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Abstract

We study various quotient maps between frames which are defined by stipulating that they

satisfy certain conditions on the cozero parts of their domains and codomains. By way of

example, we mention that C-quotient and C∗-quotient maps (as defined by Ball and Walters-

Wayland [7]) are typical of the types of homomorphisms we consider in the initial parts of the

thesis. To be little more precise, we study uplifting quotient maps, C1- and C2-quotient maps

and show that these quotient maps possess some properties akin to those of a C-quotient

maps. The study also focuses on R∗- and G∗- quotient maps and show, amongst other

things, that these quotient maps coincide with the well known C∗- quotient maps in mildly

normal frames. We also study quasi-F frames and give a ring-theoretic characterization

that L is quasi-F precisely when the ring RL is quasi-Bézout. We also show that quasi-F

frames are preserved and reflected by dense coz-onto R∗-quotient maps. We characterize

normality and some of its weaker forms in terms of some of these quotient maps. Normality

is characterized in terms of uplifting quotient maps, δ-normally separated frames in terms

of C1-quotient maps and mild normality in terms of R∗- and G∗-quotient maps. Finally we

define cozero complemented frames and show that they are preserved and reflected by dense

z#- quotient maps. We end by giving ring-theoretic characterizations of these frames.
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Chapter 1

Introduction and preliminaries

1.1 History of cozero related quotients in classical and

pointfree topology

A subspace S of a topological space X is C-embedded (respectively, C∗-embedded) in X

if every function in C(S) (respectively, C∗(S)) can be extended to a function in C(X) (re-

spectively, C∗(X)). The notions of C- and C∗-embedding have long been known in classical

topology. In frames, C- and C∗-quotients were studied by Ball and Walters-Wayland in [7].

In 1978, Ishii and Ohta [40] introduced the notions of C1-, C2-, and C3-embedding which

generalize the notion of C-embedding and studied their properties and applications.

Closely related to C∗-embedded subspaces are the notions of R∗-embedded and G∗-

embedded subspaces considered by Aull [3]. Prior to that Aull [2] had considered FF -

embedded, GG-embedded, FZ-embedded, CG-embedded, and CC-embedded subspaces.

The notion of FF -embedded subspaces is what we shall call uplifting homomorphism here.

The term uplifting was introduced in [6] by Ball, Hager and Walters-Wayland.
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The notion of z-embedded subspaces was introduced in classical topology in 1963 by Blair

(see [17]). In frames, this notion appears to have first been considered by Banaschewski and

Gilmour [13] in their study of Oz frames, and subsequently by Ball and Walters-Wayland [7]

where the notion is used extensively in their study of C- and C∗-quotients of frames. Fur-

thermore, the theory of coz-onto homomorphisms in frames has been developed extensively

in [33] by Dube and Walters-Wayland.

The notions of WN -maps and N -maps were introduced in classical topology by Woods

[60] in 1972. These notions were given as modification of the definition of WZ-maps given

by Isiwata [41].

The study of δ-normally separated spaces was initiated by Zenor [61], with the descriptor

“δ-normally separated space” later coined by Mack [47]. In [45], Kohli and Das introduced

four other generalizations of normality, namely, θ-normal spaces, weakly θ-normal spaces,

functionally θ-normal and weakly functionally θ-normal spaces. All four of them coincide

with normality in the class of θ-regular spaces. However, we will not study these four

generalizations of normality in this thesis. ∆-normal spaces were introduced by A. K. Das

in [21] and π-normal topological spaces were introduced by L. N. Kalantan in [43]. In this

thesis we only extend the notion of ∆-normal spaces to frames and leave out the π-normal

topological spaces.

The study of topological concepts from a lattice-theoretic viewpoint was initiated by

H. Wallman [57] in 1938. The term frame was introduced by C.H. Dowker in 1966 and

brought to the fore in the article co-authored with D. Papert [23]. The dual notion locale

was introduced by J.R. Isbell in 1972 in the pioneering paper, which opened several topics,

Atomless Parts Of Spaces [39].
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1.2 Synopsis of the thesis

Subspaces which are C-embedded, C∗-embedded, z-embedded and other special subspaces

play a vital role in the study of topological properties in classical topology. In [1], normal

spaces are characterized as those spaces for which every closed subspace is C-embedded.

Oz-spaces were introduced in [18] by Blair in 1976.

This thesis, as the title suggests, shows the importance of coz-related and few other

special quotients in pointfree topology. In the study, we examine several quotient maps

which are “coz-related” in one sense or another. Chapter 1 is essentially introductory. Here

we present the relevant definitions pertaining to frames and outline the relevant backgroud

for the other chapters. For quick reference and smooth-flowing arguments, we highlighted

some of the definitions of Chapter 1 in the body of the thesis.

In Chapter 2, we study four types of quotient maps of frames which are closely related to

C- and C∗-quotient maps. We call them C1-, strong C1-, C2- and uplifting quotient maps.

We give a characterization of C1-quotient maps in terms of maximal ideals of cozero parts of

their domains and codomains. We show that an onto frame homomorphism is a C-quotient

map if and only if it is both a C1- and a C2-quotient map. Uplifting quotient maps are used

to characterize normal frames as those frames in which every uplifting quotient map out of

L is a C∗-quotient map. It also turns out that dense uplifting quotient maps are C∗-quotient

maps.

In Chapter 3, we characterize normality and some of its weaker forms in terms of some

quotient maps defined in Chapter 2. Normality is also characterized in terms of uplifting

quotient maps and δ-normally separated frames are characterized by C1-quotient maps. We

define R∗- and G∗-quotient maps and these turn out to be closely related to C∗-quotient

maps. In mildly normal frames, these quotient maps coincide with the C∗-quotient maps.

Our study also focuses briefly on ∆-normal frames.
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In Chapter 4, we give several characterizations of quasi-F frames. The class of quasi-F

frames strictly contains that of F ′-frames, which in turn, contains the class of F -frames. Few

characterizations of quasi-F frames in terms of the ring of real-valued continuous functions

on L are presented. One such characterization is that L is quasi-F precisely when the ring

RL is quasi-Bézout.

In Chapter 5, we study cozero complemented frames. The class of cozero complemented

frames contains the class of cozero approximated frames. A ccc-frame L (i.e., every collection

of pairwise disjoint elements of L is countable) is cozero complemented. A noteworthy

observation is that the cozero complemented frames are preserved and reflected by dense

z#-quotient maps. We also give a few characterizations of cozero complemented frames in

terms of the ring RL of real-valued continuous functions.

1.3 Frames

In this section we recall some facts about frames that we will need in the sequel. A frame is

a complete lattice L in which the infinite distributive law

a ∧
∨

S =
∨

{a ∧ x | x ∈ S}

holds for all a ∈ L and S ⊆ L. We denote the top element and the bottom element of L by

1 and 0 respectively, or by 1L and 0L if it is necessary to emphasize the frame in question. A

frame homomorphism (or a frame map) is a map h : L→M between frames which preserves

finite meets, including the top element, and arbitrary joins, including the bottom element.

We write Frm for the category of frames and frame homomorphisms. By a subframe of a

frame we mean a subset which is closed under finite meets and all joins.

A typical example of a frame is the lattice OX of open sets of a topological space X.

If f : X → Y is a continuous map between topological spaces, then f−1 : OY → OX is a
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frame homomorphism. This establishes a contravariant functorial relationship between the

category Top of topological spaces and continuous maps and the category Frm as illustrated

below:

Top O // Frm

X
f
→ Y 7→ OY

f−1=Of
−→ OX

Associated with any frame homomorphism h : L → M is a map h∗ : M → L, known as

the right adjoint of h, which is not necessarily a frame homomorphism, and is defined by

h∗(b) =
∨

{a ∈ L | h(a) ≤ b}.

The following property holds for every a ∈ L and every b ∈M :

h(a) ≤ b⇔ a ≤ h∗(b).

A frame homomorphism h : L → M is dense if h(a) = 0 implies a = 0 for every a ∈ L.

This holds if and only if h∗(0) = 0. A frame homomorphism h : L→ M is onto if and only

if hh∗ = idM .

By a quotient of a frame L, we mean a homomorphic image of L. That is, M is a quotient

of L precisely if there is an onto frame homomorphism h : L→M . In such a case h is called

a quotient map. When we say a quotient L→M has a property of frames we shall mean that

M has that property. Likewise, to say a quotient L
h
→M has a property of homomorphisms

means that h has that property.

An extension of a frame L is a dense onto homomorphism h : M → L. By abuse of

language, we say an extension h : M → L of L has property Ω of frames if the frame M has

the property Ω.
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The pseudocomplement of an element x of L is the element

x∗ =
∨

{y ∈ L | x ∧ y = 0}.

We note that x ∧ x∗ = 0. However x ∨ x∗ = 1 does not hold in general.

(i) In the case where x ∨ x∗ = 1, we say x is complemented.

(ii) x ∈ L is dense if x∗ = 0.

(iii) For every x ∈ L, x ≤ x∗∗ always holds. If x = x∗∗, then x is called a regular element.

The Booleanization of a frame L is the Boolean frame BL whose underlying set is BL =

{x∗∗ | x ∈ L} with meet as in L and join
⊔

S = (
∨

S)∗∗ for each S ⊆ BL. The map L→ BL

which sends each x ∈ L to x∗∗ is a dense onto frame homomorphism. We denote it by ♭.

Let L be a frame. We call D ⊆ L a downset if x ∈ D and y ≤ x implies y ∈ D, and

U ⊆ L an upset if u ∈ U and u ≤ v implies v ∈ U . For any a ∈ L, we write

↓a = {x ∈ L | x ≤ a},

which is a downset, and

↑a = {x ∈ L | a ≤ x},

which is an upset. We note that ↓a is a frame whose bottom element is 0 ∈ L and top

element a. Similarly, ↑a has 1 ∈ L as the top element and a as its bottom element. These

frames are in fact the quotients of L via the maps L → ↑a and L → ↓a, given respectively

by x 7→ a ∨ x and x 7→ a ∧ x. These quotients are known as the closed quotients and open

quotients respectively.

A result often used in frame theory is that every frame homomorphism h : L → M has

a dense-onto factorization

L

h

<<
ϕ
// ↑h∗(0)

h̄ // M
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We call I ⊆ L an ideal if it satisfies (the following properties):

(i) 0 ∈ I.

(ii) b ∈ I and a ≤ b implies a ∈ I (i.e. I is a downset).

(iii) a, b ∈ I implies a ∨ b ∈ I.

A subset F ⊆ L is called a filter if it satisfies the following properties:

(i) 0 /∈ F and 1 ∈ F .

(ii) a ∈ F and a ≤ b implies b ∈ F (i.e. F is an upset).

(iii) a, b ∈ F implies a ∧ b ∈ F .

A filter F ⊆ L is called a prime filter if it is a filter and satisfies the property that

a ∨ b ∈ F implies a ∈ F or b ∈ F .

A filter U ⊆ L is called an ultrafilter if for any filter F ⊆ L, whenever U ⊆ F , then

U = F .

We say that a is rather below b or a is well inside b, written a ≺ b, if there is a separating

element c ∈ L such that a ∧ c = 0 and b ∨ c = 1. We say a frame L is regular if every a ∈ L

is expressible as

a =
∨

{x ∈ L | x ≺ a}.

We have the notion of complete regularity, which is defined by means of scales in a frame.

By a scale in a frame we mean a countable (rational-number) indexed subset

{cq | q ∈ Q ∩ [0, 1]} = (cq)
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of L such that whenever p < q, then cp ≺ cq. We define the completely below relation ≺≺

on L by: a ≺≺ b if there is a scale (cq) such that a ≤ c0 and c1 ≤ b. We say L is completely

regular if every a ∈ L is expressible as

a =
∨

{x ∈ L | x ≺≺ a}.

Let L be a frame. We say that a subset S ⊆ L generates L if for every element x ∈ L,

x =
∨

{s ∈ S | s ≤ x}.

A nucleus on a frame L is a map j : L → L such that for all a, b ∈ L the following are

satisfied:

(a) a ≤ j(a)

(b) j(a ∧ b) = j(a) ∧ j(b)

(c) j2(a) = j(a).

The set Fix(j) = {x ∈ L | j(x) = x} is a frame with meet as in L and join j (
∨

S) for

each S ⊆ Fix(j). Furthermore, j : L → Fix(j) is a quotient map the right adjoint of which

is the inclusion Fix(j)→ L.

By a cover C of a frame L we mean a subset of L such that
∨

C = 1. We write Cov (L)

for the set of all covers of the frame L. The frame L is compact if for any C ∈ Cov(L), there

is a finite K ⊆ C in Cov(L). The frame L is Lindelöf if every cover has a countable subset

that is also a cover.

For two covers A and B of L, A ≤ B (A refines B) means that for each a ∈ A, there

exists b ≥ a in B. A cover C ∈ Cov(L) is said to be locally finite if there exists D ∈ Cov(L)
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such that for every y ∈ D, the set

{x ∈ C | x ∧ y 6= 0}

is finite. In this case we say D finitizes C. A frame L is said to be paracompact if every

cover A ∈ Cov(L) has a locally finite refinement.

A frame L is normal if for any elements a, b ∈ L such that a ∨ b = 1, there are elements

c, d ∈ L such that c ∧ d = 0 and a ∨ c = 1 = b ∨ d.

1.4 Cozero part of a frame

An element a of L is a cozero element if there is a sequence (an) in L such that an ≺≺ a for

each n and a =
∨

an. The cozero part of L, denoted by CozL, is the regular sub-σ-frame

consisting of all the cozero elements of L.

The frame of reals is the frame L(R) generated by all ordered pairs (p, q) where p, q ∈ Q,

subject to the relations that:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s)

(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s

(R3) (p, q) =
∨

{(r, s) | p < r < s < q}

(R4) 1L(R) =
∨

{(p, q) | p, q ∈ Q}

Regarding the frame of reals L(R) and the f -ring RL of continuous real-valued functions

on L, we refer to [8]. Recall that the cozero map, coz : RL→ L, is given by

cozϕ =
∨

{ϕ(p, 0) ∨ ϕ(0, q) | p, q ∈ Q}.
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The association L 7→ RL is functorial, with Rh : RL → RM taking δ to h · δ, for any

h : L→M. Furthermore, coz (h · δ) = h(coz δ).

The properties of the cozero map which we shall frequently use are the following:

(1) coz γ = coz |γ| = |γ| (R+), where R+ = (−∞, 0) ∨ (0,∞) in L(R),

(2) coz γδ = coz γ ∧ coz δ,

(3) coz (γ + δ) ≤ coz γ ∨ coz δ,

(4) ϕ ∈ RL is invertible if and only if cozϕ = 1,

(5) cozϕ = 0 if and only if ϕ = 0,

(6) coz (γ + δ) = coz γ ∨ coz δ if γ, δ ≥ 0.

There are several ways of realizing the Stone-Čech compactification of a completely reg-

ular frame L. We adopt the compactification that is presented in [42]. An ideal J of L is

completely regular if for each x ∈ J there exists y ∈ J such that x ≺≺ y. The Stone-Čech

compactification of L is the frame βL consisting of completely regular ideals of L together

with the dense onto frame homomorphism σL : βL → L given by the join. We denote the

right adjoint of σL by rL, and recall that rL(a) = {x ∈ L | x ≺≺ a} for all a ∈ L. Also, for

any c, d ∈ CozL, rL(c ∨ d) = rL(c) ∨ rL(d). The Stone extension of a frame homomorphism

h : L → M between completely regular frames is the frame homomorphism hβ : βL → βM

given by

hβ(I) = {y ∈M | y ≤ h(x) for some x ∈ I}
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for each I ∈ βL. It is the unique frame homomorphism that makes the diagram below

βL hβ
//

σL

��

βM

σM

��
L h // M

commute.

1.5 The coreflections λL and υL

Recall that a full subcategory C of a category A is said to be a coreflective subcategory if

for every object A in A, there is an object γA in C and a morphism γA : γA→ A such that

for any morphism f : C → A with domain in C, there is a unique morphism f̄ : C → γA

satisfying γA · f̄ = f . The object γA is called a coreflection of A.

Using localic language, Madden and Vermeer [49] have shown that regular Lindelöf locales

form a reflective subcategory of the category of locales by actually constructing the reflection,

λL, for any completely regular locale L. We recall the construction in frame terms because

that is the category of discourse in this thesis.

Let L be a completely regular frame. An ideal of CozL is a σ-ideal if it is closed under

countable joins. The regular Lindelöf coreflection of L, denoted by λL, is the frame of σ-

ideals of CozL. The join map λL : λL → L is a dense onto frame homomorphism, and is

the attendant coreflection map. This is a special case of a more general result concerning

κ-frames (see [48, Proposition 4.4]). We denote by kL the dense onto frame homomorphism

kL : βL→ λL defined by kL(I) = 〈I〉σ, where 〈·〉σ signifies σ-ideal generation in CozL.

Realcompact frames are coreflective in CRegFrm (see, for instance, [14] and [50], for

details). The realcompact coreflection of L, denoted by υL, is constructed in the following
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manner. For any t ∈ L, let [t] = {x ∈ CozL | x ≤ t}, so that if c ∈ CozL, then [c] is the

principal ideal of CozL generated by c. The map ℓ : λL→ λL given by

ℓ(J) =
[

∨

J
]

∧
∧

{P ∈ (λL) | J ≤ P}

is a nucleus. The frame υL is defined to be Fix(ℓ). We denote by ℓL the dense onto frame

homomorphism λL → υL effected by ℓ. The join map υL : υL → L is a dense onto frame

homomorphism. For any L we have

Coz(λL) = Coz(υL) = {[c] | c ∈ CozL},

a consequence of which is that each of the maps λL : λL→ L and υL : υL→ L is a C-quotient

map (see [7] for the definition of a C-quotient map).

1.6 C- and C∗-embedding.

The notions of C- and C∗-embedding have elegantly been extended to frames by Ball and

Walters-Wayland [7]. Here we recall the definition and some characterizations.

An onto frame homomorphism h : L → M is said to be a C-quotient map if for every

frame homomorphism γ : OR→ M there is a frame homomorphism δ : OR→ L such that

h ◦ δ = γ. Restricting γ to bounded functions defines C∗-quotient maps. As pointed out

in [7], these notions are precise extensions to frames of C- and C∗-embeddings of subspaces

in the sense that a subspace S of X is C-embedded (resp. C∗-embedded) if and only if

the frame homomorphism OX → OS, induced by the subspace embedding S →֒ X, is a

C-quotient (resp. C∗-quotient) map.

A frame homomorphism h : L→M is said to be

(1) coz-codense if the only cozero element it maps to the top element is the top element.
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(2) almost coz-codense if for each c ∈ CozL such that h(c) = 1, there exists d ∈ CozL

such that c ∨ d = 1 and h(d) = 0.

(3) coz-onto if for every d ∈ CozM , there exists c ∈ CozL such that h(c) = d.

The following results are taken from [7, Theorem 7.1.1] and [7, Theorem 7.2.7].

Proposition 1.6.1 The following are equivalent for a quotient map h : L→M :

(1) h is a C∗-quotient map.

(2) Every binary cozero cover of M is refined by the image of a binary cozero cover of L.

(3) Every binary cozero cover of M is the image of a binary cozero cover of L.

Proposition 1.6.2 The following are equivalent for a quotient map h : L→M :

(1) h is a C-quotient map.

(2) h is a C∗-quotient map and almost coz-codense.

(3) h is coz-onto and almost coz-codense.
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Chapter 2

On variants of C-embedding

In this chapter, we define C1- and strong C1-quotient maps and characterize them in several

ways. One such characterization is in terms of contraction of maximal ideals of rings of

continuous functions. Incidentally, this characterization leads to a point-sensitive result

which has hitherto not been published. In Section 2.2, we define C2-quotient maps and show

that they are coz-onto. The latter part of the chapter consists of what we call uplifting

quotient maps. Such maps generalize Aull’s [2] notion of FF -embedding. Throughout this

chapter our frames are completely regular.

2.1 C1- and strong C1-quotient maps

These maps will be defined in terms of complete separation. We therefore start by recalling

from [7] what it means to say two quotients are completely separated. Whenever we consider

two quotients

L
α
→ A and L

β
→ B
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of L, we shall frequently display them in a single diagram as follows:

A
α
← L

β
→ B.

Two quotients as above are said to be completely separated if there are cozero elements c

and d of L such that c ∨ d = 1, α(c) = 0A and β(d) = 0B.

Definition 2.1.1 A quotient map L
h
→M is a C1-quotient map if whenever c ∈ CozL and

d ∈ CozM are such that h(c)∨d = 1, then the quotients ↑d
ϕ
← L

κc→ ↑c, where ϕ = κd ·h, are

completely separated. It is a strong C1-quotient map if whenever a ∈ L and d ∈ CozM are

such that h(a) ∈ CozM and h(a) ∨ d = 1, then the quotients ↑d
ϕ
← L

κc→ ↑c are completely

separated, where ϕ is as before, κc(x) = x ∨ c and κd is similarly defined.

These definitions are, respectively, adaptations to frames of C1-embedded subspaces de-

fined by Ishii and Ohta [40] and strongly C1-embedded subspaces considered in [34]. As

in spaces, the former is a weakening of the concept of C-quotients, and it implies almost

coz-codensity.

Lemma 2.1.2 The following statements hold for a quotient map L
h
→M :

(a) h is a C1-quotient map if and only if for every c ∈ CozL and d ∈ CozM such that

h(c) ∨ d = 1, there exists u ∈ CozL such that u ∨ c = 1 and h(u) ≤ d.

(b) Every C-quotient map is a C1-quotient map.

(c) Every C1-quotient map is almost coz-codense.

Proof (a) The claimed elementwise characterization of C1-quotient map is simply a restate-

ment of the definition.
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(b) Suppose h is a C-quotient map. Let c ∈ CozL and d ∈ CozM be such that h(c)∨d =

1. Then, in view of h being coz-onto, there exists u ∈ CozL such that h(u) = d. Therefore

h(c ∨ u) = 1. Since h is almost coz-codense, there exists v ∈ CozL such that v ∨ c ∨ u = 1

and h(v) = 0. Thus, (v ∨ u) ∨ c = 1 and h(v ∨ u) ≤ d. Therefore h is a C1-quotient map.

(c) Suppose h is a C1-quotient map. If c ∈ CozL is such that h(c) = 1, then h(c)∨0 = 1.

A routine calculation using the charaterization shows that h is almost coz-codense. �

In [31] a homomorphism h : L → M is said to be a W -map if hβrL(c) = rMh(c) for

each c ∈ CozL. It is shown there that h is a W -map if and only if for each c ∈ CozL and

y ∈ M , y ≺≺ h(c) implies y ≤ h(s) for some s ≺≺ c in L. We show that C1-quotient maps

are precisely the surjective W -maps. We use the preceding lemma.

Corollary 2.1.3 A quotient map h : L → M is a C1-quotient map if and only if it is a

W -map.

Proof (⇒): Suppose c ∈ CozL and y ∈ M are such that y ≺≺ h(c). Choose d ∈ CozM

such that y ∧ d = 0 and d ∨ h(c) = 1. Since h is a C1-quotient map, there exists u ∈ CozL

such that u ∨ c = 1 and h(u) ≤ d. By normality of CozL, we can find a cozero element

s ≺≺ c such that s ∨ u = 1. Since y ∧ h(u) = 0, y ≤ h(s). Therefore h is a W -map.

(⇐): Let c ∈ CozL and d ∈ CozM be such that h(c) ∨ d = 1. Since h(c) ∈ CozM ,

the normality of CozM yields y ∈ M such that y ≺≺ h(c) and y ∨ d = 1. By hypothesis,

y ≤ h(s) for some s ∈ L with s ≺≺ c. Choose u ∈ CozL such that s ∧ u = 0 and u ∨ c = 1.

Since h(u)∧ h(s) = 0, h(u)∧ y = 0, and hence h(u) ≤ d. Therefore h is a C1-quotient map.

�

Remark 2.1.4 In [31, Proposition 4.4] it is shown that the Booleanization map is a W -map

if and only if L is a P -frame, where the latter means c ∨ c∗ = 1 for each c ∈ CozL. Since
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the Booleanization map is onto, it follows that it is a C1-quotient map if and only if L is a

P -frame.

In [33, Proposition 4.2], it is shown that an onto homomorphism h : L → M is a C-

quotient map if and only if for each maximal ideal J of CozM , there is a maximal ideal I of

CozL such that h[I] = J. We characterize C1-quotient maps similarly. The characterization

will also show (what we have already observed) that any C-quotient map is a C1-quotient

map. Following [33], given a frame homomorphism h : L→M and an ideal J of CozM , we

define the ideal h#J of CozL by

h#J = {c ∈ CozL | h(c) ∈ J}.

That h#J is indeed an ideal with h[h#J ] ⊆ J is easy to check. That h[h#J ] ⊆ J follows

from the definition of h#J .

Proposition 2.1.5 The following are equivalent for a quotient map L
h
→M.

(1) h is a C1-quotient map.

(2) For every maximal ideal J of CozM , h#J is a maximal ideal of CozL.

(3) For every maximal ideal J of CozM , there is a maximal ideal I of CozL such that

h[I] ⊆ J.

Proof (1) ⇒ (2) : Let u ∈ CozL be such that u ∨ c 6= 1 for all c ∈ h#J . We must show

that u ∈ h#J , that is, h(u) ∈ J. Suppose, by way of contradiction, that h(u) /∈ J. Since J

is a maximal ideal of CozM , this implies that there exists w ∈ J such that h(u) ∨ w = 1.

Since h is a C1-quotient map, there exists v ∈ CozL such that u∨ v = 1 and h(v) ≤ w. But

this implies h(v) ∈ J and hence v ∈ h#J, contradicting the nature of u. Therefore h#J is a

maximal ideal of CozL.
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(2)⇒ (3) : This is immediate since h[h#J ] ⊆ J for any ideal J of CozM .

(3)⇒ (1) : Suppose, on the contrary, that h is not a C1-quotient map. Then there exists

c ∈ CozL and d ∈ CozM such that h(c) ∨ d = 1 but the quotients ↑d
ϕ
← L

κc→ ↑c, where

ϕ = κd · h, are not completely separated. Then, for any z ∈ CozL such that z ≺≺ c, we

cannot have h(z) ∨ d = 1, for otherwise, if s ∈ CozL is such that z ∧ s = 0 and s ∨ c = 1,

then h(z) ∧ h(s) = 0, implying h(s) ≤ d, so that

κc(c) = c = 0↑c, ϕ(s) = h(s) ∨ d = d = 0↑d and s ∨ c = 1,

implying the quotients ↑d
ϕ
← L

κc→ ↑c are completely separated. Consequently, the ideal K

of CozM generated by the set {h(x)∨ d | x ∈ CozL, x ≺≺ c} is proper. Let J be a maximal

ideal of CozM containing K. The hypothesis yields a maximal ideal I of CozL such that

h[I] ⊆ J. Now d ∈ J, and therefore c /∈ I since h(c) ∨ d = 1. Since I is maximal, there

therefore exists u ∈ I such that c ∨ u = 1. By the normality of the σ-frame CozL, there

exists w ∈ CozL such that w ≺≺ c and w ∨ u = 1. Then h(w) ∨ h(u) = 1, a contradiction

since both h(w) and h(u) are elements of the proper ideal J . �

The equivalence of (1) and (2) in this proposition enables us to present a characterization

of C1-quotient maps in terms of rings of continuous functions. An ideal Q of RL is a z-ideal

if, for any α, β ∈ RL, cozα = coz β and α ∈ Q together imply β ∈ Q. Any maximal ideal of

RL is a z-ideal. One checks routinely that:

1. If I is a maximal ideal of CozL, then coz−1[I] is a maximal ideal of RL.

2. If Q is a maximal ideal of RL, then coz [Q] is a maximal ideal of L.

Lemma 2.1.6 Let h : L→M be a frame homomorphism. Then:

(1) For any z-ideal Q of RM, coz−1[h#(coz [Q])] ⊆ (Rh)−1[Q].
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(2) For any ideal I of CozM, coz−1[h#I] = (Rh)−1[coz−1[I]].

Proof (1) Let α ∈ coz−1[h#coz [Q]]. Then cozα ∈ h#(coz [Q]), so that

h(cozα) = coz ((Rh)(α)) ∈ coz [Q].

Since Q is a z-ideal, this implies (Rh)(α) ∈ Q, and hence α ∈ (Rh)−1[Q]. Therefore

coz−1[h#(coz [Q])] ⊆ (Rh)−1[Q]. In fact, the reverse inclusion also holds even if Q is a

mere ideal – but we do not need that.

(2) For any α ∈ RL, we have

α ∈ (Rh)−1[coz−1[I]] ⇔ (Rh)(α) ∈ coz−1[I]

⇔ coz ((Rh)(α)) ∈ I

⇔ h(cozα) ∈ I

⇔ cozα ∈ h#I

⇔ α ∈ coz−1[h#I]

�

Recall that if f : A → B is a ring homomorphism and I is an ideal of B, then f−1[I] is

an ideal of A called the contraction of I.

Corollary 2.1.7 A quotient map L
h
→M is a C1-quotient map if and only if Rh contracts

maximal ideals to maximal ideals.

Proof (⇐) : Let I be a maximal ideal of CozM. Then coz−1[I] is a maximal ideal ofRM. By

hypothesis, (Rh)−1[coz−1[I]] is a maximal ideal of RL. That is, by Lemma 2.1.6, coz−1[h#I]

is a maximal ideal of RL, and hence coz [coz−1[h#I]] is a maximal ideal of CozL. But clearly,
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coz [coz−1[h#I]] ⊆ h#I, so h#I is a maximal ideal of CozL. Therefore h is a C1-quotient

map by Proposition 2.1.5.

(⇒) : Let Q be a maximal ideal of RM. Then coz [Q] is a maximal ideal of CozM. By

Proposition 2.1.5, h#(coz [Q]) is a maximal ideal of CozL, and hence coz−1[h#(coz [Q])] is

a maximal ideal of RL. Since every maximal ideal is a z-ideal, it follows from Lemma 2.1.6

that coz−1[h#(coz [Q])] ⊆ (Rh)−1[Q]. Therefore (Rh)−1[Q] is a maximal ideal, and we are

done. �

For any space X, the rings C(X) and R(OX) are isomorphic (see, for instance, [8]).

Consequently we have the following:

Corollary 2.1.8 A subspace S of a Tychonoff space X is C1-embedded if and only if the

ring homomorphism C(X)→ C(S), given by f 7→ f |S, contracts maximal ideals to maximal

ideals.

Remark 2.1.9 The result in Corollary 2.1.7 can actually be deduced from [31, Proposition

4.4], in light of C1-quotient maps being W -maps. However, whereas the proof we have

presented here does not require knowledge of what maximal ideals of RL look like, that of

[31, Proposition 4.4] makes explicit use of the description of maximal ideals of RL.

We recall from [33] the following definition. A homomorphism h : L → M is weakly

coz-onto if a ∧ b = 0 in CozM implies a = h(c) for some c ∈ CozL or b = h(d) for some

d ∈ CozL. Coz-onto homomorphisms are obviously weakly coz-onto. It is shown in [33,

Proposition 3.13] that if h : L→M is weakly coz-onto and M is realcompact, then h is coz-

onto. The following result shows, among other things, that a C1-quotient map is coz-onto if

and only if it is weakly coz-onto, if and only if it is a C-quotient map. As in [33], we say an

ideal I of CozL is respected by a homomorphism h : L→M in case h(x) 6= 1 for each x ∈ I.
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Proposition 2.1.10 The following are equivalent for a C1-quotient map L
h
→M :

(1) h is a C-quotient map.

(2) h is coz-onto.

(3) h is weakly coz-onto.

(4) For every maximal ideal I of CozL respected by h, h[I] is a maximal ideal of CozM.

Proof The implication (1)⇒ (2) follows from Proposition 1.6.2 and (2)⇒ (3) is trivial.

(3)⇒ (1) : Since h is almost coz-codense, it suffices to show that it is also a C∗-quotient

map by Proposition 1.6.2. We use Proposition 1.6.1. So, let c∨d = 1 in CozM. Since CozM

is a normal σ-frame, there exist u, v ∈ CozM such that u ∧ v = 0 and u ∨ c = v ∨ d = 1.

Since h is weakly coz-onto, at least one of u and v is the image of a cozero element. Say

u = h(s) for some s ∈ CozL. Then h(s) ∨ c = 1. Since h is a C1-quotient map, there exists

t ∈ CozL such that s ∨ t = 1 and h(t) ≤ c. Therefore the cozero cover {c, d} is refined by

the image of the cozero cover {s, t} since u ∧ v = 0 and v ∨ d = 1 imply h(s) = u ≤ d.

(2)⇒ (4) : This follows from [33, Proposition 3.7].

(4)⇒ (1) : By [33, Proposition 4.2], it suffices to show that every maximal ideal of CozM

is the image of a maximal ideal of CozL under h. So, let J be a maximal ideal of CozM.

Since h is a C1-quotient map, there exists a maximal ideal I of CozL such that h[I] ⊆ J. By

(4), h[I] is a maximal ideal of CozM, and therefore h[I] = J, by maximality. �

Recall that a frame L is pseudocompact if whenever (an) is a sequence in L such that

an ≺≺ an+1 for each n and
∨

an = 1, then ak = 1 for some k. We will use two different

characterizations of pseudocompact frames to prove the following corollary. The first is that
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L is pseudocompact if and only if every countable cover by cozero elements has a finite

subcover (see [12]). The second is that L is pseudocompact if and only if βL → L is coz-

codense, as was proved by Walters-Wayland in her doctoral thesis [58].

Recall that an ideal I of a σ-complete (i.e. has all countable joins) lattice is said to be

σ-proper if for any countable S ⊆ I,
∨

S 6= 1. It is a σ-ideal if it is closed under countable

joins.

Corollary 2.1.11 The following are equivalent for a completely regular frame L:

(1) Every homomorphism onto L is a C1-quotient map.

(2) βL→ L is a C1-quotient map.

(3) L is pseudocompact.

Proof (1)⇒ (2) : Trivial.

(2) ⇒ (3) : If βL → L is a C1-quotient map, then it is almost coz-codense, and hence

coz-codense by density. Therefore L is pseudocompact by the characterization cited from

[58].

(3) ⇒ (1) : Let h : M → L be a quotient map. Let I be a maximal ideal of CozL. We

aim to show that h#I is a maximal ideal of CozM . Observe that I is σ-proper, for if S were

a countable subset of I with
∨

S = 1, then pseudocompactness of L would furnish a finite

T ⊆ S such that
∨

T = 1, which would imply 1 ∈ I, contrary to I being a proper ideal.

Thus, by the second part of [33, Lemma 3.6], I is a σ-ideal. For any countable S ⊆ h#I, h[S]

is a countable subset of I, and therefore
∨

h[S] = h(
∨

S) ∈ I, whence
∨

S ∈ h#I. Therefore

h#I is a σ-ideal. Since I is prime (every maximal ideal of CozL is prime), a straightforward
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calculation shows that h#I is prime. Consequently, by the first part of [33, Lemma 3.6], h#I

is a maximal ideal of CozM. Therefore h is a C1-quotient map by Proposition 2.1.5. �

Remark 2.1.12 Following [19], a quotient map L
h
→ M is said to satisfy property (β) if

for every c, d ∈ CozL with h(c) ∨ h(d) = 1, there exist u, v ∈ CozL such that u ∨ v = 1,

h(u) ≤ h(c) and h(v) ≤ h(d). A straightforward calculation shows that every coz-onto C1-

quotient map satisfies (β). However, [coz-onto +(β) ⇒ C1]. Indeed, it is shown in [24,

Proposition 2.6] that a quotient map is C∗ if and only if it is coz-onto and satisfies property

(β). Thus, if L is a non-pseudocompact frame, then βL → L is a coz-onto quotient map

which satisfies property (β) but, by the preceding corollary, not C1.

We now turn our attention to strong C1-quotient maps. In order to characterize them

we need the following definition.

Definition 2.1.13 A frame homomorphism h : L→ M is coz-heavy if for each a ∈ L such

that h(a) = 1, there exists c ∈ CozL such that c ≤ a and h(c) = 1.

Topologically speaking, recall that a subspace S of X is said to be normally placed in

case for every open set U ⊆ X which contains S, there is a cozero-set V of X such that

S ⊆ V ⊆ U . Thus, S is normally placed if and only if the frame homomorphism OX → OS,

sending O ∈ OX to O ∩ S, is coz-heavy. We will see below that every quotient map onto a

Lindelöf frame is coz-heavy.

For brevity, we shall, at times, say a quotient map is C1 or C or C∗, if it is a C1-quotient

map, etc. In the proof of the following proposition, we use the fact that a quotient map is a

C-quotient map if and only if it is C∗ and almost coz-codense by Proposition 1.6.2.

Proposition 2.1.14 A necessary and sufficient condition that a quotient map be strongly

C1 is that it be a coz-heavy C-quotient map.
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Proof Suppose h : L→ M is strongly C1. We show first that it is C∗. We use Proposition

1.6.1. Consider a, b ∈ CozM such that a∨b = 1. Since h is onto, h(h∗(a))∨b = 1. Therefore,

by hypothesis, the quotients ↑h∗(a)
κh∗(a)
← L

g
→ ↑b, where g = κb ·h, are completely separated.

So there exist u, v ∈ CozL such that

u ∨ v = 1, κh∗(a)(u) = 0↑h∗(a) and g(v) = 0↑b.

The last two equalities reduce to u ≤ h∗(a), and h(v) ≤ b. Therefore h is C∗ by the charac-

terization in Proposition 1.6.1.

Next, h is almost coz-codense since a strong C1-quotient map is obviously C1, and hence

almost coz-codense as observed earlier. That h is also coz-heavy is immediate since h(a) = 1

implies h(a) ∨ 0 = 1, and, of course 0, 1 ∈ CozM.

Conversely, suppose the condition holds. Let a ∈ L and b ∈ CozM be such that h(a) ∈

CozM and h(a) ∨ b = 1. Since h is C∗, there exist u, v ∈ CozL such that

u ∨ v = 1, h(u) = h(a) and h(v) = b.

Since CozL is a normal lattice, there exist c, d ∈ CozL such that

c ∧ d = 0 and u ∨ c = 1 = v ∨ d.

The element t = a ∨ c of L is such that

h(t) = h(a) ∨ h(c) = h(u) ∨ h(c) = 1.

Since h is coz-heavy, there is a w ∈ CozL such that w ≤ t and h(w) = 1. Since h is almost

coz-codense, there exists z ∈ CozL such that w ∨ z = 1 and h(z) = 0. Now, v ∨ z and w ∧ d

are cozero elements of L with

(v ∨ z) ∨ (w ∧ d) = (v ∨ z ∨ w) ∧ (v ∨ z ∨ d) = 1.

We show that they witness the complete separation of the quotients ↑a
κa← L

g
→ ↑b, where

g = κb · h. Since h(z) = 0, we have

h(v ∨ z) = h(v) = b,
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which implies

(κb · h)(v ∨ z) = b ∨ b = 0↑b.

On the other hand, w ∧ d ≤ d ≤ u, because u ∨ c = 1 and d ∧ c = 0. Consequently,

κa(w ∧ d) = a = 0↑a,

and hence h is a strong C1-quotient map. �

Corollary 2.1.15 In RegFrm, a dense strongly C1-quotient map is an isomorphism.

Proof Let h : L → M be such a homomorphism. Let a ∈ L be such that h(a) = 1. Since

h is a strongly C1-quotient map, it follows, by Proposition 2.1.14, that h is a coz-heavy

C-quotient map. By coz-heaviness there exists c ∈ CozL such that c ≤ a and h(c) = 1. By

virtue of h being a dense C-quotient map, it is coz-codense. Thus c = 1 and therefore a = 1.

Thus h is codense, and therefore one-one, and therefore an isomorphism. �

Since the Booleanization map is dense, Corollary 2.1.15 yields:

Corollary 2.1.16 In RegFrm, the map ♭ : L → BL is a strongly C1-quotient map if and

only if L is Boolean.

Now, in the spirit of Corollary 2.1.11, we characterize those frames such that every

homomorphism onto them is coz-heavy. They are precisely the Lindelöf frames. From this

characterization we shall, en passant, obtain a different proof of [7, Proposition 8.2.14]. We

need two lemmas.

Lemma 2.1.17 In a completely regular frame L, any quotient map onto a Lindelöf frame

is coz-heavy.
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Proof Let M be Lindelöf and h : L → M be a quotient map. Suppose a ∈ L is such that

h(a) = 1. By complete regularity, we have

∨

{h(c) | c ∈ CozL and c ≤ a} = 1.

Since M is Lindelöf, there are countably many cn ≤ a in CozL such that h(
∨

cn) = 1.

Therefore c =
∨

cn is a cozero element of L such that c ≤ a and h(c) = 1. �

Lemma 2.1.18 A homomorphic image of a completely regular Lindelöf frame under a coz-

heavy homomorphism is Lindelöf.

Proof Let L
h
→M be a coz-heavy quotient map with L completely regular and Lindelöf. Let

C be a cover of M . For each c ∈ C, take bc ∈ L such that h(bc) = c. Put b =
∨

{bc | c ∈ C}.

Then h(b) = 1, and so, in view of h being coz-heavy, there exists d ∈ CozL such that

d ≤ b and h(d) = 1. Since d ≤ b, and since cozero elements of any Lindelöf frame are

Lindelöf [12], there are countably many elements cn in C such that d ≤
∨

n bcn . Consequently,

1 = h(d) ≤
∨

h(bcn) =
∨

cn. Therefore M is Lindelöf. �

Recall that a Lindelöfication of a frame L is a dense onto homomorphism M → L with

M regular Lindelöf. Recall from Chapter 1 that λL → L denotes the regular Lindelöf

coreflection of L. The following proposition follows from the preceding two lemmas.

Proposition 2.1.19 The following are equivalent for a completely regular frame L:

(1) Every homomorphism onto L is coz-heavy.

(2) βL→ L is coz-heavy.

(3) L is Lindelöf.
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(4) Every compactification M → L is coz-heavy.

(5) Some compactification M → L is coz-heavy.

(6) Every Lindelöfication M → L is coz-heavy.

(7) λL→ L is coz-heavy.

(8) Some Lindelöfication M → L is coz-heavy.

Ball and Walters-Wayland show in [7, Proposition 8.2.14] that a completely regular frame

L is Lindelöf if and only if every dense C-quotient map M → L is an isomorphism. This

result first appeared in [49] stated in localic rather than frame-theoretic terms. It also follows

from Lemma 2.1.17 and Proposition 2.1.19.

Corollary 2.1.20 A completely regular frame L is Lindelöf if and only if every dense C-

quotient map h : M → L is an isomorphism.

Proof Let L be Lindelöf and M → L be a dense C-quotient map. Then, by Lemma 2.1.17,

M → L is coz-heavy. Being a C-quotient map, it is almost coz-codense, and being dense,

it is therefore coz-codense, and hence codense by coz-heaviness. It is therefore one-one and

hence an isomorphism. The converse follows from Proposition 2.1.19 since λL → L is a

dense C-quotient map. �

Remark 2.1.21 For a completely regular L, if L is pseudocompact and Lindelöf, then the

homomorphism βL → L is codense since it is coz-heavy by Proposition 2.1.19. Therefore

it is an isomorphism, and hence L is compact. That a pseudocompact Lindelöf frame is

compact was first proved in [12].
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We now observe that frames onto which every homomorphism is strongly C1 are precisely

the compact ones.

Corollary 2.1.22 The following are equivalent for a completely regular frame L:

(1) Every homomorphism onto L is strongly C1.

(2) βL→ L is strongly C1.

(3) L is compact.

Proof (1)⇒ (2) : Trivial.

(2) ⇒ (3) : If (2) holds, then βL → L is coz-heavy, and therefore L is Lindelöf by

Proposition 2.1.19. Also, βL → L is C1, and therefore L is pseudocompact by Corollary

2.1.11. Therefore L is compact.

(3) ⇒ (1) : If L is compact, then it is Lindelöf, and hence every homomorphism onto

L is coz-heavy by Proposition 2.1.19. By [25, Proposition 2.8], if L is compact (so that it

is almost compact), then every homomorphism onto L is a C-quotient map. Thus, every

homomorphism onto L is strongly C1. �

We end the section by examining if the property of being coz-heavy, C1 or strongly C1

lifts to the Stone extension of a quotient map. Because we have defined these properties

for onto homomorphisms, in order for our investigation to make sense, the Stone extension

must be onto. As shown in [24, Proposition 2.1], the Stone extension of a quotient map is

onto if and only if the map is a C∗-quotient map. We shall therefore impose that condition.

We start with an example of a C∗-quotient map which is not C1 but the Stone extension of

which is C1.
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Example 2.1.23 Let M be a non-pseudocompact frame and let L
h
→ M be its Stone-

Čech compactification. Then h is a C∗-quotient map, which is not coz-codense since L

is not pseudocompact. Consequently, h is not almost coz-codense, and is therefore not a

C1-quotient map. But hβ is an isomorphism since the density of h clearly implies that of

hβ, making the latter one-one (and hence an isomorphism) by regularity of its domain and

compactness of its codomain.

Proposition 2.1.24 Let L
h
→ M be almost coz-codense and a C1-quotient map. Then

βL→ βM is a C1-quotient map. In fact, hβ is a C-quotient map.

Proof Since βM is Lindelöf, hβ is coz-onto by [33, Proposition 3.2]. To see that it is also

almost coz-codense, let I ∈ Coz βL be such that hβ(I) = 1βM . Since

I =
∨

{rL(x) | x ∈ I},

we have

1βM = hβ

(

∨

x∈I

rL(x)

)

=
∨

x∈I

hβ(rL(x)).

By compactness of βM and the fact that above every element of I is a cozero element

belonging to I, there exists a cozero element c in I such that hβ(rL(c)) = 1βM . Thus

h(c) = hσL(rL(c)) = σMhβ(rL(c)) = σM(1βM) = 1.

Since h is almost coz-codense, there exists d ∈ CozL such that

d ∨ c = 1 and h(d) = 0.

Then rL(c)∨rL(d) = 1βL, so that I∨rL(d) = 1βL. Since βL is normal, there exists J ∈ Coz βL

such that J ≤ rL(d) and J∨I = 1βL. Now, h
β(J) = 0βM . Indeed, if y ∈ hβ(J), then y ≤ h(t)

for some t ∈ J . Thus t ≤ d, and so y ≤ h(d) = 0. Therefore hβ is almost coz-codense, and

is therefore a C-quotient map, and hence a C1-quotient map. �
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Remark 2.1.25 The reader will have noted that, in the proof of the preceding result, we

did not use the fact that I is a cozero element. All we used is that it is mapped to the top

element. This might create the impression that hβ satisfies a condition stronger than almost

coz-codensity. However, in light of hβ being coz-heavy (since its codomain is Lindelöf), the

“stronger” condition is actually equivalent to almost coz-codensity.

Similar to Example 2.1.23, if L is not Lindelöf, then βL→ L is a C∗-quotient map which

is not coz-heavy, but whose Stone extension is coz-heavy. Of course, if the Stone extension

of a quotient map is onto, then it is coz-heavy in view of its codomain being Lindelöf. Also,

if L is not compact, then βL→ L is a C∗-quotient map which is not strongly C1 but whose

Stone extension is strongly C1.

Proposition 2.1.26 Let L
h
→ M be a strongly C1-quotient map. Then βL

hβ

→ βM is a

strongly C1-quotient map.

Proof The hypothesis on h makes it almost coz-codense which is C1. Therefore, by Propo-

sition 2.1.24, hβ is a C-quotient map. It is also coz-heavy since its codomain is Lindelöf.

�

In analogy with the Stone extension of a homomorphism h : L→M , define the Lindelöf

extension of h to be the frame homomorphism hλ : λL → λM given by I 7→ 〈h[I]〉σ, where

〈·〉σ denotes σ-ideal generation. Then hλ is the unique “lift” of h to the regular Lindelöf

coreflections – just like hβ is the unique lift of h to the Stone-Čech compactifications. It is

shown in [24, Lemma 2.3] that hλ is onto if and only if h is coz-onto. The reader might wonder

if the C1- and strong C1- properties are inherited by hλ for coz-onto h. They are. To see

this, recall that CozλL = {[c]|c ∈ CozL}, where [c] = {u ∈ CozL | u ≤ c}. Furthermore,

for each c ∈ CozL, hλ([c]) = [h(c)]. These observations make it apparent that if h is a

coz-onto quotient map, then h is C1 if and only if hλ is C1.
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On the other hand, if L is not Lindelöf, then λL→ L is a coz-onto quotient map which

is not strongly C1, but whose Lindelöf extension is strongly C1. Conversely, if h : L→M is

strongly C1 (so that it is already coz-onto), then h is a C-quotient map, and therefore, by

[24, Proposition 2.4], hλ is a C -quotient map which is coz-heavy, by virtue of its codomain

being Lindelöf. Therefore hλ is strongly C1.

2.2 C2-quotient maps

Now we turn to C2-quotient maps. Recall the definition of a locally finite subset from

Chapter 1.

Recall from [40] that a subspace Y of a space X is said to be C2-embedded in X if, for

any countable cozero-set cover U of Y , there exists a locally finite countable collection V of

cozero-sets of X such that V covers Y and V ∩Y refines U , where V ∩Y is the trace of V on

Y , that is V ∩ Y = {V ∩ Y | V ∈ V}.

Definition 2.2.1 A quotient map L
h
→M is a C2-quotient map if for every countable cozero

cover D of M there is a locally finite countable C ⊆ CozL such that
∨

h[C] = 1 and h[C]

refines D.

As we did in the case of C1-quotient maps, we show that every C-quotient map is a

C2-quotient map. The argument in this case is not as immediate as in the previous case. A

cover A is said to be normal if there are covers An, n = 1, 2, . . . such that

A = A1 and An ≥ An+1An+1 for all n.

In [16], the authors show that every normal cover has a locally finite normal refinement.

We shall need to know that if the normal cover is countable, then the locally finite normal

refinement can be chosen to be countable as well.
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Recall from [25] that if A = {an | n ∈ N} is a countable infinite normal cover of a frame

L, then there is a countable cozero cover B of L which refines A. The author has shown that

if B is finite, then cozero elements can be added to B to form a countably infinite cozero

cover B′ which refines A. Also if A = {a1, . . . , an} is a finite normal cover of L, then there is

a finite cozero cover B = {b1, . . . , bk} of L which refines A. If k < m, then cozero elements

can be added to B to form a cozero cover B′ with m elements which refines A. If k > m,

then grouping together elements of B that are below the same element of A and taking joins,

and also adding some cozero elements if necessary, we can form a cozero cover B′ with m

elements which refines A. Therefore every countable normal cover can be refined by a cozero

cover of the same cardinality.

Let A be a countable locally finite normal cover of L. Since A is a countable normal

cover, it follows that we can construct a cozero cover B of the same cardinality which refines

A by grouping together elements of B that are below the same element of A and taking joins,

and also adding some cozero elements if necessary. Furthermore, A is locally finite, so there

is a cover W such that each w ∈ W meets only finitely many elements of A. Since bn ≤ an

for every n ∈ N, it follows that each w ∈ W meets only finitely many elements of B. Thus

every countable locally finite normal cover can be refined by a countable locally finite cozero

cover with the same cardinality.

We observed above that a C1-quotient map is almost coz-codense. Regarding C2-quotient

maps, we show that they are coz-onto. We use a characterization of coz-onto homomorphisms

which is an extension to frames of [40, Lemma 3.5].

Lemma 2.2.2 A quotient map h : L→ M is coz-onto if and only if for every finite cozero

cover D of M there is a countable C ⊆ CozL such that h[C] is a cover of M refining D.

Proof The left-to-right implication is trivial. For the converse, let d ∈ CozM and write

d =
∨

dn, where dn ∈ CozM for each n and dn ≺≺ d. For each n, take sn ∈ CozM such that
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sn ∧ dn = 0 and sn ∨ d = 1. Put Un = {sn, d} and note that Un is a finite cozero cover of

M . By hypothesis, find a countable Vn ⊆ CozL satisfying the hypothesized condition. Put

cn =
∨

{x ∈ Vn | h(x) ≤ d} and c =
∨

cn, and notice that, since Vn is countable, cn ∈ CozL

for each n, and hence c ∈ CozL. We will show that h(c) = d. Clearly, h(c) ≤ d. Since
∨

h[Vn] = 1, we have that for each n,

h(cn) ∨ h
(

∨

{t ∈ Vn | h(t) ≤ sn}
)

= 1,

the consequence of which is that h(cn)∨sn = 1. Thus, dn = (dn∧h(cn))∨(dn∧sn) = dn∧h(cn).

Taking joins over all n, this yields d = d ∧
∨

h(cn) = d ∧ h(c), so that d ≤ h(c) and hence

equality. Therefore h is coz-onto. �

Corollary 2.2.3 Any C2-quotient map is coz-onto.

In light of the fact that a quotient map is a C-quotient map if and only if it is coz-onto

and almost coz-codense [7], we have:

Corollary 2.2.4 A quotient map is a C-quotient map if and only if it is both a C1- and

C2-quotient map.

2.3 Uplifting homomorphisms

In this section we consider quotient maps which extend Aull’s [2] FF -embedded spaces.

These quotient maps bear close resemblance to C∗-quotient maps. There are instances

where they coincide.

Definition 2.3.1 A quotient map L
h
→ M is uplifting if, for every a, b ∈ M , a ∨ b = 1

implies h∗(a) ∨ h∗(b) = 1.
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The term “uplifting” is borrowed from [6] where it is used to describe a σ-frame homo-

morphism f : A → B such that whenever b1 ∨ b2 = 1 in B, there exist a1, a2 ∈ A such

that a1 ∨ a2 = 1 and f(ai) ≤ bi. Although our definition is in terms of right adjoints, we

observe below that it could have been couched in exactly the same terms as that of [6].

In [51], Mart́ınez considers injective frame homomorphisms with the property stated in the

definition and calls them “capping”. In [2], a subspace S of a topological space X is said to

be FF -embedded if for any pair K1, K2 of disjoint closed subsets of S, then there is a pair

C1, C2 of disjoint closed subsets of X such that Ki = S ∩Ci for i = 1, 2. In the observations

below, we demonstrate that S is FF -embedded if and only if the quotient map OX → OS,

induced by the subspace inclusion S →֒ X, is uplifting.

Observations 2.3.2 (1) A quotient map L
h
→M is uplifting if and only if for any x1, x2 ∈

M such that x1∨x2 = 1, then there exist a1, a2 ∈ L such that a1∨a2 = 1 and h(ai) = xi for

i = 1, 2. The forward implication holds since a = hh∗(a) for all a as h is onto. The converse

holds because ai ≤ h∗(xi) if h(ai) = xi. Thus, a subspace is FF -embedded if and only if the

induced frame homomorphism is uplifting.

(2) A quotient map L
h
→ M is uplifting if and only if for any b1, b2 ∈ M such that

b1 ∨ b2 = 1, then there exist a1, a2 ∈ L such that a1 ∨ a2 = 1 and h(ai) ≤ bi for i = 1, 2.

Consequently, if L and M are normal, then an onto frame homomorphism is uplifting as a

frame homomorphism if and only if it is uplifting as a σ-frame homomorphism.

Examples 2.3.3 (1) Any closed quotient map L
h
→ M is uplifting, for if a ∨ b = 1 in M ,

then a ∨ hh∗(b) = 1, and hence by closedness, 1 = h∗(1) = h∗(a) ∨ h∗(b). In particular,

L
κa→ ↑a is uplifting for each a ∈ L.

(2) In his doctoral thesis [20], Chen defines the graph of a homomorphism h : L → M

to be the onto homomorphism G(h) : L ⊕M → M defined by x ⊕ y 7→ h(x) ∧ y. If h is

uplifting, then so is its graph. Indeed, let x∨y = 1M . Then h∗(x)∨h∗(y) = 1L, and therefore
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(h∗(x)⊕ 1M)∨ (h∗(y)⊕ 1M) = 1L⊕M . But G(h)(h∗(x)⊕ 1M) = x and G(h)(h∗(y)⊕ 1M) = y,

so G(h) is uplifting. A consequence of this is that the co-diagonal map ∇ : L⊕L→ L, given

by a⊕ b 7→ a ∧ b, is uplifting for any frame L since ∇ = G(idL).

Next we observe that for dense quotient maps, uplifting implies C∗. To prove this, we

need the following lemma.

Lemma 2.3.4 The right adjoint of a dense uplifting homomorphism preserves the rather

below and the completely below relations.

Proof Let L
h
→M be a dense uplifting quotient map, and let a ≺ b in M . Pick s ∈M such

that a ∧ s = 0 and s ∨ b = 1. Then h∗(a) ∧ h∗(s) = 0 by denseness, and h∗(s) ∨ h∗(b) = 1

since h is uplifting. So h∗(a) ≺ h∗(b). The other result then follows from this. �

Among the many necessary and sufficient conditions that a quotient map L
h
→ M be

C∗ established in [7] is that whenever c ≺≺ d in M , there exist a ≺≺ b in L such that

c ≤ h(a) ≺≺ h(b) ≤ d. Consequently, in light of the preceding lemma, we have:

Proposition 2.3.5 A dense uplifting quotient map L
h
→M is a C∗-quotient map.

Next, we have the following characterization of extremal disconnectedness in terms of

the uplifting property. Recall that a frame L is extremally disconnected if a∗ ∨ a∗∗ = 1 for

all a ∈ L.

Proposition 2.3.6 A frame L is extremally disconnected if and only if ♭ : L → BL is

uplifting.
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Proof Let us first calculate the right adjoint of ♭. For any a ∈ BL,

♭∗(a) =
∨

{x ∈ L | x∗∗ ≤ a} = a,

since a∗∗ = a as a ∈ BL. Next, notice that pseudocomplementation in BL is precisely that

of L. Assume ♭ is uplifting. For any a ∈ L, we have a∗ ⊔ a∗∗ = 1 since BL is Boolean.

Therefore,

1 = ♭∗(a
∗) ∨ ♭∗(a

∗∗) = a∗ ∨ a∗∗,

implying that L is extremally disconnected. Conversely, let a⊔b = 1 in BL. Then (a∨b)∗∗ =

1, whence a∗∗ ∨ b∗∗ = 1, since L is extremally disconnected. Thus, a ∨ b = 1 since a = a∗∗

and b = b∗∗. Therefore ♭∗(a) ∨ ♭∗(b) = 1, and so ♭ is uplifting. �

Of course, that the right adjoint of ♭ is simply the inclusion BL→ L is known since, as a

map into L, ♭ is a nucleus. Let us now examine if the uplifting property is inherited by the

Stone extension.

Proposition 2.3.7 The Stone extension of an uplifting C∗-quotient map is uplifting.

Proof Let L
h
→ M be an uplifting C∗-quotient map. Let J ∨ K = 1βM . Then x ∨ y = 1

for some x ∈ J and y ∈ K. Since J and K are completely regular ideals, there are cozero

elements c and d of M such that c ∈ J, d ∈ K and c ∨ d = 1. Since h is a C∗-quotient map,

there exist u, v ∈ CozL such that

u ∨ v = 1 and h(u) = c, h(v) = d.

Then rL(u) ∨ rL(v) = 1βL. We show that hβ(rL(u)) ⊆ J . Indeed, if y ∈ hβ(rL(u)), then

y ≤ h(s) for some s ≺≺ u. Consequently,

y ≤ h(s) ≤ h(u) = c ∈ J,

which implies that y ∈ J . Similarly, hβ(rL(v)) ⊆ K. Therefore hβ is uplifting. �

We will see in the next chapter that the converse of this result does not hold.
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2.4 About meets of quotients

In this section, we explore briefly when the meet (in the assembly) of two quotients is any

of the types discussed in the sections 2.1 and 2.3. Recall the definition of a nucleus from

Preliminaries. If j and k are nuclei on L, then:

(1) the map j ∧ k, defined by a 7→ j(a) ∧ k(a), is also a nucleus on L

(2) if j ≤ k (comparison in the assembly is pointwise), then the mapping Fix(j)→ Fix(k),

effected by k, is a frame homomorphism.

Note from (2) that if j ≤ k and c ∈ Coz (Fix(j)), then k(c) ∈ Coz (Fix(k)).

Let ℓ and j be nuclei on L, and consider the diagram

Fix (ℓ) L
j

//

ℓ∧j

��

ℓoo Fix (j)

Fix (ℓ ∧ j)

We aim to find reasonable conditions on ℓ and j that ensure that ℓ∧ j is C1, strongly C1

or uplifting. In order to avoid ambiguity, we write ⊔ℓ, ⊔j and ⊔ to denote the binary joins

in Fix (ℓ),Fix (j) and Fix (ℓ ∧ j), respectively. The symbol ∨ is the join in L.

Proposition 2.4.1 If ℓ and j, as above, are C1-quotient maps, then ℓ ∧ j is a C1-quotient

map. The converse fails.

Proof Let c ∈ CozL and d ∈ Coz (Fix (ℓ ∧ j)) be such that (ℓ ∧ j)(c) ⊔ d = 1. Therefore

(ℓ ∧ j) [(ℓ ∧ j)(c) ∨ d] = 1, which implies ℓ (ℓ(c) ∨ ℓ(d)) = 1, that is ℓ(c) ⊔ℓ ℓ(d) = 1. But

ℓ(d) ∈ Coz (Fix (ℓ)) as observed above, therefore, in view of ℓ being C1, there exists u ∈ CozL
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such that u ∨ c = 1 and ℓ(u) ≤ ℓ(d). Similarly, there exists v ∈ CozL such that v ∨ c = 1

and j(v) ≤ j(d). Thus, u ∧ v is a cozero element of L such that (u ∧ v) ∨ c = 1 and

(ℓ ∧ j)(u ∧ v) ≤ ℓ(u ∧ v) ≤ ℓ(u) ≤ ℓ(d).

Similarly, (ℓ ∧ j)(u ∧ v) ≤ j(d), and hence

(ℓ ∧ j)(u ∧ v) ≤ ℓ(d) ∧ j(d) = (ℓ ∧ j)(d) = d.

Therefore ℓ ∧ j is a C1-quotient map.

To see that the converse fails, take ℓ = idL and j = rLσL for any non-pseudocompact L

(recall that σL is the join map βL→ L and rL its right adjoint). �

A corollary of this proposition which is not noted in [40] is that the union of any two

C1-embedded subspaces is C1-embedded. The following two lemmas are needed to show

that, given ℓ and j to be strongly C1, ℓ ∧ j is strongly C1 precisely when it is coz-onto.

Lemma 2.4.2 If ℓ and j, as above, are almost coz-codense, then ℓ∧ j is almost coz-codense.

Proof Let c ∈ CozL be such that (ℓ ∧ j)(c) = 1. Then ℓ(c) = j(c) = 1. By hypothesis,

there exist d1, d2 ∈ CozL such that

c ∨ d1 = c ∨ d2 = 1 and ℓ(d1) = ℓ(0), j(d2) = j(0).

Then d1 ∧ d2 is a cozero element of L such that c ∨ (d1 ∧ d2) = 1 and

(ℓ ∧ j)(d1 ∧ d2) = ℓ(d1 ∧ d2) ∧ j(d1 ∧ d2)

≤ ℓ(d1) ∧ j(d2)

= ℓ(0) ∧ j(0)

= (ℓ ∧ j)(0)

= 0Fix (ℓ∧j)

Therefore ℓ ∧ j is almost coz-codense. �
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Lemma 2.4.3 If ℓ and j, as above, are coz-heavy, then ℓ ∧ j is coz-heavy.

Proof Let a ∈ L be such that (ℓ ∧ j)(a) = 1. Then ℓ(a) = j(a) = 1. By hypothesis, there

exist c, d ∈ CozL such that c ≤ a, d ≤ a, ℓ(c) = 1 and j(d) = 1. Then c ∨ d is a cozero

element of L such that c ∨ d ≤ a and

(ℓ ∧ j)(c ∨ d) = ℓ(c ∨ d) ∧ j(c ∨ d) ≥ ℓ(c) ∧ j(d) = 1.

Therefore ℓ ∧ j is coz-heavy. �

Proposition 2.4.4 If ℓ and j, as above, are strongly C1, then ℓ ∧ j is strongly C1 if and

only if it is coz-onto.

Proof We need only prove the right-to-left implication. In view of Proposition 2.1.14, it

suffices to show that ℓ∧j is a coz-heavy C-quotient map. Since ℓ and j are strongly C1, they

are almost coz-codense, and hence ℓ ∧ j is almost coz-codense by Lemma 2.4.2. So, being

coz-onto and almost coz-codense, it is a C-quotient map (see Proposition 1.6.2). Also, ℓ and

j are coz-heavy, so ℓ ∧ j is coz-heavy by Lemma 2.4.3. �

Although we are not concerned with C- and C∗-quotient maps per se, it is perhaps worth

noting that:

Corollary 2.4.5 If ℓ and j, as above, are almost coz-codense, then the following are equiv-

alent:

(1) ℓ ∧ j is coz-onto.

(2) ℓ ∧ j is a C∗-quotient map.

(3) ℓ ∧ j is a C-quotient map.
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Proof Only the implication (1) ⇒ (3) needs verification. By Lemma 2.4.2, ℓ ∧ j is almost

coz-codense, and hence a C-quotient map if (1) holds. �

In preparation for our last result in this chapter, let us observe that if k is a nucleus on

L, then k : L→ Fix(k) is uplifting if and only if for all a, b ∈ L, k(k(a) ∨ k(b)) = 1 implies

k(a) ∨ k(b) = 1.

Proposition 2.4.6 Suppose ℓ and j, as above, are uplifting. Denote by ⊔ the join in the

frame Fix(ℓ∧j). Then ℓ∧j is uplifting if and only if, for all a, b ∈ L, (ℓ∧j)(a)⊔(ℓ∧j)(b) = 1

implies ℓ(a) ∨ j(b) = ℓ(b) ∨ j(a) = 1.

Proof Let us observe first that, for any a, b ∈ L,

(ℓ ∧ j)(a) ∨ (ℓ ∧ j)(b) = (ℓ(a) ∧ j(a)) ∨ (ℓ(b) ∧ j(b))

= ((ℓ(a) ∧ j(a)) ∨ ℓ(b)) ∧ ((ℓ(a) ∧ j(a)) ∨ j(b))

= (ℓ(a) ∨ ℓ(b)) ∧ (j(a) ∨ ℓ(b)) ∧ (ℓ(a) ∨ j(b)) ∧ (j(a) ∨ j(b))

Now let us prove the left-to-right implication. The hypothesis, then, is that ℓ, j and ℓ ∧ j

are all uplifting. (In fact, that ℓ and j are uplifting is not needed in this case). Suppose

that a and b are elements of L such that (ℓ ∧ j)(a) ⊔ (ℓ ∧ j)(b) = 1. Then (ℓ ∧ j)(a) and

(ℓ∧ j)(b) are elements of the frame Fix (ℓ∧ j) whose join (in this frame) is the top element.

Since the homomorphism ℓ∧ j : L→ Fix (ℓ∧ j) is hypothesized to be uplifting, we have that

(ℓ ∧ j)(a) ∨ (ℓ ∧ j)(b) = 1. Since ℓ ∧ j ≤ ℓ and ℓ ∧ j ≤ j, it follows that

ℓ(a) ∨ ℓ(b) = 1 = j(a) ∨ j(b).

Thus, the calculation at the beginning of the proof yields

(ℓ(a) ∨ j(b)) ∧ (ℓ(b) ∨ j(a)) = 1,

whence the desired result follows.
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Conversely, suppose the stated condition holds. Let u, v ∈ Fix (ℓ ∧ j) be such that

u ⊔ v = 1. Then (ℓ ∧ j)(u) ⊔ (ℓ ∧ j)(v) = 1. In terms of the join in L, this says that

(ℓ ∧ j)(u ∨ v) = 1, which implies that ℓ(u ∨ v) = 1, and hence ℓ(ℓ(u) ∨ ℓ(v)) = 1. Since ℓ

is uplifting, this implies that ℓ(u) ∨ ℓ(v) = 1. Similarly, j(a) ∨ j(b) = 1. Now, this together

with the condition and the calculation at the beginning of the proof shows that

(ℓ ∧ j)(u) ∨ (ℓ ∧ j)(v) = 1.

Therefore ℓ ∧ j is uplifting. �
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Chapter 3

Characterizing normality

Our goal in this chapter is to use some of the quotient maps defined in the previous chapter

to characterize normality and some of its weaker forms.

3.1 Normality vis-à-vis uplifting maps

What we observed above about uplifting maps bears resemblance to some of the characteri-

zations of C∗-quotient maps (see Proposition 1.6.1). Indeed, if the domain and the codomain

of a quotient map are normal, then the two concepts coincide because, in a normal frame,

a ∨ b = 1 implies c ∨ d = 1 for some cozero elements c and d such that c ≤ a and d ≤ b. In

fact, we have the following lemma which we shall use to characterize normal frames in terms

of uplifting maps.

Lemma 3.1.1 Let L
h
→M be a quotient map. Then the following statements hold.

(a) If M is normal and h is a C∗-quotient map, then h is uplifting.
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(b) If L is normal and h is uplifting, then h is a C∗-quotient map.

(c) If L and M are normal, then h is uplifting if and only if it is a C∗-quotient map.

Proof (a) Let h : L → M be a C∗-quotient map with M normal. Let a, b ∈ M be such

that a ∨ b = 1. Then by normality of M , there exist c, d ∈ CozM such that c ≤ a,

d ≤ b with c ∨ d = 1. Since h is a C∗-quotient map, there exist u, v ∈ CozL such that

h(u) = c ≤ a and h(v) = d ≤ b with u ∨ v = 1. Therefore u ≤ h∗(a) and v ≤ h∗(b).

Therefore 1 = u ∨ v ≤ h∗(a) ∨ h∗(b). Thus h is uplifting.

(b) Let a, b ∈ CozM be such that a∨ b = 1. The map h is uplifting, so h∗(a)∨h∗(b) = 1.

Furthermore, L is normal, so there exist c, d ∈ CozL such that c ≤ h∗(a), d ≤ h∗(b) with

c ∨ d = 1. Therefore h(c) ≤ a and h(d) ≤ b. Thus h is a C∗-quotient map.

(c) This follows immediately from (a) and (b). �

In [7], normal frames L are characterized by the property that every closed quotient

L
κa→ ↑a is a C∗-quotient map. This enables us to characterize normal frames in terms of

uplifting quotient maps.

Proposition 3.1.2 The following are equivalent for a completely regular frame L:

(1) L is normal.

(2) Every C∗-quotient map M → L is uplifting.

(3) βL→ L is uplifting.

(4) λL→ L is uplifting.
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(5) Every uplifting quotient map L
h
→M is a C∗-quotient map.

Proof By the Lemma 3.1.1, (1) implies (2). Since βL→ L is a C∗-quotient map, (2) implies

(3); and since λL→ L is a C∗-quotient map, (2) implies (4).

(3)⇒ (1) : Let a∨ b = 1 in L. Then rL(a)∨ rL(b) = 1βL, by hypothesis. Therefore, there

exist elements c, d ∈ L such that c ≺≺ a, d ≺≺ b and c ∨ d = 1. Therefore L is normal.

(4) ⇒ (1) : Let a ∨ b = 1 in L. Denote the right adjoint of λL → L by sL, and notice

that, for any x ∈ L, sL(x) = {c ∈ CozL | c ≤ x}. The current hypothesis implies that

sL(a)∨ sL(b) = 1λL. In view of how binary joins are calculated in λL, this implies that there

exist c, d ∈ CozL such that c ≺ a, d ≺ b and c ∨ d = 1. Therefore L is normal.

(1)⇒ (5) : This follows from Lemma 3.1.1 (b).

(5)⇒ (1) : Every closed quotient map L→ ↑a is uplifting, so the hypothesis makes each

such quotient a C∗-quotient map, making L normal by [7, Theorem 8.3.3]. �

In [5, Proposition 3.7], it is shown that if the right adjoint of the compactification M → L

is a lattice homomorphism, then L is normal and M → L is (isomorphic to) the Stone-Čech

compactification of L. We sharpen this by relaxing the hypothesis somewhat.

Corollary 3.1.3 If a frame has an uplifting compactification, then the frame is normal and

the compactification in question is (isomorphic to) its Stone-Čech compactification.

Proof Let M → L be an uplifting compactification of L. Then, in view of M being normal,

the homomorphismM → L is a C∗-quotient map by the implication (1)⇒ (5) of Proposition

3.1.2. Therefore M ∼= βL by [7, Corollary 8.2.7], and hence L is normal by the implication

(3)⇒ (1) in Proposition 3.1.2. �
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The equivalent statements in the following proposition are selected from [25, Proposition

2.8].

Proposition 3.1.4 The following are equivalent for a completely regular frame L:

1. L is almost compact.

2. Every onto homomorphism M → L is a C∗-quotient map.

3. Every onto homomorphism M → L is a C-quotient map.

4. L admits only one uniformity.

The equivalent statements in the following proposition are selected from [44, Theorem

4].

Proposition 3.1.5 The following are equivalent for a completely regular frame L:

1. L admits a unique uniformity.

2. L admits only one totally bounded uniform structure.

3. L admits a unique strong inclusion.

4. L has a unique compactification.

5. For a ≺≺ b ∈ L, ↑a∗ or ↑b is compact.

In [12], a compactification h : M → L of L is called a one-point compactification if there

is a maximal element s of M such that h induces an isomorphism ↓s → L. Analogous to

topological spaces, call a completely regular frame L almost compact in case it is compact
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or βL → L is a one-point compactification. Combining results from Proposition 3.1.4 and

Proposition 3.1.5, we have that a frame is almost compact if and only if it has only one

compactification. This leads to the following result.

Corollary 3.1.6 The following are equivalent for a completely regular frame L:

(1) Every homomorphism onto L is uplifting.

(2) L is almost compact and normal.

Proof (1) ⇒ (2) : By Corollary 3.1.3, if (1) holds, then L is normal and has only one

compactification. Thus, L is also almost compact.

(2)⇒ (1) : If L is almost compact, then, by [25, Proposition 2.8(2)], every quotient map

M → L is a C∗-quotient map. Thus, if L is normal too, then by Proposition 3.1.2, every

quotient map M → L is uplifting. �

Based on Lemma 3.1.1, we provide conditions which are equivalent to the Lindelöf ex-

tension of a quotient map being uplifting. Let h : L → M be a coz-onto homomorphism,

so that hλ is onto. Recalling the discussion at the end of the Section 2.1, it is clear, by

Proposition 1.6.1, that h is a C∗-quotient map if and only if hλ is a C∗-quotient map. Since

regular Lindelöf frames are normal, Lemma 3.1.1 shows that hλ is uplifting if and only if it

is a C∗-quotient map. Consequently, we have the following result.

Proposition 3.1.7 The following are equivalent for a quotient map h : L→M :

(1) hλ is uplifting.

(2) hλ is a C∗-quotient map.
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(3) h is a C∗-quotient map.

We announced at the end of Section 2.3 of the previous chapter that the converse of

Proposition 2.3.7 fails. Here is the verification. For any non-normal completely regular

frame L, βL → L is a non-uplifting C∗-quotient map (by Proposition 3.1.2) whose Stone

extension is uplifting because it is an isomorphism.

3.2 δ-normally separated frames

The class of δ-normally separated spaces were defined in [47] by Mack. In this section, we

define and characterize δ-normally separated frames in terms of C1-quotient maps.

Definition 3.2.1 A frame L is δ-normally separated (respectively, weakly δ-normally sepa-

rated) if for every a ∈ L (respectively, every regular a ∈ L), the closed quotient map L→ ↑a

is almost coz-codense.

Remark 3.2.2 The class of δ-normally separated frames was first introduced in [28] by

Dube.

Obviously, a normal frame is δ-normally separated. For purposes of computation, we

reformulate the definition of δ-normal separation in terms of elements.

Lemma 3.2.3 A frame L is δ-normally separated (resp. weakly δ-normally separated) if

and only if for every a ∈ L (resp. every regular a ∈ L) and c ∈ CozL such that a ∨ c = 1,

there exists d ∈ CozL such that d ≤ a and c ∨ d = 1.
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Recall that a quotient h : L → M of L is a C1-quotient if for every c ∈ CozL and

d ∈ CozM such that h(c) ∨ d = 1, then there exists u ∈ CozL such that u ∨ c = 1 and

h(u) ≤ d.

Frames which are δ-normally separated, and ones weakly so, are characterized as follows:

Proposition 3.2.4 A frame L is δ-normally separated (resp. weakly δ-normally separated)

if and only if every closed (resp. regular-closed) quotient map L→ ↑a is C1-quotient.

Proof Let L be δ-normally separated and for a ∈ L, consider the closed quotient map

κa : L→ ↑a. Let c ∈ CozL and d ∈ Coz (↑a) be such that κa(c) ∨ d = 1. Then (a ∨ c) ∨ d =

c ∨ d = 1, and so, by δ-normal separation, there exists v ∈ CozL such that v ≤ d and

c ∨ v = 1. Thus, κa(v) = a ∨ v ≤ a ∨ d = d, and hence κa is a C1-quotient map.

Conversely, let c ∈ CozL and a ∈ L be such that c ∨ a = 1. The closed quotient map

κa : L → ↑a is a C1-quotient map by the current hypothesis, and a is a cozero element of

Coz (↑a) such that κa(c)∨a = 1. So there exists v ∈ CozL such that c∨v = 1 and κa(v) ≤ a.

Thus, a ∨ v ≤ a, and therefore v ≤ a as desired.

The statement in parenthesis is shown similarly. �

The next result shows that in a δ-normally separated frame, a closed C2-quotient map is

C-quotient.

Proposition 3.2.5 Let ϕ : L→ ↑a be a closed quotient of a δ-normally separated frame L.

If ϕ is a C2-quotient map, then ϕ is a C-quotient map.

Proof Since every C2-quotient map is coz-onto by Corollary 2.2.3 and by definition any
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closed quotient map of δ-normally separated frames is almost coz-codense, it follows that ϕ

is coz-onto and almost coz-codense. Hence the result follows by [7, Theorem 7.2.3]. �

3.3 Mildly normal frames

In this section, we study mildly normal frames and show, amongst other things, that an

almost regular Lindelöf frame is mildly normal. We show that mild normality is preserved

by dense uplifting quotient maps defined in the previous chapter.

Definition 3.3.1 A frame L is mildly normal if for every regular elements a and b in L such

that a ∨ b = 1, there exist c, d ∈ L such that c ∧ d = 0 and a ∨ c = b ∨ d = 1.

Mildly normal frames include extremally disconnected frames. Indeed, if L is extremally

disconnected, then a∗ ∨ a∗∗ = 1 for every a ∈ L. Let a and b be regular elements such that

a ∨ b = 1. Then a∗ ∧ b∗ = 0 with the property that a∗ ∨ a = 1 = b ∨ b∗.

We now present our first characterization of mildly normal frames. The characterizations

of mildly normal spaces in [56, Theorem 1] extend to frames. In what follows, we shall denote

by Lr, the set of regular elements of L.

Proposition 3.3.2 The following statements are equivalent for any frame L:

(1) L is mildly normal.

(2) For all a, b ∈ Lr, if a ∨ b = 1, then there exists v ∈ L such that a ∨ v = 1 and v ≺ b.

(3) For all a, b ∈ Lr, if a ∨ b = 1, then there exists a regular element u ∈ L such that

a ∨ u = 1 and u ≺ b.
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(4) For all a, b ∈ Lr, if a ∨ b = 1, then there exist u, v ∈ L such that a ∨ u = 1, b ∨ v = 1

and u∗ ∨ v∗ = 1.

Proof (1) ⇒ (2) : Let L be mildly normal, and let a, b ∈ Lr be such that a ∨ b = 1. By

mild normality, there exist u, v ∈ L such that u∧ v = 0 and a∨ v = b∨ u = 1. This implies

that u is a separating element between v and b, so that v ≺ b.

(2)⇒ (3) : Since v ≺ b implies v∗∗ ≺ b, (3) follows immediately from (2).

(3)⇒ (4) : Let a, b ∈ Lr be such that a∨ b = 1. By (3), find w ∈ Lr such that a∨w = 1

and w ≺ b. Then w∗ ∨ b = 1. By applying (3) to a ∨ w = 1, we find u ∈ Lr such that

a ∨ u = 1 and u ≺ w. Then u∗ ∨ w = 1, w∗ ∨ b = 1 and u∗ ∨ w∗∗ = u∗ ∨ w = 1. If we put

v = w∗, we realize that (4) holds.

(4) ⇒ (1) : Let a, b ∈ Lr be such that a ∨ b = 1. By (4), there exist u, v ∈ L such that

a ∨ u = 1, b ∨ v = 1 and u∗ ∨ v∗ = 1. Then u∗∗ ∧ v∗∗ = 0 and a ∨ u∗∗ ≥ a ∨ u = 1, b ∨ v∗∗ ≥

b ∨ v = 1. Hence L is mildly normal. �

In [7], there is a characterization of normal frames in terms of cozero elements. The proof

uses properties of the ring RL. A similar characterization of mild normality is valid as we

show below. The proof is exactly that of [7], except for the fact that in the case of mild

normality, we need to verify that the rather below relation ≺ interpolates between regular

elements, that is, if u ≺ v where u, v are regular, then there exists a regular w such that

u ≺ w ≺ v. We shall verify this, and refer to the proof of the analogous result in the case of

normality.

Lemma 3.3.3 Let L be mildly normal. If a, b ∈ Lr such that a ≺ b, then there exists u ∈ Lr

such that a ≺ u ≺ b.
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Proof Since a ≺ b, there is an element s ∈ L such that a ∧ s = 0 and s ∨ b = 1. Therefore

a ∧ s∗∗ = 0 and s∗∗ ∨ b = 1. Applying the mild normality property of L on s∗∗ and b, we

find x, y ∈ L such that x ∧ y = 0 and s∗∗ ∨ x = 1 = y ∨ b. Hence x∗∗ ∧ y∗∗ = 0 and

s∗∗ ∨ x∗∗ = 1 = y∗∗ ∨ b. Thus a∧ s∗∗ = 0 and s∗∗ ∨ x∗∗ = 1, which implies that a ≺ x∗∗. Also

x∗∗ ∧ y∗∗ = 0 and y∗∗ ∨ b = 1 implies that x∗∗ ≺ b. So a ≺ x∗∗ ≺ b as desired. �

Corollary 3.3.4 If L is mildly normal and a, b ∈ Lr such that a ≺ b, then a ≺≺ b.

For the following, we mimick the proof of [7, Proposition 8.3.1]. In the following R0 =

R− {0} and R1 = R− {1}.

Lemma 3.3.5 A frame L is mildly normal if and only if whenever a, b ∈ Lr such that

a ∨ b = 1, there exists f ∈ RL such that f(R0) ≤ a and f(R1) ≤ b.

Proposition 3.3.6 A frame L is mildly normal if and only if whenever a, b ∈ Lr such that

a ∨ b = 1, there exist c, d ∈ CozL such that c ≤ a, d ≤ b and c ∨ d = 1.

Proof Put c = f(R0) and d = f(R1) in Lemma 3.3.5 above. Since each element of OR is

a cozero element and frame homomorphisms preserve cozeros, it follows that c, d ∈ CozL.

Now c ∨ d = f(R0) ∨ f(R1) = f((R− {0}) ∪ (R− {1})) = f(R) = 1. �

Next, recall that in an Oz-frame, every regular element is a cozero element. We show

that this class of frames is contained in the class of mildly normal frames.

Proposition 3.3.7 Every Oz-frame is mildly normal.

51



Proof Let a, b ∈ Lr be such that a ∨ b = 1. Thus, by [11, Proposition 2.2], a, b ∈ CozL.

Since CozL is a normal σ-frame, it follows that there exist u, v ∈ CozL such that u∧ v = 0

and a ∨ u = 1 = b ∨ v. �

Recall that L is an F -frame if every open quotient of a cozero element in L is a C∗-

quotient. Furthermore, L is an F ′-frame if a∗ ∨ b∗ = 1 whenever a, b ∈ CozL such that

a ∧ b = 0. It is shown in [7] that L is an F -frame if and only if for all a, b ∈ CozL such

that a ∧ b = 0, there exist c, d ∈ CozL such that c ∨ d = 1 and c ∧ a = d ∧ b = 0. It is

shown in [33, Corollary 4.7] that a normal F ′-frame is an F -frame. In the next proposition

we strengthen this result.

Proposition 3.3.8 A mildly normal F ′-frame is an F -frame.

Proof Let a, b ∈ CozL be such that a ∧ b = 0. Since L is an F ′-frame, a∗ ∨ b∗ = 1. Since

L is mildly normal and a∗, b∗ are regular elements, it follows by Proposition 3.3.6 that there

exist c, d ∈ CozL such that c ∨ d = 1, c ≤ a∗ and d ≤ b∗. Hence c ∧ a ≤ a∗ ∧ a = 0 and

d ∧ b ≤ b∗ ∧ b = 0. Therefore L is an F -frame. �

Mild normality is inherited by closed quotients of regular elements as is shown below.

Proposition 3.3.9 Every regular closed quotient of a mildly normal frame is mildly normal.

Proof Let L be a mildly normal frame and consider the regular closed quotient m : L →

↑c, where c ∈ Lr. Let a, b ∈ ↑c be regular elements such that a ∨ b = 1↑c. Denote by

(·)# the pseudocomplement in ↑c. Then a = s# and b = t# for some s, t ∈ ↑c. From [33,

Lemma 4.5], s# = (s ∧ c∗)∗ and t# = (t ∧ c∗)∗, so a and b are regular elements in L such

that a ∨ b = 1L. Since L is mildly normal, there exist x, y ∈ L such that x ∧ y = 0 and
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a ∨ x = 1 = b ∨ y. Now x ∨ c, y ∨ c ∈ ↑c and (x ∨ c) ∧ (y ∨ c) = c ∨ (x ∧ y) = c = 0↑c, also

a ∨ (x ∨ c) = (a ∨ x) ∨ c = 1 ∨ c = 1↑c and b ∨ (y ∨ c) = (b ∨ y) ∨ c = 1 ∨ c = 1↑c. Therefore

↑c is mildly normal. �

In [3], a subspace S of a topological space X is said to be R∗-embedded (resp. G∗-

embedded) in X if two disjoint regular-closed (resp. closure disjoint open sets) of S are

contained in disjoint regular closed sets (resp. extended to closure disjoint open sets) of X.

Furthermore, a subset A of S is said to be extended to a subset U of X if U ∩S = A. If A, B

are disjoint regular-closed subsets of S, then S −A and S −B are regular-open subsets of S

such that (S −A)∪ (S −B) = S. Let U and V be disjoint regular-closed subsets of X such

that A ⊆ U and B ⊆ V . Then (X−U)∩S ⊆ S−A and (X−V )∩S ⊆ S−B. The notions

of R∗- and G∗-embedded subspaces are captured in frames in the following definition.

Definition 3.3.10 A quotient map h : L→M is

(i) a G∗-quotient map if, for every a, b ∈M such that a∗ ∨ b∗ = 1M , there exist c, d ∈ L

such that c∗ ∨ d∗ = 1L, h(c) = a and h(d) = b.

(ii) an R∗-quotient map if, for every regular elements a, b ∈ M such that a ∨ b = 1M ,

there exist regular elements c, d ∈ L such that c ∨ d = 1L, h(c) ≤ a and h(d) ≤ b.

Proposition 3.3.11 A quotient map h : L → M is a G∗-quotient map if and only if for

every u, v ∈M with u∗ ∨ v∗ = 1M , there exist a, b ∈ L such that a∗ ∨ b∗ = 1L with u ≤ h(a)

and v ≤ h(b).

Proof (⇒) : This is trivial.

(⇐) : Let c, d ∈ L, c∗ ∨ d∗ = 1L, u ≤ h(c) and v ≤ h(d). Put a = c ∧ h∗(u) and b =
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d ∧ h∗(v). Now h(c ∧ h∗(u)) = h(c) ∧ u = u and h(d ∧ h∗(v)) = h(d) ∧ v = v. Also

(c ∧ h∗(u))
∗ ∨ (d ∧ h∗(v))

∗ ≥ c∗ ∨ d∗ = 1L. �

Next we show that a G∗-quotient map is an R∗-quotient map.

Proposition 3.3.12 Let h : L→ M be a quotient of L. If h is a G∗-quotient map, then h

is R∗-quotient.

Proof Let a, b ∈ M be regular elements such that a ∨ b = 1M . Then a = u∗ and b = v∗

for some u, v ∈ M . Then, by hypothesis, there exist c, d ∈ L such that c∗ ∨ d∗ = 1L with

h(c) = u and h(d) = v. Now h(c∗) ≤ h(c)∗ = u∗ = a and h(d∗) ≤ h(d)∗ = v∗ = b. Since

pseudocomplements are regular, the result follows. �

For the next result we show that if the codomain of a C∗-quotient map is a mildly normal

frame, then the map is a G∗-quotient map and hence an R∗-quotient map. If the domain of

an R∗-quotient map is mildly normal, then the quotient map is both a G∗-quotient map and

a C∗-quotient map.

Theorem 3.3.13 Let h : L→M be a quotient map. Then the following hold.

(a) If M is mildly normal and h is a C∗-quotient map, then h is a G∗-quotient map and

hence an R∗-quotient map.

(b) If L is mildly normal and h an R∗-quotient map, then h is a G∗-quotient map and

hence a C∗-quotient map.

(c) If L is mildly normal and h is an R∗-quotient map, then M is mildly normal.
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Proof (a) C∗ ⇒ G∗ : Let x, y ∈ M be such that x∗ ∨ y∗ = 1M . Since M is mildly normal,

by Proposition 3.3.6, there exist c, d ∈ CozM such that c∨ d = 1M with c ≤ x∗ and d ≤ y∗.

Since h is a C∗-quotient map, there exist s, t ∈ CozL such that s ∨ t = 1L, h(s) = c and

h(t) = d. Furthermore, CozL is a regular σ-frame, so there exist w, z ∈ CozL such that

w ≺≺ s, z ≺≺ t and w ∨ z = 1L. Now w ≺≺ s implies w∗ ∨ s = 1L, and z ≺≺ t implies

z∗ ∨ t = 1L. Therefore h(w∗) ∨ h(s) = 1M and h(z∗) ∨ h(t) = 1M . Now h(s) ∧ x = c ∧ x = 0

and h(w∗)∨h(s) = 1M implies x ≤ h(w∗). Similarly, y ≤ h(z∗). Since w∗∗∨z∗∗ ≥ w∨z = 1L,

it follows, by Proposition 3.3.11, that h is a G∗-quotient map and, by Proposition 3.3.12, h

is an R∗-quotient map.

(b) R∗ ⇒ G∗ : Let a, b ∈ M be such that a∗ ∨ b∗ = 1M . Since h is an R∗-quotient

map, there exist regular elements c, d ∈ L such that c ∨ d = 1L, h(c) ≤ a∗ and h(d) ≤ b∗.

Therefore h(c) ∧ a = 0 and h(d) ∧ b = 0. Furthermore, L is mildly normal, so there exist

u, v ∈ CozL such that u ∨ v = 1L, u ≤ c and v ≤ d. Since CozL is a normal σ-frame,

there exist w, z ∈ CozL such that w ≺≺ u, z ≺≺ v and w ∨ z = 1L. Now w ≺≺ u

implies w∗ ∨ u = 1L and z ≺≺ v implies z∗ ∨ v = 1L. Therefore h(w∗) ∨ h(u) = 1M

and h(z∗) ∨ h(v) = 1M . Now h(u) ∧ a ≤ h(c) ∧ a = 0 and h(w∗) ∨ h(u) = 1M implies

a ≤ h(w∗). Also h(v) ∧ b ≤ h(d) ∧ b = 0 and h(z∗) ∨ h(v) = 1M implies b ≤ h(z∗). Since

w∗∗ ∨ z∗∗ ≥ w ∨ z = 1L, it follows by Proposition 3.3.11, that h is a G∗-quotient map.

G∗ ⇒ C∗ : Let a, b ∈ CozM be such that a ∨ b = 1M . Then there exist u, v ∈ CozM

such that u ≺≺ a, v ≺≺ b and u∨ v = 1. Then u∗∗ ≺≺ a, v∗∗ ≺≺ b such that u∗∗ ∨ v∗∗ = 1M .

Since h is a G∗-quotient map, it follows that there exist c, d ∈ L such that c∗ ∨ d∗ = 1L

and h(c) = u∗, h(d) = v∗. Furthermore, L is mildly normal, so there exist s, t ∈ CozL

such that s ≤ c∗, t ≤ d∗ and s ∨ t = 1L. Now h(s) ≤ h(c∗) ≤ h(c)∗ = u∗∗ ≤ a and

h(t) ≤ h(d∗) ≤ h(d)∗ = v∗∗ ≤ b. Therefore by Proposition 1.6.1, h is a C∗-quotient map.

(c) Let a and b be regular elements of M such that a∨ b = 1M . Since h is an R∗-quotient

map, it follows that there exist regular elements c, d ∈ L such that c∨ d = 1L with h(c) ≤ a
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and h(d) ≤ b. Furthermore, L is mildly normal, so there exist x, y ∈ L such that x ∧ y = 0

and c ∨ x = 1 = d ∨ y. Now h(x) ∧ h(y) = 0 in M and a ∨ h(x) ≥ h(c) ∨ h(x) = h(c ∨ x) =

1M , b ∨ h(y) ≥ h(d) ∨ h(y) = h(d ∨ y) = 1M . Thus M is mildly normal. �

Definition 3.3.14 A frame L is said to be almost regular if for every regular element a ∈ L,

a =
∨

{x ∈ L | x ≺ a}.

Call a frame L nearly compact if for every cover S of L there is a finite subset K of S

such that (
∨

K)∗ = 0. In the literature, frames with this property are called almost compact.

Since in Chapter 2 we used that name to mean something different, we prefer to use “nearly

compact” in order to avoid confusion.

Proposition 3.3.15 Every almost regular, nearly compact frame is mildly normal.

Proof Let a and b be regular elements in L such that a∨b = 1. Since L is almost regular, we

have that a =
∨

{x | x ≺ a} and b =
∨

{y | y ≺ b}. Now put S = {x∨y | x ≺ a, y ≺ b}. Then

S is a cover of L. Since L is nearly compact, there exists a finiteK = {x1∨y1, . . . , xn∨yn} ⊆ S

such that (
∨

K)∗ = 0. Now

0 =
(

∨

K
)∗

=

(

n
∨

i=1

(xi ∨ yi)

)∗

=
n
∧

i=1

(xi ∨ yi)
∗

=
n
∧

i=1

(x∗
i ∧ y∗i )

=

(

n
∧

i=1

x∗
i

)

∧

(

n
∧

i=1

y∗i

)

Since each xi ≺ a, each x∗
i ∨ a = 1 and therefore

n
∧

i=1

(x∗
i ∨ a) = a ∨

n
∧

i=1

x∗
i = 1. Similarly,

n
∧

i=1

(y∗i ∨ b) = b ∨
n
∧

i=1

y∗i = 1. Now put c =
n
∧

i=1

x∗
i and d =

n
∧

i=1

y∗i . Then c ∧ d = 0 and

a ∨ c = 1 = b ∨ d. Thus, L is mildly normal. �
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In [54, Proposition 10.2], Pultr proves that a regular Lindelöf frame is mildly normal.

Mimicking his proof almost verbatim, we obtain the following result.

Proposition 3.3.16 Every almost regular, Lindelöf frame is mildly normal.

We end the section by showing in the next proposition that the property of mild normality

is inherited by dense uplifting quotients. Let us recall (see, for instance, [7, Lemma 8.2.5])

that if h : L → M is a dense onto homomorphism with right adjoint r, then r(b∗) = r(b)∗

for all b ∈M .

Proposition 3.3.17 Let h : L → M be a dense uplifting quotient map. If L is mildly

normal, then so is M .

Proof Let a and b be regular elements in M such that a∨ b = 1. Then a = a∗∗ and b = b∗∗.

Since h is an uplifting quotient map, it follows that h∗(a
∗∗)∨h∗(b

∗∗) = 1. By the result cited

from [7], we have h∗(a
∗∗) = h∗(a)

∗∗ and h∗(b
∗∗) = h∗(b)

∗∗ and therefore h∗(a
∗∗) and h∗(b

∗∗)

are regular elements in L. By mild normality of L, there exist c, d ∈ L such that c ∧ d = 0

and c ∨ h∗(a
∗∗) = 1 = d ∨ h∗(b

∗∗). Then h(c) ∧ h(d) = 0, h(c) ∨ a∗∗ = 1 and h(d) ∨ b∗∗ = 1.

Thus, h(c) ∨ a = 1 and h(d) ∨ b = 1, and hence M is mildly normal. �

3.4 ∆-normal frames

A subset A of a topological space X is called regular-closed if it equals the closure of its

interior. On the other hand, it is regular-open if it equals the interior of its closure. Clearly,

for a subset S of a topological space X, we have that S is regular-open if and only if X −S,

its complement in X, is regular-closed. Furthermore, for any space X and U ∈ OX,

U is regular-open ⇔ U = U∗∗.
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Regular elements of any frame are precisely the pseudocomplements. That is,

a ∈ L is regular ⇔ a = b∗ for some b ∈ L.

In spaces, there is a variant of normality, called ∆-normality, which is stronger than mild

normality. Let us recall the definition.

Let X be a topological space, A ⊆ X and p ∈ X. The point p is said to be a δ-limit

point of A if every regular-open neighbourhood of p meets A. The δ-closure of A, denoted

by Āδ, is the set

Āδ = {x ∈ X | x is a δ-limit point of A}.

A set S ⊆ X is δ-closed if S = S̄δ, and δ-open if its complement is δ-closed. A topological

space X is said to be ∆-normal (resp. weakly ∆-normal) if for any disjoint closed subsets

A,B of X, of which one is δ-closed (resp. both δ-closed), there exist disjoint open subsets

U and V in X such that A ⊆ U and B ⊆ V .

In this section, we extend this notion to frames. We will however not study it in any

detail, save to show that it is stronger than mild normality, and coincides with it in the

category of regular frames. Since ∆-normality in spaces is defined by means of a condition

which makes specific reference to points, our first task will be to cast the definition in the

language of open sets only.

Now δ-openness can be phrased in frame terms in the following way: We start by writing

Āδ in terms of closed sets with no points mentioned, so that on taking complements we have

a set expressed solely in terms of open sets.

Lemma 3.4.1 For any topological space X and A ⊆ X, we have

Āδ =
⋂

{R ⊆ X | R is regular-closed and R ⊇ A}.
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Proof Let p ∈ Āδ, and consider any regular-closed set Q ⊆ X with A ⊆ Q. We aim to

show that p ∈ Q, which will prove that p is in the intersection stated in the Lemma 3.4.1.

Suppose, by way of contradiction, that p /∈ Q. Then p ∈ X −Q. Thus X −Q is a regular-

open neighbourhood of p. Since p ∈ Āδ, we must have (X − Q) ∩ A 6= ∅. But this is false

since A ⊆ Q and Q ∩ (X −Q) = ∅. Therefore

Āδ ⊆
⋂

{R ⊆ X | R is regular-closed and R ⊇ A}.

To show the reverse inclusion, write the collection

{R ⊆ X | R is regular-closed and R ⊇ A}

as an indexed family {Ri}i∈I . To show that

⋂

i∈I

Ri ⊆ Āδ,

it suffices to show that

X − Āδ ⊆ X −
⋂

i∈I

Ri,

that is,

X − Āδ ⊆
⋃

i∈I

(X −Ri).

Let z ∈ X− Āδ. Then z /∈ Āδ, and hence z has a regular-open neighbourhood (say P ) which

misses A. So A ⊆ X−P . Consequently, X−P is a regular-closed set containing A, so that,

in view of P = X − (X − P ), we have that P is one of the sets X −Ri. Thus,

z ∈ P ⊆
⋃

i∈I

(X −Ri).

This establishes the reverse inclusion, and hence the desired equality. �

Corollary 3.4.2 Let X be a topological space and U ∈ OX. Then

U is δ-open ⇔ U =
⋃

{V ∈ OX | V = V ∗∗ and V ⊆ U}.
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In view of this, we say an element of a frame L is a δ-element if

a =
∨

{x ∈ L | x = x∗∗ and x ≤ a}.

Observe that every regular element is a δ-element. Following [21], we formulate the

following definition.

Definition 3.4.3 A frame L is said to be

(i) ∆-normal if for any a, b ∈ L, with either a or b a δ-element and a∨ b = 1, there exist

c, d ∈ L such that c ∧ d = 0 and a ∨ c = b ∨ d = 1.

(ii) weakly ∆-normal if for any a, b ∈ L, with a, b both δ-element and a ∨ b = 1, there

exist c, d ∈ L such that c ∧ d = 0 and a ∨ c = b ∨ d = 1.

Since every regular element is a δ-element, it follows immediately that every ∆-normal

frame is mildly normal. Recall that a homomorphism h : L → M is said to be closed if for

every a ∈ L and b ∈M , h∗(h(a)∨ b) = a∨ h∗(b). A frame homomorphism h : L→M is said

to be nearly open if h(t∗) = h(t)∗ for all t ∈ L.

Proposition 3.4.4 If h : L → M is closed, one-one and nearly open, then M ∆-normal

implies that L is ∆-normal.

Proof Let a, b ∈ L with a a δ-element such that a ∨ b = 1. Then

a =
∨

{x ∈ L | x = x∗∗ and x ≤ a}

and so

h(a) =
∨

{h(x) | x = x∗∗ and x ≤ a}

≤
∨

{y | y = y∗∗ and y ≤ h(a)}

≤ h(a),
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since x = x∗∗ implies h(x) = h(x)∗∗ by near openess of h. Therefore h(a) is δ-open

and h(a) ∨ h(b) = 1. Since M is ∆-normal, it follows that there exist c, d ∈ M such that

c∧ d = 0 and h(a)∨ c = 1 = h(b)∨ d. Since h is dense (because it is one-one), it follows that

h∗(c) ∧ h∗(d) = 0. Also since h is closed, a ∨ h∗(c) = 1 = b ∨ h∗(d). Thus L is ∆-normal. �
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Chapter 4

Quasi F-frames

4.1 Introduction

In their study of C- and C∗-quotients in pointfree topology, Ball and Walters-Wayland [7]

devote a section to disconnectivity in which they define F -frames, F ′-frames and quasi-F

frames. The class of quasi-F frames contains that of F ′-frames, which, in turn, contains that

of F -frames. These containments are strict. Furthermore, each of these notions is the exact

analogue of its spatial antecedent, by which we mean that a completely regular space X is

an F -space, an F ′-space or a quasi-F space if and only if the frame of its open subsets is

an F -frame, an F ′-frame or a quasi-F frame, respectively. Quasi-F spaces were introduced

in [22] by Dashiell, et. al. F -frames and F ′-frames have been characterized in several ways

(see [30], [27] and [33]).

In [7], only one characterization of quasi-F frames is presented, namely:

A completely regular frame L is quasi -F if and only if for all a, b ∈ CozL such
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that a∧b = 0 and a∨b is dense, there exist c, d ∈ CozL such that a∧c = b∧d = 0

and c ∨ d = 1.

Our aim in this chapter is to give several characterizations of quasi-F frames. These will

include a characterization almost similar to the one cited above but in which we do not

require that the cozero elements whose join is dense should also be disjoint.

We shall also present a characterization in terms of rings of continuous functions to the

effect that L is quasi-F if and only if Ann2(α) + Ann2(β) = RL whenever α + β is not a

zero-divisor. Element-wise characterization includes one stating that a completely regular

frame is quasi-F if and only if whenever the join of two cozero elements is dense, their

pseudocomplements are completely separated. Another ring-theoretic characterization is

that L is quasi-F precisely when the ring RL is quasi-Bézout.

We call a frame homomorphism “rigid” – a term borrowed from ℓ-groups – if every cozero

element in the codomain has a pseudocomplement equal to that of the image of some cozero

element. We then show that if a frame is quasi-F , then every dense onto homomorphism out

of it is a C∗-quotient map if and only if it is coz-onto, if and only if it is rigid. This leads to

the observation that if a Lindelöf frame has a quasi-F compactification, then it is quasi-F ,

and the compactification in question is the Stone-Čech compactification.

4.2 Characterizations of quasi-F frames

Throughout this chapter, all frames are assumed to be completely regular. Also, by “ring” we

mean a commutative ring with identity. We recall from [7] that an onto frame homomorphism

h : L → M is called a C∗-quotient map if for each α ∈ R∗M , there exists β ∈ RL such

that h ◦ β = α. In the same article, a frame L is defined to be quasi -F if for every dense

c ∈ CozL, the open quotient map L → ↓c is a C∗-quotient map. A useful characterization
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given in [7] has already been recited in the introduction. Our first characterization is almost

similar to it, but does not require that the cozero elements a and b be disjoint. It is, in fact,

a frame analogue of [35, Lemma 2.10].

Proposition 4.2.1 A completely regular frame L is quasi-F if and only if a∗∗ ∨ b∗∗ = 1 for

all a, b ∈ CozL with a ∨ b dense.

Proof (⇒) : Let a and b be cozero elements of L such that a ∨ b is dense. Put c = a ∨ b.

Then, by hypothesis, the open quotient map h : L→ ↓c is a C∗-quotient map. Since h(a) = a

and h(b) = b, it follows that a, b ∈ Coz (↓c) because frame homomorphims preserve cozero

elements. Now a ∨ b = 1↓c, and so, by Proposition 1.6.1, there exist u, v ∈ CozL such that

u ∨ v = 1L and h(u) = a, h(v) = b.

Thus,

u ∧ (a ∨ b) = a and v ∧ (a ∨ b) = b.

Consequently,

(u ∧ (a ∨ b))∗∗ = a∗∗,

which implies that

u∗∗ ∧ (a ∨ b)∗∗ = a∗∗,

whence u∗∗ = a∗∗ since (a ∨ b)∗∗ = 1 as a ∨ b is dense. Similarly, v∗∗ = b∗∗. Thus,

a∗∗ ∨ b∗∗ = u∗∗ ∨ v∗∗ ≥ u ∨ v = 1.

(⇐) : Let c be a dense cozero element of L. Consider the open quotient map g : L→ ↓c.

Note that g is a dense homomorphism, so by [7, Theorem 8.2.6], it suffices to show that for

all a, b ∈ Coz (↓c) such that a ∨ b = 1↓c, g∗(a) ∨ g∗(b) = 1L. So take a, b ∈ Coz (↓c) with

a ∨ b = 1↓c. Denote the rather below relation and pseudocomplementation in ↓c by � and

(·)# respectively. By normality of Coz (↓c), there exist u, v ∈ Coz (↓c) such that

u � a, v � b and u ∨ v = 1↓c.
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Then u## ≤ a and v## ≤ b. Since, for any t ∈ ↓c, t# = c ∧ t∗, it follows that

u## = (u#)# = (c ∧ u∗)# = c ∧ (c ∧ u∗)∗ ≥ c ∧ (c∗ ∨ u∗∗) = c ∧ u∗∗ = g(u∗∗).

Thus, g(u∗∗) ≤ u## ≤ a, which implies that u∗∗ ≤ g∗(a). Similarly, v∗∗ ≤ g∗(b). Since

u∨v = c, which is dense, the current hypothesis implies that u∗∗∨v∗∗ = 1 since u, v ∈ CozL

by [7, Proposition 3.2.10]. Therefore g∗(a) ∨ g∗(b) = 1, and we are done. �

This result enables us to show that if a coproduct of two frames is quasi-F , then each

summand is quasi-F . Concerning the coproduct L ⊕M , recall that elements of the form

a ⊕ b generate L ⊕M , and that a ⊕ b = 0 if and only if a = 0 or b = 0. It is shown in

[15] that (a ⊕ b)∗∗ = a∗∗ ⊕ b∗∗. If iL and iM denote the coproduct injections, then, for any

c ∈ CozL and d ∈ CozM , c⊕ d ∈ Coz (L⊕M) since c⊕ d = iL(c) ∧ iM(d) – a meet of two

cozero elements.

Corollary 4.2.2 If L⊕M is quasi-F , then both L and M are quasi-F .

Proof We show L to be quasi-F . Let a, b ∈ CozL such that a ∨ b is dense. We claim that

the cozero element (a⊕ 1) ∨ (b⊕ 1) is dense. Suppose that

(x⊕ y) ∧ ((a⊕ 1) ∨ (b⊕ 1)) = 0

for some x ∈ L and y ∈M . Then

((x⊕ y) ∧ (a⊕ 1)) ∨ ((x⊕ y) ∧ (b⊕ 1)) = ((x ∧ a)⊕ y) ∨ ((x ∧ b)⊕ y) = 0.

If y 6= 0, then (from above) we must have x ∧ a = 0 and x ∧ b = 0, which implies that

x ∧ (a ∨ b) = 0, and hence x = 0 since a ∨ b is dense. Consequently, x ⊕ y = 0, and hence

(a⊕ 1)∨ (b⊕ 1) is dense since the elements u⊕ v, u ∈ L, and v ∈M , generate L⊕M . Now,

Proposition 4.2.1 implies

(a⊕ 1)∗∗ ∨ (b⊕ 1)∗∗ = 1L⊕M ,
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that is,

(a∗∗ ⊕ 1) ∨ (b∗∗ ⊕ 1) = (a∗∗ ∨ b∗∗)⊕ 1 = 1L⊕M ,

which implies that a∗∗ ∨ b∗∗ = 1. Therefore L is quasi-F , by the proposition. Similarly, M

is quasi-F . �

Recall that L is an F ′-frame if a∗∨b∗ = 1 for all a, b ∈ CozL with a∧b = 0. These frames

generalize F -frames which, we recall, are defined by stipulating that for every c ∈ CozL,

the open quotient map L → ↓c be a C∗-quotient map. Every F -frame is an F ′-frame, and

every mildly normal F ′-frame is an F -frame, as we showed in Chapter 3. A P -frame is one

in which every cozero element is complemented, and an almost-P frame is one such that

a∗∗ ∈ CozL for each a ∈ CozL. We observe that quasi-F frames include all these.

Corollary 4.2.3 Every almost-P frame and every F ′-frame is quasi-F .

Proof If L is an almost-P frame and a ∨ b is dense for some a, b ∈ CozL, then, by [26,

Proposition 3.3], a∨ b = 1, and hence a∗∗ ∨ b∗∗ = 1. Therefore L is quasi-F . Now suppose L

is an F ′-frame and a, b ∈ CozL are such that a∧ b = 0 and a∨ b is dense. Then a∗ ∧ b∗ = 0

by density, and a∗ ∨ b∗ = 1 since L is an F ′-frame. Thus, a∗ and b∗ are complemented, and

hence are cozero elements satisfying the requirement in the characterization cited from [7].

�

For the following definition, we follow the definition in spaces [38].

Definition 4.2.4 A completely regular frame L is cozero complemented if for each u ∈

CozL, there is a v ∈ CozL such that u ∧ v = 0 and u ∨ v is dense in L.
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We shall study these types of frames in more detail in the next chapter. Recall that a

frame is basically disconnected if the pseudocomplement of every cozero element is comple-

mented, that is c∗ ∨ c∗∗ = 1 for each cozero element c.

Corollary 4.2.5 Every basically disconnected frame is quasi-F . On the other hand, every

cozero complemented quasi F -frame is basically disconnected.

Proof Let L be basically disconnected and suppose a, b ∈ CozL such that a ∨ b is dense.

Then a∗ ∧ b∗ = 0, and therefore a∗ ≤ b∗∗. Since L is basically disconnected, a∗ ∨ a∗∗ = 1.

Therefore a∗∗ ∨ b∗∗ = 1, and hence L is quasi-F by Proposition 4.2.1. This proves the first

part.

Now letM be a cozero-complemented quasi-F frame, and let c ∈ CozM . Pick d ∈ CozM

such that c ∧ d = 0 and c ∨ d is dense. Then c∗∗ ∨ d∗∗ = 1. But now c∗∗ ∧ d∗∗ = 0 since

c∧d = 0, so c∗∗ is complemented, that is, c∗∨c∗∗ = 1. Therefore M is basically disconnected.

�

Next, we show that a frame is quasi-F if and only if its Stone-Čech compactification is

quasi-F . We need a lemma. Recall that a frame homomorphism h : L → M is coz-onto if

for every d ∈ CozM , there exists c ∈ CozL such that h(c) = d.

Lemma 4.2.6 Let h : L → M be a dense coz-onto frame homomorphism. If L is quasi-F ,

then so is M .

Proof Notice that h is onto by complete regularity. Recall that a dense onto frame homo-

morphism preserves pseudocomplements. Let u, v ∈ CozM such that u ∨ v is dense. Since

h is coz-onto, there exist c, d ∈ CozL such that h(c) = u and h(d) = v. Now,

0 = u∗ ∧ v∗ = h(c)∗ ∧ h(d)∗ = h(c∗) ∧ h(d∗) = h(c∗ ∧ d∗),
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which implies that c∗ ∧ d∗ = 0 by the density of h. Thus, c∨ d is dense in the quasi-F frame

L. Thus, by Proposition 4.2.1, c∗∗ ∨ d∗∗ = 1. Consequently,

u∗∗ ∨ v∗∗ = h(c)∗∗ ∨ h(d)∗∗ = h(c∗∗ ∨ d∗∗) = 1,

and hence M is quasi-F . �

We have an example to show that the converse of this lemma does not hold. That is, if

h : L→M is dense coz-onto and M is a quasi F -frame, it does not follow that L is a quasi

F -frame.

Example 4.2.7 Let L = OR and put a = (−∞, 0), b = (0,∞). Then a, b ∈ CozL and

a ∨ b is dense. However

a∗∗ ∨ b∗∗ = a ∨ b 6= 1L,

so, in view of Proposition 4.2.1, L is not a quasi F -frame. Now consider the Booleanization

map ♭ : L→ BL. It is dense and coz-onto, the latter holding since it is onto and L = CozL.

Also BL is Boolean, and hence a quasi F -frame. Thus, ♭ is a dense coz-onto homomorphism

with a quasi-F codomain but not quasi-F domain.

We note, in passing, that this lemma tells us that if L is quasi-F and c ∈ CozL is dense,

then ↓c is quasi-F because the open quotient map M → ↓c is dense and coz-onto. This can of

course be established directly from the definition. In the proof of the following proposition,

we will need to recall that the join map βL→ L is coz-onto, and that if a frame M is normal,

then for any a, b ∈ M with a ∨ b = 1, there exist c, d ∈ CozM such that c ≤ a, d ≤ b and

c ∨ d = 1 (see [7, Corollary 8.3.2]).

Proposition 4.2.8 A completely regular frame is quasi-F if and only if its Stone-Čech

compactification is quasi-F .
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Proof If βL is quasi-F , then L is quasi-F by Lemma 4.2.6 since βL → L is dense and

coz-onto. Conversely, assume L is quasi-F . We shall use the characterization cited from [7].

Let I, J ∈ Coz βL such that I ∨ J is dense and I ∧ J = 0βL. Then
∨

I ∨
∨

J is a dense

element of L and
∨

I ∧
∨

J = 0. Since
∨

I and
∨

J are cozero elements of L, and since L is

quasi-F , by hypothesis, there exist c, d ∈ CozL such that

c ∧
∨

I = 0, d ∧
∨

J = 0 and c ∨ d = 1.

Thus, r(c) ∨ r(d) = 1βL. By the normality of βL, there exist U, V ∈ Coz βL such that

U ≤ r(c), V ≤ r(d), and U ∨ V = 1βL.

We show that U ∧ I = V ∧ J = 0βL. Indeed,

∨

(U ∧ I) =
∨

U ∧
∨

I ≤
∨

r(c) ∧
∨

I = c ∧
∨

I = 0,

which implies U ∧ I = 0βL since
∨

: βL→ L is dense. Similarly, V ∧ J = 0βL. Therefore βL

is quasi-F . �

Lemma 4.2.9 Let g : L → M be a dense homomorphism. Then for any a ∈ L, a∗ =

g∗g(a
∗).

Proof Since t ≤ g∗g(t), for every t ∈ L, we need only show that g∗g(a
∗) ≤ a∗. Now

g(a ∧ g∗g(a
∗)) = g(a) ∧ g(a∗) = 0, so a ∧ g∗g(a

∗) = 0, by density. Thus, g∗g(a
∗) ≤ a∗, and

hence a∗ = g∗g(a
∗). �

We remind the reader that a dense onto homomorphism commutes with pseudocomple-

ments, i.e., h(a∗) = h(a)∗.

As observed in Example 4.2.7, the converse of Lemma 4.2.6 does not hold in general.

However, if h is an R∗-quotient map we have the following proposition.

69



Proposition 4.2.10 Let h : L → M be a dense R∗-quotient map which is coz-onto. Then

L is quasi-F if and only if M is quasi-F .

Proof We only show the sufficiency part. Let a, b ∈ CozL such that a ∨ b is dense. Since

frame homomorphisms preserve cozero elements, it follows that h(a), h(b) ∈ CozM . Now,

since a ∨ b is dense

(h(a) ∨ h(b))∗ = (h(a ∨ b))∗ = h((a ∨ b)∗) = h(0) = 0,

and so h(a) ∨ h(b) is dense in M . The frame M is quasi-F , so h(a)∗∗ ∨ h(b)∗∗ = 1M . Since

h is an R∗-quotient map, it follows that there exist regular elements u, v in L such that

h(u) ≤ h(a∗∗), h(v) ≤ h(b∗∗) and u ∨ v = 1L. Therefore u ≤ h∗h(a
∗∗) and v ≤ h∗h(b

∗∗).

Thus, by Lemma 4.2.9,

1L = u ∨ v ≤ h∗h(a
∗∗) ∨ h∗h(b

∗∗) = a∗∗ ∨ b∗∗.

Hence L is quasi-F . �

Let υL and λL denote, respectively, the Hewitt realcompactification and the regular

Lindelöf coreflection of L. For c ∈ CozL, recall that we write

[c] = {x ∈ CozL | x ≤ c},

and that

Coz υL = CozλL = {[c] | c ∈ CozL}.

Furthermore, the maps υL → L and λL → L, by taking joins, are dense onto. Therefore

Lemma 4.2.6 and the characterization from [7] lead us to the following result:

Proposition 4.2.11 The following are equivalent for L:

(1) L is quasi-F .

70



(2) υL is quasi-F .

(3) λL is quasi-F .

We now give a characterization in terms of rings of continuous functions. We remark that

the spatial version of this result appears in [53] by putting together certain results therein. It

is obtained by regarding C(X) as a Riesz space. Our method of proof is completely different.

It uses, among other things, a concept which does not exist in the category of topological

spaces; namely, the universal Lindelöfication.

First, some notation from [26]. For each I ∈ βL, the ideal MI of RL is defined by

MI = {ϕ ∈ RL | r(coz ϕ) ⊆ I}.

Keeping in mind that r(a)∗ = r(a∗), we have the following lemma, the proof of which can

be found in [31]. If S ⊆ R, where R is a commutative ring with unity, we let AnnS = {a ∈

R | aS = {0}}, called the annihilator of S.

Lemma 4.2.12 Let S ⊆ RL and put a =
∨

{cozα | α ∈ S}. Then Ann (S) = Mr(a∗). In

particular, for any γ ∈ RL,Ann 2(γ) = Mr(coz γ)∗∗.

Note that if an element α of RL is a zero divisor, then cozα is not dense as it misses some

nonzero cozero element. On the other hand, if a nonzero element of a completely regular

frame misses some nonzero element, then it misses some nonzero cozero element. We give a

lemma which was proved by Dube in [26]. Here our proof is different and direct.

Lemma 4.2.13 The homomorphism ϕ ∈ RL fails to be a zero divisor if and only if cozϕ

is dense in L.
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Proof (⇒): Suppose on the contrary that ϕ is a zero divisor. Let δ ∈ RL with coz δ 6= 0 be

such that ϕδ = 0. Then cozϕ ∧ coz δ = coz (ϕδ) = coz 0 = 0. Hence cozϕ is not dense in L.

(⇐): Conversely suppose that cozϕ is dense in L. Then for any δ ∈ RL with coz δ 6= 0

in L, we have

cozϕ ∧ coz δ 6= 0

⇒ coz (ϕδ) 6= 0

⇒ ϕδ 6= 0

⇒ ϕ is not a zero divisor.

�

Recall that an onto frame homomorphism h : L → M is called a C-quotient map if for

every α ∈ RM , there exists β ∈ RL such that h ◦ β = α. Thus, h is a C-quotient map

precisely when the induced ring homomorphism Rh : RL→ RM is onto.

Proposition 4.2.14 A completely regular frame L is quasi-F if and only if for all α, β ∈

RL, Ann2(α) + Ann2(β) = RL whenever α + β is not a zero divisor.

Proof (⇐) : Let c, d ∈ CozL such that c∨ d is dense. Let γ and δ be nonnegative elements

of RL such that c = coz γ and d = coz δ. Now, coz (γ+ δ) = c∨d, which is dense, so γ+ δ is

not a zero divisor. Thus, by hypothesis, Ann2(γ) + Ann2(δ) = RL. Take α ∈ Ann2(γ) and

β ∈ Ann2(δ) such that α+ β = 1. Therefore, by Lemma 4.2.12, cozα ≤ c∗∗ and coz β ≤ d∗∗.

Now,

1 = coz 1 = coz (α + β) ≤ cozα ∨ coz β,

implies c∗∗ ∨ d∗∗ = 1. Therefore, by Proposition 4.2.1, L is quasi-F .

(⇒) : Assume, for a moment, that L is normal. Let α, β ∈ RL such that α + β is not

a zero divisor. Then coz (α + β) is dense. Since cozα ∨ coz β ≥ coz (α + β), cozα ∨ coz β
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is dense, and so, by Proposition 4.2.1, (cozα)∗∗ ∨ (coz β)∗∗ = 1. By normality, there exist

c, d ∈ CozL such that

c ≤ (cozα)∗∗, d ≤ (coz β)∗∗ and c ∨ d = 1.

Take nonnegative γ, δ ∈ RL such that c = coz γ and d = coz δ. Then r(coz γ) ⊆ r(cozα)∗∗,

and hence γ ∈Mr(cozα)∗∗ = Ann2(α). Similarly, δ ∈ Ann2(β). Since coz (γ + δ) = 1, γ + δ is

invertible, and therefore Ann2(α) + Ann2(β) = RL.

Now, relax the normality assumption. Let us say a ring A has property (P ) if, for all

a, b ∈ A, Ann2(a) + Ann2(b) = A whenever a+ b is not a zero divisor. One checks routinely

that property (P ) is preserved by ring isomorphisms. We must show that RL has property

(P ) under the hypothesis that L is quasi-F . By Proposition 4.2.11, λL is quasi-F . But λL

is a regular Lindelöf frame, so it is normal. Thus, R(λL) has property (P ) by what we have

shown. Since the map λL → L is dense, the induced ring homomorphism R(λL) → RL is

one-one, by [10, Lemma 2]. Since the map λL → L is a C-quotient map by [7, Corollary

8.2.13], the induced ring homomorphism is onto. Thus, RL is isomorphic to R(λL), and

hence has the required property. �

Since a completely regular space X is a quasi-F space if and only if OX is a quasi-F

frame, and since the ring C(X) is isomorphic to the ring R(OX), the following corollary is

apparent.

Corollary 4.2.15 A completely regular space X is quasi-F if and only if for all f, g ∈ C(X),

Ann2(f) + Ann2(g) = C(X) whenever f + g is not a zero divisor.

Next, we give another characterization which is also a corollary of Proposition 4.2.14.

Let us recall that elements a and b of a frame L are said to be completely separated if there

exist c, d ∈ CozL such that c ∨ d = 1 and a ∧ c = 0 = b ∧ d.
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Corollary 4.2.16 A completely regular frame L is quasi-F if and only if c∗ and d∗ are

completely separated whenever c, d ∈ CozL are such that c ∨ d is dense.

Proof (⇒) : Suppose L is quasi-F and that c ∨ d is dense for some c, d ∈ CozL. Pick

nonnegative γ and δ in RL such that c = coz γ and d = coz δ. Then coz (γ + δ) = coz γ ∨

coz δ, which is dense. Therefore γ + δ is not a zero divisor. Thus, by Proposition 4.2.14,

Ann2(γ) + Ann2(δ) = RL. Take α ∈ Ann2(γ) and β ∈ Ann2(δ) such that 1 = α + β. Then

1 = coz 1 = coz (α + β) ≤ cozα ∨ coz β.

Since α ∈ Ann2(γ) = Mr(c∗∗), it follows that cozα ≤ c∗∗. Similarly, coz β ≤ d∗∗. Thus, cozα

and coz β are cozero elements of L such that

cozα ∨ coz β = 1 and c∗ ∧ cozα = d∗ ∧ coz β = 0.

Therefore c∗ and d∗ are completely separated.

(⇐) : Let a ∨ b be dense, where a, b ∈ CozL. By hypothesis, there exist u, v ∈ CozL

such that

u ∨ v = 1 and a∗ ∧ u = b∗ ∧ v = 0.

Thus, u ≤ a∗∗ and v ≤ b∗∗, so that a∗∗ ∨ b∗∗ = 1. Therefore L is quasi-F by Proposition

4.2.14. �

An ideal I of a ring is said to be regular if it does not consist entirely of zero divisors. In

[4] an ideal I of a reduced commutative ring A is said to be a zo-ideal if for each a ∈ I, Pa ⊆ I,

where Pa denotes the intersection of all minimal prime ideals containing a. It is then shown

that I is a zo-ideal if and only if Ann2(a) ⊆ I for each a ∈ I. Quasi-F frames can be

characterized in terms of zo-ideals as follows. Clearly, every annihilator ideal is a zo-ideal

since Ann3 = Ann. It follows, therefore, from Proposition 4.2.14 that:

74



Corollary 4.2.17 A frame L is quasi-F if and only if whenever P,Q are zo-ideals of RL

such that P +Q is regular, then P +Q = RL.

The next characterization requires a bit of background. First, an f -ring (which is as-

sumed to be reduced and with bounded inversion) is said to be quasi-Bézout if every finitely

generated ideal which contains a non-zero divisor is principal. In Theorem 5.1 of [22], it is

shown that a Tychonoff space X is quasi-F if and only if C(X) is quasi-Bézout. We aim

to show that a completely regular frame is quasi-F if and only if RL is quasi-Bézout. Our

argument is similar to that employed by Dube [27] in showing that L is an F -frame if and

only if every finitely generated ideal of RL is principal.

We shall freely use properties of f -rings and characterizations of quasi-Bézout f -rings

established in [52]. Clearly, the property of being quasi-Bézout is preserved by ring isomor-

phisms.

Proposition 4.2.18 A completely regular frame L is quasi-F if and only if RL is quasi-

Bézout.

Proof Suppose L is quasi-F . Then βL is quasi-F , so that, by spatiality, R(βL) is quasi-

Bézout. This implies that R∗L is quasi-Bézout since R∗L is isomorphic to R(βL). We

establish from this that RL is quasi-Bézout. We use the characterization in [52, Theorem

2]. So, let 0 ≤ α ≤ β in RL with β a nonzero divisor. We must show that α is a multiple of

β. From 0 ≤ α ≤ β, it follows that

α + αβ ≤ β + αβ,

that is,

α(1 + β) ≤ β(1 + α). (†)

Since nonnegative elements of RL are squares ([8, Proposition 11]), if γ ≥ 0 is an invertible

element of RL, then γ = τ 2 for some τ ∈ RL, so that γ−1 = (τ−1)2, showing that the inverse
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of γ is nonnegative. Since RL has bounded inversion, multiplying both sides of (†) with the

nonnegative element (1 + α)−1(1 + β)−1 yields

0 ≤
α

1 + α
≤

β

1 + β
. (‡)

But now both α
1+α

and β

1+β
are in R∗L since, for any γ ≥ 0 in RL, 0 ≤ γ

1+γ
≤ 1 by the same

kind of reasoning that produced (‡). Notice that β

1+β
is not a zero divisor in R∗L, lest β a

zero-divisor. Now from (‡) and the fact that R∗L is quasi-Bézout, we conclude that there

exists δ ∈ R∗L such that
α

1 + α
= δ

β

1 + β

whence α = γβ for some γ ∈ RL.

Conversely, suppose RL is quasi-Bézout. We show that R∗L is quasi-Bézout. Let 0 ≤

α ≤ β in R∗L with β not a zero-divisor in R∗L. Then, β is not a zero-divisor in RL (indeed,

βϕ = 0 for some nonzero ϕ ∈ RL, implies βδ = 0 for the nonzero element δ = ϕ2

1+ϕ2 of R∗L).

Since 0 ≤ α ≤ β in RL, and since the hypothesis is that RL is quasi-Bézout, there exists,

by [52, Theorem 2], γ ∈ RL such that α = γβ. Notice that we may assume that γ ≥ 0 since

α = |α| = |γβ| = |γ||β| = |γ|β. Thus, 0 ≤ γ ∧ 1 ≤ 1 implies that γ ∧ 1 is an element of R∗L

with

(γ ∧ 1)β = γβ ∧ β = α ∧ β = α.

This shows that R∗L is quasi-Bézout. Consequently, R(βL) is quasi-Bézout, and hence, by

spatiality, βL is quasi-F . Therefore L is quasi-F . �

Remark 4.2.19 Armed with this result, and taking into account the characterizations of

quasi-Bézout rings in [52], one shows easily that most of the characterizations of quasi-F

spaces in Theorem 5.1 of [22] extend to frames.

It is shown in [7] that any C∗-quotient map is coz-onto. We show below that any dense

onto homomorphism whose source is a quasi-F frame is a C∗-quotient map if and only if it
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is coz-onto. In fact, these are equivalent to being what we shall call a rigid homomorphism

for reasons that shall be apparent. The term “rigid” is usually used to describe certain types

of ℓ-subgroups of an ℓ-group.

Definition 4.2.20 A frame homomorphism h : L → M is rigid if for every d ∈ CozM ,

there exists c ∈ CozL such that h(c)∗ = d∗.

Clearly, any coz-onto frame homomorphism is rigid.

Proposition 4.2.21 Let L be a quasi-F frame and h : L → M be a dense onto frame

homomorphism. Then the following are equivalent:

(1) h is a C∗-quotient map.

(2) h is coz-onto.

(3) h is rigid.

Proof The implications (1) ⇒ (2) ⇒ (3) are trivial. We need only show that (3) implies

(1). We use [7, Theorem 8.2.6]. Let a, b ∈ CozM be such that a ∨ b = 1. By normality of

CozM , there exist u, v ∈ CozM such that

u ≺≺ a, v ≺≺ b and u ∨ v = 1.

Since h is rigid, by hypothesis, there exist c, d ∈ CozL such that

h(c)∗ = u∗ and h(d)∗ = v∗.

Now, u ≺≺ a implies u∗∗ ≤ a. Similarly, v∗∗ ≤ b. Since u ∨ v = 1, we have that u∗ ∧ v∗ = 0,

and hence, in light of h being dense onto,

h(c∗ ∧ d∗) = h(c)∗ ∧ h(d)∗ = 0,
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implying c∗ ∧ d∗ = 0 by the density of h. Thus, c ∨ d is a dense element of a quasi-F frame

L. By Proposition 4.2.1, c∗∗ ∨ d∗∗ = 1. But now, again using the fact that h is dense onto,

h(c∗∗) = u∗∗ ≤ a, which implies that c∗∗ ≤ h∗(a). Similarly, d∗∗ ≤ h∗(b). Consequently,

h∗(a) ∨ h∗(b) ≥ c∗∗ ∨ d∗∗ = 1,

showing that h is a C∗-quotient map. �

In [33, Proposition 4.8], it is shown that a completely regular frame L is an F -frame if

and only if every coz-onto quotient map L → M is a C∗-quotient map. This result has an

analogue for quasi-F frames which follows from the foregoing proposition.

Corollary 4.2.22 A completely regular frame L is quasi-F if and only if every dense coz-

onto quotient map L→M is a C∗-quotient map.

Proof The left-right implication follows from Proposition 4.2.21. The converse holds be-

cause, for any c ∈ CozL, the open quotient map L → ↓c is coz-onto (see, [7, Corollary

3.2.11]). �

We close with the following observation. In [33, Proposition 3.2], it is shown that if L

is Lindelöf, then any onto frame homomorphism M → L, with M completely regular, is

coz-onto. Therefore we have the following result.

Corollary 4.2.23 If a Lindelöf frame has a quasi-F compactification, then it is quasi-F ,

and the compactification in question is its Stone-Čech compactification.

Proof Let L be a frame and M → L be a quasi-F compactification of L. By Lemma 4.2.6,

L is quasi-F . By Proposition 4.2.21, M → L is a C∗-quotient map. By [7, Corollary 8.2.7],

M → L is the Stone-Čech compactification of L. �
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4.3 A few more words on rigidity

Here we provide the justification alluded to above regarding the term “rigid”. If we keep

in mind that an f -subring H of an f -ring G (all viewed as ℓ-groups) is rigid precisely if

for every g ∈ G, there exists h ∈ H such that Ann (g) = Ann (h), where annihilation is

computed in G, it makes sense to define a ring homomorphism φ : A→ B to be rigid if for

every b ∈ B, there exists a ∈ A such that Ann (φa) = Ann (b). We show that, with this

definition of rigidity for ring homomorphisms, a frame homomorphism is rigid if and only if

the induced ring homomorphism is rigid. Let us first note that, from Lemma 4.2.12 we have:

Lemma 4.3.1 Let α, β ∈ RL. Then Ann (α) = Ann (β) if and only if (cozα)∗ = (coz β)∗.

Recall that if h : L→M is a frame homomorphism, then the induced ring homomorphism

Rh : RL→ RM is given by Rh(α) = h ◦ α. Furthermore, coz (h ◦ α) = hcozα. Recall also

that every frame homomorphism h : L→M has the Stone extension hβ : βL→ βM , given

by

hβ(I) = {y ∈M | y ≤ h(x) for some x ∈ I},

for each I ∈ βL. It is the unique frame homomorphism that makes the diagram

βL
hβ

//

τ
L

��

βM

τ
M

��
L

h
// M

commute.

Proposition 4.3.2 The following are equivalent for a frame homomorphism h : L→M :
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(1) h is rigid.

(2) hβ is rigid.

(3) Rh : RL→ RM is rigid.

(4) Rh|R∗L : R∗L→ R∗M is rigid.

Proof (1)⇒ (2) : Let J ∈ Coz βM . Then
∨

J ∈ CozM . By (1), there exists c ∈ CozL such

that h(c)∗ = (
∨

J)∗. Since βL→ L is coz-onto, there exists U ∈ Coz βL such that
∨

U = c.

We claim that hβ(U)∗ = J∗. To prove the claim, let I ∈ βM be such that I ∧J = 0βM . Take

any i ∈ I and u ∈ U . For any x ∈ J, i∧ x = 0, and so i∧
∨

J = 0, so that i ≤ (
∨

J)∗. Thus,

i ≤ h(c)∗ and hence i ∧ h(c) = 0. Since c =
∨

U we have that i ∧ h(u) = 0. It follows from

this that I ∧ hβ(U) = 0βM , and hence I ≤ hβ(U)∗. We have thus shown that if J misses

some element of βM , then that element is below hβ(U)∗. Consequently, J∗ ≤ hβ(U)∗.

Next, letK ∈ βM be such thatK∧hβ(U) = 0βM . For any k ∈ K and u ∈ U , k∧h(u) = 0,

and therefore k ∧ h(
∨

U) = 0, which implies that

k ≤ h(
∨

U)∗ = h(c)∗ =
(

∨

J
)∗

.

Thus, k ∧
∨

J = 0, and hence

∨

K ∧
∨

J =
∨

(K ∧ J) = 0,

whence K ∧ J = 0βM , implying that K ≤ J∗. As before, this implies that hβ(U)∗ ≤ J∗, and

hence equality. Therefore hβ is rigid.

(2) ⇒ (1) : Let c ∈ CozM . Take J ∈ Coz βM such that c =
∨

J . By (2), there exists

U ∈ Coz βL such that hβ(U)∗ = J∗. Since hτL = τMhβ (recall that the τ -maps are join

maps), and each join map commutes with pseudocomplement as it is dense onto, we have

(

h(
∨

U)
)∗

=
(

∨

hβ(U)
)∗

=
∨

hβ(U)∗ =
∨

J∗ =
(

∨

J
)∗

= c∗.
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Since
∨

U ∈ CozL, (1) follows.

(1)⇒ (3) : Let β ∈ RM . Then coz β ∈ CozM , and so, by (1), there exists α ∈ RL such

that h(cozα)∗ = (coz β)∗. Therefore (coz (Rh(α)))∗ = (coz β)∗, which, by Lemma 4.3.1,

implies that Ann (Rh(α)) = Annβ. Therefore Rh is rigid.

(3)⇒ (1) : Let d ∈ CozM and take δ ∈ RM with coz δ = d. By (3), there exists γ ∈ RL

such that Ann (Rh(γ)) = Ann (δ). By Lemma 4.3.1, this implies that

d∗ = (coz δ)∗ = (coz (h ◦ γ))∗ = h(coz γ)∗,

which establishes (1).

(3) ⇒ (4) : Suppose (3) holds and let β ∈ R∗L. Then β ∈ RL, and so, by (3), there

exists α ∈ RL such that AnnRM(h ◦ α) = AnnRM(β). Now, α2

1+α2 ∈ R
∗L and

coz

(

h ◦
α2

1 + α2

)

= h

(

coz
α2

1 + α2

)

= h(cozα).

Thus, by Lemma 4.3.1,

AnnRM

(

h ◦
α2

1 + α2

)

= AnnRM(β),

whence we have

AnnRM

(

h ◦
α2

1 + α2

)

∩R∗M = AnnRM(β) ∩R∗M,

that is,

AnnR∗M

(

h ◦
α2

1 + α2

)

= AnnR∗M(β).

This establishes (4).

(4)⇒ (3) : Let β ∈ RM . Then β2

1+β2 ∈ R
∗M . By (4), there exists α ∈ R∗L such that

AnnR∗M(h ◦ α) = AnnR∗M

(

β2

1 + β2

)

. (†)
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We claim that AnnRM(h◦α) = AnnRM(β). Let γ ∈ AnnRM(h◦α). Then γ2

1+γ2 is an element

of R∗M such that γ2

1+γ2 · (h ◦ α) = 0. Thus, by (†),

γ2

1 + γ2
·

β2

1 + β2
= 0,

which implies (γβ)2 = 0, and hence γβ = 0 since RM is reduced. So, γ ∈ AnnRM(β), and

therefore AnnRM(h ◦ α) ⊆ AnnRM(β). Now let ϕ ∈ AnnRM(β). Then

ϕ2

1 + ϕ2
·

β2

1 + β2
= 0,

and hence, from (†), ϕ2

1+ϕ2 ∈ AnnR∗M(h ◦ α). Thus, ϕ · (h ◦ α) = 0, and so AnnRM(β) ⊆

AnnRM(h ◦ α) – hence equality. �

Remark 4.3.3 The equivalence of (3) and (4) in Proposition 4.3.2 holds more generally.

Namely, if φ : A→ B is a homomorphism of reduced f -rings with bounded inversion, and if

A∗ and B∗ denote their bounded parts, then φ is rigid if and only if the map φ|A∗ : A∗ → B∗

is rigid.

Reasoning as in the proof of (2) ⇔ (1) in Proposition 4.3.2 and taking into cognisance

the fact that, for any c ∈ CozL, hλ([c]) = [h(c)], we obtain:

Proposition 4.3.4 A frame homomorphism h : L→M is rigid if and only if hλ : λL→ λM

is rigid.

We recall the following definitions from [37]. A frame L is weakly Lindelöf if for every

cover C of L there is a countable S ⊆ C such that (
∨

S)∗ = 0. An element a of L is weakly

Lindelöf if whenever a =
∨

T , then a∗ = (
∨

S)∗ for some countable S ⊆ T . It is shown in

[37, Proposition 7] that a cozero element of a weakly Lindelöf frame is weakly Lindelöf. It

is shown in [33, Proposition 3.2] that any frame homomorphism between completely regular

frames onto a Lindelöf frame is coz-onto. Weakening the Lindelöf requirement leads to the

following result.
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Proposition 4.3.5 Any frame homomorphism between completely regular frames onto a

weakly Lindelöf frame is rigid.

Proof Let M be weakly Lindelöf and h : L → M be an onto frame homomorphism. For

c ∈ CozM , take a ∈ L such that h(a) = c. By complete regularity, there is a set C ⊆ CozL

such that a =
∨

C. Thus, c =
∨

h[C], and hence, by virtue of c being a cozero element of a

weakly Lindelöf frame, there is a countable S ⊆ C such that

c∗ = (
∨

{h(s) | s ∈ S})∗ = h(
∨

S)∗,

by the result cited from [37]. But now
∨

S ∈ CozL, so the result follows. �
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Chapter 5

Cozero complemented frames

The types of frames to be considered here can be thought of as generalization of P -frames.

Their topological antecedents arose from a study by Henriksen and Woods [38] of when the

space Min (C(X)) of minimal prime ideals of C(X) is compact. Such spaces have since come

to be known by the name “cozero complemented spaces”. We adopt the same name for

frames that generalize them. Our goal in this chapter is to give several characterizations of

cozero complemented frames.

5.1 Quotients of cozero-complemented frames

We start by recapitulating the definition of cozero complemented frames, from Definition

4.2.4.

Examples of cozero complemented frames abound. For instance, every basically discon-

nected frame and every Oz-frame is cozero complemented.
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Recall that a point x of a Tychonoff space X is a P-point if every zero-set of X containing

x is a neighbourhood of x. The space is then a P -space if and only if every point in it is a

P -point. On the other hand, x is an almost P-point of X if every zero-set of X containing

x has a non-empty interior. A topological space is an almost P -space if and only if every

point in it is an almost P -point. In [46], Levy and Shapiro show that if X has an almost

P -point which is not a P -point, then X is not cozero complemented.

This phenomenon actually holds in the category of frames. To justify this assertion,

we define the notions of P -point and almost P -point for frames. We use the O-ideals and

M-ideals introduced by Dube [26] as follows: For any I ∈ Pt(βL), let

MI = {α ∈ RL | rL(cozα) ⊆ I} and OI = {α ∈ RL | rL(cozα) ≺ I}.

Definition 5.1.1 A point I of βL is a P -point if MI = OI , and it is an almost P -point if

for any α ∈MI , cozα is not dense.

In [29, Proposition 3.9], it is shown that a frame L is a P -frame if and only if MI = OI

for each I ∈ Pt(βL), that is, if and only if every point of βL is a P -point. Now recall

from [7] that L is an almost P -frame if the only dense cozero element of L is the top. We

claim that L is an almost P -frame if and only if every I ∈ Pt(βL) is an almost P -point.

To see this, assume first that L is an almost P -frame, and let I be a point of βL. For any

α ∈ MI , rL(cozα) ⊆ I, and so cozα 6= 1. Therefore cozα is not dense, and hence I is an

almost P -point. Conversely, suppose every point of βL is an almost P -point, and consider

any α ∈ RL with cozα 6= 1. Then rL(cozα) 6= 1βL, and so since βL is spatial, there is an

I ∈ Pt(βL) with rL(cozα) ⊆ I. Thus, α ∈ MI . Since I is an almost P -point, cozα is not

dense. Therefore L is an almost P -frame.

This shows that the definitions of P -point and almost P -point we have coined are justified.

Example 5.1.2 Let L be a frame with an almost P -point I which is not a P -point. Then L is
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not cozero complemented. We prove this by demonstrating the existence of a cozero element

which violates the requirements in the definition. Since I is not a P -point, there is a positive

α ∈MI\OI . Then rL(cozα)
∗ ∨ I 6= 1βL. Since I ∈ Pt(βL) and I ≤ rL(cozα)

∗ ∨ I 6= 1βL, it

follows that I = rL(cozα)
∗∨I, so that rL(cozα)

∗ ⊆ I. Now suppose, by way of contradiction,

that there is a positive γ ∈ RL such that cozα ∧ coz γ = 0 and cozα ∨ coz γ is dense. Now

cozα∧coz γ = 0 implies that rL(cozα)∧rL(coz γ) = 0βL, so that rL(coz γ) ≤ rL(cozα)
∗ ⊆ I,

which in turn implies γ ∈MI . Consequently α+γ ∈MI for which coz (α+γ) = cozα∨coz γ

is dense. This contradicts the fact that I is an almost P -point.

Less obvious examples of cozero complemented frames are given by the following propo-

sition. As in spaces, say a frame has the countable chain condition (abbreviated ccc) if every

collection of pairwise disjoint elements of L is countable.

Proposition 5.1.3 Every frame with ccc is cozero complemented.

Proof Let c be a non-dense cozero element of L, where L has ccc, and put

ℑ = {S ⊆ ↓c∗ ∩ CozL | any two elements of S do not meet and 0 /∈ S}.

The set ℑ 6= ∅ since CozL generates L. Partially order ℑ by inclusion. Let {Sα | α ∈ Γ}

be a chain in ℑ. It is easy to show that
⋃

α∈Γ

Sα is an element of ℑ, so that every chain in

ℑ has an upper bound. So, by Zorn’s Lemma, ℑ has a maximal element, say S. Now S is

countable, by the hypothesis on L. Therefore d =
∨

S ∈ CozL. Clearly, c ∧ d = 0 since
∨

S ≤ c∗. Now it remains to show that c ∨ d is dense in L. Since CozL generates L, by

complete regularity, it suffices to show that c ∨ d meets every nonzero cozero element of L.

Let w ∈ CozL be such that w∧(c∨d) = 0. This implies that (w∧c)∨(w∧d) = 0. Therefore

w ∧ c = w ∧ d = 0. Thus w ≤ c∗, i.e., w ∈ ↓c∗ ∩ CozL. Since w ∧
∨

S = 0, it follows that

w ∧ t = 0 for every t ∈ S. Therefore the set S ∪ {w} consists of mutually disjoint elements.

Since S is maximal with this property, it follows that w = 0 (otherwise the maximality of S
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is contradicted). So c∨d is dense. Now if c is dense, then 0 is a cozero element with c∧0 = 0

and c ∨ 0 dense. �

Remark 5.1.4 Recall that a frame L is weakly Lindelöf if every cover of L has a countable

subset which is dense. A proof similar to the foregoing one shows that every frame with ccc

is weakly Lindelöf.

The following proposition gives an instance of a quotient of a cozero complemented frame

being itself cozero complemented. In the proof we will employ the fact that if h is onto, then

h∗ is one-one.

Proposition 5.1.5 Let h : L→M be a dense quotient map where L has ccc. Then M has

ccc, and hence is cozero complemented.

Proof Let S ⊆ M consist of pairwise disjoint elements. The set h∗[S] consists of pairwise

disjoint elements because for any distinct s, t ∈ S,

h∗(s) ∧ h∗(t) 6= 0⇒ s ∧ t = hh∗(s) ∧ hh∗(t) 6= 0,

which contradicts the nature of S. Since L has ccc, h∗[S] is countable. But h∗ is one-one, so

the cardinality of S is less than or equal to that of h∗[S], whence S is countable. �

This result is not a legitimate example of when a quotient inherits the property of being

cozero complemented because the frame L satisfies a property stronger than cozero com-

plementedness. Below we provide cases where quotients inherit cozero complementedness

from a frame which is assumed only to be cozero complemented. The reader will note that

these are extensions of corresponding point-sensitive results such as established by Levy and

Shapiro [46] and Henriksen and Woods [38].
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For the first of these results we need to collect some facts from the literature. Recall that

an element of a frame is dense if it meets every nonzero element of the frame.

Facts 5.1.6 Let L be a frame and a ∈ L.

(1) For any x ∈ L, if x is dense in L, then a ∧ x is dense in ↓a.

(2) For any x ∈ ↓a, let x⊙ denote the pseudocomplement of x in ↓a. Then x⊙ = x∗ ∧ a.

Proof (1) Let t ∈ ↓a be nonzero. Then

t ∧ (a ∧ x) = (t ∧ a) ∧ x = t ∧ x 6= 0

since x is dense in L. So a ∧ x meets every nonzero element of ↓a.

(2) The element x∗ ∧ a ∈ ↓a and x∧ (x∗ ∧ a) = 0. Therefore x∗ ∧ a ≤ x⊙. Now let z ∈ ↓a

be such that z∧x = 0↓a = 0. Then z ≤ x∗. But z ≤ a, so z ≤ x∗∧a. Since x⊙ is an element

of ↓a with x ∧ x⊙ = 0↓a = 0, it follows that x⊙ ≤ x∗ ∧ a. Hence x⊙ = x∗ ∧ a. �

Proposition 5.1.7 Let L be cozero complemented and a ∈ CozL. Then ↓a is cozero com-

plemented.

Proof Let c ∈ Coz (↓a). Then c = a ∧ u for some u ∈ CozL because, by [7, Proposition

3.2.10], the map ϕ : L→ ↓a given by ϕ(x) = a∧x is coz-onto if a ∈ CozL. Since L is cozero

complemented, there exists w ∈ CozL such that u ∧ w = 0 and u ∨ w is dense in L. Now

a ∧ w ∈ Coz (↓a) since frame homomorphisms preserve cozero elements. Further,

(a ∧ w) ∧ c = (a ∧ c) ∧ w = c ∧ w ≤ u ∧ w = 0↓a,

and

c ∨ (a ∧ w) = (a ∧ u) ∨ (a ∧ w) = a ∧ (u ∨ w).

But a ∧ (u ∨ w) is dense in ↓a as u ∨ w is dense in L, so ↓a is cozero complemented. �
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Before presenting the next result – which is an extension of [38, Theorem 2.8(a)] – we

give a frame analogue of z#-embedded subspace. As in [38], we say a subspace S of X is

z#-embedded in X if for each f ∈ C(S), then there is a g ∈ C(X) such that

clS(intSZ(f)) = S ∩ clX(intXZ(g)).

Let us express this notion in terms of the frame homomorphism

h : OX → OS given by U 7→ U ∩ S,

which will then motivate the frame analogue we seek. We do this for dense subspaces. We

recall from [38, Lemma 2.3] that

a dense subspace S of X is z#-embedded in X if and only if for every C ∈

Coz (OS), there is a V ∈ Coz (OX) such that clSC = S ∩ clXV .

Proposition 5.1.8 Let S be a dense subspace of X, and let h : OX → OS be as above.

Then S is z#-embedded in X if and only if for every U ∈ Coz (OS), there is a V ∈ Coz (OX)

such that h(V ∗) = U∗.

Proof (⇒): Let U ∈ Coz (OS). By the characterization cited from [38], there is a V ∈

Coz (OX) such that clSU = S ∩ clXV . Denote pseudocomplement in OS by (·)#. Then

U# = S\clSU = S\
(

S ∩ clXV
)

= S ∩ (X\clXV ) = S ∩ V ∗.

Thus, U# = h(V ∗), as required.

(⇐): Suppose that for every U ∈ Coz (OS), there is a V ∈ Coz (OX) such that h(V ∗) =

U#. That is

U# = h(V ∗) = S ∩ V ∗

⇒ S\clSU = S ∩ (X\clXV )

⇒ clSU = S ∩ clXV
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That is S is z#-embedded in X and we are done. �

Based on the above, we formulate the following definition.

Definition 5.1.9 A quotient map h : L → M is a z#-quotient map if for each v ∈ CozM ,

there is a u ∈ CozL such that h(u∗) = v∗.

Since dense quotient maps commute with pseudocomplement, it follows that every dense

coz-onto quotient map is a z#-quotient map. Dense z#-quotient maps transport cozero

complementedness in both directions as the proposition that follows shows.

Proposition 5.1.10 Let h : L → M be a dense z#-quotient map. Then L is cozero com-

plemented if and only if M is cozero complemented.

Proof (⇒): Assume L is cozero complemented, and let u ∈ CozM . Since h is a z#-quotient

map, there is an a ∈ CozL such that h(a∗) = u∗. Since L is cozero complemented, there is

a b ∈ CozL with a ∧ b = 0 and a ∨ b dense. Now h(b) is a cozero element of M such that

h(b) ≤ h(a∗) = u∗ since b ≤ a∗. Thus u ∧ h(b) = 0. On the other hand,

(

u ∨ h(b)
)∗

= u∗ ∧ h(b)∗ = u∗ ∧ h(b∗) = h(a∗) ∧ h(b∗) = h((a ∨ b)∗) = 0.

Therefore u ∨ h(b) is dense, and hence M is cozero complemented.

(⇐): Let a ∈ CozL. Then h(a) ∈ CozM . Since M is cozero complemented by the

present hypothesis, there is a u ∈ CozM such that h(a)∧u = 0 and h(a)∨u is dense. Since

h is a z#-quotient map, there is a b ∈ CozL with h(b∗) = u∗. Now u ∧ h(a) = 0 implies

h(a) ≤ u∗ = h(b∗) = h(b)∗,
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whence we get

h(a ∧ b) = h(a) ∧ h(b) = 0,

implying a ∧ b = 0 since h is dense. On the other hand,

0 =
(

u ∨ h(a)
)∗

= u∗ ∧ h(a)∗ = h(b∗) ∧ h(a∗) = h((a ∨ b)∗).

Since h is dense, this implies that (a ∨ b)∗ = 0, so that a ∨ b is dense. Therefore L is cozero

complemented. �

Corollary 5.1.11 If h : L → M is a dense coz-onto homomorphism between completely

regular frames, then L is cozero complemented if and only if M is cozero complemented.

Consequently, the following are equivalent for a completely regular frame L:

(1) L is cozero complemented.

(2) βL is cozero complemented.

(3) λL is cozero complemented.

(4) υL is cozero complemented.

For the next result, the openness of the map f in [38, Lemma 2.4] is relaxed in frames,

without somewhat violating the conclusion.

Lemma 5.1.12 Let h : L → M be a nearly open quotient map with M weakly Lindelöf.

Then h is a z#-quotient map.

Proof Let z ∈ CozM . Since h is onto, it follows that h(h∗(z)) = z. Since L is completely

regular, there exists S ⊆ CozL such that h∗(z) =
∨

S. Therefore

z = h
(

∨

S
)

=
∨

h[S].
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Since z ∈ CozM and M is weakly Lindelöf, it follows by [37, Proposition 7] that z is weakly

Lindelöf. Therefore there exist countably many elements (sn) ⊆ S such that

z∗ = (
∨

h(sn))
∗.

Now put v =
∨

sn. Then v ∈ CozL and

z∗ =
(

∨

h(sn)
)∗

=
(

h(
∨

sn)
)∗

= h(v)∗ = h(v∗).

�

This lemma enables us to give a strong frame version of Corollary 2.9(a) in [38] as follows:

Corollary 5.1.13 Let h : L→M be a nearly open map with M weakly Lindelöf. Then L is

cozero complemented if and only if M is cozero complemented.

Combining Remark 5.1.4 and the preceding corollary, the following corollary is apparent.

Corollary 5.1.14 Let h : L → M be a nearly open map with M a ccc-frame. Then L is

cozero complemented.

Next, recall from Chapter 1 that if j is a nucleus on a frame L, Fix(j) = {a ∈ L | j(a) =

a}. If ℓ ≤ j, then Fix(j) ⊆ Fix (ℓ). It is well known that Fix(j) is a frame, see for instance,

Johnstone [42] and j : L→ Fix (j) is a frame homomorphism. A nucleus is dense if it maps

only the bottom element to the bottom element. We denote, as usual, by NL the assembly

of L, that is, the frame of nuclei on L. We recall from [9, p. 32] that if j, k ∈ NL and j ≤ k,

then the map

Fix(j)
k
→ Fix(k)
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is a frame homomorphism. Furthermore, if j ∈ NL and a ∈ L we have

va ∨ j = va · j and ua ∨ j = j · ua,

where ua(x) = a ∨ x (see, [55]).

Now, in [38], Henriksen and Woods show that:

If S∩W is a weakly Lindelöf space, where S is a dense subspace and W is an open

subspace of a cozero complemented space T, then S ∩W is cozero complemented.

This result is extended to frames as follows:

Proposition 5.1.15 Let L be a cozero complemented completely regular frame, j be a dense

nucleus and a ∈ L. If Fix(va ∨ j) is weakly Lindelöf, then it is cozero complemented.

Proof Fix(va)
va∨j
→ Fix (va∨j) is a dense homomorphism. To show denseness, let s ∈ Fix (va)

be such that

(va ∨ j)(s) = 0Fix(va∨j) = va(0).

That is va(j(s)) = va(j(0)) = va(0). We must show that s = va(0). Now s ∈ Fix (va) is such

that

(va ∨ j)(s) = va(j(s)) = va(0);

j is dense, hence s = va(s) and s ≤ j(s). Now

s = va(s) ≤ va(j(s)) = va(0) ≤ va(s) = s.

Therefore

s = va(0) = 0Fix(va).

Because Fix(va) is open in L, it follows that va is a z#-quotient map by the previous results.

Thus, Fix(va) is cozero complemented. But Fix(va ∨ j) is dense in Fix(va), so again by
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the Lemma 5.1.12, Fix(va ∨ j) is a z#-quotient of Fix(va). Then, by Proposition 5.1.10,

Fix(va ∨ j) is cozero complemented. �

5.2 Locally cozero-complemented frames

In this section, we introduce the notion of locally cozero complemented frames and, amongst

other things, we give the conditions that guarantee a given frame to be cozero complemented

whenever it is locally cozero complemented. In particular, we show that a weakly Lindelöf

frame is cozero complemented if and only if it is locally cozero complemented. Furthermore,

we show that a locally cozero complemented paracompact frame is cozero complemented.

Definition 5.2.1 A frame L is locally cozero complemented if for all a ∈ L,

a =
∨

α∈I

xα,

for some index set I, where ↓xα is cozero complemented for all α ∈ I.

In [38, Proposition 5.1], the authors show that if X is the countable union of cozero

complemented cozero sets, then X is cozero complemented. We extend this result to frames.

We shall need the following lemma to do that.

Lemma 5.2.2 Let b, c ∈ CozL be such that ↓b and ↓c are cozero complemented. Then

↓(b ∨ c) is cozero complemented.

Proof Let z ∈ Coz (↓(b ∨ c)). Then z ∧ b ∈ Coz (↓b) and z ∧ c ∈ Coz (↓c) as they are,

respectively, images of the maps ↓(b ∨ c)
−∧b
→ ↓b and ↓(b ∨ c)

−∧c
→ ↓c. Find u ∈ Coz (↓c) and

v ∈ Coz (↓b) such that
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(i) (z ∧ c) ∧ u = 0 and (z ∧ c) ∨ u is dense in ↓c.

(ii) (z ∧ b) ∧ v = 0 and (z ∧ b) ∨ v is dense in ↓b.

Now, in view of the fact that u ∧ c = u and v ∧ b = v, we have

z ∧ (u ∨ v) = (z ∧ u) ∨ (z ∧ v) = (z ∧ u ∧ c) ∨ (z ∧ v ∧ b) = 0.

Now if b ∈ CozL, then b ∈ Coz (↓(b∨c)). Consider the frame homomorphism ϕ : L→ ↓(b∨c).

Then ϕ(b) = b∧ (b∨ c) = b ∈ Coz (↓(b∨ c)) since frame homomorphisms preserve cozeros. If

u ∈ Coz (↓b), then u ∈ Coz (↓(b∨ c)) by [7, Proposition 3.2.10]. Similarly, v ∈ Coz (↓(b∨ c)).

Observe that u ∨ v ∈ Coz (↓(b ∨ c)) as a join of two cozero elements in the frame ↓(b ∨ c).

Let us show that z ∨ (u ∨ v) is dense in ↓(b ∨ c). Take any p 6= 0 in ↓(b ∨ c). Then p ∧ b 6= 0

or p ∧ c 6= 0 since

p = p ∧ (b ∨ c) = (p ∧ b) ∨ (p ∧ c).

If p ∧ b 6= 0, then

p ∧ (z ∨ u ∨ v) ≥ p ∧ (z ∨ v)

≥ (p ∧ b) ∧ (z ∨ v)

≥ (p ∧ b) ∧ ((z ∨ v) ∧ b)

= (p ∧ b) ∧ ((z ∧ b) ∨ v)

6= 0

the last step valid since (z∧b)∨v is dense in ↓b and p∧b is a nonzero element of ↓b. Similarly,

if p∧ c 6= 0, then p∧ (z ∨ (u∨ v)) 6= 0. Since u∨ v ∈ Coz (↓(b∨ c)), it follows that ↓(b∨ c) is

cozero complemented. �

Now we extend the result of Henriksen and Woods to frames as follows:

Proposition 5.2.3 Let L be a completely regular frame. If there is a sequence (an) in

95



CozL such that
∨

an = 1 and ↓an is cozero complemented for every n, then L is cozero

complemented.

Proof Let u ∈ CozL. Define the sequence (bn) in CozL by: b1 = a1 and bn = a1 ∨ . . . ∨ an

for n ≥ 2. Then (bn) is an increasing sequence with
∨

bn =
∨

an = 1, and, by Lemma 5.2.2,

↓bn is cozero complemented for each n. The element u ∧ bn ∈ Coz (↓bn), since ϕ : L → ↓bn

is the map ϕ(x) = x∧ bn, so that ϕ(u) = u∧ bn, and frame homomorphisms preserve cozero

elements. Since ↓bn is cozero complemented, there exists wn ∈ Coz (↓bn) such that

(u ∧ bn) ∧ wn = 0 and (u ∧ bn) ∨ wn is dense in ↓bn.

Now w =
∨

wn ∈ CozL. We show that

u ∧ w = 0 and u ∨ w is dense in L.

To show denseness, let p ∈ L, p 6= 0. Then p ∧ bn 6= 0 for some n since p =
∨

(p ∧ bn). But

(u ∧ bn) ∨ wn is dense in (↓bn), so

p ∧ (u ∨ w) ≥ (p ∧ bn) ∧ (u ∨ w)

≥ (p ∧ bn) ∧ ((u ∧ bn) ∨ w)

≥ (p ∧ bn) ∧ ((u ∧ bn) ∨ wn)

6= 0,

the last step holding since (u ∧ bn) ∨ wn is dense in ↓bn and p ∧ bn is a nonzero element in

↓bn. Therefore u ∨ w is dense in L. On the other hand,

u ∧ w =

(

u ∧
∨

n

bn

)

∧

(

w ∧
∨

m

bm

)

=

(

∨

n

(u ∧ bn)

)

∧

(

∨

m

(w ∧ bm)

)

=
∨

n

∨

m

(u ∧ bn ∧ w ∧ bm)

=
∨

n

∨

m

(u ∧ bmin(m,n) ∧ wmin(m,n))

= 0.
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This completes the proof. �

Recall from [36] that if X is a Tychonoff space, then a cozero-set C of X is called a

complemented cozero-set if there is a cozero-set D of X such that C ∩D = ∅ and C ∪D is

dense in X.

Definition 5.2.4 Let L be a completely regular frame. Then an element c ∈ CozL is called

pseudo-cozero complemented if there is a d ∈ CozL such that c∧ d = 0 and c∨ d is dense in

L.

The next result shows that for weakly Lindelöf frames, cozero complementedness and

local cozero complementedness coincide.

Proposition 5.2.5 Let L be weakly Lindelöf. Then L is cozero complemented if and only if

L is locally cozero complemented.

Proof (⇒) Since L is completely regular, given a ∈ L, there exist cozero elements xα such

that a =
∨

xα. Now if xα ∈ CozL, then the quotient map L → ↓xα is a z#-quotient map

since it is coz-onto. By [37, Proposition 7], xα is weakly Lindelöf and so the frame ↓xa is

weakly Lindelöf. So given L to be cozero complemented, it follows by Corollary 5.1.13 that

↓xα is cozero complemented.

(⇐) We need to produce an element d ∈ L such that

(i) d is dense in L

(ii) d is pseudo-cozero complemented.
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Given a ∈ L, choose elements {x
(a)
α | α ∈ Aa} such that

(i) ↓x
(a)
α is cozero complemented for all α, and

(ii) a =
∨

x
(a)
α – since L is locally cozero complemented.

Now for α ∈ Aa, find (by complete regularity) cozero elements {c
(a,α)
β | β ∈ B(a, α)} such

that

x(a)
α =

∨

β∈B(a,α)

c
(a,α)
β .

Then the collection

{c
(a,α)
β | a ∈ L, α ∈ Aa, β ∈ B(a, α)}

covers the frame, i.e., has join = top element. But L is weakly Lindelöf, so there exist

countably many of these cozero elements whose join is dense. Then the element d is the join

of these countably many cozero elements. Hence there is a sequence (cn) in Coz (↓d) such

that
∨

cn = d and ↓cn is cozero complemented. Hence, by Proposition 5.2.3, ↓d is cozero

complemented. Also d is a cozero element as a countable join of cozeros. Since L is weakly

Lindelöf, it follows that d is weakly Lindelöf. But d is dense, so the quotient map h : L→ ↓d

is a z#-quotient map. Hence by Proposition 5.1.10, L is cozero complemented. �

Next, we show that a hereditarily Lindelöf frame is cozero complemented. We start with

a definition.

Definition 5.2.6 A frame L is hereditarily Lindelöf if each of its quotients is Lindelöf.

Lemma 5.2.7 A frame L is hereditarily Lindelöf if and only if ↓a is Lindelöf for all a ∈ L.

Proof (⇒) The left-to-right implication is trivial. Conversely, suppose ↓a is Lindelöf for

every a ∈ L. Let h : L→ M be a quotient of L, and C a cover of M . For each x ∈ C, pick
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bx ∈ L such that h(bx) = x. (This is possible, since h is onto). Now

1M =
∨

C =
∨

x∈C

h(bx) = h

(

∨

x∈C

bx

)

.

Write b =
∨

x∈C

bx. Then, since b ∈ L, ↓b is Lindelöf. Furthermore, {bx}x∈C ∈ Cov(↓b). So

there exist countably many elements bx1 , bx2 , . . . such that b =
∞
∨

i=1

bxi
. Hence

1M = h(b) = h

(

∞
∨

i=1

bxi

)

=
∞
∨

i=1

h(bxi
) =

∞
∨

i=1

xi.

Therefore M is Lindelöf. �

Proposition 5.2.8 If L is hereditarily Lindelöf, then L is ccc.

Proof Let A ⊆ L be such that its elements are pairwise disjoint. We must show that A is

countable. Put a =
∨

A. Then ↓a is Lindelöf. Since A ∈ Cov (↓a), there exists a countable

B ⊆ A such that
∨

B = a. If B 6= A, let x ∈ A − B. But now x = x ∧ a = x ∧
∨

B =
∨

{x ∧ b | b ∈ B} = 0. So A ⊆ B ∪ {0}, i.e., A is countable. �

From Proposition 5.1.3, the following corollary is apparent.

Corollary 5.2.9 A hereditarily Lindelöf frame is cozero complemented.

Next, we show that a locally cozero complemented paracompact frame is cozero comple-

mented. In order to establish that, we shall go through some lemmas.

Lemma 5.2.10 Let C = {cα} be a chain of cozero complemented elements of L such that
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(i) C ⊆ CozL

(ii) for every D ⊆ C,
∨

D ∈ CozL.

Then ↓(
∨

C) is cozero complemented.

Proof Put c =
∨

C =
∨

cα. Let u ∈ Coz (↓c). For each α, u ∧ cα ∈ Coz (↓cα). By cozero

complementedness of ↓cα, find dα ∈ Coz (↓cα) such that u ∧ cα ∧ dα = 0 and (u ∧ cα) ∨ dα is

dense in ↓cα. Let d =
∨

dα. Then d is a cozero element of L and so d ∈ Coz (↓c). We need

to show that d is a cozero complement of u in ↓c. That is (i) u ∧ d = 0 and (ii) u ∨ d is

dense in ↓c. Let 0 6= p ∈ ↓c. Then there exist at least one β such that p ∧ cβ 6= 0. Hence,

since (u ∧ cα) ∨ dα is dense in ↓cα, it follows that

(p ∧ cβ) ∧ [(u ∧ cα) ∨ dα] 6= 0

⇒ (p ∧ cβ) ∧ [(u ∧ cα) ∨ d] 6= 0

⇒ [(p ∧ cβ) ∧ (u ∧ cα)] ∨ [p ∧ cβ ∧ d] 6= 0

⇒ [p ∧ cβ ∧ u ∧ cα] ∨ [p ∧ cβ ∧ d] 6= 0

⇒ [p ∧ cmin(α,β) ∧ u] ∨ [p ∧ cβ ∧ d] 6= 0

⇒ (p ∧ cmin(α,β)) ∧ (u ∨ d) 6= 0

⇒ p ∧ (u ∨ d) 6= 0

That is, u ∨ d is dense in ↓c. Next,

u ∧ d = (u ∧ c) ∧ (d ∧ c)

= (u ∧
∨

cα) ∧ (d ∧
∨

cβ)

=
(

∨

(u ∧ cα)
)

∧
(

∨

(d ∧ cβ)
)

=
∨

(u ∧ cα ∧ cβ ∧ d)

= 0.

Thus, ↓(
∨

C) is cozero complemented. �
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Recall the definition of a locally finite subset from Chapter 1.

Lemma 5.2.11 Let C ⊆ L be a locally finite subset of L consisting of cozero elements, each

of which is cozero complemented. Then ↓(
∨

C) is cozero complemented.

Proof Write C = {cα}α<ν , where α and ν are ordinals. For each β < ν, put

c̄β =
∨

{cα | α ≤ β}.

IfD ⊆ CozL is locally finite, then
∨

D ∈ CozL by [59, Lemma 1]. Then c̄β ∈ CozL, for every β,

since {cα | α ≤ β} ⊆ C and cα ∈ CozL. We claim that c̄β is cozero complemented. Since

each cα is cozero complemented for each α ≤ β, there is a minimal uα ∈ CozL such that

uα misses all cα and uα ∨ cα is dense for some α ≤ β. Then uα misses
∨

{cα | α ≤ β} and

uα ∨
∨

{cα | α ≤ β} is obviously dense. This proves the claim. Let D ⊆ L be the set

D = {c̄β | β < ν}.

Then D is a chain of cozero complemented cozero elements. That
∨

C ≤
∨

D is obvious.

Now

c̄β =
∨

α≤β

cα ≤
∨

C

⇒
∨

D ≤
∨

C

Hence
∨

D =
∨

C. Hence, by Lemma 5.2.10, ↓(
∨

C) is cozero complemented. �

Next, recall the definition of a normal cover in page 31.

The proof of the following lemma can be found in [59]:

Lemma 5.2.12 Let A be a normal cover of L. Then there exists a locally finite cozero cover

C of L such that C ≤ A.
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Next, recall that a frame L is paracompact if it is regular and if each cover of L has a

locally finite refinement. We are now ready to establish the following result.

Theorem 5.2.13 A locally cozero complemented paracompact frame is cozero complemented.

Proof Assume L is paracompact and let A be a cover of L. Because L is paracompact,

we have that A is a normal cover of L. Then, by Lemma 5.2.12, there exists a locally

finite cozero cover B of L such that B ≤ A. Put B = {bα | α < ν} which is a chain of

cozero elements. Because L is locally cozero complemented, we have that each ↓bα is cozero

complemented for all α. Then, by Lemma 5.2.11, ↓(
∨

B) is cozero complemented. Hence L

is cozero complemented. �

5.3 Characterizations in terms of rings of real-valued

continuous functions on L

We now proceed to give ring-theoretic characterizations of cozero complemented frames. We

remark that these are extensions of similar characterizations in spaces (see [38]). In this

section, we give few characterizations of cozero complemented frames in terms of the ring

of a real-valued continuous functions on L, namely RL. Furthermore, denote by T (R), the

classical ring of quotients of R. Recall that a ring R is said to be von Neumann regular

if for each a ∈ R, there exists b ∈ R such that a2b = a. In [38], it is shown that X is

cozero complemented if and only if the space MinC(X) of minimal prime ideals of C(X) is

compact, if and only if the classical ring of quotients of C(X) is von Neumann regular. In

[26], Dube has shown, in the context of frames, that the space MinRL is compact if and

only if L is cozero complemented.

Let us recall from [31] how annihilators are described in RL. In [27], Dube has shown
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that, for any I ∈ βL, AnnOI = AnnMI = Mr(a∗), where a =
∨

I, whence he deduces that

an ideal of RL is an annihilator ideal if and only if it is of the form Mr(a∗) for some a ∈ L.

In the proof of the following proposition, we shall need certain results from [4] which

characterize reduced rings R for which MinR is compact. Recall that a ring R is said to satisfy

a.c. if for every finitely generated ideal I, there is an a ∈ R such that Ann(I) = Ann(a). We

observe that RL satisfies a.c. Indeed, let Q be a finitely generated ideal of RL, generated

by the elements α1, . . . , αn. Put α = α2
1 + . . .+ α2

n. Now,

Ann(Q) = MrL(a
∗) for a = cozα1 ∨ . . . ∨ cozαn.

Since cozα = cozα1 ∨ . . . ∨ cozαn, it follows that Ann(Q) = Ann(α). We list as a lemma

the results we shall use, less generally in that we will impose the requirement that the ring

satisfy a.c.

Lemma 5.3.1 Let R be a reduced ring satisfying a.c., and let Q(R) denote its classical ring

of quotients. Then the following statements are equivalent.

(1) Minimal prime ideals of R are the only prime ideals consisting of zero divisors.

(2) Q(R) is a regular ring.

(3) Min R is compact.

Proposition 5.3.2 If L is completely regular, then the following are equivalent:

(1) L is cozero complemented.

(2) For all α ∈ RL, there exists β ∈ RL such that Ann2 (α) = Ann (β).

(3) For all α ∈ RL, there exists β ∈ RL such that (cozα)∗∗ = (coz β)∗.
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(4) For all α ∈ RL, there exists a nonzero divisor d ∈ RL such that αd = α2.

(5) For all α ∈ RL, there exists β ∈ RL such that αβ = 0 and |α| + |β| is a nonzero

divisor.

(6) Whenever P ⊆ RL is a prime ideal such that P ⊆ Zdv(RL), where Zdv(RL) stands

for the set of zero divisors in RL, then P is minimal prime.

(7) For all α ∈ RL, there exists β ∈ RL such that Annα = Ann 2β.

Proof (1) ⇒ (2) : Let α ∈ RL. By cozero complementedness, there is a β ∈ RL such

that cozα ∧ coz β = 0 and cozα ∨ coz β is dense. Now cozα ∧ coz β = 0 implies that

cozα∧(coz β)∗∗ = 0, which implies that (coz β)∗∗ ≤ (cozα)∗. On the other hand, cozα∨coz β

dense implies that (cozα)∗ ∧ (coz β)∗ = 0, whence (cozα)∗ ≤ (coz β)∗∗. Therefore (cozα)∗ =

(coz β)∗∗, which implies, by Lemma 4.2.12, that Annα = Ann 2β.

(2) ⇒ (3) : Ann 2(α) = Ann (β) implies MrL((cozα)
∗∗) = MrL((cozβ)

∗), which implies

rL((cozα)
∗∗) = rL((coz β)

∗), which implies (cozα)∗∗ = (coz β)∗.

(3) ⇒ (1) : Let a ∈ CozL. Pick α ∈ RL such that cozα = a. By (3), there exists

β ∈ RL such that (cozα)∗∗ = (coz β)∗. Write b = coz β. Now b is a cozero element such that

a ∧ b = cozα ∧ coz β ≤ (cozα)∗∗ ∧ coz β = (coz β)∗ ∧ coz β = 0,

and

(a ∨ b)∗ = a∗ ∧ b∗ = (cozα)∗ ∧ (cozα)∗∗ = 0;

which implies a ∨ b is dense. Therefore L is cozero complemented.

(1)⇒ (4) : Let α ∈ RL. Then, by hypothesis, there is a β ∈ RL such that cozα∧coz β =

0 and cozα∨ coz β is dense in L. Now cozα∧ coz β = coz (αβ) = 0 implies that αβ = 0, and

cozα∨coz β = coz (α2+β2) is dense in L implies that α2+β2 is not a zero divisor. We claim

that α+β is also not a zero divisor. Let h ∈ RL such that h(α+β) = 0. Then hα+hβ = 0
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which implies that hα = −hβ. Now h(α2+β2) = hα2+hβ2 = hα.α+hβ.β = −hβα−hαβ = 0

since αβ = βα = 0. So, h = 0, since h(α2 + β2) = 0 and α2 + β2 is not a zero divisor. Put

d = α + β. Then αd = α(α + β) = α2 + αβ = α2.

(4) ⇒ (5) : Let α ∈ RL. Then, by hypothesis, there is a nonzero divisor d such that

αd = α2. Then αd−α2 = 0, and so α(d−α) = 0. Put β = d−α. Then αβ = 0 and d = α+β.

But 0 ≤ |d| = |α + β| ≤ |α|+ |β| so coz (|d|) ≤ coz (|α|+ |β|). But coz d = coz (|d|) is dense,

so coz (|α|+ |β|) is also dense. Thus, |α|+ |β| is not a zero divisor.

(5) ⇒ (6) : Recall first that in a reduced commutative ring with identity, a prime ideal

is minimal prime if and only if every element in the ideal is annihilated by an element not

in the ideal. Also, observe that in any f-ring A, if P ⊆ A is prime, then for any a ∈ A, we

have a ∈ P if and only if |a| ∈ P since a2 = |a|2. Let α ∈ P, with P ⊆ RL a prime ideal

such that P ⊆ ZdvRL. By hypothesis, there is a β ∈ RL such that αβ = 0 and |α|+ |β| is

a nonzero divisor. Hence |α| + |β| /∈ P . Now α ∈ P and |α| + |β| /∈ P implies |β| /∈ P , and

hence β /∈ P . Since αβ = 0, it follows that P is a minimal prime ideal.

(6) ⇒ (1) : Assume (6) holds for RL. By Lemma 5.3.1, Min (RL) is compact. By [26],

L is cozero complemented.

(3) ⇒ (7) : Suppose (3) holds and let α ∈ RL. Write a = cozα. Pick b ∈ CozL such

that a∗ = b∗∗. Pick β ∈ RL such that coz β = b. Now Ann (Ann β) = AnnMr(b∗) = Mr(b∗∗)

since
∨

r(b∗) = b∗. Thus, Ann (Ann β) = Mr(a∗) = Annα.

(7) ⇒ (3) : Conversely, suppose that for every α ∈ RL, there exists β ∈ RL such that
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Annα = Ann (Ann β). Put c = cozα and d = coz β. So, by Lemma 4.2.12,

Annα = Ann (Ann β)

⇒ Mr((cozα)∗) = Mr((cozβ)∗∗)

⇒ r((cozα)∗) = r((coz β)∗∗)

⇒ (cozα)∗ = (coz β)∗∗.

�
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B, No. 12 Departamento de Matemática da Universidade de Coimbra, (1997).

[9] B. Banaschewski, Uniform completion in pointfree topology, In: Topological and Al-

107



gebraic Structures in Fuzzy sets, eds S.E. Rodabaugh and E.P. Klement, (2003),

19-56.

[10] B. Banaschewski, On the function ring functor in pointfree topology, Appl. Categor.

Struct., 13 (2005), 305-328.

[11] B. Banaschewski, T. Dube, C. Gilmour and J. Walters-Wayland, Oz in pointfree topol-

ogy, Quaest. Math., 32 (2009), 215-227.

[12] B. Banaschewski and C. Gilmour, Pseudocompactness and the cozero part of a frame,

Comment. Math. Univ. Carolinae, 37 (1996), 577-587.

[13] B. Banaschewski and C. Gilmour, Oz revisited, Math. Arb. Pap. (2000), 19-23.

[14] B. Banaschewski and C. Gilmour, Realcompactness and the cozero part of a frame, Appl.

Categor. Struct., 9 (2001), 395-417.

[15] B. Banaschewski and A. Pultr, Booleanization, Cah. Top. Geom. Diff. Categ., 37 (1996),

41-60.

[16] B. Banaschewski and A. Pultr, Paracompactness revisited, Appl. Categor. Struct., 1

(1993), 181-190.

[17] R. L. Blair, Filter characterizations of z-, C∗- and C-embeddings, Fund. Mathematicae

XC, (1976), 285-300.

[18] R. L. Blair, Spaces in which special sets are z-embedded, Canad. J. Math., 28 (1976),

673-690.

[19] R. L. Blair and A. W. Hager, Extensions of zero-sets and of real-valued functions, Math.

Z., 136 (1974), 41-52.

[20] X. Chen, Closed frame homomorphisms, PhD thesis, McMaster University, (1991).

[21] A. K. Das, ∆-normal spaces and decompositions of normality, Applied General Topol-

ogy, Vol 10. 2 (2009), 197-206.

[22] F. Dashiell, A. Hager and M. Henriksen, Order-Cauchy completions of rings and vector

lattices of continuous functions, Can. J. Math., 32 (1980), 657-685.

108



[23] C. H. Dowker and D. Papert, Quotient frames and subspaces, Proc. London Math. Soc.

16 (3) (1966), 275-296.

[24] T. Dube, Some notes on C- and C∗-quotients of frames, Order 25 (2008), 369-375.

[25] T. Dube, A little more on coz-unique frames, Appl. Categor. Struct., 17 (2009), 63-73.

[26] T. Dube, Some ring-theoretic properties of almost P-frames, Alg. Univ., 60 (2009),

145-162.

[27] T. Dube, Some algebraic characterizations of F-frames, Alg. Univ., 62 (2009), 273-288.

[28] T. Dube, Remote points and the like in pointfree topology, Acta Math. Hungar., 123

(3) (2009), 203-222.

[29] T. Dube, Concerning P -frames, essential P -frames and strongly zero-dimensional

frames, Alg. Univ., 61 (2009), 115-138.

[30] T. Dube, Notes on pointfree disconnectivity with a ring-theoretic slant, Appl. Categor.

Struct. 18 (2010), 55-72.

[31] T. Dube, Contracting the socle in rings of continuous functions, Rend. Sem. Mat. Univ.

Padova 123 (2010), 37-53.

[32] T. Dube and P. Matutu, A few points on pointfree pseudocompactness, Quaest. Math.,

30 (2007), 451-464.

[33] T. Dube and J. Walters-Wayland, Coz-onto frame maps and some applications, Appl.

Categor. Struct., 15 (2007), 119-133.

[34] A. Garćıa-Máynez, Generalizations of the concepts of closed functions and C-embedded

set, An. Inst. Univ. Nac. Autónoma. Měxico, 24 (1984), 13-35.
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