not that all algebra is semiotics. The point is that the way you teach algebra depends 

largely on what you believe algebra to be. 
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CHAPTER THREE 

 

METHODOLODY 
 

3.1 Introduction 

 

This chapter describes the methodology adopted in the study. It is divided into three 

main parts. The first part is a review of the research questions answered by the 

study and challenges faced in this process. The second gives an overall view of the 

method used in conducting the study. Finally, a detailed description of the data 

collection process and analysis is provided. The process was flexible and open and I 

actively sought opportunities to revisit and revise the research design in order to 

address and add to the original set of research questions. 

 

3.2 Review of research questions 

 

As stated in chapter one, the first question in this study relates to the content and 

context of the official mathematics curriculum in grade ten. This question was 

answered largely through the review of documents containing the official or intended 

grade ten mathematics curriculum in South Africa. I was interested in uncovering the 

key content themes that are prescribed for grade ten learners. Justification for the 

identified themes was sought through literature and other means such as interviews 

with relevant subject area officials. 

 

Next, I observed actual classroom lessons in progress to see how algebra was 

taught to grade ten learners in the selected schools. I wanted to explore how far 

teaching reflects the official curriculum. While observing the classes I paid particular 

attention to the way teachers provided the learners with OTL. The focus was on how 

OTL was characterized and how this could be explained from the official and 

enacted curricula. By answering the research questions the study hopes to 

contribute to the on-going debate on the teaching and learning of mathematics while 

assuming a positive relationship between opportunity to learn and achievement. The 
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study attempts to broaden knowledge and deepen the understanding of the role 

played by OTL in the teaching and learning of grade ten algebra. 

 

3.3 Research Design  
 

3.3.1 Qualitative Research 

 

I used qualitative inquiry paradigm to investigate three grade ten mathematics 

educators teaching algebra. The claim that this study is qualitative stems from the 

understanding that qualitative research places emphasis on understanding through 

closely looking at people's words, actions and records, which is what this study 

sought to engage in (Denzin and Lincoln, 2000). Through observing lessons I 

discovered patterns of how each of the three teachers provided learners with 

opportunities to learn algebra. The patterns came through the actions and words that 

teachers used while teaching. I considered five factors to help me recognize when 

and how the teachers were providing learners with OTL. These were the teacher’s 

approach to teaching, the questions they posed, the types of tasks they gave, their 

use of algebra specific terms and their use of different registers of representation of 

algebraic concepts. My task involved listening carefully to words said by both the 

teachers and the learners including observations of corresponding actions. These 

patterns have been presented for others to inspect. I tried in my descriptions to stay 

as close as possible to the construction of the world as the participants originally 

experienced it. 

 

Denzin and Lincoln (1994) define qualitative research as a multi-method in focus, 

involving an interpretive, naturalistic approach to its subject matter. In line with this 

view, I examined official curriculum documents to explore the relationship between 

the intended and enacted grade ten algebra through observation of actual lessons at 

three different schools. The aim was to find out how the teachers created the 

opportunities for the learners to learn the expected algebra content. This took place 

in the usual classroom setting following the normal routine of the school day so as to 

avoid any stresses arising out of singling out some learners for the study. However, 

on one occasion one teacher offered to reschedule her lesson so that I would not 
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miss observation that day. I also reviewed literature on both the concept of OTL as 

well as on the teaching and learning of algebra. 

 

Creswell (1994) defines qualitative study as an inquiry process of understanding 

based on distinct methodological traditions of inquiry that explore a social or human 

problem, where the researcher conducts the study in a natural setting. Qualitative 

research results are not sweeping generalizations but contextual findings. This 

process of discovery is basic to the philosophy underpinning a qualitative approach. 

 

According to Schram (2003), qualitative inquiry is much more difficult to define than it 

is to identify for it appears in a myriad forms. Commonalities are however 

discernable, such as that it  involves the studied use and collection of a variety of 

empirical materials, case studies, personal experience, introspection, life story 

interviews, observations, historical material, personal interactions and visual texts 

that describe routine and problematic moments and meanings in individuals lives. 

 

I used the natural setting of the classroom to conduct my observation of the three 

different teacher’s instruction and the classroom interaction. I then described in detail 

what I saw, heard and recorded. Creswell (1994) supports the presentation of a 

detailed view of the topic derived from a study of individuals in their natural setting 

arguing that if participants are removed from their setting, it leads to contrived 

findings that are out of context. 

 

Qualitative research questions seek to find out what is going on so they often start 

with ‘how’ or a ‘what’ (Creswell, 1994). In this study I sought to find out what was 

going on in the selected class rooms by observing the teachers in action after having 

looked at what was stated in the official documents. When I went to the classrooms it 

was not with the intention to pass judgment but to learn from the experience so as to 

expand my own understanding of both teaching and the learning of algebra. I was 

then in a position to tell the story from the participant's view rather than as an 

"expert" who passes judgment on participants.  

 

Rozycki (2009) stipulates that qualitative research is characterized by an emphasis 

on describing, understanding and explaining complex phenomena; on studying, for 
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example, the relationships, patterns and configurations among factors or the context 

in which activities occur. Consequently I have described in detail what took place in 

the classrooms I observed. I reveal though the descriptions and excerpts from the 

lessons how the teachers created OTL in their respective classrooms. In chapter four 

I describe what I perceived to the reasons behind their practices. I have recorded as 

far as possible what they said in their own words. 

 

In trying to understanding how opportunities to learn algebra were provided or 

created I was aware that it was necessary to consider a host of influences such as 

the curriculum as defined by the department of Education, and how the educators 

interpret and enact it. This takes place outside and inside the classroom because the 

planning is usually done outside classroom. According to Hoepfl (1997) researchers 

can use qualitative methods to gain new perspectives on things about which much is 

already known. In this study I was aware that a lot was already known about 

opportunities to learn, especially in the United States of American context, but not 

much in the South African. OTL are also used to gain more in-depth information that 

may be difficult to convey quantitatively.  Hoepfl (1997) further stresses that unlike 

quantitative researchers who seek causal determination, prediction and 

generalization of findings, qualitative researchers seek instead illumination, 

understanding and extrapolation to similar situations.  

 

Another reason for selecting a qualitative approach is that in doing so, research 

problems tend to be framed as open-ended questions that can support the discovery 

of new information. The ability of qualitative data to more fully describe a 

phenomenon is an important consideration not only from the researcher’s 

perspective, but also from the reader’s perspective. Qualitative research puts the 

researcher in a better position to understand people by looking closely at their 

experience in the world from their own perspective, using their own words and 

actions. This provides data that is rich in detail that emanates from the participant’s 

experiences of the world. 
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3.3.2 The design: case study 

 

I selected the case study as the research method because as Stephens (2009: 46) 

says: “Case studies are a step to action. They begin in a world of action and 

contribute to it. Their insights may be directly interpreted and put to use.” This study 

took place in the classrooms where action was observed and new knowledge 

sought. Another reason is that case studies are a common way of doing a qualitative 

inquiry (Denzin and Lincoln, 2005: 443). 

 

Shuttleworth (2008) describes a case study as an in depth study of a particular 

situation rather than a sweeping statistical survey. It is a method used to narrow 

down a very broad field of research into one easily researchable topic. This study 

sought to understand how the opportunities to learn grade ten algebra were played 

out in selected Catholic schools. It was important to choose a design that allowed for 

deep descriptions of this process. The focus on process type questions coupled with 

a limited sample led to the selection of a case study as the preferred design. Also, 

case study research is flexible and enabled me make changes along the way, for 

example the pilot case became one of the main cases because I learned a lot from 

the experience. 

 

Case studies are the preferred strategy when 'how' or 'why' questions are being 

posed, when the investigator has little control over events and when the focus is on a 

contemporary phenomenon within a real-life context (Creswell, 1994; Soy, 1997; 

Flick 2009; and Rozycki, 2009). This study has asked ‘how’ questions so the case 

study was appropriate. Also, a case study is especially appropriate when the 

boundaries between phenomenon and context are not clearly evident. I sought to 

find out the opportunities created in the classrooms by teachers for learners to learn 

algebra. Attending a lesson does not necessarily mean that OTL will arise. 

 

The case study copes with the technically distinctive situation in which there will be 

many more variables of interest than data points. This is the situation in classrooms, 

where learners and teachers interact with each other and together with the subject 

matter. What one observes has to be taken in context because the story a case tells 

may or may not be useful unless the researcher explains the issues involved (Denzin 
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and Lincoln, 2005). It was necessary to use more than one way to get data for the 

cases because multiple sources of evidence strengthen the claims that I make in the 

end. Also, according to Soy (1997) a key strength of the case study method involves 

using multiple sources and techniques in the data gathering process. In this study I 

used interviews, documentation and other literature reviews and observations to 

collect data. 

 

In order to avoid a total immersion in the setting or culture, sites, experiences and 

informants were sampled. In this study three schools were selected for participation. 

These were chosen because it was easy to access them without appearing to 

intrude. The exact classrooms that participated were identified for their relevance, 

that is, they were grade ten learners doing algebra. 

 

The idea of using this method is supported by (Johnson, 1997) who points out that 

case studies allow the researcher to get in-depth understanding of the phenomena. 

Stevens (1993) also recommends that in order to see just what opportunity students 

are actually given to learn the curriculum, the case-study approach can be used. A 

case study is particularistic because it focuses on a specific phenomenon such as a 

program, event, process, person, institution or group (Creswell, 1997). For the 

current study the program was the learning of mathematics, the event was the 

particular topic of algebra taught to learners by their educators at their particular 

schools. The major purpose of this design is to describe a unit, rather than to test 

hypotheses. I present each of the three schools as a case. Each case tells a story of 

how the teacher provided OTL for the respective learners. Stake (2006) warns that 

even though many a researcher would like to tell the whole story, it is not possible 

because the whole story exceeds anyone’s knowing and anyone’s telling. 

 

In this study the focus was on the opportunities to learn algebra as experienced by 

grade ten learners. This was used as an opportunity to learn more about the 

situation and so be able to explain the experiences of learners in relation to it. Soy 

(1997) stresses that case studies emphasize detailed contextual analysis of a limited 

number of events or conditions and their relationships. 
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The case study like any other design has strengths and weaknesses. A case study is 

low on control and representativeness. One can hardly differentiate cause from 

effect, and inferring from the intensive study of one or a few cases involves a high 

and generally unknown amount of risk (Labovitz and Hagedorn, 1976). (Although this 

is an old source what was said then is still relevant because differentiation between 

cause and effect is still problematic today). A frequent criticism of the case study 

methodology is its dependence on a single or few cases which renders it incapable 

of providing a generalizing conclusion (Soy, 1997; Shuttleworth, 2008). Soy (1997) 

observes that others feel that the intense exposure to study of the case biases the 

findings while some dismiss case study research as useful only as an exploratory 

tool. Yet researchers continue to use the case study research method with success 

in carefully planned and crafted studies of real-life situations, issues and problems. 

In this study the schools were chosen from one category of schools, that is Catholic 

Schools. These schools already have a distinctive ethos which is different from non-

Catholic schools, but I don’t think this necessarily handicaps the study because the 

learners come from the same communities. Experiences in the other schools, in my 

opinion, might not be different from what I observed in the Catholic schools. From 

personal experience of observing lessons in different school set ups (following 

student teachers on teaching practice), I have reason to believe that there are other 

reasons for differences other than type of responsible authority. 

 

I was the instrument of research who evaluated what was going on in the classroom. 

I analysed the data with an eye to answering my research questions. Being in the 

classroom helped me get firsthand experience of what was going on in the 

classroom in terms of the teacher teaching and students learning. 

 

The major advantage of a case study lies in the richness of its descriptive examples 

that results from the intensive study of one or a few units. In this way a lot can be 

learnt to augment what is already known. A case study provides more realistic 

responses than a purely statistical survey (Flyvberg, 2004; Shuttleworth, 2008). 

Furthermore, while a pure scientist is trying to prove or disprove a hypothesis, a case 

study might introduce new and unexpected results during its course, and lead to 

research taking new directions, because it is flexible. In this study I witnessed 
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teaching activities that I had not known existed, for example, one teacher had ten 

learners working on problems on the chalkboard quite effectively.  

 

Other advantages of a case study are its applicability to real life, contemporary 

human situations and its public accessibility through written reports. Case study 

results relate directly to the common reader’s everyday experience and facilitate an 

understanding of complex real-life situations. The lengthy descriptions of the lessons 

presented in chapter four of this study give the reader a taste of what transpired in 

the visited classrooms. The reader can listen to the voices of both the learners and 

the teachers and experience what I experienced. But others feel that the intense 

exposure to the study of the case biases the findings. 

 

Flyvberg (2004) defends case study on the grounds that it produces the type of 

context-dependent knowledge that research on learning shows to be necessary to 

allow people to develop from rule-based beginners to virtuoso experts. In a teaching 

situation, well-chosen case studies can help the students achieve competence, while 

context-independent facts and rules will only bring the student to a beginner’s level. 

 

3.4 Qualitative methods of data collection 

 

People’s words and actions represent the data of qualitative inquiry and this requires 

methods that allow the researcher to capture language and behaviour (Norman, 

Denzin and Lincoln, 2000). The key ways of capturing these are through observation 

(both direct and of the participant), in-depth interviews and group interviews, and the 

collection of relevant documents, photographs and video tapes.  

 

3.4.1 The Interview  
 

I chose to use interview because it is recommended as an integral instrument of data 

collection in qualitative research (Silverman, 2001). I used interviews to get 

information from teachers. It was also through interviews that I got clarifications and 

explanations from them (teachers) on certain issues that arose during the 

observations. As an interview is a joint product of what interviewees and interviewers 

talk about together and how they talk with each other, it was appropriate for this 
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study for I needed to understand what was going on. To this end, interviews were the 

best method available. Interviews permit observations to go beyond external 

behaviour and make it possible to explore feelings and thoughts (Patton, 2001). I 

then used data from the interviews together with that gleaned from the observations 

in my analysis and interpretations of the findings of this study. 

 

Patton (1990) recommends the asking of probing questions during interviews. These 

include asking questions to get more detail, to fill out the picture of whatever it is we 

are trying to understand and to encourage the interviewee to tell us more. We 

indicate our desire to know more by gestures and verbal or non-verbal expressions. 

The interviewer can seek clarification from an interviewee without intimidating them. 

In this study structured (Appendix 1) and non-structured interviews were undertaken. 

Structured interviews were carried out with the three educators and one Department 

of Education mathematics subject official. These were involved because they play 

major roles in the enacted and intended curriculum respectively. I asked them 

questions about their experience as learners and teachers and also their opinions, 

ideas and justifications concerning the teaching of mathematics.  

 

A voice recorder was used to record the conversation between us. Tape recording 

was useful in order to check against manually recorded responses, especially when 

direct quoting was required. One disadvantage of this mode of recording is that the 

presence of the tape recorder changes the interview situation to some degree (Borg 

and Gall, 1989). I had the advantage of using a very small recorder, not much bigger 

than an ordinary writing pen, so I do not think that the learners noticed it.  

 

 
3.4.2 Observation  
 

Cohen and Manion (1994) point out that observations lie at the heart of every case 

study. There are two principal types of observation: participant and non-participant 

observation. In this study the latter form was employed. I observed the lessons while 

the teachers were teaching algebra to a grade ten class. I sat at the back from where 

I could observe without being in anyone’s way. I wanted to get first-hand information 

of what the learners were exposed to and to compare this input with the curriculum 
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as laid down by the Department of Education with reference to the particular topic. At 

all times I asked myself what opportunities to learn do I observe? 

 

Observations provided me with the opportunity to explore what people actually do 

(O’leary, 2005). Cueto et al. (2008) maintain that in studies where the main source of 

data is a teacher’s self-reporting about their coverage of the competencies, there is a 

concern that they might over-report to impress the Ministry of Educational officials or 

a researcher. Yin (2011) supports the use of observation because he reckons that 

what you see with your own eyes and perceive with your own senses is not filtered 

by what others might have reported to you or what the author of some document 

might have seen. Observation, especially if it is prolonged like in this study, 

minimises the chances of that happening because one is bound to find out the truth if 

one observes and makes one’s own assessment of what is happening rather than 

just relying on being told. 

 

I listened to verbal and observed non-verbal exchanges between the learners and 

the educators at the same time. I witnessed chalk board exercises and other 

situations that arose from the unique experience of each classroom. I assured the 

teachers in writing and by word of mouth that the purpose of observing them was not 

to criticize them but to see first-hand what the learners were learning with the 

intention of gaining an understanding of the process. Before each observation 

session I briefly asked the teachers to tell me what they were going to teach and also 

if there was anything that they thought I should know beforehand. One of the 

teachers usually gave me lesson plans one or two days before the actual 

observation. However, I still asked her just in case she had changed her plans. This 

short period before the lesson helped me to establish an appropriate frame of 

reference. 

 

After observation I talked to the teacher about the lesson to help me get their view of 

what had just transpired while it was still fresh in their memory. Unfortunately this 

was usually very brief for the teachers would be attending to other classes, except 

when the observation was at the end of the school day. 
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These observations took place over a period of seven calendar weeks. I observed 

lessons at the first school for one and a half weeks. After that I spent one week 

transcribing and studying the lessons and trying to make sense of what I had 

observed in preparation of what I thought then was the real field work. I later decided 

to use the results from the first school to build up one of my three cases. I then 

visited the other two schools to make final arrangements for my observations. It was 

then that I was informed that the grade ten classes at one of the schools had been 

amalgamated into one instead of the two I had initially asked to observe. 

 

The observations at the other two schools took place during the same period. It was 

possible on most days for me to go from one school to other within forty minutes. 

When their times overlapped, I either missed the observation in one of the schools or 

the other school rescheduled. Qualitative methods allow for such flexibility. More 

details are given in the section on procedures. 

 

3.5 Procedures 

 

After I had identified OTL as a worthwhile variable in the study of the learning and 

teaching of algebra, I reviewed literature on the subject so as to understand what 

different researchers have said about it. The review confirmed the need for first-hand 

information in the context of my own observations in order to learn for my own 

improvement and so make a contribution to scholarship on the subject of teaching 

and learning algebra. 

 

When I had reached the stage for going into the field, I identified the people with 

whom I had to communicate to gain access into the schools. I sent letters to the 

heads of the schools expressing my wish to carry out my research in their respective 

schools and so established lines of communication. I obtained signed permission 

from the school heads and the teachers (Appendix 2 &3) two months in advance of 

the observations. Permission for learners to participate in focus group interviews was 

sought from their parents or guardians but unfortunately I did not get them back. A 

covering letter explaining the purpose of the study accompanied the request. A copy 

of the objectives of the study was made available to all concerned parties in order to 
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acquaint them with the requirements of the study. The participants have remained 

anonymous throughout the research report. 

 

I observed lessons and took notes. I audio taped what was happening in the 

classroom so that I could compare this with my manually recorded notes. During 

interviews with the teachers, I took notes and audio taped while the teacher 

answered my questions. I asked the teachers to tell me of their experiences in the 

teaching of mathematics in general and of their lessons that I had observed. I asked 

them how and why they might teach differently if they had to teach the lesson again. 

I asked the teachers what they thought about the student’s learning. 

 

The data to be presented first was a content analysis of the syllabus and other 

supporting documents from the Department of Education in South Africa. This was 

done to gauge the emphasis given to algebra in the curriculum and the time 

allocated in the guidelines to the particular topic. Facts were gleaned from the 

documents but it was also necessary to read between the lines and pursue 

collaborative evidence when that seemed appropriate. 

 

Content analysis of documents is a non-intrusive form of research (Rozycki, 2009). 

This involves reviewing documents, memos or other pieces of written information for 

content and themes. By examining written words, the researcher studies one type of 

communication that occurs in the selected sample group. Other materials that are 

used at local levels, that is in particular schools or classrooms, were analysed for 

their part in affording learners the opportunity to learn algebra with understanding. 

The analysis of these documents helped in compiling a checklist of the materials that 

were used in the different classes observed. 

 

Observations of the lessons and interviews with teachers followed this. Interviewing 

is a core method in qualitative research (Seidman, 2005). Through interviews, 

teachers gave an account of their situation, circumstances, feelings and perspectives 

in relation to the teaching and learning of algebra. I developed interview protocols for 

use with the teachers and the subject advisor (Appendix 1). Before carrying out the 

interviews I got support from my promoter and the student support system 

coordinator at the University of South Africa. However, during the interviews I did not 
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stick to the protocols because the interviewees sometimes volunteered information 

before I asked for it. Before using the protocols I practiced on my colleagues at work. 

This enabled me to develop a worthy instrument for the study of the input from these 

respondents. 

 

I used a voice recorder for all the formal interviews and all the lessons observed. For 

informal interviews I relied on my handwritten notes. It did not seem appropriate to 

record while standing in the passage way or while walking away from the class room 

with the teacher preparing for the next class. Tape recording was useful to check 

against manually recorded responses especially when direct quoting was necessary 

in the report. The recorded interviews were transcribed as soon after the interview as 

was possible in order to minimise possible distortion in the report. Also some of the 

statements used as direct quotes in the report were verified with the respective 

respondents. 

 

After the data was assembled in a presentable form, I explored these data sets 

further through the discussion of the major findings and their implications. I 

discussed how the three teachers provided their respective learners with 

opportunities to learn grade ten algebra concepts. Through the discussions, themes 

emerged that are important to this study. I then used the results of the current 

research to develop a new framework that helped define opportunities to learn in the 

classrooms using the idea of multiple representations of registers. With the new 

framework I tried to expand on the components of the other OTL frameworks and so 

link them with the new one. I then presented the conclusion and recommendations 

for further study.  
 

 
3.6 Data Analysis 

 

Unlike the analysis of quantitative data, there are few well established and widely 

accepted rules for the analysis of qualitative data (Bryman, 2008). Usually analysis 

of qualitative data consists of three parts which are noticing, collecting and thinking 

about interesting things. Interesting things are those occurrences, be they words or 

actions that resonate or strike a tune with the study topic. During my observation a 
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lot of activities took place and they could not all be recorded at the same time, but 

care was taken to focus on all what was pertinent to the study. After collecting data 

from the interviews and observations, I presented them as three cases. I provide 

comments on some of the activities using both the observation and interview data, 

as well as data gained from the literature reviewed. A discussion of the findings 

follows the presentation and sources of opportunities to learn as provided by the 

individual teachers are identified. Collating the findings was challenging because the 

three teachers presented very different ways of providing OTL. Soy (1997) stresses 

the need for researchers to anticipate key problems and events throughout the 

course of the study so as to attend to them when it becomes necessary. 

 

3.6.1 Observation Data 

 

From the daily observations, I drew conclusions and thought of new questions. 

These questions sharpened my eyes as I returned the next time. Observation data 

should be analysed as soon as possible after being collected to avoid being 

overwhelmed by masses of data at one time (Soy, 1997). I was not always able to 

analyse the entire lesson immediately after observation because I was also teaching 

and the second part of the observation sometimes entailed me observing two 

different classes on the same day. I did however make analytic comments besides 

my notes as I went along. Shuttlleworth (2008) says that analysing results for a case 

study tends to be more opinion based than statistical methods. The analysis in this 

study is organized around factors that emerged from the data as it affects OTL in the 

respective classes. After I began collecting data, I formulated more questions to ask 

teachers and to guide my observations. 

 

The general questions considered during every observation were: 

1.  How do learners gain algebraic knowledge when: 

a) The teacher is teaching? 

b) They are engaged in class work activities? 

c) They are responding to particular types of questions?  

2. What opportunities are provided for the learners to: 

a) Identify what concepts they are supposed to learn? 

b) Experience treatment within one register of representation? 
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c) Convert from one register to another?  

3. What are the indicators of opportunities to gain algebraic knowledge? 

 

This framework helped me to focus my thoughts and find clues on what OTLs were 

available. After completing the observation it was not desirable to report on every 

lesson because of the sheer volume of material. I decided to report on two lessons 

per teacher. I chose the lessons that I perceived as representative of each teacher’s 

way of teaching. 

 

3.6.2 Interview Data 

 

Mason (2002) says that the social world is always already interpreted because what 

we see is shaped by how we see it. Whatever form of interpretive reading a person 

adopts will be involved in reading through and beyond the data in some way, be it 

texts, artefacts or visual images. Interview data was presented together with data 

from observation because what the teachers said helped me to understand their way 

of teaching. During analysis I read and re-read the transcribed interviews and also 

listened to the tapes so as to keep as close as possible to the data sources. As 

observations formed, the main source of data (the interviews) were used to support 

or challenge what was observed in the classrooms. 

 

3.7 Reliability and Validity 

 

According to Golafshani (2003) and Stenbacka (2001), the terms reliability and 

validity are mostly defined with reference to quantitative research, so it is necessary 

to also redefine them in the context of qualitative research. Although reliability and 

validity are treated separately in quantitative studies, these terms are not viewed 

separately in qualitative research. Instead, terminology that encompasses both, such 

as credibility, transferability and trustworthiness is used. To understand the meaning 

of reliability and validity, it is necessary to present the various definitions of reliability 

and validity given by many qualitative researchers from different perspectives 

(Golafshani, 2003). Reliability and validity are conceptualized as trustworthiness, 

rigor and quality in a qualitative paradigm. 
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3.7.1 Reliability 

 

Golafshani (2003) says that although the term ‘reliability’ is a concept used for 

testing or evaluating quantitative research, the idea is most often used in all kinds of 

research. If we see the idea of testing as a way of information elicitation then the 

most important test of any qualitative study is its quality. But Patton (2001) states 

that validity and reliability are two factors which any qualitative researcher should be 

concerned about while designing a study, analysing results and judging the quality of 

the study. In all studies whether qualitative or quantitative a question can be asked 

as to how an inquirer can persuade his or her audience that the research findings of 

an inquiry are worth paying attention to. The answer to the question depends on the 

nature of the research. 

 

To ensure reliability in qualitative research, the examination of trustworthiness is 

crucial (Golafshani, 2003). To widen the spectrum of conceptualization of reliability 

and reveal the congruence of reliability and validity in qualitative research, Lincoln 

and Guba (1985) state that since there can be no validity without reliability, a 

demonstration of the former validity is sufficient to establish the latter reliability. 

Patton (2001) also states that reliability is a consequence of the validity of a study 

with regard to the researcher's ability and skill in any qualitative research. 

 

To ensure reliability, I made use of different methods of data collection, that is, a 

literature review, document analysis, observations and interviews. Results from 

observation were verified through the interview method. I made an effort to ensure 

reliability by engaging pilot interviews to train myself and so refine the skills of 

observation and interviewing as suggested by Cohen and Manion (1994). The 

observation guide and the interview schedule were subjected to careful scrutiny by 

my thesis promoter and colleagues. The language used in the instruments was 

simple and straightforward. 

 

3.7.2 Validity  
 

According to Golafshani (2003) the concept of validity is described by a wide range 

of terms in qualitative studies. Although there is no common instrument to measure 
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validity in qualitative research, there is still the need to ensure the truthfulness and 

meaningfulness of data. According to Cohen and Manion (1994), the most practical 

way of achieving greater validity is to minimise the amount of bias as much as 

possible. To achieve this I carefully formulated questions for the interview. I also 

used multiple sources of data in order to minimise misperception and thus ensure 

the validity of my conclusions. I was careful not to mislead participants by the terms I 

used. For example, apart from appearing in the topic for the research the term OTL 

was not used in the interviews. That was done deliberately to avoid putting words 

into participant’s mouths because it is not used in everyday language. It was my task 

to identify OTL from their words and actions. I think this added to the trustworthiness 

of my observations and conclusions. Also the combination of methods helps to 

strengthen validity. Patton (2001) says that each type and source of data has 

strengths and weaknesses, so using a combination of data types increases validity 

as the strength of one approach can compensate for the weakness of another. 
 

Another paradigm in qualitative research is constructivism which views knowledge as 

being socially constructed and changeable depending on the circumstances (Healy 

and Perry, 2000). As qualitative research aims is to engage in research that probes 

for deeper understanding rather than the examining of surface features, 

constructivism is able to facilitate this aim (Johnson, 1997). Constructivism values 

multiple realities that people have in their minds and therefore, to acquire valid and 

reliable multiple and diverse realities, multiple methods of searching or gathering 

data are in order. Accordingly, I used observations, interviews and recordings to 

achieve a valid, reliable and diverse construction of realities. 

  

Consultation with my promoter and colleagues at various stages of the study helped 

me develop ways of gauging whether or not I was in the right direction in terms of the 

expectations of the academic community. Consequently I think that what I have 

produced will be acceptable in academic circles. In this study data were sourced 

from official documents, educators and learners through document analysis, 

interviews and/or observations respectively. An effort was made to establish a chain 

of evidence both forwards and backwards. However, this study did not seek to 

generalize but to gain more understanding of the opportunities to learn algebra 

afforded grade ten learners at the selected Catholic secondary schools in South 
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Africa. Soy (1997) says techniques such as cross-case examination and within-case 

examination along with literature review helps ensure external validity.  

 

In my presentation of the cases I used extensive quotations derived from field notes 

and transcripts of interviews, as evidence to help the reader enter into the world of 

the participants and so gain meaningful insight.  In the course of writing the research 

report I went back to the participants and asked them if I had accurately recorded 

and interpreted their experiences. A few corrections were made. 

  

Also we can find reliability in qualitative research by viewing videotapes several 

times alone and with others so as to capture as much as possible of what is pertinent 

to the study. This applies also to audio tapes.  I listened to the recordings countless 

times while transcribing the tapes. 

 

A common threat to internal validity is reliability. Threats to a study’s validity and 

reliability exist at almost every turn in the research process. No one researcher can 

see all the potential problems, so a team approach to the discussion of validity and 

reliability during the development of a study design, and the creating and following of 

study protocols can help minimize the threats to validity. During my study I had a 

chance to present the first three chapters of my research at a student’s conference. I 

received constructive comments, especially concerning my methodology. The 

contributions helped me refine my approach. 

 

3.8 Research Ethics 

 

The American Educational Research Association (AERA, 1992, 1996 and 2000) 

states that since education is aimed at the improvement of individual lives and 

societies, and research in education often directed at children and other vulnerable 

members of the population, the main objective of the code is to remind eduz\cational 

researchers to strive to protect these populations. The code encourages researchers 

to maintain competence by continually evaluating their research for its ethical and 

scientific adequacy by conducting all internal and external relations according to the 

highest ethical standards. This is sound advice even for this study. 
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AERA (1992, 1996 and 2000) stresses adherence to methodological perspectives 

relevant to research and keeping abreast with current criteria of adequacy by which 

research is judged. In this study an attempt was made to read and put into practice 

recommended procedures from my college without prejudice. I treated all 

participants with respect and was aware that their human rights had to be protected. 

I explained the aim of my research to them so that they could choose whether or not 

they wanted to take part. When they gave their consent they knew what was 

involved.  

 

Participants were guaranteed anonymity and confidentiality. In the report I used 

pseudonyms for the schools, teachers and learners. I was sensitive to locally 

established policies, for example at one school I had to see the principal before 

every observation whilst in another school I could go straight to the classroom.  

 

Observation is an important means by which we come to understand our world. I 

was keenly aware that while observation is a very useful means of gathering data on 

what was happening in the classroom and other learning situations, as a researcher I 

needed to be continually sensitive to ethical issues by acting with sincerity at all 

times. Soy (1997) encourages investigators to be aware that they are going into the 

world of real human beings who may be threatened or unsure of what the case study 

will bring. Though I did not detect such fears among the participants, I still explained 

what my research was about and they were free to ask me any questions relating to 

my research. When it was not convenient for the teacher that I observe the lesson, I 

did not insist. For example, on one day one of the schools found that the atmosphere 

was not conducive because of some social issues at the school. I postponed my 

observation to the following Monday since this happened on a Friday. 

 

3.9 Challenges 

 

I was challenged by the convergence of dual roles as an insider, that is, a Catholic 

nun and an outsider that is, a researcher. I have worked in Catholic institutions for 

eighteen years and so may be too familiar with them. I was aware of this possibility 

and tried as far as possible to be guided by research ethics. But the advantage of 

this long involvement is that I have formed a wide circle of contacts and colleagues 
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who have provided valuable advice. I was aware that the learners were pleased to 

have me in their classrooms because they were friendly and even offered to carry 

my bag. Some even sought me out to chat about studies in general. During the 

lessons I sometimes felt like taking an active part because of my natural impulse as 

a teacher to want to help and I had to restrain myself. 

 

In the following chapters, I provide comprehensive descriptions of the setting in order 

to communicate the meanings of how the teachers provided their learners with 

opportunities to learn grade ten algebra. These rich descriptions help present the 

teacher's instructional techniques and behaviour as they assisted their learners to 

construct mathematical knowledge. I describe the learning environment that was 

created during the interactions among the teachers and students. 

 

3.10 Conclusion 

 

This chapter focused on the methodology of the study. The ways in which the 

research was carried out were clearly described. The rationale for choosing the 

qualitative research paradigm was given. A description of the research strategies 

adopted, methods of data collection and analysis and anticipated challenges were 

given. Data from the fieldwork are presented in the next Chapter. 
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CHAPTER FOUR 

 

DATA PRESENTATION, ANALYSIS AND INTERPRETATION 

 

4.1 Introduction 

 

In chapter one of the this study, several questions concerning the opportunity to 

learn algebra by grade ten learners in selected Catholic schools in South Africa were 

raised. Chapter two discussed the concept of opportunities to learn in order to 

establish what various researchers have argued on the subject so as to answer the 

question: “How can the opportunities to learn (OTL) grade ten mathematics in 

selected Catholic schools be characterised and explained from the official and 

enacted curricula?” 

 

In the literature review section of this research, I discussed how most researchers in 

the field have argued that the rationale behind opportunities to learn is that students 

should not be held responsible for underperforming if they have not been given the 

opportunity to learn the material upon which the test or examination is based. A 

number of the studies demonstrate that student’s learning opportunities vary and that 

variation in learning opportunities matters. In the USA, the OTL issue has been a 

major concern mainly for the minority communities and especially the African-

American and Hispanics whose test scores were on average lower than those of the 

majority group. In the South African context, concern is largely with the majority 

African learners whose scores have been lower since the days of apartheid. 

 

To answer the second and the third questions of the study- How is the curriculum 

enacted in the selected grade ten classrooms?, and How can the Opportunities to 

Learn (OTL) grade ten mathematics in selected Catholic schools be characterized 

and explained from the official and enacted curricula?, respectively- official 

documents from the Ministry of Education in South Africa are discussed in the 

following sections. After that, I present data from several observed grade ten algebra 

classes at the three Catholic schools that I visited. For clarity of definitions, what was 

actually done and taught in the classrooms is what is presented. The student’s actual 

observed performance of mathematical activities in or outside of class defines the 
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achieved curriculum. The intended curriculum, on the other hand, is what is officially 

stated in the curriculum documents from the DoE. 

 

4.2 Reports on classroom observations 

 

The fieldwork for this study was conducted during the period February to March 

2011. It consisted of classroom observations at three different grade ten classes at 

three schools (St Anne, St Bernard and Mt Carmel High Schools- not real names) 

and formal and informal interviews with the respective educators. Though not their 

real names, I will call the teachers Ann, Ben and Cherry and classrooms will be A, B 

and C respectively. 

 

4.2. CASE 1 

 

4.2.1 St Bernard Catholic High School. 
 

This section of the report describes the first case of this study. It reports on lessons 

observed at St Bernard Catholic High School, from now on to be referred to simply 

as St Bernard. St Bernard is a co-educational school on the outskirts of a big city 

about thirty minutes’ drive from the city centre. I observed a sample of five grade ten 

mathematics lessons over a period of two weeks; three of them had two periods 

each. Lessons at St Bernard are forty minutes long. A siren bell rings at the end of 

every forty minute interval. Learners move around when the bell rings while the 

teachers are usually in a fixed venue. 

 

4.2.2 The teacher: Ben 

 

Ben is one of two teachers who initially agreed to be observed for this study. The 

number of learners at the school has fallen so much over the years such that there is 

now only one class for grade ten mathematics at the school. Ben has been teaching 

for more than 8 years. He holds a Bachelor of Science Honours Degree in Applied 

Mathematics as well as a Post Graduate Certificate in Education (Senior Phase and 

F.E.T). He is currently studying for a Bachelor of Science (Honours) Degree in 

Financial Modelling. At the time of the research Ben was teaching Mathematics from 
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Grade eight to twelve, Physical Sciences from Grade ten to twelve and Computer 

Applications Technology from Grade ten to twelve. He is one of four mathematics 

teachers at St. Bernard. 

 

I began our conversation by asking Ben to describe his experience as a teacher.  

Here is how he captured the trends over his eight years of teaching experience: 

The first four years of my teaching career were exciting and enjoyable 
 because I was involved with learners who were eager to learn and to succeed 
 academically. Unfortunately, the past two or so years were so disappointing 
 and stressful. Most of the learners that I have met have a negative attitude 
 towards learning. The level of learner discipline is so pathetic in most of the 
 schools that I have taught at. 
 

While depressed about the type of learners he has had to work with in recent years, 

Ben says that he enjoys teaching mathematics.  He enjoys more when “in a lesson 

all the learners achieve all the lesson objectives.” This is Ben’s second year of 

teaching at St Bernard. 

 

4.2.3 Classroom B 

 

The classroom is at the end of the shorter side of an ‘L’ shaped building facing 

eastwards. The teacher’s table is in front of the chalkboard and there is a metal 

cupboard against the wall on the left side of the chalkboard. Ben usually stands by 

this cupboard with his table on his right when he is teaching. Learners sit in almost 

horizontal rows with some of the desks touching. On the four walls, there are 

mathematical charts received from the Department of Education (Appendix 5 gives 

an illustration of the classroom and the sitting arrangements). On the first day of my 

observation, twenty six learners were present, 9 boys and 17 girls, with seven 

learners absent from the mathematics lesson. After a brief introduction to the class I 

sat at the back of the class near the door from where I had a good view of the whole 

class. 
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4.2.4 Lesson 1 

 

This part of the report covers the first grade ten mathematics lesson that I observed 

at St Bernard during the first week of March 2011.  I have chosen to report on this 

particular lesson because it was the first and gives a picture of Ben’s mathematics 

teaching in general. This general picture will include several components of his 

mathematics teaching, especially his choices of registers of representation. 

 

Learners came in slowly and settled a bit noisily in their seats. Ben already knew that 

some learners would be absent. His introductory remark as he cleaned the 

chalkboard was: 

“If you can go, during the lesson for a meeting to go for a camp, it’s up to you; 
 you will get the results at the end”.   
 

Ben asked the learners to tell him what aspect of the topic they were doing that day. 

This was because he had told them on the previous day what topic they would be 

doing. Together they identified the problems to be worked out on the chalkboard. 

The following conversation took place between Ben and the whole class to establish 

the problems to work out: 

 

Ben: So we are, we are now looking at what? literal what? ... Equations. 
Learners: Equations (in chorus). 
Ben: But we were supposed to be looking at simultaneous equations but we saw that 

when it comes now to let’s say ‘y’ the subject of the formula some of you were 
not what? They were not; they were not able to what? To do so because ...You 
could not do so because of other constraints that I don’t know. So we said let 
us look at what? At literal equations first then we will go back to what? To 
simultaneous equations. So I gave you some work to do. 

Learners: Yes 
Ben: It was number what?  In class work. 
Learners: It was number, number 1...  (Inaudible) 
Ben: Number what? Number 1 what?  
Learners: 1 g (sounded like). 
Ben:  Exercise 8 point what? 8.7 (Laridon, Barnes, Jawurek, Kitto, Myburgh, Pike, 

Scheiber, SigaBi, and Wilson, 2005:171) 
Learners: 8 
Ben: Number what? 
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Learners: 1d 
Learners: 1e 
Ben: F and what?  
Learners: And h 
Ben: And h and number 6. 
Learners: ooh 

 

It took over a minute to pin-point the number and item that they were going to do. To 

the learners Ben said that they could not proceed to doing simultaneous equations 

that day, “because of other constraints that I don’t know.” I pursued this issue during 

our discussion later to understand what he meant by “constraints.” He told me that 

most of the reasons for the learner’s present (poor) level of performance lay in the 

past. When I asked him about how he experiences the teaching of his grade ten 

mathematics class Ben responded by saying that:  

 It has not been easy teaching them because most of the learners never got the 
vital introduction of the topic at earlier grades. This means I have to teach the 
basics first before teaching actual outcomes for Grade ten. 

 

I was curious about the teaching of mathematics at the school in general and asked 

Ben about this. In response to my question on how he finds the teaching of 

mathematic at the school, he said that:  

It is not so good considering the poor Matric results the school obtained in the 
previous year. Continuous changing of Mathematics teachers has contributed a 
lot to the poor learner performance in the subject. Learners on the other hand 
lack basic numerical skills which make it even more difficult for teachers to 
teach the subject.  

 

This elaboration enabled me to understand a little better what he meant when he 

referred to the “constraints” during the lesson.   

 

Ben proceeded to do the corrections of the homework questions based on literal 

equations on the chalkboard. He had given the learners the homework on the 

previous day. To introduce this part of the lesson he gave the following instructions:  

 

Ben: So let’s start with... So these are the corrections, so you take out your pencil  
and mark your work. Where you have every step that you get correct you put a 
what? 
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Learners: A tick. 
Ben: Where you get it wrong you put an ‘x’ and then you use that pencil to correct 

where you have made it wrong.  So let’s look at number b. Number 1b it was 
what? 

Learners:  It was E = mc2 

Ben: And you are supposed to make...? 

Ben: m 

Learners: c2 

Ben: And you are supposed to make? 

Learners: c...  m 

Ben: m the subject of the formula. So what we said is we want to remain with what? 

Learners: With m. 
Ben: With m on its own. Like here it’s on the right side. So it means we want it to  

remain with m alone on the right what?  
Learners: Right side 
Ben: Alone on the right side. So what are we supposed to do?   
Learner: ...then we divide by my (Inaudible) 
Ben: Yaah, but then it will be a long what? A long step. It is like you wanted to come 

here, and you are standing there. You go around there and then you enter that 
way instead of you just moving there and there and you get in. 

 

Throughout the lesson Ben puts questions in the form of statements or phrases 

which require the learners to complete using one or a few words. Most of Ben’s 

questions were in the form of the statements containing the word ‘what’ either at the 

end or at the beginning.  Learners largely chorused their responses. After the chorus 

Ben would repeat the learners’ answer whole or in part. It was clear that Ben used 

only one form of representation. He wrote the algebraic expressions on the 

chalkboard and talked about them. What was written was not discussed. The 

problems were solved by the teacher. Solving problems is what Duval (1995) calls 

treatment within a register. Ben is teaching the learners how to simplify, emphasising 

how it is done and in so doing staying in the same register.  

 

To construct new knowledge, conversion between the registers is necessary. 

Allowing change of register is what creates mathematical meaning (Duval, 1995). 

For Ben it seems more important to tell the learners what to do, he uses words to 

give learners clues to solve problems in a certain way. 
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Ben emphasised procedures that he wanted the learners to follow in order to get the 

answers. For example he said: 

So what we do here, ...we just we want to remain with m on its own no matter 
it’s on the left or right side. We just want to what remain with m using the 
shortest what?... 

Learners: Method 
Ben: Using the shortest means. So what do we do here? We just divide by c2 

because what?  Here it is...? 
Learners: Multiplied 
Ben: Multiplied by what by what? 
Learners: c2 
Ben: We are supposed to make m the subject of the formula. So what we said is we 

want to remain with what? 

 Learners: With m. 
Ben: With m on its own. Like here it’s on the right side. So it means we want to 

remain with m alone on the right what?  
Learners: Right side.  
 

The sentences cum questions that Ben used were largely pointing to very obvious 

words. Sometimes he asked questions and answered them before the learners could 

do so.  In the excerpt above there are examples of some of the questions which 

were so pointed that common knowledge or sense alone would have enabled 

anyone to give the expected word(s). When Ben asked a different sort of question 

the learners hesitated to answer. An example of this is in the next excerpt. This 

follows immediately after the last line of the previous excerpt:  

 

Ben: M alone on the right side. So what are we supposed to do?   
Learner: ...then we divide by my (Inaudibly) 
Ben: Yaah, (Approvingly) but then it will be a long what? A long step. It is like you  

wanted to come here, and you are standing there. You go around there and 
then you enter that way instead of you just moving there and there and you get 
in. So what we do here is we just we want to remain with m on its own no 
matter it’s on the left or right side. We just want to what? Remain with m. Using 
the shortest what? 

Learners: method 
Ben: Using the shortest means. So what do we do here we just divide by c2 because 

what? Here it is...? 
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Learners: multiplied  
Ben: Multiplied by what by what? 
Learners: c2 

 

The explanation about the merits of a short way of answering question seemed to 

strike a chord with the learners. This attempt to contextualise a short method into 

real life examples was appreciated by learners for they followed, with their eyes, the 

directions that the teacher was pointing to. Some were nodding their heads in 

agreement or approval. This kind of example gives learners an opportunity to relate 

to practical experiences that can help them to understand the reason for certain 

procedures or steps in the process of building their mathematical concepts. It 

provided a visual representation of a procedure. The justification for using the 

shortest method becomes meaningful. The completed worked example on the 

chalkboard was as given below: 

E = m c2 

E/ c2= mc2/ c2 = m 

m = E/ c2 
 

It took two and a half minutes to arrive at the final answer. The learners seemed 

satisfied with the teacher’s working because when asked if anyone had any question 

regarding the example they unanimously said ‘no’. But the ‘no’ did not indicate that 

the learners had the opportunity to learn, for the ability to say a word is no guarantee 

that the words are understood. Words are understood in the context in which they 

are spoken, what tone is used, the cultural interpretation added and the biases for / 

against the individual (Nagpal, 2011) 

 

Also the meanings of words do not guarantee the grasp of the implications or the 

mathematical content. However, the teacher’s comment after the learners had said 

that they had no questions was to the effect that their achievement was due to the 

fact that the problem was easy. This was a rather strange comment that can be 

discouraging to some learners who might take it that it was not worth their while. Ben 

said, “It’s because that was very easy. I don’t know why I gave it to you.” In reality, 
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the problem was probably easy for the teacher and not necessarily for the learners. 

As I observed, there was no evidence that it was as easy for the learners. 

 

A similar example was then worked out on the chalkboard using the same 

procedures. After the answer had been written down and the class was ready to 

move to another problem one learner asked the teacher, “How do we know which 

one to pick?” This question, coming as it did, after two worked examples which were 

still on the chalkboard, seemed to indicate that the learner was not following what 

was going on. Below is the exchange that took place: 

 

Learner:  Sir how do we know which one to pick? 

 

There was an uneasy sort of laughing from the learners sitting near her but it was not 

booing. 

 

Ben:  Yayaya, you what? We are told there. 
Learner: Ohh... We are told... we get the answer (talking fast) 
Ben: Where is your book? 
Another learner: Where is your book?  
Learner: Ehh.  We are told? 
Yet another learner: We are told. 
Ben: Because you never understand if you are not eeh... referring to something.  

Because here we are told that we should make ‘i’ the subject of the formula. 
Learner: Ohoo. (Agreeing) 
Ben: So now where is ‘i’? ‘I’ is there on the left side. We want to remain with ‘i’. Since 

this ‘v’ is multiplying ‘i’ we divide by it both sides and they... they cancel out and 
this ‘v’ will be on the other side. So let us look and number b. We want to make 
what? 

 

Ben referred to the authority of the textbook. The textbook is where the formation of 

the concept is displayed. The situation did not seem to provide the learner who had 

asked the question with a satisfying response even though she seemed to agree 

with the teacher. For some learners, understanding comes gradually, but when one 

seems left behind the group of those who seem to understand, one might be 

discouraged to ask further and just allow the lesson to proceed. The fact that some 
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members of the class also asked where her book was could have been 

embarrassing or intimidating for the learner so she let it pass. The learner got no real 

opportunity to learn how to identify the letter to be made the subject of the formula. 

No help was offered by the teacher or the peers through such an experience.  

 

The teacher then quickly went over what they had just done pointing to steps as he 

spoke. He then immediately moved on to the next example. It could have been 

helpful to the learner had the teacher confirmed with her what she understood before 

moving on to the next example.  

 

The teacher worked out another example using the same procedures as in the 

previous two. The difference was that now the letter that had to be made the subject 

of the formula was on the right hand side of the given equation. The teacher worked 

yet another example on the chalkboard. He emphasised the steps to be taken 

especially that easier steps had to be taken first. By easier steps he meant ‘taking 

the terms to the other side’. During the process a learner suggested a step which the 

teacher denounced as below grade ten level even though he acknowledged that 

what the learner was suggesting was correct. The teacher asked the learners to 

suggest what to do if given: 

 

v = u + at   and having to make ‘a’ the subject of the formula.  
 

Here is what transpired: 

 

Learner: You say, v – u = u + at - u 
Ben: Now you are now in grade ten.  
Learners: Yes. 
Ben: If you were in grade 8 or 9 I would say yes you are right.  But now in grade ten 

you just say we take this ‘u’ to the other side. Since here it is positive it now 
becomes what? 

Learners: Negative. 
Ben: You are right but you know if someone can walk in here and see something like 

this; (He wrote; v – u = u + at – u), he will think that maybe this is a grade nine 
what? 

Learners: Class. 
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The learner concerned complained inaudibly and the teacher said. 

 

Ben: You are right. Did I say he is wrong? 
Class: Nooo (loudly) 
Ben: But now we must show maturity that you are now in grade what? 
Learners: Ten... (and one said grade one). 

 

The teacher did not seem to appreciate the correct answer because he thought that 

the format was below the standard expected of the grade level of the learner. But 

actually saying ‘take u to the other side’ does not really explain what is happening. It 

does not help the learner to understand why we are doing what we are doing. What 

the learner had suggested has justification in balancing the equation by performing 

the same operation on both sides. A teacher’s attitude to a learner’s contribution is 

important to the learner for it is a measure of his/her perceived on-the spot success. 

 

Clearly, the learner felt let down by what he perceived to be an acceptable answer, 

particularly since it was actually correct. He was denied the opportunity to connect 

with his previous experience of similar work, from which he could then build his new 

knowledge. The experience might have thwarted further attempts by this particular 

learner to offer answers in future. According to the constructivist theory of teaching 

and learning, espoused by the Department of Education in South Africa, learners 

construct new knowledge based on prior knowledge in an environment that is 

created to make that possible. Though it seemed the teacher wanted the learner to 

adjust or modify his method, had this been accompanied by a more sympathetic 

attitude, I suspect the learner might have appreciated it better.  

 

The teacher then stressed to the class the need to employ inverse operations in 

order to isolate the required terms. He used what he had just told the learners and 

reached the final answer. Below is an excerpt of what took place.  

 

Ben: It means that since this u is adding and we need to subtract it from both sides. 
Do you understand? We need to subtract it both sides because its adding so 
we just do the opposite. If it is adding we subtract, if it is subtracting we add it 
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both sides. .. if it is multiplying we divide both sides and if it is dividing we 
multiply both sides. Do you understand? 

Learners: Yes 
Ben: Yaah. You are right. We are just supposed to come here. (Pointing to the 

answer) 
 
Ben then confirmed with the learners the next problem to be done. 
 
Ben: Eeeh the next one is what? 
Learners: Number h. 
Ben: Number h. H is a... Let us move fast. This was the first time that Ben referred to 

speed. 
 

The next example to be worked out brought in a new aspect, that is, it involved a 

fractional coefficient. The teacher explained how to work it out: 

 

Ben: So a is equal to what? (Writing on the chalkboard) 
Learners: Half base times height. 
Ben: So a = 1/2bh and we want to make which one...? 
Learners: Height. 
Ben: Height the subject of the formula. 
Ben: And you see here you have got a fraction, this side. Every time when you are 

given an expression with a fraction you first you remove the fraction to make it 
what? The fraction. That will be the easier way. Because if you want to you 
want to remain with h and if you... 

 

Ben went through the procedure of simplifying using the same procedure of using 

inverse operations. During the process part of the dialogue is captured below: 

 

Ben: Something like this does not look nice so you must also remove this 2, 
(Pointing to the 2 in this formula A= ). So the first thing to do is to remove 
the what? When Ben said ‘does not look nice’ some learners laughed. 

Learner: The half. (very confidently) 
Ben: The fraction not the half because next time you will find there is 3/5. You first 

remove the fraction, we want remove this 2 at the bottom since this 2 is 
dividing...Let’s see. You now this one is now ok you now understand what is 
going on even if you are going to calculate area. This is you are trying to find 
the height of a triangle when you are given the area. 
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By saying, “The fraction not the half” Ben was paying attention to language. It was 

important to the teacher that the learners gave him the specific words that he 

wanted. It was uncomfortable when learners missed the exact words that the teacher 

was looking for.  The particular words would help in the build-up of the skill he was 

imparting and thus give the learners the opportunity to learn. The teacher then 

announced that they were moving on to the next example but one learner who 

appeared on the verge of falling asleep said: 

 

Learner: Sir. Sir is it necessary to write all steps? 
Ben: Yes, in maths... I told you that you will be told to make h the subject of the 

formula and how many marks will be there? 
Learners:3 
Ben: And how many marks will be there 
Learners: 3 

 

Ben then explained in detail how marks were allocated according to the steps taken 

to reach the answer. According to him if an item was given three marks, two of those 

marks would be awarded for the working and the third mark for the final answer. He 

claimed that in mathematics the working is the answer, meaning that the working 

shown had a great weight on marks allocated. He encouraged the learners to be 

guided by the mark allocation so that they would not lose marks during examinations 

because they had omitted some steps in their working. This method appears to be 

intended to help learners to pass examinations, in other words, it is examination 

driven. Ben took some time to explain how the omission of steps would influence 

one’s performance under examination conditions. 

 

 Ben told the learners that “In maths the working is the answer.” He also pointed out 

that in the case of application of changing the subject of the formula, not all the steps 

would be necessary. They would have to simply substitute and then calculate. He 

distinguished between what was expected during class work and in examinations 

and used the example of when they had done factorisation where they were 

expected to show steps as opposed to when they had to solve quadratic equations. 

This was an attempt to connect with the previous experience of the learners. The 
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learners were very attentive; maybe because it was new information for them or 

simply because there was explicit reference to examinations and marks 

(assessment). 

 

There was a long pause after the teacher had announced the next problem to be 

done. This pause gave the learners time to study the question more closely and to 

think about how to solve it. The question required them to make ‘h’ the subject of the 

formula if:  s= 2πr (h+r). The teacher used the same mode of questioning as he had 

used in the previous examples, to solve this problem. Part of the exposition is given 

below: 

 

Ben: If you look on this function where is h...? 
Learners: Inside the bracket 
Ben: Its inside the bracket. But here is there any other h somewhere? 
Learners: No 
Ben: No. So there is no need for us to remove those brackets. So straight away we 

divide both sides by 2πr.... 

 

He however used the word function to refer to the given expression, which was a bit 

above the heads of the learners. (There is no link between the word function and the 

variables in the formula). For a link of knowledge of the word function a conversion 

between the registers has to take place. What was important was for the learners to 

recognise that r, h and s were variables and that ‘pi’ and 2 were constants. There 

was no reason why they should have had that knowledge at that stage in grade ten. 

There were a lot of misconceptions in the explanation because functional notation 

had not yet been used. This was only a mathematical formula and dividing was only 

a form of treatment within the same register. Treatment only does not teach anything 

to anyone. Treatment is important to teach transformation inside one register but it is 

not the final objective of learning. According to Duval (1995) the construction of 

mathematical concepts depends strictly on the capacity to use several registers of 

semiotic representation of the same concept. The teacher declared that the second 

part of the same example was too easy and straight forward, so he would not do it 

for the learners. But he went into some detail about what values for ‘pi’ were 

acceptable. A learner asked about something that I did not catch and the teacher 
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said to him “... has nothing to do with what we are doing so I think you are 

disturbing”. The learner was silenced by the remark. 

 

Ben then went on to what he called “the more complicated ones.” These were to be 

found on the same Exercise 8.7 the Classroom Mathematics textbook. The new 

examples had to do with square roots and squares. He again used the same 

procedure that he had used with the previous examples. At one stage he was 

explaining how a square and the square root are related when one learner said that 

they knew it and the teacher responded in the following words: 

 

I am just reminding those guys who only remember maths when we are in the 
classroom. They don’t study at all. They only do these things when we are in 
class. So I am just reminding them.... You want me to do everything for you. 

 

The teacher then went over another example, and emphasised the steps to be 

taken. There were some of the questions that the teacher referred to as being grade 

nine material. Even though the teacher expected the learners to have some 

familiarity with the content from the previous grades, he nonetheless blamed the 

learners’ previous exposure to required numerical skills as inadequate. Instead of 

creating opportunities for learners to consolidate their previous work with the 

present, the teacher made it seem as if nothing worthwhile had taken place in the 

learner’s previous work with linear equations. Ben was still speaking when the bell 

rang and he immediately announced the homework to the class. The class was then 

dismissed. 

 

4.2.5 Lesson 3 

 

This lesson took place at the usual venue. There were thirty-two learners present for 

the lesson, one learner was absent. I am reporting on the third lesson because there 

was very little variation in the second lesson which was a single period. I took my 

seat at the back of the class and the learners seemed to have gotten used to being 

with me in the classroom. During the lesson I noticed that one learner sat alone at 

the back of the class and was not doing mathematics. The teacher noticed it and did 

not do anything about it. After the lesson I inquired about it from the teacher and he 
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told me that the learner had outstanding work for his portfolio in another subject that 

was why he had to do it then. 

 

In this lesson work on linear inequalities was covered. Particular attention was paid 

to the effects of dividing both sides by a negative number and on how to handle 

fractional coefficients. To begin the lesson the teacher wrote ‘LHS ≠ RHS’, on the 

chalkboard and asked the learners to say what the expression meant. The learners 

responded correctly.  The teacher pointed out that if an equal sign had been used it 

would have meant that the left hand side was equal to the right hand side (written as 

LHS=RHS), making it an equation. He explained pointing to this expression: ‘LHS ≠ 

RHS’, that it meant that the LHS was not equal to the RHS. Below is an excerpt of 

the explanation:  

 

Ben: LHS=RHS.  
Learners: Yes. 
Ben: That is for an equation. If it is an inequality now... it means that. (Pause)... right 

hand side is not equal to the what? 
Teacher and learners together: Left hand side. 
Ben: It means that one of them weighs more than the other what? The other side... 

either it’s the right hand side which is greater than or vice versa. Do you 
understand? 

Learners: Yes 
Ben: If there is such a scenario...  we said we call it a what? An inequality. Just like: 

x + 2 > 4. This is an inequality. It means that the left hand side is greater than 
what? 

Learners: ... hand side. (inaudible) 
Ben: The Left hand side. (Said wrong answer but wrote the correct expression). 

(long pause). So this is what we call an inequality when one side is greater than 
the other are what... That is the difference between an inequality and an 
equation. In an equation we are trying to make sure that both sides are what? 

Learners: Equal 
Ben: Equal. But if one side is greater than or less to the other that will be a difficult 

thing... So let us look at what? At the example that we are given there. Or let us 
look at exercise 2.1 

Learners: 8.21 
Ben: 8.21, 8.21 
There was a pause while learners opened their books to the page with Exercise 

8.21. 
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Learners: Yes (chorus) 

 

It is important to pay attention to words that are used in classroom communication. 

Fundamental to teaching and learning is a consideration of how communication 

takes place, of how meanings are shared Jarworski (1994). Jarworski also argues 

that in the teaching of mathematics it is also fundamental to ask what meaning and 

whose meaning. It is difficult to know what the teacher meant by “understand”. It is 

also not clear whether the learners were responding to the same thing. 

Understanding and knowledge are often used interchangeably in everyday language. 

The notions are related; some understanding is necessary for knowledge and some 

knowledge is necessary for understanding.  

 

The lesson proceeded as given below: 

 

Ben: Number 1, we are given: 1- 2x > x – 2. (He wrote this on the chalkboard). And 
they want you to solve for what? (Laridon, et al; 2005:186) 

Learners: For x. 
Ben: And they want you to show it on a what?  
Learners: On the number line.  
Ben: You did number line from grade what? 
Learners: Grade 1. 
Ben: Grade 1. So I cannot remind you about that for you have been doing it for the 

past ten years. 
Learners:  We have forgotten. 
Ben: So it means first you collect? 
Learners: Like terms 
Ben: Like terms 
Learner: This one is a very good example (was immediately contradicted by the 

teacher). 
Ben: It’s a very bad example but don’t worry. Ok let’s start. Let’s look at this one: 

x+2<4. We just take steps as the ones that we take when we are solving 
equations we collect like terms if you are having something like this...we take 
this 2 to the other side so it will be x <  4 minus what? Minus 2 

Learners: minus 2 
Ben: What is 4 minus two? 
Learners: 2 
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Ben: Its 2. So it means this is our solution. ‘x’ is smaller than what?  
Learners: Than 2 

 

In the above excerpt the learner who rated an example as being a very good one, 

was immediately contradicted the teacher, calling it a very bad example. Both did not 

explain their opinions. The learner was not allowed to express and try his own ideas 

coming from his evaluation of what was going on. According to the constructivist 

theory learners are not just receivers of knowledge but active participants in 

constructing their own meaning based on relevant experience.  During the lessons 

that I observed I noticed that little time was given to the learners to evaluate their 

own or one another’s statements. Chances to evaluate can create opportunities for 

learners to construct new knowledge or to consolidate what they already possess. 

 

During this lesson the teacher was asking questions in the form of sentences that the 

learners had to complete and then he would repeat the answer after them. 

Posamentier and Jaye (2006) discourage such a practice for they say that it 

weakens the learners’ interest in one another’s answers. The questions seemed to 

have only one possible answer most of the time. The questions were directed to the 

whole class so they answered in chorus fashion. They did not seem to raise their 

hands to indicate that they had the correct response to offer. Actually, little time was 

given for thinking about the question and formulating an answer. The reason could 

be that it was unnecessary because of the nature of the questions. The teacher 

asked in a ‘neat’ way which would not allow any other answer but the one he was 

anticipating and the learners supplied it. The questions did not provoke much 

thinking and did not encourage the learners to answer in full sentences. Even good 

questions can lose their value if they are overused (Posamentier and Jaye, 2006). 

 

According to Posamentier and Jaye (2006:53) “Questions should be constructed to 

stimulate different forms of thinking.” According to them simple questions, such as 

those used by Ben in the observed lesson, merely test the recalling of data or 

procedures. They further point out that the teacher’s questions shape learner’s 

learning as the type of questions asked places emphasis on the process strands that 

are valued in the learning of mathematics. The questions used by Ben and the kind 

of responses they elicited did not give the learners the opportunity to think beyond 
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the obvious and they learned very little by it. If procedures are over stressed they 

can become routine and the learner can perform them well by rote not by 

understanding. 

 

As reported above, the teacher mentioned that he was not responsible for filling in 

the gaps that might have resulted in the learners’ knowledge because of their 

experience of frequent changes of educators. In this example he was not prepared to 

revise the number line because the learners were supposed to have used it since the 

first grade. The fact that he brought it up meant that he was aware of the need to 

remind them, but he was not prepared to do so. When the learners said that they 

had forgotten the teacher did not refer to the issue but proceeded with the other 

work. Sometimes even the learner who is capable may benefit from a quick reminder 

to give them an opportunity to connect with past work and learn new material. 

Posamentier and Jaye (2006) maintain that teachers should avoid giving learners the 

impression that the work they are doing is simple and that the reason for any 

difficulty they might be experiencing is their own.  

 

The Department of Education requires that different or multiple representations of 

concepts be used when mathematics lessons are delivered and this section of 

algebra clearly calls for such treatment. Such an approach is useful for it is integral 

to the building up of mathematical concepts (Duval, 1995). The questions in the 

exercise that the class was doing required the use of two representations, that is, 

symbolic and graphical. After each problem had been worked out algebraically, the 

solution was represented on the number line. The teacher drew the number lines to 

illustrate the answers. It is expected that the symbolic would come after the graphical 

or pictorial representation but here it was the other way round. It would seem logical 

to start with the graphical or diagram before the symbolic form because a picture 

describes an object in its entirety and that seems to appeal to people. The exercise 

gave the opportunity to move from one register to other.  

 

Below is an excerpt of how Ben explained how to illustrate the solutions using the 

number-line model: 
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Ben: Smaller than 2. So when we illustrate this answer on a number line it does not 
mean that we need to draw a long number line. What it means is we just draw a 
straight line like that. (He drew the line on the chalkboard).Your zero is there 
and your 2 is there and then just show that this is a number line by showing 
these arrows one is going that way and this is also going that way. And where 
is your 2? Your 2 is there. And then here we have got a what? A strictly less 
than 2. There is no equal or what? There is no smaller than or equal to so it 
means that we draw a small circle like that. And we don’t shade it. And where 
are the numbers that are less than. Are they this side or that side? (The teacher 
pointed to the sides on the number line) 

Learners: This side 
Ben: This side so draw an arrow going this side. So this is x <2. So you also put 

what? You also put an x there to show that those are the values of what? Of x. 
(A learner made a ‘uugh’ sound showing boredom or tiredness.) Those ones 
that are less than two are from this 2 going that side to the left side and these 
ones going that side are greater than what? 

Learners: 2 
Ben: 2. So let’s go to this one. First the thing we say is collect like terms, so let’s take 

the as to this side and those constants to the other side. We are going to have 
minus 2, minus x greater than what. Minus2 minus 1 so it will be -3x>-3 and 
then now we want to remain with x so what we divide by what? 

Learners: By minus 3 
Ben: By minus 3, so it be minus 3x over minus 3 what and then minus three over 

what? 
Learners: Minus 3  

 

Ben went on to work the next problem using the same procedure as above. The 

learners seemed to follow the procedures as the teacher expected. Everything 

seemed to be going on well until the teacher asked what direction was changed by 

dividing by a negative number and a learner said we were changing the direction of 

the sides: 

 

Ben: As long as you are dividing by a negative number if the coefficient of x is a 
negative number you can divide both sides to remain with x we change the 
direction of what? The sign. We change the direction of the what? 

Learners: Of the sides. 
Ben: Of the signs not of the sides 
Learners: The sides 
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The response of the learners showed that some of them were lost. The teacher 

completed the example and illustrated the solution on a separate number line and 

showed the learners the position of zero. The teacher stressed once more the 

change of direction of the sign as the result of dividing by a negative number. For the 

teacher this factor seemed to be very important and he repeated it many times. It 

may be that he saw this factor as giving the learners the opportunity to understand 

inequalities which involve negative numbers or else he perceived that his learners 

would need to hear it many times over before they could understand. Repeating it 

over and over would make it possible for the learners to understand it. The reason 

the rule worked was not given is because Ben wanted them to remember:  

 

Ben: So you must remember that if we are dividing by a negative number we change 
the direction of the what? The sign. Or if it was a smaller than we make it a 
bigger than and if it was a bigger than we make it a what? 

Learners: Smaller than. 

 

Then Ben moved to the problems he called the “the challenging ones.’ Some 

involved brackets and others contained fractional parts and or negative numbers. 

Ben explained how to ‘remove’ brackets as the first step in the process of simplifying 

the expressions to familiar forms. They could then follow the same procedures as 

before.  

 

While Ben was explaining there was a sound of a message coming through one 

learner’s mobile phone and it caused a stir. The teacher continued as if nothing had 

happened. Maybe if he had pursued the incident it would have taken longer to 

restore order. Learners are not allowed to use their mobile phones during lessons. 

The teacher continued to stress the influence on the sign of dividing by a negative 

number. In his usual way he asked what would happen if the expression: -3x ≤ 3 was 

divided by -3 

 

Ben: Since also now, we are dividing by minus 3, or a negative number we  
interchange what? 

Learners: The signs. 
One Learner: 4 minus (Very loudly) 
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Ben: No. Not on that side. So dividing by 3, this implies that x ≥ -1 and if you are 
going to represent it on the number line zero is there and minus one is on this 
side. We put what, a circle on top of minus one and then we are told that x is 
greater than or equal to what? 

Learners: Negative one. 

 

The learner who almost shouted ‘4 minus’ appeared to have made a random error. 

There did not seem to be any reason for dividing by negative four if that is what he 

meant, or if he wanted to subtract four from something which he did not have a 

chance to mention for he was cut short. The teacher’s brief response to him did not 

help to clarify the misconception. The learner was not given the opportunity to 

develop his line of thinking. The fact that he said it loudly could have been a call for 

his own individual contribution. The learner got a short sharp answer that silenced 

him and prevented him from expressing himself any further. Instead the teacher 

proceeded as dictated below:  

 

Ben: Negative one, so you shade this one, you shade inside this circle and which 
numbers are greater than minus 1, these ones. So you draw an arrow going 
this towards, facing the positive numbers the arrow will be pointing towards the 
right. (Learners were talking at the same time as the teacher so I did not catch 
what they were saying).This is straight forward and very easy, because these 
are linear equations but when you go to grade eleven now you will be looking at 
quadratic. So if it is greater than or equal to, or less than or equal to, you shade 
this what? 

Learners: Circle: 
Ben: Small circle on the number line. But if it is strictly less than or greater than you 

leave it what? 
Learners: Blank 
Ben: Blank like that. (Pause).Ok let me just give you one example with a what? With 

a fraction. But there is nothing you must do because the way you solve this one 
is almost similar to the way you the what? 

Learners: The equations. 
Ben: The equations, the linear equations. 

 

There was a long pause while the teacher was choosing a suitable example and the 

learners seemed to be talking about their work to each other. Some learners were 

pointing to the work on the chalkboard. 
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Ben then reminded the learners that if an equation involved a fraction the first thing 

was to remove that fraction. He pointed to the fractional part that was to be removed. 

When he asked the learners to state the next step they hesitated to respond and the 

teacher rephrased his question in such a way that the answer became more obvious. 

He said: 

 

Ben: We said first look for the what? 
Learners: The lowest common denominator. 
Ben: The lowest common denominator. And what is the lowest common 

denominator, so the LCD is what? 
Learners: 6 
Ben: It’s 6. So it means that we multiply all the terms by the what? 
Learners: 6 
Ben: By the LCD, so it will be (the teacher wrote down the expression on the 

chalkboard and continued).   

  - < (x-2)   (uugh-sounds of tiredness from some learners)  

3(4 –x) - 2 (2x -1) < 6x – 12 so it will be 

12 – 3x - 4x + 2 < 6x -12. We collect the like terms. So it will be  

-3 x - 4x - 6x < -12-12-2 (called it a bracket, just a slip of the tongue) 

-13x < -26 
Ben:  Since now eeh we divide by -13 both sides, we interchange the what?  
Learners: The signs. (Some of the responses were muffled, - not audible) 
Ben: We do not interchange we change the direction of the what? Of the, of the sign. 

 

The teacher paused, while the learners were ‘discussing’ their answers informally 

with their neighbours. The teacher did not tell them to discuss but he allowed it to 

take place. Learners need to talk about what they are doing to their peers for it 

provides them with the opportunity to communicate in appropriate words and 

symbols. Cooperative learning is a highly recommended way of engaging learners 

for it has been shown to influence learners’ performance in a positive direction. The 

teacher then proceeded as follows:   

 

Ben: So it will be x is greater than? 
Learners: 2. 
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Ben: 2 so on the number line you have you zero and your two there. You have x 
greater than what? Strictly greater than 2. So that is the representation on a 
what? On a number line. So as your class work I want you to do Exercise  
8.21 1c, d, 2, 3 

 

In the above excerpt in particular the teacher was largely talking to himself. The 

class was getting restless. There was no motivation for them to pay attention. The 

teacher was posing questions in his usual manner of starting sentences for learners 

to complete but the learners were not supplying the required words or else they were 

hesitant to do so. The learners seemed to be tired and the content was probably too 

difficult for them. The teacher had talked for a long time. After this episode the 

learners were lively and seemed engaged in private conversations that might not 

have been on the subject of mathematics. Before the learners could start on their 

class work the teacher reminded them again of the need to find the lowest common 

denominator (lcd) and described the procedure again briefly.  

 

As the learners were settling down to work the teacher asked if anyone had any 

questions. The majority replied in the negative and others did not respond 

immediately. There was a long pause during which the teacher expected all the 

learners to have started doing their class work but the majority had not. One learner 

called on the teacher to ask him something. The teacher went on to enquire if there 

was a problem or if there was something wrong on the chalkboard. The learners still 

did not settle to work. They seemed to be consulting each other. The teacher 

reminded them that they were to work individually since it was neither homework nor 

pair work. They continued to talk until he said this to them: 

 

You do individual work, except if I say pair work, or group work or the whole  
class that is when you work together. So now it’s individual work not together. 

 

They largely ignore his call for them to settle to individual work. One learner who had 

been quiet most of the time asked, “Sir. Sir. Why over there we are dividing by a 

negative number but the sign doesn’t change?” The teacher searched the 

chalkboard for the example and asked the concerned learner to identify the one she 

meant. While the teacher was looking around the chalkboard for the error the learner 

realised that she had made a mistake and said so. The teacher thanked her. Some 
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learners continued to fidget and lively conversations on other topics that were not 

mathematics related were going on. Some learners wanted the teacher to confirm 

the numbers that he had chosen for them. He told the learners that the problems that 

he had given them did not require much time, in his own words, “You do not need 5 

minutes to do it.”  

 

Immediately after the above statement the teacher started to explain again about the 

effects on the signs of dividing by a negative number. He went on to ask what they 

thought the effect of dividing by a positive number would be. He answered the 

question himself and told the learners that it would have been a good idea for him to 

have started by dividing by a positive number. But then he told them that they should 

have done the division by a positive number in grade nine. 

 

Ben: And you should have done this in grade nine. 
Learners: Sir we didn’t. 
Ben: Maybe you were absent. 
Learners: Nooo. 
One Learner: Sir we never did it. 
Another learner: Never, never, never. 
Ben: So how did you manage to be in grade ten? 
Learners: Nobody fails in grade nine so we all passed... 

 

When they told Ben that nobody fails in grade nine they laughed about it.  It was as if 

they did not respect their grade nine qualifications. They were reminded that in grade 

ten there would not be any automatic promotion to the next grade so they had to 

work hard. 

 

One learner had not started writing by then for she asked the teacher for the day’s 

date. The other learners seemed amused and told her an inaccurate date, maybe 

just to confuse her more. The teacher’s response was that she should be the one 

telling him what the date was on that day.  

 

The teacher inquired from the learners about some pending portfolio work. They 

assured him that they were working on it. There were other conversations taking 
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place in the classroom. The teacher encouraged the learners to take the topic 

seriously for it might be their easy option when they write their examination. The bell 

rang and class was dismissed without mention of homework. 

 

4.2.6 Additional comments on Ben’s teaching 

 

These comments are meant to give an overview of how Ben teaches algebra with an 

eye to identifying how he creates OTL. The literature reviewed pointed to the fact 

that OTL is concerned with the conditions under which learners have to learn and is 

positively associated with achievement. In this study OTL is considered in the 

context of the learning of algebra at grade ten level. OTL is determined largely by the 

way the teacher instructs the learners because what is learnt depends on what is 

taught (Kilpatrick et al., 2001). The way in which OTL are generated in the classroom 

differs from class to class. In this section I consider the way Ben affords his learners 

the opportunity to learn grade ten algebra by considering his choices of registers of 

representations. I will use the examples described above to highlight the way Ben 

attempts to give his learners OTL. 

 

Mathematical knowledge is constructed in the mind of the individual. Students’ 

construction of mathematical knowledge is greatly influenced by the experiences 

they gain through interaction with the teacher (Cobb and Steffe, 1983). Teachers 

decide upon the strategies to engage students. They create the opportunities for 

students to learn the knowledge and skills required in society and also in order to 

pass examinations so that they have something to show for their effort.  

 

In his teaching Ben emphasises procedures. All teachers when they attend to a class 

of learners want to give them an opportunity to learn, each in his or her own way. For 

Ben learning is accomplished when learners complete given sentences using short 

phrases or single words. He starts the sentence spelling out a procedure and the 

learners complete it. For example he says, ‘Here we are supposed to make ‘h’ the 

subject of the what? The learners respond, ‘Formula.’ Most of the questions were of 

this nature. Questions should be constructed to stimulate different forms of thinking. 

Ben’s questions did not stimulate high order thinking and problem solving. A 

teacher’s questions can shape a learner’s learning as the type of questions asked 
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place emphasis on the process strands that are valued in the learning of 

mathematics (Posamentier and Jaye, 2006). 

 

Communication with his learners was largely one sided, the teacher did most of the 

talking and all of the chalkboard working. Ben followed the examples as set in the 

Classroom Mathematics textbook. He worked out the examples in order of difficulty 

as arranged in the text book. However there are dangers associated with textbook 

driven instruction in that the questions might not apply to the context familiar to the 

learners. Learners naturally relate favourably to questions that mean something to 

them than to those that are far removed from their own experiences. Ben always 

repeated the answers that the learners gave him.  

 

The role of the learners during the lessons was largely as passive listeners with 

almost no student-student interaction and only a few questions and comments 

directed at individual learners. Ben went through work already done by the learners 

as homework. During this exercise Ben seemed to put more emphasis on solving 

specific problems in a particular way. 

 

Ben has little confidence in his learners learning potential. He asked and answered 

his own questions. He was talking to himself sometimes for he would answer the 

question before the learners could do so. His voice was the most powerful 

representation in his case. For him the students have to hear in order to understand.  

 

A teacher’s conception of mathematics influences every aspect of the teacher’s 

teaching (Cobb and Steffe, 1983). Also a teacher’s perception of student ability 

influences the way they engage students. Ben does not believe that the learners in 

his grade ten class can learn effectively. He has a poor opinion of his learners as 

indicated in his response during the interview. He said: 

 

Most of the learners have a negative attitude because they often get frustrated 
when they attempt to solve story problems that involve algebra. They also 
believe that algebra is about techniques for solving those mysterious equations 
or other obscure problems.  
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In response to a question about how he finds his teaching of mathematics at St. 

Bernard, Ben had this to say:  

 

It is not so good considering the poor Matric results the school obtained in the 
last year. Continuous changing of Mathematics teachers has contributed  a 
lot to the poor learner performance in the subject. Learners on the other hand 
lack basic numerical skills which makes it even more difficult for teachers to 
teach the subject.  

 

What Ben is saying indicates that he is not responsible for the poor performance of 

the learners which he perceives as resulting from their previous experiences. The 

learners had been through five teachers in a space of just over two years. Ideally the 

teacher has to help every learner at the stage at which they are. It does not help 

matters to refer to previous omissions or work that should have been covered. 

Talking about it does not make it happen so action is required if the learners are to 

have the opportunity to learn.  

 

Ben addresses the class as a whole and so does not give particular attention to 

individual learners unless they ask him a question. Class discussions were rare. 

Learners usually engaged in unsanctioned pair work which was discouraged in one 

of the lessons. But discussion in class enables the learners to rearrange their ideas 

and find new expressions and to communicate. When a person understands 

something, they are capable to say the same thing in different ways, in other words 

communicate it in more ways than one. Ben does not give space to learners and so 

they do not have anything to question because he has given them the answers. You 

ask when you have time to think about it. So if you have no time, you cannot ask.  

 

The Department of Education in South Africa expresses in The National Curriculum 

Statement (2003b :11) that it is expected that grade ten learners are able to, 

“Recognise relationships between variables in terms of numerical, graphical, verbal 

and symbolic representations and convert flexibly between these representations 

(tables, graphs, words and formulae). It is recommended in the same document that 

“the approach to the content of Learning Outcome 2 should ensure that learning 

occurs through... conversion between numerical, graphical, verbal and symbolic 

representations” (2003b: 18) 
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. 

The theory of learning as put forward by Duval, (1995, 1999, 2005), discussed in 

Chapter two of this study imply that for OTL to arise, the learner needs to be 

provided with the necessary representations that help in the construction of 

mathematical knowledge. The NCS is clear that the approach to the content of 

Learning Outcome 2 should come through conversion between the registers of 

representation.  

 

The role of the teacher is to promote learning by giving different objects to learn. The 

object is not in the teacher or in the learners, it is in the problem. The problems are 

the objects of knowledge in the subject. When the learner reads the problem and 

thinks about it he or she is moving into the brain to get the knowledge to solve it. 

This is the moment when Piaget (1977) says there is disequilibrium because there 

are things they know about the problem and things they do not know about it. The 

teacher is a facilitator in the process. The learners have to create the object of the 

subject. Ben uses verbal representation and its written form to teach algebra. He 

gives the message to the learners that ‘I am going to tell you and you are going to 

learn.’ But no amount of verbal explanation can give any learner the concept of 

algebra because knowledge is constructed individually given the necessary 

conditions. According to the constructivist view of learning, based on Piaget's theory 

of assimilation and accommodation, learners must experience the concepts in order 

to build understanding. In Ben’s class, learners sit passively and watched him 

perform actions to solve the problems for them. He asked leading questions and 

most of the time answered them himself. 

 

Ben hardly used real life situations that have a meaning for the students. Learners 

have little chance to explore relationships or create solutions with their own methods 

because they are not presented with open-ended situations where there are many 

ways to find answers. Ben hurries through problems and concentrates on drilling 

rules and procedures. Drilling rules and procedures can lead to a stage where 

learners answer questions by routine, they can work automatically may be without 

understanding what they are doing. 
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Ben transmits a sense that mathematics is not difficult and that it is the learners that 

are not capable of doing it. Most communication was verbal yet there are many other 

ways of communicating. Ben seemed to be much more concerned about the 

procedures than the concept. Students cannot be expected to develop critical 

knowledge structures by practising procedures (Fennema and Romberg, 1999). To 

Ben, performing procedures was very important for the learners to practice. So he 

was exposing them to the procedures and expected them to do exactly as he told 

them. That was his way of providing OTL. He had mathematical knowledge which he 

wanted to give to the learners. He did not challenge them to think about the 

procedures but rather told them that the procedures worked and that they should just 

take it in. Ben hardly ever asked the question ‘why’ which would have provoked 

higher level thinking in the learners. Asking ‘why’ would have prompted the learners 

to explain and justify their own thinking. Talking about what they were doing in this 

manner would have given learners the opportunity to understand. From the first 

lesson he used the same mode of asking questions. His attitude seemed to expect 

little from his learners.  

 

One factor that appears to have affected the way Ben provided OTL to his learners 

could be his workload. He is clearly overloaded (For his workload see section 4.2.2 

above). If one is overloaded he or she cannot perform at their best because of the 

time factor for each load has its own demands and this can be overpowering. Time 

for research to improve quality and quantity is in short supply and this can adversely 

affect the OTL the teacher provides.  

 

4.3 Case 2 
 

4.3.1 Classroom C: Mt Carmel Catholic High School 
 

This section of the report describes the second case of this study. It reports on 

lessons observed at Mt Carmel Catholic all girls’ school. Mt Carmel is about eight 

minutes drive from the city centre. I observed eight mathematics lessons there. 
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The mathematics classroom is on the first floor. Adjacent to it is a small mathematics 

room where the mathematics teachers meet to share ideas or to wait to enter their 

classroom. It is in this room that we would talk about the lessons before and after 

they had taken place. As you enter the classroom you face the teacher’s table which 

is aligned with the front desks of the learners. 

 

There are thirty-two learners desks arranged in a column leaving a space allowing 

passage in any direction. There were seventeen learners doing grade ten 

mathematics. The empty places were not arranged in any specific order because the 

occupants of those seats, who are also in grade ten, moved to another venue 

because they do mathematical literacy. 

 

 
4.3.2 The teacher: Cherry  
 

Cherry is a teacher with twenty years of teaching experience, two of them abroad in 

the United States of America (USA). She has a degree in mathematics education 

and has taught at Mt Carmel for the last five years. Her two years abroad fostered an 

open attitude towards her teaching practice. She got used to being observed and as 

such does not mind it any time. She narrated this experience with visitors in the USA 

classrooms as follows: 

 

There you can be visited any time of the day by any of the stakeholders, the 
parents or anybody interested. I got so used to it that it does not bother me 
whether I am being observed or not; I get on with my work. And I do believe 
that everybody should have access to observing lesson anywhere if they are 
studying.  

 

Of the three teachers whom I observed she was the only one who gave me her 

preparatory notes in advance of the lessons. I had two meetings with Cherry before I 

observed her teaching. She gave me her work schedule for the period from the 

beginning to the end of March. She indicated on the schedule what she would be 

covering each lesson. She also gave me her lesson plans the day before or on the 

day of the lesson. She would also give copies of all the worksheets distributed to the 

learners. In this sense, she was very helpful and exciting to work with. 
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4.3.3 The lesson. 
 

For the present discussion, I present a set of examples gathered from two double-

period grade ten algebra lessons at Mt Carmel. I discuss the two lessons together 

because they represent one continuous episode as one lesson progressed directly to 

another. I will illustrate how this happened later in this presentation. A copy of the 

lesson plan is included as Appendix 5. The first of the two lessons discussed here 

was actually the third in my observations at the school. I have chosen to report on it 

because in it the learners were much more involved in the activities than in the 

previous ones and, as I later found out, was fairly representative of Cherry’s teaching 

of mathematics.  

 

I directed my observations toward understanding how Cherry used different registers 

of representation to help her learners construct algebraic concepts. I focused on the 

questions that the teacher posed and the examples that she used. I examined the 

opportunities that Cherry provided for the students to learn and construct 

mathematics. 

 

4.3.4 Topic of Lesson: Making y or any selected variable the subject of the 
equation 

 

The above was written on the lesson plan but on the chalkboard the teacher wrote 

‘Rules.’ The learners had not performed as well as Cherry would have liked in the 

end of term test they had written the previous day. Cherry had identified a weakness 

in the learner’s way of changing the subject of a formula. 

 

Cherry: ...you mixed up the variables. The same rules apply. You know how it is 
if you have a driver’s licence, right, it does not matter whether you are driving in 
Pretoria or Durban or Polokwane. It should not matter to you what city you are 
in. Just because it does not look like Pretoria does not mean that you can’t 
drive. So we need to have those rules so fast in your head that you can do any 
expression any equation. Alright. Now let’s just revise, and... in your book... just 
write down a few key concepts that we use. 

 

This introduction gave the learners the opportunity to contextualise the meaning of 

‘Rules.’ Mt Carmel is in one of the cities mentioned so learners could easily identify 
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with the real-life example given by the teacher. In this way the learners had a chance 

to relate mathematics to their everyday experiences. The activity of writing ‘key 

concepts’ was meant to provide the learners with the process of conversion; they 

had to think and when they wrote down their thoughts, they changed the register.  

 

Cherry: We are talking about variables. Jot down the word variable and give me 
a nice little normal English but mathematically correct definition of what a 
variable is. 

 

The teacher wrote the word variable on the chalkboard and then moved into the 

learners’ area to examine the learners’ attempts. This teaching approach made me 

think of the constructivist dictum that people construct meaning for a new idea or 

process by relating it to ideas and processes that they already understand (Fennema 

et al., 1999). Here was the teacher giving the learners an opportunity to bring 

forward what they already knew so that they could build new knowledge from a 

familiar ground. 

 

Learner: Miss must we write it down. 
Cherry:  You tell me. To the particular learner and then to the whole class she said: 

And let’s come up with a common nice definition. We always talk about them 
but if someone was to say to us define a variable. What’s a variable? Ya. 

Learner: It’s like, it’s like x it changes values. It does not have an x value. 
Cherry: I like the second part of your definition more than the first, because it’s not 

always x, it’s a letter. 

 

A learner interjected with another attempt: 

 

Learner: Miss could we say that a variable is a figure with an unknown value? 
Cherry: A figure? 
Learner: It’s not always x. 
Cherry: It’s not always x 
Learner: Could be y. 
Cherry:  Could be y with unknown value. Does that mean...  that it can be any 

value... in an equation? 
Learner: ...Given in an equation? 
Cherry: In an equation I am asking. 
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The learners discussed in unequal sizes of groups: in one corner there were three 

pairs, another two set of threes, one group of four and three students working 

individually. After saying the above the teacher went to stand next to one of the three 

and talked to her while waiting for the response from the whole class. The teacher 

had told me previously that the particular student that she visited often during her 

delivery of lessons was new to the school and was still trying to find her feet. Cherry 

tried to give her as much individual support as she could.  

 

Cherry: Listen carefully. We have come with a figure, a letter, which...? 
Learners: With a value that changes. 
Cherry:  With a value that changes. It’s better to say with a value that can change 

than to say it can take any value. Because remember in an equation there is 
one or two or three values which it can be. It can’t be any value. Why? 

Learner: Miss is it not what you get after working out? 
Cherry: Ya. Can you be more specific? 
Learner: ...the one you are looking for. 
Cherry: Ya. Be more specific? 
Learner: You are looking for this one and you get that one. (Sounded like) 
 
Learners discussed the definition in low tones I could not catch what they were 

saying. Cherry kept prompting them to be more specific. Then she said to the whole 

group: 

 
Cherry: Alright, let’s put our definition together we say, it’s a letter it’s a value, 

something in normal English. That can change.  Vary variable.  

Learner: Uuh uh 
Cherry: The word va-ri-a-ble sounds like to vary. It’s a letter something that will 

change... according to an equation now. We have worked with linear equations 
we have worked with quadratic equations. Don’t you understand? In a linear 
equation how many values can that variable have? (Said slowly) 

 

The teacher tried to give the learners the opportunity to view the different ways in 

which a variable could be defined. The learners tried to understand through the 

various representations the idea of what a variable is. The idea of a variable is 
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central in the study of school algebra as discussed in the curriculum documents in 

section 10.2.1 (b), which states that grade ten learners are able to 

 

Recognise relationships between variables in terms of numerical, graphical, 
verbal and symbolic representations and convert flexibly between these 
representations (tables, graphs, words and formulae). 

 

There was a short pause presumably to give learners time to think about it and then 

the teacher continued: 

 

Cherry: How many possible solutions? If it’s written like this: y=x+2. How many 
possible solutions? Lucy? 

Lucy: Two. 
Cherry: Two?  Alright so the idea of a variable is something that changes. Now when 

we say solve an equation what we are asking you to do is to find. 
Learner: The values. 
Cherry: The value of the variables in that equation so that it makes it true. Right 

because we know that is how we test that our answer is correct here its 3 so we 
do our manipulation with the answer three. We test it by putting it in the 
variable’s place and if left hand side is equal to the right hand side if it’s a true 
statement we know we have solved it. So the idea of the variable the important 
thing to realise is that it can change but it depends. Now  we have mentioned 
that often we use y’s often we use x’s. 

 

The terms were explained one by one through the guidance of the teacher. Each 

time, the teacher probed the learners to give more information and to refine their 

meanings. She would say something such as ‘be more specific’, ‘does it mean then’, 

‘come up with more’ etc. 

 

Below is part of the conversation between Cherry and the class while they were 

discussing a term: 

 

Cherry: We have been taught the process of solving like this. There’s two, one is by 
inspection, what ...which means basically...? 

Learner: Just looking at. 
Cherry: Just looking at. We say aah it’s going to be three aah and 2 so this is five so 

it can only be 2+3 that’s inspection  and are prepared to do it. 
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This is what she wrote down: 5 = x + 2. 

 

As she was pointing at the terms she was speaking aloud to the class what the 

corresponding thinking would be. The learners seemed satisfied because some were 

nodding in agreement. The teacher was linking the mental, verbal and visual 

representations to provide the learners with the opportunity to connect while they 

construct their own ideas. 

 

Cherry: Ok, now we come to the one that we fall in now ... it’s with this manipulating 
now, write down another very important concept. When we talk about making 
something the subject, what exactly do we mean? Pause.  What is the meaning 
in English ...when you are in your normal English classes when you talk about 
the subject and object? Is it related in any way? 

Learners: I think so, I think so. (In very low voice) 
Cherry: Eugh (showing approval) 

 

There was a moment of buzzing between the learners; I could not catch what they 

were saying because they were all talking at the same time. The teacher encouraged 

them to be more specific. Cherry asked the learners to distinguish the meaning of 

‘subject’ in English and the following conversation was noted. 

 

Ann: The meaning is subject, like.   
Cherry: Ann be more specific. 
Ann: In English, the main subject is English, so we forego... 
Cherry:  Ok. So subject can mean topic. 
Learners: eeh (showing understanding) 
Cherry: In English when you are looking at sentences and we the subject, verb and 

the object, is it related in any way to our mathematical use of the word subject? 
Learners: Miss there is someone at the door. 
Cherry: It’s not just someone, its Mr Tom. 

 

Mr Tom was admitted into the classroom, greeted, took what he wanted from one of 

the tables and left the room and the lesson proceeded. 

 

Cherry:  Is it related? Come tell me about your English now subject, verb and object? 

Learner:  In English the subject is a thing or person that does the verb to the object. 
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Learners:  uuh, uuh. 

 

This was a loud approval from the class which meant the answer from that 

nominated learner was confirmed. 

 

Cherry: I love dogs. What is the subject? 
Learners: I 
Cherry: Ok. Now that’s the common English structure that the subject comes at the 

beginning. Alright the person doing the action, then we have the subject at the 
end of a sentence. 

Learners: Yes, yes. 
Cherry: Mary? 
Mary: Dogs are loved by me. 
Cherry: Dogs are loved by me. Ok. It can swop... mathematically for us as well 

subject does not have to go there but there comes the difference. The subject 
in the mathematical sense is the variable that stands by itself that we need to 
find the value for. 

Pause 
Cherry: So it is related to the English sense of subject but it is not exactly the same. 
Learner: Miss Can you repeat what you have just said? 
Cherry: I could if could remember what I have just said.  
Other learners: The subject is the variable that stands by itself that we need to find 

the value of. 
Cherry: ... find the value of. The letter or the variable that stands by itself that we 

need to find the value of, that could be an a, an x, a y, a p, an h it can be 
anything. It can stand on the right hand side of the equal sign as well. It does 
not have to stand on the left but it must stand by itself. It’s got to be alone. By 
habit we try and get it on the left hand side. That’s just convention but it can be 
on the right hand side. It can swop it is not wrong. Alright now. Last concept, an 
equation and an expression. The difference between them? 

Learner: I think an equation has an equal sign. 
Cherry: Uuh, Ok. Can we come up with more, you are quite right An expression is a 

maths sentence, like an English sentence  the subject, the verb, the noun, the 
adjective, ba, ba, ba there is different parts, different terms where as an 
expression has an equal sign somewhere in it. 

Learners: An equation Miss. 
Cherry: An equation I mean, I am very sorry. 

Pause 
Cherry: An expression is a maths sentence but an equation it does have an equal 

sign. This of critical importance because   
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Then the teacher drew a see saw showing two children one heavy and the other light 

and the see-saw tipped on the side of the heavy one. The learners where amused by 

the teacher’s drawing, they laughed and seemed keen to know what was going to 

happen next. The pictorial representation of balance was appropriate and seemed to 

stimulate interest in learners. 

 

Learners: wooh, wooh (And many other sounds to that effect were heard) 
Cherry: When we see the situation in the playground. Come on, the biggest little 

kiddie in the preschool trying to ride a see saw with a tiny kid. 
Learners:  aah Shame, shame  (Laughing) 
Cherry: Now this idea whole idea of a see saw or of a scale and I don’t think you 

have ever seen an old fashioned scale, I wish we had one so I could put it up. 

 

The teacher drew a scale on the chalkboard as she spoke: 

 

Cherry: Aah. It has, it has like an arm with two hanging things and two bowls there 
and you decide how much weight you want to put on here, mind, you can put 
on a 2kg weight here this is what they did in the older system so try and 
understand. If you wanted two kgs of potatoes and you order from one of the 
regular shops in town. They put a two kg weight here. What is going to happen 
to the scale? 

Learner: Like this, will go up 
Cherry: It’s going to go like this right and then they put your potatoes here until it 

comes back into perfect balance, like this. 

 

I could see the learners sitting near me drawing the scale in their books and talking 

about it. 

 

Cherry: Now ...If you can understand the concept of balance this is the secret to an 
equation. There are various manipulations that you can do. But you are never 
allowed this situation where, where what you do to one side puts a lot of weight 
on this side it’s never allowed to go out of balance. What would you do to this 
one. To bring it back into balance? 

 

Telling learners that the balancing principle was the same as the one used in solving 

equations was encouraging learners to make the conversion necessary to finding 

solutions. Also, as she pointed out, if you can understand the concept of balance 
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then solving the equation should not be a problem. In this way she was referring to 

conversion as well. 

 

As she was talking Cherry matched the words with the action on the scale or the 

see-saw she had drawn on the chalkboard. The learners talked to their neighbours 

about what would happen to the scale. Some could be seen demonstrating the tilt 

with their hands. There were many voices and it was difficult to pick one as they 

were talking at the same time so I only caught a few words like: It depends how 

much you make it. 

 

Cherry: So I could take? 
Learners: No Miss I should just. 

There were lively exchanges among the learners. 
Learners: No Miss not... can’t you just put another child?!  
Learner: Put another kiddie... there. 
Cherry:  Can’t I just add another little kiddie there maybe  
Learners: ooh 
Cherry: And hopefully their weight together will balance this one. Now what 

manipulations are we allowed to do here in this equation here? Ya. 
Learner: Let’s just say that see saw that you just drew is multiplication eeh 
Cherry: Yap. Come on  
Learner: Eeh, the... Miss if... Isn’t Miss what we do to the right hand side and the left 

hand side should equally balance  
Cherry: should equally balance. Absolutely. 
Learner: So you simply add the same on each side of the child 
Cherry: That’s correct... I just happen to have two kids and they are appropriate... 

and then one can’t... 
Learner: I won’t be swinging ...I want to jump. 
Cherry: And jump so fair. And now we have a balance and so if I am going put 

another one here I must also put another one there and.  
Learners: And make sure they balance 
Cherry: Exactly. If can just understand that that’s fine When I am saying ‘what can 

we do,’ ‘what can we add’ I do not always mean we are plussing I am just 
saying if we are going to tip the scale  in this direction  by doing something 
there  you have to do the same something here in a way. Ok. But let’s get more 
specific here, and to get more specific and more accurate, this is just to 
understand what that balance means. But I am not speaking properly 
mathematically, but if you understand that that’s good. Aah we have to one way 
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to keep the balance... aah is by using inverse operations. Write that down. 
When we are talking about the inverse of something, 

Pause 
Cherry: We are talking in a way, and I don’t want to use vague terms but I just want 

to use terms that are normal English terms as well, you know when you knit, 
and you make a mistake. 

Learner: Yes. 
Cherry:  You have got to pull it out right. You have got to undo it you pull it out. So in 

fact you are doing two opposite operations aren’t you? 
Learners: Aha. (Agreeing). 
Cherry: You were knitting  making it longer and you are reversing it. So we need to 

see inverses as a way they are operations that reverse another operation. They 
undo another operation so write down yourself a little definition for yourself. 
When we are doing inverses operations an inverse operation will and put it in 
inverted commas because I am aware that that I not speaking completely 
accurate, it’s going to undo the another operation and to reverse it it’s going to 
go in the opposite direction. 

 

Pause for about half a minute and the learners were quietly looking at their work 

 

Cherry: And this is... this is the second secret of equations the one is the idea of 
balance. The second one is the idea of undoing, going in the opposite direction 
meaning inverse operations. What are our operations? Our basic operations? 

Learners: Addition. 
Cherry: Addition. 
Learners: Subtraction 
Cherry: Ok. 
Learner: Multiplication and division. 
Cherry: And division. We have two pairs of inverse operations which are: 
Learners: Addition and subtraction 
Cherry: Adding and subtraction undo each other. Undoing. I am just... I am pulling it. 

Alright so the inverse operations addition and subtraction. Any the other ones? 
Learners: Multiplication and division.  

 

There was a thirty second pause. 

 

Cherry: These are our most critical ones. Now there are other little tips of the trade 
(sounded like) ... which are not basic operations but there other ways to undo 
them. 
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Cherry: They are not operations but they are fractions. What undoes the square 
root? 

 

Cherry wrote the square root sign on the chalkboard 

√x → x1/2 →  and squaring → x2 

 

Learners: Power of two. 
Cherry: Power of two. Square root.  OK. And also if something is squared then to 

undo it you square root it. Can you think of anything else? Think in terms of 
fractions? 

Learner: Miss a cube root. 

 →  x1/3  →  and cubing.→ x3 

Cherry:  A cube root and cubing something those are inverses. (Pause) This is 
related to this one and just think in terms of fractions I want to give one with x in 
the denominator, I can times. I am not showing the right hand side but to keep 
the balance, but to keep the balance I am just saying in the denominator 
because after all this means divide by x   and divide and multiply and then we 
can do a cancelling. Do you remember when we started with equations we 
went a long way. This where we started I think in grade 8 and we said if we 
have an equation it’s alright. 

Cherry wrote this on the chalkboard: y - 3 = x and asked: 
Cherry: What was our procedure? 
Learners: We added 3 to both sides 
Cherry: So in fact we were using inverse operations, we had a minus and we did an 

inverse to it by adding the same amount because we knew that plus 3 and 
minus 3 we make nought. And we will left with y by itself. But there was the 
idea of balance. So we used our inverse operations here, added a 3 .. But we 
had to keep them balanced so if we are doing something to this side we must 
do exactly the same as to that side so we had to, add a 3 here as well. That’s 
where we started originally. Then as we went on we said this is a pain having to 
do this every time, so let us just take it over right and this is where our idea of 
when it goes over the equal sign instead of being a minus 3 if we are going to 
take it over its going to change sign and become a plus three. But the fact that 
it becomes a plus 3 it’s not just coincidental it’s because we had a minus 3 that 
we wanted to get rid of so we had to plus 3 so we had to plus three there as 
well. But eventually we got quite good at this part and if we had y-3 = x we just 
said take it over. 

Learner: Uuh 

 

This is what was written on the chalkboard as the teacher said the above. 

y – 3 = x 
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+3      +3 

y = x + 3 

y – 3 = x 

y = x + 3 

 

Cherry: and we said but change the sign. But it’s actually because we were applying 
inverse operations here now we must we can still, we must still just use this 
quick method. I just realised that what we have done in our heads is apply an 
inverse operations to make y the subject. Any questions before we go on with 
those basic, basic concepts. Ya? 

Learner: Can’t we just.... 
Cherry: Can’t we what? 
Learner: Can’t we .... (I could not catch the question but the teacher did for she 

responded) 
Cherry: Of course it is possible just because the letters. They behave in exactly the 

same way. So give me an example Lee. 
Lee:   2y +3x = 6 

 

Inviting learners to make up their own examples to be worked out on the chalkboard 

seemed to empower learners to own their learning. It can also be an indicator of how 

much they understand. Giving appropriate equation appears to show that the 

structure had become familiar and the learner is capable of converting from one 

register to the other. Cherry identified closely with the constructivist paradigm by 

giving the learners the opportunity to choose and make up their own problems to 

solve. This gave the learners ownership of their own learning. 

 

Cherry: So alright now pick what you want to make the subject. 
Learners: x 
Cherry: You want to make x the subject. Do you want to use the long or the short 

method? 
Learners: The long method. 
Cherry: We want to end up with x. There is a whole lot of things we must think about, 

we don’t want you, we don’t want you, and we don’t want you. There is whole 
series of things we have to do. We need to, we can do step by step, but as we 
get used to it we can do it all in one step. Now you can start anywhere but my 
instinct tells is I am going to look at this one first why? Because it’s easier to do 
addition and subtraction inverses. 
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The bell for the end of the first period 

 

To get rid of the 2y on this side  

              -2y +2y +3x = -2y + 6 

       3x = -2y + 6 

But consider the whole balance. If I am going to make this a divide by 3 then 
what I do to one thing I must to everything then I end up with a fraction here 
which I can move later that’s no problem.  

   +3x/3 = (-2y + 6)/3 

x = (-2y + 6)/3 

x = -2y/3 + 2 

Cherry: But Its often easier just as a strategy if you have plus and minus something 
to remove that first before you start 

 

When Cherry asked the learners which method they preferred, short method or the 

long method, I found it strange that they unanimously chose the long method. But 

then both the methods were used to solve the same problem. 

 

Cherry: This is the problem for now. Now if we do it the long way, this is a plus as 
there is nothing in front of it, its plus its plus There is, the inverse of adding 2y is 
subtracting 2y  And if I do it here using the idea of balance I must do it there.  

 

Learners were given a minute of working  

 

Cherry: Alright this is an implied plus So if I want to remove this one I must take 
away 2y because that will make it equal to zero but because it was in balance I 
am not allowed to upset the balance l must take away a 2y here as well. So 
now I am happy because I have got this one and could rewrite it. But I still want 
to get rid of the 3. This is a 3 times x. The reciprocal of the three times is to 
divide by three. If I do that here, that makes me very happy, because 3 divided 
by 3 gives me x. But if I am going to divide by 3 there I must divide everything, 
everything by three... as well. But is there a difference if I do that or that? 

Learners: yes, no, no. 
Cherry: Which one would be better? 
The learners were not in agreement on which one was better. 
Learners: This one? the other one? 
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When learners struggle to come to grips with new knowledge, a state of 

disequilibrium presents itself. According to Piaget (1970), knowledge is built during 

the process of disequilibrium where individuals internally experience cognitive 

conflict when confronted with new information. During the disequilibrium, prior 

knowledge cannot explain new experiences. Therefore, through accommodating new 

knowledge and assimilating it with the prior knowledge, individuals form internal 

structures of knowledge unique to them (Piaget, 1970). 

 

In the mathematics classroom, teacher and students continually use each other’s' 

contributions to resolve disequilibrium and develop individual knowledge. However, 

during the process of negotiating and sharing with a knowledgeable teacher, 

students come to understand the mathematical meanings of the wider society, taken-

as-shared-meanings (Cobb et al., 1991). 

 

Cherry: You see, now I aah... way this way in a way is a short cut because I said 
what I do to one side I must do to the other side. So in fact if I want to apply my 
own words strictly I must do to this side... and it has a common denominator 
then I can strictly say.... 

(-2y + 6)/3 which is x = -2y/3 + 2 

So if I had chosen not to do it this way and said well I know it’s just easier to get 
rid of this one first. It should not matter right. It shouldn’t matter what I do first. 
So let’s try it  

2y +3x = 6 

And we still want to make x the subject. We want to get rid of y on this side. 
What if I did this, I divided the whole of the left hand side by three and the 
whole right hand side by three? Well can I do this:  She was cancelling. 

(2y +3x)/3 = 6/3      going to    x = 2y/3 +2 

Learners: No-o. No-o , miss you also have to divide the 2... (There were many 
voices). 

Cherry: I can’t just do that... 
Learners: Because of the plus sign  
Cherry: Because of the plus sign. But I can do this, I can split them into two terms 

and say that’s 2y/3 plus 3x/3. And then based on that... and that one and here I 
have a two. Alright, now I still move this one to make x the subject. And then it 
just changes sign it goes over to the other side and I am still left with:  

x = -2y/3 + 2 

which is exactly the same.  

Learner: So that our final answer? She was referring to:     x = -2y/3 + 2 
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Cherry:  Ya.  
Learners: Ooh, uuh. (Inaudible) 
Cherry: Alright. So we can do it and we should do it step by step, extremely careful, 

all the time say to myself how can get rid of this, how can I undo this? And do it 
step by step. Once you are very confident in this you can do it in one step. 
Then you can go straight… and do it in one step.  But until then you need to 
work very careful, very self... 

 

Cherry quickly divided the chalkboard into ten slots and then announced the class 

work as Exercise 8.7. 

 

Cherry: Now the ones that I am going to give you they have very few actual 
constants its variables aah and the way we are going to do them is. We are all 
going to do all of them at the end of the day but for now I am going to give you 
one each. The first ten are going come up and put them on, on the board do it 
first Ok, come put it on the board  and then we all agree. And then there is 7 
that I am going to choose after this.  

Learner: Miss are you giving us all... worksheets? 
Cherry: I did make millions. I have made enough for the whole school. Aah alright 

exercise 8.7. Change the subject of each of the following formulae equations as 
indicated. The first one for example says: 

A = lb 
And it wants you to make b the subject.  

 

The papers were distributed by the teacher as she gave instructions.  But when the 

exercise was about to begin some learners had different worksheets. The teacher 

apologised and handed them the correct ones and confirmed with the learners that 

they had the one with exercise 8.7. The teacher read out the first two questions the 

problems were all composite of letters with no numerals involved. 

 

Cherry: We are not working with numbers so that frees us to just work with inverse 
operations without making mistakes of six divided by three when you tell me it’s 
9. You just work with variables. The first one is very easy. 

 

During the allocation of questions the teacher jumped some learners who 

immediately alerted her that she had jumped them. She told them that she wanted to 

jump some and continued until the first ten were given out and then she attended to 

the remaining seven. 
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Cherry: While they are doing this, Lee two d, e,...( and so the remaining seven were 
allocated their individual questions as well)  

Cherry: Right, now the ones who are doing number two, those are slightly more 
complicated. So those are going to do one by one and you are going to explain 
to the class. The first ones a to j do it, and make sure you are right and then 
come put it on the board. As soon as  you are ready order makes no 
difference Step by step slowly thoughtfully... thinking what you are doing and 
why you are doing it. 

 

The learners worked on their problems in complete silence for almost two minutes 

while the teacher was examining their work without commenting. The silence was 

broken as learners discovered parts of their working that needed clarification. As the 

teacher was going round learners could ask her to help, but it seemed she did not 

offer ready-made answers for all; I heard her say a couple of times “You tell me.” 

She did entertain one who wanted to: ‘... get rid of the power of five’ where she 

responded as follows: 

 

Cherry: Ok you take the fifth root. But your exponent rule says if you got x to the 
power n, right, and you want to get rid of power n, you just take it to the nth 
power that’s why square root two means... 

Learner: x to the power half.  
Cherry: What do you want to make the subject? 
Learner: It was x to the power n+1, 
Cherry: I am ok with that. Come ladies come ladies come put it on. But if you are not 

sure bring it. Bring it. What do you want to make the subject what’s the inverse 
of divide by three.  Now do it step by step, this is making it more complicated 
than I wanted. To get rid of this and this you only need one step, try it, 
sometimes there are a number of steps, remember to multiply by 12 here, how 
about, lots of step by step. Ladies, as you are working, start looking I am not 
saying they are correct, but they are up there for your consideration and 
evaluation we are not saying they are correct. Question them if you say no I do 
not agree with you. You can’t do this because these are not the answers these 
are their suggested workings. 

Learner: Ah Jesus Christ (sighing) 
The bell rang to mark the end of the school day and the teacher‘s last words were: 
Let’s do the one we did not get as homework, then tomorrow we can do these. 

Thank you so much ladies. 
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This happened towards the end of the lesson because the other activity had taken a 

longer time than expected that is judging from the lesson plan. On the lesson plan 

the teacher had indicated that in question 1 a – j would be done by 10 learners on 

the board with explanation. It was an impromptu decision on the part of the teacher 

to vary the question, some were easy and others challenging.  

 

The learners did not hesitate to go the chalkboard to attempt their individual 

problems. I took it that this was a practice that they were used to. The learners could 

consult each other, the teacher or any textbook if they needed to do so. There was a 

busy atmosphere and concentration was high. As it was the last lesson of the day, 

the learners were told that they would continue with finishing off the individual 

working and discussion of the solutions the following day. The learners were to finish 

their preparations for the presentations to be held on the following day, as part of 

their homework. 

 

On the following day the learners immediately went to the chalkboard to complete 

their solutions. I gathered from the teacher that early that morning some learners had 

approached her to discuss their solutions with her. When the proposed solutions for 

the first ten items, that is, number one, a – j, were completed the teacher gave the 

learners time to look over the solutions individually and in silence. They were to note 

down anything that they picked up that would need clarification or correction. After 

that each learner was asked to present a verbal explanation of their solution, this 

encouraged them to think aloud. This activity took most of the double period lesson. 

They managed to complete all the questions. The interaction between the learners 

was very lively and positive. The teacher sat at the back and provided minimum 

direction and correction mainly in terminology or language used rather that in actual 

manipulation of the equations. 

  

The activity described above gave the learners the opportunity to question each 

other’s solution. Learners were given the opportunity to showcase their knowledge in 

front of their peers and educator. They all participated, but not in a competitive way. 

This exposed them to positive as well as negative criticism of the methods, thus 

giving them the chance to correct them, reconsider some of their own assumptions 

and have a chance to refine them if need be. 
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As a strategy of teaching the activity described above gave the learners the 

opportunity to display their knowledge and they could get immediate feedback from 

both their peers and teacher. Feedback encourages the learner to take control of 

their learning and also to organise their thinking appropriately. This kind of exposure 

trains them to be more open to criticisms and also gives them the chance to 

contribute in a positive way to the learning of others through their comments and 

other ways of communication made available by such a setting. This is in line with 

the expectations of the Department of Education which expects active participation 

and contribution from all learners during the learning process.  

 

 
4.3.5 Comments on Cherry’s teaching 

 

To provide opportunities to learn, Cherry emphasized concepts and different 

registers of representation of algebraic concepts. She was aware of the necessity of 

using more than one register in presenting concepts. The syllabus encourages the 

use of different representations of concepts to the learners. The availability of 

multiple representations allows for new perspectives on a concept and so gives 

learners an opportunity to learn. 

  

Cherry’s teaching was focused on the process of thinking about connections 

between concepts and procedures. The lesson presented above is testimony to this 

where she went through the important definitions and procedures of changing the 

subject of formula with the learners. She gave learners a chance to contextualise 

their mathematics. During her introductions she gave the learners examples that 

related to their environment. Her learners recorded their work early in the lesson and 

throughout. She was very concerned that they learn to think for themselves and be 

able to articulate their thinking. In the first two minutes of the lesson she already 

directed learners to record: 

Now let’s just revise, and... in your book... just write down a few key concepts 
that we use. 
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Writing down key concepts is conversion because the learners have to think about 

them and write them down. The learners have to change the register to 

communicate what they think. Cherry provided learners with opportunities to connect 

with the past so they could build new knowledge with the support of what they 

already knew. This is in line with the constructivist view of learning which state that it 

is necessary for the learners to build their knowledge on what they already know.  

 

In an effort to help learners practice what they learnt, Cherry gave them the 

opportunity to display their efforts in front of their peers. She actively involved the 

learners in the learning process. She chose experiences that contributed to the 

achievement these goals. For example, during one of the lessons Cherry divided the 

chalkboard into ten sections and allocated the problems from the worksheet to ten 

different learners. She allocated the problems according to the capabilities of the 

learners. This was what she told me when I asked her after the lesson what criteria 

she had using in allocating the problems. The learners did not hesitate to go to the 

chalkboard to attempt their assigned problem. As they worked, the learners could 

consult each other, the teacher or any textbook if they needed to do so. There was a 

busy atmosphere and the level of concentration was good.  

 

The above activity gave the learners a chance to examine and justify their solutions. 

When I saw ten learners going to the chalkboard I thought there was going to be 

chaos. I was proved wrong for the learners worked in an orderly way. I observed a 

number of them stand back and analyse their own work and make corrections before 

they sat down to look at their peer’s efforts. There was a busy atmosphere and the 

teacher took a back seat though she could be consulted she encouraged the 

learners to help each other. This is in line with the social constructivist theory which 

claims that peer interactions stimulate student reflection about ideas that other 

students present.  

 

By this exercise Cherry gave the learners the experiences of controlling their own 

learning and also enhanced their social skills of working together in a limited space 

and sharing resources. Piaget (1970) claimed that peer interactions stimulate 

student reflection about ideas that other students present. Explaining their solutions 

helps learners internalise the ideas for they have to make what they have worked out 
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intelligible to others. This gives them a great opportunity to revise the thinking and 

thus gain confidence in themselves as mathematics thinkers. Learners construct 

knowledge if they are actively involved in solving problems that they understand and 

want to solve (Vygotsky, 1978). Through social interaction, learners learn to interpret 

other’s perspectives and fit them with their own interpretations. Learners learn to 

respect each other’s ideas as well as their own. 

 

Curriculum 2005 focuses on fostering learning that encompasses a culture of human 

rights and sensitivity to the values of reconciliation and nation building. Clearly the 

activity gave the learners the opportunity to receive and give assistance in an 

atmosphere that encourages tolerance and the building of each other’s confidence, 

not only their own. It also gives them confidence in their own abilities to perform and 

contribute in an environment conducive to learning. The environment was designed 

to support and challenge the learners’ thinking in a more direct way. In this situation 

mutual understanding is motivated and willingness to share without fear of 

judgement is also encouraged, at the same time the learners become resources for 

one another. 

 

Cherry clearly attempts to adhere to Duval’s (1995) recommendation that there is a 

need for more than one register of representation. She used many forms of 

representations in this particular lesson. She used voice, spoken and written 

language, and visual presentations. The learners had a chance to make mental 

representations by thinking about the problem and then put the mathematical 

representation on the chalkboard. They then used the mathematical representation 

to explain to their class mates how they solved the problem. All these: voice, 

language, written language and mathematical registers, gave the learners the 

opportunity to construct knowledge. The teacher made it possible for the learners to 

experience working in several registers. This is the important role of the teacher. The 

teacher provides the context for learning to happen. 

 

Cherry’s learners are equipped by their experience of making a move between 

representations in order to construct their own knowledge and representation. When 

they learn, the learners change the representation. If the representation makes 

sense to them they can change and use it in another similar context. When learners 
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are solving problems, this is known as treatment (Duval, 1995). While they are 

talking with each other, they are in the same register or they are solving problems 

which are also in the same register. 

 

Cherry provided her learners with opportunities to understand that mathematics is 

about making sense of things. She guided their learning experiences in such a way 

that learners could actively construct correct mathematical meanings. For example in 

the lesson above she used promptings like ‘Be more specific,” “Add a bit more,” 

“Does it mean then?” and ‘How does that sound?” This gives the learners the 

opportunity to reflect upon their own thinking and if necessary to adjust and reform.  

 

Cherry is flexible in her organisation of work and she adjusts her teaching to the 

learner’s needs. She is not in a hurry and so gives her learners time to think over 

what they are doing and thus provide them with the opportunity to sort a concept out 

in their minds. Because she is flexible, she was able to adjust her timetable when I 

could not make it to observe her lesson. This meant that I did not skip a day of 

observation. 

 

In Cherry’s class, learners do not sit passively and watch the teacher perform actions 

to solve the problems. Instead they solve the problems themselves. According to the 

constructivist view of learning, based on Piaget's theory of assimilation and 

accommodation, learners must experience the concepts in order to build 

understanding. During the lesson Cherry walks around the room monitoring learner's 

work and gives assistance when it is required. She encourages the learners to 

compare their solutions with their neighbours. She gives the learners confidence by 

entrusting them with authority, saying “Work something between the two of you.” 

Cherry believes that if learners select and use appropriate problem solving strategies 

together, they will learn to reason mathematically. Her comments are positive and 

affirming, for example if a learner gives a good answer she acknowledges this with 

words like “a brilliant idea” and “very good.” 

 

There were three learners in the class who were new to the school. Among the three 

was one who got particular attention from the teacher. Cherry nearly always went to 

the learner’s desk to assist or just to look at the learner’s work. The learner was 
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challenged by the work she had to do and was still trying to settle into Mt Carmel. 

Cherry follows her progress very closely. Though the learner is behind in the work, 

Cherry is providing her with the necessary support for her to catch up. She asks the 

learner to explain what she is doing and how she is solving the given problems. She 

guides learners on an individual basis to develop confidence and understanding of 

mathematic concepts and procedures. She talks to her learners in a non-threatening 

manner so that they are open to her and do not hesitate to seek her assistance when 

they feel they need it. She asks them to explain and justify their answers.  

 

Cherry wants her learners to think mathematically and see the whole picture; how 

mathematical concepts can be thought of in different contexts. 

 

Cherry observes her learners solve problems and listens to their strategies so that 

she can obtain information about their prior conceptual understanding. She then 

builds her instruction upon the learner's prior conceptual knowledge. She uses word 

problems to help learners form equations. She uses problems the learners can 

identify with. On the day that she taught about simultaneous equation she used 

examples that required learners read, identify variables, form linear equations, and 

solve and apply the derived solutions to answer related questions. One typical 

example of problems given to learners is reproduced below: 

 

9. A maths test contains multiple choice questions worth 2 marks each and short 
questions worth 3 marks each. The test is out of 50 marks and there are 22 
questions. 

a) Define two variables. 
b) Set up two linear equations. 
c) Solve the two equations simultaneously to determine the number of 

multiple choice questions; 
d) If the test was 1 hour long, how much of your time would you allocate 

to answering the short questions? 
 

The above example depicts a process that leads the learners from formation, to 

treatment through to conversion and hence to the construction of the desired 

concepts. 

  

Cherry guides lessons in such a way that the learners learn procedures in a 

conceptual context, such as in the example above and many others like it. Cherry 
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provides opportunities for learners to learn to extend knowledge into new situations. 

She provides them with the opportunities to construct mathematical concepts for 

themselves. 

 

4.4 Case 3 

 

4.4.1 St Anne Catholic High School 
 

This section of the report describes the pilot study which I carried out at St Anne 

Catholic High School. St Anne is an all-girls inner city school where I observed seven 

periods of mathematics (algebra) teaching and learning. Byrne (2001) says that 

performing a pilot study is always a good idea regardless of which method is used, 

for it provides the researcher with experiential logistics from actual procedural 

implementation. The pilot study provided me with the necessary experience and 

training in observing learning and teaching in the capacity of a researcher as I 

needed to adjust to this new role.  Through it I identified possible problems likely to 

be encountered when collecting data such as missing opportunities to record 

important incidents because of technical interruptions, intentional or accidental. In 

the end I was taking two recording devices just in case one of them failed me. 

However, though initially I had not intended the pilot study to be used as a case, I 

decided to present it as one because I learnt a lot from it. The pilot study helped me 

to plan my time well. 

 

4.4.2 The teacher: Ann 

 

Ann is one of two grade ten mathematics educators at St Anne. She holds a 

Bachelor Degree in Science specialising in Mathematics and Applied Mathematics 

and a Higher Educational Diploma. She also did many other subjects for non-degree 

purposes, such as Accounting 1 and 2, Business Law 1 and 2, Economics 1 and 2, 

Psychology 1, 2, and 3, four basic Psychology honours subjects and Operational 

research. She did all these courses to develop herself as a person, not necessarily 

because she is a teacher. Ann has taught for twenty seven years, twenty of them at 

a tertiary institution and the last seven at St Anne. Besides grade ten, Ann also 
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teaches grade eleven and twelve mathematics. She does not teach any other 

subjects. 

 

Ann’s mathematics classroom is on the first floor of a three story building. The 

building is over hundred years old. The adjacent classrooms are also mathematics 

classrooms of the other mathematics teachers. As you enter her classroom you face 

the teacher’s table situated opposite the door. The chalkboard is slightly to the left of 

the teacher’s table. There are charts on the other three walls, most of them of the 

demonstration type. The learners sit in rows and columns of two desks in each 

column. 

 

Movement from one lesson to the other is determined by a siren bell. Learners and 

teachers are expected to be settled into the next lesson within five minutes. 

Teachers normally stay in their classroom while the learners move around. As soon 

as the bell rang I made my way to the classroom. Ann was in the classroom and she 

welcomed me and a student teacher who was also observing the lesson for other 

purposes. The grade ten learners filed busily into the classroom and settled down as 

they took their seats. The teacher greeted the learners who responded likewise.  

After a brief explanation of my presence in the classroom (this was because the 

learners already knew me as I am a teacher at the same school), I was asked where 

I would like to sit and I chose to sit at the back where I could have a good view of the 

whole class without being in anybody’s way.  

 

The learners were all present for the lesson. The lesson consisted of two thirty-

minute periods following on from each other. All mathematics lessons at St Anne, 

except for one per week are double periods. Appendix 5 gives an illustration of the 

classroom and the sitting arrangements in the classroom. 

 

4.4.3 The first Lesson: Generalising from number patterns 

 

This was the first lesson that I observed. I have chosen to report on it because I 

wanted to understand how algebra is introduced to grade ten learners. I had asked 

Ann to invite me at such a stage when she would be introducing grade ten algebra. 

Below I describe the whole lesson in detail. At the end, I comment on Ann’s teaching 
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in relation to the OTL algebra in her classroom. After observing the lesson I had a 

formal interview with her where she said the following about the teaching of algebra 

to grade ten: 

... to teach from the concrete to the abstract because if you just teach from the 
abstract then you lose them. Like when you attended my class remember when 
we did the number patterns you know that would be concrete. You don’t have 
any algebraic symbols. They see it by means of trial and error. They must see a 
pattern but that pattern can be converted to symbols. 

 

I was still setting up my voice recorder when communication commenced between 

the teacher and learners and so the first minute was not recorded. The teacher then 

called the attention of the learners to the lesson at hand: 

 

Ok. Let me just get this on the board as fast as we can... 

 

The learners continued to talk to each other while the teacher was writing the 

following on the chalkboard. 

 =1  =  

  =  

      =  

  =   

Ann: Ok now they want to know...  shhh... the next quotient of the factors. Now can 
you see what is happening? (Pointing to the work on the chalkboard) 

Learner: Yes 
Ann:  We are adding natural numbers? 
Learners: Yes 
Ann: Now this one we have already added up to five so the next one will add up to? 
Ann together with the learners:  Up to six.  

And she wrote the following as she spoke and continued: 
 



138 
 

  =  

 

Ann: And what is happening to the denominators? We are dividing by a number that
  is one more than the last number there. Do you agree? 

Learners: Yes 
Ann: If we end at three we divided by four. 
Together: By four 

 

When I say ‘together’ I mean that the teacher and learners spoke at the same time. 

This happened mostly when the question required the learners to complete a 

statement started by the teacher. The learners would anticipate the question and 

supply the missing word(s) simultaneously with the teacher. 

 

Ann: If we stop at four we will divide by five 
Learners: By five stop at five  
Ann: .And this one if we stop at six we will divide by? 
Learners: seven 
Ann:  Ok. Now they say write down the value of? (Short pause). 
 

Learners buzzed. It seemed that if the teacher paused the learners immediately 

talked/discussed with their neighbours without waiting to be told to do so. They 

talked and looked into each other’s work. The teacher’s pausing gave them an 

opportunity to consider the next move. During the above mentioned pause I heard 

one of the learners sitting near me saying to her neighbour ‘Is it not one  n is it a 

number?’ 

 

Then the teacher gave the learners some information on what was required:  

 

Ann: Ok. Now what they want you to do is not to work it out on your calculators, you 
must find a pattern on the right hand side which gives you the value. Ok. Now 
let’s see if we added up to three we divided by 3 over 2. 

  =  
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 If we added up to four we divided by the last one over 2.  

      =  

 

If we added up to five we divided by the last term over 2.  If we continue the 
pattern it will be last term over 2 which is four. You must not work it out on your 
calculator. Ya. You must work it according to the pattern. 

One learner: Yes 
Ann: Ok. So now write down the value of? 
She spoke the figure as she was writing them down and continued: 

=   = 10 

Ann: Now according to the pattern on the right hand side it will be last term over 2. 

 

At that point there was a disturbance because one learner had a very loud hiccup, to 

which the teacher reacted thus: 

 

Ann: Mary! You must say excuse me. Ok. 
Another learner: Excuuuse meee. 

This remark triggered some giggling from other learners and the teacher continued 
without commenting further on the matter. 

Ann: Ok. Now write down a conclusion from these examples. It’s basically what I told 
you now ne? 

Learners: Yyes 

As the learners were busy writing in their book Ann went on to say: 

And that is... We are not looking for the formula yet. That’s number six. 
Conjecture. We want it in words. (Pause) Now tell me in words what we have 
done. What is all this? If we have a question of the sum of the natural 
numbers.... (Pause). 

 

When the teacher paused the learners consulted each other and were presumably 

trying to write down the conjecture but they did not offer any of their formulation until 

the teacher gave it to them in the following words: 

 

If we have a question of the sum of the natural numbers, say up to n. We will 
and we divide by the next one which is n+1. 
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Learners: n+1. 
Ann: Then what will that sum be? (Writing) It will be n/2. Do you agree? If we add the 

sum of natural numbers up to a certain number which may or may not be n. If 
we divide that by the next natural number which is n+1 then that quotient will be 
n over 2. Last natural number over 2. That’s what we see here, can you see? 

Learners: Yes (Very low) 
Ann:  If we add up to 4 and we divide by the next one, what do we get? Last one 

over two. 

 

Ann repeated the same information in other words while pointing to the examples on 

the chalkboard. It seemed that she was concerned about pointing out the pattern to 

the learners and asking them if they agreed as if there was a chance for the learners 

to say no. She was pointing out the obvious, maybe in the hope that the learners 

would follow the pattern visually and then commit it to memory. Then the following 

exchange between the teacher and one of the learners took place. 

 

Learner: Mam isn’t 1a just 3 over 3? 
Ann: What? 
Learner: Why did you write 2 over 2 for 1a?”  
Ann: It is to show you that it’s the same pattern, elsewhere does 1 go in?   
Learner: But I mean why didn’t you just write 3 over 3? 
Ann: Because it is not 3 over 2, 3 over3 it’s 3 over 2,    Why? Because if we look at 

this whole pattern. What is the pattern? It is the last one over 2, it’s the last one 
over two, it’s the last one over two that’s why there is two over two because my 
last one is two. It is just to illustrate the pattern. If we write 1 then you can’t see 
what the pattern is. (Pointing to examples on the chalkboard) 

Learner: Ohh (Like expressing sudden insight but she continued to mutter something 
for the benefit of her neighbour. It was not loud enough for me to catch.)  

 

It appears that the learner was asking in terms of equivalent fractions and could not 

understand why the teacher used   =1 =  instead of     =1 =   which seemed 

logical to her. The teacher’s focus was on establishing the pattern but the learner 

was not following the teacher’s line of argument which did not make sense to her at 

that moment. However the teacher continued to explain: 

 

Ann: For that one. (Pointing to ) Likewise if you just wrote the 2 then you would not 
have noticed the pattern. Ok. (Pause) So for conjecture we write in words. Now 



141 
 

the general term. (Pause) The formula. One plus two plus three plus... wara 
wara up to n. So what must we divide? Mary? 

Mary: n+1 (There were other voices too) 
Ann: n+1. The next natural number. And then according to the pattern on the right 

hand side, what will that be? Last natural number over two. And she wrote: 

  on the chalkboard  

 

  =  

 

Ann: The last one over 2, the last  one..., not the next, not five, oho  I see when you... 
Learners: ... Add to 1... make it easier 4. 

 

In this segment, it seems like the teacher wanted the learners to move from a 

fractional number pattern to its general term.  Her approach was to describe the 

numerator as a pattern on its own paying attention to the last term and then the 

denominator was the next number. The learners’ responses were mixed in that many 

of the learners did not seem to be following what the teachers was doing or 

explaining. Though the learners had the examples showing the same pattern using a 

numerical end point such as 3 or 4 they were finding it difficult to cope with n and 

n+1. As a result many of the learners were talking at the same time. It seemed this 

part was causing some problems for them. Ann did say during one interview that she 

likes to challenge learners. These are her words: 

 

I think you must challenge. Don’t just teach what they give you, what is 
prescribed, you know. Challenge them; I give them a lot of difficult work sheets 
and encourage lateral thinking.  

 

At the same time Ann said that work should not be too difficult for the learners. She 

expressed this when she said: 

 

You must not throw them with things that overwhelm them because that leads 
to... Immediately they believe they can’t do maths and you have lost the other 
half you know. You mustn’t. It must all be gradually, gradually. 
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In line with the above view Ann gave the answer herself maybe because the learners 

seemed to be struggling and she did not want to overwhelm them. 

 

Ann:  Ok that is a recursive number pattern, let me just see how we can write it. Aah 
Tn+1 would be up to n plus one over n plus 2 and that will be (n+1)/2: 

 

T(n+1)= =  

Tn+1 would be that. What if n+1 means it’s the next term?  You have written 
yours in terms of... How do you get the next one? 

Learner: No Mam... 

 

Despite the help given in the form of the above explanation, some learners still 

seemed to be struggling with the idea of the general term. They were finding it 

difficult to convert from the numerical register of representation to the symbolic. 

Duval (1995, 1999) claims that for effective construction of new knowledge it is 

necessary that the idea be expressed in more than one register of representation. 

Ann implied the same thing when she said the following describing how the learners 

should learn algebra: 

 

They must see a pattern but that pattern can be converted to symbols. first in 
verbal then eventually in algebraic symbols. 

 

Without instruction from the teacher the learners were engaged in what appeared to 

be pair work. They appeared busy and concentrating until the teacher called for their 

attention: 

 

Ann: Right. So we look at the next? Long pause, then she announced the question 

number and page. The learners continued to communicate with each other in low 

tones while opening their textbooks to find the exercise. 

 

Ann: They say in the first question continue the pattern three more times. Now what 
do we see? First all what..?  We increase the first one that we square by 1 and 
then we square it by one. So what will the next one be?  So what will it be?  It 
will be?  5 squared minus the previous one squared. And so what will that sum 
be? 4 plus 5 
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Learners: 4 plus five 
Ann: Interesting number pattern Ne? 
Learners: Yes 
Ann: Then six squared minus 5 squared is equal to. 
Learners: 6 +5 and the next one? 
Together: 7 squared minus 6 squared equal to 7 +6. 
Learners: Yes 

 

While saying the above the teacher was writing on the chalkboard as laid down 

below: 

12- 02 = 0 + 1 

22- 12 = 1 + 2 

Up to 

62- 52 = 5 + 6 

 

Ann:  So the difference between these two squares is the sum of these two numbers 
that we square. Ok And this one to make it more complete. You agree? This is 
actually what that was. To complete the pattern one pattern. (She was pointing 
to the pattern on the chalkboard.) 

 

Ann was interpreting the pattern for the learners and supplying them with the specific 

vocabulary and asking them whether they agreed with what she was writing when in 

fact they could not say no. She continued to show them as indicated below: 

 

Ann: Now let me show you one. Now they say prove that the pattern is true. Now this 
you must do you must work out the left hand side. Is equal to... 2 squared let 
me show you one. 2 square minus 1 that gives me  4-1 and that is  3. So the 
right hand side is 1+2 which is 3. So you can see that it is true for that one 

Learners: Yes 
Ann: So the next one... So the left hand side we say 9 minus 4 which is five. And the 

right hand side is equal to 2+ 3 which is 5. And that you must do for all. For this 
whole pattern. 

Learner: What’s that? (To a neighbour) 
Ann: Now whenever you must prove something you know you are only grade ten for 

the first time. Hopefully, aah so... (Ann broke into a little laugh). 
Three girls giggled and the teacher went on: 
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Ann: You are only in grade ten and you have not done these sums before prove, 
identity and all that. So whenever you have to prove one thing one equal to 
another. We cannot start with an equation like this and get a three here and get 
a three there ah ah. Whenever we have to prove something we say left hand 
side and you work on the left hand side only then right hand side you work with 
the equal to right hand side only. Whenever you have to prove something. Ok 

 

The way she spoke sounded like she was warning them to expect more difficult work 

to come their way henceforth. The learners spend about 20 seconds talking in low 

tones and the teacher called their attention to the next problem: 

 

Ann: Ok now they say number three use the number patterns to complete the 
following. (Pause) 

Ann: So what will that be 8+9 
Learners: 8+9 
Ann: And the next one 13 squared minus 12 squared 
Learners: 12 + 13  
Ann: Now have you thought why this is true? 
Learner: No-o 
Ann: Did anybody come across a reason. It’s because it’s a, it’s an interesting result 

ne? A result that we did not expect. Have you thought? 
Learner: No no (low voice) 
Ann: And could anybody come across why this is true? 
Learner: It’s the law  
Ann: Also so is food, but it must have a reason. Now think back grade 9 No offence. 

You agree this is the difference between two squares so which is so would you 
agree with me. (Pause) 

 

She said this while writing and one learner said yes very loudly before Ann could 

finish her question. Other learners seemed to disapprove of her response but the 

teacher continued without commenting: 

 

Ann: Do you agree that I could factorise the difference of two squares? Yes. 
Learners: Yes 
Ann: And because these are consecutive numbers do you agree? 
Learners: Yes 
Ann: Do you remember what consecutive means? 
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Some learners said no and others said yes and the teacher continued. 
Ann: The one follows the other. 
Learners: Yes, the one follows the other. 
Ann: The next one, if it’s 13 the one is 14 and if it’s 14 the next one is 15. Now what 

is the difference between any two consecutive numbers? One 
Learners: One, yes. 
Ann: And can you now see what we are now left with? 
Learner: Definitely. 

 

The above response from a learner seems to suggest that the learner was reacting 

this way to make a point that the teacher was asking something too obvious and 

maybe insulting their intelligence.  

 

Ann: This is what we have there? 
One learner: ooh (exclaimed as if something just became clear to her) 
Ann: This was not part of your question. What is it? 

There was some noisy laughing and the teacher cautioned two learners. 
Ann: Tilde and Mercy. 
Tilde: No Mam... and now you end up proving it. 
Ann: Yes. But you were not supposed to do the proving. But I am just showing you 

why it works like this. 

 

At this point there was a lot of fidgeting, stretching and some yawning. It seemed that 

some learners were struggling to come to grips with the current work. They became 

restless but the teacher continued to explain. 

 

Ann: The difference between 13 and 12 is 1 so it’s one times the bracket and that is 
why it gave the right hand side 13-12 is one. 

Learner: ooh 
Ann: The difference between two consecutive numbers, whole numbers. Let’s start 

from zero. Ok 

 

Some learners continued to talk in the background while the teacher continued: 
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Ann: Investigate this pattern in search of other consecutive numbers. So we now 
know that it does not matter if I say 41 squared minus 40 squared. We now 
know from recognizing the pattern it will be 40+41. 

 

There was a lot of fidgeting and Ann appealed to the learners: 

 

Ann: What do we do with these girls, they are bumming, they are yawning. Keep 
your body functions under control today. 

Learners: ouch uhuh (and laughter) 

 

The above episode seemed to confirm Ann’s approach to dealing with learners: 

 

I think one of the most important things in teaching is rapport. You must have 
rapport, if you don’t have that skill you’ve really lost half the children. You must 
have rapport with the children and then obviously you know more than they do 
hopefully. 

 
Learner: Mam 
Ann: Ok they say experiment so we can take any two consecutive numbers. And we 

will find this. So now the next says formulate a conjecture. That means now that 
explain what you know this in words. It has to make sense in maths all the time. 
Ok would you agree that we could say that the difference between the squares 
of two consecutive whole numbers is equal to the sum of those two numbers?  
Do you agree? 

Learner: I also say this. 
Ann: The difference... Let’s just repeat that. The difference between the sum of. The 

difference between the squares of two consecutive whole numbers is equal to 
the sum of those two numbers.  

Learner: The squares of? 
Ann: The squares of two consecutive whole numbers is equal to the sum. 
Learners: The sum of what Mam? 
One Learner: Of the numbers 
Ann: Of those two numbers 

 

The teacher repeated the above conjecture as she wrote it on the chalkboard for the 

learners to copy into their books. They did so while some were repeating aloud parts 

of the conjecture. The teacher appealed to them to reduce the noise, but the learners 

continued to talk and the teacher proceeded: 
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Ann: Now they say we must try and prove it. shhh shhh  

Learners continued to discuss loudly. 
Ann: Now they say we must try and prove it first. Ok. Shhh Shhh. Ok.  So let’s see 

try and prove now it they say so we must move to the general case which 
would be left hand side first. 

 

Talking continued among the learners. Talking on while the teacher was appealing 

for quiet was probably the learners’ way of voicing the discomfort with the content. 

However, Ann continued to give them more information: 

 

Ann: Do you agree it will be (n+1)2 – n2 ? 
One learner: Yes. 
Ann: It is the bigger. If the one number is n the consecutive one will be n+1. Right, 

and now what do we expect it to be? We expect it to be the sum of those two 
numbers ok. What I want you to do first is expand this bracket (n+1)2 first. 
Remember how we did it last year. Foil.  Except for food does foil ring a bell? 

Learners: Yes  
First, Outer, Inner, and Last was said aloud by the whole class. 
Ann: Good. Foil this  (n+1)2 – n2     out for me.  
 

One learner said she had forgotten how to foil. 

 

The teacher reminded by saying: First, Outer, Inner, and Last  demonstrating with 

her hands. Then the difference between the squares of the numbers was found by 

expanding using the FOIL method as shown below. Lines were used to link terms 

being multiplied: 

 

LHS = (n+1)2 – n2 

 = (n+1)(n+1) – n2 
 = n2 + n+n+ 1 –n2  

Learner: Where does the one come from? 
Ann: It’s one times one. 
Learner: Ooh 
Ann: Now one times one. Which year did you do that exactly? Was it grade 1 or 2? 
Learners: Three 
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Ann: Three! Ok then... 
 = 2n + 1 
RHS = n + n +1 
 = 2n +1  
LHS = RHS 
Ann: Please tell me that you have remembered something from grade 9 
Learner: Yes  

 

The first bell rang to mark the end of the first period. Learners talked to each other 

and could be seen referring to what they had written in their books. Possibly the 

teacher was giving the learners time to rest a little. She then resumed as follows:  

 

Ann: Well, remember what we said ‘any generalisation is good if it makes life easy.’ 

 

The learners continued to talk to each other and the teacher had to appeal to them. 

 

Ann: Come, come, come. Right. I think this is it for number patterns. 
Learners: Yes 
Ann: Why do you say yes? 
Learners: No-o 
Learners: Let’s do maths (Many were talking all at once) 
Ann: Chapter 5 Algebraic expressions (Noisy) Ex 5.3 
Learners: Yes yes. 
Learner: What page? 
Ann: Page 104 in the new book and in the old book page 102. 
Ann: Ok that starts exactly where it says foil it. Right. And hopefully you can still foil 
Learners: Yes and No. 
Ann: Don’t be so naughty. Today you are like grade 9.  
The learners laughed loudly. 
Ann: Ok now. (Pause)  Simplification. Do you recognise that? Would you like to foil it 

or can you do a shorter method. Yes 
Learner: A short method 
Ann: Yes. You can write it as these are the factors of the difference between two 

squares. Not so? 

Learners: So 
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Ann: So we can say remember this. Do you remember the factors of the difference 
between two squares? So what will this be? (first term)2-(last term)2 

(2x-3y)(2x+3y)= 4x2 – 9y2  Sorry I have already squared in my head. You do 
not write down the steps if you can immediately write down the answer. You 
write the answer straight away. Remember, if you had put a foil it would have 
taken three times as long. So if you do not have a line you can foil until you are 
blue in the face and mind you... 

 

The learners talked loudly. 

 

Ann: Ok. Shhh shhh.  OK shhh shhh Ok Do you recognise that product as the factors 
of the difference between two squares. (3a-4b)(3a+4b) 

Learners: Yes Mam. (Loudly) 
Ann: Rose what would it be?  
Rose: Bracket squared... 
Ann: Ok simplify it. 
Rose:(3a-4b)(3a+4b)= 9a2 – 16b2 

 

The FOIL method was used to remind learners of work covered in the previous year 

thus giving the learners an opportunity to connect with work done in the past and to 

prepare for new work. Learners had been given an exercise on simplifying the 

differences of two squares to do as homework. Two of the examples from the 

homework were worked out by the teacher on the chalkboard as shown below.  

 

Ann: Ok. Now we get to the bracket squared. There is also a shorter method. 

 

The teacher wrote (a+b)2 on the chalkboard and said: 

 

Ann: Ok. Now  foil  this (a+b)2    for me first then you tell me what you get 
and then we go to the short path. 

 

Time is given for foiling. 

 

Ann: Foil I said. 

 

Learners worked quietly. 
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Ann: Now. There is one thing you must remember that any binomial squared will give 
you three terms. You will get a trinomial. As an answer. If you end up with two 
terms then you have made a mistake. So a binomial squared let’s foil it out like 
you did for the other problem a-and... What do we get? 

(a+b)2  = (a+b) (a+b) = a2 + ab +ba + b2  [Foiling] 

So These are two like terms  ab +ba Do you agree? 

Learners: Yes 
Ann: So we add them and there we have   a2 + 2ab+ b2  a trinomial if we 

square a binomial. 

 

While the learners were still writing the teacher said to them: 

 

Ann: Right. Now we will look at the short cut because we do not want to foil and foil 
and foil. So if we have a binomial squared. It is first term squared whatever it 
might be. In this case it was only a it could have been 3x or y or whatever plus 
2 times first term times second term plus second term squared... 

 

(Binomial) 2 = (First term) 2 + 2 (first term) x (second term) + (second term) 2  

This is the short method which you already knew.   

 

Two examples of straight forward substitution were worked out on the chalk board. 

By using the above procedure the teacher gave the learners the opportunity to get 

the right answers and hence an opportunity to pass should a similar problem come in 

the examination. If the learner memorises the formula he/she will get the correct 

answer even if they do not understand what is going on. It is common that some 

students have a tendency to use certain algebraic procedures without considering 

why the rules and procedures work. These students focus on the computational 

procedure rather than the conceptual and may get by and proceed to pass 

examinations without having had a real opportunity to learn. 

 

Ann: Binomial squared. Ok.  Now let’s see. Let’s apply the rule. Ooh. We know we 
must get three terms. If you do the easy route you say 3x2 all squared plus y2 
ah ah wrong there must be a middle term.  Right. The whole thing is not to 
write… don’t write it like this now. You are going straight from there to there  

Learner: aah 
Ann: So you are going straight from there to that answer... 



151 
 

Learner: How on earth can you do that? 
Ann:  Do not always resist change. If the whole of south Africa resisted change we 

would not have a democracy now… 
Learner: No. 
Ann: No. Ok. So what do you get? 
Learner: Oh wait 
Ann: Ooh. Dana you are foiling out the long way. I don’t want it. 
Learner: Mam I don’t get it 
Ann: Aah. I don’t want that. 

 

Learners were clearly struggling to come to terms with the shortcut method. There 

was some undertone complaining but the teacher was not deterred by that and so 

she continued to give the format of the answer again, maybe in a bid to win them 

over. 

 

Ann: (First term) 2 + 2 (first term) x (last term) + (last term) 2 . As soon as you are 
used to this way you will not even put this step you will go straight from there to 
there. So:  9x2-6xy+y2 

 

Learners kept discussing the answer, some seemed unsatisfied with the suggested 

way of reaching at the final answer. The teacher appealed to them again: 

 

Ann: Do not always resist change. 
One learner: It’s difficult. 
Ann: Do you think so? I will not deduct marks if you foil.  
Learners:  Yes. 
Ann: But I promise you, you will save a lot of time and apart from that remember 

when we did factorising last year? What did we do? We took out the common 
factor that is the one thing we did and the other one was the difference between 
two squares. Now from this year. Wait a minute. From this year I am going to 
give you a trinomial and I am going to say factorise. So you must work back 
from this to that. Now if you just foil you will not recognise this, if I don’t show 
you this and I show you this only. So if you are not used to this method you will 
not recognise the trinomial. That’s why it’s better to do that. Ya. 

One learner: Very interesting 
Ann: For instance. Now if I write the y there outside the bracket it means times. If it 

makes you feel better you can put a dot there for times. 
Learner: Mam what happens in the exam if I foil because it feels safer? 



152 
 

Ann: If you are going to-o? 
Learner: Foil. 
Ann: Ooh, I will not deduct marks. I won’t penalise you if you foil. But manage but 

remember you have to factorise from a binomial as well. If you can manage 
your processes and reverse processes I am fine. That is this year’s  work.  Ok 
Well please do it.  

 

Ann moved around the classroom as learners attempted the exercises and at the 

same time posed questions while some suggested solutions. They mostly asked 

questions which required the teacher to approve of their working or the final answer, 

such as, “Is this right Mam,” “Am I right so far?” and “Should I continue?” etc.  

 

One learner was called on intercom to report at the office immediately after school..  

 

Ann: Let’s do it. (Encouraging the learners). 
Ann: The negative belongs to the second term remember 

The learners worked quietly until the teacher called their attention: 
Ann: Ok what would that be? If you squared the bracket, you will only end up with 

two terms. It’s the difference between two squares, not so? And can you see if 
you think this is a difference between two squares that would be the factors of 
the difference between two squares. Ok. 

 

Learners discussed for about a minute and then the teacher said: 

 

Ann: Ok see if you can do those. 

 

Work was done quietly and the teacher seemed pleased with the progress she was 

noticing as she moved round the class. 

 

Ann: Ya. You see you are getting there. Where is the first one? This one we will have 
three terms yes. Binomial squared, so binomial will give us three terms so: 

(First term) 2 + 2 (first term) x (last term) + (last term) 2 

9x2-12xy+4y2 and once again you can just write down that. 

Lucy: Mam 
Ann: Yes Lucy 
Learner: Mam how do you get minus 12? 
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Ann: 2 times 3 times is 6 times minus 2 is minus 12 
Learner: Mam do we have to use this for the work that you give us? 
Ann: I want you to practice. You can decide later whether you want to use it or not. 
Learner: But I use...  
Ann: How many times have I said today stop resisting change. You can always after 

a month’s work you can always revert to your old habits but at least for now try 
and do this because it will help you when you get to factorisation of a trinomial. 
At least for now. 

Ann: Do you agree that the next one will be the factors of the difference between two 
squares 

Learners: Yes 
Ann: So that will be:  

  (First term) 2 + 2 (first term) x (second term) + (second term) 2  
Ann: Who got that? 
Ann: Great and wonderful 
Ann: I want you to use it and decide if you   
Ann: How many times have I said to you today not to resist change? 
Ann: Why do you suddenly think that those two must be suddenly the same. a+b is 

not the same as a-b. So we can apply that rule about binomial to this one. 
These rules are only for binomial squared. I don’t see a binomial square there I 
see a product of the binomial. Not the same. 

One Learner: That’s exactly what I thought 
Ann: Ok. Look at this one. Am I too fast? 
Learners: Yes 
Ann: Ok wait I will wait 
Ann: Ya. That will do later. If you get a binomial cubed you will end up with four 

terms. You can actually work it out and find it but there is also a rule for that. 
Ok for now we are only interested in binomial squared. Ok. So the middle term is 

 (First term) 2 + 2 (first term) x (last term) + (last term) 2  

16b4 +8b2 +1 

The learners cheered. 
Ann: Thank heaven for that. (Laughter) 
Learners: Yes, yes, yes. 
Ann: The pen is dropping. The pin is dropping! 
Ann: Ok Homework 
One Learner: Mam let us pray. Let’s pray. 
Ann: It is time to pray, but let me give you homework 
Learners: Aah, aah  Let’s pray first  
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Ann: Go away,  
Learners: Go away, go away. 
Ann: Exercise 5.6, numbers: 10, 11, 12, 13, 16, 17, (Laridon, et al, 2005:105) 
Learners: aah aah 
Ann: 19, These sums are one liner, maybe two liners but not long. Come girls put 

away your books. Rejoice. 

 

Rejoice said the prayer. 

 

The teacher asked the learners sitting near the windows to close them and just then 

the bell rang. The class was dismissed. 

 

 
4.4.4 St Anne High School: Lesson 2 

 

Lesson 2 took place two days after the one described above. Even though I 

observed the previous lesson it was taken by a student and so did not form part of 

my study. I observed it so that I could follow what the learners were covering. All the 

learners were present for the lesson which was a single period. After formal 

greetings the learners settled down and I took my place at the back of the classroom. 

In this lesson besides observing as much as I could of what was going on, I wanted 

to listen especially to the words that the teacher would use as she asked questions 

and gave instructions. I was interested in words that pointed to or suggested learning 

opportunities of any sort. Of course what one sees is no more than one’s perception 

of what is going on in any situation. The words that the teacher uses can reveal the 

opportunities that the learners get to learn. Language plays a major role in all 

mathematical registers. So it is important to pay attention to the words that the 

teacher uses during the lesson. Language is critical to developing understanding. 

 

4.4.5 The lesson 

 

During the lesson the class went over homework problems from the previous day. 

The questions were done one by one with inputs from both the teacher and learners. 
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Part of the discussion process is captured below. The questions to be answered 

were 11, 12, 13, 16 and 17 (Laridon, et al, 2005:105) 

 

To begin the lesson Ann wrote (a-3) and (a+3) on the chalkboard and facing the 

class she invited one learner by name to say what she recognised. 

 

Ann: What do you recognise that as...? What? Come Emma?  
Emma: Mam, they are the factors of the difference between two squares  
Ann: The factors of the difference between two squares. So what should it be? 
Emma:  Aah it is a2  aah minus 9. 
Ann : Good. There was positive cheer from her peers as well and the teacher 

continued. ... and ...you could put in another step if you feel you need it. Right. 
But you will soon get used to just writing that straight away. Number? 

Learners: ...12, 12 There was some talking going on. Pause 

 

Before moving to the next example which was number 12 the learners busied 

themselves trying to figure out what was required. They were consulting with each 

other. Then after a pause the teacher came in with the words: 

 

Ann: And again Kelly do you recognise that as the factors of the difference between 
two squares? So what should the product be Kelly? She was pointing to: 

(2x –y)(2x +y) which she had written on the chalkboard.  

 

Kelly did not give the answer, she appeared to be thinking deeply. The teacher then 

gave the answer herself writing it down as: 4x2 –  y2   while saying:  

(first one) 2 - (second one) 2 (for emphasis). And continued: 

 

Right. Everybody ok so far?  

Learners: Yes 
Ann: Good. Rose I see you have a little sister now in grade 9....The shared 

information was well received with laughter from the learners.  
Ann: number 13 (Pause) 
The teacher wrote: (3x2 –y) 2 on the chalkboard and asked: 
Ann: Ok so what would that be Jane? 

There was an attempt to answer but it was inaudible. 
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Ann: This would be? This is. I just want you to tell me in words. 

Jane: ooh 
Ann: It’s a binomial? 
Learners: Squared (Chorus) 
Ann: Squared and our answer must have? 
Learners: Three terms (Chorus) 
Ann: Three terms. So now you tell me? 
Jane: It’s 3x2 in brackets squared and then squared outside 
Ann: Ok 
Jane:  Plus 2 in brackets3 squared 
Ann: Fine 
Jane: 3x2  sorry eeh negative y  
Ann: Good. 
Jane: Plus negative y squared 
Ann: Good. 
Jane: 9x2 

Ann: Ok. 
Jane: minus 6x2  yes and y plus y2 

Ann: Good. 
Other learners: Minus y squared, minus y squared, minus y2   
(3x2)2+ 2(3x2)+(-y)2 +9x2- 6x2 - y2   

 

Jane gave the answer slowly and was helped by her peers, especially on the signs 

and in particular the sign of the last term was changed three times before it could be 

agreed upon. The teacher was affirming Jane by saying ‘good’ after every correct 

term she pronounced, maybe the teacher felt that Jane needed such affirmation. 

 

Ann: Negative squared is? 
Learners: Plus 
Ann: Plus,  

Learners: Oh yes 
Ann: Ok. But now we can remember we are always look for shortcuts. So you will 

notice remember I told you, the negative is born of the second term. But you 
will notice that if we have something squared, binomial, the first term is always 
positive regardless of the signs because anything squared is positive. The last 
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term is always positive, regardless of the signs and the middle term turns out to 
have the same sign as the binomial in the middle.  

Learners: Uuh (appreciating) 
Ann: So you can double check once you get to your answer ok. Next one number? 
Learners: 16.  

 

Here the teacher was emphasising the structure of the answer so that in future the 

learners would recognise the format and just substitute the respective terms in order 

to get the correct answer. This procedure would enable the learner to get the correct 

answer whether or not they understood the difference between two squares. Thus 

they were provided with the opportunity to pass examinations should such questions 

appear on the paper. After explaining the procedure, Ann asked them if they were all 

ok to that point, to which there was a unanimous yes. 

 

Another example number 16 was written on the chalkboard:  (3x2 + 5y2) (3x2 – 5y2) 

 

Ann: And we recognise that as Mpho? 
Mpho: The factors of the difference between two squares. 
Ann: The factors of the difference between two squares. So what is it going to be? 
Mpho: 9x to the power 4 minus 25y to the power 4. 

Written: 9x4 – 25y4  

Ann:  Do you all agree? 
Learners: Yes 
Ann: Right and number 17 
Learners: Yes Mam 
Ann: Now we have a binomial squared. Right? And you tell me what the signs will be 

even before we even start. Our final answer, first term is positive, last term is 
positive. and  the middle one will be negative because this is negative. Right. 
So what do you get? 

Ann: So what do you get? 
Learners: x squared minus, x squared minus... 
Ann: Ok. But first you are not so well versed in doing everything in one step so let’s 

put in steps. 
Learner: Minus y over 3 

(x –y/3)2    x2  -2xy/3 + y2/9 

Learner: That’s true 
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The teacher seemed pleased and humorously asked: 

 

Ann: Is the penny dropping? 
Learners: Yes 
Ann: Uuh thank heavens! And the last problem. Pause.  (2 + b/3)2 Binomial 

squared tell me about the signs before you even... 
Learners: Positive, positive, positive. 
Ann: And how many terms  
Learners: Three terms 
Ann: And what will it be Tracy? 
Tracy: 4+4b/3+b2/9 
Ann: Good. Do you agree? 
Learners: Yes.  
Ann: If you need to put an extra step fine do so but soon you will just write down the 

answer without going through all the steps. Tell me about the signs before you 
even do it.  

Learners: Positive, negative, positive 
Ann: How many terms? 
Learners: Three 
Ann: If you need to put in an extra step do so. But soon you just write down the 

answer. Ok Now we are going to have sums that are a bit more involved for 
instance. Do Exercise 5.7 from Classroom Mathematics. Let’s do numbers 1, 3 
and number 5.You must be very careful when you do this. This is a binomial 
square therefore it has three terms. Expand and put the signs. Ok. Now let’s 
see why must you be very careful when you do this? This one we know it’s a 
binomial square and we work it out three terms. This one is a binomial square 
and we work it out three terms. What must we be careful of? 

Learners: The signs, the negative. Many voices 
Ann: The negative, and so what must we do? Expand this and then you put a 

negative and a bracket when you expand that bracket and that negative will 
influence each and every term inside not only the first. 

Learner: Mam why can’t you multiply the negative by the a2  first? 
Ann: Well that’s a good question. Why can’t we multiply the negative by a2 first? 

Because the bracket is raised to the power of? 
Learners:  2 
Ann: Power of 2.So you cannot multiply inside a bracket that’s raised to a power. 

You have to raise to the power first and then expand and use brackets else 
you are going to make a mistake. Ok. Go for it. 
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Learners: Mam number 5 or number 7 The learners were working individually but not 
quietly; they could consult their teacher or neighbours. 

Learner: Mam. 
Ann: Yes.  
Learner: Must we..? (Inaudible) 
Ann: First you expand this and get three terms and then you write your negative and 

then you keep at the back of your mind this is negative must influence each 
and every term, so I better put a bracket. Then you expand this binomial 
squared inside the bracket then afterwards you multiply the negative with each 
and every term. After you have done that you add like terms. 

Pause 
Ann attended to a fast learner individually and said to her: 

If you are done let me see what you have done then you can try number 16 

And to the whole class she said: 
Ok. And the rest of you, can you do it? 
Learners: No-o  (loudly) 
Ann responded: Not yet  

The learners were finding it difficult that is why they could not work fast.  
Ann then moved to chalkboard and asked: Phumi are you going tell us if you expand 

this, what do you get? 
Phumi:  Mam it’s equal to 4x2 

Ann: 4x2 
Phumi:  4xy I mean minus  
Ann: Minus 4xy 
Phumi: Plus y2 
Ann: Plus y2. Right Mary if you expand that what do you get? 
Mary: x2 
Ann: x2 speak up a bit. 

Mary:  Minus y. 
Ann: Minus? What is this 2 times x times y is positive, ne? 2 times x times y and 

Mary?  10 Seconds elapsed and the teacher prompted ‘What the last term  
there?’ 

Mary:  Plus y2 
Ann: Plus y2. Good. The next step we must remove the brackets and this must be 

multiplied with each and every term. So we have 4x2 just rewritten... 
(4x2 -4xy+y2)-( x2  +2xy+y2) just rewrite 
4x2 - x2- 4xy-2xy +y2-y2  Do you agree? 

Learners: Yes, no 
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Ann: Can you see if you did not put a bracket you would have made a mistake? You 
would probably just remember to put minus x2 and not the rest. Now add like 
terms and remember to keep your brackets bracket in order not to make a 
mistake. 

3x2 - 6xy    

Right number 16 try number 16. 

 

In the meantime the majority of learners had completed the given class work. The 

teacher encouraged them to keep going. 

 

Learner: I love this! 

 

Nobody took any notice. I did not find out why they reacted that way. 

 

Ann: Put a bracket first, bracket. Ok. I think I want to do one last one. Shhh, shhh. 

 

This expression was put on the chalkboard. (3a – 2b)2 + (2a – b)2 

 

Ann: Ok. First product we recognise as? Bee? 
Bee: Eeh  
Ann: Ok. Tina what do we recognise this as? 
Tina: The factors of the difference 
Ann: The factors of difference between two squares. So what do you get? 
Learner: 3a all squared. 
Ann: 3a all squared which is 9a2 

Learner: Minus 4b2 

Ann: Minus 4b2. Do you all agree? 
Learners: Yes Mam, yes, yes. 
Ann: Ok. So we need to put a bracket because we need to forget about the negative. 

So expand that binomial squared what do you get? 
Learners: 4a2  
Ann: 4a2 that’s good 
Learner: Minus 4ab  
Ann: Minus 4ab 
Learner: Plus b squared 
Ann: Plus b squared 
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(9a2 -  4b2) – (4a2 – 4ab + b2) 

And now we need to remove the brackets. Pen? 

Pen:  Ok 9a2 - 4b2 – 4a2 + 4ab - b2.  
Ann: Right, and then add like terms. Dawn what do you get? 
Dawn: It’s aah 5a2  

Ann: Good. 
Dawn: Aaah plus 4b I mean 4ab 
Ann: Good 
Dawn: And minus 3 aah aah minus 5b2 

Ann: Good. And that’s it. 
Ann: Ok. And now I want to show you another example. 

(a – 1)(a+1)(a2+ b) 
Ann:  Ok. If I ask you to do this you can see that it could take a very long time if we 

don’t use a shortcut ne? You are going to multiply and foil out ok until you are 
blue in the face. What we start with is those two factors we recognise those two 
as the factors of the difference between two squares. So we keep this one 
because that one we know and now… 

Learners: Factors of the difference between two squares 
Ann: … and now we recognise it as the factors between two squares and again and 

that will give us 
Learner: a4  - b2 
Ann: Excellent and you would have multiplied and multiplied and multiplied ne? So 

we must always look for things that we can recognise. Ok. Now I can give you 
your homework  

Learners: Aah aah Mam. 
Ann: Aah what are you saying aah for? You are going to write a test tomorrow and 

what are you going to do over the weekend? 
Learners: Worksheet Mam, Worksheet. 
Ann: And homework as well 
Learners: Uuh, aah Mam.   
Ann: Ok. Number 14.and 17, and 18 and 19, and 20.. 
Learners: Mam?  
Ann: 14 17,18, 19, and  20 . Five sums. 
Learners: Mam  
Ann: Remember simplify you must multiply the brackets, factorise you must end up 

with factors,... and if I say simplify remove brackets and if I say factorise you 
must end up with a product. 

The bell rang while the teacher was saying the above 
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Learners: Next Tuesday, Tuesday. Tuesday. 
Ann: Ok let’s make it Wednesday. 
Learners: Yes, yes (And some clapping of hands)  
Ann: Do you know that you are going to write a common exam?  
Learners: Yes, No, when? When are we going to write it? 
Ann: Next week in Maths and English. And we have to mark it. Two and a half hours 

of maths I think. 

 

Then there were noisy comments about the exam as the learners left the classroom. 

 

4.4.6. Comments on Ann’s teaching 

 

Ann’s teaching is a balance between attention to conceptual understanding and 

procedures, for example, after she had written an array of numbers on the 

chalkboard she asked the learners if they “noticed what was happening.” There was 

a unanimous yes and she proceeded to describe the next two terms in parts, 

meaning the numerator then the denominator. The learners engaged in pairs to 

discuss their observations and in the process discovered and described relationships 

and patterns in order to form conjectures. “It is through the process of having 

students make and test conjectures that higher levels of reasoning and more 

complex learning will occur” (Making and Testing Conjectures, undated). Ann guided 

the learners to discover mathematical rules and procedures by asking them to 

describe the patterns they observed. 

 

Though she did not always give them time to reflect and then describe, she 

reminded the learners to be on the lookout for patterns, obvious or hidden. She told 

them that observing patterns was important. When a pattern was identified the 

learners expressed it as a conjecture in words which they then chorused in its 

perfect form and recorded it in their class work books. One of the conjectures that 

was arrived at and chorused by the whole class was: 

 

The difference between the squares of two consecutive whole numbers is 
equal to the sum of those two numbers. 
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It is possible that when the learners repeated a conjecture accurately, she thought 

they had learned it. She asked the learners on several occasions to repeat 

conjectures and other statements that she deemed important. By this she 

demonstrated that mathematics has important procedures and statements that 

should be remembered by rote. During the lessons Ann said many times “Do not 

resist change” because for learning to take place some change must occur. It 

seems that Ann thought that some learners were not learning because they were 

resisting change. It was not because they were not understanding but because they 

were resisting change. 

 

While teaching procedures, Ann gave learners time to ponder and compare their 

answers. Learner to learner interaction is recommended for it gives them a chance to 

compare answers in a non-threatening environment. Pupils can share ideas, justify 

their ideas and build new knowledge. When learners work cooperatively, the 

environment is conducive to the development of high mathematical thinking. 

 

Ann tried to ensure that learners develop thinking processes that would give them 

correct answers. She guided the learners to reproduce correct procedures that led 

directly to correct answers. She brought their attention to a particular type of problem 

and provided them with the format for the answers. For example she gave them the 

format for the answer to a binomial squared as follows: 

(Binomial) 2 = (First term) 2 + 2 (first term) x (second term) + (second term) 2 

 

Any learner can reproduce the answer to any binomial squared using this format with 

or without understanding what is going on. 

 

Ann helped learners see how algebraic expressions were formed using number 

patterns. She showed learners how number patterns could be converted to algebraic 

expressions. According to Duval (1995) a concept can only be understood when at 

least two forms of its representation are used. In this case Ann used the numerical 

and algebraic representations. The ability to convert from one register to the other is 

essential for the construction of mathematical concepts. Ann’s learners learnt how to 

convert a given number sequence into its algebraic form; I am not sure how 

successful she was at it. These experiences helped learners construct new 
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knowledge about the relationships between number patterns in two forms and this 

enabled them to move back and forth between registers providing them with OTL to 

find solutions. 

 

Ann presented the problems or activities in a fixed way with little room for diversions 

or alternatives. I will use the excerpt from the first lesson to show how an alternative 

interpretation suggested by a learner failed to divert Ann’s attention to the needs of 

the particular learner. On the chalkboard Ann had written: 

 =  1   =  

The learner wanted to know why Ann used 2/2 instead of 3/3 which the figures used 

seemed to suggest. The following is an excerpt of what took place: 

 

Learner: Mam, isn’t 1a just 3 over 3? 
Ann: What? 
Learner: Why did you write 2 over 2 for 1a?”  
Ann: It is to show you that it’s the same pattern, otherwise where does 1 go in?   
Learner: But I mean why didn’t you just write 3 over 3? 
Ann : Because it is not 3 over 2, 3 over 3 it’s 3 over 2. Why? Because if we look at 

this whole pattern. What is the pattern? It is the last one over 2, it’s the last one 
over two, it’s the last one over two that’s why there is two over two because my 
last one is two. It is just to illustrate the pattern. If we write 1 then you can’t see 
what the pattern is. 

 

Ann was concerned about the sequence 2/2; 3/2; 4/2; 5/2 etc. and the learner was 

concerned about equivalent fractions, that is, 1=3/3 which is also 1=2/2. The learner 

wanted the link which Ann did not provide because she wanted the sequence in a 

particular form. This learner was denied the opportunity to use her previous 

knowledge about equivalent fractions in this new situation.  

 

Ann guided her learners to work through individual parts that led in a definite 

direction toward finding the answers. She helped learners understand the steps and 

then looked for short cuts. This she did by advising them to skips steps wherever 

possible, especially when they had reached the stage of fluency and could easily 

discern the format of the answer. Is this still about conceptual understanding? 
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Ann said that she wanted her learners to develop lateral thinking skills that help them 

to solve almost anything. She also said that she gave difficult exercises to them so 

as to challenge them to think outside the box. Lateral thinking skills help learners in 

understanding mathematics and other subjects as well. Learners need to be 

challenged to analyse their thinking in depth to make connections and relationships. 

By giving learners very challenging exercises, Ann is giving them the opportunity to 

become inventive in the face of new material. Through sustained exposure to this 

approach, learners find their own ways to cope with and adjust to new situations. 

They develop habits favourable to the acquisition of mathematical concepts. They 

analyse and reflect on their own thinking and construct new conceptual knowledge 

which they can use it in new ways.  

 

Ann has in-depth of knowledge of her subject matter. She has been teaching 

mathematics for twenty-seven years. This is evident in her teaching as she does not 

stick to the prescribed textbook. She has a vast collection of material from which to 

select the exercises that she gives the learners for homework.  

 

To provide OTL, Ann emphasised procedures and answers. She wanted the learners 

to learn the procedures that would help them to get correct answers. Even though 

she taught them to go step by step to the answer, she also encouraged the learners 

to skip steps as they became fluent in obtaining correct expected answers. As with 

the first lesson, Ann emphasised procedures and answers and the chorusing of 

answers was used often. Though Ann tried to get the learners to contribute ideas, 

most of the time she ended up providing them with the information herself.  

 

4.5 Conclusion 
This Chapter presented the data gathered for the study. The analysis and 

interpretation of the data was done alongside the presentation. Data are presented in 

form of Portraits of teaching by three educators. The portraits are the empirical data 

for this study. In the next chapter more detailed analysis of data from the literature as 

well as from classroom observation is done.  
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CHAPTER FIVE 

 

DATA ANALYSIS  
 

5.1 Introduction 

 

I now return to the question of ‘How can the Opportunities to Learn (OTL) grade ten 

mathematics be characterised and explained from the official and enacted curricula?’ 

The previous chapter presented detailed descriptions of three cases of algebra 

teaching in grade ten classes in three Catholic schools in the Gauteng province of 

South Africa. In this chapter I wish to explore these data sets further, through 

discussion of the major findings as well as the implications thereof. I will discuss how 

the three teachers provided their respective learners with opportunities to learn 

grade ten algebra concepts. 

 

The review of the literature on OTL reveals that it is an openly defined term and is 

the result of a combination of school and learner characteristics, resources and 

curriculum characteristics. The word opportunity implies a set of circumstances that 

make it possible to do something. So OTL is associated and concerned with the 

circumstances under which learning takes place. The rationale behind OTL is that 

one cannot hold learners responsible for underperforming if they have not had the 

chance to learn that on which they are tested. OTL are viewed in terms of quality of 

instructional delivery, time allocated and spent on tasks, resources available to meet 

the demands of the syllabus, and the conditions under which learning takes place 

(Stevens, 1993; Schwartz, 1995; Scherff and Piazza, 2005; Cooper and Liou, 2007). 

In the USA, the NCLB Act requires states to develop assessments in basic OTL 

because what is learnt depends on what is taught (Kilpatrick et al., 2001). The 

literature also revealed that algebra is viewed as difficult among school mathematics 

topics (Wagner and Kieran, 1989). In South Africa, algebra is a topic in the 

mathematics learning area whereas in the United States, for example, it stands as a 

subject on its own and so receives relatively more attention from researchers. 

 

Contributory factors which help to identify opportunities to learn in this study are: the 

nature and quality of instruction as manifested through teaching approaches, the 
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posing of questions, use of terminology, the type of tasks set by teachers, and how 

different registers of representation are used for concept building. The choice of 

these factors should not be interpreted as a definition of all possible OTL factors, but 

rather a focus on particular aspects of OTL. The interrelationships between these 

factors shape the opportunities that students have to learn algebra. Although in the 

previous paragraph I spoke about such things as resources, time and conditions of 

learning, I now focus only on those factors that I perceive to be more prominent in 

my study. Considering these factors is helpful in trying to understand how OTL are 

generated in the different classrooms. It offers a framework for discussion and 

reflection on some aspects of teaching mathematics that arose from the 

observations of the lessons. OTL as a framework for teaching and learning is highly 

conducive to framing analysis of lessons and becomes an important part of the 

shared repertoire of the practice. It helps to monitor the extent to which the enacted 

curriculum matches the intended. 

 

My observations and the analysis which follows were done from a constructivist 

perspective. Students’ construction of mathematical knowledge is greatly influenced 

by the experiences they gain through interaction with the teacher (Cobb and Steffe, 

1983). I include excerpts from classroom discourses and interviews to explain how 

each teacher provided learners with OTL. 

 

5.2 Commonalities 

 

First I consider the commonalities among the teachers. Thereafter teaching 

approaches, the posing of questions, use of terminology and the different tasks 

required in each classroom will be discussed. All three schools used the same 

official curriculum for grade ten mathematics as prescribed by the Department of 

Education and specified in the National Curriculum Statement (NCS). They were all 

teaching algebra at the time of my observation. However, they were teaching 

different aspects of the topic, such as generalisation, simultaneous equations, and 

inequalities and modelling. The teachers worked with classes of different sizes, 

namely 30, 33, and 17 learners. The fact that all the teachers were qualified to teach 

mathematics at that level means that they had sufficient understanding of the 

mathematical concepts. However teaching is a personal undertaking which links with 
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each teacher’s history of learning and teaching experience. To emphasise the 

differences that I perceived, I discuss each teacher separately and provide an 

analysis of the OTL in the respective classrooms. 

 

Learning Outcome 10.2.4 of the Department of Education (2008) requires learners to 

manipulate algebraic expressions by multiplying a binomial by a trinomial, factorising 

trinomials, factorising by grouping in pairs, and simplifying algebraic fractions with 

monomial denominators. This shows that symbolic manipulation is at the centre of 

grade ten algebra in South Africa. Furthermore learning Outcome10.2.5 states that 

learners should solve linear equations, quadratic equations by factorisation, 

exponential equations of the form kax+p = m (including examples solved by trial and 

error), linear inequalities in one variable and provide graphical illustrations of the 

solution, and linear equations in two variables simultaneously (numerically, 

algebraically and graphically). 

 

By following the above syllabus, all the teachers dealt with the rules for manipulating 

algebraic expressions. The teachers gave their learners tasks that required them to 

manipulate first and second order algebraic expression and equations. Tasks used 

during lessons were largely taken from textbooks and occasionally from worksheets 

photocopied from different sources. Ben always gave learners work from the 

textbook because at his school photocopying was restricted to materials directly 

associated with learner-portfolios. Ann gave photocopied worksheets (collected over 

the last seven years) to the learners for homework. Cherry used photocopied 

worksheets when she wanted to give learners more work dealing with problem 

solving. The teachers all used the Classroom Mathematics textbook for grade ten but 

the textbook was used differently in each classroom. 

 

Although it was not the intention of this study to compare the teachers, it has 

become necessary because of the different characteristics displayed; these make a 

significant contribution to the understanding of opportunities to learn. For example, 

Ben’s learners used the textbook as their sole source of exercises during lessons 

and for homework while Ann’s learners had the use of both that textbook and 

worksheets. From the point of view of variety of exercises, Ann’s learners were in a 

better position. Variety offers learners the opportunity to interact with different 
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authors who differ in their choice of content, order and depth. This can contribute to 

a greater understanding and can motivate the learners. Ann told me that her motive 

for giving learners worksheets was to challenge them. While the Classroom 

Mathematics textbook has answers at the back so that learners can verify their work, 

worksheets do not have ready answers so the learners depend on the teacher or 

class discussions for verification of answers. Worksheet exercises provide learners 

with the chance to demonstrating their true understanding of the concepts involved 

because they had no ready answers for immediate feedback. Cherry’s learners had 

the use of both the textbook and worksheets and, in addition to this, she asked 

learners to create their own problems. Creating their own problems offered learners 

an opportunity to verify their understanding by trying the different options open to 

them to produce something meaningful. This removes the textbook as the only 

source of exercises and helps to put the learners in a position where they can own 

their mathematics. 

 

Algebraic manipulation was taught by all the teachers. Ann taught manipulation so 

that students could discover rules through observing patterns and then apply them to 

pass examinations. She dictated the rules and was more concerned about the 

answers that they yielded. Ben explained manipulation so that learners could answer 

given questions in a given way. He did all the working on the chalkboard while the 

learners listened. Cherry explained manipulation so that the learners could 

appreciate the rules and be able to apply them in different contexts. Below I will 

discuss in detail how each teacher in turn attempted to provide the learners with the 

opportunities to learn the designated algebra content.  

 

5.3 How the teacher provided their learners with opportunities to learn
 algebra.  
 

5.3.1. Ann’s teaching approach 

 

Ann’s decision to start the lesson with number patterns suggested an attempt to 

implement what she believed would move from something concrete to an abstract-

based approach to teaching algebra. Just what is concrete requires an explanation. 

A number pattern is not necessarily concrete because I believe that what an 
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individual knows is what is concrete for them. If you know it then it is concrete for 

you. So for some of the learners the number patterns may not have been concrete at 

all. However, Ann told the learners exactly how to identify patterns. She said that the 

learners must see a pattern and then convert it to symbols. In this respect she did 

provide them with the opportunity to see number patterns and led the learners to 

convert them to algebraic forms. Ann believed that her learners learned algebra that 

way. 

 

Ann’s mathematics instruction was focused on following procedures for arriving at 

answers. She guided the learners to reproduce correct steps that led directly to 

correct answers. However, the drawback of procedural oriented learning is that its 

emphasis is on doing rather than understanding. Learners can use certain algebraic 

procedures without considering why the rules and procedures work. They may focus 

on the computational procedure rather than the concept. 

 

Ann brought the learners’ attention to a particular type of problem and then provided 

them with the format for the answers. For example she gave them the format for the 

answer to a binomial squared as follows: 

 

(Binomial) 2 = (First term) 2 + 2 (first term) x (second term) + (second term) 2 

 

Ann further stressed the number of terms in the expected answer: 

 

Ann: Now... there is one thing you must remember, that any binomial squared will 
give you three terms. You will get a trinomial as an answer. If you end up with 
two terms then you have made a mistake. 

 

Any learner could reproduce the answer to any binomial squared using this format 

with or without understanding what is going on. In this way Ann was giving her 

learners the opportunity to produce correct answers which they could even do under 

examination conditions. Ann guided her learners to work through individual parts that 

led them in a definite direction toward getting the answers. She helped learners 

understand the steps and then looked for short cuts: 
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Ann: Ok. But now we can remember we are always looking for shortcuts. So you will 
remember I told you, the negative is born of the second term. But you will 
notice that if we have something squared, binomial, the first term is always 
positive regardless of the signs because anything squared is positive. The last 
term is always positive regardless of the signs and the middle term turns out to 
have the same sign as the binomial in the middle.  

 

It is reasonable to expect the learners to perform a binomial squared proficiently after 

such an explanation if they are given time to practise. The shortcut method which 

involved skipping steps in between implied that the answer was more important than 

the working. This is the message that Ann was giving to the learners. 

 

However, Ann also paid attention to conceptual understanding, for example, after 

she had written an array of numbers on the chalkboard she asked the learners if they 

“noticed what was happening.” This gave the learners the opportunity to observe, 

think and formulate an answer. The written form of the concept gave the learners an 

opportunity to convert the information to a mental form. This is because when 

learners observe, they are encouraged to think and attach meaning to what they see 

with the help of the teacher’s words. What Ann wrote was always something that the 

learners were supposed to be familiar with, for example number patterns or factors. 

These were used as building blocks for further development of the topic. She used 

“deductive reasoning”  to lead learners to discover. This was one of the ways Ann provided her 

learners with OTL.  
 

Ann guided the learners to discover mathematical rules and procedures by asking 

them to describe the patterns that they observed or identified. First, the learners 

expressed it as a conjecture in words which they chorused in its perfect form and 

recorded it in their class work books. It is said that, “It is through the process of 

having students make and test conjectures that higher levels of reasoning and more 

complex learning will occur” (Making and Testing Conjectures, undated). This high 

level of thinking is what Ann was trying to help her learners to achieve. After 

establishing conjecture, the algebraic or symbolic form was then attempted. 

 

Ann asked the learners on several occasions to repeat conjectures and other 

statements that she deemed important. By this she demonstrated that mathematics 

has important procedures and statements that should be remembered by rote. This 
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was one way of providing the learners with the opportunity to learn. When the 

learners repeated a conjecture accurately, the teacher thought they had learned it. In 

a way this approach does not seem to tally with that stated in C2005 (2003a, 19): 

As far as the mathematics learning area is concerned, learners are expected to 
acquire a functioning knowledge of the Mathematics that empowers them to 
make sense of society... competence in mathematical process skills such as 
investigating, generalizing and proving is more important than the acquisition of 
content knowledge for its own sake. Competence is not taught but it is 
developed by the individual learner’s effort through relevant practice. 

 

While teaching procedures, Ann gave learners time to ponder and compare their 

answers. Ann gave learners the opportunity to work together in pairs, discussing 

their observations and in the process discovering and describing relationships and 

patterns. Learner to learner interaction is recommended for it gives them the chance 

to air their views and answers in a non-threatening environment. Learners can share 

and justify their ideas and so build new knowledge. When the learners work 

cooperatively, the environment is conducive to the development of high 

mathematical thinking. 

 

During the lessons, Ann said many times “Do not resist change” because for learning 

to take place some change must occur. It seems that Ann thought that some 

learners were not learning because they were resisting change. It was not because 

they did not understand, but because they were resisting change. Ann was furthering 

the view that learning of every sort changes who we are by changing our ability to 

take part, to belong and to negotiate meaning. If one resists this, one misses the 

opportunity to learn. 

 

Generally Ann’s teaching was very methodical, there was a lot of repetition and 

learners had to work through many exercises in order to reinforce the procedures 

which they could then reproduce possibly for examination purposes. She would have 

learners recite information in chorus to help them memorise for future use, for 

example: 

 

Ann. What I want you to do first is expand this bracket (n+1)2 first.  Remember how 
 we did it last year. FOIL... Except for food does foil ring a bell? 

Learners: Yes  
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First, Outer, Inner, and Last was said aloud by the whole class. 
Ann: Good. Foil this    (n+1)2 – n2    out for me.  
 

Although the mathematics instruction was dominated by the teacher speaking, 

mathematical content and conceptual understanding was focused on. For instance 

when Ann was introducing the generalisation of number patterns she laboured to get 

to the stage where learners could observe number sequences and establish 

patterns, verbalise them and then convert it into algebraic forms. This said, the fact 

that the learners could follow the given procedures does not necessarily mean that 

they learnt with understanding but that they could use the skills acquired in 

subsequent work. It is possible that after passing their examinations using the said 

procedures, they may not even be able to articulate what they have been doing let 

alone apply their knowledge elsewhere. 

 

Ann believed in having rapport with the learners; she occasionally shared jokes with 

them and knew all her learners by name and endeavoured to find out, not in a nosey 

way, information about them so that she could know them better. This endeared her 

to them and helped create a friendly environment conducive to learning. The 

learners could express themselves freely without fear. For instance, one learner 

expressed herself very strongly when she did not follow what was going on. She 

asked “How on earth can you do that?” to which Ann responded by encouraging the 

learner not to resist change. Learners could challenge the teacher directly when 

seeking clarification or responding to social exchanges. The excerpt below shows a 

learner seeking clarification. 

 

Learner: Mam isn’t 1a just 3 over 3? 
Ann: What? 
Learner: Why did you write 2 over 2 for 1a?”  
Ann: It is to show you that it’s the same pattern, elsewhere does 1 go in?   
Learner: But I mean why didn’t you just write 3 over 3? 
Ann: Because it is not 3 over 2, 3 over3 it’s 3 over 2, Why? Because if we look at this 

whole pattern. What is the pattern? It is the last one over 2, it’s the last one 
over two, it’s the last one over two that’s why there is two over two because my 
last one is two. It is just to illustrate the pattern. If we write 1 then you can’t see 
what the pattern is. (Pointing to examples on the chalkboard) 



174 
 

 

The freedom to express themselves without fear gave the learners the opportunity to 

ask the teacher for guidance at any stage of the lesson and so with the opportunity 

to learn. However, the learners sometimes took advantage of their freedom and 

continued to hold private conversation when the teacher wanted them to pay 

attention instead. 

 

Ann was thorough in her explanation and went into great detail to explain each and 

every step and term and wrote down most of what she said. The learners were free 

to copy the chalkboard work for reference. This gave the learners an opportunity to 

follow and connect ideas as they observed them develop systematically. 

 

5.3.1.1 Ann’s posing of questions 

 

Since posing of questions plays an important role in the process of teaching and 

learning mathematics it is essential to note how the questions are formulated, to 

whom they are addressed and what knowledge is required in answering the 

questions. Ideally questions should be constructed to stimulate different forms of 

thinking. Posamentier and Jaye (2006) claim that the type of questions asked places 

emphasis on the process strands that are valued in the learning of mathematics. The 

fact that teachers ask the questions that are supposed to help them discover the 

knowledge implies that the performance of the learners is based on the teachers and 

not on the subject. 

 

Ann directed questions to learners by name. Posamentier and Jaye (1999) 

recommend that the teacher select a student to answer a question rather than 

relying on volunteers. She asked questions which invited learners to make 

observations and/or recognise certain patterns. Mathematics can be said to be 

concerned about order and pattern. In this respect Ann wanted her learners to have 

the opportunity to recognise the patterns in given arrays of numbers or factors. That 

done, Ann expected learners to convert their observations into the required written 

forms, either to express it as a conjecture in words or in symbolic form. Recognition 

of patterns is an essential part of mathematics and the skill of looking for patterns is 

a good basis for extending the understanding of the number systems. This helps the 
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conversion into other forms, for example, algebraic. Ann guided the learners to the 

stage of expressing their thinking based on their observations.  

 

Ann asked questions such as:  

Now can you see what is happening? What do you recognise that as? And 
what is happening to the denominators? Now write down a conclusion from 
these examples. Now have you thought why this is true? Have you thought? 

 

Asking ‘why’ prompted the learners to explain and justify their own thinking. Ann 

created cognitive conflict for her learners by asking such questions to help them 

rethink their answers or resolve mathematical issues. Piaget (1970) called this 

conflict, disequilibrium. Disequilibrium happens when a student's current knowledge 

or cognitions does not help the student explain the new situation. The following 

excerpt indicates an occasion where learners were struggling to come to grips with 

new material:  

 

Learner: Mam what if n+1 over 2 ...because if you have...2  
Ann: But it’s not (n+1)/2. Always the last one over 2 

Ann was pointing to the previous examples. 
Learner: But is it true...we still get the answer... 
Ann: The last one over 2, the last  one..., not the next, not five, oho I see when you... 
Learners: ...Add to 1...make it easier 4  

 

Many learners were talking at the same time. It seemed this part was causing some 

problems for them. Ann did say during one interview that she likes to challenge 

learners. These are her words: 

I think you must challenge. Don’t just teach what they give you, what is 
prescribed, you know. Challenge them I give them a lot of difficult work sheets 
and encourage lateral thinking.  

 

Ann also asked rhetorical questions like: 

 

Ann: So These are two like terms  ab +ba do you agree? 

Learners: Yes 

And: 
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Ann: Minus 4b2. Do you all agree? 

Learners: Yes Mam, yes, yes. 

 

Most of the time when Ann asked the kind of questions mentioned above, the 

learners responded positively. Having said this, it does not follow that the fact that 

they agreed meant they had understood, as on one occasion a learner responded to 

an unfinished question because she anticipated that the answer would always be 

yes to whatever the teacher was asking them. Such questions do not give the 

learners any opportunity to learn anything for they do not appeal to any reasoning 

before the utterance of the expected yes. On the rare occasion when a learner said 

“no” (usually in a low voice), the teacher did not appear to take any notice and just 

proceeded with the lesson, for example: 

 

Ann: Plus y2. Good. The next step we must remove the brackets and this must be 
multiplied with each and every term. So we have 4x2 just rewritten... 
(4x2 -4xy+y2)-(x2 +2xy+y2) just rewrite 
4x2 - x2- 4xy-2xy +y2-y2  do you agree? 

Learners: Yes, no. 
Ann: Can you see if you did not put a bracket you would have made a mistake? You 

would probably just remember to put minus x2 and not the rest. Now add like 
terms and remember to keep your bracket: 
13x2 - 6xy  is it. 
Remember to keep your bracket in order not to make a mistake. Right number 
16 try number 16. 

 

5.3.1.2 Uses of terminology 

 

Some of the specific terms covered in grade ten include algebraic expression, 

variable, product, factors, like terms, simplify, equation, sets of numbers, and 

patterns. Definitions of these terms lay a foundation for working with concepts. 

 

From the above list, Ann used terms which were largely familiar to the learners such 

as natural numbers, next one, quotient, pattern and other operation related 

expressions. However, she did not define any of them. There were occasions where 

straight forward definitions could have benefitted the learners. An example is when 
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Ann used the term recursive number pattern; some of the learners clearly needed 

more information for them to understand.  

 

Ann: Ok that is a recursive number pattern, let me just see how we can write it. Aah 
Tn+1 would be   up to n plus one over n plus 2 and that will be (n+1)/2: 

 

T(n+1)= =  

Tn+1 would be that. What if n+1 means it’s the next term?  You have written 
yours in terms of... How do you get the next one? 

Learner: No Mam. 

 

A lot of algebra was covered by the teacher in a short space of time, maybe too 

much for the learners to follow immediately. Information overload might not benefit 

the majority of learners and Ann was aware of it because she told me during the 

interview that the learners had to learn gradually. So on this occasion she acted 

against what she believed. But maybe it was not deliberate or she was guided by her 

wish to always challenge the learners and striking a balance can be tricky. Teachers 

sometimes find themselves in situations where they have to compromise one 

approach for the other because the classroom might demand spontaneity. 

 

Ann was usually talking and writing at the same time. On some of those occasions 

what she recorded in writing did not correspond to what she was saying, for 

example: 

 

Ann: Ok. Now what they want you to do is not to work it out on your calculators, you 
must find a pattern on the right hand side which gives you the value. Ok. Now 
let’s see if we added up to three we divided by 3 over 2. 

  =  

 

  If we added up to four we divided by the last one over 2.  

      =  
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If we added up to five we divided by the last term over 2.  If we continue the 
pattern it will be last term over 2 which is four. You must not work it out on your 
calculator. Ya. You must work it according to the pattern. 

One learner: Yes 
Ann: Ok. So now write down the value of? 

 

Here we see a teacher who is secure in her own ability to do the mathematics she 

wants to teach but who is writing on the chalkboard something that does not 

completely correspond to what she is saying, for example:  

 

...if we added up to three we divided by 3 over 2.                   =  

 

The statement and the fraction are not equivalent. She used the same misleading 

phrase several times, but no learner corrected her or challenged the meaning. This 

does not mean that she was mixed up, but it does indicate that she was concerned 

about the pattern. 

 

Conjecture was another important term that Ann used but did not explain fully: 

Ann: Conjecture. We want it in words.(Pause) Now tell me in words what we have 
done. What is all this? If we have a question of the sum of the natural 
numbers.... (Pause) 
…. 
If we have a question of the sum of the natural numbers, say up to n. We will
 and we divide by the next one which is n+1. 

Learners: n+1. 
Ann: Then what will that sum be? (Writing) It will be n/2. Do you agree? If we add the 

sum of natural numbers up to a certain number which may or may not be n. If 
we divide that by the next natural number which is n+1 then that quotient will 
be n over 2. Last natural number over 2. That’ what we see here, can you see? 

Learners: Yes (Very low). 

 

Instead of explaining the term fully for understanding, Ann appeared to expect 

learners to ‘see’ the pattern and convert it by trial and error into words which would 

later be translated into algebraic form. Learners were being encouraged or possibly 

forced to imitate a verbal pattern they did not necessarily understand.  
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  =  

 

From stating the conjecture to writing Tn almost in the same breath seemed too 

much for the learners to take in on one go, as indicated by the incomplete questions 

that they asked. Even the volume of their words went down. The teacher’s 

explanation of the general term seemed aimed at persuading the learners to commit 

patterns and procedures to memory and hope for understanding to come later 

because Ann did say during the interview that the understanding has to come 

gradually. This said, it seemed like an information overload and the learners were 

clearly struggling to come to grips with the terms. Here the learners were receiving a 

message that learning mathematics involved mastering a series of difficult steps. 

The learners would perceive that their opportunity to learn this part of algebra lay in 

their ability to ‘see’ a pattern, try to describe it in words (conjecture) and attach  

general terms to it. In a space of five minutes, this was probably too much, hence the 

struggle. 

 

5.3.1.3 The types of tasks 

 

It has long been recognised that the context of learning mathematics and the context 

of mathematical tasks play an important role in the teaching and learning of 

mathematics (Ernest, 2011: 120). Ernest admits that there is an ambiguity in the 

term context for it can mean the social location of the task or the way in which the 

task is presented, the way it is dressed up as a problem with reference to objects 

and activities, and how it is communicated in a written or pictorial form such as a 

textbook problem (Ernest, 2011). 

 

Ann gave learners exercises from the textbook and other worksheets for them to 

practice on. After working out some examples on the chalkboard, Ann always gave 

her learners some problems to work on individually but she did not seem to mind if 

the learners worked together. She presented the problems or activities in a fixed way 

with little room for diversions or alternatives but later on she told the learners that 

she did not mind them using other methods. This kind of teacher behaviour might 

stem from a belief that mathematics consists of strict rules to be followed and skills 
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to be practised. So it follows that to provide learners with the opportunity to learn, 

they must practice in a certain way, particularly the way suggested by the teacher. 

 

On one occasion a learner wanted to know why Ann used 2/2 instead of 3/3 which 

the figures written on the chalkboard seemed to suggest. Ann kept her focus on the 

sequence 2/2; 3/2; 4/2; 5/2... and the learner was concerned about equivalent 

fractions, that is, 1=3/3 which is also 1=2/2. The learner wanted the link which Ann 

did not provide because she wanted the sequence in a particular form. This learner 

was denied the opportunity to use her previous knowledge about equivalent fractions 

in this new situation.  

 

Having given learners problems to work on Ann sometimes dictated the procedures 

to be followed, for example: 

 

Ann: Ok. Now foil this  (a+b)2   for me first then you tell me what you get and then we 
go to the short path. 

 

This showed her reliance on procedures because dwelling on the kind of problems 

which the learners would have come across in earlier grades seemed to indicate that 

procedures were important and had to be reinforced through repetition. It could also 

be that Ann wanted to justify the short-cut that she was advocating by linking it to 

previously learnt procedures like foiling. (She used foil as if it was a verb instead of 

an acronym.) After instructing the learners to ‘foil’ Ann demonstrated on the 

chalkboard how to do it which I suspected some learners had long solved in their 

heads. This insistence on procedures seems to go against Ann’s declaration that she 

wanted to develop the skill of lateral thinking which would help the learners to 

answer questions they had not met before. 

 

While learners worked on the problems, Ann kept reminding them about what she 

wanted them to do. Insisting on certain ways of doing the problems seemed to be 

one of Ann’s ways of ensuring that the learners had the opportunity to learn the 

concept or procedure in question. The excerpt below is an example of where Ann 

directed the learners to ‘foil’ as she wanted them to: 
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Ann: Foil I said… 
Ann: Now. There is one thing you must remember that any binomial squared will give 

you three terms. You will get a trinomial as an answer. If you end up with two 
terms then you have made a mistake. So a binomial squared let’s foil it out like 
you did for the other problem a-and... What do we get?  
(a+b)2  = (a+b) (a+b) = a2 + ab +ba + b2  [Foiling] 
So these are two like terms  ab +ba  do you agree? 

Learners: Yes 

 

(Binomial) 2 = (First term) 2 + 2 (first term) x (second term) + (second term) 2  
 

This is the short method which you already knew.   

 

What is clear is that Ann worked towards providing learners with the opportunity to 

pass examinations. The previous year’s Matriculation results bears witness to the 

success of her endeavour where according to her account all the learners passed 

mathematics with marks above fifty percent. This is no mean achievement in a group 

where the overall average was way below fifty percent. 

 

5.3.1.4 How Ann used different registers of representation 

 

One way of identifying the OTL algebra is to use Duval’s (1995) theory that a 

mathematical concept can only be understood when at least two forms of its 

representation are used and converted into each other. Ann showed her learners 

how number patterns could be converted to algebraic expressions. In this case Ann 

used the numerical and algebraic representations. Ann’s learners learnt how to 

convert a given number sequence into its algebraic form. The ability to convert from 

one register to the other is essential for the construction of mathematical concepts. 

These experiences help learners construct new knowledge about the relationships 

between number patterns in two forms and this enables them to move back and forth 

between the registers providing them with OTL to find solutions. 

 

When Ann was teaching the factors of the difference between two squares, she 

missed the chance to convert between algebraic and the geometric representations 

of the concept. What matters is not representation but their transformation. 
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5.3.2. Ben’s teaching approach 

 

I observed that Ben’s approach to mathematics instruction was focused on imparting 

mechanical procedures necessary to achieve a correct answer. He would start a 

sentence spelling out a procedure and let the learners complete it. For example he 

said, “Here we are supposed to make ‘h’ the subject of the what?” The learners 

responded, “Formula.” He had the mathematics to ‘convey’ to the learners and he 

did so whether they understood it or not. It seemed as if it was enough for him to just 

fulfill his duty of passing on the knowledge to the learners. 

 

However, his approach to instruction seemed to result from his lack of belief in the 

learners’ ability to learn because of what he perceived to be their poor mathematical 

background. Normally if you expect little, little is what you will get from any situation. 

A teacher’s conception of mathematics influences every aspect of the teacher’s 

teaching (Cobb and Steffe, 1983). Also a teacher’s perception of student ability 

influences the way they engage students. Below are Ben’s exact words about how 

he perceived his learners’ mathematical abilities: 

Learners on the other hand lack basic numerical skills which makes it even 
more difficult for teachers to teach the subject. 

 

Ben did not feel responsible for the learners’ situation because he blamed the 

circumstances that he perceived as contributing to it. He said:  

Continuous changing of Mathematics teachers has contributed a lot to the poor 
learner performance in the subject. 

 

Ben did not have high expectations of the learners and said so. He told them he did 

not know why some of them could not solve simultaneous equations: “...because of 

certain constraints that I do not know.” Sometimes he asked and answered his own 

questions before the learners could do so. It seemed that Ben had written the 

learners off from the start. But the fact that the learners had passed through many 

teachers could not be reversed. It was unfortunate that it impacted so negatively on 

the teacher’s willingness to create opportunities for them to learn algebra. The 

learners had been through five teachers in a space of just two years. So teacher 

turnover can severely restrict the learners’ opportunities to learn the subject. 
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Ben did not provide learners with the opportunity to develop a conceptual 

understanding of the ideas he was presenting to the learners. In Ben’s class, 

learners sat passively and watched him perform actions to solve the problems for 

them, with almost no learner to learner interaction and only a few questions and 

comments directed at individual learners. In fact, he discouraged cooperative work 

when the learner engaged in it without him sanctioning it: 

You do individual work, except if I say pair work, or group work or the whole 
class that is when you work together. So now it’s individual work not together. 

 

The learners realised that they needed it and when Ben told them not to do it they 

ignored him and carried on. This is indicative of learners seeking opportunities to 

learn despite meeting resistance from their educator. The learners were probably not 

as poor as their teacher perceived them to be, they just did not have the opportunity 

to prove themselves. But discussion in class enables the learners to rearrange their 

ideas, find new expressions and communicate. When you understand something you 

are capable of saying the same thing in different ways, in other words you can 

communicate it in more ways than one. Ben did not give space for that to his 

learners, so they did not have anything to question because he gave them the 

answers, sometimes fully and sometimes partially. Normally you ask when you have 

time to think about something. So if you have no time, you cannot ask.  

 

Ben indicated that he did not find it easy to teach this particular group: 

It has not been easy teaching them because most of the learners never got  the 
vital introduction of the topic at earlier grades. This means I have to  teach  the 
basics first before teaching actual outcomes for Grade ten. 

 

But there is a contradiction in this because when one learner used his previous 

knowledge Ben said that it was below the expected level even though the answer 

was correct he did not accept it. 

 

Learner: You say, v – u = u + at -u 
Ben: Now you are now in grade ten.  
Learners: Yes. 
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Ben: If you were in grade 8 or 9 I would say yes you are right.  But now in grade ten 
you just say we take this ‘u’ to the other side. Since here it is positive it now 
becomes what? 

Learners: Negative. 
Ben: You are right but you know if someone can walk in here and see something like 

this; (He wrote; v – u = u + at –u), he will think that maybe this is a grade nine 
what? 

Learners: Class. 

 

The learner concerned complained inaudibly, maybe because he realised that he 

had just missed an opportunity to learn using something that he already knew and 

the teacher was not appreciative of it. 

 

Ben’s comment seems to indicate that his instruction was focused on processing the 

answers mechanically rather than understanding the concepts. A problem was taken 

as a sequence of things to be done such as adding, subtracting, dividing and 

multiplying. Learners were told to do the operation but they were not given reasons 

for doing so. 

 

Ben usually worked through the problems the learners had already attempted as 

homework. During such exercises Ben seemed to put more emphasis on solving 

specific problems in a particular way. The problem with such an approach is that 

learners do not then have to understand or interpret the mathematics problem 

involved, they just follow the given sequence of steps towards a specific goal and 

that is it. Reproducing a sequence of steps does not address adequately the 

mathematical knowledge, processes, representational fluency and social skills the 

learners need in other contexts as recommended by the Department of Education. 

 

5.3.2.1 Ben’s posing of questions 

 

Ben basically asked one type of question. He asked questions that pointed learners 

directly toward the correct answers. His questions did not stimulate high order 

thinking and problem solving because giving the correct response to leading 

questions does not necessarily mean that the respondent has understood. According 

to Fennema et al. (1999), understanding concepts involves more than accumulating 
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a set of facts and procedures. Ben hardly ever asked the question “Why?” Why 

questions invite learners to explain and justify their thinking and so give them the 

opportunity to understand what they are doing. If there are no ‘why’ questions no 

discovery can be made and real understanding cannot be expected.  

 

Ben’s leading questions were limited in scope requiring one or two word responses. 

Asking such questions did not create opportunities for learners to think about what 

they were doing. Ben’s questions usually ended with the word what, for example: 

 

Ben: So we are, we are now looking at what? Literal what? ... Equations. 
Learners: Equations (in chorus). 

 

Most of the questions were of this nature. After asking such leading questions Ben 

would often accompany the learners as they chorused the expected answers. If he 

did not chorus it together with them he would repeat the answer anyway after they 

had done so. He asked questions and faithfully answered them himself. He did this 

because he did not expect much from the learners who he described as lacking 

basic numerical skills. However, this does not justify denying them the opportunity to 

learn in a meaningful way where challenging questions are posed for their 

consideration instead of low order single word response questions as presented to 

them by their teacher.  

 

In the excerpt below Ben asked the learners whether they understood and they all 

chorused “yes.” Understanding that one side is greater than the other is taught as 

early as grade one, so in the context of grade ten it sounded trivial.  

 

Ben: It means that one of them weighs more than the other what? The other side... 
either it’s the right hand side which is greater than or vice versa. Do you 
understand? 

Learners: Yes 
Ben: If there is such a scenario...  we said we call it a what? An inequality. Just like: 

x + 2 > 4. This is an inequality. It means that the left hand side is greater than 
what? 

 
Below is another case where Ben asked very trivial question: 
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Ben: ...we take this 2 to the other side so it will be x <  4 minus what? Minus 2 
Learners: minus 2 
Ben: What is 4 minus two? 
Learners: 2 
Ben: Its 2. So it means this is our solution.  ‘x’ is smaller than what?  
Learners: Than 2 

 

Asking what four minus two confirms that Ben thought that the learners lacked basic 

numerical skills but here it seems rather extreme. It would have been more beneficial 

for the learners if he had asked them to work the problem out first before doing it 

himself on the chalkboard because I think most learners were capable of working out 

the answer in their heads. Ben demonstrated by writing on the chalkboard how to 

solve a problem which I expect some learners had already solved mentally, so it was 

probably a waste of time. There were other instances when similar comments could 

be made regarding the worthiness of spending time on what appeared to be obvious 

if not trivial. 

 

Learners in Ben’s class hardly raised their hands to offer answers. The teacher did 

not seem to expect it. The questions were not addressed to any one in particular so 

the learners tended to chorus back or together with the teacher. Ben addressed the 

class as a whole and so did not give particular attention to individual learners unless 

they asked him a question. When they had a chance to ask questions, leaners 

brought a little variety by posing different kinds of questions, for example: “Sir how 

do we know which one to pick?” and “Sir is it necessary to write all steps?” 

 

5.3.2.2 Uses of terminology 

 

Ben used some algebra specific terms but he did not explain them. Maybe he 

assumed that the learners knew them. At times Ben used words that had the 

potential of confusing learners, for example, he used word function to refer to the 

given expression, when there was no direct link between the word function and the 

variables in the formula. He also spoke of removing fractions as if they were tangible 

objects or quantities that could be handled physically. He referred to an expression 
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as not looking nice and so needing to be freed from its involvement with a fraction. It 

appeared as if the fraction was being removed for no other reason but that it did not 

look nice. This is quite misleading and could divert attention from the real problem of 

simplifying. Some learners appeared to be confused by the description of saying 

remove the fraction to the extent that one learner said “remove the half” when the 

teacher wanted her to say “remove the fraction.” Immediately after saying remove 

the fraction the teacher went on to say we want to remove the two from the bottom. 

Using words in a consistent manner helps learners to understand the procedures 

while mixing them up can confuse them. The excerpt below shows what transpired 

during one lesson: 

 

Ben: And you see here you have got a fraction, this side. Every time when you are 
given an expression with a fraction you first you remove the fraction to make it 
what? The fraction. That will be the easier way. Because if you want to you 
want to remain with h and if you... 

 

Ben went through the procedure of simplifying using the idea of inverse operations. 

An excerpt of the process is captured below: 

 

Ben: Something like this does not look nice so you must also remove this 2, 
(Pointing to the 2 in this formula A= ). So the first thing to do is to remove 
the what? When Ben said ‘does not look nice’ some learners laughed. 

Learner: The half. (very confidently) 
Ben: The fraction not the half because next time you will find there is 3/5. You first 

remove the fraction, we want remove this 2 at the bottom since this 2 is 
dividing...Let’s see. You know this one is now ok you now understand what is 
going on even if you are going to calculate area. This is you are trying to find 
the height of a triangle when you are given the area. 

 

One could argue that the learner who said remove the half was correct according to 

the way the question was framed. This was not the only time that Ben rejected 

correct answers from the learners when the responses differed from the ones he 

wanted. By so doing the learners were missing the opportunity to display their own 

versions of the answers. This is unfortunate because learners get discouraged when 

their efforts are not given credit. By saying “The fraction not the half because next 

time you will find there is 3/5” the teacher was trying to convince the learner that the 
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half is not a fraction which is misleading. For the concerned learner this brief 

conversation was a missed OTL on her own terms, that is, through active 

participation. 

 

Three other issues relevant to the enterprise arise in the above excerpt. One is the 

problem of what mathematics to teach and how to teach it. It appears Ben wanted to 

show that the problem was concerned with changing the subject of the formula from 

‘a’ to ‘h’ and at the same time involving a fraction. For his contrived view of the 

learners’ mathematical abilities, this was probably too much to handle in one 

example yet the formula for the area of a triangle is encountered by the learners as 

early as grade six if not earlier for some. The second issue linked to the first is that it 

appeared as if Ben had forgotten that the formula at hand was one that the learners 

were familiar with and so to say it did not look nice would probably confuse some 

learners. The third issue is that of authority in mathematics. Ben said “Every time 

you are given an expression with a fraction...” clearly this implies that the authority 

lay in the textbook and so the learners do not own their mathematics. 

 

5.3.2.3 Types of tasks given by Ben 

 

Ben gave learners tasks from the textbook to work on during class time as well as for 

homework. In this respect he gave the learners the chance to practice the prescribed 

skills and procedures. Communication with his learners was largely one sided, he did 

most of the talking and all of the chalkboard working. His voice was the most 

powerful representation in his case. For him the students had to hear in order to 

understand. He gives the message to the learners that “I am going to tell you and 

you are going to learn” but no amount of verbal explanation alone can enable the 

learner to attain any mathematical concept, because knowledge is constructed 

individually under favourable conditions. Verbal explanation is only one from of 

representation and is limited in scope. 

 

5.3.2.4 Use of different registers of representation 

 

In The National Curriculum Statement it is expected that grade ten learners are able 

to, “Recognise relationships between variables in terms of numerical, graphical, 
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verbal and symbolic representations and convert flexibly between these 

representations (Department o Education, 2002, 11). For the classroom the 

implication is that for OTL to arise, the learner needs to be provided with the 

necessary representations that help in the construction of mathematical knowledge. 

Ben did seem aware of this guideline. Ben moved from one representation to the 

other without allowing the learners time to think of or discuss the intermediary steps. 

Learners had little chance to explore relationships or create solutions with their own 

methods because they were not presented with open-ended situations where there 

were other ways to find and display answers. Ben tended to hurry through problems 

and concentrated on drilling rules and procedures. This is treatment which is not 

enough to teach anything to anyone. Treatment is important to teach transformation 

inside one register but it is not the final objective of learning. According to Duval 

(1995) the construction of mathematical concepts depends strictly on the capacity to 

use several registers of semiotic representation of the same concept.  

 

5.3.3 Cherry’s approach to teaching 

 

I observed that Cherry’s teaching was largely learner centred because she gave 

them time to engage in activities where learners’ input dominated. For example in 

the lessons discussed above, of the four periods two and a half were allowed for 

learners to work out the problems and then explain to peers. Such an approach to 

teaching afforded her learners the opportunities to engage in meaningful 

mathematical discourse among themselves. Cherry wanted to help her learners 

make the connection between school mathematics and its application in the real 

world. She believed that putting mathematics in context made it easier for children to 

learn and more effective. 

 

Cherry’s teaching was focused on the process of thinking about connections 

between concepts and procedures. The lesson presented above is testimony to this 

where she went through the important definitions and procedures of changing the 

subject of formula with the learners. She gave learners a chance to contextualise 

their mathematics. 
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During the lesson Cherry walked around the room monitoring learners' work and 

gave assistance when it was required or requested. She encouraged the learners to 

compare their solutions with their neighbours. She gave the learners confidence by 

entrusting them with authority, saying “Work something between the two of you.” 

Cherry believed that if learners select and use appropriate problem-solving 

strategies together they will learn to reason mathematically. Her comments were 

positive and affirming, for example if a learner gave a good answer she usually 

acknowledged it with words like, “a brilliant idea” and “very good.” 

 

Cherry catered for the individual needs of her learners. There were three learners in 

the class who were new to the school. Among the three there was one who got 

particular attention from the teacher. Cherry nearly always went to the learner’s desk 

to assist or just to look at the learner’s work. I asked Cherry why she was always 

visiting that particular learner and she told me that the learner was challenged by the 

work she had to do and was still trying to settle into the school. Cherry followed her 

progress very closely. She provided the learner with the support necessary to catch 

up. When she visited the learner she asked her to explain what she was doing. On 

the whole she tried to guide learners on an individual basis to develop confidence 

and the understanding of mathematics concepts and procedures. She talked to her 

learners in a non-threatening manner so that they were open to her and did not 

hesitate to seek her assistance when they needed it. She asked them to explain and 

justify their answers. 

 

Cherry was flexible in her organisation of work and she adjusted her teaching to the 

needs of the learners. She was not in a hurry and so gave her learners time to think 

over what they were doing and thus provided them with the opportunity to sort 

concepts out in their minds. She was flexible in her planning and could easily 

accommodate me when it was necessary for me to change the day of my next 

observation. 

 

5.3.3.1. Cherry’s posing of questions 

 

Cherry asked questions in long sentences where the first part would constitute an 

explanation put into context, for example: 
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Cherry: We are talking about variables. Jot down the word variable and give me nice 
little normal English but mathematically correct definitions of what a variable is. 

 

She also asked questions which required the learners to reason out their answers. 

For instance she posed this question in response to the learner’s definitions of a 

variable: 

It can’t be any value. Why? 

 

She tried to follow the learners’ thinking by posing questions that encouraged them 

to think further into the meaning of what they were saying. Meaning is created 

through participation in social activity (Murphy and Hall, 2008). Cherry gave her 

learners the chance to frame questions so that they could seek clarifications from 

their peers. On one hand this created opportunity for learners to justify their answers 

and on the other the experience of asking relevant questions. Sometimes Cherry 

asked the learners to formulate question for the whole class. Such an approach 

allowed the learners to see mathematics as a natural process in whose creation they 

actively took part. It brought mathematics nearer home for the learners. When 

learners present their thinking about ideas that they have initiated and discuss them 

with the class, they build confidence and are motivated. Cherry's learners showed a 

willingness to question each other's answers. She encouraged her learners, “let’s 

come up with a nice definition of” and guided them towards a conceptual 

understanding of algebraic terms. The lesson helped learners construct concepts 

about variables and the required manipulations or solving. 

 

She provided her learners with opportunities to understand that mathematics is 

about making sense of things. Cherry guided their learning experiences in such a 

way that learners could actively construct correct mathematical meanings. For 

example in the lesson she used promptings like “be more specific,” “add a bit more,” 

“does it mean then?” and “how does that sound?” This does not invite the learner to 

pay attention to the answer only but it gives them the opportunity to reflect upon their 

own thinking and if necessary to adjust and reform. 
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5.3.3.2 Uses of terminology 

 

Cherry guided her learners to define relevant terms as well as establish relationships 

between them. She probed the learners to give more information and refine their 

meanings. She would say something such as “be more specific,” “does it mean 

then,” “come up with more” etc. Below is part of the conversation between Cherry 

and the class while they were discussing the term variable: 

 

Cherry: Listen carefully. We have come with a figure, a letter, which...? 
Learners: With a value that changes. 
Cherry: With a value that changes. It’s better to say with a value that can change 

than to say it can take any value. Because remember in an equation there is 
one or two or three values which it can be. It can’t be any value. Why? 

Learner: Miss is it not what you get after working out? 
Cherry: Ya. Can you be more specific? 
Learner: ...the one you are looking for. 
Cherry: Ya. Be more specific? 
Learner: You are looking for this one and you get that one. (Sounded like)... 
Cherry: Alright, let’s put our definition together we say, it’s a letter it’s a value,  

something in normal English. That can change.  Vary variable.  

Learner: Uuh uh 
Cherry: The word va-ri-a-ble sounds like to vary. It’s a letter something that will 

change... according to an equation now. We have worked with linear equations 
we have worked with quadratic equations. Don’t you understand? In a linear 
equation how many values can that variable have? (Said slowly) 

 

It was worthwhile to spend time on building an understanding of the word variable 

because it is one of the most important concepts in algebra. Cherry guided her 

learners to establish the meanings of the algebra specific terms so that they would 

understand them when they come across them in questions. Referring to other 

meanings as well was probably an attempt to integrate across the curriculum. 

 

Besides explaining the terms Cherry also drew ‘pictures’ on the chalkboard, for 

example, she drew a see-saw and a balance scale to reinforce the meaning of 

balance. She said she would have brought one to school if she had it. The concept 

of balance is used to reinforce the idea of equality. The learners clearly enjoyed their 



193 
 

teacher’s attempts at drawing and will probably remember the concept because of 

association with this occasion.  

 

5.3.3.3 Type of tasks 

 

In an effort to help learners practice what they had learned Cherry gave them the 

opportunity to display their efforts in front of their peers. Cherry involved learners 

actively in the learning process. She chose experiences that contributed to the 

achievement of these goals. For example during one of the lessons Cherry divided 

the chalkboard into ten sections and allocated the problems from the worksheet to 

ten different learners. She allocated the problems according to the capabilities of the 

learners. This was what she told me when I asked her after the lesson what criteria 

she had used in allocating the problems. The learners did not hesitate to go the 

chalkboard to attempt their individual problems. As they worked the learners could 

consult each other, the teacher or any textbook if they needed to do so. There was a 

busy atmosphere and concentration was good.  

 

The above activity gave the learners a chance to examine and justify their solutions. 

When I saw ten learners going to the chalkboard I thought there was going to be 

chaos. I was proved wrong for the learners worked in an orderly way. I observed a 

number of them stand back and analyse their own work and make corrections before 

they sat down to look at their peers’ efforts. The atmosphere was conducive to 

independent as well as cooperative learning while the teacher took a back seat but 

she could be consulted at any time. She encouraged the learners to help each other. 

This is in line with the constructivist view which claims that peer interaction 

stimulates student reflection about ideas that other learners present (Piaget, 1970).  

 

Through this exercise Cherry gave the learners an experience of controlling their 

own learning and also enhanced their social skills through working together in limited 

space and sharing resources. Explaining their solutions helped learners internalise 

the ideas for they had to articulate what they worked out in an intelligible way for 

others to follow. This gave them a great opportunity to revise their thinking and thus 

gain confidence in themselves as mathematics thinkers. Learners construct 

knowledge if they are actively involved in solving problems that they understand and 
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want to solve (Vygotsky, 1978). Through social interaction, learners learn to interpret 

others' perspectives and fit them with their own interpretations. Learners learned to 

respect each other’s ideas as well as their own. 

 

Curriculum 2005 focuses on fostering learning that encompasses a culture of human 

rights and sensitivity to the values of reconciliation and nation building. Clearly the 

activity gave the learners the opportunity to receive and give assistance in an 

atmosphere that encourages tolerance and the building of each other’s confidence 

as well as one’s own. It also gave them confidence in their own abilities to perform 

and contribute in an environment conducive to learning. The environment was 

designed to support and challenge the learners’ thinking in a more direct way. In this 

situation mutual understanding is motivated and willingness to share without fear of 

judgement is also encouraged, at the same time the learners become resources for 

one another. 

 

Cherry observed her learners solve problems and listened to their strategies so that 

she could obtain information about their prior conceptual understanding and offer 

help when it was needed. She then built her instruction upon the learners' prior 

conceptual knowledge in mathematics and related subjects such as the English 

language proper. She used word problems that the learners could identify with to 

help them form equations which they could then solve. On the day that she taught 

about simultaneous equations she used examples that required the learners to read, 

identify variables, form linear equations, and solve and apply the derived solutions to 

answer related questions. This kind of problem solving is indicative of process rather 

than procedure orientation to problem solving. One typical example of problems 

given to learners is: 

9. A maths test contains multiple- choice questions worth 2 marks each and 
short questions worth 3 marks each. The test is out of 50 marks and there are 
22 questions. 

a) Define two variables. 
b) Set up two linear equations. 
c) Solve the two equations simultaneously to determine the number of 

multiple choice questions; 
d) If the test was 1 hour long, how long, how much of your time would you 

allocate to answering the short questions?  
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This example has the features of building up concepts in a coherent way as opposed 

to bits and pieces to be put together at the end to form a whole. The sub-questions 

are linked in a meaningful way that appears to tell a story. Learners experience 

mathematics as a meaningful endeavour and they could easily identify with the 

question. Thus Cherry conducted her lessons in such a way that the learners learned 

procedures in a conceptual context, like the example above and many others like it. 

Cherry provided opportunities for learners to learn to extend their knowledge to new 

situations. She did that by creating opportunities for them to construct mathematical 

concepts for themselves. 

 

5.3.3.4 Use of different registers of representation 

 

Cherry clearly attempted to use different registers of representation during her 

lessons. She used spoken and written language, and graphical, symbolic and visual 

forms of representation. She helped her learners make mental representations by 

giving them exercises that demanded that they pay particular attention to what they 

were doing because explanations in front of the whole class followed thereafter. The 

learners had first to think about the problem, attempt it and then put the 

mathematical representation on the chalkboard. They then used the mathematical 

representation to explain to their class mates how they solved the problem. All these, 

voice, language, written language and mathematical registers, gave the learners the 

opportunity to construct knowledge. The teacher made it possible for the learners to 

experience working in several registers. Thus Cherry’s equipped her learners by 

giving them experiences that made the movement between different registers 

possible while they constructed new knowledge. 

 

5.4  Conclusion 
Contributory factors which help to identify opportunities to learn in this study were 

discussed. These include the nature and quality of instruction as manifested through 

teaching approaches, the posing of questions, use of terminology, the type of tasks 

set by teachers, and how different registers of representation are used for concept 

building. Using the identified factors I discussed how the three teachers provided 

their respective learners with opportunities to learn grade ten algebra concepts. The 
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next chapter presents a detailed description of the new framework and provides 

guidelines on how it can be used as an aid for understanding OTL at a deeper level, 
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CHAPTER SIX 

 

GENERAL DISCUSSION, SYNTHESIS AND CONCLUSION 

 

6.1 Introduction 

 

Literature reviewed on opportunities to learn (OTL) indicates that it is positively 

associated with achievement (Stevens, 1993, Gau, 1997; Kilpatrick et al., 2001 and 

PROM/SE 2009). If students are provided with an opportunity to learn they will do so 

(PROM/SE, 2009). But one of the problems with OTL is that it is open to multiple 

interpretations. Although OTL has received attention in international studies in 

developed countries, its use in developing countries has been limited (Reeves and 

Muller, 2005). Consequently this study seeks to contribute to the understanding and 

perceived benefits of engaging with the concept in the practice of mathematics 

education in South Africa.  

 

Through the discussion of the findings, themes emerged that are important to this 

study. The themes do not stand completely detached from each other; they overlap 

in meanings and application. The themes are: choosing tasks that encourage 

discussion, giving space to learners, finding mathematical problems in the everyday 

experience of the learners, attending to learners individually, and using different 

registers of representation. I then used the results of the current research to develop 

a new framework that helps define opportunities to learn in the classrooms as I saw 

them arising. With the new framework I tried to expand on the components 

mentioned above and at different levels of achievement. This chapter presents a 

detailed description of the new framework, provides guidelines on how it can be used 

as an aid for understanding OTL at a deeper level, and discusses the shift in focus 

from general to specific components as far as mathematics learning and teaching is 

concerned that occurred during the course of the current research. It concludes with 

some suggestions for future research. 
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6.2 Defining Opportunities to Learn 

 

After reviewing the relevant literature, it appears that four components of the OTL 

framework stand out. These are content coverage, content exposure, content 

emphasis and quality of instructional delivery. I have used the OTL framework to 

investigate the teaching of algebra in South Africa using three case studies and from 

this I was able to develop a new framework (or modified framework) that I now 

present. 

 

Under the new framework content coverage is understood using indicators such as 

the type of tasks that are given to learners and whether there is evidence that the 

teachers choose tasks that encourage discussion and hence the building of new 

concepts. Similarly, a number of indicators can be used to investigate content 

exposure such as finding mathematical problems in the everyday experiences 
of the learners and asking questions that give space to learners to think. 
Indicators of content emphasis include giving learners the chance to make the 
necessary conversion within and between different registers of representation 
and the corresponding practice. The quality of instructional delivery is indicated by 

the approach that the teacher uses such as giving attention to individual learners. 
The widening of indicators broadens the scope for analysis. 

 

Apart from building an expanded list of indicators that define the same concept, the 

new indicators identified in the new framework help to move broad indicators (such 

as content coverage, content exposure and content emphasis) into more specific 

ones that are readily observed in the context of a lesson. A broad framework is 

hereby transformed into a potentially manageable tool for investigating OTL in the 

classroom. However, since these indicators were derived from case study data, 

implementers of this framework should bear in mind that the indicators produced 

here may be more suited to conditions similar to the ones under which they were 

derived and that different indicators may need to be identified for different contexts. 

 

In the section to follow I describe the new framework, and include a detailed 

explanation of the indicators, highlighting how they were derived and their potential 
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for use in analysis. The description is supported by evidence from current research 

as well as relevant literature.  

 

6.2.1 Assessing content coverage 

 

Content coverage is directly related to what is taught. In South Africa what is taught 

is determined by the Department of Education but its implementation is left to the 

teacher who decides what to present to the learners. It is the implemented 

curriculum more than the intended that explains achievement (Cueto et al., 2005). 

This shows clearly the important role that teachers play in the learning process. As 

they teach, teachers have to set tasks to reinforce concepts. This study has shown 

that teachers need to choose tasks that encourage discussion as well as 
problem solving. The tasks or activities in which learners are involved influence 

their thinking and the valuing of their subject. If the activities given to the learners are 

characterised by routines that do not allow room for creativity, such practices deny 

the learners the opportunity to learn the core curriculum for their age and grade level 

(Stevens, 1993). 

 

Traditional instruction begins with the syntactic rules of algebra, presenting students 

with a given symbolic language which they do not relate to (Amerom, 2002). In the 

current study the insistence on rules was clear but the difference lay in how these 

rules were delivered. On one hand the learners were led from the definition of terms 

to their application while on the other the learners were simply told the rules to be 

followed. In what I call the ‘middle learner group,’ the learners were ‘coerced’ into 

accepting the rules as presented by the teacher. Presumably better understanding 

was to come from prolonged practice. 

 

Learners are expected to master the skills of symbolic manipulation before learning 

about the purpose and use of algebra (Stacey et al., 2004b). In other words, the 

mathematical context is taken as a starting point, while the applications of algebra 

(like problem solving or the generalising of relations) come in second place. Students 

are given little opportunity to explore the powers and possibilities of algebra for 

themselves. One can imagine that an average or below-average learner finds little 

satisfaction in practicing mathematics without a purpose or a meaning. Amerom 
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(2002) points out that there is a rapid formalization of algebraic syntax in the 

traditional approach. In the classes observed, the transition from one representation 

to the other was often not clearly marked or else it was sudden and glanced over. 

For example, moving from algebra to its graphical representation of inequalities or 

from number patterns to algebraic form was sudden. 

 

Algebra is the first mathematical discipline that students encounter that uses 

variables (Saeman, undated). The variables occur in different forms in grade ten: in 

expressions, systems of equations in one or two unknowns, in inequalities and in 

generalisations of number systems. This constitutes the content. The goal of school 

algebra is, therefore, to teach learners to manipulate the different compositions or 

forms in which variables are found. Manipulation means learners must perform 

operations or calculations, factorise, and describe and simplify different forms. Unlike 

arithmetic where the operations are straight forward, the students must now not only 

calculate variables, but also determine which operators to use. The algebra teacher 

must help the student overcome this paradigm shift. Generally it is agreed that 

students must acquire competency in algebraic thinking in order to have full 

algebraic capabilities like reasoning with unknowns, generalizing and formalizing 

relations and algebraic symbol manipulation on paper.  

 

Generalising and formalising relations require a high level of mental action, 

therefore, teachers should involve learners in activities that encourage them to 
construct their thinking at deep levels. The kind of questions asked invoke 

different thought processes, for example, a question that asks a learner to explain 

‘why’ and ‘how’ provides a strong opportunity to make connections between ideas. 

Being able to articulate a process or an idea encourages a deeper understanding of 

a process or idea because doing so involves movement between mental 

representation and verbal and/or visual representation. On the other hand, a 

question that asks for answers only provides a weak opportunity for learners to make 

connections in order to establish relationships that lead to conversions between 

ideas. 

 

Teachers should ask learners to reason and use their reasoning to build theories that 

they can prove. Learners should be engaged cooperatively and individually in 

http://www.aimhightutors.com/blog


201 
 

exploratory lessons involving examples from their own real life experiences. 

Individual economic issues and group endeavours like fundraising activities that 

involve them in making decisions based on their experiences in real life are 

examples that can be used for this. Such exercises will acquaint learners with 

systems of variables which require the use of simultaneous equations and/or 

inequalities. These activities should be open-ended, challenging and problematic for 

learners so that they can be motivated to engage in them. 

 

However, analysis of observation data reveals that teachers are primarily concerned 

with establishing rules that are used to solve problems from textbooks. Little 

attention is paid to learners’ real life experience that could generate meaningful 

equations in variables that make sense to them. 

 

6.2.2 Assessing content exposure 

 

This study can be informative to curriculum developers. We can learn from Cherry’s 

approach that learners can practice their work together on the chalkboard instead of 

on a one by one basis, thereby saving valuable class time. This is an example of 

giving learners space. When learners are involved directly in the learning of others 

as well as their own, it helps to create a conducive environment in which worthwhile 

learning can take place. In order to verbalize their thinking, learners must make a 

conversion. They think, talk and write on the chalkboard and this gives them the 

opportunity to learn with understanding. Classroom communication and interaction 

are primary issues for teachers to consider in constructing positive non-threatening 

learning environments (Cobb et al., 1990). This study has shown that when learners 

are given the opportunity to present before their peers, they are motivated to work 

and are eager to participate in a meaningful way by researching and consulting 
with each other and the teacher. By so doing they verify their ideas and construct 

valuable new knowledge. This is an example of giving learners space by 

encouraging classroom communication and interaction. 

 

Teachers should not assume an all-knowing position and instead should give space 
for learners to pursue their own line of thinking. They should also not behave as 

if understanding is something that one either possesses or does not possess, for 
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understanding can take place at different levels for individual learners. In the case 

studies, the learners asked questions that showed that they expected more than the 

manipulation of expressions. Sometimes they wanted to stay on familiar ground and 

seemed to resist change but at other times they wanted to know if there were other 

ways to solve the problems.  

 

It is a known fact that people learn from experience, therefore teachers should find 
mathematical problems in everyday experience that are relevant for learners. 
These problems should focus on the main concepts that teachers want learners to 

learn and should relate to their previous learning. For example, worksheets that tie 

algebra in with real world applications in sport, banking, food production, cell phone 

plans, population growth, cooking, borrowing money, life spans, music downloads, 

solar power, etc. could be produced together with the learners so that the solutions 

derived are not mysterious (simply found in the back of the textbook) but are real and 

meaningful. If for example, x=3 and y=4 was an answer to a given simultaneous 

equation, it would be better understood if it was given in the context in which the 

answer would be three oranges and four apples. Engaging in such exercises gives 

learners the opportunities of interpreting, articulating and applying mathematical 

concepts to familiar situations that make sense to them.  

 

While they are interpreting the question they have to translate between everyday 
experience and formal mathematical experience. This experience is essential in 

the process of building a lasting understanding of learned concepts and links 

relationships that make sense to learners. As students work through the problems, 

they can use the mathematics skills and concepts they have learned in their 

mathematics curriculum and apply them to real-life situations. 

 

6.2.3 Assessing content emphasis 

 

The major purpose for teaching algebra should be to give learners the opportunity to 

make conversions between registers of representations in order to construct 

algebraic concepts for themselves. How do learners make the required conversions? 

Data from this research suggests that the learners are learning what the teacher is 

teaching, that is, from Ann they are learning that in algebra treatment is very 
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important in order to practice the prescribed manipulations and that once they have 

become efficient they can discard some steps and go straight to the answer. From 

Ben they are learning that algebra is a rigid set of steps that have to be strictly 

followed. From Cherry they are learning that algebra stems from real life 

experiences, that it has rules that are necessary to learn through practice (treatment) 

and cooperation.  

 

The results of this study demonstrate that when learners are given opportunities to 

practice in one register they become efficient and get correct answers. Ann's 

learners became quite good at finding mathematical patterns and recognising and 

simplifying expressions. The questions the learners asked provide evidence that they 

were not following blindly but that they wanted what they were learning to make 

sense. But their teacher made the conversions for them and then gave them the 

opportunity to practice. When learners sit and listen passively as they watch the 

teacher perform the algebra, they do not have the opportunity to learn because they 

cannot make the conversions necessary for the construction of concepts. Ben’s 

learners watched as he asked and mostly answered his own questions, for he 

distrusted their own mathematical abilities.  

 

Cherry’s learners were given the opportunity to form the concept by defining the 

algebra specific terms, and practicing and articulating in front of the class. The verbal 

explanations of their thinking and the writing of it on the chalkboard provided 

evidence that learners constructed meanings and communicated them. The 

articulation was indicative of their learning. The learners did not only learn algebra 

but also practiced social skills such as working with other people in a limited space, 

listening to others and being open to suggestions from others. They were also 

enthusiastic when their turn came to present their solutions on the chalkboard.  

 

The fact that the official syllabus expects learners in grade ten to be able to 

recognise relationships between variables in terms of numerical, graphical, verbal 

and symbolic representations and convert flexibly between these representations 

(tables, graphs, words and formulae) should be taken more practically by the 

teachers. Conversion is essential in the building of mathematical concepts. It is 

important not just to know the correct procedures required to arrive at the answer but 
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to also know the thinking processes involved in getting a correct product and its 

conversion. 

 

This study shows that all three teachers used the different registers of representation 

of algebraic concepts but did not always create opportunities for their learners to 

make all the conversions essential for the construction of those concepts. The 

teachers largely concentrated on the conversions within one register (treatment) and 

then moved straight to another representation without justification. For example, one 

teacher told the learners that after getting an algebraic solution for an inequality they 

should move directly to illustrating it on the number line. Reasons for doing so were 

not given except that the textbook said so. Another teacher stressed the number of 

terms and order of signs after the expansion of a binomial. Teachers need to be 

made aware that learners should make the conversions themselves and not just be 

told to do so. 

 

6.2.4 Assessing the quality of instructional delivery 

 

Constructivist teaching is about giving learners the opportunity to construct 

knowledge individually (Ernest, 2011). For instruction to be effective, learners must 

have, perceive and use their OTL (Kilpatrick, et al, 2001, 2003). The teachers should 

make it possible for learners to learn as individuals even when they are part of a 

group or the whole class. They can do this by not treating them as if they were all the 

same and in need of the same treatment. Concern should be with helping every 

learner in class learn efficiently at their own pace (Kilpatrick, et al, 2001, 2003). If 

teachers listen to individual learners explain their thinking, they provide them with 

OTL. Ann and Cherry showed us that it is possible to attend to individual learners in 

ways that do not exclude the other learners. Ann would always, while attending to 

individual learners, speak in a voice loud enough to be heard by everyone; her voice 

was a powerful representation that benefited all learners. 

 

Every school situation, classroom and learner is different. The nature of each 

classroom evolves its own culture. The teacher who uses strategies that focus on 

helping students construct mathematical power must recognize the differences 

between each class of students and adapt instruction to fit this culture. Ben refused 
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to take responsibility for the poor academic background that he perceived as 

affecting his learners’ underperformance in mathematics. Cherry gives learners 

questions according to their abilities so that every learner can perform well. This 

helps to build confidence in the learners.  

 

This study shows that the teachers emphasise answers even though they state the 

opposite. Ben told his learners that in mathematics the working was the answer and 

Ann introduced her learners to shortcuts to arrive at desired answer forms. Cherry 

seemed satisfied when two methods led to the same answer. They all said that the 

answer was not the most important end and yet in practice they seemed to attach 

the most importance to answers. Teachers have to decide what to emphasise and 

how to proceed with certain content. 

 

Teachers must become more knowledgeable about how mathematical concepts are 

constructed so they can provide their learners with appropriate opportunities to do 

so. It is important that they be acquainted with the three actions of formation, 

treatment and conversion because these constitute the process by which 

mathematical concepts are constructed. If teachers know these actions, they will 

tailor their instruction to achieve them and so give learners the opportunity to learn. 

 

In the new framework OTL are viewed in terms of whether the learners are given the 

chance to make the conversions for themselves or not. This framework considers the 

learning process much more closely. The three schools observed all had the 

elements usually defined as necessary for teaching and learning to take place: 

qualified teachers, recommended textbooks, timetabled mathematics lessons and 

the learner’s willingness to learn. In the old framework these conditions define OTL 

so ideally the learners were supposed to learn. But this study has shown that this is 

not necessarily the case. Learners also need the exercise of movement between 

registers to make the necessary conversions. 

 

However, when we look at how teachers created OTL for their learners, the 

differences appear to come from the way they used the different registers of 

representations of algebraic concepts. Now I will consider the three actions that are 
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deemed necessary for the construction of mathematical concepts. The actions are 

formation, treatment and conversion. 

 

6.3 Synthesis 

 

I now attempt to synthesize the teaching and learning of algebra using Duval’s 

(1999) model of how learners construct mathematical knowledge. He claims that the 

conceptualisation of mathematical concepts relies on the articulation of at least two 

registers of representation (different ways working with mathematical knowledge). 

Teachers expose learners to a variety of representations of mathematical ideas 

including numeric, geometric and algebraic representations. Furthermore, in algebra 

they include number patterns and symbolical, graphical and verbal representations. 

If a learner can use more than one representation of a concept, then they have 

learned it. It follows that to provide OTL the teacher has to create the situation where 

the learners engage in activities that help them to distinguish the features of the 

concept (formation), practice in one register (treatment) and then change the 

representation into another register (conversion).  

 

6.3.1 Considering formation 

 

In the South African context, the formation of concepts has already taken place in 

the syllabus, textbooks and teacher’s notes. All the schools used the same 

curriculum determined for them by the Department of Education. First and foremost, 

formation is the responsibility of the Department of Education which determines what 

is taught. This indicates that learners are given the same material to learn which 

ideally can be perceived as the same OTL. The teachers were all aware of these 

requirements and each was teaching some aspect of the above at the time of 

observation. 

 

Following the above syllabus, all the teachers dealt with rules for manipulating 

algebraic expressions. They explained the rules. Verbal registers are important for 

the introduction of concepts but it is important to underline that a verbal register 

cannot exist on its own because it depends on the community of practice and on the 

different meanings that individuals usually give to words and ideas (Bagni, 2005). 



207 
 

The teachers gave their learners tasks largely from the Classroom Mathematics 

textbook which required the manipulation of first and second order algebraic 

expression and equations. So as far as formation is concerned, what is expected is 

clearly laid down in the curriculum documents though the teachers are at liberty to 

choose the order and depth to which they present the concepts. Therefore it is the 

other two actions that have a more direct bearing on the opportunity that the learners 

have of interacting with the expected algebra to the desired level of competence. 

 

6.3.2 Considering treatment 
 

Treatments are transformations inside a semiotic system or mode, such as 

rephrasing a sentence or isolating x in an equation. To meet the requirements 

specified by the department of education, teachers engage learners in multiplying, 

factorising, and simplifying algebraic expressions. The results of the study showed 

that symbolic manipulation is at the centre of grade ten algebra in South Africa. 

Learners in the respective classes were engaged in the process of manipulating 

algebraic expressions themselves or together with the teacher. In one extreme case 

the teacher did the manipulation for the learners while they sat and watched and 

then copied the work into their workbooks. 

 

Treatment tended to dominate all classrooms. Learners were subjected to long 

exercises on practicing skills or performing particular calculations. They calculated 

values, expanded binomials, factorised trinomials, simplified expressions and solved 

equations and inequalities. All of these are done in the same register. But it is well-

known that understanding is much more than practicing procedures. Understanding 

develops gradually over time through active engagement in mathematical thinking 

involving conversions between the registers. 

 

During the lessons observed, teachers gave learners time to practice the concepts 

they had just been exposed to. Learners practiced individually or cooperatively. 

Understanding is expected to develop as learners practice. But understanding 

concepts involves more than knowing a set of facts and procedures. Treatment, 

though important in the process of concept building, is not enough because it is 

performed within one register of representation and there is a need to have more 
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than one register (Duval, 1995, 2006). Treatment leads to fluency in one register 

only and so offers a limited opportunity to learn for it does not prepare learners to 

use their knowledge beyond the particular type of problem being solved. It prepares 

them to perform the same procedure to solve similar problems but does not prepare 

them to construct new knowledge. 

 

The results of this study show that the teachers were all concerned about treatment. 

One teacher, Ann, said in an interview that it was important to give learners 

challenging exercises to work through. The learners were given a lot of exercises to 

do in class and as homework. This practice is mirrored in the traditional curriculum 

where concept development is viewed as arising from computational proficiency with 

relevant procedures. Under such circumstances individual thinking or reasoning is 

given limited time. Sometimes the learners were told rules to perform certain 

procedures such as changing the subject of the formula, but no justification was 

offered for the rules. The learners were not engaged in reasoning about the structure 

or the need to perform calculations. 

 

Ann wanted her learners to learn the procedures that would help them to get correct 

answers. Even though she taught them to go step by step to the answer she was 

also keen to have the learners reduce the number of steps as they became proficient 

in obtaining correct answers. Ann emphasised procedures and answers and the 

chorusing of answers was often used. Although Ann tried to get the learners to 

contribute ideas, most of the time she ended up telling them the answers. 

 

In the first classroom when the teacher dealt with changing the subject of the 

formula, learners were told to take a term over to the other side of the equal sign and 

change the sign. It appeared as if they were performing some sort of trick or magic 

which presumably reduces algebra to "finding x" and no other meaning. Though 

such an action, taking the term over the equal sign, can yield a correct result it does 

not guarantee that the rule is understood. Without understanding, learners might not 

see a need to change the subject in the first place, let alone the need to transport 

terms across the equal sign. This shows that if treatment is taken as an end in itself, 

the result is the crippling of mathematical development in the learners because it is 

restricted to one register. 
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In the second classroom, rules were stressed as far as they led to the stage where a 

pattern or format of the answer was recognisable. Once the pattern was recognised 

(through the teacher’s initiative), the learners were then encouraged to skip steps 

and just plant the answers using the identified format. One such example was when 

squaring a binomial. Learners were told to expect three terms in the answer where 

the signs connecting the terms could be predicted and put in place before the 

problems were worked out. Thus, when students are confronted with squaring a 

binomial, most will just start slotting terms into position. If they do not misread the 

terms, they will get the correct result.  

 

In the third classroom, the same rules were explained but from a more practical point 

of view that linked with everyday experience, such as the fact that rules are essential 

and that once learned can be applied in other similar situations. The teacher used 

the example that once a person has learned to drive they can drive anywhere in the 

same country. It can be surmised that such learners are likely to be more motivated 

to understand the rules knowing that other occasions will arise when they may need 

to implement them. 

 

6.3.3 Considering conversion 

 

Conversions are transformations that change the system while maintaining the same 

conceptual reference, such as going from an algebraic to a geometric representation 

of a line in a plane. Limited opportunities are available for the learners to develop 

practices that involve converting between the registers by themselves. Ann showed 

her learners how number patterns could be converted to algebraic expressions. The 

discussions regarding the patterns helped learners predict the next terms after which 

they had to mentally coordinate the features of each sequence. In this way, Ann’s 

learners learnt how to convert a given number sequence into its algebraic form. The 

ability to convert from one register to the other is essential for the construction of 

mathematical knowledge. So by engaging learners in the activity of converting from 

one register to the other, Ann provided OTL to her learners. 
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Conversion is essential for the building of mathematical concepts (Duval, 1999).  The 

grade ten syllabus supports this view by stating that learners should be flexible and 

able to convert between different representations. It is expected that the conversion 

be done by the learners but in practice on the ground, this does not always take 

place. The learners are shown or told the different representations as if it was 

social knowledge, for example, the situation where a child is told “this is your aunt” 

and there is no room to ask for justification. So what the curriculum says is one thing 

and what happens in the class room, quite another. When I was teaching grade ten I 

did not pay any particular attention to this guideline about allowing learners to 

convert flexibly between different representations. I suspect that this may also be the 

case with many of my fellow teachers in the field. For me different representations 

were like objects to be introduced independently.  

 

Ben’s role was to verbalise the algebra while the learners listened to what he had to 

say. As far as Ben was concerned, to tell the learners the algebra was important and 

his words provided the clues to understanding. This was his way of providing his 

learners with the opportunity to learn. If the learners listened, then they were 

learning. And yet there was no motivation to pay attention for Ben started sentences 

and phrases which he expected the learners to complete using only one or two 

words. If they completed the statement correctly then they were learning. At times he 

would accompany them in supplying the required word. It is usual to start a question 

with the word ‘what’ but Ben seemed to nearly always put it at the end. He had 

mathematical knowledge which he wanted to give to the learners. He did not 

challenge them to think about the procedures. He simply told the learners that the 

procedures worked and expected them to accept the fact. This is treatment. But 

treatment though necessary is not sufficient for the construction of knowledge. The 

danger is that should the learners forget the procedure, they would have no 

conceptual basis for reconstructing it. If they had talked about what they were doing, 

the learners would have had the opportunity to understand better rather than engage 

in what appears to be a mindless recall of procedures.  

 

Ben also used visual representation in his teaching of inequalities. He drew a 

number line on the chalkboard and illustrated the solutions sets on them. Though 

this graphical representation was appropriate and the learners copied it into their 
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work books, most had probably learned very little about the concept. This is because 

they did not have the opportunity to think through the reasons for doing so. They 

were not given the chance to question the movement from one form to the other. 

Reasoning leads learners to making a necessary conversion on their own. In this 

case, even though two different representations of the same concept were used, it 

does not translate to learning for it was still just treatment as the necessary 

conditions were not made available to the learners. 

 

To provide opportunity to learn, Cherry emphasized concepts and different registers 

of representation of algebraic concepts. She was aware of the necessity of using 

more than one register of representation of concepts. The syllabus encourages the 

use of different representations of concepts to the learners. Availability of multiple 

representations can encourage new perspectives on a concept and so give the 

learners an opportunity to learn. 

 

By asking learners to write down key concepts, Cherry was encouraging conversion 

because the learners had to think and write down. The learners had to change the 

register to communicate what they thought. Cherry provided learners with 

opportunities to connect with the past so they could build new knowledge with the 

support of what they already knew. This is in line with the constructivist view of 

learning which state that it is necessary for the learners to build their knowledge on 

what they already know. 

 

During the lesson, when learners had to present solutions to problems in front of 

their peers, they had a chance to make mental representations by thinking about the 

problem and then put the mathematical representation on the chalkboard. The 

learners had to organise, link and communicate their solutions. They then used the 

mathematical representation to explain to their class mates how they solved the 

problem. All these: voice, language, written language and mathematical registers, 

gave the learners the opportunity to construct knowledge. The teacher made it 

possible for the learners to experience working in several registers. This is an 

important role of the teacher, to provide the context for learning to happen. The 

experience that the learners had is in line with the new curriculum in South Africa 
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which demands that teachers use learner-centred approaches that empower 

learners to take responsibility for their learning. 

 

Kieran (1992) shows how content, teaching, and learning contributes to the 

difficulties that students have in learning algebra. Kieran pointed out that the 

cognitive demands placed on algebra students include treating symbolic 

representations which have little or no semantic content like mathematical objects 

and operating upon these objects with processes that usually do not yield numerical 

solutions. Mathematics does not lie in its symbols but in the ideas that these symbols 

represent. 

 

Ideally you learn when you relate to the object of knowledge and the teacher is only 

the facilitator. You have to create the object of the subject. The object is not in the 

teacher or in the learners, it is in the problem. The problems are the objects of 

knowledge because when the learner reads the problem and thinks about that 

problem, he/she is moving into the brain to find a means of solving it. This is the 

moment when Piaget says there is disequilibrium because there are things that they 

know about the problem and things they do not know. There is no example of this 

taking place in Ben’s lessons. The role of the teacher is to motivate the learners by 

giving them different objects to learn or setting up a situation aimed at providing 

chances for them to interact with each other. The teacher should offer a variety of 

representations of the object because the use of different representation registers 

allows the exact characterization of the mathematical object (Bassoi, 2006). This is 

so not only for treatments from the same object but also in the conversion of 

registers from a diversity of language forms (natural, arithmetic, algebraic, etc.). 

 

All teachers face the challenge to engage learners in mathematics work, maintain 

their focused involvement in it, and assist them to take advantage of instruction to 

learn (Kilpatrick, et al, 2001). For the learners to be able to recognise relationships 

between variables in terms of numerical, graphical, verbal and symbolic 

representations and convert flexibly between these representations as the syllabus 

demands, teachers need to present the work in ways that make it possible. Creation 

of situations where learners convert within one register was easy for the teachers but 

conversion between the registers was difficult. It demands that the teachers 

http://www.google.co.za/search?hl=en&rlz=1T4GZAZ_enZA350&tbm=bks&q=inauthor:%22Jeremy+Kilpatrick%22&sa=X&ei=ZB2xTrOVMISnhAfY3b31Ag&ved=0CB4Q9Ag
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themselves be keenly aware of the structure involved in the subject matter and that 

they choose appropriate aspects that contribute to the building of concepts they are 

to develop. The process requires teachers to have good mastery of the subject 

matter though this alone does not equip them with the capacity to deliver. 

 

There are other constraints that hinder meaningful communication between teachers 

and learners. Time seems to have been a factor that influenced the amount of 

exposure that the teachers gave their learners to engage in the reasoning and 

thinking that was required for conversion to take place. It seemed that it would take 

too long for the learners to make the conversion themselves so most of the time 

teachers ended up making them for the learners. The results of the analysis show 

that learners do not get the full benefits of the process of conversion because the 

teachers tell them the answers. By doing so, they rob them of the excitement of 

discovery which leads to better and meaningful learning which is required for the 

effective construction concepts. Learners cannot be expected to organize 

themselves sufficiently to exploit this powerful action of converting between different 

registers. 

 

In Chapter Two much of the focus was on general ways of interacting with OTL. 

Specific indicators of OTL as children learn in the classroom only formed a small part 

of the literature review. The shift in focus from the general to the particular that 

occurred during the course of the current study was a direct response to the 

conditions on the ground which suggested that to understand OTL better requires a 

certain level of knowledge of how learners construct mathematics concepts. This 

shift introduced me to Duval’s theory (1995) about how conversion between registers 

was a prerequisite for the construction of mathematical concepts. 

 

What emerged from the literature review is that OTL is important to consider in the 

teaching and learning of school mathematics as indicated by the many studies that 

have been undertaken in the hope of explaining differences in achievement within 

and between countries. Some of the factors found to impact on OTL include: the 

degree of overlap between the content of instruction and that which is tested 

(Reeves and Muller, 2005), equitable conditions or circumstances within the school 

or classroom that promote learning for all students (Schwartz, 1995), the absence of 
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barriers that prevent learning (Mereku et al., 2005), conditions or circumstances 

within schools and classrooms that promote learning for all students (Cooper and 

Liou, 2007), and conditions that may benefit student’s mathematics learning and 

achievement, provided for students by the educational system (Gau, 1997). 

 

These views help us to understand OTL in a general sense but when it comes to the 

classroom we need something more practical. It does not mean that if learners are 

placed in an environment conducive to learning, they will do so because if it is not 

supported by corresponding relevant practices, it does not necessarily follow that the 

learners have the opportunity to learn. It is not just about having a qualified teacher 

to instruct them, a clearly defined curriculum and up to date textbooks. Learners 

have to interact with the concepts in ways that allow them to connect between the 

registers and so build mathematical knowledge. Students learn if they are allowed to 

make the necessary movement between appropriate registers by themselves. 

 

Much attention in the study of OTL is paid to the above mentioned factors, but these 

fall short because most of the necessary conditions for learning the subject matter 

also have unique conditions which must be fulfilled for learning to take place. Duval 

(1995, 1999, and 2006) has provided evidence to support the assertion that for a 

mathematics concept to be grasped at least two registers of representation are 

needed. What this suggests is that, for learners to have the opportunity to learn any 

mathematics concept, different registers need to be considered. To give the learners 

OTL it is vital that the learners be exposed to those registers that represent the 

required concept. Unless and until it is well understood that learners need to interact 

with different registers, some of the approaches where the goal is to have learners 

learn procedures and practice skills, will continue to characterise mathematics 

education to the detriment of meaningful learning. Acquaintance with different 

registers by the teacher should be a pre-condition for teaching mathematics. 
 

6.4 Conclusions 

 

Sources of opportunity that were perceived in this study include the intended algebra 

content given in the curriculum documents, lesson delivery and other classroom 

activities such as learners explaining to peers and/or the whole class. These 
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opportunities where characterised in terms of their availability and defined by 

learning experiences the learner was likely to take advantage of in constructing 

concepts. More directly, opportunities were seen in the teacher’s approach, the kind 

of questions asked and tasks set and the way terms specific to the topic were used. 

For example, how the teachers decide what they are going to teach and which 

methods they will use affects what is made available to the learners. A teacher’s 

conception of mathematics influences every aspect of the teacher’s teaching (Cobb 

and Steffe, 1983). The teacher’s perception of student ability influences the way they 

engage students. In this study one teacher asked leading questions that did not 

challenge or motivate learners to think and therefore provided a weak opportunity to 

learn. 

 

Ann’s approach was very systematic in her delivery of lessons giving the learners the 

experience of step by step ways of reaching desired answers. She cared more for 

process rather than content. She gave learners difficult exercises to challenge them 

to think outside the box. Through sustained exposure to this approach learners find 

their own ways to cope and adjust to new situations. They develop habits favourable 

to the acquisition of mathematical concepts. They analyse and reflect on their own 

thinking and construct new conceptual knowledge which they can use in new ways.  

 

To Ben performing procedures was very important for the learners to practice. He 

exposed them to the procedures and expected them to do exactly as he told them. 

His questions did not provoke learners to think. He had already labelled them as 

being poor academically so there was no need for him to challenge them to think 

beyond the one or two word answers that he expected. He provided minimum 

opportunity to learn to his learners, not only by his attitude but also by the tasks he 

gave them. He would work out answers for them, ask questions and answer them 

himself, complain that they wanted him to do everything for them and yet he gave 

them no chance to showcase what they were capable of. Ben did not justify the rules 

that he taught nor did he engage learners in reasoning of any sort. Instead he sped 

through the exercises seemingly for the learner’s benefit. 

 

Cherry’s lesson plans all indicated that problem solving was at the heart of her 

teaching. She gave her learners the experience of solving real life examples. Her 
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learners experienced taking control of their learning through learner to learner 

interaction and especially through explaining their solutions to the whole group. They 

gained knowledge and exercised social skills such as working together in harmony, 

contributing to the welfare of others, respecting the ideas of others which may or 

may not correspond to their own. All these are ingredients for good citizenship which 

is one of the critical aims of South African education. Furthermore the ability to 

communicate or articulate one’s ideas is an important goal of education and it is also 

a benchmark for understanding (Fennema and Romberg, 1999). 

 

All the teachers expressed a well-known view that many learners find algebra 

challenging. One of the reasons given in literature is that algebraic relationships 

encountered in learner’s everyday experience will not present themselves as matters 

requiring symbolic manipulation. They will present themselves as decisions to make 

in situations such as financial planning and the selection of service providers. 

Teachers must prepare students, not to carry out algebraic procedures for their own 

sake. They must use algebra as a tool to solve problems and represent situations. 

Without conceptual understanding, procedures mean almost nothing. Connections 

make mathematics meaningful, memorable and powerful. 

 

6.5 Recommendations 

 

Any research reveals areas in which more research is needed in order to extend it. 

The present research is no exception and this section consists of some 

recommendations of the direction future research can take if OTL is to be better 

understood. 

 

Recommendation 1 

The current research has laid out the groundwork for future work in the area of 

providing opportunities to learn through the utilisation of different registers of 

presentation of mathematical concepts. There is also a need to develop this concept 

further in order to determine how best to present algebra concepts so that learners 

have the opportunity to learn them effectively.  

 

Recommendation 2 
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We need replications of the present study in order to understand other teacher’s 

approaches to mathematics teaching and learning. The present study identifies four 

aspects that help in the understanding of OTL. Perhaps other teachers would use 

different aspects or use the ones that I have identified in different ways. More models 

of mathematics teaching that are consistent with the provision of OTL are needed. 

Would all models look similar? Would teachers with different conceptions have 

similar approaches? 

 

Recommendation 3 

Teachers need to share their own experiences about how they create opportunities 

for their learners to learn algebra. Teachers need to talk about their teaching. This 

sharing can help others predict and better understand the experiences they might 

encounter. We need narratives of teachers who are trying to provide adequate OTL 

for their learners. It is crucial to document how other teachers have perceived their 

role in creating opportunities for their learners. These narratives could help teachers 

examine their beliefs about the ways children learn mathematics and show how 

these beliefs can impact on the learning opportunities they provide to their students. 

 

What makes a teacher use a certain approach in the teaching of algebra? What 

means can be made available to teachers to help them create effective OTL? 

Investigation of questions like these will help teachers, teacher educators and 

researchers to work together to help create classrooms where students become 

mathematical thinkers if given the opportunity to do so. 

 

Recommendation 4 

Teacher education programs and universities need to investigate ways to help in-

service teachers develop teaching strategies that are consistent with OTL. University 

faculties might ask the question: How can teacher educators develop programs that 

help pre-service and in-service teachers better understand OTL principles? More 

research would help us understand how OTL can be developed. Would these types 

of experiences help teachers understand what the practice of using OTL looks like? 

 

Recommendation 5 
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The Department of Education needs to investigate alternate ways of making 

available to teachers explanations of the words used in the guidelines and what they 

mean in practical terms, for example the terms ‘representation’ and ‘conversions.’ 

How can teachers be assisted to understand the requirements of the specified 

outcomes? 

6.5 General Conclusion 

The performance of learners in mathematics is usually a subject of great concern for 

stakeholders such as parents, learners, educators, governments and the world at 

large. The question is asked why the performance is poor in some countries and 

solutions are sought. The findings of this study suggest that it is possible to develop 

and implement instruction based the theory of concept building through the 

framework suggested by Duval- that fits within a broader constructivist framework. 

The focus of this framework is on the cognitive functions of mathematical thinking 

and conditions of learning where conceptual acquisition realises through the 

articulation of at least two semiotic representations. The learning process goes 

through three actions: formation, treatment and conversion. 

This study has shown the importance of opportunity to learn and in particular refers 

to the role of the teacher and the quality of instruction. The role of the teacher in 

providing grade ten learners with the opportunity to learn algebra through quality 

instruction is indispensible  It is essential that the instruction be characterised by the 

three actions mentioned above and yet educators tend to concentrate on treatment 

at the expense or exclusion of conversion. It is important to note that that the more 

teachers practice the type of teaching involving the three actions, the better they 

become at providing opportunity to learn. 
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Appendix 1 

 
Interview Schedule 
Investigating the Opportunities to Learn algebra: Case Studies of two 
grade ten classrooms in selected Catholic secondary schools in South 
Africa. 

 

Before the interview proper I will thank the interviewee for his time and assure him of 
the confidentiality that will be kept and also give him a little background of the study 
and why it is important. 

 

1) Tell me about your own experiences as a learner in the secondary school and 
also as a teacher of mathematics. 

2) When you were teaching what support did you get from the school in 
particular and from the Department of Education in general? 

3) In the teaching of algebra are there any challenges that the teachers meet 
and how are they dealt with? 

4) Now that you are the mathematics education officer, tell me about your 
experiences concerning the teaching and learning of algebra. 

5) How can the teaching and learning of algebra be improved? 
6) You may add any further comment about what we have been discussing in 

case we have overlooked something that you feel is important to consider. 

 

THANK YOU 
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Appendix 2 
Loreto convent 

P. O. Box 287 

Pretoria 

24 November 2010 

 

Dear Mr. Drake (not real name) 

 

RE: REQUEST FOR YOUR SCHOOL’S PARTICIPATION IN MY STUDY 

I am Sr Bernadette Chabongora of Loreto Convent School. I am working on a PHD 
programme with The University of South Africa. I am working on a thesis entitled:  
Investigating the Opportunities to Learn algebra: Case Studies of two 
grade ten classrooms in selected Catholic secondary schools in South 
Africa. 

I am asking you to please allow me to observe some lessons for two weeks while 
grade ten learners are being taught during the first term of 2011. The information 
asked will be used for study purposes only. Names will remain confidential in the 
report. You are free to participate fully or only in part and can discontinue your 
participation at any time.   

To give you some idea of what I am doing, please find below the objectives of my 
study: 
 
Objectives of the study:  

a) To gain insights into how the concept of opportunities to learn can be used to 
explain the teaching and learning of grade ten-algebra. 

b) To explore the relationship between learner expectations and actual school 
practices in the mathematics learning area, particularly in algebra and how 
this affects the achievement of specified outcomes. 

c) To understand the structure and practice of mathematics teaching and 
learning in selected classrooms in South Africa with regards to the chances 
given to learners to learn. 

 
May you please indicate you approval by providing your signature in the space 
provide below. You are free to ask for elaboration at any stage of the process of our 
working together. 
 
Thanking you in advance. 
 
Yours sincerely 
 
Sister Bernadette Chabongora 
 
Signature___________________________________________________________
___________________________________________________________________ 
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Loreto convent 

P. O. Box 287 

Pretoria 

1 December 2010 

The Principal 

St Anne Secondary School 

Pretoria 

 

Dear Mr. Cape 

 

RE: REQUEST FOR YOUR SCHOOL’S PARTICIPATION IN MY STUDY 

 I am working on a PHD programme with The University of South Africa. I am working on a 
thesis entitled:  
Investigating the Opportunities to Learn algebra: Case Studies of two grade ten 
classrooms in selected Catholic secondary schools in South Africa. 

 I am asking you to please allow me to observe some lessons while one of your teachers is 
teaching algebra to grade ten learners during the first term of 2011. This will be my pilot 
study.  The information they will be asked to provide will be used for study purposes only. All 
names will remain confidential and nobody will be quoted by name in the report.  You are 
free to participate fully or only in part and can discontinue your participation at any 
time. 

To give you some idea of what I am doing, please find below the objectives of my study: 
 
Objectives of the study:  

a) To gain insights into how the concept of opportunities to learn can be used to explain 
the teaching and learning of grade ten-algebra. 

b) To explore the relationship between learner expectations and actual school practices 
in the mathematics learning area, particularly in algebra and how this affects the 
achievement of specified outcomes. 

c) To understand the structure and practice of mathematics teaching and learning in 
selected classrooms in South Africa with regards to the chances given to learners to 
learn. 

 
May you please indicate you approval by providing your signature in the space provided 
below. You are free to ask for elaboration at any stage of the process of our working 
together. 
 
Thanking you in advance. 
 
Yours sincerely 
 
 
Sister Bernadette Chabongora 
Chabongorachabong@gmail.com 
 
Signature__________________________________________________________________
_________________________________________________________________________ 

mailto:Chabongorachabong@gmail.com
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Appendix 3 

Loreto convent 

P. O. Box 287 

Pretoria 

24 November 2010 

 

Dear Mr. Med 

RE: REQUEST FOR YOUR PARTICIPATION IN MY STUDY 

I am Sr Bernadette Chabongora of Loreto Convent School. I am working on a PHD 
programme with The University of South Africa. I am working on a thesis entitled:  
Investigating the Opportunities to Learn algebra: Case Studies of two 
grade ten classrooms in selected Catholic secondary schools in South 
Africa. 

I am asking you to please allow me to observe some lessons while you are teaching 
algebra to grade ten learners during the first term of 2011. The information that you 
will be asked to provide will be used for study purposes only. Your name will remain 
confidential and you will not be quoted by name in the report. You are free to 
participate fully or only in part and can discontinue your participation at any time. 

To give you some idea of what I am doing, please find below the objectives of my 
study: 
 
Objectives of the study:  

a) To gain insights into how the concept of opportunities to learn can be used to 
explain the teaching and learning of grade ten-algebra. 

b) To explore the relationship between learner expectations and actual school 
practices in the mathematics learning area, particularly in algebra and how 
this affects the achievement of specified outcomes. 

c) To understand the structure and practice of mathematics teaching and 
learning in selected classrooms in South Africa with regards to the chances 
given to learners to learn. 

 
May you please indicate you approval by providing your signature in the space 
provide below. You are free to ask for elaboration at any stage of the process of our 
working together. 
 
Thanking you in advance. 
 
Yours sincerely 
 
 
Sister Bernadette Chabongora 
 
Signature___________________________________________________________
___________________________________________________________________ 

Loreto convent 
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Appendix 4 

P. O. Box 287 

Pretoria 

1 December 2010 

The Mathematic Subject Advisor 

Department of Education 

Pretoria 

 

Dear Mr. Tim 

 

RE: REQUEST FOR YOUR SCHOOL’S PARTICIPATION IN MY STUDY 

 I am working on a PHD programme with The University of South Africa. I am working on a 
thesis entitled:  
Investigating the Opportunities to Learn algebra: Case Studies of two grade ten 
classrooms in selected Catholic secondary schools in South Africa. 

 I am asking to interview you during the first term of 2011.  The information you will be asked 
to provide will be used for study purposes only. Your  All names will remain confidential and I 
will not quote you by name. You are free to participate fully or only in part and can 
discontinue your participation at any time. 

To give you some idea of what I am doing, please find below the objectives of my study: 
 
Objectives of the study:  

a) To gain insights into how the concept of opportunities to learn can be used to explain 
the teaching and learning of grade ten-algebra. 

b) To explore the relationship between learner expectations and actual school practices 
in the mathematics learning area, particularly in algebra and how this affects the 
achievement of specified outcomes. 

c) To understand the structure and practice of mathematics teaching and learning in 
selected classrooms in South Africa with regards to the chances given to learners to 
learn. 

 
May you please indicate you approval by providing your signature in the space provided 
below. You are free to ask for elaboration at any stage of the process of our working 
together. 
 
Thanking you in advance. 
 
Yours sincerely 
 
 
Sister Bernadette Chabongora 
Chabongorachabong@gmail.com 
 
Signature__________________________________________________________________
_________________________________________________________________________ 

 

mailto:Chabongorachabong@gmail.com
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