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Abstract 

In this thesis the two disciplines of Statistics and Artificial Neural Networks 

are combined into an integrated study of a data set of a weather modification 

experiment. 

An extensive literature study on artificial neural network methodology has 

revealed the strongly interdisciplinary nature of the research and the applica­

tions in this field. 

As artificial neural networks are becoming increasingly popular with data 

analysts, statisticians are becoming more involved in the field. A recursive 

algorithm is developed to optimize the number of hidden nodes in a feedforward 

artificial neural network to demonstrate how existing statistical techniques 

such as nonlinear regression and the likelihood-ratio test can be applied in 

innovative ways to develop and refine neural network methodology. 

This pruning algorithm is an original contribution to the field of artificial 

neural network methodology that simplifies the process of architecture selec­

tion, thereby reducing the number of training sessions that is needed to find 

a model that fits the data adequately. 

In addition, a statistical model to classify weather modification data is de­

veloped using both a feedforward multilayer perceptron artificial neural net­

work and a discriminant analysis. The two models are compared and the ef­

fectiveness of applying an artificial neural network model to a relatively small 

data set assessed. 

The formulation of the problem, the approach that has been followed to 

solve it and the novel modelling application all combine to make an original 

contribution to the interdisciplinary fields of Statistics and Artificial Neural 

Networks as well as to the discipline of Meteorology. 
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Chapter 1 

Prelude 

In this thesis the two disciplines of Statistics and Artificial Neural Networks 

are combined into an integrated study of a data set of particular interest. 

These two methodologies have existed side by side for many years and only in 

recent times have the paths of the proponents of the two disciplines crossed. 

Statistics is one of the oldest disciplines concerned with studying data 

and making inferences based on the information contained in the data - its 

origins can be traced back to the middle of the seventeenth century. Statistical 

modelling is the process of fitting statistical models to data from practical 

problems, testing the adequacy of these models, and finally extracting useful 

information from them. 

Artificial neural networks, on the other hand, owes its existence to mod­

ern technology. The first artificial neural networks were designed as recently 

as sixty years ago. In essence, artificial neural networks are mathematical 

models for information processing which employ algorithms to approximate 

real-valued, discrete-valued or vector-valued target functions using a set of 

input-output pairs. Without powerful computers to execute the often compu­

tationally intensive algorithms, these systems would never have been developed 

and refined to such an extent that the field is now strongly interdisciplinary, in-
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volving computer scientists, mathematicians, meteorologists, engineers, physi­

cists, psychologists and financial analysts to name but a few. 

Historically, the major developments in artificial neural network method­

ology have progressed for the most part independently of the discipline of 

Statistics. This has inevitably resulted in the duplication or reinvention of 

procedures as the two fields are in many respects closely related: both devel­

oped methodologies with the aim to learn, or predict, from examples. 

Modern technology has managed to remove the invisible and intangible 

boundaries between the two disciplines. Huge amounts of information can now 

be exchanged and accessed almost instantaneously via the internet. As arti­

ficial neural networks are becoming increasingly popular with data analysts­

who do not necessarily have a statistical background - via readily available and 

easily implemented software packages, more statisticians are realizing the need 

to become involved in the field. It is now widely recognized that statisticians 

can make valuable contributions to artificial neural network methodology. 

One of the objectives of this thesis is to bring artificial neural network 

methodology into the home of statisticians. Chapters 2 to 4, comprising the 

literature study, were written with this goal in mind. 

Another objective is to demonstrate the important role that statisticians 

can play in further developing and refining neural network methodology by 

applying existing statistical techniques in a novel way. A pruning algorithm 

that was developed to optimize the number of hidden nodes in a feedforward 

artificial neural network trained by backpropagation illustrates this aim. This 

recursive algorithm improves upon the way in which the artificial neural net­

work architecture is determined, and is described in detail in Chapter 5. 

A nonlinear regression statistical model setting was used to construct the 

algorithm. In the algorithm the results of one completed training session of an 

artificial neural network is statistically analysed to determine and specify the 
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number of hidden nodes that can be eliminated from a neural network model 

under construction. The procedure is based on a singular value decomposition 

of the conditional information matrix. It uses likelihood-ratio test statistics 

as selection criteria for the specific nodes to be eliminated, as well as for the 

selection of the correct artificial neural network model. Implementation of the 

algorithm dramatically reduces the number of training sessions necessary to 

find a model that fits the data adequately. This original contribution is espe­

cially valuable to artificial neural network users who do not use neural network 

packages, but program the instructions instead, as reported at the IEEE World 

Congress on Computational Intelligence [Fletcher & Engelbrecht, 1998]. 

The third objective of this thesis was to statistically model weather modi­

fication data using both an artificial neural network and a classical statistical 

technique to ascertain how well an artificial neural network model performs 

on a smaller data set in comparison with an analogous statistical technique. 

The need to apply an artificial neural network to this type of data was 

prompted by the increasing implementation of artificial neural networks in the 

field of Meteorology. A quick glance at the literature shows numerous appli­

cations, e.g. [Jones et al., 1999], [Narasimhan et al., 2000], [Liu et al., 2001] 

and [Silverman & Dracup, 2000], all of them using large data sets. In practi­

cal applications artificial neural networks typically deal with very large data 

sets where its effectiveness as a modelling tool has been widely proved. The 

effectiveness of the application of artificial neural networks to smaller data sets 

has, however, as far as could be established, not been well researched or well 

documented. 

Chapter 6 contains a description of how a discriminant analysis and a mul­

tilayer perceptron artificial neural network were applied to a relatively small 

data set. The formulation of the problem, the approach that has been fol­

lowed to solve it and the novel modelling application all combine to make 
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an original contribution to the interdisciplinary fields of Statistics and Artifi­

cial Neural Networks as well as to the discipline of Meteorology. The results 

have been presented at two conferences in 2002: [Fletcher & Steffens, 2002a] 

and [Steffens & Fletcher, 2002]. A paper has been accepted to be read at 

the 2002 Conference of the South African Society for Atmospheric Sciences 

[Fletcher & Steffens, 2002b]: this is the forum where the results will be for­

mally communicated to the meteorologists. 

The thesis is set out as follows: 

In Chapter 2, statistical modelling and predictive learning are briefly intro­

duced. An artificial neural network is described in the context of its neurologi­

cal counterpart and the differences and similarities between the two approaches 

highlighted. 

Chapter 3 gives an overview of the historical development of artificial neural 

networks, starting with the pioneering publication "A Logical Calculus of the 

Ideas Immanent in Nervous Activity" by Warren McCullogh and Walter Pitts 

in 1943 [McCulloch & Pitts, 1943]. Some of the most important contributions 

over the past decades that had a significant impact on the evolution of the 

field of artificial neural networks are discussed in the subsequent sections. 

The various aspects concerning the design and training of an artificial neu­

ral network are discussed in Chapter 4. The aim in Chapter 4 was to extract 

and assimilate from the vast body of literature on artificial neural networks a 

coherent whole that sets out and explains the various components of artificial 

neural network systems in a logical way. 

Quality data form a crucial part in the development of an artificial neural 

network, therefore, the collection, auditing and preprocessing of the data are 

discussed first. This section was motivated by the erroneous and uninformed 

view often held by users that artificial neural networks will, by virtue of some 

"blackbox" magicking, extract the necessary and useful features from any data 

4 



set regardless of its nature. In the next section the architecture of the network 

in single or multiple layers is explained. Thereafter, commonly used artificial 

neural network activation functions are presented. 

Following that, a number of different artificial neural network learning 

rules which are widely employed are introduced. Hebb's learning rule, Frank 

Rosenblatt's perceptron learning rule, the ADALINE, the delta learning rule, 

Kohonen self-organizing maps and adaptive resonance theory are outlined. 

This is done under the three broad classes of artificial neural network models 

that can be identified based on the type of training, namely self-supervised, 

supervised and unsupervised. 

The next section explains the simple gradient descent method to minimize 

the total squared error of the output computed by the artificial neural net­

work, called the backpropagation of error, in some detail. Backpropagation 

is the most popular algorithm for adjusting weights during the training phase 

of a feedforward artificial neural network, to the extent that the three layer 

backpropagation network (i.e. an input layer, one hidden layer and an output 

layer) has become the industry standard. 

Chapter 4 concludes with a short discussion of validation, multiple random 

starts and recutting as suitable techniques for evaluating the performance of 

a neural model. 

In Chapter 5, the original recursive algorithm that was developed to op­

timize the number of hidden nodes in a feedforward artificial neural network 

is described in detail. The chapter starts with the setting of the problem and 

with an explanation of the statistical theory and method. Thereafter the two 

stages of the optimization algorithm is described. The chapter concludes with 

a simulation study to illustrate the effectiveness of the algorithm. 

The third objective of this thesis, i.e. the statistically modelling of weather 

modification data, is addressed in Chapter 6. 
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In this chapter, the problem with selecting appropriate storms for seeding 

in weather modification experiments that has been identified whilst analyzing 

the results of the National Precipitation Research Programme conducted in 

South Africa during the early 1990s is described. Previous analyses indicated 

that the mean and median radar-measured rain masses of seeded storms were 

significantly higher than those of unseeded storms [Fletcher & Steffens, 1996] 

and [Mather & Fletcher, 1997]. Studies of the time histories of individual 

storms, however, highlighted the phenomenon that not all seeded storms had 

responded positively to seeding as some of these storms produced very little 

rain after seeding. The challenge was to be able to correctly identify appro­

priate storms for seeding before the seeding decision is taken as this will aid 

in better selection of storms. 

Discriminant analyses and a multilayer perceptron neural network were 

used in this chapter to develop models that classify storms into two groups: 

those which seemingly behaved like seeded storms and those which did not, 

based on their rain mass evolution over time. Thereafter, oneway analyses 

of variance were performed to compare these two groups with respect to the 

means of several explanatory variables representing different storm properties 

such as echo tops, storm depth, storm volume, storm mass, storm area, rain 

flux, precipitable water content and reflectivity, all based on radar measure­

ments taken in the ten minutes before the seeding decision was taken. The aim 

was to obtain an indication of possible variables that may be useful in distin­

guishing between storms which seemed to have reacted positively to seeding 

and those which did not. 

The thesis concludes with a summary of its contents in Chapter 7 and with 

a brief outline of proposals for further research initiatives emanating directly 

from the research conducted as well as conceived by the stimulation of the 

research process. 
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Chapter 2 

Statistical modelling and 

artificial neural networks 

Statistical modelling and artificial neural networks are briefly introduced in 

this chapter. An artificial neural network is described in context with its 

neurological counterpart and the differences and similarities between the two 

disciplines are summarized. 

2.1 Statistical modelling 

Statistics is one of the oldest disciplines to study data and make inferences 

based on the information contained in the data. Statistical modelling is re­

quired whenever such information has to be gleaned from data. Statistical 

modelling comprises the fitting of statistical models to data from practical 

problems, the testing of the adequacy of these models, and finally the extrac­

tion of useful summary information from them. 

In practice, statisticians rely on constructing models of "causal situations" 

in order to explain and predict satisfactorily what is happening, and hence to 

draw valid inferential conclusions from the data. Statistical models, as in all 
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areas of science, thus serve as a portrayal of the reality. Hence their quality and 

usefulness is heavily dependent on the complexity of the model itself: simple 

models represent simple phenomena. 

The numerical developments in the last decades, together with increasing 

advances in computing technology, have enabled researchers to analyse, inves­

tigate and explore large and complex data situations using innovative methods 

to build sophisticated statistical models. Much of the recent theoretical and 

technical developments in statistical modelling have been stimulated by data 

coming from various areas of science and industry and statistical modelling is 

now generally regarded as a multidisciplinary science. 

In the last few years, two major branches of statistical modelling have 

evolved to accommodate the increasing demand for complex models portraying 

complex situations. These are mixed models and nonparametric models. 

Mixed models allow the incorporation of unobserved heterogeneity and 

individual, latent effects into the model structure. It is possible, for exam­

ple, to accommodate the overdispersion often found among outcomes that 

have nominally binomial or Poisson distributions, or to model the dependence 

among outcome variables inherent in longitudinal or repeated measures designs 

([Breslow & Clayton, 1993], [Aitkin, 1999]). 

Classical quantitative statistical models are restrained by being paramet­

ric, i.e. by attempting to portray the reality by a finite number of parameters. 

In nonparametric modelling, parametric functions are substituted by nonpara­

metric flexible curves, allowing researchers to mirror and explore complex and 

totally unknown structures. Various different approaches have been followed 

in the last couple of years, some evolving from mathematics such as spline 

fitting, e.g. [Green & Silverman, 1994], others from extending statistical con­

cepts such as Bayesian smoothing and local fitting, e.g. [Fan & Gijbels, 1995]. 
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Model diagnostics has in the process emerged as an increasingly popular 

field of research. Generally speaking, every model is plausible as long as it is 

not "falsified" or misrepresented. The assessment, verification and compari­

son of different models is therefore of fundamental importance in order to be 

able to specify valid statistical models that fulfil the task of modelling reality. 

Both the theoretical aspects and applicability of the various routines used in 

the modelling process need to be evaluated in depth in order to understand 

and describe their impact. In the framework of nonparametric models, ac­

tive research in the field of model diagnostics has led to several results, e.g. 

[Kauermann & Thtz, 1999]. For mixed models however, tools and concepts for 

model diagnostics are still rudimentary with resampling approaches appearing 

as the most popular line of research. The successful development of appro­

priate model diagnostic tools will enable researchers to draw valid inferential 

conclusions from their data, thus allowing scientists in all fields to gain from 

statistical modelling and to refine or correct their models. 

Various workshops are annually dedicated to the dynamic field of research 

of statistical modelling, e.g. the Euroworkshop on Statistical Modelling, held 

from 1 - 4 November 2001 in Bernried near Munich, Germany, focused on three 

themes, i.e. mixed models, nonparametric models and model diagnostics. 

2.2 Predictive learning 

Predictive learning systems attempt to construct accurate prediction rules 

using learning algorithms (generic computer programs) purely by processing 

the data without any domain specific knowledge. All information is presumed 

to be contained in the supplied data, and it is the function of the learning 

algorithm to automatically extract and organize that information to obtain 

the prediction rule. 
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In essence, Statistics has always been concerned with predictive learning. 

The methodology and theory of computer learning have traditionally been 

developed in the fields of Statistics (multiple regression and classification), 

Applied Mathematics (multivariate function approximation) and Engineering 

(pattern recognition). 

The discovery of successful extensions to artificial neural networks dur­

ing the 1980s, together with advances in computing technology, have led to 

renewed interest in computer learning and have generated research in both ma­

chine learning (artificial intelligence) and biologically motivated methods for 

data modelling (artificial neural networks). Unfortunately the major develop­

ments in these fields have progressed for the most part independently of each 

other with little cross-referencing in the literature, resulting in the reinvention 

of results in one discipline already well-known in other disciplines. 

Statistics has possibly seen the greatest duplication of its procedures in 

other fields, probably because statisticians have been reluctant to adopt mod­

ern computer-based approaches. The cautious attitude of statisticians to data 

analyses that rely heavily on computer-based methods stems partly from the 

fact that it has been regarded the job of the scientist - not the statistician - to 

construct the structural model for the data. The role of the statistician is to 

analyse the data and study the inferential limitations of the scientist's model 

under various uncertainty conditions, i.e. to assess to what extent a collection 

of measurements actually characterizes the system as opposed to simply being 

an artefact of that particular sample. 

Furthermore, statisticians have in the past been working mainly with data 

from relatively small samples with high noise to signal levels, mainly from fields 

such as medicine, psychology and political sciences. In such cases inference 

must be done with circumspection, using methods that have been validated 

mathematically. However, large data bases are now routinely generated by 
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systems for which the signal to noise ratio is high, especially in the engineering 

and physical sciences. Traditional statistical tools are invariably not flexible 

enough to extract all the available information from such data sets. It is the 

challenges associated with these types of data that are the main motivators for 

computer-based approaches (such as artificial neural networks) to predictive 

learning methods. 

2.3 Artificial neural networks 

Artificial neural networks evolved from the research objective to understand 

how the brain imparts abilities such as perceptual interpretation, associative 

recall (memory) and learning to humans, based on the neurobiological doctrine 

that the nervous system of living organisms is a structure consisting of many 

elements working in parallel with one another. The brain metaphor suggests 

that the brain's decision capability may be emulated by modelling the physical 

architecture of the brain within knowledge and capacity constraints. 

The term neural network is hence derived from its biological similarity 

with the human brain, which is composed of neurons, each of which is con­

nected to many others in a network that adapts and changes as the brain 

learns. The neuron cell of the brain was discovered in 1836 and its struc­

ture as a many-inputs/one-output unit earned its inventors, Camillo Golgi 

and Santiago Ramon y Cajal, the Nobel Prize in Physiology in 1906 ( cf. 

http:/ /www.nobel.se/medicine/laureates/1906). 

Various features to increase the computational power of artificial neural 

networks have been included over the years, even though those features are not 

neurobiologically possible. These models, though inspired by brain function, 

only bear a metaphorical resemblance to natural biological neural networks. 
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In essence, artificial neural networks are mathematical models for informa­

tion processing which employ algorithms to approximate real-valued, discrete­

valued or vector target functions using a set of input-output pairs. The aim 

is to build models of data by capturing their most salient features during the 

training period (cf. Chapter 4). Artificial neural networks can be envisaged 

as functional approximators that fit the input and the output data with a 

high-dimensional surface. 

A typical biological neuron receives input (either excitation or inhibition) 

from other neurons. The neuron fires when its net excitation reaches a certain 

threshold. The firing is propagated through a branching axon to many other 

neurons, where it in turn acts as input to those neurons. (The fact that the 

mind resides in the brain, which is packed with neurons, was widely accepted 

by 1930. Also known by then was the general nature of synapses and the 

threshold response of neurons.) 

Figure 2-1 (taken from [Galkin, 2001]) illustrates a biological neuron with 

its axon and dendrites. The axons and dendrites carry the signals between 

neurons: axons allow a neuron to send a signal, whereas dendrites allow the 

neuron to receive signals from other neurons. The soma (cell body) takes 

cognisance of the incoming signals from the dendrites. The synaptic gaps are 

the junction parts of the neuron where the input signals are attenuated. 

Hebb's learning rule states that a metabolic change occurs in the synapse 

when the input of a neuron is repeatedly and persistently causing the neuron 

to fire, reducing the synapse's resistance [Hebb, 1949]. The gaps thus change 

size in response to "learning" and are the regions where one cell excites or 

inhibits another cell. The cell is activated to fire or transmit a signal over its 

axon to other cells when sufficient input (synapse strength) is received, i.e. 

when some threshold is reached. 
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Axon (Carries 
signals away) 

Synapse size changes in 
response to learning 

Figure 2-1: Structure of a biological neuron 

An important feature of biological neural networks is that they are fault 

tolerant, meaning that individual neurons can have failures, or even die, with­

out a negative impact on the brain's performance. 

An artificial neural network is made up of a number of basic processing 

units, called artificial neurons or simply nodes (the terms will be used inter­

changeably throughout the text). Each neuron is connected to other neurons 

by means of directed links with an associated weight representing the informa­

tion being used to solve a problem. In its simplest form, an artificial neuron 

receives binary input signals, calculates a weighted sum of inputs and compares 

it to a threshold to determine the binary output. 

The activity level of each neuron is a function of the inputs it receives, and 

its result is sent as a signal through connections to several other neurons. Each 

neuron can send only one signal at a time. The activity level of a neuron is 

adjusted by summing individual incoming signals, scaled down by the weight 

of the incoming connection which is defined by the activation function. This 

activation function is assumed to be nonlinear. 
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The three most often used forms of nonlinearities are hard limiting (either 

the step or the signum function), threshold and soft limiting (typically the 

sigmoidal function which scales the activity level, i.e. the output of the neuron, 

to a range between 0 and 1). Activation functions are discussed in more detail 

in Section 4.3. 

Activation functions are specified by the researcher and vary from one 

neural network model to another. Generally the output of a neuron will be 0 

until the activity level crosses some specified threshold value, at which stage 

it changes to 1. 

The neuron's weights are adaptable. Positively weighted connections are 

known as excitatory while negatively weighted connections are said to be in­

hibitory. The adaptation of the weights is performed by a learning algorithm. 

This adaptation gives the system its capability to learn by an example and 

then generalize for new data. The concept of weight settings is analogous to 

the notion of memory in a conventional computer. 

Figure 2-2 [Galkin, 2001] is a mathematical representation of an artificial 

neuron with I inputs Xi and corresponding weights Wi. Tis the threshold 

level and 0 the neuron's output. 

The nodes of an artificial neural network can be visualized as sets that are 

arranged in three (or more) layers: input nodes through which the network 

receives the values of the independent variables, a layer (or layers) of "hidden" 

nodes where the calculations are performed, and the output node(s) through 

which the network delivers its estimate of the values of the dependent vari­

able(s). The outputs of one layer serve as the inputs to the next, as illustrated 

in Figure 2-3 which has one hidden layer. 
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Figure 2-2: An artificial neuron 
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Figure 2-3: An artificial neural network 
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This configuration of an artificial neural network is called feedforward be­

cause, once the input layer neurons have values assigned to them, the network 

evolves layer by layer to determine its output. The dependence of the out­

put values on the input values is complex as it includes all synaptic weights 

and thresholds. Usually this dependence does not have a meaningful analytic 

expression that can be mathematically interpreted. With artificial neural net­

works, this is invariably not necessary as the learning algorithms will, given 

the inputs, adjust the weights to produce the required output. 

The key features of an artificial neural network, based on its compari­

son with the properties of a biological neuron, can be summarized as follows 

[Fausett, 1994]: 

• The processing unit (node) receives several signals. 

• Signals may be adapted by a weight (the value associated with a connec­

tion path between two processing units in an artificial neural network), 

similar to that of the chemical process at the receiving synaptic gap of 

a biological neuron. 

• The processing unit sums the weighted inputs. 

• The neuron transmits a single output after receiving sufficient input. 

• The output may be transmitted to many other neurons. 

More features of artificial neural networks that are suggested by biological 

neurons are: 

• Information processing is local. 

• Memory is distributed: "long-term" memory resides in the neuron's 

weights (synapses), while "short-term" memory corresponds to the sig­

nals sent by the neurons. 
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• A weight (synapse strength) may be modified by experience. 

• Weights (neurotransmitters for synapses) may be excitatory or inhibitory. 

• Artificial neural networks are fault tolerant in that they can be trained 

not to take small changes to the network into account, and can be re­

trained in cases of massive damage, e.g. loss of data and/ or some con­

nections. 

By the late 1980s, several organizations were already applying artificial 

neural networks to solve a variety of information-processing or pattern recog­

nition problems in commerce and industry that have proved to be intractable 

or very difficult to solve with conventionally programmed digital computers. 

Examples are cognitive tasks such as the visualization of speech phenomes 

(Teuvo Kohonen's "phonetic" typewriter [Kohonen, 1988]), learning to speak 

and understand a natural language (e.g. Kohonen's speech-recognition artifi­

cial neural network [Kohonen, 1990]) or guiding a mechanical hand to grasp 

objects of different shapes and consistencies, and optimization problems such 

as scheduling airline flights and allocation of seats between discount and stan­

dard fare classes to maximize airline's profit (e.g. the Airline Marketing Tac­

tician developed specifically for this purpose, [Hecht-Nielsen, 1988]). 

In many of the applications that are suitable to artificial neural network 

modelling it is virtually impossible to write down a series of logical or arith­

metic steps even though it is possible to specify the tasks exactly and even 

develop numerous examples of the function being carried out. 

One of the strong motives for the continued interest and enthusiasm in 

artificial neural networks is exactly this promise of solving a diversity of prob­

lems for which no algorithmic software exist, nor is likely to be developed 

for implementation on conventional computers. It is in cases like these that 

an experimental ad hoc approach based on heuristic methodology and quasi-
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rigorous techniques of network learning to select the appropriate neural system 

for a specific application is necessary. 

Scientists and technologists from a number of disciplines have been at­

tracted to the field of artificial neural networks, for various reasons. For ex­

ample computer scientists are interested in opportunities that are opened by 

the massively parallel computational networks in the areas of artificial intel­

ligence, computational theory, modelling and simulation; mathematicians are 

fascinated by the potential of mathematical modelling applied to complex large 

systems phenomena; electrical and computer engineers are interested in build­

ing electronic integrated circuit-based intelligent machines and also looking 

at artificial neural systems as computing networks for signal processing; neu­

roscientists are interested in modelling biological neural networks, physicists 

envisage analogies between artificial neural network models and the nonlinear 

dynamic systems they study while psychologists view artificial neural net­

works as possible prototype structures of human-like information processing. 

The field is evidently strongly interdisciplinary. 

2.4 Statistical modelling versus artificial neu­

ral networks 

The fields of Statistics and artificial neural networks are in many respects 

closely related. Both disciplines developed methodologies with the aim to 

learn, or predict, from examples. 

There are, however, still conflicting opinions among statisticians on the use­

fulness of artificial neural networks for statistical inference. Many are sceptical 

of the empirical approach of artificial neural network research where algorithms 

are developed for solving a particular application problem. This is in contrast 

with statistical research where implementation is often a secondary issue to 
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the theoretical assumptions underlying the analysis and is one of the main dif­

ferences between Statistics and artificial neural network research methodology. 

Another difference between the two is that Statistics has historically devel­

oped to deal with linear problems, while artificial neural networks are designed 

to specifically address nonlinearities where large volumes of data are available 

but little is known about the complicated relationship between the inputs and 

outputs. The application fields of the two methodologies are accordingly often 

different. 

In 1993 the NATO Advanced Study Institute brought together for the 

first time more than 100 participants from both fields with a view to articu­

late differences and similarities in these fields, and to foster better coopera­

tion amongst scientists and researchers. Some of the differences between the 

two approaches that have been noted by this group during the workshop are 

[Cherkassky & Wechsler, 1994]: 

• Artificial neural networks mainly deal with very large data sets resulting 

in models that are of much higher complexity (in terms of the number of 

parameters) than statistical models which have usually been developed 

for smaller samples. 

• In artificial neural networks the main objective is prediction or general­

ization. The complexity of the model often prohibits any interpretation 

or analytic expression. In Statistics the aim is usually interpretability 

of the model. This requires structured models such as linear regression 

and classification trees. Even in Statistics, however, structured models 

for high-dimensional problems may also be difficult to interpret due to 

the large model size. 

• Artificial neural networks employ flow-through processing, an iterative 

process where only one sample is processed at a time, usually combined 
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with the slow computational algorithm of gradient descent ( cf. Section 

4.5). Most statistical methods use all the data to construct the model­

a process known as batch-processing which is much faster. 

• Artificial neural networks are readily understood and. implemented by 

novice users as they are computationally simple, albeit slow and at the 

expense of multiple presentations of the data. There is also the percep­

tion that they require little human expertise. Statistics, on the other 

hand, use complex methods often with underlying assumptions about 

the data that are perceived as difficult to understand and to use, there­

fore statistical methods tend to be less popular with non-statisticians. 

• Artificial neural network methods seem to be more robust than statistical 

methods. Reasonable results are produced by artificial neural networks 

even with suboptimal choices of parameters such as network size, learning 

rate and initial weights. The quality of solutions produced by artificial 

neural networks can however not be guaranteed as in Statistics where 

confidence intervals for estimates are routinely provided. 

It is clear that no single method predominates for all possible data sets. 

Both artificial neural networks and statistical methods perform asymptotically 

satisfactorily as both produce reasonable estimates for large samples. For ill­

posed problems with sparse data sets, however, asymptotic performance is 

irrelevant and the best method is the one that conforms to the properties of 

the data at hand. 

Participants at the workshop mentioned above concluded that the real re­

search problem is not to determine a single "best" method, but to character­

ize the class of functions or mappings, in conjunction with assumptions about 

properties of the data such as noise and smoothness, for which a given method 

perform best. This view is still held amongst scientists and researchers today. 
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Chapter 3 

Historical development of 

artificial neural networks 

By 1930 it was widely accepted that the mind resides in the brain, which 

is packed with neurons. The general nature of synapses and the threshold 

response of neurons were also known by then. Scientists began their search 

for an explanation of brain functions such as memory, perception and reason­

ing in terms of brain mechanisms and structures such as neurons, synapses 

and thresholds. This has led directly to the development of artificial neural 

systems. 

In this chapter the evolution of artificial neural networks since the early 

1940s is traced, starting with the work of Warren McCullogh and Walter Pitts 

[McCulloch & Pitts, 1943]. 

Artificial neural networks initially evoked considerable interest amongst 

scientists, but enthusiasm waned when some fundamental limitations of these 

systems were evinced by Marvin Minsky and Seymour Papert in 1969 

[Minsky & Papert, 1988 c.1969]. 

In 1986 the discovery of successful extensions of artificial neural network 

knowledge by James McClelland, David Rummelhart and the PDP (Parallel 
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Distributed Processing) Group brought about another revitalization of this 

field [McClelland & Rumelhart, 1986], to the extent that the study and ap­

plication of artificial neural networks now encompass many disciplines such 

as engineering, physics, mathematics, neuroscience, medicine, psychology and 

finance. 

Only a synoptic overview of the historical development of artificial neural 

networks is provided here. It is neither possible nor the intention to afford an 

exhaustive bibliography in this thesis. Rather, the most important contribu­

tions over the past decades were singled out for their impact on the evolution 

of the field of artificial neural networks. 

3.1 Warren McCullogh and Walter Pitts 

Warren McCullogh and Walter Pitts explored the computational capabilities 

of network models with a very simple design during the middle decades of 

the previous century. Their pioneering publication, "A Logical Calculus of 

the Ideas Immanent in Nervous Activity" in which they outlined the first 

formal model of an elementary computing neuron in 1943, is generally re­

garded as the genesis of the development of artificial neural network systems 

[McCulloch & Pitts, 1943]. In this paper McCullogh and Pitts presented the 

first sophisticated discussion of "neuro-logical networks" and stated the doc­

trine and many of the fundamental theorems of their axiomatic representa­

tion of neural elements explicitly. The paper caused considerable excitement 

amongst scientists and spurred a flurry of interest in artificial neural network 

systems. 

The McCullogh-Pitts abstract model of a neuron is characterized by a finite 

number I of inputs Xi, multiplicative weights Wi which are either excitatory 

(i.e. the weight Wi = +1) or inhibitory (i.e. the weight Wi = -1), a threshold 
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level T and an output 0. The inputs and outputs assume the binary values 0 

or 1. The threshold can be any positive integer. Mathematically the output 

of a McCullogh-Pitts neuron can be expressed in terms of its inputs by 

I 

o = J(2~wixi- T) (3.1) 
i=l 

where f(p) = 0 if p < 0, and f(p) = 1 if p 2: 0, i.e. the neuron ''fires" when 

the total excitation it receives reaches or exceeds the specified threshold value. 

The threshold term T can be eliminated from this equation by simply adding 

an extra input connection from a node with its value fixed at 1 and weight the 

negative of the threshold value T. This has the advantage that the threshold 

value T can be adjusted along with the other weights. An external input can 

be supplied to the network in a similar way by adding an extra term to the 

sum of some of the inputs. 

The physical assumptions of the network, as stated in the original paper 

and reproduced in "Embodiments of Mind" are ([McCulloch, 1965], p.22) 

1. The activity of the neuron is an "all-or-none" process. 

2. A certain fixed number of synapses must be excited within the period of 

latent addition in order to excite a neuron at any time, and this number 

is independent of previous activity and position on the neuron. 

3. The only significant delay within the nervous system is synaptic delay. 

4. The activity of any inhibitory synapse absolutely prevents excitation of 

the neuron at that time. 

5. The structure of the net does not change with time. 

Even though this model is very simplistic, and memory is essentially ruled 

out under these conditions, it has substantial computing power. 
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It was believed at that time that it is always possible to construct a 

McCullogh-Pitts network which will be capable of representing whatever input­

output configurations might be realized by a system with an arbitrary memory 

mechanism, provided that activity is allowed to persist in the network. In ac­

tual fact, it can perform the basic logic operations NOT, OR and AND- as well 

as any combinational function using either the NOT and OR, or the NOT and 

AND - provided that the weights and thresholds are appropriately selected. 

At this time, the idea of constructing devices out of simple logical elements 

with neuron-like properties was by no means novel. Thring, for example, pub­

lished a paper on this topic in 1936 [Thring, 1936-37] where he described an 

abstract representation of a computing device. 

A Thring machine consists of a read/write head that scans a two-dimensional 

tape divided into squares, each of which is inscribed with a 0 or a 1. It moves 

and writes using a table of instructions (one for each state and binary input) 

known as the functional states of the machine. A Thring machine is therefore 

more like a computer program (software) than a computer (hardware) and was 

an attempt by Alan Thring to provide a mathematically precise definition of 

an algorithm. 

The development of stored-program digital computers by Von Neumann 

and others [Burks & Von Neumann, 1947]lent further impetus to research in 

this field in the 1940s. After the publication of Rashevsky's book "Mathe­

matical Biophysics" in 1938 [Rashevsky, 1938] a group of mathematical bio­

physicists at the University of Chicago got together. The aim was specif­

ically to investigate "nerve nets" consisting of formalized neurons and con­

nections that might be able to perform psychological functions. Amongst 

those who made innovative contributions to this field were Pitts, McCullogh, 

Landahl and Householder ([Pitts, 1942], [Pitts, 1943], [Landahl & Pitts, 1943], 

[Householder & Landahl, 1945]). 
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It has been pointed out that McCullogh and Pitts's major contribution 

to the field of artificial neural networks was not so much the schematic con­

struction of neural circuits specified by their conditions of firing, as these have 

previously been used diagrammatically to illustrate simple reflex arcs. It was 

instead their broader vision of conceptualizing the brain as a "computing ma­

chine", as put so succinctly by Seymour Papert in his introduction to the 

text of Embodiments of Mind: "The step that needed boldness of conception 

and mathematical acumen was the realization that one could formalize the 

relations between neurons well enough to allow general statements about the 

global behaviour of arbitrarily large and only partly specified nets to be de­

duced from assumptions about the form and connectivity of their components." 

([McCulloch, 1965], p.xvii). McCullogh and Pitts were the first researchers to 

provide a set of mathematical instruments that was powerful enough to de­

scribe neurophysiological hypotheses about brain mechanisms. 

The McCullogh-Pitts paper laid the groundwork for the possibility of for­

mulating more precise and particular hypotheses as explored by themselves and 

many others in the following years and decades ([Pitts & McCulloch, 1947], 

[Hebb, 1949], [Rosenblatt, 1958], [Widrow & Hoff, 1960], [Landahl, 1961], 

[McCulloch, 1962], [Rosenblatt, 1962], [Widrow, 1962], [Cover, 1965], 

[Minsky & Papert, 1988 c.1969], [Hopfield, 1982], [Hopfield, 1984], 

[McClelland & Rumelhart, 1986]). In their essay "How We know Universals", 

for example, McCullogh and Pitts described network architectures which were 

in principal capable of recognizing spatial patterns in a manner invariant under 

groups of geometric transformations [Pitts & McCulloch, 1947]. (The architec­

ture of a network refers to the arrangement of the neurons in layers and the 

corresponding pattern of connections. Network architectures are discussed in 

more detail in Chapter 4, Section 4.2.) 
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The popular intellectual movement called cybernetics, which attempted to 

combine concepts from biology, neurology, psychology, engineering and math­

ematics, emerged from these ideas. The field attracted a lot of interest from 

those researchers, especially psychologists and computer scientists, who strived 

to gain a deeper understanding of the brain in a manner that would also be 

mathematically simple enough to allow theoretical analysis. 

Initially, research focused largely on localization and specific artificial neu­

ral network configurations, called architectural schemes or the network's topol­

ogy, that could perform specific functions were developed. A well-known and 

often quoted example in the literature is the work of Lettvin et al. on the 

physiology of vision [Lettvin & Pitts, 1959]. The goal, however, soon changed 

to building machines that could learn ([Minsky, 1954], [Nillson, 1990]). As 

the simple concept of reinforcement learning was already well-known in be­

haviouristic psychology, most of the early experiments used a reinforcement­

based network learning system. A reinforcement-based network learning sys­

tem must be capable to generate a sufficient variety of actions from which to 

choose, as well as some criterion of relative success. 

3.2 Donald Hebb 

The psychologist Donald Hebb designed the first learning law for artificial neu­

ral networks. In "The Organization of Behaviour", published in 1949 

[Hebb, 1949], he proposed a learning scheme for updating neurons' connec­

tions that had a considerable impact on future developments in the field. His 

was the first attempt to base a large-scale theory of psychology on suppositions 

about artificial neural networks. 

Based on the biological discovery that a synapse's resistance to an incoming 

signal is changed metabolically during a "learning" process, Hebb showed that 
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networks might learn by storing information in connections by constructing 

so-called cell-assemblies: subfamilies of neurons which are frequently activated 

together become linked into a functional organization and thus learn to support 

each other's activities. This is referred to as the Hebb learning rule and forms 

the basis for the concept of associative memory. The Hebb learning rule is 

described in more detail in Section 4.4.1.1. 

3.3 Marvin Minsky 

The first reinforcement-based neurocomputers which adapted connections au­

tomatically were built and tested by Marvin Minsky during the 1950s. His 

original machine, built in 1951, consisted of electronic units interconnected 

by a network of links. These links had adjustable probabilities of receiving 

activation signals and then transmitting them to other units. Learning was 

by means of a reinforcement process in which each positive or negative judge­

ment about the machine's behaviour was translated into a small change in the 

probabilities associated with the corresponding connections. In his Princeton 

PhD dissertation in Mathematics he postulated many new theories and the­

orems about learning in artificial neural networks, secondary reinforcement, 

circulating dynamic storage and synaptic modifications [Minsky, 1954]. 

It should be borne in mind that modern computers as we know them today 

did not exist in those days. The concept of programming had barely appeared 

at that time. It was an era in which Thomas Watson in 1943, then chairman 

of IBM, could blithely state "I think there is a world market for maybe five 

computers". However, with the advance of modern computers it became much 

more viable to experiment with different learning schemes, as well as to do 

research based on learning. One example is Arthur Samuel's research on pro­

gramming computers to learn to play checkers using a success-based reward 
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system. He was able to use a variety of error-correcting vector addition pro­

cedures that was later developed to utilize more complex interactions between 

the partial predicates [Samuel, 1959], [Samuel, 1967]. 

3.4 Frank Rosenblatt 

Frank Rosenblatt formally introduced the neuron-like element called a per­

ceptron towards the end of this decade. In his 1958 paper [Rosenblatt, 1958] 

and subsequent book [Rosenblatt, 1962] he criticized the lack of randomness 

and the inflexibility of existing artificial neural network models compared to 

biological neural networks. His research investigated a simple brain model em­

ulating the physical structures and neurodynamic principles which underpin 

intelligence. 

Various different types of brain models had so far been proffered by scien­

tists ranging from philosophers, psychologists, biologists and mathematicians 

to electrical engineers ([Hebb, 1949], [Minsky, 1954], [Von Neumann, 1958]). 

Rosenblatt unique contribution was that he proposed a theory of statistical 

separability based on probability theory, rather than symbolic logic, to develop 

a class of network models known as perceptrons and formulated his Perceptron 

Convergence theorem ([Rosenblatt, 1962], pp.109-116). 

Earlier applications of probability theory to brain models include the paper 

by Landahl, McCullogh and Pitts ([Landahl & Pitts, 1943]). Their approach 

differs from Rosenblatt's in that the impulses are assumed to be propagated 

with known frequencies but with uncertainties in their timing, while the topol­

ogy of the network is still assumed to be a strictly deterministic organization 

which is fully known. They formulated a theorem to obtain the expected 

frequencies with which different cells will respond. Other work which at­

tempted to develop statistically organized networks which are characterized 
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by probability distributions for thresholds, synaptic types and origins of con­

nections include that of Shimbel and Rapoport [Shimbel & Rapoport, 1948]. 

Uttley also described a reward-modified machine, based on statistical models 

and using conditional probabilities, which was a predecessor of the perceptron 

[Uttley, 1956], [Uttley, 1959a], [Uttley, 1959b]. 

Although the term perceptron was originally intended as a generic name 

for a variety of theoretical neural net models, it was widely used to describe a 

trainable machine (hardware) capable of learning to classify certain patterns 

by modifying connections to the threshold elements. 

In its simplest configuration the perceptron is formed as three layers of 

signal generating units, or neurons: the sensory inputs which are connected 

to an "association" layer on a partial and random basis, which in turn is 

randomly connected to a response layer of neurons which produce the outputs 

of the network; these response neurons inhibit each other and those association 

neurons from which they do not receive input. 

The logical properties of a perceptron are defined by the connections among 

the neurons (the topological organization), a set of signal processing functions, 

i.e. the rules dictating the generation and transmission of signals, and a set of 

memory functions, the rules regulating modification of the network properties 

as a consequence of activity. By including a mechanism for change in the 

neural net, Rosenblatt aimed to achieve a model for memory and learning. 

The perceptron learning rule's iterative weight adjustment makes it more 

powerful than the Hebb rule. The rule is formulated more formally in mathe­

matical terms in Section 4.4.2.1. 

Rosenblatt demonstrated that the perceptron can generalize, i.e. when pre­

sented with similar inputs - even novel ones - it will give the same response, 

as well as learn. The system is sufficient for pattern recognition, associative 

learning, as well as such cognitive sets that are necessary for selective recall. 
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However, as soon as the response calls for the recognition of a relationship be­

tween stimuli, the problem becomes too difficult for the perceptron. Rosenblatt 

acknowledged that statistical separability alone does not provide a sufficient 

basis for higher order abstraction and that a more advanced system seems to 

be needed ([Rosenblatt, 1958], p.405). 

The perceptron used different mathematical learning systems that could 

be roughly divided into two categories [Smith, 1993]. In the first learning cat­

egory, the association neurons that continue to be active while the response is 

given gain in strength, with the result that the response neurons become in­

creasingly sensitive to the input patterns that they initially responded to. This 

corresponds to the so-called self-organization or competitive learning models 

currently used. The other learning category was known as forced learning as 

information from outside the perceptron activates the appropriate response 

neuron when it is presented with a specific input pattern. The response neu­

ron thus becomes more sensitive to the input pattern. This process is simply 

reinforcement learning as mentioned earlier. 

Rosenblatt's idea fired the imagination of scientists and engineers alike 

and laid the groundwork for the basic machine learning algorithms still used 

today. At this stage the field became widely known as Connectionism because 

the weighted connections between neurons essentially contain the information 

in the system and therefore determine the behaviour of these networks. 

3.5 Bernard Widrow and Marcian Hoff 

During the early 1960s another powerful learning rule, called the Widrow-Hoff 

learning rule, was developed by Bernard Widrow and Marcian Hoff 

([Widrow & Hoff, 1960], [Widrow, 1962]). (The Widrow-Hoff learning rule is 

also referred to as the least mean squares (LMS) rule in technical literature.) 
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The ADALINE (ADAptive Linear NEuron), which is explained in more 

detail in Section 4.4.2.2, is not a network but a single neuron that produces an 

output based on a pattern of inputs, like the perceptron. The rule is closely 

related to the perceptron learning rule. While the perceptron rule adjusts the 

connection weights to a unit whenever the response of the unit is incorrect, 

the AD ALINE's learning method incorporates supervised learning ( cf. Section 

4.4.2) where the network is given feedback indicating not only whether the 

output is incorrect, but also what the output should have been. The Widrow­

Hoff rule adjusts the weights to reduce the difference between the network's 

output and the target output. It achieves this by descending the gradient in 

the error surface, i.e. minimizing the summed squared error during training. 

Even though the difference between the two rules (perceptron and Widrow­

Hoff) are small, the Widrow-Hoff rule leads to an improved ability of the 

network to generalize, i.e. to respond to input that is similar, but not identical, 

to that on which it was trained. The Widrow-Hoff learning rule for a single­

layer artificial neural network is a precursor of the backpropagation rule that 

is used for many multilayer artificial neural networks ( cf. Section 4.5). 

Early applications of ADALINE and its extension to MADALINE (for 

MAny ADALINES) include pattern classification, weather forecasting and 

adaptive controls. Since the ADALINE is a linear neuron, it's applications 

are limited to learning linearly separable classes. 

In spite of the enthusiasm and successes of this period, more complex com­

putational problems could not be solved by these early machine learning the­

orems and artificial neural network research entered a stagnation phase. The 

relatively modest computational resources available to researchers also con­

tributed to the slowdown into artificial neural network research. Nils Nilsson's 

monograph on learning machines provide a clear summary of many of the 

developments and obstacles of that time [Nillson, 1990]. 
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3.6 Marvin Minsky and Seymour Papert 

The final publication of this era was the book "Perceptrons" by Marvin Min­

sky and Seymour Papert in 1969 [Minsky & Papert, 1988 c.1969]. In this text 

Minsky and Papert evaluated the perceptron as the simplest learning machine, 

i.e. as a class of computations (parallel-machine architectures) that make de­

cisions by weighing evidence. Up to this stage many experiments with percep­

trons have taken place, but nobody has been able to satisfactorily explain why 

perceptrons were able to learn to recognize certain kinds of patterns but not 

others. Minsky and Papert revealed some fundamental limitations of loop-free 

connectionist learning machines and proved that one-layer perceptrons were 

incapable of learning to distinguish classes of patterns that were not linearly 

separable, using the well-known logical EXCLUSIVE-OR (XOR) function to 

illustrate the weakness of the perceptron. 

The X 0 R function is a logic function that is not symmetric in its treatment 

of the two input values. The response is ''true" if one of the input values is 

"true" and the other input value is "false"; otherwise the response is "false". 

Using a bipolar representation of the logical input and response values, the 

four input target pairs are: 

(x1, x2) --+ y 

(+1,+1) --+ -1 

(+1,-1) --+ +1 

(-1,+1) --+ +1 

(-1,-1) --+ -1 

Inspection of the graphical display in Figure 3-1 shows that the XOR func­

tion is not linearly separable. 
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Figure 3-1: Response for the logic XOR function 

Interest in the field of artificial neural networks waned considerably when 

the limited potential of layered learning networks was thus exposed. Even 

though Minsky and Papert's text has the reputation of dampening the research 

interest in artificial neural networks at that time, the authors argue (in their 

Epilogue to the 1988 reprint, [Minsky & Papert, 1988 c.1969]) that their intent 

was not so much to publicize the limitations of perceptrons as to critically 

evaluate their abilities and foster an understanding of the general principles 

governing their capabilities. The goal of the book was, according to their 

Introduction ([Minsky & Papert, 1988 c.1969], p.1), to offer general insights 

into the related fields of parallel computing, pattern recognition, knowledge 

representation and learning. The text was aimed at specialists in these fields, 

but they also strived to reach an audience who was interested in the general 

theory of computation in order to stimulate interest in the theory of genetic 

programming and the capabilities of parallel-network learning machines. 
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3. 7 During the 1970s and early 1980s 

Dubbed the "Quiet Years" by Laurene Fausett, further pioneering work in 

the field of artificial neural networks was accomplished by only a handful of 

researchers during the next ten to fifteen years [Fausett, 1994]. 

3. 7.1 Japanese scientists 

Of the important contributors mentioned by various authors ([Zurada, 1992], 

[Smith, 1993], [Fausett, 1994], [Haykin, 1999]) were the Japanese scientists, 

Sun-I chi Amari who studied the mathematical theory of artificial neural net­

works and learning in networks of threshold elements ([Amari, 1972], 

[Amari, 1977]) and the development of the class of artificial neural network 

architectures specializing in character recognition known as neocognitrons by 

Kunihiko Fukushima [Fukushima & Miyaka, 1980]. 

3.7.2 Kohonen 

Another important activity was the demonstration of self-organizing maps us­

ing competitive learning, motivated by topologically ordered maps in the brain 

([Von der Malsburg, 1973], [Willshaw & Von der Malsburg, 1976]). Teuvo Ko­

honen of Finland worked out a theory of associative memory where pairs of 

patterns are stored so that presentation of one of the patterns in a pair directly 

evokes the associated pattern without any serial search [Kohonen, 1977]. An 

associative memory is therefore content-addressable. Kohonen also developed 

a model of self-organizing topographical maps [Kohonen, 1984]. 

3. 7.3 Anderson; Grossberg and Carter 

James Anderson's "Brain-State-in-a-Box" associative artificial neural networks 

[Anderson et al., 1977] should also be mentioned as well as the extensive work 
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done by the American Stephen Grossberg and his colleagues who studied in 

detail experimental evidence of cognitive tasks and used computer-based simu­

lations to characterize the behaviour of models they developed. Together with 

Gail Carpenter he developed a special class of self-organizing artificial neural 

networks based on the theory of adaptive resonance (ART) [Grossberg, 1977]. 

3.7.4 Simulated annealing and the Boltzmann machine 

Simulated annealing is a procedure for solving combinatorial optimization 

problems by reducing the likelihood of an artificial neural network to be­

come trapped in a local minimum which is not a global minimum, described 

in 1983 by Kirkpatrick et al. [Kirkpatrick & Vecchi, 1983]. The Boltzmann 

machine, a class of artificial neural networks used for solving constrained op­

timization problems, was developed in 1985 by Ackley, Hinton and Sejnowski 

as a stochastic learning algorithm, using the concept of simulated annealing 

[Ackley et al., 1985]. 

3.8 John Hopfield 

The resurgence of interest in artificial neural network models started when the 

physicist John Hopfield introduced a recurrent artificial neural network archi­

tecture for associative memories in the early 1980s ([Hopfield, 1982], 

[Hopfield, 1984]). He also introduced the concept of an energy function of the 

weights and activations of the artificial neural network. This function always 

decreases or remains unchanged with each iteration of the evolving artificial 

neural network, thus providing an elegant solution to the tough problem of 

artificial neural network convergence to a stable state. 
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3.9 James McClelland and David Rummelhart 

The discovery of successful extensions of artificial neural network knowledge, 

however, had to wait until1986 when another revitalization of this field came 

about after the publication in 1986 of two volumes on parallel distributed pro­

cessing, written by James McClelland, David Rummelhart and fourteen col­

laborators known as the PDP (Parallel Distributed Processing) Group. The 

announcement of the discovery of a method that enables an artificial neural 

network to learn to discriminate between classes of patterns that are not lin­

early separable heralded an "connectionist revolution" as it revived enthusiasm 

in the field of artificial neural networks and almost immediately spurred an 

intense growth of activity in artificial neural network research. 

The authors introduced a new learning rule and concepts for more com­

plex multilayer systems which exploit the previously underestimated comput­

ing power of layered networks. The "Generalized Delta Rule" "provides a 

direct generalization of the perceptron and ADALINE learning procedures 

which can be applied to arbitrary networks with multiple layers and feedback 

among layers" ([McClelland & Rumelhart, 1986], vol.1, p.113), as opposed to 

Rosenblatt's perceptron which operates only on the connections between one 

layer of input units and a single output unit. Also known as backpropagation, 

this recursive error propagation algorithm trains an artificial neural network 

to approximate virtually any function, including arbitrarily complex nonlinear 

functions, thereby removing one of the most essential network training barri­

ers that grounded the mainstream efforts of the mid-1960s. Backpropagation, 

which is employed by most popular artificial neural networks today, is essen­

tially a nonparametric statistical modelling technique in which the shape of 

the relationship between inputs and outputs is determined by the data. This 

algorithm is be explained in more detail in Section 4.5.1 on artificial neural 

network models. 

36 



It is now widely acknowledged ([Zurada, 1992], [Smith, 1993], 

[Fausett, 1994], [Anderson, 1995], [Bishop, 1995], [Hay kin, 1999]) that the math­

ematical framework for this new training algorithm for layered networks was al­

ready formulated by Paul Werbos in his Harvard Ph.D. thesis in 197 4 

[Werbos, 1974], although it went largely unnoticed at that time. 

3.10 Current state of affairs 

After the publication of McClelland and Rummelhart many new artificial neu­

ral networks research programs were initiated. One of the more sensational 

projects was the development of a backpropagation artificial neural network 

model called NETtalk, developed by Charles Rosenberg and Terry Sejnowski in 

1986 [Smith, 1993]. The NETtalk artificial neural network translates written 

English into a phonetic representation that can be used to produce machine 

speech, i.e. it trains the network to read out aloud - an impressive demonstra­

tion of the capabilities of artificial neural networks. 

The Boltzmann machine, developed in 1985 by Ackley, Hinton and Se­

jnowski, laid the groundwork for the development of sigmoid belief networks by 

Neal ( [Ackley et al., 1985], [Neal, 1992]). These networks accomplished a sig­

nificant improvement in the learning performance of artificial neural networks 

[Haykin, 1999]. The use of mean-field theory by Saul et al. further improved 

the learning performance of sigmoid belief networks [Saul & Jordan, 1996]. 

Radial basis function (RBF) artificial neural networks, an alternative de­

sign for layered feedforward networks, was described in 1988 by Broomhead 

and Lowe [Broomhead & Lowe, 1988]. The RBF is designed to detect local 

regions (clusters) in the input feature space. It operates by measuring the 

distance between the input vector and the centre of each of its basis functions. 
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Vladimir Vapnik and his coworkers invented a computationally powerful 

class of supervised learning networks, called support vector machines, for solv­

ing pattern recognition, regression and density estimation problems in the 

early 1990s ([Cortes & Vapnik, 1995], [Vapnik, 1995]). This method is based 

on results in the theory of learning with finite sample sizes. The Vapnik­

Chervonenkis (VC) dimension, which provides a measure for the capacity of 

an artificial neural network to learn from a set of examples, is a key feature of 

support vector machines. 

The intensity of research in the neurocomputing discipline can be measured 

by the quickly growing number of conferences and journals devoted to the 

field. The first International Conference on Neural Networks was held in 1987 

under the auspices of the IEEE. At that conference the International Neural 

Network Society was organized. The International Joint Conference on Neural 

Networks is now held every year, bringing together researchers from all over 

the world and representing various disciplines. A host of other workshops and 

conferences are held annually or biannually, as evidenced by simply typing the 

phrase "neural network" into any internet search engine. 

Many edited volumes that include collections of papers and numerous books 

have appeared and many applications that could be solved by artificial neural 

networks had expanded from small test-size examples to large practical tasks, 

e.g. [Cottrell, 1990], [Hecht-Nielsen, 1990], [White, 1992], [Zurada, 1992], 

[Smith, 1993], [Cherkassky & Wechsler, 1994], [Fausett, 1994], [Bishop, 1995], 

[Hewitson & Crane, 1994], [Anderson, 1995], [Cohen, 1995], [Hassoun, 1995], 

[Martin, 1995], [Vapnik, 1995], [Venkatasubramanian & Rengaswamy, 1995], 

[Mira & Sandoval, 1995], [Smolensky & Rumelhart, 1996], [Mitchell, 1997], 

[Anthony & Bartlett, 1999], [Fine, 1999], [Kay & Titterington, 1999] and 

[Haykin, 1999]. 

38 



Artificial neural networks have been shown to be highly effective and robust 

in many practical problems, encompassing many disciplines such as engineer­

ing, physics, mathematics, neuroscience, medicine, psychology and finance. 

They have proved to be especially effective in pattern recognition and signal 

processing. 

Some of the interesting examples of pattern recognition are the automatic 

recognition of handwritten characters such as zipcodes [LeCun et al., 1989]; 

learning to recognize spoken words [Lang & Hinton, 1990] and learning to rec­

ognize faces [Cottrell, 1990]. One of the first commercial applications of signal 

processing was to suppress noise on a telephone line [Fausett, 1994]. Fausett 

cites a number of other interesting artificial neural network applications, e.g. 

J. A. Anderson's "Instant Physician" which will provide a medical diagnosis 

and treatment when presented with a set of symptoms and a mortgage assess­

ment network that was commercially developed by E. Collins, S. Ghosh and 

C. L. Scofield. Another medical application is EEG spike detection using an 

artificial neural network classifier to aid neurologists in the detection of abnor­

mal brain waves which indicate an imminent epileptic seizure, developed by R. 

C. Eberhart and R. W. Dobbins [Eberhart & Dobbins, 1990]. As a financial 

application, A. F. Refenes et al. developed a neural model to assess stock 

performance [Refenes & Francis, 1994]. 

The quest for a general solution to all learning problems continues, but at 

least a better understanding of which types of learning processes are likely to 

work on which classes of problems has evolved over the years of research into 

this field. 
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Chapter 4 

Artificial neural networks 

Various different types of artificial neural networks, each with its own char­

acteristics, have evolved that are suitable to different applications. Careful 

consideration should therefore be given to the selection of the neural process­

ing tools, the model structure and the initial conditions when selecting an 

artificial neural network model to fit to your data. A network is characterized 

by the following features: 

• its pattern of connections between the neurons (architecture); 

• its training or learning algorithm, i.e. its method of determining the 

weights between the connections; 

• its activation function which determines its output. 

The objective of an artificial neural network model is to locate the global 

solution in a complex problem domain where a number of suboptimal solutions 

may exist. Each processing element (neuron) performs a simple task. The 

power of artificial neural networks come from the collective behaviour of the 

neurons in a network as it is the connections between these neurons that give 

an artificial neural network the ability to learn patterns and interrelationships 
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in the data. The weights between connections contain the knowledge of the 

artificial neural network and training is the process of adjusting these weights. 

This is a highly complex parallel process whose features cannot be reduced to 

phenomena taking place within individual neurons. 

Artificial neural networks learn the desired input-to-output mapping by 

minimizing the error between the predicted and actual outputs. The model 

that produces the least possible error when data are passed through it, is con­

sidered the best. An error domain graph, plotting the weights of an artificial 

neural network against the error produced, is useful to describe the error. An 

evolving artificial neural network will eventually reach a state where all neu­

rons continue working but no further changes in their state occur. A network 

may have more than one stable state which is determined by the choice of 

synaptic weights and thresholds for the neurons. The aim is to configure a 

network that does not stop training at one of the suboptimal solutions or a 

local minimum. 

The first step involved in the generation of a neural model is the collection, 

auditing and preprocessing of the data. This aspect is discussed in more detail 

in Section 4.1. 

Following the data preparation stage is the generation of the neural model. 

The stages involved in the generation of a neural model include designing the 

model, optimizing the model, training the model - including the validation of 

the model - and finally testing the model before implementation of the final 

model. 

Network topologies 

Network topologies can vary from single model designs to complex designs 

that partition the problem into subgroups. 
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Partitioned topologies is one of the options available when, after developing 

a single artificial neural network system and experimenting with the parame­

ters, it becomes apparent that the system is not performing satisfactorily. It 

entails partitioning the input data into subsets, each of which is then processed 

by a single neural model, resulting in a network ensemble. This technique can 

yield better results than those obtained from single neural models if executed 

carefully. 

The main difficulty faced when developing a partitioned topology is the 

selection of input fields for the subsets: if variables that should be assigned to 

the same subset is split between two or more groups the performance of the 

neural system will be degraded. Simple correlation coefficients or simple scat­

terplots for each input variable against all the other variables can be generated 

to aid detection of correlated variables (thus belonging to the same subset), 

but problems arise in practice when there are a large number of input fields. 

For example, 50 input fields translate to (5
2°) = 1225 scatterplots that have to 

be generated and inspected. This problem can be partially overcome by ap­

plying domain knowledge. Applying more sophisticated statistical techniques, 

such as principal components analysis or factor analysis, to the data may also 

be useful to identify meaningful subsets of variables. 

The focus here will be on single model designs as the extension to neural 

network ensembles follows logically. 

The options available when developing a single model network are the 

type of model, the internal configuration, i.e. the architecture, and the initial 

conditions. The type of model is to a large extent determined by the research 

problem. Different artificial neural network models are presented in Sections 

4.4 and 4.5. The architecture of the network, discussed in Section 4.2, refers to 

its associated artificial neuron connection set while the initial conditions are 

invariably determined by the researcher in a heuristic manner. 
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Training 

During the training phase the known input-target pattern pairs, also called 

examples, are presented to the network and its weights are adjusted to produce 

the required outputs. One full pass through the training set is termed an epoch. 

Typically, training continues until a preset condition is met. This may 

be the minimization of a predefined error function such as the residual error 

between the actual and the target outputs (achieved by minimizing the total 

sum of the squared differences between the target and the computed output 

nodes over all training patterns) or until a set number of epochs has been 

reached. 

A host of different training or learning algorithms have been developed 

for different classes of problems. The most commonly used algorithms are 

discussed in more detail in Section 4.4. 

Training an artificial neural network is, in most cases, an exercise in nu­

merical optimization of a usually nonlinear function. The basic problem of 

optimization is to arrive at the best decision for a given set of circumstances, 

usually by minimizing certain cost functions defined by the user. 

A huge body of literature exists on the subject in fields such as numerical 

analysis, operations research and statistical computing, e.g. [Bertsekas, 1995a], 

[Bertsekas, 1995b] and [Gill et al., 1981]. No single best method for nonlinear 

optimization exists. For functions with continuous second derivatives, which 

would include feedforward nets (cf. Section 4.2.2.3.1) with the most popu­

lar differentiable activation functions ( cf. Section 4.3) and error functions, 

it has been found that the various conjugate-gradient algorithms, including 

backpropagation ( cf. Section 4.5) which is the most commonly used learning 

algorithm for feedforward artificial neural networks, are efficient in locating lo­

cal optima. For global optimization, a number of approaches can be followed. 

Often simply running any of the local optimization methods from numerous 
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random starting points yield satisfactory results. Another alternative is to in­

crease the number of hidden nodes in a feedforward multilayer artificial neural 

network (cf. Section 4.5). Caution should be exercised though, as too many 

hidden nodes for the problem may result in the system becoming too specific 

or overtrained ( cf. Section 4.1.1.1). More complicated methods specifically de­

signed for global optimization include simulated annealing, mean field tunnel­

ing ([Anderson, 1995], [Haykin, 1999]), genetic algorithms, particle swarm op­

timization and LeapFrog (e.g. [Ismail & Engelbrecht, 2000], [Snyman, 1983], 

[Van den Bergh & Engelbrecht, 2000]). 

Testing and implementation 

Testing the model includes a recognition phase when the weights are fixed, 

patterns are again presented to the network and it recalls the outputs. In the 

recall mode, i.e. the proper processing phase of an artificial neural network, 

the information is retrieved from the data. 

The basic forms of neural information processing can be summarized as 

autoassociation, heteroassociation and classification [Zurada, 1992]. In the 

process of autoassociation, the artificial neural network is presented with a 

pattern similar (but possibly degraded) to a member of a set of stored patterns 

that the network has been trained on with the aim to associate the input with 

the closest stored pattern. When associations between pairs of patterns are 

stored in a net for recall, the association process is known as heteroassociation. 

Classification takes place when the set of input patterns are divided into a 

number of classes or categories. The network classifier is supposed to recall the 

information regarding class membership of the input pattern when presented 

with an input pattern. 

The ability of an artificial neural network to correctly classify input data 

patterns that it has not been trained with (i.e. respond to patterns which are 
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similar, but not identical to training data) is termed generalization. Invariably 

the ultimate goal of the researcher is to be able to present novel patterns to 

the network for prediction or classification, in which case good generalization 

is important. 

Various techniques have been designed to ensure that the neural system 

can be relied on to process real data. If the results indicate that the system 

performance is unacceptable, the developer must decide on one of the various 

options available: change the artificial neural network topology, use a different 

neural model, return to the data preprocessing stage and re-evaluate tech­

niques used to manipulate the data, or even collect additional data fields that 

may provide more information on the particular problem. 

It must be borne in mind that enough predictive information is needed to 

yield acceptable results. If not, it may be possible to partition the problem 

into smaller subproblems to try and achieve acceptable results. 

4.1 Data 

Data form the most important part in the development of an artificial neu­

ral network, therefore a thorough understanding of the data is essential. The 

collection, auditing and preprocessing of the data is a vital aspect in the de­

velopment of any neural system and is analogous to that of any statistical 

project. An adequate volume of relevant, high quality data containing infor­

mation about the behaviour that one is trying to model is essential during the 

artificial neural network's training phase. As in Statistics, it is important that 

the sample is representative of the problem in order for the network to be re­

liable. The old adage of "Garbage in, garbage out" is particularly appropriate 

for artificial neural networks! 
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The sampling units or observations are termed examples, patterns or sam­

ples in artificial neural network terminology. What is commonly known in 

Statistics as independent variables, explanatory variables or predictors in a 

regression-type setup, is called input variables or features in artificial neural 

network jargon, while the dependent variable is known as the target variable 

(as opposed to the output variable which is computed by the artificial neural 

network model, analogous to the predicted values in statistical modelling). 

4.1.1 Data collection and auditing 

Not only should records in the database accurately represent the information 

that is needed to build the artificial neural network, there should also be a 

sufficient amount of information available for the network to learn the input 

to output mapping in order to train and test an artificial neural network. 

The amount of data required for an artificial neural network is one of 

the most important issues to be addressed during the data collection phase, 

and is related both to the topology of the neural model and the complex­

ity of the problem to be modelled. The VC-dimension, one of the most im­

portant results in statistical learning theory as specified by Vladimir Vapnik 

and A. J. Chervonenkis, helps to quantify the difficulty when learning from 

examples. It relates training set size, architecture and generalization per­

formance ([Cherkassky & Wechsler, 1994], [Vapnik, 1995], [Cherkassky, 1996], 

[Vidyasagar, 1997]). Larger training samples will allow the network to con­

tinue training longer or the use of more parameters, i.e. hidden nodes, in 

the model ( cf. Section 4.2.2). This may improve the accuracy with which 

the artificial neural network can model complex functions [Smith, 1993]. It 

should be noted, though, that a critical training set size exists which, if ex­

ceeded, may have a negative effect on neural network performance. Research 

conducted in this area include active learning, an approach where the sample 
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size is selected during training, e.g. [Engelbrecht, 1999]. In the SPSS Neural 

Connection package it is proposed that the number of training data records 

(cf. Section 4.1.4) should be at least ten times the total number of free pa­

rameters or weights within the neural model [SPSS, 1995]. Galkin advocates 

at least 30 times as many training cases as weights in the network to avoid 

undertraining [Galkin, 2001]. These heuristics are guidelines only and should 

not be treated as rules. 

4.1.1.1 Underfitting and overtraining of an artificial neural network 

One of the critical issues in developing an artificial neural network is its ability 

to generalize, i.e. the network's ability to classify novel patterns that are not 

in the training set. This is the artificial neural network analogy to statistical 

inference. 

Artificial neural networks, like other flexible nonlinear estimation methods 

such as kernel regression and smoothing splines, can suffer from either under­

fitting or overfitting. A network model that is not sufficiently complex can fail 

to detect fully the signal in a complicated data set, leading to underfitting. On 

the other hand, a network that is too complex may fit the noise, not just the 

signal, leading to overfitting. Overfitting, or overtraining, occurs either when 

too few records are used for training, or when the network is left to train for too 

long, resulting in the network learning the training examples with zero error. 

A too large architecture, i.e. with too many parameters (hidden nodes) may 

also lead to overfitting. What is likely to happen in these cases is that each 

pattern is simply stored exactly without the network learning the correlations 

within the examples. The network will therefore have little ability to general­

ize and is unlikely to give correct decisions or predictions when presented with 

the novel values of the test set (cf. Section 4.1.4.3). 
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Overfitting is especially dangerous because it can easily lead to predictions 

that are far beyond the range of the training data with many of the common 

types of artificial neural networks. But underfitting can also produce wild 

predictions in multilayer feedforward networks ( cf. Section 4.5), even with 

noise-free data. 

The best way to avoid overfitting, given ample training data, is to optimize 

the neural network architecture, i.e. by pruning irrelevant or redundant input 

units, hidden units and weights. Arbitrarily reducing the number of weights 

to compensate for lack of training data is risky, though, as it may in turn lead 

to underfitting. 

Given a fixed amount of training data, there are a number of effective 

approaches to avoiding underfitting and overfitting, and hence getting good 

generalization. These include model selection, weight decay, early stopping and 

Bayesian estimation ([Fine, 1999], [Geman & Doursat, 1992], [Smith, 1993]), 

not all of which will be addressed in this thesis. 

A summary of the various issues affecting generalization in artificial neural 

networks is given in Geman et al. [Geman & Doursat, 1992]. Chapter 5, 

dealing with one aspect of model selection, presents an algorithm for pruning 

excess hidden nodes. Sensitivity analysis, which deals specifically with pruning 

redundant input nodes, is also an active field of research ([Engelbrecht, 1999], 

[Engelbrecht & Fletcher, 1999]). 

4.1.1.2 Data auditing 

The data auditing should take place before any processing starts. Any prob­

lems that exist in the database (e.g. missing values, default values and unre­

liable and inconsistent data fields) will manifest themselves at the validation 

stage (see Section 4.1.4) if not dealt with now. One common and simple proce­

dure is to generate histograms for the data (or subsets thereof) and scrutinize 
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them for completeness. It is usual to consider a data field as useful if at least 

70% of the records contain values. Various techniques can be used to estimate 

these missing values, depending on the nature of the data and the preference 

of the user. For example, if the variable is an integer or a real number, the 

missing value can be replaced by the mean value for the field; if the data field is 

categorical, the missing value can be replaced with the mode for that category; 

simply flagging the missing values is another option. 

4.1.2 Data preprocessing 

One common misconception when developing artificial neural networks is that 

the raw data can be presented to the system, which will sort the useful input 

fields from the irrelevant ones to achieve a high performance network automat­

ically. This is unfortunately not the case, and, as in Statistics, it is necessary 

to preprocess the data before presenting it to the system in order to develop 

a robust neural model. 

The preprocessing involves a wide range of techniques for manipulating the 

data in order to extract the data fields that may be used by the artificial neural 

network. If the performance of the artificial neural network falls outside the 

required, predefined limits, the data preprocessing operations may have to be 

revisited. 

The preprocessing techniques common to artificial neural network devel­

opment are consistent with those used to develop classical statistical models 

([Smith, 1993], [SPSS, 1995]), e.g. 

• crosstabulations for categorical data or simple correlation analyses and 

scatter plots for continuous variables to identify input variables which 

do not contain any discriminatory or predictive information, as well as 

possible multicollinear variables (i.e. highly correlated input variables, 

containing similar information which may make no contribution to the 
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neural model; however, it should be borne in mind that artificial neural 

networks are designed specifically to take advantage of complex rela­

tionships between variables, therefore it may be necessary to train two 

networks: one with and one without the possibly multicollinear variable 

to assess an additional variable's contribution to a network model); 

• histogram analyses to identify skewed variables - which should be trans­

formed to attain a more symmetric distribution over the entire range of 

the input field - and outliers which should be dealt with to avoid ham­

pering the performance of the neural model. (The input values are often 

normalized and outliers can distort this normalization, outliers should 

therefore be scrutinized for correctness; it appears to be common among 

users of artificial neural networks to "clip" variables with long tails by 

setting some limit to the range, however this should be done cautiously.) 

4.1.3 Data encoding 

The data (input and target patterns) in artificial neural network applications 

are usually of two broad types: quantitative variables or categorical variables. 

It must be ensured that the selected variables are encoded in a format com­

patible with the artificial neural network. This includes encoding categorical 

variables and normalizing continuous variables. In preparing the data for train­

ing the network, it must be decided how to represent the target outputs. It 

is in general easier for a network to learn a set of distinct responses than a 

continuous-valued response. However, artificially categorizing continuous tar­

get data must be done with caution as it may be more difficult for the network 

to learn examples that occur on, or near, the boundaries of the classes. 
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4.1.3.1 Input variables 

4.1.3.1.1 Categorical variables All variables that are used to indicate 

which one of a (relatively) small list of possible distinct categories or attributes 

is observed for a sampling unit are classified as categorical variables, also 

sometimes called classification or qualitative variables. It is important that 

the categories of such a variable are distinct (i.e. clear-cut and well-defined), 

mutually exclusive (i.e. each sampling unit belongs to only one category) and 

exhaustive (i.e. there must be an appropriate category for each sampling unit). 

Nominal variables Categorical variables where there is no particular 

ordering amongst the categories are known as nominal variables. In artificial 

neural network literature, nominal categorical variables are often referred to 

as class variables. 

Binary variables, taking on the values 0 or 1, are common and are usually 

represented by only one node which indicates class membership. However, 

in many cases it may be advantageous to modify the network to accommo­

date inputs in bipolar form (-1 and 1) instead (cf. Section 4.3.3), as bipolar 

representation allows missing data to be represented by zero. 

For multichotomous variables, simply assigning a numeric value to each 

category of a qualitative variable is not an effective coding strategy as it 

leads to unjustified linear relationships. One common technique to circum­

vent this problem is to use a form of indicator variable coding (also referred 

to as 1-of-N code in artificial neural network literature) where a string of 

N separate fields (i.e. a set of binary input nodes) each takes on the value 1 

or 0 depending on the status of the variable, as displayed in Table 4.1 for a 

variable with four categories. 
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Node 

1 2 3 4 

Category 1 1 0 0 0 

Category 2 0 1 0 0 

Category 3 0 0 1 0 

Category 4 0 0 0 1 

Table 4.1: 1-of-N coding 

This encoding scheme differs from ordinary indicator variable coding for 

multiple categories where the required number of nodes is one less than the 

number of categories as either the first or the last category is the reference 

category. 

The disadvantage of the 1-of-N method is that the number of inputs to 

the artificial neural network, and accordingly the number of weight parameters 

( cf. Section 4.4), is increased by the number of categories of the variable, hence 

increasing the time required to train and run the network. More importantly, 

more parameters in the network also require a larger sample size to achieve 

a given level of accuracy (cfSection 4.5.12). The problem can be partially 

overcome by merging categories that are logically similar, in relation to the 

problem at hand, within a variable. 

Another problem associated with this method of data representation is that 

the network cannot generalize between classes. This is because the weights 

placed by the network on the connections between the nodes in the hidden 

layer and a particular input node representing one category have no effect on 

the network's output when that input is not turned on, i.e. each category is 

treated by the network as an independent variable [Smith, 1993]. 
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Ordinal variables Ordinality refers to categorical variables where there 

is some natural ordering amongst the classes. One way to represent ordi­

nal variables in artificial neural networks is by so-called thermometer coding 

[Smith, 1993]. A thermometer code is implemented by specifying a set of bi­

nary input nodes, each of which is either "on" or "off". The number of nodes 

is one less than the number of categories, e.g. for a four category ordinal 

variable, three nodes are needed: the first category is coded as all three nodes 

"on", the second category as the first two nodes "on", the third category as 

only the first node "on" and the last category as all three nodes "off". This is 

schematically represented in Table 4.2. 

Node 

1 2 3 

Category 1 1 1 1 

Category 2 1 1 0 

Category 3 1 0 0 

Category 4 0 0 0 

Table 4.2: Thermometer coding 

Thermometer coding facilitates appropriate discrimination (each category 

is represented uniquely) and generalization (weights increase or decrease in­

crementally from one category to another) for an ordinal variable. 

4.1.3.1.2 Continuous variables A variable is considered as continuous­

valued when it takes on numerical values which can be any number within a 

range. Often variables with large variances contain more discriminatory in­

formation, but this is not a universal rule as it is dependent on the nature of 
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the specific data fields. Applying variables with different means and variances 

to a neural model will result in the fields with a wide range of values having 

larger weight values associated with them, and consequently having a greater 

effect on the response of the model. It is therefore not uncommon to normalize 

all inputs to ensure that they are used equally by the neural model. The rec­

ommended standard statistical method of subtracting the mean and dividing 

by the standard deviation of the variable is known as zero mean unit standard 

deviation normalization in artificial neural network jargon. Continuous-valued 

variables are usually represented by a single node in an artificial neural net­

work. 

4.1.3.2 Target variables 

A single network may be designed to include more than one target variable. 

These variables may be either categorical or quantitative. 

4.1.3.2.1 Categorical variables Very often the target variable of an ar­

tificial neural network is binary. This type of variable can be represented by 

two output nodes, each representing one of the two possible classes. It is, how­

ever, also possible to treat a binary target variable as quantitative, in which 

case there will be only one output node with a high value representing one 

outcome or class and a low value the other. Both approaches are workable, 

but using the latter has practical advantages as the computer algorithm can 

be designed to run faster; a single output node is also easier to interpret and 

use [Smith, 1993]. 

As discussed above (Section 4.1.3.1.1), bipolar representation may be more 

advantageous when encoding binary data as it allows missing data to be rep­

resented by zero. For target variables, this allows the network to distinguish 

between missing data and mistakes. Furthermore, if the aim is to generalize, 
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binary representation does not work as well as bipolar representation since the 

binary net never learns when the target is zero [Fausett, 1994]. 

When the target variable has more than two classes, the 1-of-N binary 

representation explained in Section 4.1.3.1.1, where each of the categories is 

represented by one output node, is used. The specific values chosen to repre­

sent "on" or "off" are not crucial to the network's performance, and often the 

numerical values 1 and 0 are assigned to these two categories respectively. As 

will become clear in Section 4.3.3, however, 1 or 0 are not values the output 

nodes can actually produce when an artificial neural network is trained. The 

output nodes can only approach these bounds. The more common practice is 

therefore to center the target values somewhat, with "on" for example repre­

sented by 0,9 and "off" by 0,1 [Smith, 1993]. These bounds correspond to the 

relatively linear portion of the sigmoid function, as displayed in Figure 4-1, 

which is commonly used as an activation function for the output nodes. 

-5 5 

Figure 4-1: Near-linear range of the logistic sigmoid function 

Even though the target outputs are binary, the actual outputs produced 

by the network are continuous-valued, taking on values between the bounds 

of the sigmoid function (when the sigmoid function is used as the activation 

function). The distribution of the actual output depends on the data and on 
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the degree to which categories overlap. Invariably the network output does not 

unambiguously indicate a single class for every pattern. It is common practice 

to use one of the following rules to decide which class a pattern belongs to, 

although there are no sound theoretical foundations for these decision rules 

[Smith, 1993]: 

• Assign the pattern to the class whose output node has the highest net­

work output value. 

• Assign the pattern to the class whose output node has the highest net­

work output value, provided that the value exceeds some predetermined 

minimum; otherwise remain undecided. 

• Assign the pattern to the class whose output node has the highest net­

work output value, provided that the value exceeds the next higher value 

by some predetermined minimum amount; otherwise remain undecided. 

4.1.3.2.2 Continuous variables As is the case for input variables, only 

one node is needed to represent a continuous-valued target variable. It is 

necessary to scale the values of the variable to a range that is within the 

bounds of the output node's activation function (cf. Section 4.3). Again, it 

is common practice to center the target values to facilitate learning by the 

network. 

Scaling the values of the target variable is simple: 

( Yj - Vmin ( )) Tj = Tmin + V. _ V.. Tmax- Tmin 
max mm 

where Tj denotes the j-th scaled target value, Tmax (e.g. 0,9) and Tmin (e.g. 

0,1) the scaled maximum and minimum target values respectively, "Vi the raw 

value of the variable and Vmax and Vmin the maximum and minimum raw values 

of the variable [Smith, 1993]. 
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Interpreting the output produced by the artificial neural network model 

for a scaled continuous variable requires reversing this scaling: 

( Oi- Tmin ( )) Rj = Vmin + T, _ T, . Vmax - Vmin 
max mm 

where Ri is the rescaled network output and Oj the actual output of the 

network. 

4.1.4 Data partitioning 

Once a satisfactory data set that has been audited and preprocessed has been 

obtained, it must be partitioned into training, validation and test files. 

4.1.4.1 Training files 

Training files contain the data that are used to train the network. Since 

artificial neural networks are learning to associate the input from the training 

file with their corresponding targets, it is necessary to monitor and evaluate 

the artificial neural network's performance during training. This is usually 

measured by the error, i.e. the difference between the target values and the 

output values computed by the artificial neural network. 

There are two sources of error. The first source is noise, a rather broad 

term which includes inaccuracies in the data introduced by such factors as 

inaccurate measuring instruments or the fact that the input variables do not 

contain all the information needed to determine the target variables. The 

second source of error is due to the mapping function's inability to fit the 

target function adequately. 

If a network is left to train for too long, or if the architecture is too large, 

the model will have learned the characteristics of the training data almost 

perfectly. It is therefore inevitable that the neural model will learn the noise 
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characteristics of the training data given that the training data contain some 

noise. Noise is per definition unpredictable, and the network's performance 

on unseen data will be degraded by learning it. This phenomenon is termed 

overtraining ( cf. Section 4.1.1.1), and is also common to traditional statistical 

models. With overtraining a network loses its ability to generalize. 

4.1.4.2 Validation files 

The problem of overtraining can be avoided by using a validati<?n data set to 

monitor training, analogous to cross-validation in Statistics. The validation 

data consist of a small portion of the training data that are not used to build 

the neural model, but to monitor the performance of the neural system dur­

ing the training process by measuring the error (between the network output 

and the target value) on the validation data at frequent intervals during the 

training cycle, and comparing it to the training error. This is best achieved 

by plotting the validation and training errors against the number of epochs. 

The training and validation errors drop at approximately the same rate dur­

ing the early stages of learning. When the system begins to learn the noise 

characteristics of the training data, however, the validation error gradient will 

decrease and the error will eventually increase, indicating that training should 

stop [Hecht-Nielsen, 1990]. 

4.1.4.3 Jrest files 

Once the artificial neural network model has been created, its suitability to 

the application must be investigated. This involves testing the performance 

of the neural system on unseen data. The test file contains data records 

that are kept aside and is therefore unknown to the trained network. During 

the so-called recognition phase the test data records are used to measure or 

confirm the expected performance of a trained application where the weights 

58 



are fixed. The test set is also sometimes referred to as the run set in artificial 

neural network applications. This is usually the case when there are no target 

outputs to predict. 

4.1.4.4 Subset selection 

The way in which the subsets are partitioned and selected is strongly influ­

enced by the type of modelling task. Random selection of the training, vali­

dation and test records is recommended if the problem is a static prediction 

or classification task, as ideally, the training, validation and test files should 

all contain data that represent the entire range of the problem. Randomiza­

tion will negate the effect of possible hidden correlations between records in 

the data, thus avoiding introducing dependencies in the model and obtaining 

biased estimates of the network's performance. This is especially important 

if the data have been collected in such a way that there is an ordering in the 

data (e.g. all the respondents in one area after another in a marketing prob­

lem). Randomizing time series data, however, will destroy the time history 

relationship inherent in the data. In this case special caution must be taken to 

preserve the time series. One way to handle this problem is to divide the time 

series into a number of equal blocks from which the training and validation 

and the test sets are then randomly selected. Usually the validation sets are 

taken from the end of each block. 

The available amount of data determine how much data should be used 

for training and how much should be reserved for testing. One should aim 

to achieve a balance between the training (and validation) set and the test 

set, bearing in mind that a too small training set may lead to the problem 

of overfitting. On the other hand, even though using more data for training 

should result in a better artificial neural network model, there should still be 

sufficient data left to test whether this is indeed the case. 
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It is common practice to use a single subsample for both validation and 

testing. This method is fairly safe provided that the trained network is not 

noticeably affected by different ways of dividing the sample into training and 

validation subsamples. Smith proposes that two-thirds of the sample is used 

for training and one third for validation [Smith, 1993]. When it is necessary to 

construct separate validation and test files, the norm is 40% of the examples 

for training and 30% each for validation and testing. 

4.2 Architecture of an artificial neural network 

An artificial neural network is usually visualized as sets of neurons arranged 

in layers. The architecture of the network refers to the organization of the 

neurons in different layers with their corresponding pattern of connections. 

Neurons in the same layer behave similarly as they typically have the same 

activation function ( cf. Section 4.3) and the same pattern of connections to 

other neurons in that layer (they may be either fully interconnected or not 

connected at all). Neurons from one layer are connected to neurons in the 

next layer. In general, artificial neural networks are classified into single-layer 

or multilayer networks. It is customary not to count the input layer when 

determining the number of layers since no computations are performed in this 

layer. 

A number of excellent textbooks dealing extensively with artificial neural 

network architectures and algorithms have appeared in the last few years, 

amongst them [Zurada, 1992], [Smith, 1993], [Fausett, 1994], [Anderson, 1995] 

and [Haykin, 1999]. 

Since no common standards have yet been adopted in the technical litera­

ture, the notation will be introduced throughout this chapter as it is needed. 
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4.2.1 Single-layer artificial neural networks 

A single-layer artificial neural network has only one layer of weights connecting 

the input and the output node layers. The following diagram illustrates a 

typical single-layer network with I input nodes (Xi), J output nodes (Oi) 

and weights Wji connecting the j-th neuron (output node) with the i-th input 

node. It is common in the technical literature on artificial neural networks to 

use the double subscript for weights such that the first and second subscript 

denote the index of the destination and source nodes respectively. (The input 

and output vectors are invariably called input and output patterns in artificial 

neural network literature.) 

Input units Output units 

Figure 4-2: Single layer artificial neural network 

Pattern classification is a typical example of where a single-layer artificial 

neural network is appropriate, i.e. when the classification of vectors in a single 

category is considered. 
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4.2.2 Multilayer artificial neural networks 

Multilayer artificial neural networks have one or more layers of nodes (the so­

called hidden nodes) between the input nodes and the output nodes. There 

is typically a layer of weights between each adjacent layer of nodes (input, 

hidden or output), resulting in at least two weight layers. Multilayer artificial 

neural networks are more powerful than single-layer networks as at least one 

hidden layer is required to perform nonlinear mappings. 

4.2.2.1 Number of hidden layers 

Although a many-layered topology is also valid, it has been formally shown 

that there is in practice seldom any need to go beyond a single hidden layer 

to obtain an arbitrarily accurate approximation to an arbitrary mapping, 

provided sufficiently many hidden nodes are available ([Cybenko, 1988], 

[Hornik & White, 1989], [Stinchcombe & White, 1989]). The functions com­

puted by the artificial neural network that can approximate any function to any 

degree of accuracy are called universal approximators. Mathematical proofs 

of multilayer artificial neural networks as universal approximators have been 

provided by, amongst others, Cybenko and Hornik, Stinchcombe and White 

([Cybenko, 1989], [Hornik & White, 1989], [Stinchcombe & White, 1989]). 

4.2.2.2 Number of hidden nodes 

The number of nodes in the system, and consequently the weights, should be 

directly related to the complexity of the system being modelled: the greater 

the number of hidden nodes available in the model, the more complex the 

function that the system can model. As discussed in Section 4.1.1.1 however, 

too many hidden nodes for the problem may result in the system becoming 

too specific or overtrained, hence a general solution will not be found. Each 

problem has its own optimum number of hidden nodes, and a degree of ex-
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perimentation and experience is necessary when developing an artificial neural 

network. Numerous pruning algorithms have been developed to automatically 

remove irrelevant nodes, e.g. Optimal Brain Damage [LeCun & Solla, 1990] 

and the algorithm presented in Chapter 5. 

4.2.2.3 Architecture 

The architecture of multilayer artificial neural networks may be feedforward or 

recurrent (iterative). Figure 4-3 is an example of a multilayer artificial neural 

network with a feedforward configuration. 

Input units Hidden layer Output units 

Figure 4-3: Multilayer artificial neural network 

4.2.2.3.1 Feedforward artificial neural networks Feedforward artifi­

cial neural networks have no connections back to previous layers. Information 

flows from the I neurons in the input layer, possibly via the H nodes in the 

intermediate hidden layer to the J output nodes as illustrated in Figure 4-3. 

In this diagram weight vhi connects the h-th neuron in the hidden layer with 
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the i-th input and weight Wjh connects the j-th neuron in the output layer 

with the h-th neuron in the hidden layer. 

The convention for double subscripts differs amongst authors. Here the 

convention will be as explained in Section 4.2.1, namely the first and second 

subscript denote the index of the destination and source nodes respectively. 

Feedforward networks have no memory and recall is instantaneous. The net­

work responds only to its present input. 

4.2.2.3.2 Recurrent artificial neural networks Recurrent networks have 

feedback connections between different layers where connections among the 

nodes may even form closed loops, i.e. some or all the neurons are connected 

to themselves, allowing the output signals of neurons to be fed again to the 

inputs as illustrated in Figure 4-4. 

Input units Hidden layer Output units 

Figure 4-4: Recurrent artificial neural network 

These networks can be considered as dynamical systems as they interact 

with their input through the output. A certain time interval is needed for their 
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recall to be completed. Recurrent networks are mainly used when there are 

temporal patterns in the data which is then learned by the neural network. 

The configuration of recurrent artificial neural networks is especially suited 

to optimization problems ([Fausett, 1994], [Anderson, 1995]). 

4.3 Activation functions 

One of the functions of an artificial neuron is to sum its weighted input sig­

nals. This summation value is then evaluated using the threshold function, 

also known as the activation function or mapping function, to decide whether 

the node is activated or not. Typically, the same activation function is used 

for all neurons in the same layer. To maintain the advantages of multilayer 

artificial neural networks, as opposed to single-layer networks, nonlinear ac­

tivation functions are commonly used. By using nonlinear and higher-order 

activation functions we are able to achieve nonlinear decision boundaries and 

more closely approximate any given output space region more tightly, often 

with fewer neurons, resulting in efficiency and invariably faster computations. 

The activation functions which are generally used are described next: 

4.3.1 The identity function 

The identity function f(x) = x for all x, displayed in Figure 4-5, is generally 

used for the input nodes where no computation needs to be performed. 

4.3.2 The binary step function 

The binary step function (cf. Figure 4-6), or Heaviside function, is often used 

in single-layer networks to convert the total input to an output value that is 

a binary ( 1 or 0) or a bipolar ( 1 or -1) signal; () is a fixed threshold value: 
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f(x) = { ~ 

f(x) 

if X ?_ () 

if x<B 

X 

Figure 4-5: Identity function 

f(x) 

e x 

Figure 4-6: Binary step function 

66 



4.3.3 The sigmoid function 

The continuous S-shaped curve obtained by the sigmoid function is particu­

larly advantageous in artificial neural networks trained by backpropagation ( cf. 

Section 4.5). This is because the simple relationship between the value of the 

function at a point and the value of the derivative at that point reduces the 

computations during training substantially [Fausett, 1994]. The hyperbolic 

tangent, binary sigmoid and bipolar sigmoid functions are most commonly 

used. 

4.3.3.1 The binary sigmoid function 

The range of the binary sigmoid or the logistic sigmoid function is (0;1). It 

is therefore an appropriate activation function for artificial neural networks 

where the desired output values are either binary or fall in the interval [0;1], 

although it is recommended to convert to bipolar form for binary data and use 

the bipolar sigmoid or hyperbolic tangent functions [Fausett, 1994]. 

The logistic sigmoid function is defined as 

1 
f(x) = 1 + e-ax 

where a represents the steepness, or slope, parameter. 

Its first order derivative is 

f'(x) -

af(x)[1- f(x)]. 
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Figure 4-7 illustrates the logistic sigmoid for four different values of the 

steepness parameter a. It can be seen that the function becomes steeper as a 

increases from 0,5 to 1, to 2 and then to 4. 

Figure 4-7: Logistic sigmoid function for different values of a 

4.3.3.2 The bipolar sigmoid function 

The binary sigmoid function can be scaled to have any range of values that is 

appropriate for a given problem [Fausett, 1994]. For a given interval [a; b], the 

sigmoid function 

g(x) b-a 
---+a 1 + e-ux 

(b- a)f(x) +a 

will have a range of (a; b), where f(x) refers to the logistic sigmoid function. 

The most common range is (-1;1), in which case the function is known as 

the bipolar sigmoid function. 
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It is defined as 

g(x) - 2 f(x)- 1 

2 
----1 
1 + e-ux 

1- e -ux 

1 + e-""' 

and its first order derivative is 

g'(x) -

(J 

- 2 [1 + g(x)][1- g(x)]. 

This function is displayed in Figure 4-8, again for steepness parameter values 

a increasing from 0,5 to 1, to 2 and then to 4, illustrating that the function's 

slope increases accordingly. 

Figure 4-8: Bipolar sigmoid function for different values of a 
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4.3.3.3 The hyperbolic tangent function 

The bipolar sigmoid is closely related to the hyperbolic tangent function, which 

is also commonly used as the activation function when the target values' range 

is between -1 and +1. The hyperbolic tangent is 

h(x) = 

with first order derivative 

1- e-2x 

1 + e-2x 

h'(x) = [1 + h(x)][1- h(x)]. 

The hyperbolic function is displayed in Figure??. 

-4 -2 2 4 
X 

-1 

Figure 4-9: Hyperbolic tangent function 
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4.4 Training algorithms 

Artificial neural networks differ from each other in their learning modes. Learn­

ing corresponds to parameter changes, i.e. the adjustment of the weights con­

necting the nodes. The training or learning algorithm specifies the setting and 

adjusting of weights on the connections in the artificial neural network in such 

a way that the network acquires the desired behaviour. This is done once the 

artificial neural network architecture has been decided upon. 

Three broad classes of artificial neural network models can be identified, 

based on the type of training: self-supervised, supervised and unsupervised 

artificial neural networks. The kind of problem that needs to be solved will 

determine the appropriate type of training and therefore the appropriate arti­

ficial neural network model to be implemented. 

A number of different artificial neural network learning rules which are 

commonly used are briefly outlined in this Section. 

4.4.1 Self-supervised training 

No learning takes place in artificial neural networks with fixed weights. These 

nets are known as self-supervised. This type of training method is suitable to 

constrained optimization problems (i.e. where not all constraints can be satis­

fied simultaneously). In the design of this type of artificial neural network the 

weights are set to represent the constraints and the quantity to be maximized 

or minimized. Self-supervised neural nets are also referred to as fixed-weight 

nets or batch-learning ([Zurada, 1992], [Fausett, 1994]). 

An example of a fixed-weight algorithm is the artificial neuron specified by 

McCulloch and Pitts ([McCulloch & Pitts, 1943], discussed in Chapter 3). 
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4.4.1.1 Hebb learning rule 

The earliest and simplest rule for an artificial neural network was formulated 

by D. 0. Hebb ([Hebb, 1949], cf. Chapter 3). The Hebb rule is an extension of 

Hebb's original proposal that learning occurs by increasing the weights between 

two interconnected neurons that are activated at the same time, strengthening 

the output in turn for each positively correlated input that it is presented with. 

The extended Hebb rule, which also adapts the weights if both neurons do not 

fire at the same time, facilitates a stronger form of learning as it allows the 

net to decrease weights [McClelland & Rumelhart, 1988]. A Hebb net is a 

single-layer, feedforward, unsupervised artificial neural network trained with 

the (extended) Hebb rule. 

Weights are initialized to small random values around 0, and weight up­

dates, i.e. learning, are performed using the rule 

where wi is the weight associated with input Xi, i = 1, 2, · · · , I and t is the 

corresponding target (observed) output. 

The network was developed for binary data representation (0 and 1) but can 

in most cases be modified to accommodate inputs and outputs in bipolar form 

(-1 and 1). Bipolar representation allows missing data to be represented by 

zero, thus allowing the net to distinguish between missing data and mistakes. 

If the aim is to generalize, binary representation does not work as well as 

bipolar representation since the binary net never learns when the target is 

zero. 
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4.4.2 Supervised training algorithms 

Most commonly, artificial neural networks use supervised training which re­

quire both inputs (a set of training patterns or vectors) and their associated 

outputs (target vectors). The actual output of the network may or may not 

match the target output, depending on the weights at that particular moment. 

The training algorithm modifies the network weights so that the model learns 

the mapping from the inputs to the desired target. 

The problems suitable to supervised learning are: 

• Classification problems where the neural model assigns examples into 

one of I groups. 

• Pattern recognition or association. 

• Time series forecasting where time ordered information is used for pre­

diction. 

• Prediction problems where the neural model assigns a probability of 

occurrence to unseen data. 

4.4.2.1 Perceptron 

The perceptron learning rule which was formulated by Frank Rosenblatt is a 

more powerful learning rule than the Hebb rule to classify inputs as belonging, 

or not belonging, to a particular class ([Rosenblatt, 1958], [Rosenblatt, 1962], 

cf. Chapter 3). In this single layer neural net the response of the output node 

for each training input is calculated. It is then determined whether an error 

occurred for this pattern by comparing the calculated output with the target 

value, thus using supervised learning to adjust the artificial neural network 

weights. 

73 



The perceptron learning rule convergence theorem states that, under suit­

able conditions, its iterative learning procedure will converge to the correct 

weights in a finite number of steps. The correct weights are those that will 

allow the network to give the correct output for each of the input training 

patterns, i.e. the net will learn the classification. One of the conditions is 

that weights exist that will allow the net to respond correctly to all training 

patterns. 

Originally, the perceptron used binary inputs with a bipolar target, al­

though it is shown in Fausett [Fausett, 1994] that the algorithm is also suit­

able for bipolar input vectors, as well as for the case where the input vectors 

belong to one (or more) of several output classes. The output is o = f(oin), 

where Oin = b+ Ei xiwi with x the !-tuple input vector with its corresponding 

!-tuple weight vector w, and ban adjustable bias. Not including a bias in the 

model will result in the network finding a decision boundary for classification 

that is forced to go through the origin. In many cases this may change a 

problem that could be solved (i.e. one for which weights for a separating line 

or plane exist) into a problem that could not be solved [Fausett, 1994]. 

The activation function of the perceptron is the binary step function with 

an arbitrary, fixed, non-negative threshold B: 

1 if Oin > () 

0 if -B :S Oin :S () 

-1 if Oin < - () 

For this activation function there are actually two thresholds, () and -B, 

which define two decision boundaries and three output spaces: 0, 1 and -1. 

The region of positive response from that of negative response is separated by 

an "undecided" fixed width band, determined by the value of(), corresponding 

to 0. 
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The weights (and bias) are adjusted only when an error occurs, that is, 

when the network output o differs from the actual target output t. As more 

training patterns produce the correct response, less learning occurs, since by 

definition weights are adjusted only when an error occurs. Training stops 

when there are no more weight changes. Weights are adjusted according to 

the formula 

where a is the learning rate1 a, 0 < a ::; 1. The algorithm is not particularly 

sensitive to either the initial values of the weights or the value of the learning 

rate. The initial weights are often set to 0 and a to 1. 

4.4.2.2 ADALINE 

The ADALINE (ADAptive Linear NEuron), developed by Bernard Widrow 

and Marcian Hoff, is very similar to a perceptron ([Widrow & Hoff, 1960], cf. 

Chapter 3). It is a single neuron that typically uses bipolar activations for 

its input signals and its target output, although it is not restricted to these 

values. 

As for the perceptron, the activation of the node is its net input, i.e. the 

identity function Oin = b + L:i xiwi, i = 1, 2, · · · , I. For binary or bipolar 

target values a step function can be used as the activation function for the 

ADALINE's output node 0 = f(oin): 

f(oin) = { 
1 

-1 

if Oin 2:: 0 

if Oin < 0 

1The learning rate is a parameter that controls the amount by which weights are changed 
during training. In some nets the learning rate is a constant; in others it is reduced as 
training progresses to achieve stability [Fausett, 1994]. 
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An ADALINE also uses supervised training to adjust the network's weights. 

The network is trained using the Widrow-Hoff learning rule, also know as 

the least mean squares (LMS) rule as the learning rule minimizes the mean 

squared error between the network output and the target value over all training 

patterns. This is accomplished by reducing the error for each pattern, one at 

a time. 

Like the perceptron, the Widrow-Hoff rule will converge if appropriate 

weights exist. The rule allows the net to continue learning on all training pat­

terns, even after the correct output value is generated. This is in contrast with 

the perceptron where less learning occurs as more training patterns produce 

the correct response. 

The weights (including the bias) are updated with the formulae 

b(new) - b(old) + a(t- a) 

The notation is again as above where x is the !-tuple input vector with 

its corresponding !-tuple weight vector w and ban adjustable bias. The dif­

ferences between the perceptron and an ADALINE are that the threshold 

function is slightly different, and more importantly, that the weight update is 

proportional to the difference between the target output and actual output, 

rather than simply proportional to the target output itself. Thaining will con­

tinue over the given set typically until a specified error tolerance has been met 

or until a preset number of training epochs (full cycles through the training 

set) has been reached. 

Small random values are usually used to initialize the weights as the al­

gorithm is not sensitive to the initial weights. Setting the learning rate a, 
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however, requires some care. If the value chosen is too large, the learning 

process will not converge; with a too small value, learning will be extremely 

slow. A practical range for the learning rate for a single neuron is proposed in 

Fausett as 0, 1 :::; o: :::; 1 [Fausett, 1994]. 

The Widrow-Hoff or least mean squares rule can be extended to allow for 

more than one output, in which case the weights are changed to reduce the 

difference between the net input to the output node, oin_j, and the target 

value tj, where j = 1, 2, · · · , J for the J outputs. This formulation reduces 

the error for each pattern. The I x J weight matrix has elements Wji, sticking 

to the convention that the first and second subscript denote the index of the 

destination and source nodes respectively, i.e. wji denotes the weight on the 

connection between the j-th output node and the i-th input node. 

In this case 

I 

Oin-j = L XiWji 

i=l 

for the J-tuple computed output vector for the !-tuple input vector x. 

The weight updates for the connection between the j-th output neuron and 

the i-th input node 

are usually expressed in terms of the weight change as 

A MAD ALINE (Many ADAptive Linear NEurons) is an extension of the ADA­

LINE algorithm to multiple layers in order to accommodate several output 

nodes. 
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4.4.2.3 Delta rule 

The delta learning rule was introduced by McClelland and Rumelhart 

([McClelland & Rumelhart, 1986], [McClelland & Rumelhart, 1988], cf. Sec­

tion 3) for networks in the supervised training mode. Mappings in which the 

input patterns are linearly independent can be solved using a single-layer net 

with this rule. It is really an extension of the Widrow-Hoff or least mean 

squares rule where the modification allows for a continuous, differentiable and 

monotonically nondecreasing activation function to be applied to the output 

nodes of the network [Zurada, 1992]. Differentiability is needed because the 

derivative of the activation function is used to compute the weight updates 

for this gradient descent method to minimize the total squared error of the 

output computed by the net. 

The learning rule is easily derived from the condition of least squared error 

between the network output Oj = f(oin-j) and the target til j = 1, 2, · · · , J 

where 

I 

Oin-j I.:: XiWji 
i=l 

One can therefore also write Oj = f(w]x), j = 1, 2, · · · , J. 

The least squared error is defined here as 

or 

J 

E = ~ L(ti- f(w~x)) 2 • 
j=l 
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The error gradient vector value is 

J 

"VE =- L(tj- Oj)f'(w~x)x. 
j=l 

For the arbitrary weight Wji the error gradient component is 

for i = 1, 2, · · · , I. 

Noting that the weight Wji only influences the error at output node oh the 

equation reduces to 

for i = 1, 2, · · · , I. 

The mathematical basis for this rule is the optimization technique known 

as gradient descent (or hill-climbing). The gradient of a function (here the 

squared error E) gives the direction in which the function increases more 

rapidly. The minimization of the error therefore requires the weight changes 

to be in the negative gradient direction. Incorporating the learning rate a, 

0 < a ::; 1, the weight changes for the most rapid reduction in the local error 

is obtained as 

or, for the individual weight adjustments, 

for i = 1, 2, · · · ,I. 

As for the ADALINE, the weights are initialized at any value for this 

method of training. 
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4.4.3 Unsupervised training algorithms 

Unsupervised artificial neural networks extract correlations inherent in the 

data to discover patterns or regularities and relationships between the dif­

ferent parts of the input, and therefore do not need targets. The artificial 

neural network model is presented with a sequence of input vectors which 

then modify the weights so that the most similar input vectors are assigned to 

the same output node (referred to as a cluster unit in [Fausett, 1994]). The 

changes in the network parameters in discovering the existence of patterns, reg­

ularities and separating properties is called self-organization ([Fausett, 1994], 

[Haykin, 1999]). Zurada shows that learning is not necessarily possible in an 

unsupervised environment [Zurada, 1992]. 

These models are appropriate when the problem requires data segmen­

tation. Another important function that can be performed by unsupervised 

artificial neural networks is feature detection, which is usually related to the 

dimensionality reduction of data. (The input vectors, or variables, are often 

called features in artificial neural network applications.) One important ap­

plication involves mapping speech features using word phonemes to produce 

phonotonic maps which could enable profoundly deaf people to receive visual 

feedback from their speech ([Kohonen, 1988], [Kohonen, 1990]). 

4.4.3.1 Kohonen self-organizing maps 

The most popular unsupervised network is the Kohonen network, named for its 

Finnish inventor Professor Teuvo Kohonen ([Kohonen, 1977], [Kohonen, 1984], 

cf. Chapter 3). Kohonen nets do not associate an input pattern with a target 

output. Instead, the input signal x is considered an !-tuple which is subse­

quently classified as belonging to one of J cluster units. This self-organizing 

artificial neural network is also called a topology-preserving map as it assumes 

a topological structure among the cluster units. 
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In Kohonen learning, the nodes that update their weights do so by forming 

a new weight vector that is a linear combination of the old weight vector and 

the current input vector. As Fausett describes the self-organization process, 

the cluster unit whose weight vector matches the input pattern most closely 

is chosen as the winner [Fausett, 1994). Typically the square of the minimum 

Euclidean distance between the input vector and the weight vector is used 

to determine the winning weight vector, although the scalar product of the 

input and the weight vector, simply giving the net input to the cluster unit, is 

also commonly used. If both units are standardized to unit length, the largest 

scalar product corresponds to the smallest angle between the input and weight 

vectors. The scalar product may also be interpreted as the correlation between 

the input and weight vectors. The testing function to determine the winner is 

given by the minimum D(j) such that 

D(j) = L(Wji- Xi)
2

. 

i 

Thus, the connection weights serve as a cluster exemplar of the input patterns 

associated with that cluster instead of an input scaling function. Only the 

winning unit and neighboring units (in terms of the topology of the cluster 

units, not in terms of weight vector similarity) update their weights by 

Wji(new) - Wji(old) + a(xi- Wji(old)) 

axi + (1- a)wji(old). 

This weight update occurs for all i weights of every output unit j within a 

specified neighbourhood of radius R around the winning cluster W. Generally, 

both Rand a decrease as learning progresses. 

Weights are initialized using random values unless some information con­

cerning the distribution of clusters is available, in which case the initial weights 
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can be taken to reflect the prior knowledge. 

Kohonen nets are similar to a variety of competitive nets. The defining 

characteristic of these nets is that they choose one or more output neurons that 

will respond to any given input pattern, instead of providing an output pattern 

using all J output neurons. They can therefore be viewed as a nonlinear 

extension of principle components analysis. 

Other types of artificial neural networks based on competition, most of 

which use Kohonen learning, are Maxnet, Mexican Hat, Hamming and Learn­

ing Vector Quantization (LVQ). These nets are discussed in more detail in 

several textbooks, e.g. Zurada and Fausett ([Zurada, 1992], [Fausett, 1994]). 

4.4.3.2 Adaptive resonance theory 

Adaptive resonance theory (ART) nets were designed by Carpenter and Gross­

berg to allow the user to control the degree of relative similarity of input 

patterns assigned to the same cluster ([Grossberg, 1977], [Fausett, 1994], cf. 

Chapter 3). The input vectors are clustered using unsupervised learning. The 

net has three layers of neurons; an input, an interface and an output clus­

ter layer. There is both a forward and a backward connection between each 

interface and cluster neuron. The forward connection weights to the output 

cluster layer determine the winning cluster as the cluster with the largest net 

input upon presentation of an input pattern. The backward connection from 

the cluster layer to the interface layer determines whether the input pattern is 

similar to that cluster's exemplar vector. If so, only that cluster is allowed to 

update its weights; if not, the cluster is rejected and a new winner is chosen 

by repeating the algorithm. 

The net thus resonates as learning occurs. Different clusters may be chosen 

for the same input pattern depending on when it is presented. A stable net will 

not oscillate among different cluster units during training. A plastic net is able 
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to respond to a new pattern equally well at any stage of learning. Adaptive 

resonance theory nets are designed to be both stable and plastic. 

4.5 Backpropagation of error in a multilayer 

feedforward artificial neural network 

The learning procedures discussed for supervised feedforward networks in Sec­

tion 4.4.2 are applicable to single layer networks that are suitable for classifi­

cation with linearly separable input patterns. The networks use a linear com­

bination of inputs and weights with the weights as proportional coefficients. 

The argument of the nonlinear component, the activation function, is simply 

computed as the scalar product of the weight and input vectors. However, to 

train patterns that are not linearly separable, it is necessary to introduce a 

multilayer network consisting of the input layer, at least one hidden layer and 

the output layer. (As mentioned in Section 4.2.2, although in some cases a 

slight advantage may be realized by using two hidden layers, in general a single 

hidden layer is sufficient [Cybenko, 1988], [Hornik & White, 1989].) Feedfor­

ward artificial neural networks with one or more layers of nodes between the 

input and output nodes are also known as multilayer perceptrons in artificial 

neural network literature. 

Multilayer artificial neural networks have been known for a long time, but 

the lack of appropriate training algorithms has prevented their successful appli­

cations for practical tasks. The delta training rule, introduced by McClelland 

and Rumelhart (cf. Section 4.4.2.3), cleared this obstacle. 

The training method, called the backpropagation of error, uses the delta 

training rule and is the most popular algorithm for adjusting weights during 

the training phase of a feedforward artificial neural network. As discussed 

previously, it is simply a gradient descent method to minimize the total squared 
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error of the output computed by the net. This method is often also referred 

to as steepest descent. The very general nature of this method means that 

multilayer, feedforward artificial neural networks trained by backpropagation 

can be used to solve problems in virtually every field that uses supervised 

neural nets, i.e. for problems that involve mapping a given set of inputs to a 

specified set of target outputs. The three layer backpropagation network has 

become the industry standard. 

Figure 4-10 displays a standard multilayer backpropagation artificial neural 

network with one hidden layer (the Z nodes). Both the output nodes (the 0 

nodes) and the hidden nodes may include a bias node as shown. These bias 

terms act like weights on connections from nodes whose output is set to 1. 

Information flows from the I neurons in the input layer via the intermediate 

hidden layer with H hidden nodes to the J output nodes. Again, the subscript 

convention is such that vhi denotes the weight that connects the h-th neuron 

in the hidden layer with the i-th input node and weight wjh connects the j-th 

neuron in the output layer with the h-th neuron in the hidden layer. The 

bias on a typical hidden node Zh is denoted by vho and the bias on a typical 

output node Oj is denoted by Wjo· Very often the bias nodes are not displayed 

explicitly in an artificial neural network diagram. 

4.5.1 The backpropagation algorithm 

The training of a network using the backpropagation algorithm involves three 

stages: the feedforward of the input training patterns, the calculation and 

backpropagation of the associated error and finally the adjustment of the 

weights. The algorithm was first described by Paul Werbos in his PhD thesis 

[Werbos, 1974] and is explained in numerous textbooks (e.g. [Zurada, 1992], 

[Smith, 1993], [Fausett, 1994], [Anderson, 1995], [Bishop, 1995], [Vapnik, 1995], 

[Fine, 1999], [Haykin, 1999]). 
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Input units Hidden layer Output units 

Figure 4-10: Multilayer feedforward artificial neural network 

During the feedforward stage of the input training patterns each input node 

xi, i = 1, 2, ... 'I, is transmitted to each ofthe hidden nodes zb z2, ... 'ZH in 

the following layer, which in turn propagates the activations zh obtained in 

each node from the input layer to each output node Oi, j = 1, 2, · · · , J. The 

response of the net for the given input pattern is obtained by the computed 

activation Oj. 

Analogous to the previous algorithms, the output signal, or activation, of 

node zh is Zh = f(zin-h) for h = 1, 2, ... 'H where 

I 

Zin-h = Vho + L XiVhi· 

i=l 

The output of node oj is Oj = f(oin-j) where 

H 

Oin-j = Wjo + L ZhWjh· 

h=l 
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The activation function f ( cf. Section 4.3) should be continuous, differ­

entiable and monotonically nondecreasing. Differentiability is needed because 

the derivative of the activation function is used to compute the weight updates 

(backpropagate the error). For computational efficiency, it is therefore advan­

tageous if the activation function's derivative is easy to compute. Both the 

binary and bipolar sigmoid functions are commonly used as activation func­

tions ( cf. Section 4.3.3). The form of the target values is an important factor 

in choosing the appropriate activation function. 

The training stage of the backpropagation algorithm involves the calcula­

tion and backpropagation of the error associated with a specific pattern. For 

each output node the computed activation Oj is compared with its correspond­

ing target value tj to determine the difference, namely the associated error for 

that pattern with that specific node, which is then propagated back into the 

net in the reverse direction (j = 1, 2, ... , J). 

A factor Oj, reflecting the portion of error weight adjustments for Wjh that 

is due to an error at output 0 j, is then computed for each output node: 

Dj thus contains the information about the error at node Oj. 

Also calculated is the weight correction term for output 0 j 

and its bias correction term 

As before, a is the learning rate, 0 < a ~ 1. These correction terms are 
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used in the final step of the algorithm to update the weights. 

The error information term is 8 i is also used to distribute the error at 

output node 0 i back to all nodes in the hidden layer below that feed into 

Oi. This is achieved by summing the delta inputs for each hidden node Zh, 

h = 1, 2, · · · , H, from the nodes in the layer above: 

J 

8in-h = L 8jWjh· 

j=l 

An error information term 8 h, reflecting the portion of error correction 

weight adjustment for vhi that is due to the backpropagation of error informa­

tion from the output layer to the hidden node Zhi is computed next: 

Also computed is a weight correction term D..vhi, which will be used to 

update the weights vhi at the next stage, 

as well as a bias correction term D..vho, 

This is done for each hidden node Zh, h = 1, 2, · · · , H. It is not necessary 

to propagate the error at output node Oj all the way back to the input layer 

as only the weights between the hidden and the input layer are adjusted. 

In the final step of the backpropagation process, all the weight and bias up­

dates for all layers calculated in the previous stage are adjusted simultaneously 

by adding the weight and bias corrections to their respective nodes to achieve 
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the new weights and biases. These updates occur for all neurons in both the 

hidden and the output layer, i.e. each output node Oi, j = 1, 2, · · · , J, updates 

its bias and weights 

for h = 0, 1, 2, · · · , H 

and each hidden node Zh, h = 1, 2, · · · , H, updates its bias and weights 

fori= 0, 1, 2, · · · , I. 

This stochastic or online training proceeds iteratively with error corrections 

in the final step of each pattern presentation to adjust weights until a preset 

stopping condition (usually meeting a specified error tolerance or reaching a 

preset number of training epochs) is satisfied. Typically, a backpropagation 

artificial neural network needs many epochs for training. Various heuristics 

for improving the rate of convergence have been proposed, some of which are 

outlined in the sections below. 

4.5.2 Training errors 

For the purpose of weight adjustment in a single training step, the error to be 

reduced is computed for a pattern currently applied at the input of the net­

work. Input patterns are submitted sequentially during the backpropagation 

training. However, for the purpose of assessing the performance of training, 

the joint error for the entire set of training patterns need to be computed, i.e. 

for an entire epoch. 

The error expression to be minimized for a specific pattern p includes all 

squared error at the outputs oj, j = 1, 2, ... , J: 
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p = 1,2, ... 'P. 

The joint error which is needed to assess the specified error tolerance is 

computed over the backpropagation training cycle: 

Another error measure that is less influenced by the number of patterns 

(P) and the number of output nodes (I) is the root-mean-square normalized 

error [Zurada, 1992): 

p J 
1 

Erms = PJ L L(tpj- Opj)2. 
p=l j=l 

4.5.3 Derivation of the learning rule 

Analogous to the derivation of the delta weights in Section 4.4.2.3, it can easily 

be shown, by applying the chain rule, that the gradient of the error function 

of a specific pattern p for an arbitrary weight Wjh between the output and the 

hidden layers is derived as 

aE = -(t·- o·)f'(o· ·)zh a J J m-J 
Wjh 

for j = 1, 2, · · · , J. 

The subscript pin the error term Ep, denoting that the error gradient is derived 

for a specific pattern p, has been dropped for brevity. 

Incorporating the learning rate a, 0 < a ~ 1, and considering that the 

minimization of the error requires the weight changes to be in the negative 
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gradient direction, one obtains the individual weight adjustments for the most 

rapid reduction in the local error as 

using the notation for the error information term between the output and 

hidden layers introduced above. 

Similarly, for the arbitrary weight vhi between the hidden and the input 

layers, the error gradient component is 

for i = 1, 2, · · · , I. 

The weight changes for the most rapid reduction in the local error in this 

case is 

aE 
-a--

8vhi 
J 

- a L DjWjhj'(zin-h)xi 
j=l 

- a8hxi 

again using the notation for the error signal, this time between the hidden and 

input layers, introduced above. 

The weight updates are thus indeed performed in the direction in which 

the function (i.e. the squared error between the target and output nodes) 

decreases most rapidly (hence steepest descent). 
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4.5.4 Initial weights and bias choices 

In setting up the network it is important to pay attention to the initial weight 

settings when using backpropagation. The usual approach of minimizing the 

squared errors leads to a system of linear equations with a solution that is 

not necessarily unique. The choice of the initial weights will to some extent 

influence whether the network reaches a global, or only a local, minimum of 

the error function, as well as how quickly it converges to this minimum. 

The update of the weights between any two neurons depends on both the 

upper and lower neurons' activation functions as well as on the derivatives 

of the activation functions of the neurons. It is therefore important to avoid 

choosing initial weights that are likely to result in derivatives of activations that 

are close to zero as the weight changes will then be very small and the network 

learning will be extremely slow. Too large values for the initial weights may 

produce initial output signals to each hidden or output node in the saturation 

region of the sigmoid function where the derivative has a very small value. 

The aim is to begin with weight settings that result in a weighted sum 

of inputs close to zero for every node. This will result in output nodes with 

values close to the midpoint of the sigmoid function i.e. close to 0,5 for the 

binary logistic function and close to zero for the bipolar sigmoid function ( cf. 

Section 4.3.3). Having activations in the midrange of the sigmoid activation 

function, where the gradient is steepest, will result in derivatives in a range 

that have proportionally larger contributions to weight changes than in the 

tail areas where the slope diminishes rapidly ( cf. Section 4.5.6). 

Smith mentions two ways of arranging the initial weights such that the 

weighted sum of inputs are close to zero for every node, hence producing 

midrange outputs (Smith, 1993]. The first method is appropriate for hidden 

nodes when the logistic sigmoid activation function is used. By setting the ini­

tial weights vhi close to zero, the hidden node activations zh will have midrange 
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values regardless of the values of its inputs. Another way to determine the mag­

nitude of the initial weights between the input and hidden nodes is to consider 

the magnitude of the input values. For example, to ensure that the activation 

Zh = j(Zin-h) of hidden node Zh is approximately between 0, 25 and 0, 75, the 

weighted sum of the inputs Zin-h must be somewhere between -1 and 1 for 

the logistic sigmoid activation function, and between 0, 5 and 2 for the bipolar 

sigmoid activation function. 

Care should be taken that the all initial weights from the different hidden 

nodes on the same input are not equal. If they are, then all the hidden nodes 

will see the same input on every example, compute the same output and 

consequently make the same contribution to the network's error. The error 

derivatives with respect to these weights will consequently all be the same, 

with the result that all the weights will be changed by the same amount, and 

will remain the same regardless of how long the network is trained or how fast 

the network learns. 

The output nodes Oi should also start with weighted sums of inputs oin-j 

close to zero to attain outputs oi within the midrange values of the activation 

function. However, setting the weights Wjh close to zero, as for the hidden 

nodes' weights, is in this case counterproductive. This is because the output 

node weights Wjh are used when computing the error derivatives of the hidden 

node weights in backpropagation. Small output node weights will result in 

small derivatives for the hidden nodes weights and accordingly small changes 

in the weights Wjh· The hidden nodes will only begin to learn rapidly when 

the weight connections to the output nodes become large enough for their 

contribution to be significant. However, the weight connections will remain 

small until the hidden nodes find something useful to do. This is a "Catch 

22" situation which can only be resolved by initializing the weights Wjh with 

values larger than zero. The second method described by Smith to restrict the 
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activations of the output nodes to the midrange of the activation function is 

to initialize half the weights with say 1, in which case the other half of the 

weights should be initialized with -1. (If there are an odd number of weights 

the bias weight can be initialized with zero.) To obtain weighted sums oin-j 

that are close to zero, it is necessary that the hidden nodes' activations are 

approximately equal (in the middle of the sigmoid function's range as described 

above) as the sum of similar hidden node outputs zh multiplied by weights Wjh 

that are equal in absolute value, will be about zero. 

4.5.4.1 Random initialization 

It is commonly acceptable to randomly assign initial values to the weights and 

biases. The sign of the weights are immaterial as the final weights after training 

may be either positive or negative. It is important to train the artificial neural 

network with different sets of random weights to obtain an optimum solution. 

4.5.4.2 Nguyen-Widrow initialization 

D. Nguyen and B. Widrow made a simple modification to the random weight 

initialization to give much faster learning [Nguyen & Widrow, 1990]. This is 

accomplished by introducing a scale factor f3 that is a function of the number 

of input nodes, I, and the number of hidden nodes, H: 

(3 0.7(H)t 

o.1.f/ii. 

Their procedure is based on the hyperbolic tangent activation function ( cf. 

Section 4.3.3.3) 
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The Nguyen-Widrow initialization procedure starts off by initializing all 

weights to random values between-"( and 'Y (commonly between -0,5 and 0,5). 

Denote the weight vector from the input nodes by vh(old) and compute 

For each hidden node the weights vhi are then reinitialized as 

J)vhi(old) 
vhi =II vh(old) 11· 

The bias vho is set to a random number between -f) and J). 

4.5.5 Batch training 

One variation of the backpropagation algorithm to speed up learning is known 

as batch updating. Instead of updating weights after each training pattern is 

presented, weight updates are accumulated for several patterns, or even over 

an entire epoch, before being applied. A single weight adjustment, equal 

to the average of the accumulated weight correction terms, is then made 

for each weight. This may however, have a smoothing effect on the correc­

tion terms as the changes to the weights are correct on average, resulting in 

weights being skewed to the most recent patterns in the cycle ( [Smith, 1993], 

[Zurada, 1992]). One solution is to choose patterns in a random sequence from 

a training set. 

4.5.6 Steepness of the activation function 

A neuron's continuous activation function is characterized by its slope pa­

rameter (cf. Section 4.3.3). Furthermore, as the derivative of the activation 

function is incorporated in the error information terms Oj and 8h, weights 
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are accordingly adjusted in proportion to the value of the derivative of the 

activation function. Both these factors - choice of activation function and 

choice of slope parameter - therefore strongly affects the learning process dur­

ing backpropagation. Figure 4-11 displays the derivative of the bipolar sigmoid 

activation function ( cf. Section 4.3.3.2) for four different values of the steep­

ness parameter (J' (0,5; 1; 2 and 4). This slope function illustrates how the 

steepness parameter (J' affects the learning process. 

2 

Figure 4-11: Bipolar sigmoid activation function slope for different (J' 

Firstly it can be observed that weights that are connected to nodes re­

sponding in their midrange are changed more than nodes that are already 

largely turned on or off. The local error information terms 8i and 8h are com­

puted by multiplying with the derivative of the activation function, therefore 

the distributed components of the backpropagation error are large only for 

neurons in steep thresholding mode. Secondly, if the learning rate a is fixed, 

all weight adjustments are in proportion to the steepness coefficient (J'. This 

implies that using activation functions with large slope parameters (J' may give 

similar results to using large learning rates a. Rather than controlling both 

parameters, it is advisable to fix (J' at a standard value of one (for the bipolar 

sigmoid activation function; for the binary sigmoid function the value will be 
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two), and to control learning speed solely by the learning rate a [Zurada, 1992]. 

4.5.7 The learning parameter a 

The value of the learning parameter a is set by the user. The effectiveness and 

convergence of the error backpropagation algorithm depend to a large extent 

on the value of a. In general, however, a depends on the problem being solved 

thus different values of a work best on different training sets. Even though 

gradient descent is an efficient method for determining those weight values that 

minimize the squared error, error surfaces may possess properties that make 

the algorithm slow to converge. For example, if the error surface has broad 

minima, i.e. small gradient values, a larger value of a will result in a more 

rapid convergence of the procedure. Large values of a increases learning speed 

drastically. For problems with steep and narrow minima, however, a too large 

a will overshoot the solution, hence a small value of a must be selected. The 

learning rate should therefore be experimentally determined for each problem 

([Zurada, 1992], [Smith, 1993]). It is important to remember that only small 

learning rates guarantee a true gradient descent. This is unfortunately off­

set by the increase in the number of epochs required to reach a satisfactory 

solution. 

4.5.8 Backpropagation with momentum 

Momentum is a common modification applied to standard backpropagation, 

i.e. online or stochastic training, to accelerate the convergence of the learning 

algorithm. Weight adjustments at each step are based on a combination of 

the current weight adjustment (as done in standard backpropagation) and the 

weight change from the previous step, with the result that the net is proceed­

ing not in the direction of the gradient, but in the direction of a combina­

tion of the current gradient and the previous direction of weight correction 
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([Zurada, 1992], [Smith, 1993], [Fausett, 1994]). Backpropagation with mo­

mentum allows the network to ignore short-term fluctuations in the gradient. 

The advantage of this modification is experienced mainly when some train­

ing data are very different from the majority of the data. By incorporating 

the previous step's weight adjustment, a major disruption of the direction of 

learning is avoided when an unusual pair of training patterns are presented as 

the learning rate will be small. For relatively similar training data, training 

will be maintained at a fairly rapid pace. 

The likelihood that the net will find weights that are a local instead of a 

global minimum is reduced with training by momentum. Momentum can be 

used in combination with batch training. 

In backpropagation with momentum it is necessary to save the weight 

updates from more than one previous training patterns. In the simplest form, 

the new weights for training with momentum at step t + 1 is based not only on 

the weights at step t, but also at step t - 1. An additional term representing 

the momentum as a linear combination of the weight adjustments at times t 

and t- 1 is added to the weight update formulas presented in Section 4.5.1. 

For a momentum parameter J-l, constrained to the range from 0 to 1, the 

weight update formula for the weights between the output and the hidden 

layer at time t + 1 becomes 

or 

For the weights between the hidden and the input layer the weight update 
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formula at time t + 1 becomes 

or 

A momentum constant between 0,1 and 0,8 is recommended by Zurada 

[Zurada, 1992]. 

4.5.9 Adaptive learning rates 

Standard backpropagation, with each weight change based on all the examples 

and without momentum, is the only training algorithm that has been mathe­

matically proven to converge on the set of weights producing minimum error. 

Weights are modified in the direction of the most rapid decrease of the error 

surface for the current weights. This does unfortunately not necessarily move 

the weights directly toward the optimal weight vector. One way to improve the 

speed of training for backpropagation is by adjusting the learning rate during 

training. Various algorithms have been developed for specific problems, e.g. for 

classification problems with totally unbalanced categories [Fausett, 1994]. One 

of the generally applied algorithms for adaptive learning is the delta-bar-delta 

algorithm, described in various textbooks (e.g. [Jacobs, 1988], [Fausett, 1994], 

[Bishop, 1995], [Haykin, 1999]). 

The delta-bar-delta algorithm allows each weight to have its own learning 

rate. Learning rates are allowed to vary with time as training proceeds. Ap­

propriate changes in the learning rate for each weight are determined by the 

direction of successive weight changes. If the weight changes are in the same 

direction, either an increase or a decrease, for several time steps, the learning 
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rate for that weight is increased. This condition is determined by the sign of 

the partial derivative of the error with respect to that weight for several time 

steps. For alternating partial derivative signs, indicating that the direction of 

weight changes alternates, however, the learning rate is decreased. These two 

heuristics do not guarantee improved network performance, although in prac­

tice adaptive learning rates invariably does. Furthermore, the delta-bar-delta 

modification may not always converge, but Jacobs provides a comparison of 

standard backpropagation, backpropagation with momentum and delta-bar­

delta which shows that when training with the delta-bar-delta modification 

converges, it does so much faster, reducing training time by order of magni-

tude [Jacobs, 1988]. 

The delta-bar-delta algorithm consists of a weight update rule and a learn­

ing rate update rule. 

Changes to the weights are as for the standard backpropagation algorithm, 

with the modification that each weight may change by a different proportion 

of the partial derivative of the error with respect to that weight. The weight 

vector change is thus no longer in the direction of the negative gradient. 

Let E represent the squared error for the pattern presented at timet, let 

wjh(t) denote an arbitrary weight at timet (i.e. epoch t) and let ajh(t) be the 

learning rate for that weight at timet. The weight changes according to the 

delta-bar-delta notation is then 

8E 
w·h(t)- a·h(t + 1)-

J J OWjh 
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Define a "delta" for each output node as: 

and for each hidden node as 

&E 
D.jh -

OWjh 

-~·Zh' - UJ ' 

A combination of information about the current and the past derivative is 

then used to form a so-called "delta-bar" for each output node: 

and for each hidden node: 

with /3, 0 < f3 < 1, specified by the user. 

The "delta-bar" terms are essentially weighted averages of past and current 

derivatives, while f3 can be considered as a weight on the past, accordingly 1- f3 

is the weight put on the current derivative. 

For example, 

and the weights are simply adapted according to standard backpropagation 

as no past derivatives are considered. 
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As D.jh(t- 1) was in turn determined by past values of D.jh, one can write 

and in turn 

and so forth, back to epoch 1. As f3 approaches 1, the current "delta" term 

(partial derivative of the weight with respect to the error) counts less while 

the past values of "delta" count more as these terms have been averaged into 

the "delta-bar" term. 

The new learning rate is based on the premise that the learning rate should 

be increased if the weight changes are in the same direction on successive steps. 

It is effected by increasing the learning rate by a constant amount /'\, if D.jh ( t -1) 

and D.jh(t) have the same sign. Similarly, the learning rate is decreased by a 

by a proportion 1 of its current value if D.jh(t- 1) and D.jh(t) have opposite 

signs. 

The new learning rate is given by 

ajh(t) + K, 

O!jh(t + 1) = (1- "'f)O!jh(t) 

O!jh(t) 

if D.jh(t- 1). D.jh(t) > 0, 

if D.jh(t- 1). D.jh(t) < 0, 

if otherwise. 

Even though the delta-bar-delta algorithm requires the specification of the 

values of the three parameters (3, (0 < f3 < 1), K, and 1 (0 < 1 < 1), the 

network results are in practice not sensitive to the choice. The values of 

K, = 0, 1; "'( = 0, 5 and f3 = 0, 7 are recommended by Smith as they work 
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well across a variety of problems [Smith, 1993]. Delta-bar-delta training can 

be combined with backpropagation using momentum, and provide benefits 

similar to momentum, noticeably much faster training. 

4.5.10 Quickprop 

Another fairly popular modification of backpropagation that accelerates the 

learning process is Quickprop, described in [Smith, 1993], [Fausett, 1994] and 

[Bishop, 1995], which was developed by Scott Fahlman [Fahlman, 1988]. The 

essential concept behind Quickprop is to include information about the curva­

ture of the error surface as well as its slope to decide on weight changes. The 

modification is based on the assumptions that the error surface, as a function 

of each of the weights, can be approximated by a parabola that is concave and 

that the change in the gradient of the error curve for that particular weight is 

unaffected by other weights that are also changing. Quickprop uses informa­

tion about the previous weight change and the value of gradient to determine 

the new weight change. 

The value of the gradient at the t-th epoch is the sum of the partial deriva­

tives of the error with respect to the given weight, summed over all P training 

patterns in the epoch: 

Using the notation as for standard backpropagation, the slope from a hid­

den node to an output node is 

p 

sjh(t) =- :L 8j(p)zh(p), 
p=l 
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and the slope for the weight from an input node to a hidden node is 

p 

shi(t) =-:L oh(p)xi(p). 
p=l 

The new weight change is defined as 

S(t) 
D.w(t) = S(t- 1)- S(t) D.w(t- 1). 

The initial weight change can be taken as 

D.w(O) = -aS(O) 

where a is the learning rate. 

The behaviour of the algorithm must be considered for the three following 

cases [Fausett, 1994]: 

1. If the current slope is in the same direction as the previous slope, but 

smaller, then the weight change will be in the same direction as in the 

previous step. 

2. If the current slope is in the opposite direction from the previous slope, 

the weight change will also be in the opposite direction as in the previous 

step. 

3. If the current slope is in the same direction as the previous slope, but is 

the same size or larger than the previous slope, the weight change will be 

infinite or the weights would be moved away from the minimum towards 

a maximum of the error. 

Weight changes are therefore limited to prevent the difficulties associated 

with the third step. 

To get the algorithm to work in practice often needs several restarts. 
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4.5.11 Training duration 

The aim is, as is the case with most artificial neural networks, to train the 

net so that a balance is achieved between the ability to respond correctly 

to the input patterns that are used for training, i.e. memorization, and the 

ability to give reasonable responses to input that is similar, but not identical, 

to that used in training, i.e. generalization. It is therefore not necessarily 

advantageous to continue training the net until the total squared error actually 

reaches a minimum as overtraining may occur. A discussion on how to avoid 

overtraining by using a validation set has been discussed in Section 4.1.4.2. 

4.5.12 Number of training pairs 

A network with enough training patterns will be able to generalize to satisfac­

tion (i.e. classify unknown testing patterns correctly). As discussed in Section 

4.1.1, the VC-dimension which relates training set size, architecture and gen­

eralization performance helps to quantify the difficulty when learning from 

examples. One rule of thumb to determine the minimum number of training 

pairs P, based on e, the expected percentage correct classifications obtained 

by the trained net, is described in Fausett [Fausett, 1994]. The rule takes the 

relationship between the number of weights to be trained, say W, and the 

number of training patterns P into consideration. Specifically, to be able to 

classify 1 - e testing patterns correctly, the net must be trained to classify 

1 - ~ of the training patterns correctly. The number of training patterns are 

then determined by the condition 

w 
-=e p 
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or 

P= w. 
e 

If the aim is to be able to classify 90% of the testing patterns correctly, 

e = 0, 1. An artificial neural network with 50 weights (between the input and 

hidden, and the hidden and output layers) will then require 500 training pat­

terns assuming the net will be trained to classify 95% of the training patterns 

correctly. 

It should be noted that these heuristics are guidelines only that will some­

times provide very conservative upper bounds on the number of samples or 

training pairs. 

4.5.13 Implementation 

The time spent on calculating weights using backpropagation is much longer 

than the time required to run the finalized artificial neural network in the 

recognition mode, which only involves the computations of the feedforward 

phase (Section 4.5.1 above). The network's weights are set to the final weights 

obtained from the backpropagation algorithm. 

4.6 Techniques for evaluating the performance 

of a neural model 

4.6.1 Validation 

The weights of the neural model are adapted according to the values of the 

training data during the training phase. The objective of the training process 

is to minimize the mean squared error. If training continues to the point where 
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the squared error approaches zero, the model will have learned almost perfectly 

the characteristics of the training data, hence it overtrained. 

R. Hecht-Nielsen suggested the use of an additional set of data, known 

as the validation set, during training to monitor the network's performance 

[Hecht-Nielsen, 1990]. The training and the validation sets are disjoint. At 

intervals during training, the error between the network output and the target 

output is computed using the validation set (cf. Section 4.1.4.2). If the error 

for the validation patterns decreases, training continues. However, as soon as 

the error begins to increase for the validation set, training is terminated as the 

net is at that stage starting to memorize the training patterns too specifically. 

Bearing in mind that the error may fluctuate, it is recommended that one tests 

for an increase in validation error over a window of epochs. A graph is often 

used to display the error calculated for the validation set. 

4.6.2 Multiple random starts 

The purpose of the training algorithm of a neural model is to move the sys­

tem into a lower error state. The initial conditions of the model determine 

the starting point on the error surface. An unfortunate choice of initial condi­

tions may result in a suboptimal solution. By changing these initial conditions 

repeatedly, a coarse exploration of the error surface is undertaken. It is recom­

mended that for each neural model at least five experiments are undertaken ) . 

Typical validation results should be close together. Exploring the error surface 

in this way will aid in determining an optimal solution. 

4.6.3 Recutting 

If a large enough data set is available, multiple test files can be created. Each 

test file is trained and the performance of the neural model measured as the 

average over each test file. In the case of limited data, a number of different 
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training and test file cuts can be created from the original data. The overall 

model performance can be validated by measuring the average over each of 

the test files. 

The advantage of recutting training and test files is that the best statis­

tical estimate of the likely performance of the neural model is found by this 

averaging over a number of runs. 
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Chapter 5 

Statistically optimizing the 

number of hidden nodes of an 

artificial neural network 

Artificial neural network architecture selection ( cf. Section 4.2) involves de­

termining both the number of hidden layers in the artificial neural network 

and the appropriate number of hidden layer nodes. As discussed previously 

(cf. Section 4.2.2), a single hidden layer is sufficient to obtain an arbitrarily 

accurate approximation to an arbitrary mapping, provided that an adequate 

number of hidden nodes is available ([Cybenko, 1988], [Hornik & White, 1989], 

[Stinchcombe & White, 1989]). The number of hidden nodes is therefore a cru­

cial parameter of a feedforward artificial neural network. 

Generalization, the artificial neural network's ability to produce reasonable 

responses to patterns which are similar, but not identical, to the training data, 

is normally measured by the validation error. This is achieved by plotting the 

validation and training errors against the number of epochs, as explained in 

Chapter 4. 
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An indication that the system is beginning to learn the noise character­

istics of the training data is seen when the validation error gradient, which 

initially drops at approximately the same rate as the training error during the 

early stages of learning, decreases more rapidly and then starts to increase 

[Hecht-Nielsen, 1990]. Overtraining, discussed in Section 4.1.1.1, is one of the 

serious problems encountered when using artificial neural networks for mod­

elling. Possible solutions to the problem of overfitting is to limit the network's 

power by limiting the number of nodes, by limiting the number of epochs of 

training, i.e. stop training early, or by discouraging the network from using 

large weights ( [Smith, 1993] , [Vapnik, 1995] and [Anthony & Bartlett, 1999]: 

Vapnik was in fact the first to note that the size of the parameter vector and 

the final layer weights are key factors to the generalization performance of a 

network). 

On the other hand, if the validation error never goes up it may be an 

indication that the network does not have enough hidden nodes to overfit. 

This is also cause for concern, since it could mean that the network does not 

have enough hidden nodes to attain the necessary level of complexity to obtain 

an accurate model and hence may be underfitting the data. 

Both these phenomena, overfitting and underfitting, emphasize the need to 

determine the optimal number of hidden nodes of an artificial neural network 

model as an important part of the modelling process. 

Contrary to classical statistical procedures, the number of parameters in 

an artificial neural network is invariably comparable to the number of training 

patterns, necessitated by the need for a sufficiently complex model to ade­

quately fit the data. Many different approaches have been investigated by 

artificial neural network users to rationally select the appropriate number of 

hidden layers and the optimum number of nodes in order to achieve the mini­

mum generalization error. Amongst the more popular approaches to model se-
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lection are Bayesian calculations of posteriors, regularization, cross-validation 

and the implementation of Kolmogorov complexity principles as well as code 

length measures of complexity [Vapnik, 1995]. 

Many of these methods essentially adapt the objective function of the train­

ing algorithm ( cf. Section 4.4) by adding a term to it that penalizes architec­

ture complexity. Complexity is automatically balanced against a close fit to 

the data when training takes place with an appropriate penalty term added 

to a term measuring the degree to which the network approximates the data. 

The objective is to minimize an expression which can be construed as a cost 

function that measures the degree of approximation of the model to the data 

that is added to a term measuring the complexity of the model. This complex­

ity approach is based on an attempt to formalize the medieval maxim known 

as Occam's Razor which advocates adherence to the principle of sticking to 

the simplest, well-founded explanation, elucidated by E. Moody as "What 

can be done with fewer [assumptions] is done in vain with more." (quoted in 

[Vapnik, 1995]). 

In this chapter a recursive algorithm- presented at the IEEE World Congress 

on Computational Intelligence in Alaska in 1998 [Fletcher & Engelbrecht, 1998] 

- is developed to statistically determine the optimal number of hidden nodes 

for an artificial neural network model by placing a statistical constraint on the 

reasonable complexity of the neural model. This is done by framing a feed­

forward artificial neural network model with a single output node, trained by 

backpropagation, in a nonlinear regression setting. The mean squared error 

between the estimated network and a target function, which has a minimum 

with respect to the number of nodes in the hidden layer, is used to measure 

the accuracy of the artificial neural network model. By minimizing the mean 

square error, the algorithm combines artificial neural network training sessions 

with statistical analyses, using partitioned likelihood ratios, and an experimen-
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tal design phase to generate new sessions until the optimal number of hidden 

nodes is reached. During the training process the excess number of hidden 

nodes at that stage, as well as the specific nodes to be pruned, are identi­

fied. This algorithm requires fewer sessions to establish the optimal number 

of hidden nodes than by using the straightforward way of eliminating nodes 

successively one by one, as is often the case in practice. 

5.1 Problem setting 

5.1.1 A feedforward artificial neural network in a non-

linear regression setting 

Define a univariate response nonlinear model with additive noise as 

withp=1,2, ... ,P (5.1) 

where the data XpE~1 and e(xp) I!.f N(O, o-2) [Green & Silverman, 1994]. 

As mentioned above, any continuous mapping can be accurately approx­

imated by a single hidden layer. The unknown nonlinear function g(xp) can 

therefore be fitted to the data (xp, t(xp)) over all P training patterns, or ex­

amples, by a one hidden layer, feedforward artificial neural network with H 

hidden nodes. In matrix notation the model is expressed as 

(5.2) 

with individual elements 
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where 

I 

Zhp = ¢(L vhiXip + vho) 

i=l 

and I is the total number of input nodes (independent variables or predictors 

in statistical terminology). The total number of parameters (weights) to be 

estimated is H (I+ 1) + (H + 1). 

Here o = (op):P x 1 is the output vector of the artificial neural network; 

X = (xip) :I x Pis the p-dimensional matrix of input variables; V = VH = ( Vhi) 

is the H x (I + 1) weight matrix where vhi is the weight connecting node h of 

the hidden layer to the i-th input variable and vho is the weight between the 

h-th hidden node and the bias unit; w is the (H +!)-dimensional weight vector 

between the hidden layer and the output layer, including the bias weight w0 ; 

¢ is a sigmoid function and <p is either a linear or a sigmoid function. 

Diagrammatically, this neural model can be displayed as in Figure 5-l. 

In terms of approximation theory and Statistics, fitting the data using 

model (5.2) is a parametric nonlinear regression problem specified by the 

structure of the model and the sigmoid function used in it ([Barron, 1993], 

[Barron, 1994], [Cheng & Titterington, 1994], [Vapnik, 1995]). For the prob­

lem with additive noise, as defined in (5.1), the optimal number of parameters 

(i.e. hidden nodes in the artificial neural network model) can be found, based 

on an accuracy analysis. 

5.1.2 Accuracy criteria 

The model defined in (5.2) is used to reconstruct the unknown nonlinear func­

tion g(xp) from the observations Xp. The quality of the reconstruction, i.e. the 

accuracy of the model, is characterized by the mean squared error (MSE) risk 
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p-dimensional p-dimensional p-dimensional 
input units hidden layer output unit 

8 <I> 8 <p ·8 
Figure 5-l: A feedforward artificial neural network with a single output node 

function. This function, an accuracy criterion, is defined by 

RP,H(VH, w) = ~ :l:E(g(xp)- o(xp, VH, w))2 (5.3) 
Xp 

where vH and w are estimates of vH and w respectively, obtained from the 

artificial neural network modeL E denotes the expectation. 

The set of optimal parameters vH- and w* which will minimize RP,H with 

respect to v H and w is 

(vH-, w*) = arg min(RP,H)· 
VH,W 
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This risk or error function is also known as the cost function or objective 

function. 

It has been proved that the artificial neural network model given by (5.2) 

provides a very good uniform approximation to quite a wide class of functions 

g(x) [Barron, 1994]. This means that under some general conditions 

RP,H(v~, w*)) ---+ 0 asH---+ oo. 

Obviously an excessive increase in the number of nodes H in the hidden 

layer is undesirable because it adds excessively to the complexity of the model, 

with the accompanying increasing costs involved in the training of the artificial 

neural network. 

There is, however, another restriction on the level H of the reasonable com­

plexity of the neural model, determined by the stochastic nature of the noisy 

data of the specific problem (as stated in (5.1)) under consideration. Generally 

speaking, for any given number of observations, an increasing number of nodes 

H will result in an increase in the variance of the estimates of the (weight) 

parameters V and w of the model, and consequently also of the estimation 

errors and the accuracy criterion. As a result, including more nodes H after 

some level H* becomes unjustified because of the random uncertainty inherent 

in the data. 

Barron has shown that the two contributions to the total MSE risk (5.3) are 

the approximation error and the estimation error [Barron, 1993], [Barron, 1994]. 

The approximation error of fitting the artificial neural network model refers to 

the distance between the target function and the closest artificial neural net­

work function of a given architecture (i.e. the bias), while the estimation error 

reflects the variance of the random error, i.e. the difference between this ideal, 

closest artificial neural network function and an estimated network function. 

Asymptotically, as P ---+ oo, subject to some unrestrictive assumptions 
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about g(xp), 

R* R (....... ....... ) c1 H* ( ) 
P,H = P,H VH, w ~ H* + c2 p log P (5.4) 

where c1 and c2 are constants [Barron, 1994]. 

The first term on the right-hand side of (5.4) corresponds to the approx­

imation error, or bias, of fitting the artificial neural network and the second 

one to the variance of the random errors. Hence the optimal number of nodes 

H* represents a bias-variance trade-off. Overfitting, i.e. H > H*, thus not 

only involves extra computation but, as pointed out above, is also undesirable 

from the point of view of the accuracy achieved: generalization performance is 

degraded in terms of artificial neural network theory. Note that as the number 

of observations (training patterns) P increases, the optimum number of nodes 

H* also increases proportionally. 

Minimizing function (5.4) with respect to H* will give the optimal number 

of nodes. The derivative of function (5.4) with respect to H* is 

8R P,H c1 log P 
8H* =- (H*)2 + C2-p· 

Setting this equation to zero gives 

I.e. 

logP 
C2-­p 

C1 p 
c2 • logP· 

Hence the optimal number of nodes is obtained by 

H*= 
(

cl P ) 
c2. log P · 
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The challenge is to optimize an artificial neural network based on the accuracy 

criteria set out in (5.3) and (5.4). 

One of the best-known and most widely used sampling accuracy criteria is 

the mean squared error. 

Let (vH, w) be the set of weights found by the artificial neural network 

found as a solution in a standard training session to the least squares problem 

(5.6) 

i.e. QP,H is an empirical risk and 

(5.7) 

The empirical risk QP,H(vH, w) is a monotonically decreasing function of 

H. It therefore does not have a minimum with respect to H and cannot simply 

be used instead of R:PH (cf. (5.4)). This situation is quite typical of statistical , 

problems dealing with model selection and in particular with selection of the 

complexity of the model. 

A great amount of effort has been expended to find good approximations 

for RP,H(vH, w) and (5.6) - (5.5) in the form 

(5.8) 

where 'lj;(VH, w) is a penalty function increasing with the COmplexity (i.e. 

number of nodes) of the model (e.g. [Hurrich & Tsai, 1989], [Wei, 1992], 

[Hassoun, 1995], [Fine, 1999]). 

It has been shown that methods such as cross-validation, generalized cross­

validation, Akaike and the Cp criteria differ only by the penalty function 

'1/J(vH, w) in (5.8) (e.g. [Hurrich & Tsai, 1989], [Wei, 1992), [White, 1989], 
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[White, 1992], [Cohen, 1995]). Procedure (5.8) is computationally efficient, 

but the function '1/J(vH, w) and the approach On the whole are well justified 

only for linear regression models. 

Loss functions having features of (5.8) have been developed specifically 

for artificial neural networks ([Barron, 1993], [Barron, 1994], [Vapnik, 1995]). 

The proposed penalty functions include unspecified parameters and functions 

which enable (5.8) to have a minimum on H. However the practical applica­

tions of these methods are questionable due to the above-mentioned ambiguity 

embedded in '1/J(vH, w). 

Cross-validation methods (e.g. [Amari et al., 1995], [Hassoun, 1995]) in 

their original combinatorial form are in many cases able to provide good ap­

proximations to problem (5.4) but are computationally intensive. 

The "one-out" cross-validation loss function has the form 

Q~i1 = ~a z= (t(xp) - o(x[pl, v17, w[pl) )2 

Xp£Xc 

(5.9) 

where 

(5.10) 

Xc is a control set, Po is the number of observations in it, and a permutation 

over a set of observations is assumed in (5.9) - (5.10). 

A simplified form of cross-validation where the observations are split into 

two sets - one for learning and one for control - is usually quite practical and 

good results are obtained when the number of observations is much larger than 

the number of parameters to be estimated. 

A different approach, based on a statistical analysis of the results of training 

sessions, is proposed in this chapter. 
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Consider the empirical risk QP,H(vH, w) in (5.6) with parameters VH and w 
found from (5.7) as a function of H. When the model is substantially overfitted 

the bias components are compensated for, however the sum of random errors 

becomes large. 

A statistical test can be used to evaluate QP,H(vH, w) with decreasing H to 

find the critical region of fi where the bias becomes non-negligible. The critical 
_...._ 

value of H does not actually produce the compromise bias-variance in (5.4) 

but simply serves to identify an area of H values where further decreasing the 

number of nodes becomes counter-effective, while an increase does not improve 

the generalization abilities of the artificial neural network. 

Depending on the significance level a used in the statistical tests, the ar­

tificial neural network is either overfitted ( fi > H*) or underfitted ( fi < H*). 

This statistical test approach can consequently be treated as an approximate 

solution to (5.4) - (5.5). 

5.2 Statistical theory and method 

The statistical concepts and theory that are relevant to the algorithm which 

will be used to determine the optimal number of hidden nodes of a feedforward 

artificial neural network in a nonlinear regression setting as defined in (5.1) -

(5.2) are briefly introduced in this section and explained in the artificial neural 

network setup. 

Basically, the algorithm specifies the conditional statistical analysis of a 

completed training session of the artificial neural network to determine a sta­

tistically justified number of nodes for the following training session, as well as 

specifying the particular nodes that can be pruned. The term "conditional" 

means here that in the statistical analysis the weights VH between the input 

units and the hidden node layer are assumed to be fixed ( v H = v H), while the 
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weights w between the hidden layer and the output node are allowed to vary. 

5.2.1 Statistical decision-making 

The statistical decision-making process comprises a logical number of steps: 

the design of the experiment, the execution of the experiment and finally the 

analysis of the results obtained by the experiment. Depending on the setting 

of the problem, this process may be iterative. If warranted, the experiment 

may be redesigned, re-executed and re-analysed. 

In an artificial neural network setting, the process of determining the ar­

chitecture of the network can be viewed as the experimental design stage. 

For a feedforward artificial neural network with one hidden layer, this entails 

determining the number of nodes in the hidden layer. 

An artificial neural network training session that results in obtaining esti­

mates of the weight parameters VH and w can be considered as the experiment. 

The specific feature of the experiment is using a complex learning algorithm 

(in this case backpropagation) to provide estimates of the weight parameters. 

An experiment need not necessarily be a single training session, but can be 

complex, and in particular, can include a number of attempts with different 

initial conditions for the backpropagation algorithm. 

During the analysis stage the results of the experiment are evaluated, pos­

sibly for use in the design of the next experiment. 

An initialization process is needed to start the process in the case of arti­

ficial neural networks. 
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5.2.2 Fisher information matrix 

The univariate response nonlinear model in (5.1) is usually expressed in sta­

tistical notation as 

y = g(Z,{3) + e, 

with individual elements 

Z is the matrix of p-dimensional regressors or independent variables, {3 is the 

H-dimensional vector of parameters to be estimated, and e I!JY N(O, a-2). 

(The notation X, instead of Z, is more common in statistical textbooks, 

but is not adopted here to avoid confusion between the artificial neural network 

input matrix X defined in Section 5.1.1 and the constrained artificial neural 

network input Z to the standard linear regression model explained in the next 

section.) 

The inverse of the Fisher information matrix is used to obtain an estimate 
....... 

of the asymptotic variance-covariance matrix of the parameter estimates {3 

and is used to assess the quality of the estimators. The estimated parame­

ters of the information matrix is obtained at convergence and are as follows 

[Ratkowsky, 1983]: 

(5.11) 

Each diagonal element of the inverse of the information matrix is a lower 

bound for the variance for the corresponding parameter ([Ratkowsky, 1983], 
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[Deco & Obradovic, 1996]), i.e. 

Under the above-mentioned conditions for e , (i2 is simply the mean squared 

errors (analogous to (5.6)). 

For the constrained artificial neural network model, i.e. where the weights 

vH = VH are presumed fixed as explained above, the elements of the Fisher 

information matrix 5.11 correspond directly to the partial derivatives of the 

artificial neural network output with respect to the individual weights wh con­

necting the hidden layer nodes zh to the output node o. These partial deriva­

tives are calculated during the backpropagation stage of training ( cf. Section 

4.5.1). 

In this case the conditional Fisher information matrix ( H x H) is defined 

as 

(5.12) 

(The artificial neural network model actually has H + 1 weights for the 

H hidden nodes plus the bias in the hidden layer which is a general constant 

that specifies the intercept and aids in the positioning of the model. Interest 

is restricted here to the H weights or parameters that relate to fitting the 

nonlinear function describing the model. The bias unit will not be pruned by 

the algorithm.) 

To obtain the estimated variance-covariance matrix of the estimated weight 

parameters w, this matrix of partial derivatives, which is square and symmet-
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ric, must be inverted: 

cov(w) (5.13) 

where C is the conditional Fisher information matrix. 

5.2.3 Standard linear regression model 

Artificial neural network models in a nonlinear regression setting uses a sigmoid 

function only in the hidden layer to calculate Zhp from the input units Xip and 

the weights vii connecting these two layers (cf. (5.2) and Figure 5-1). Thus by 

constraining the model by considering only the output weights wh, the artificial 

neural network model (5.2) can also be phrased exactly in the framework of 

the standard linear regression model: 

y = Z(3 + € (5.14) 

where the vector y corresponds to the output vector o(xP, vH, w) of the artifi­

cial neural network model, the parameter vector (3 corresponds to the artificial 

neural network model weight vector w connecting the hidden layer with the 

single output node o and matrix Z = ( Zhp) : P x ( H + 1) is defined as the 

output of the hidden nodes: 

1 ¢(~{=0 ViiXIi) ¢(~{=0 Vi2X1i) ¢(~{=0 ViHX1i) 

1 ¢(~{=0 Vi1X2i) ¢(~{=0 Vi2X2i) ¢(~{=0 ViHX2i) Z= (5.15) 

1 ¢(~{=0 ViiXPi) ¢(~{=0 Vi2XPi) ¢(~{=0 ViHXPi) 
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with ¢, Vij and Xji defined in Section 5.1.1. 

As in the previous section, interest is restricted only to the H parameters 

that relate to fitting the model. The H x H variance-covariance matrix of the 

least squares parameter estimators /3 (i.e. of the estimated weight parameters 

w) of the linear regression model in (5.14) is [Bates & Watts, 1988] 

1.e. 

cov(w) (5.16) 

For the constrained artificial neural networks the two matrices (5.13) and 

(5.16) are therefore identical, i.e. the conditional Fisher information matrix 

cl>(vs, w) is equal to zTz. 

5.2.4 Singular value decomposition 

Any rectangular N x M matrix Q of rank R can be uniquely decomposed 

(up to a simultaneous reflection of corresponding columns of U and V) in 

the form Q = UDVT where matrices U : N x R and V : M x R have 

orthonormal columns (i.e. UTU = VTV = I(R)) and Dis a diagonal matrix 

with nonnegative entries. This decomposition is known as the singular value 

decomposition of the matrix and is useful to determine the rank of the matrix. 

If Q is square symmetric, U = V and the technique gives the eigenstructure 

or spectral decomposition of the matrix [Green & Carroll, 1978]. 

The singular value decomposition of the estimated variance-covariance rna-
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trix C : H x H of the parameter estimates w is 

C - VD>.VT (5.17) 

with the eigenvalues >..h in descending order. The elements of D>. can be 

interpreted as some measure of the components of the variance-covariance 

matrix and will be used to identify parameters (i.e. weights wh corresponding 

to the hidden nodes zh) which make a small contribution to the neural model, 

as explained in the next Section. 

5.3 Optimization algorithm 
~ 

The recursive algorithm determines the critical area of H which renders an 

approximate solution to the bias-variance trade-off in (5.4) where further de­

creasing the number of nodes becomes counter-effective, while an increase does 

not improve the generalization abilities of the artificial neural network. The 

artificial neural network is thus optimized in terms of the number of hidden 

nodes. 

The algorithm comprises training sessions of the artificial neural network, 

statistical analyses of the results and the experimental design to determine 

the artificial neural network architecture in subsequent sessions. The aim is 

to minimize the number of training sessions necessary to reach an optimal the 

number of hidden nodes. 

The approximation procedure adheres to the process of statistical decision­

making (cf. Section 5.2.1). 

124 



5.3.1 Description of the algorithm 

5.3.1.1 Initialization 

The artificial neural network is trained with an initial architecture of H hidden 

nodes (plus a bias unit for the intercept) as determined by heuristic rules. 

5.3.1.2 Experimental design 

The main procedure of the design phase is a local conditional analysis dur­

ing which the artificial neural network model for the experiment is specified. 

The purpose of this analysis is two-fold: to determine a statistically justified 

number of hidden nodes, 6.H, which can conceivably be eliminated from the 

network, as well as specifying the particular nodes that can be pruned. By 

specifying these 6.H nodes, the weight values achieved for the remaining nodes 

from the previous session are preserved and can therefore be used in the next 

stage. 

This implies a two-stage procedure after the network has been trained: 

the first stage for constructing a hypothesis about 6.H and the corresponding 

specified nodes, and the second stage to test this hypothesis. 

5.3.1.2.1 Stage I The multiple hypotheses to be tested have the form 

Hoq : wk = 0 V k E Kq (5.18) 

where Kq, q = 1, .. , Q, are subsets of nodes considered for elimination from the 

artificial neural network. 

The sets Kq in (5.18) are constructed by an analysis of the singular value 

decomposition ( cf. Section 5.2.4) of the conditional Fisher information matrix 

(introduced in Section 5.2.2) and differ by the number of nodes considered for 

elimination. The number of nodes available for pruning is determined by the 
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nonzero output weights obtained from the artificial neural network training 

session. 

The singular value decomposition (or eigenvalue decomposition) of the con­

ditional Fisher information matrix <I>(vH, w) (5.12), is given by 

(5.19) 

The group of smallest eigenvalues >.h, Ah+l, ... , AH that differs in order from 

the other eigenvalues determines the number of nodes which makes a small 

contribution to the neural model. The number of eigenvalues in this set de­

termines the value of 6.H = H- h, thus accomplishing the first aim of Stage 

I. If 6.H = 0 the model cannot be reduced. 

Denote the N-th column of matrix U by uN. If the absolute values of the 

elements of uN are very different, then the largest of these elements, say uNi 

and uNi' indicate the suspect nodes, say ni and nj, that can be excluded from 

the artificial neural network. This property is used in order to form the sets 

Kq in (5.18) corresponding to the groups of the smallest eigenvalues in D.x. 

5.3.1.2.2 Stage II In order to test the hypothesis (5.18) that a suspect 

set of nodes are redundant for any given Kq, the standard likelihood-ratio test 

statistic L is used to determine if there is a statistically significant difference 

between the reduced model (with H- 6.H nodes in the hidden layer) and the 

full model (with H nodes in the hidden layer): 

L = (SSER- SSEF) / (SSEF) 
dfR- dfp dfp 

(5.20) 

Under the null hypothesis that the constrained model with 6.H fewer hid-
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den nodes is equivalent to the model with H hidden nodes, the test statistic 

L "' F ( df R - df F; df F). The degrees of freedom for the full model is 

dfF =IP- H 

and the degrees of freedom for the reduced model is 

where 6Hq is the number of weights in the set Kq. 

SSE F and SSE R are the sum of squared errors for the full model and the 

reduced model respectively. 

The artificial neural network is not trained during this stage as the subma­

trix needed to calculate the differences between the target values tp and the 

constrained artificial neural network output can simply be obtained from the 

full model trained during the current session. 

The least squares estimator of w F is the H x 1 weight vector w F that 

minimizes the sum of squared errors with respect to w and is given as 

Wp = argminSSEF 
w 

where 

SSEF = ~n L(tP- o(xp, vs, w)) 2
• (5.21) 

p 

The weight vector Wp is therefore simply the weight vector wobtained from 

training the artificial neural network using the backpropagation algorithm. For 

this constrained model, the matrix Z as defined in (5.15) is the output of the 

hidden layer of the artificial neural network, consequently the sum of squared 
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errors for the full model can be calculated as 

ssEF =II t- zwp II . 

The reduced weight vector and the sum of squared errors for the reduced 

model are obtained by excluding the suspected redundant weights from the 

calculations: 

WR = argminSSER 
w 

and 

(5.22) 

using the same reasoning as for the full model. Here WR: (H -!:1Hq) x 1 is 

denoted by WH-t::,.Hq· 

When L exceeds the a-critical point of the F -distribution with said degrees 

of freedom, Hoq in (5.18) is rejected, i.e. the reduced model contains hidden 

nodes that are not redundant. It is therefore necessary to identify and define a 

different set of 6.H suspect nodes to be tested for redundancy. These different 

sets of suspect nodes to be eliminated from the model can all be tested by 

statistic (5.20), with sums of squared errors defined by (5.21) and (5.22). 

5.3.1.3 Experiment 

Once the architecture for the reduced model has been established during the 

design phase, the artificial neural network is trained using the reduced number 

of hidden nodes to produce a set of parameter estimates for the weights VH 
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and w of the reduced model. These results are analysed during the next stage. 

5.3.1.4 Analysis 

The analysis stage involves the comparison of the experimental results where 

the two successive training sessions are compared, i.e. the output of the re­

duced model is compared to that of the full model. The hypothesis postulates 

that the reduced model with H - [).H nodes is equivalent to the full model 

with H hidden nodes. If this hypothesis is rejected, the reduced model is re­

jected in favour of the full model. This means that too many nodes have been 

pruned from the hidden layer and it is necessary to return to the design phase 

to determine a different (smaller) [).H set of suspect nodes to be investigated 

using the local conditional analysis as described in Section 5.3.1.2. 

The hypothesis is tested using the likelihood-ratio test statistic Las defined 

in (5.20): 

L = (SSER- SSEF) / (SSEF) 
dfR- dfp dfp 

As above, the statistic L has an F -distributed under the null hypothesis 

with dfR- dfp numerator and dfp denominator degrees of freedom. 

When L :::;; Fa;dfR-dfF;dfF, the reduced model with H - [).H nodes is used 

in the conditional analysis as described in the design phase (Section 5.3.1.2) 

to establish if more nodes can be pruned from the hidden layer. 

Although the test statistic used at this step is identical in form to (5.20), 

it is completely different in nature as the sums of squared errors are calculated 

entirely differently. Here, SSEF and SSER, the sum of squared errors for the 

full and the reduced models respectively, are calculated as the sum of squared 

differences between the target values tP and the artificial neural network output 
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trained for the two different models obtained from the experiment: 

(5.23) 
Xp 

and 

(5.24) 
Xp 

The number of degrees of freedom for the full model is 

dfF = (I + 1) p - ((I + 1) X ( H + 1) + ( H + 1)) 

and for the reduced model it is 

df R = (I + 1) p - ( (I + 1) X ( H - h.H + 1) + ( H - h.H + 1))' 

i.e. dfR- dfF gives the number of weight parameters which are constrained to 

zero in the reduced model. 

5.3.2 Related research 

This algorithm is different in a number of aspects from previously reported 

results. 

Research closely related to this work is architecture selection of an artificial 

neural network as reported by Steppe et al where the likelihood-ratio test 

statistic is used as a model selection criterion to compare artificial neural 

networks with a decreasing number of nodes [Steppe & Rogers, 1996]. The 

criterion is used in a sequential procedure where each successive model differs 

by one hidden node only. According to their algorithm, the artificial neural 

network, starting from an initial architecture with large H, requires a full 
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training procedure for each successive model until fi is found. In the above 

algorithm more than one node can be pruned at every step of the descent from 
"" 

H to H, hence successive sessions can differ by more than one node, resulting 

in a substantial saving in the amount of training sessions. 

Xue et al. reported using the singular value decomposition in an attempt to 

reduce the dimensionality formed by the hidden nodes [Xue & Tompkins, 1990]. 

They determined the rank of the output variance-covariance matrix of the hid­

den nodes of a back-propagation model using the singular value decomposition 

to decide on the appropriate number of hidden nodes, and then calculated the 

correlation coefficients of the weight matrix consisting of the connections to 

the hidden layer in order to determine which nodes are redundant. Contrary to 

their method, the algorithm set out below does not base the singular value de­

composition on the Fisher information matrix of all the estimated parameters, 

but uses the conditional Fisher information matrix restricted to the output 

weights only. This decreases the dimensionality of the matrix and produces 

more readily interpretable results. 

5.3.3 Algorithm 

The algorithm constitutes the following basic steps: 

1. Initialization: 

Train the artificial neural network with H = H 0 (a large number of) 

hidden nodes. 

Go to Step 2. 

2. Design a training session in the following two stages: 

(a) Stage I: Perform a singular value decomposition of the conditional 

Fisher information matrix to determine the sets Kq containing the 
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possible redundant nodes deemed to be making only a small con­

tribution to the artificial neural network. 

(b) Stage II: Test hypothesis (5.18) by the likelihood-ratio statistic 

(5.25) 

where dfp = IP- Hand SSEF are the number of degrees of free­

dom and the corresponding sum of squared errors (SSE) obtained 

for the training session respectively; 

dfR = I P- (H- 6Hq) is the number of degrees of freedom under 

hypothesis Hoq where 6Hq is the number of weights in the set Kq, 

and 

(5.26) 

If L1 :::; Fa;dfR-dfp;dfp, do not reject the hypothesis Hoq, i.ethe re­

duced artificial neural network is adopted. 

Use (5.25) to search over all sets Kq, q = 1, ... , Q to find the maxi­

mum number of nodes that can be eliminated. Denote this number 

by l::iH*. 

If l::iH* 2:: l::iHcrit go to Step 3. 

If all of the hypotheses Hoq, q = 1, .. , Q are rejected, i.e. l::iH* = 0, 

or l::iH* < l::iHcrit, the algorithm is stopped and the artificial neural 

network hasH nodes. 

The stopping rule l::iHcrit is specified by the researcher, and is de­

termined by the complexity of the model. Setting l::iHcrit =1 will 

result in at least one node being pruned. 
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3. Experiment: 

Train the artificial neural network with H - ~H* nodes. 

4. Analysis where two successive training sessions are compared using the 

likelihood-ratio test statistic 

(5.27) 

where df F and df R are the degrees of the freedom corresponding to the 

artificial neural networks, and SSEF and SSER are the corresponding 

sums of squared residuals. 

If L2 ~ Fa;dfR-dfF;dfF' the reduced model with H- ~H* nodes is con­

firmed by the experiment. Go to Step 2 to further decrease the number 

of nodes. 

If L2 > Fa;dfR-dfF;dfF, the reduced model with H -~H* nodes is rejected. 

Return to Step 2 to reassess the design of the training session. The 

number of nodes in this case in assumed to be approximately equal to 

(~Hcrit + ~H*)/2. 

The likelihood ratios (5.25) and (5.27) are essentially different as the SSE 

used in (5.25) is calculated by varying only the output weights and is therefore 

easy to calculate, while the SSE in (5.27) involves a training session, i.e. the 

calculation of all output and input weights. 

5.4 Implementation and simulation 

The algorithm was implemented using the Neural Network Toolbox of Matlab 

version 5.1. 
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A simulation experiment using artificial neural network regression models 

of which the architecture is known (i.e. the number of nodes and the weights) 

illustrates that the algorithm is quite efficient and requires only a moderate 

number of training sessions. 

Simple artificial neural network regression models with H* = 5 hidden 

nodes, initialized with H 0 = 30 nodes, reached their goals within 5 to 8 training 

sessions with an accuracy of between 1 and 3 nodes. Testing at the a= 0, 05 

significance level gave the most accurate results while results with a = 0, 1 

and a= 0, 01 resulted in oversmoothing and undersmoothing respectively. 

As a particular result, consider the data presented in Figure 5-2. The 

500 input patterns are plotted on the X-axis against the corresponding target 

values on the Y-Axis. Noise was generated from a N(O, (0, 05) 2
) distribution 

and added to the target values. These targets with the additive noise are 

also plotted on the Y-axis of Figure 5-2. This vector association problem 

corresponds to an artificial neural network regression with H* = 5 and P = 

500. Artificial neural networks were trained with H 0 = 30 and LlHcrit = 1. 

/Y\'> .. ,. 

·· .. ~···· . .,. .... 
• ;L-______________________________ _ 

~· 

* (Input, Target) 
o (Input, Target+noise) 

Figure 5-2: The vector association problem 
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Figures 5-3 to 5-5 display the results of the artificial neural networks ob­

tained from the implementation of the algorithm for a= 0, 1, a= 0, 05 and 

a= 0, 01 respectively, with the input values plotted on the X-axis against the 

corresponding artificial neural network output values on theY-axis. 

In all cases the number of training sessions is very small compared to the 

25 training sessions that would have been necessary if nodes were eliminated 

successively one by one. With a= 0, 05 the accurate artificial neural network 

model with H = H* = 5 hidden nodes was obtained within 6 training sessions. 

Setting a = 0, 01 required 8 training sessions and resulting in an artificial 

neural network with H = 3 nodes, while 5 training sessions were required for 

a= 0, 1, resulting in an artificial neural network with H = 8 nodes . 

. 9 
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Figure 5-3: Artificial neural network using algortihm with a = 0, 1 
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Figure 5-4: Artificial neural network using algorithm with a= 0, 05 
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Figure 5-5: Artificial neural network using algorithm with a = 0, 01 
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Chapter 6 

Modelling the NPRP data 

The National Precipitation Research Programme (NPRP) was an exploratory 

weather modification experiment conducted by the South African Weather Bu­

reau and CloudQuest, a private company, in South Africa during the summer 

rainfall seasons from October 1991 to March 1996. The operations took place 

around Bethlehem in the Free State and Carolina in Mpumalanga. Hygro­

scopic flares were used to seed the bases of convective storms in an attempt to 

enhance rainfall. The aim of the NPRP, which was a randomized experiment, 

was to scientifically evaluate the seeding effect on the amount of rain produced 

by the storms using radar measurements. 

A comprehensive discussion of the experiment and the results are given in 

[Fletcher & Steffens, 1996] and [Mather & Fletcher, 1997]. Analyses of there­

sults indicated that the mean and median radar-measured rain mass of seeded 

storms were significantly higher than that of unseeded storms approximately 

half an hour to an hour after the seeding decision was taken. 

A study of the time history of individual storms, however, highlighted the 

phenomenon that not all seeded storms had responded positively to seeding 

as some of these storms produced very little rain after seeding. 
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Figure 6-1 shows an example of two seeded storms, both from the Carolina 

area, which had apparently reacted differently to seeding. 

700......-----------------, 

600 

~ 500 
"' c: 

~ 
~ 400 

"' "' ~ 300 
c: 
"(ij 

0:: 200 

100 

--'"'"", 
' ' ' ..... ..... 

' ..... _ 
0~-~-~~-~-~-~~-~-

2 3 4 5 6 7 

Time interval from seeding decision 

Storm1 

Storm63 

Figure 6-1: Time histories of the rain mass at lowest scan of two storms which 
reacted differently to seeding 

Storms which reacted positively to seeding will typically resemble storm 1 

while the majority of the unseeded storms resembled storm 63 in Figure 6-1, 

although a few of the unseeded storms also resembled storm 1. 

In an attempt to distinguish between seeded storms which responded pos­

itively to seeding and storms which did not, the following proposal was made 

[Steffens, 1999]: 

• perform a discriminant analysis using all the storms to objectively clas­

sify them into two categories, seeded and unseeded, based on the evolu­

tion of their rain mass over time; 
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• thereafter divide the seeded storms into those that resemble unseeded 

storms and those that seemed to have responded positively to seeding, 

using the results of the discriminant analysis; 

• lastly, determine if there are any significant differences between these 

two groups with respect to the various radar-derived variables which are 

measured before seeding took place. 

Being able to identify the variables that characterize storms which reacted 

positively to seeding will aid in better selection of storms for seeding. This will 

increase the probability of a positive seeding effect in operational applications 

such as the program which was run in South Africa's Limpopo Province (then 

Northern Province) after the Provincial Government approached the South 

African Weather Bureau, the Water Research Commission and the Department 

of Water Affairs and Forestry to employ cloud seeding at short notice as an 

emergency response to drought in that province early in 1995. 

In this chapter, the NPRP data are analysed elaborating on Steffens's pro­

posal as guidelines. Data analysts not trained in Statistics are often daunted 

by the different statistical techniques and their underlying assumptions. Even 

though this data set is not ideal for analyses using artificial neural network 

methodology, by virtue of the small sample size (only 127 storms of which 62 

were seeded and 65 unseeded), an artificial neural network model was devel­

oped and the statistical results of the discriminant analysis compared with the 

output obtained by the artificial neural network model. 

The preliminary results, reported at the Seventh WMO Scientific Con­

ference on Weather Modification in 1999, elicited such an enthusiastic re­

sponse from the meteorologists that it prompted the investigation as pre­

sented in this chapter. The final results were presented at a local confer­

ence where statisticians were invited to discuss "Some Statistical Problems 

in Industry and Science" as well as at the C. Warren Neel Conference on 

139 



The New Frontiers of Statistical Data Mining, Knowledge Discovery, and 

E-Business Intelligence in Knoxville, Tennessee ([Fletcher & Steffens, 2002a], 

[Steffens & Fletcher, 2002]). The focus in the latter paper was on the method­

ology of the research problem. Another paper has been accepted to be read 

at the 2002 Conference of the South African Society for Atmospheric Sciences 

[Fletcher & Steffens, 2002b]. This is the forum where the results will be com­

municated to the meteorologists. 

The chapter is set out as follows: following the auditing of the data set, 

the statistical discriminant analyses were performed to obtain the objective 

classification of the storms into the seeded and unseeded groups. SPSS Neural 

Connection was subsequently used to build an artificial neural network model 

to classify the storms into the two groups. The results of the artificial neural 

network model are then compared with those of the discriminant analysis 

to identify the storms which were classified as seeded or unseeded by both 

models. Lastly, using the classification results to divide the seeded storms into 

those storms that resemble unseeded storms and those storms that seemed 

to have responded positively to seeding, analyses of variance were performed 

to identify possible radar-derived variables that may differentiate between the 

two groups. 

6.1 The data set 

The data file contains information on 127 storms of which 62 were seeded and 

65 were not. The first seven variables relate to the identification of each storm, 

i.e. the date (year, month, day), the area (Carolina or Bethlehem), a radar 

track number, an envelope number (for the randomization process of seeding 

or not seeding) and a code identifying whether a storm has indeed been seeded 

or not. The next fourteen variables contain the radar derived rain mass for 
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each storm in ten minute intervals starting at ten minutes prior to the seeding 

decision until an hour afterwards. The seven rain masses were calculated at 

the lowest scan of the radar (variables rmll; rml2; ... ; rml7) as well as at an 

altitude of 6 km (variables rmcl; rmc2; ... ; rmc7). The next two hundred 

and fifty variables ( v23, v24, ... , v272) are properties of the storms, computed 

from radar measurements taken in the ten minutes before the seeding decision 

was made. These properties are listed in Appendix A. 

6.2 Data auditing 

The first step, which is common to both statistical and artificial neural net­

work modelling, is the data preparation stage which involves the auditing and 

preprocessing of the data as discussed in Section 4.1. 

Missing values and zeroes are problems commonly encountered in radar 

based weather modification data. Even though many of the statistical tech­

niques, including discriminant analysis, can be performed on data containing 

missing values, artificial neural networks require estimates for these missing 

values. SPSS Neural Connection, for example, will substitute missing values 

with the arithmetic mean of that variable - a technique not suitable for this 

particular data set. 

The storms listed in Table 6.1 were identified as severely problematic as 

they contain either mostly zeroes or too many missing values. These 13 storms 

were deleted from the data set because they contain no discriminatory or 

predictive information. 
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Storm Problem Area Seed 

3 Non-null observations only for rml4, rml5 Nelspruit No 

13 v23 - v272 all zero values Bethlehem No 

28 v23 - v272 all missing values Nelspruit Yes 

33 Non-null observations only for rmcl- rmc4 Bethlehem Yes 

52 Missing values for rml3 - rml7 and rmc3 - rmc7 Nelspruit No 

53 Missing values for rml4 - rml7 and rmc4 - rmc7 Nelspruit Yes 

54 Non-null observations only for rml3- rml6 Nelspruit No 

86 rml1 - rmc7 either zero or close to zero; Nelspruit No 

v23 - v272 all zeroes 

118 Missing values for rml3 - rml7 Bethlehem No 

and rmc3 - rmc7 

122 Non-null observations only for rml2- rml7 Bethlehem No 

and rmc2 - rmc7 

123 Non-null observations only for rml4- rml7 Bethlehem Yes 

and for rmc3 - rmc7 

124 Non-null observations only for rml2 - rml7 Bethlehem No 

and for rmc2 - rmc7 

127 Non-null observations only for rml4- rml7 Bethlehem No 

and for rmc4 - rmc7 

Table 6.1: Storms with more missing values and zeroes than observations 
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A further 5 storms also contained missing values for some of the variables. 

These storms are listed in Table 6.2. As most of the information on each 

storm is available for these 5 cases, the missing values were substituted by 

extrapolating either a quadratic or cubic regression line to the available points 

rather than deleting the cases. This decision conforms to the rule of thumb, 

used in artificial neural network modelling, that a data field is useful if at least 

70% of the records contain values, i.e. 10 or more of the 14 discriminatory 

values for this data set. 

Storm Missing values Area Seed 

16 rml7; rmc7 Nelspruit Yes 

48 rml6;rml7;rmc6;rmc7 Bethlehem Yes 

59 rml7;rmc7 Bethlehem No 

100 rml7;rmc7 Bethlehem Yes 

108 rml6;rml7;rmc6;rmc7 Bethlehem No 

Table 6.2: Storms with only a few missing values 

The ten figures in Appendix B, Section B.2, graphically display the avail­

able data points for the storms listed in Table 6.2, with the quadratic or cubic 

regression lines superimposed upon them. The last two columns of Table B.1 

in Appendix B, Section B.1list the substitute values for the missing values at 

the lowest scan (rml) and at the 6 km scan (rmc) for each storm. 

All further analyses were conducted on these remaining 114 cases with their 

corresponding substituted missing values. Of the original 62 seeded storms, 

56 remained in the data set while 58 of the 65 original unseeded storms were 

included. 
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6.3 Discriminant analyses 

Discriminant analysis is a statistical classification technique that uses linear 

combinations of a set of metric explanatory variables to discriminate between 

two or more distinct groups as defined by the categorical dependent variable. It 

does this by testing the hypothesis that the group means of the set of explana­

tory variables for two or more groups are equal. These groups should be known 

before the analysis is performed, and should also be non-overlapping and ex­

haustive. Stepwise discriminant analysis determines which exploratory vari­

ables have sufficient discriminatory power in the model [Hair & Black, 1998]. 

As with most parametric statistical techniques, a number of assumptions 

regarding the nature of the data are made, including the assumption that the 

data represent a sample from a multivariate normal distribution and the as­

sumption of homoscedasticity, i.e. homogeneous variance-covariance matrices 

of the explanatory variables across the groups defined by the dependent vari­

able. Discriminant analysis is robust to both these assumptions. The validity 

of the discriminant analysis results are more seriously affected by the presence 

of extreme outliers and ill-conditioned matrices, resulting from completely re­

dundant explanatory variables. A number of diagnostics and statistical tests 

of assumptions are available to examine the data for violation of these assump­

tions. Simple histogram analyses, often employed in artificial neural network 

modelling, show that most of the variables are positively skewed and leptokur­

tic. Nonetheless, the analyses were performed on the untransformed data, 

mainly because of the problems encountered with the numerous zero values. 

Three different analyses were conducted on the data set to obtain the 

statistical classification of all the storms into the two groups: seeded and 

unseeded (i.e. those storms which resembled seeded storms based on their rain 

mass evolution, and those which did not). Firstly all possible discriminating 

variables rmll; ... ; rml7; rmcl; ... ; rmc7 were entered into the model in a 
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single step. Secondly the same 14 variables were used in a stepwise procedure 

using SPSS's default values for entering and removing discriminating variables 

(5% and 10% respectively). Lastly the stepwise procedure was repeated by 

relaxing the criteria for entering and removing variables from the model to 

10% and 15% respectively. 

As discriminant analysis can be performed on data containing missing val­

ues, all three analyses were repeated on the data set containing the missing 

values instead of the substitute values. The results were practically identi­

cal, indicating that the substituted values did not influence the results of the 

discriminant analysis. 

The SPSS syntax files and complete output is stored as Appendix C in pdf 

format on the CD which is included at the back. 

6.3.1 Enter: rmll; ... ; rml7; rmcl; ... ; rmc7 

One of the statistical tests available in SPSS as a diagnostic is Box's M test 

which tests the null hypothesis of homoscedasticity. The null hypothesis was 

rejected for this analysis (and the other discriminant analyses), indicating 

that the assumption of equal population covariance matrices is violated. As 

mentioned above, discriminant analysis is robust to this assumption, and the 

analyses were continued. 

The results of the discriminant analysis where all 14 possible explanatory 

variables rmll; ... ; rml7; rmcl; ... ; rmc7 were entered in a single step are 

displayed in Table 6.3. The row percentages are also displayed in this table as 

they depict the discriminant analysis classifications across the observed group 

membership (seeded and not seeded). Overall, 74 of the 114 (i.e. 65%) of the 

original storms were correctly classified as either seeded or unseeded. The 40 

remaining storms (35%) displayed rain mass evolutions that were inconsistent 

with their individual classifications as the discriminant analysis model could 
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not find significant differences between the mean rain mass of the 30 seeded 

storms that were classified as unseeded in Table 6.3 and the 46 unseeded storms 

that were correctly classified by the model, nor between the mean rain mass 

of the 10 unseeded storms that were classified as seeded in Table 6.3 and the 

28 unseeded storms that were correctly classified by the model. 

Predicted group 

membership 

Not seeded Seeded Total 

Observed Not seeded 46 10 56 

group (82%) (18%) (100%) 

membership Seeded 30 28 58 

(52%) (48%) (100%) 

Table 6.3: Discriminant analysis classification entering all14 discriminating 

variables rmll; ... ; rml7; rmcl; ... ; rmc7 

6.3.2 Stepwise: rmll; . .. ; rml7; rmcl; ... ; rmc7 at 5% to 

enter and 10% to exit (SPSS default) 

Following the discriminant analysis where all the explanatory variables were 

forced into the model, a stepwise discriminant analysis was performed simply 

using SPSS's default probabilities to enter the model and to be removed from 

the model (15% and 10% respectively). 

For this stepwise discriminant analysis only the rain mass at the lowest scan 

40 - 50 minutes after the seeding decision took place, rml6, proved to have 

significant discriminatory power between the seeded and unseeded storms. 
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With only one discriminatory variable, fewer of the original storms were 

correctly classified (67 storms, i.e. 59%) as opposed to forcing the use of 

all possible discriminating variables (65%). Table 6.4 displays the results of 

the discriminant analysis. Of the seven additional storms that could not be 

identified as belonging to their original classification in this analysis, three 

were unseeded and four seeded. 

Predicted group 

membership 

Not seeded Seeded Total 

Observed Not seeded 43 13 56 

group (77%) (23%) (100%) 

membership Seeded 34 24 58 

(59%) (41%) (100%) 

Table 6.4: Discriminant analysis classification using a stepwise procedure 

with SPSS default values 

6.3.3 Stepwise procedure with relaxed criteria 

After inspection of the stepwise discriminant analysis results it was decided 

to repeat the stepwise procedure, but to relax the criteria for entering and 

removing variables from the model to 10% and 15% respectively. 

With the relaxed criteria for variables to enter or exit the model, both 

rml5 and rml6, the rain mass at the lowest scan between 30 to 40 minutes 

and the rain mass at the lowest scan between 40 to 50 minutes after the seeding 

decision took place, were found to have significant discriminatory power. (The 
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rain mass at the 6 km scan 30 - 40 minutes after the seeding decision took 

place, rmc5, had a significance value to enter the model equal to 0,109 at this 

step, but was completely redundant in the next step. This no doubt reflects 

the inherent collinearity of the two radar measurements at the lowest scan 

and at the 6 km scan during the same time period.) By including rml5 in 

the model the three unseeded storm which were misclassified in the previous 

model were again correctly classified, resulting in 61% correct classifications 

for this model. The results are displayed in Table 6.5. 

Predicted group 

membership 

Not seeded Seeded Total 

Observed Not seeded 46 10 56 

group (82%) (18%) (100%) 

membership Seeded 34 24 58 

(59%) (41%) (100%) 

Table 6.5: Discriminant analysis classification using a stepwise procedure 

with relaxed conditions 

The problem of seeded storms behaving like unseeded storms, i.e. display­

ing a rain mass evolution similar to the unseeded storms, as explained at the 

beginning of the chapter, becomes clear on inspection of Tables 6.3- 6.5. 

For the last analysis, only 24 of the 58 seeded storms could be correctly 

classified as seeded using discriminant analysis to classify the storms based 

on their mean rain mass. The majority of the seeded storms (59%) could 

not be distinguished from the unseeded storms by the discriminant functions, 
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suggesting that seeding these storms was a useless exercise as they evidently 

did not react to the seeding. 

FUrthermore, of the 56 unseeded storms, 10 were classified as seeded using 

discriminant analysis, i.e. 18% of the unseeded storms displayed properties 

based on the rain mass evolution over time that were similar to the seeded 

storms which were also classified as seeded based on the discriminant func­

tion. Inferring that 18% of the seeded storms would in all likelihood also have 

displayed properties similar to seeded storms regardless of seeding status leaves 

only 14 storms that reacted to seeding - less than a quarter of the 58 storms 

that were seeded during the experiment. 

The importance of the ability to identify appropriate storms for seeding 

based on information available prior to the seeding decision in an operational 

seeding program is obvious. 

It was decided to use the statistical classification of seeded and unseeded 

storms obtained by the stepwise procedure with the relaxed criteria (Section 

6.3.3) in the further analyses which attempted to determine possible predictors 

to identify storms that are likely to respond positively to seeding. 

The linear discriminant equation for this analysis is 

D = -0, 005rml5 + 0, 006rml6 - 0, 37. 

The function is very successful in separating the storms into two groups based 

on their rain mass evolutions, as evidenced by inspection of the means for the 

two different groups. Of particular interest is the discriminatory power of this 

function for the storms which were seeded during the experiment. The number 

of storms, the means and corresponding standard deviations are displayed in 

Table 6.6 for all 114 storms as well as for the 58 seeded storms. 
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Number Mean Std dev. 

All "U nseeded" 80 -0,4423 0,2393 

storms "Seeded" 34 1,0408 1,3942 

Seeded "U nseeded" 34 -0,4179 0,2792 

storms "Seeded" 24 1,2650 1,5525 

Table 6.6: Discriminant analysis classification statistics 

6.4 Artificial neural network classification 

An artificial neural network model was also developed to classify storms as 

seeded or unseeded based on the information contained in the rain mass data. 

The aim was to compare the artificial neural network storm classification with 

the classification obtained by the discriminant analysis. As mentioned before, 

this data set is very small in terms of artificial neural network applications. 

Figure 6-2 displays the SPSS Neural Connection workspace where the 

topology is assembled. The topology consists of a data input tool, connected 

to a modelling tool which is in turn connected to two output tools. 

In this application the NPRP data file is imported as record delimited 

data. The data input tool, where the data are displayed as a spreadsheet, 

allows one to specify the format of the data, to choose the training, test and 

validation set sizes and to set the uses of the individual fields in the data as 

input fields, target fields, reference fields or unused fields. Reference fields are 

passed through the application and is displayed on output, but are not used 

or changed by the artificial neural network. Two methods are available for 

ordering the records within the data set: sequential and random. 
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Figure 6-2: SPSS Neural Connection topology 

Knowing that a seeding effect can only be detected approximately 20 min­

utes after seeding took place, the input variables were specified as the rain 

mass at the last four time intervals for the radar scans at cloud base and at 6 

km altitude. The target variable is the seeding status of the storm. (The first 

three time windows correspond to the 10 minutes before seeding and the 0-

10 and 10- 20 minute intervals afterwards and were flagged as unused fields.) 

SPSS Neural Connection automatically allocates 80% of the records to the 

training set, and 10% to the validation and test sets respectively. 

The purpose of this artificial neural network model, however, is simply 

to classify the storms as seeded or unseeded based on their rain mass. The 

model is not intended to be used for forecasting or prediction. The sample was 
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therefore divided into training and validation subsets only, using the proposal 

by Smith that two-thirds of the sample is used for training and one third for 

validation [Smith, 1993]. The validation set was also used to test the artifi­

cial neural network's performance. Because the records are date ordered, the 

default assignment of records to the training and validation sets was changed 

from sequential to random. 

The multilayer perceptron (MLP) model in SPSS Neural Connection was 

chosen as the artificial neural network modelling tool for this classification 

problem. This feedforward artificial neural network, which has one or more 

layers of nodes between the input and output nodes, is one of the most com­

monly used artificial neural network models in practice. The model employs 

the backpropagation learning algorithm discussed in Section 4.5. 

SPSS Neural Connection has the option to either use the data as presented 

or to standardize either the input data or the output data or both. 

The nodes in the hidden layer are automatically generated by default, 

although the number of hidden layers and nodes can be specified by the user. 

There are three options available for the activation functions in the hidden 

layers, i.e. linear, tanh (the default) or sigmoid (cf. Section 4.3). 

The default weight distribution is uniform, but can be set to Gaussian. 

The parameters for both these distributions can be manually adjusted. 

Two methods are available for the backpropagation of the error: steepest 

descent and conjugate gradient. The conjugate gradient method is the default 

in SPSS Neural Connection. This method differs from the method of steepest 

descent, where the gradient of the error surface is measured after each pass 

and the weights simply changed in the direction of the steepest gradient, as 

the weights are altered using a compromise between the direction of the steep­

est gradient and the previous direction of change ([SPSS, 1995], [Fine, 1999], 

[Haykin, 1999]). 
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The output tools consist of a text output tool which runs topologies and 

displays the results and success rate in text format to the screen. The text 

output tool can also write files in ASCII or SPSS file format. The data output 

tool allows one to view the data set that has been passed through the appli­

cation and to examine the results as well as saving the results in a named file. 

The fields to be written out can be specified by the user. 

The multilayer perceptron that was generated automatically by SPSS Neu­

ral Connection has eight input nodes, one hidden layer with three hidden nodes 

and an output node. The weights are included as part of the complete output 

from the artificial neural network which is stored as Appendix D in pdf format 

on the enclosed CD. 

Figure 6-3 displays the 8 - 3 - 1 MLP architecture for the NPRP data. 

8 Input units Hidden layer with 
3 hidden nodes 

Output unit 

Figure 6-3: Multilayer perceptron (MLP) architecture for the NPRP data 

Tables 6. 7 and 6.8 display the results of the artificial neural network model 

for the training and validation (i.e. test) sets respectively, together with the 

row percentages depicting the artificial neural network model classification 

across the two groups. 
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Predicted group 

membership 

Not seeded Seeded Total 

Observed Not seeded 30 10 40 

group (75%) (25%) (100%) 

membership Seeded 11 25 36 

(31%) (69%) (100%) 

Table 6. 7: Artificial neural network model results for the training set 

Predicted group 

membership 

Not seeded Seeded Total 

Observed Not seeded 12 4 16 

group (25%) (75%) (100%) 

membership Seeded 14 8 22 

(64%) (36%) (100%) 

Table 6.8: Artificial neural network model results using the validation set 
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In total, 39 storms were misclassified by this model, of which 25 were 

unseeded. The percentage of seeded storms misclassified by the artificial neural 

network model as unseeded (43% overall) is much lower than the percentage 

of seeded storms misclassified by the discriminant analysis (59%) discussed in 

Section 6.3.3. However, the corresponding percentage of the validation (or test) 

set by itself is 64%, indicating that model performance may be comparable. 

(It is of course possible to increase the artificial neural network model's 

performance either by increasing the number of nodes in the hidden layer or 

by allowing the model to overtrain by continuing the number of iterations. 

The aim here is, however, not to obtain a model that fits the data nearly per­

fectly, but rather to obtain a model that will distinguish between the inherent 

characteristics of the two types of seeded storms: those that resemble seeded 

storms and those that do not.) 

The artificial neural network results are summarized in Table 6.9. 

Predicted group 

membership 

Not seeded Seeded Total 

Observed Not seeded 42 14 56 

group (75%) (25%) (100%) 

membership Seeded 25 33 58 

(43%) (57%) (100%) 

Table 6.9: Artificial neural network model results 
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AE was the case in the discriminant analysis, the phenomenon of seeded 

storms having the same properties as unseeded storms with respect to rain 

mass evolution over time is evident on inspection of the table. Just more 

than half of the seeded storms (33 of the 58, i.e. 57%) could be correctly 

classified as seeded by the artificial neural network model. The remaining 

storms resembled the unseeded storms and could thus not be distinguished by 

the model as seeded. This corroborates the discriminant analysis evidence that 

seeding these storms was futile. Furthermore, 14 of the 56 unseeded storms 

were classified as seeded by the artificial neural network model, indicating that 

a quarter of the unseeded storms were in some way similar to the seeded storms 

which were classified as seeded by the model. (The corresponding figure for 

the discriminant analysis was 18%.) 

Again reasoning that, based on this model, 25% of the seeded storms would 

in any case have displayed properties similar to seeded storms regardless of 

seeding status only 32% of the storms, i.e. 18 or 19 storms, remain that 

actually reacted positively to seeding. This agrees with the findings of the 

discriminant analysis, namely that it is extremely important to identify storms 

that are suitable for seeding. 

6.5 Model comparison 

The performance of the two models with respect to separating storms is as­

sessed in this section. Discriminant analysis is a popular and efficient statistical 

technique that is widely used by statistically literate data analysts. Artificial 

neural networks, however, are becoming increasingly popular with data an­

alysts who do not have a statistical background. The so-called "blackbox" 

approach that is often followed when implementing an artificial neural net­

work model appeals to many users who feel uncomfortable with their lack of 
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knowledge of Statistics and the accompanying assumptions. When faced with 

large data sets, resorting to an artificial neural network is especially attractive 

to many data analysts as its effectiveness as a modelling tool has been widely 

proved (cf. Section 3.10). The challenge with the NPRP data set was to see 

how well an artificial neural network model performs on smaller data sets, as 

the methodology is so readily available and is bound to be implemented by 

users who have access to it. 

The overall percentage of seeded and unseeded storms correctly classified 

by the artificial neural network model (75 storms, i.e. 66%) is slightly better 

than the result obtained by the final discriminant analysis model (70 storms, 

i.e. 61%). 

For the artificial neural network model, 33 of the seeded and 42 of the un­

seeded storms were correctly identified (cf. Table 6.9), while the discriminant 

model correctly classified 24 storms as seeded and 46 storms as unseeded ( cf. 

Table 6.5). 

The two models have 22 storms in common which were correctly classified 

by both as seeded. This implies that the seeded storms which were correctly 

classified by the discriminant analysis model is basically a subset of the cor­

rectly classified artificial neural network model storms. As far as the unseeded 

storms which were correctly classified as unseeded is concerned, the two models 

had 40 storms in common. 

Table 6.10 displays the crosstabulation of the discriminant analysis and 

artificial neural network classifications with the cell percentages in brackets 

underneath each count. The two models have an 82% correspondence (93 out 

of 114 cases). 
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Neural network 

Not seeded Seeded Total 

Not seeded 63 17 80 

Discriminant (55%) (15%) (70%) 

analysis Seeded 4 30 34 

(4%) (26%) (30%) 

Total 67 47 114 

(59%) (41%) 100%) 

Table 6.10: Crosstabulation of discriminant analysis by artificial neural 

network classification 

A comparison of the graphs of the means of all the seeded and unseeded 

storms and the graphs of the seeded storms classified as "seeded" and "un­

seeded" by the discriminant analysis model and the artificial neural network 

model respectively clearly indicates that both models perform more than ad­

equately in separating storms which had rain mass evolutions consistent with 

those of seeded storms and those storms which did not. 

Figures 6-4 to 6-9 display these rain mass graphs at both the lowest radar 

scan and the scan at an altitude of 6 km. 
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Figure 6-4: Rain mass means of the seeded and unseeded storms at the lowest 
radar scan 
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Figure 6-5: Rain mass means of the seeded and unseeded storms at the 6km 
radar scan 
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Figure 6-6: Rain mass means of the seeded storms at the lowest radar scan, 
classified as "seeded" and "unseeded" by the discriminant analysis 
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Figure 6-7: Rain mass means of the seeded storms at the 6 km radar scan, 
classified as "seeded" and "unseeded" by the discriminant analysis 
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Figure 6-8: Rain mass means of the seeded storms at the lowest radar scan, 
classified as "seeded" and "unseeded" by the neural network 
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Figure 6-9: Rain mass means of the seeded storms at the 6 km radar scan, 
classified as "seeded" and "unseeded" by the neural network 
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6.6 Analysis of variance 

Analysis of variance (ANOVA) is a statistical technique to test hypotheses 

about differences between two or more group means defined by a single metric 

variable [Hair & Black, 1998]. ANOVA is based on the assumptions that the 

explanatory variables are quantitative and normally distributed within the 

groups defined by a single categorical variable. Homogeneity of the variances 

in the different groups are also assumed. ANOVA is remarkably robust to 

departures from these assumptions and violations are generally tolerated well. 

The aim at this stage of the study was to characterize the seeded storms in 

the experiment which apparently responded positively to seeding as opposed 

to the seeded storms which apparently did not respond to the seeding. As 

interest is restricted to the behaviour of seeded storms only, the 58 seeded 

storms were divided into two groups based on the final model classification re­

sults. In the case of the discriminant analysis model, 24 of the seeded storms 

were classified as seeded and 34 storms as unseeded, while 33 of the seeded 

storms were classified as seeded by the artificial neural network model, and 25 

as unseeded. The two groups of storms, "seeded" and "not seeded", were con­

sequently compared with respect to the means of several explanatory variables. 

This comparison was done for each of the two classification models. 

The explanatory variables represent 250 different storm properties such 

as echo tops, storm depth, storm volume, storm mass, storm area, rain flux, 

precipitable water content and reflectivity. These storm properties were com­

puted using the computer program TRACKPROPS ( [Dixon & Mather, 1986], 

[Steffens, 1999]). All calculations are based on the radar measurements taken 

in the ten minutes before the seeding decision was taken. The importance of 

this fact is that any variables that are identified as having possible explanatory 

power may be calculated by the radar operators in real time before the actual 

decision to seed a particular storm is taken. The storm properties, with a 
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short description of each, are listed in Appendix A at the end of the thesis. 

As a first step in the attempt to identify those storm properties that could 

possibly explain the phenomenon of seeded storms having different rain mass 

evolutions, simple oneway analyses of variance were performed. These analyses 

were purely of an exploratory nature. The analyses of variance were performed 

using each of the 250 radar-derived variables v23; ... ; v272 as the factor with 

the two model classifications of the seeded storms as the dependent variable 

in each case. The results must obviously be interpreted with circumspection 

because of the multiplicity of tests that were performed. 

To assess the violation of the assumption of homoscedasticity, Levene's 

homogeneity-of-variances test was included with each of the analyses. (Lev­

ene's test was chosen as it is not sensitive to departures from the assumption 

that the data are a random sample from a normal population - which is not 

the case for this data set as mentioned in Section 6.3.) 

Following the simple oneway analyses of variance, two analyses of variance 

were done - one for each of the two classification models (discriminant analysis 

and artificial neural network)- where all the storm properties which had a large 

difference between the two classification groups ("seeded" and "unseeded") in 

the first step were now entered in a single step. Finally, analyses of variance 

were performed - again one for each of the two classification models - using 

only those storm properties which were identified as having large differences 

between the means of the two classification groups in the first step and which 

also did not violate the homoscedasticity assumption. 

The analyses of variance where multiple explanatory variables are entered, 

as opposed to the multiple tests where the variables are entered one by one, 

give more reliable results as the problem with the power of the multiplicity of 

tests is addressed [Hair & Black, 1998]. The SPSS syntax files and complete 

output is stored as Appendix E in pdf format on the enclosed CD. 
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6.6.1 Discriminant analysis classification 

Of the 58 seeded storms, 34 were classified as unseeded and 24 as seeded by 

the discriminant analysis model (cf. Table 6.5). The 250 individual ANOVAs 

which were performed identified 35 storm properties which have large differ­

ences between the means of the discriminant analysis model defined seeded 

and unseeded groups. These 35 storm properties are listed in Table 6.11. Also 

listed are the means of these variables for the 56 unseeded and 58 seeded 

storms, as well as for the 58 seeded storms which were classified by the dis­

criminant analysis as unseeded and seeded. 

The significance level of the F -statistics that is used to test for the difference 

between the means is displayed in column two of the table. An asterisk (*) next 

to the variable indicates that the difference between the means is significant 

at the 1% level for that variable. Column three displays those variables which 

do not violate the assumption of homoscedasticity, based on Levene's test for 

homogeneity of variances. It is important to note that the 1% and 5% levels of 

significance which are used to detect significant differences between the group 

means serves here merely as an indication that large differences exist between 

the storms which had apparently reacted positively to seeding and those which 

had apparently not for the corresponding variables. 

No substantial differences between the discriminant analysis defined seeded 

and unseeded groups were found for any of the variables where the storm 

properties v32, v34, v38, ... , v262, v272 were entered in a single step in the 

ANOVA. For the ANOVA where the 21 homoscedastic explanatory variables 

were entered as covariates ( cf. column three in Table 6.11) a large difference 

at the 5% level between the two groups was obtained only for v166 (Mean dBz 

at 6 km: Time to max rate of increase). At the 10% level, v67 (Storm mass 

at 6 km: Time to max mass) also had a large difference between the means of 

the two groups. 
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Variable Significance 

level 

v32: Peak dBz at decision time 0,025 

v34: Echo top: Max rate of increase 0,034 

v38: Echo top: Persistence 0,018 

v39: Echo top: Max ratio 0,046 

v51 *: Storm volume: Time to max 0,009 

v53: Storm volume: Persistence 0,029 

v59*: Total storm mass: Time to max 0,008 

v61: Total storm mass: Persistence 0,047 

v64: Storm mass at 6 km: Max rate of increase 0,030 

v67*: Storm mass at 6 km: Time to max mass 0,001 

v68: Storm mass at 6 km: Time to max rate of increase 0,018 

v69*: Storm mass at 6 km: Persistence 0,008 

v83: Storm area at 6 km: Time to max 0,024 

v99*: Rain flYX at 6 km: Time to max - 0,010 -

vlOO: Rain flux at 6 km: Time to max rate of increase 0,013 

vlOl: Rain flux at 6 km: Persistence 0,034 

v107: Precipitable water: Time to max 0,011 

v108: Precipitable water: Time to max rate of increase . . . 0,032 • 

Table 6.11: ANOVA results for the discriminant analysis classification 
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Discriminant analysis True status 

Unseeded Seeded Unseeded Seeded 

46,77 54,36 48,70 49,91 1 

. 

2,46 4,20 3,96 3,18 

-0,03 0,04 0,01 -0,00 
I 

0,03 0,08 0,07 0,05 

5,82 8,50 6,65 6,93 

0,09 0,26 0,12 0,16 

4,99 7,89 5,50 6,19 

0,06 0,25 0,08 0,14 

0,12 0,31 0,13 0,20 

4,28 7,77 5,36 5,72 

3,25 5,60 4,77 4,22 

-0,08 0,22 0,01 0,04 

5,64 8,04 6,11 6,63 

4,71 7,47 -5,39 -5,85 

3,63 6,02 5,34 4,62 

0,01 0,25 0,05 0,11 

5,54 8,18 5,94 6,63 

3,51 5,68 • 4,94 .4,40 



,...... 
0'} 
0'} 

Variable 

v118: Vertical centroid: Time to max 

v120: Vertical centroid: Persistence 

v125*: Reflectivity-weighted centroid: Time to max 

v126: Reflectivity-weighted centroid: Time to max rate of increase 

v127: Reflectivity-weighted centroid: Persistence 

v141: Peak dBz over whole volume: Max 

v143: Peak dBz over whole volume: Mean 

v165: Mean dBz at 6 km: Time to max 

v166*: Mean dBz at 6 km: Time to max rate of increase 

v169: Max height of 45 dBz: Max 

v 171: Max height of 45 dBz: Mean 

v182: Height of peak dBz: Max ratio 

v212: Summary statistic of dBz as a function of height 

v247: Summary statistic of the lowest scan as a function of dBz 

v252: Summary statistic of the lowest scan as a function of dBz 

v262: Summary statistic of the lowest scan as a function of dBz 

v272*: Max dBz in day 

Significance 

level 

0,036 

0,047 

0,010 

0,049 

0,016 

0,029 

0,045 

0,029 

0,001 

0,034 

0,048 

0,027 

0,013 

0;031 

0,049 

0,034 

0,001 

Table 6.11 (ctd): ANOVA results for the discriminant analysis classification 

Levene 

.; 

.; 

.; 

.; 

.; 

.; 

.; 

.; 

.; 

.; 

.; 

Discriminant analysis 

Unseeded Seeded 

3,16 5,31 

-0,05 0,00 

3,01 5,46 

3,10 4,85 

-0,06 0,01 

52,54 55,49 

50,73 53,62 

3,81 6,11 

3,14 6,12 

6997,90 8745,50 

6047,87 7722,91 

0,07 0,15 

1,08 0,52 

0,00 0,00 

0,00 0,00 

0,01 0,01 

58,57 61,74 
-

True status 

Unseeded Seeded 

4,14 4,05 

-0,03 -0,03 

4,19 4,03 

4,72 3,83 

-0,03 -0,03 

54,03 53,76 ! 

52,47 51,93 

4,88 4,76 

5,39 4,37 

7827,66 7721,04 

6939,95 6740,99 

0,09 0,10 

1,17 0,85 

0,00- 0,00 

0,00 0,00 

0,01 0,01 

60,74 59,88 
'---



6.6.2 Multilayer perceptron (MLP) classification 

The artificial neural network model, using the multilayer perceptron, classified 

33 of the 58 seeded storms as seeded and 25 storms as unseeded( cf. Tables 6.6 

and 6.7). 

Thirty-one storm properties were identified which have large differences 

between the means of the artificial neural network defined seeded and unseeded 

groups, based on the results of the 250 individual ANOVAs. These properties 

are listed in Table 6.12. The variables which do not violate the assumption 

of homoscedasticity, based on Levene's test for homogeneity of variances, are 

marked in column three of the table. The means of these variables for the 56 

unseeded and 58 seeded storms, as well as for the 58 seeded storms which were 

classified as unseeded and seeded by the artificial neural network model are 

also included. 

When the 31 storm properties v32, v38, v64, ... , v246, v261 were entered 

in a single step in the ANOVA, a substantial difference between the artificial 

neural network model defined seeded and unseeded groups were found only for 

v216 (Summary statistic of dBz as a function of height), as indicated by the 

5% level of significance of the ANOVA. Two more variables, v166 (Mean dBz 

at 6 km: Time to max rate of increase) and v222 (Summary statistic of dBz 

as a function of height), had large differences between the means of the two 

groups at the 10% level. 

Performing an ANOVA using the 17 homoscedastic explanatory variables 

identified four variables which have large differences between the artificial neu­

ral network model defined seeded and unseeded groups: v166 (Mean dBz at 

6 km: Time to max rate of increase), v169 (Max height of 45 dBz: Max), 

v216 (Summary statistic of dBz as a function of height) and v222 (Summary 

statistic of dBz as a function of height). 
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~ 
Ol 
00 

Variable Significance 

level 

v32: Peak dBz at decision time 0,032 

v38: Echo top: Persistence 0,022 

v64: Storm mass at 6 km: Max rate of increase 0,050 

v67: Storm mass at 6 km: Time to max mass 0,013 

v68*: Storm mass at 6 km: Time to max rate of increase 0,008 

v69*: Storm mass at 6 km: Persistence 0,006 

v70: Storm mass at 6 km: Max ratio 0,048 

v99: Rain flux at 6 km: Time to max 0,031 

v116*: Vertical centroid: Max rate of increase 0,002 

v118*: Vertical centroid: Time to max 0,002 

v120*: Vertical centroid: Persistence 0,001 

v121: Vertical centroid: Max ratio 0,018 

v123*: Reflectivity-weighted centroid: Max rate of increase 0,000 

v126: Reflectivity-weighted centroid: Time to max rate of increase 0,035 

v127*: Reflectivity-weighted centroid: Persistence 0,003 

v128*: Reflectivity-weighted centroid: Max ratio 0,009 

Table 6.12: ANOVA results for neural network model classification 

Levene 

./ 

./ 

./ 

./ 

./ 

./ 

. .; 

./ 

Neural network '!rue status 

Unseeded Seeded Unseeded Seeded 

45,80 53,02 48,70 49,91 

-0,04 0,03 0,01 -0,00 

0,10 0,27 0,13 0,20 

4,17 6,90 5,36 5,72 

2,75 5,34 4,77 4,22 

-0,13 0,17 0,01 0,04 

0,16 0,30 0,22 0,24 

4,53 6,85 5,39 5,85 

0,36 1,37 0,97 0,93 

2,33 5,36 4,14 4,05 

-0,07 0,01 -0,03 -0,03 
! 

0,01 0,05 0,03 0,03 

0,40 1,89 1,22 1,25 

2,77 4,-63 4,72 3,83 

-0,09 0,00 -0,03 -0,03 

0,01 0,06 0,03 0,04 
L____ ---



~ 

~ 
c:o 

Variable Significance Levene 

level 

v144: Peak dBz over whole volume: Time to max 0,030 ./ 

v166: Mean dBz at 6 km: Time to max rate of increase 0,015 ./ 

v169*: Max height of 45 dBz: Max 0,007 ./ 

v171: Max height of 45 dBz: Mean 0,044 ./ 

v172: Max height of 45 dBz: Time to max 0,039 ./ 

v179*: Height of peak dBz: Time to max 0,008 ./ 

v182: Height of peak dBz: Max ratio 0,045 

v186*: Summary statistic of mass as a function of height 0,000 

v188: Summary statistic of mass as a function of height 0,045 

v189: Summary statistic of mass as a function of height 0,036 ./ 

v 190: Summary statistic of mass as a function of height 0,044 

v216: Summary statistic of dBz as a function of height 0,045 ./ 

v222: Summary statistic of dBz as a function of height 0,034 ./ 

v246: Summary statistic of 3° area as a function of dBz - 0,041 

v261: Summary statistic of 3° area as a function of dBz 0,024 

Table 6.12 (ctd.): ANOVA results for neural network model classification 

Neural network 

Unseeded Seeded 

4,12 6,44 

3,06 5,36 

6474,39 8665,48 

5775,42 7472,47 

3,29 5,41 

2,89 5,73 

0,06 0,13 

0,30 1,56 

1592,97 1853,44 

1721,79 2003,21 

1442,79 1712,41 

0,00 0,00 

7,66 4,51 

0,02 0,00 

0,03 0,01 

True status 

Unseeded Seeded 

5,33 5,44 

5,39 4,37 

7827,66 7721,04 

6939,95 6740,99 

4,47 4,49 

4,51 4,51 

0,09 0,10 

1,07 1,02 

1714,11 1741,17 

1828,65 1881,91 

1578,69 1596,19 

0,00 0,00 

5,30 5,87 

{),01 0,01 

0,02 0,02 



6.6.3 Model correspondence 

Fifteen storm properties were found to have substantial differences between 

the so-called seeded and unseeded groups for both the discriminant analysis 

and the artificial neural network models. These properties are listed in Table 

6.13 together with the means of the 58 seeded and the 56 unseeded storms, 

and the means of the 58 seeded storms classified as unseeded and seeded by 

the discriminant analysis and artificial neural network models respectively. 

From this table it is seen that all the variables have higher values for 

the "seeded" storms than for the "unseeded" storms for both classification 

models. Persistence, a property for which large differences between the two 

groups were found for four of the variables, is the ratio of the maximum value 

during the 10 minutes prior to seeding to the maximum value at the beginning 

of the period, possibly indicating that these storms were still growing at the 

time of seeding. The time to reach a maximum is another property for which 

large differences between the two groups were found, for seven of the variables, 

supporting this notion. The remaining four variables for which large differences 

between the two groups were found all relate to dBz, i.e. the intensity of the 

reflectivity in the storms as measured by the radar. The higher values for these 

variables agrees with the hypothesis that storms should be seeded earlier in 

their evolution rather than later. 

The storm property v166 (Mean dBz at 6 krn: Time to max rate of in­

crease) must be singled out. This property has a large difference between the 

means of the "seeded" and "unseeded" storms for both models. It is also the 

only property that has a large difference between the means for both models 

according to the analyses of variance where all homoscedastic variables were 

entered into the analyses (21 storm properties in the case of the discriminant 

analysis and 17 storm properties in the case of the artificial neural network 

model). 
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Variable Discriminant analysis 

Unseeded Seeded 

v32: Peak dBz at decision time 46,77 54,36 

v38: Echo top: Persistence -0,03 0,04 

v64: Storm mass above 6 km: Max rate of increase 0,12 0,31 

v67: Storm mass above 6 km: Time to max 4,28 7,77 

v68: Storm mass above 6 km: Time to max rate of increase 3,25 5,60 

v69: Storm mass above 6 km: Persistence -0,08 0,22 

v99: Rain flux at 6 km: Time to max 4,71 7,47 

vl18: Vertical centroid: Time to max 3,16 5,31 

v120: Vertical centroid: Persistence -0,05 0,00 

v126: Reflectivity-weighted centroid: Time to max rate of increase 3,10 4,85 

v127: Reflectivity-weighted centroid: Persistence -0,06 0,01 

v166: Mean dBz at 6 km: Time to max rate of increase 3,13 6,12 

v169: Max height of 45 dBz: Max 6997,90 8745,50 
-

v 171: Max height of 45 dBz: Mean 6047,87 6740,99 

v 182: Height of peak dBz: Max ratio 0,079 0,10 

Table 6.13: Storm properties corresponding to both models 

MLP 

Unseeded 

45,80 

-0,04 

0,10 

4,17 

2,75 

-0,13 

4,53 

2,33 

-0,07 

2,77 

-0,09 

3,06 

6474,39 

5775,42 

0,06 
-- ---

True status 

Seeded Unseeded Seeded 

53,02 48,70 49,91 

0,03 0,01 -0,00 

0,27 0,13 0,20 I 

6,90 5,36 5,72 

5,34 4,77 4,22 

0,17 0,01 0,04 

6,85 5,39 5,85 

5,36 4,14 4,05 

0,01 -0,03 -0,03 

4,63 4,72 3,83 

0,00 -0,03 -0,03 

5,36 5,39 4,37 

8665,48 7827,66 7721,04 

7472,48 6939,95 6740,99 

0,13 0,09 0,10 



Lastly, oneway analyses of variance were performed between the seeded and 

unseeded storms which were classified as seeded by the discriminant analysis 

model and the artificial neural network model respectively. Only v247, v252 

and v262 - all three summary statistics of the lowest scan as a function of dBz -

had large differences between the seeded and unseeded storms for the 35 storm 

properties identified as having large differences by the discriminant analysis. 

No differences were found with respect to the 31 storm properties identified 

by the artificial neural network model, nor for the 15 storm properties which 

were common to both models. This is as expected, and confirms that the 

storm properties behaved consistently for the storms which were identified by 

the two models as seeded, regardless of their true seeding status. 

6. 7 Conclusion 

Both the statistical discriminant analysis model and the artificial neural net­

work model performed well at separating those seeded storms which had ap­

parently reacted positively to seeding and those which had apparently not 

reacted, although they used different criteria in the process. In view of the 

relatively small sample size, the artificial neural network model performance 

was of particular interest. 

The analyses of variances, performed with the two model classification of 

the 58 seeded storms as "seeded" and "unseeded" as factor, identified fifteen 

storm properties with respect to which large differences were found for both 

models. Based on these storm properties, indications are that storms appro­

priate for seeding are still in a growing phase. These properties are readily 

calculated from the radar measurements in the ten minutes before the seeding 

decision is taken and may therefore indeed be very useful to identify suitable 

storms for seeding in future weather modification operations. 
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Chapter 7 

Finale 

This chapter provides a summary of the contents of the thesis, and presents 

proposals for further research initiatives emanating directly from the research 

conducted, as well as conceived by the stimulation of the research process. 

7.1 Summary 

7.1.1 Literature study 

The extensive literature study on artificial neural network methodology has 

revealed that the nature of the research in this field and the related applica­

tions are strongly interdisciplinary, attracting scientists and technologists from 

a wide range of disciplines, including computer scientists, mathematicians, 

meteorologists, electrical and computer engineers, physicists, neuroscientists, 

psychologists and financial analysts. 

Chapters 2 to 4 summarize the results of the literature study in a very 

specific way. Chapter 2 poses an artificial neural network in the context of 

its neurological counterpart and compares Statistics with artificial neural net­

works, while Chapter 3 sets artificial neural networks in a historical context, 

tracing the evolution of the field over the past few decades. Chapter 4 sets out 
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and explains the various components of artificial neural network systems in a 

logical and coherent way. This representation is unique and was extracted and 

assimilated from the vast body of literature on artificial neural networks, all 

written from different perspectives by authors involved with artificial neural 

networks across the spectrum of application disciplines. 

7 .1.2 Optimization algorithm 

The recursive algorithm that was developed to optimize the number of hidden 

nodes in a feedforward artificial neural network, as explained in Chapter 5, 

demonstrates how statistical methodology can be applied to develop and refine 

neural network methodology. This algorithm is an original contribution to the 

field of artificial neural network methodology that simplifies the process of 

artificial neural network architecture selection, thereby reducing the number 

of training sessions necessary to find a model that fits the data adequately. 

7.1.3 Modelling 

Chapter 6 presents the statistical modelling of weather modification data us­

ing both an artificial neural network and a classical statistical technique. The 

research objective in this chapter was two-pronged. The one goal was to as­

certain how well an artificial neural network model performs on a smaller data 

set in comparison with an analogous statistical technique. The other goal was 

to address the problem of selecting appropriate storms for seeding in weather 

modification experiments. 

The results of the modelling process indicated that the classification model 

obtained by the statistical discriminant analysis and the classification model 

obtained by the multilayer perceptron both performed well at separating those 

seeded storms which had apparently reacted positively to seeding and those 

which had apparently not reacted to seeding, although the two techniques used 
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very different criteria in the process. In view of the relatively small sample 

size- only 114 storms were included in the experiment - the artificial neural 

network model performance was of particular interest as most of the practical 

applications of artificial neural networks typically deal with very large data 

sets. In this case, in any event, the effectiveness of artificial neural networks 

as a modelling tool involving smaller data sets has been established. 

Furthermore, using the classification results to divide the seeded storms 

into those storms that resemble unseeded storms and those storms that seemed 

to have responded positively to seeding, and performing analyses of variance on 

the storm properties, succeeded in identifying a number of radar-derived vari­

ables that may be useful to differentiate between storms suitable for seeding 

and those that are not. As the calculations are based on the radar measure­

ments taken in the ten minutes before the seeding decision was taken, the 

variables that have been identified as having possible explanatory power may 

be calculated by the radar operators in real time before the actual decision to 

seed a particular storm is taken. This will increase the probability of a positive 

seeding effect, with obvious monetary benefits. 

The work in this chapter, including the formulation of the problem, the 

approach that has been followed to solve it and the novel modelling application, 

makes an original contribution to the interdisciplinary fields of Statistics and 

Artificial Neural Networks as well as to the discipline of Meteorology. 

The decision to use an artificial neural network package for the analyses 

in this chapter, as opposed to programming the artificial neural network algo­

rithm, was motivated by the availability of sophisticated software and the ease 

of its use. This will inevitably lead to the increased use of these packages by 

data analysts, in the same way that statistical software is nowadays routinely 

included in spreadsheets and used extensively by non-statisticians. 
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7.2 Future research 

For a statistician to get involved with artificial neural networks is tantamount 

to opening a can of worms. Research opportunities abound, both from a 

theoretical and a practical perspective. 

A few proposals, stemming directly and indirectly from the research con­

ducted for this thesis, are briefly outlined below. 

• A radial basis function artificial neural network can be used instead of 

a multilayer perceptron to develop a classification model for storms ( cf. 

Chapter 6). The results of this model can be compared to the results of 

the discriminant analysis model, as well as to the results of the multilayer 

perceptron. 

• A clustering artificial neural network, e.g. a Kohonen neural network, 

can be employed to cluster storms that have similar profiles with respect 

to the 250 radar-derived storm properties ( cf. Chapter 6). As in this 

thesis, the modelling results of the artificial neural network can be com­

pared to the statistical results of a cluster analysis. In order to perform 

these analyses in SPSS, the data file, which is in a spreadsheet format 

with cases (i.e. storms) in the rows and variables (i.e. storm properties) 

in the columns, will have to be transposed 

• The modelling results using an artificial neural network software pack­

age can be compared to the results of algorithms programmed by the 

user. This initiative may be marginal to the field of Statistics, but will 

nonetheless be important in establishing the credentials of artificial neu­

ral network software amongst data analysts who rely on these packages. 

• The application of artificial neural network models to geostatistical prob­

lems is tantalizing as data from this discipline is by its very nature sparse. 
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Appendix A 

Description of the 250 NPRP 

storm properties 

A. Seven variables relating to the identification of the storm: 

1. Year 

2. Month 

3. Day 

4. Sequence (21 = Nelspuit; 33 =Bethlehem) 

5. Track number 

6. Envelop number (for the randomization of Seed/No seed) 

7. Seed (0 = Not seeded; 1 = Seeded) 

B. Fourteen measures of rain mass: 

1 - 7: RAIN MASS AT THE LOWEST SCAN 

1. 0- 10 minutes period before seeding decision 

2. 0- 10 minutes after seeding decision (seeding taking place in this period) 

3. 10-20 minutes after the seeding decision (seeding may still be taking 
place) 

4. 20-30 minutes after the seeding decision 

5. 30-40 minutes after the seeding decision 
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6. 40-50 minutes after the seeding decision 

7. 50-60 minutes after the seeding decision 

8 - 14: RAIN MASS AT 6KM ALTITUDE 

8. 0- 10 minutes period before seeding decision 

9. 0- 10 minutes after seeding decision (seeding taking place in this period) 

10. 10-20 minutes after the seeding decision (seeding may still be taking 
place) 

11. 20-30 minutes after the seeding decision 

12. 30-40 minutes after the seeding decision 

13. 40-50 minutes after the seeding decision 

14. 50-60 minutes after the seeding decision 

C: 250 measurements 10 minutes before the seeding decision 

1. Duration of period (10 minutes) (in decimal hours) 

2. Time since storm origin (decimal hours) 

3. Storm speed in krn/hr 

4. Direction of movement (degrees) 

5. Mean X co-ordinate (measured from the radar) 

6. MeanY co-ordinate (measured from the radar) 

7. Mean range (distance from the radar) 

8. Decision time 

9. Volume at decision time 

10. Peak dBz at decision time 

ECHO TOPS (11-17) 

11. Max 

12. Max rate of increase 

13. Mean 

14. Time to max 
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15. Time to max rate of increase 

16. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

17. Max ratio ( = max value in the period I value at beginning) 

STORM DEPTH (18-24) 

18. Max 

19. Max rate of increase 

20. Mean 

21. Time to max 

22. Time to max rate of increase 

23. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

24. Max ratio ( = max value in the period I value at beginning) 

STORM VOLUME (25-32) 

25. Max 

26. Max rate of increase 

27. Time integral 

28. Mean 

29. Time to max 

30. Time to max rate of increase 

31. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

32. Max ratio ( = max value in the period I value at beginning) 

TOTAL STORM MASS (33-40) 

33. Max 

34. Max rate of increase 

35. Time integral 

36. Mean 

37. Time to max 
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38. Time to max rate of increase 

39. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

40. Max ratio ( = max value in the period I value at beginning) 

MASS OF THE STORM ABOVE 6 KM (41-48) 

41. Max 

42. Max rate of increase 

43. Time integral 

44. Mean 

45. Time to max 

46. Time to max rate of increase 

47. Persistence(= max value in the period I max value at beginning or end 
of the period) 

48. Max ratio ( = max value in the period I value at beginning) 

STORM AREA AT LOWEST SCAN (3 DEGREES) ( 49-56) 

49. Max 

50. Max rate of increase 

51. Time integral 

52. Mean 

53. Time to max 

54. Time to max rate of increase 

55. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

56. Max ratio ( = max value in the period I value at beginning) 

STORM AREA AT 6 KM (57-64) 

57. Max 

58. Max rate of increase 

59. Time integral 

60. Mean 
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61. Time to max 

62. Time to max rate of increase 

63. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

64. Max ratio ( = max value in the period I value at beginning) 

RAIN FLUX AT LOWEST SCAN (3 DEGREES) (65-72) 

65. Max 

66. Max rate of increase 

67. Time integral [=Rain mass at lowest scan] 

68. Mean 

69. Time to max 

70. Time to max rate of increase 

71. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

72. Max ratio ( = max value in the period I value at beginning) 

RAIN FLUX AT 6 KM (73-80) 

73. Max 

7 4. Max rate of increase 

75. Time integral [=Rain mass at 6 km] 

76. Mean 

77. Time to max 

78. Time to max rate of increase 

79. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

80. Max ratio ( = max value in the period I value at beginning) 

PRECIPITABLE WATER (81-88) 

81. Max 

82. Max rate of increase 

83. Time integral 
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84. Mean 

85. Time to max 

86. Time to max rate of increase 

87. Persistence(= max value in the period I max value at beginning or end 
of the period) 

88. Max ratio ( = max value in the period I value at beginning) 

RATIOS (89-92) 

89. PROP(89)=PROP(35)IPROP(67) 

90. PROP(90)=PROP(43)IPROP(75) 

91. PROP(91)=PROP(36)IPROP(67) 

92. PROP(92)=PROP(44)IPROP(74) 

VERTICAL CENTROID(93-99) 

93. Max 

94. Max rate of increase 

95. Mean 

96. Time to max 

97. Time to max rate of increase 

98. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

99. Max ratio (=max value in the period I value at beginning) 

REFLECTIVITY-WEIGHTED CENTROID (100-106) 

100. Max 

101. Max rate of increase 

102. Mean 

103. Time to max 

104. Time to max rate of increase 

105. Persistence ( = max value in the period I max value at beginning or end 
of the period) 
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106. Max ratio ( = max value in the period I value at beginning) 

REFLECTIVITY-WEIGHTED CENTROID MINUS CENTROID 
(107-113) 

107. Max 

108. Max rate of increase 

109. Mean 

110. Time to max 

111. Time to max rate of increase 

112. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

113. Max ratio ( = max value in the period I value at beginning) 

PROPERTIES(114-115) 

114. PROP(114)=Discriminant function (of unknown value) 

115. PROP(115)=PROP(67)IPROP(51) 

RAINFLUX AT TIMES 0 AND 10 (116-118) 

116. Max 

117. Max rate of increase 

118. Max ratio 

PEAK dBz OVER WHOLE VOLUME (119-125) 

119. Max 

120. Max rate of increase 

121. Mean 

122. Time to max 

123. Time to max rate of increase 

124. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

125. Max ratio ( = max value in the period I value at beginning) 

MEAN dBz OVER WHOLE VOLUME (126-132) 

126. Max 
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127. Max rate of increase 

128. Mean 

129. Time to max 

130. Time to max rate of increase 

131. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

132. Max ratio ( = max value in the period I value at beginning) 

MEAN dBz AT LOWEST SCAN (3 DEG.) (133-139) 

133. Max 

134. Max rate of increase 

135. Mean 

136. Time to max 

137. Time to max rate of increase 

138. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

139. Max ratio ( = max value in the period I value at beginning) 

MEAN dBz AT 6 KM (140-146) 

140. Max 

141. Max rate of increase 

142. Mean 

143. Time to max 

144. Time to max rate of increase 

145. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

146. Max ratio ( = max value in the period I value at beginning) 

MAX HEIGHT OF 45 dBz (147-153) 

147. Max 

148. Max rate of increase 

149. Mean 
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150. Time to max 

151. Time to max rate of increase 

152. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

153. Max ratio ( = max value in the period I value at beginning) 

HEIGHT OF PEAK dBz (154-160) 

154. Max 

155. Max rate of increase 

156. Mean 

157. Time to max 

158. Time to max rate of increase 

159. Persistence ( = max value in the period I max value at beginning or end 
of the period) 

160. Max ratio ( = max value in the period I value at beginning) 

THE FOLLOWING STATISTICS ARE DESIGNED TO CHARAC­
TERIZE THE STORM USING THE HEIGHT DISTRIBUTION OF 
MASS AND DBZ, AND THE DISTRIBUTION OF 3 DEG AREA AND 
VOLUME WITH DBZ. 

THE PROGRAM COMPUTES THE MASS AND PEAK DBZ AT VAR­
IOUS HEIGHTS, AND THE DISTRIBUTION OF 3 DEG AREA AND 
VOLUME WITH DBZ. IN ORDER TO SUMMARIZE THESE DIS­
TRIBUTIONS. THE FOLLOWING ARE COMPUTED FOR EACH: 

• MEAN 
• STANDARD DEVIATION 
• NEGATIVE OF SKEWNESS 
• MODE 

FOR EACH STATISTIC THE FOLLOWING ARE COMPUTED: 

• MEAN 
• MAX 
• MIN 
• MAX RATE OF INCREASE 
• MAX RATE OF DECREASE 
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MASS AS A FUNCTION OF HEIGHT (161-180) 

DBZ AS A FUNCTION OF HEIGHT (181-200) 

VOLUME AS A FUNCTION OF DBZ (201-220) 

3 DEG AREA AS A FUNCTION OF DBZ (221-240) 

DAY PROPERTIES (241-250) 

The next 10 are properties of the day rather than of the storm: 

241. Average mixing ratio below 60 MB 

242. Temp. CCL 

243. DT 500MB 

244. Temp. ratio 

245. Number of tracks for day 

246. Cum. ATI for day 

247. Max. vol. in day 

248. Max. ROI of vol. in day 

249. Max. top in day 

250. Max. dBz in day 
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Appendix B 

Missing value analysis 

B.l Table of estimated missing values 

Storm Missing values Substitute 

rml rmc 

16 rml7;rmc7 68 0 

48 rml6;rmc6 80 40 

rml7;rmc7 100 0 

59 rml7; rmc7 230 200 

100 rml7;rmc7 380 175 

108 rml6;rmc6 0 0 

rml7;rmc7 0 0 

Table B.1: Additional storms with missing values 
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B.2 Graphs used to estimate missing values 

Storm 16 
400,..-------------, 

Rsq = 0.5368 
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Figure B-1: Rain mass at lowest scan for storm 16 
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Figure B-2: Rain mass at lowest scan for storm 48 
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Storm 59 
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Figure B-3: Rain mass at lowest scan for storm 59 
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Figure B-4: Rain mass at lowest scan for storm 100 
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Storm 108 
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Figure B-5: Rain mass at lowest scan for storm 108 
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Figure B-6: Rain mass at 6 km scan for storm 16 
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Figure B-7: Rain mass at 6 km scan for storm 48 
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Figure B-8: Rain mass at 6 km scan for storm 59 
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Figure B-9: Rain mass at 6 km for storm 100 
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Figure B-10: Rain mass at 6 km for storm 108 
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