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Abstract

Formal specification of software systems has been very promising. Critics against the end
results of formal methods, that is, producing quality software products, is certainly rare. In-
stead, reasons have been formulated to justify why the adoption of the technique in industry

remains limited. Some of the reasons are:
e Steap learning curve; formal techniques are said to be hard to use.
e Lack of a step-by-step construction mechanism and poor guidance.
e Difficulty to integrate the technique into the existing software processes.

Z is, arguably, one of the successful formal specification techniques that was extended to
Object-Z to accommodate object-orientation. The Z notation is based on first-order logic
and a strongly typed fragment of Zermelo-Fraenkel set theory. Some attempts have been
made to couple Z with semi-formal notations such as UML. However, the case of coupling
Object-Z (and also Z) and the Use Case Maps (UCMs) notation is still to be explored.

A Use Case Map (UCM) is a scenario-based visual notation facilitating the requirements
definition of complex systems. A UCM may be generated either from a set of informal
requirements, or from use cases normally expressed in natural language. UCMs have the
potential to bring more clarity into the functional description of a system. It may furthermore
eliminate possible errors in the user requirements. But UCMs are not suitable to reason
formally about system behaviour.

In this dissertation, we aim to demonstrate that a UCM can be transformed into Z and
Object-Z, by providing a transformation framework. Through a case study, the impact of
using UCM as an intermediate step in the process of producing a Z and Object-Z specification
is explored. The aim is to improve on the constructivity of Z and Object-Z, provide more
guidance, and address the issue of integrating them into the existing Software Requirements

engineering process.

Keywords: Semi-formal specification techniques, UCMs, Formal methods, Z, Object-Z,

Software Process, Specification Validation, Comparing Specifications, Spiral Model.
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Chapter 1

Introduction

1.1 Context and motivation

Specifying a software system formally, implies in general, the use of a specification lan-
guage based on mathematics (e.g. set theory and predicate logic) to describe precisely the
properties of the system (Henderson [39], O'Regan [66]). Formal methods came into soft-
ware engineering with a great deal of promise. Arguably, it may be used in every phase
of software development life cycle (SDLC) to produce quality products, provides detailed
and correct requirement specifications, and detects ambiguous, incomplete and inconsistent
statements in system requirements at an early stage of the system development process. A
formal requirements specification also offers the advantage being potentially amenable to

automated reasoning and analysis (Nuseibeh and Easterbrook [65], van der Poll [90]).

However, after a long period of intensive research and development, the use of “formal
methods” in industry is still limited (see Abrial [2], Knight et al. [49]). A number of possible
reasons have been raised: amongst others, high initial cost (arguable, because the incurred
cost at the specification phase, is said to be compensated for at the later design and im-
plementation stages), and a steep learning curve, due to the limited mathematical skills of
software engineers and practitioners resulting in a limited number of Formal methods ex-
perts. Conversely as Bowen and Hinchey [14] suggest, “Thou shalt have a Formal method
guru on call”. However, van Lamsweerde [95] observes that formal specifications are hard
to develop and assess because of the diversity and subtlety of errors that can be made, and
the multiplicity of modelling choices that can be considered. Similarly, formal techniques
(together with their resulting products), are said to be isolated from other software products,

and processes both vertically and horizontally:

1. Vertical isolation describes a twofold gap; the first between the initial goals, require-

1



ments, domain constraints, etc. and the resulting formal specification. The second,
between the formal specification and the high level-design, leading to the final product.
Figure 1.1 illustrates these gaps, and raises two important questions to address the is-
sue about the integration of formal specifications into the entire software development
process. Firstly, the need to investigate, how initial goals are refined, user requirements
are captured, defined and analysed using formal methods. Secondly, the techniques,
processes or tools allowed, and how they are related to final specifications. The next

question involves the refinement of formal specifications, into final products.

Goals, Requirements, 2 Formal 9 High level design
domain constrains, etc. | & specification = | /Final products

Figure 1.1: Illustration of vertical isolation

2. Horizontal isolation is specifically concerned with other software products formal

specifications should be linked to.

It is also suggested that formal specification techniques do not provide enough guidance for
a system specification (van Lamsweerde [95]). This implies the limited, or non-existence, of
a systematic constructive mechanism for building complex specifications in a step-by-step
approach. This raises the same problem mentioned above, about the wertical isolation
of formal specifications, that is, the need to investigate the process of constructing a formal
specification from scratch (requiring initial goals or requirements from users). To this end,
two alternative views are plausible: the first, is to consider a formal specification approach
as a complete process. The second, is to regard it as a step within the software specification

process, that needs to be linked to other existing methods.

The idea of considering a formal specification approach as a complete specification pro-
cess is largely rejected by the literature typified by this quote from Bowen and Hinchey [14]
“Thou shalt not abandon thy traditional development methods”. A possible reason, is that
the main characteristics of such approaches stem from the specification notation languages
used at a specific phase of the design process: Thou shalt choose an appropriate notation.
Examples of formal specification languages (methods) are: VDM, B, Z , Z++, Object-Z,
etc. It may be important to observe, that formal techniques also follow (like other specifica-
tion techniques and methods) the generic Requirements Engineering process, that broadly
includes two inter-related phases: a phase during which requirements are elicited and anal-
ysed, and the specification and validation phase. As illustrated in Figure 1.2, it is strongly

suggested, that formal techniques be introduced into the process, at the specification and
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validation phases.

System Formal
Requirements |€¢—»| ormal
specification specification

System Architectural
modelling Design

Figure 1.2: Formal specification in Software Development Process (Sommerville [82])

User
requirements
definition

Thus, research has been directed at finding a way to couple existing semi-formal techniques,
(e.g. Use Cases, Unified Modelling Language (UML), Use Case Maps (UCM), etc.), that are
said to be more suitable at the initial phase, with formal specification methods. Amongst
others, the following cases from the literature are illustrative: Coupling UML and B as
suggested by Snook and Butler [81], that resulted in creating a new method, namely U2B,
UML and TROLL (UML-TROLL) by Gogolla and Richters [33], generating Object-Z spec-
ifications from Use Cases (advocated by Moreira and Araidjo [63]), and translating UCM
diagrams to Communicating State Machine specifications(UCM-ROOM design method) put
forward by Bordeleau and Buhr [12]. Other similar cases are found in: Ledru [51], Matta
et al. [55], Wieringa et al. [97].

A Use Case Map is a scenario-based, semi-formal specification technique, that gained popu-
larity due to its applicability and adaptability for various purposes. A UCM model may be
generated from a set of informal requirements, or use cases, expressed in natural language.
It facilitates the understanding, by humans, of large and complex systems by combining, in
a single view, the behavioural and architectural structure of the system. The notation also
has the advantage of facilitating the capture and definition of requirements during the needs
analysis phase. As mentioned above, some attempts have been made to translate UCMs
into other languages, including a number of formal notations. However, little is known
about coupling UCM with Z and Object-Z. The absence of transformations from UCM to Z
and Object-Z (apart form this work) is confirmed in a systematic literature survey on URN
Amyot and Mussbacher [8].



1.2 Problem statement

As mentioned above, the constructivity problem: the lack of a step-by-step methodology and
poor guidance in the construction of formal specifications, are amongst the key limitations
of formal specification techniques. This dissertation intends to investigate the impact (on
the final Object-Z specification), of using the semi-formal method UCM in the process of

constructing a Z and an Object-Z specification. To this end, the research questions are:

RQ 1: Are UCM models transformable to Z and Object-Z specifications? In other words,
can UCM models of a system, be used as inputs for generating Z and Object-Z

specifications?

RQ 2: What would the impact of UCMs on be the quality of a Z and an Object-Z specifi-
cation obtained by transforming a UCM model?

RQ 3: What would the impact of UCMs be on the process of constructing Z and Object-Z

specifications, if the specification process starts with UCM?

The reasons for addressing these questions are presented next.

1.2.1 Research objectives
This work aims to achieve the following:

e Demonstrate that the use of a UCM method can complement Z and Object-Z, by
providing a mechanism to transform a UCM model of a system, into Z and Object-Z

specifications.

e Demonstrate the usefulness of UCM in the process of constructing Z and Object-Z
specifications, by evaluating the quality of an Object-Z specification obtained from a
UCMs model.

e Improve the constructivity of Z and Object-Z, by suggesting a step-by-step method-

ology, whereby a UCM is used as an intermediate step.

The use of the UCM modelling technique in the construction of Z and Object-Z specifications

can, it is argued, significantly improve the quality of specification and provide more guidance.

1.3 The research approach

To address the above problem, a threefold research approach is adopted, involving a case

study approach, content analysis and comparative approaches (Hofstee [40]). For the case
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study,

a requirements definition is given in a natural language (English). Two Object-Z

specifications are derived from it following two different construction paths, as illustrated in

Figure 1.3. Since the object-oriented extension of Z, Object-Z mostly affects the structuring
Chapter 1
Vi
. Case study !
S (English) [T >
i Pommmmmmoes >Chapter 3
Chapter 3<———4+ /Nt > i
P i B hapter 2 <t---o-] UCMS f-mmmmmmmmmmmmmmmmmmm oo >
e Standard Z >Chapter 2 < :
i 7] Elements describing :
E / system behaviour i
| S B e < i
\:/ ,'/ Elements describing E">Cl?apter 5:
Chapter 4<--------1 / system architecture Standard Z | | M \EZ
5 A ?_’::::::::51 |
i v _/ . v o
: Object-Z | o Comparison »| ObjectZ Chapter 6
| (2-02) 7 ; (UCM-02) ;
E | Chapter 7 | ! !
NN ] Vo ] Vo N
Ch\épter 8--------->Chapter 9
Chap\f/er 10

Figure 1.3: Research strategy

of Z components, but makes very little changes to the Z description of the functionalities of

a system (content of Z components). Z is maintained as an intermediate step in each of the

two specification processes adopted in this dissertation.

Pathl:

Path2:

(Informal requirements — Z — Object-Z). To validate the suggested process in
Figure 1.2, this path was deliberately chosen to observe the impact of moving directly
from an informal set of requirements, to a formal specification. Therefore, the initial
requirements are informally analysed so as to identify objects and operations that
are described in Z. Then, the Z specification is translated into Object-Z, i.e. the
Z-0Z specification.

(Informal requirements — UCMs — (Z specification — Object-Z)). The

initial requirements are first translated into UCMs models. Since UCMs allow a
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single model to encapsulate both the architectural structuring of components, and
the description of the functionalities of the system, this approach proposes translat-
ing the structure of a system into meta-data of Object-Z, and then translating the
functionalities to Z then, to Object-Z, to complement the meta-data. This process

produces an Object-Z specification, says UCM-OZ .

Each of the resulting specifications is evaluated separately (content analysis approach) to
identify its quality. Based on the validation results, the two specifications are compared
(comparative analysis approach), to measure the impact of using UCMs in the process. The
transformability of UCMs to Z and Object-Z is investigated in Path2 when moving from a
UCM, to Z and Object-Z. The thick and bold arrows indicate the area from which the main
contributions were derived. Dashed arrows indicate the chapters of the dissertation, and the

links between them.

1.3.1 Weakness of the approach

A possible limitation of the approach is the risk of subjectivity. Since the same person designs
both specifications, it is plausible that insights gained from constructing one specification,
may influence the other. However, the effect would be limited, since a specification is not
done continuously from the beginning to the end. Intermediate actions, involving different

activities, are performed between the specification phases.

1.4 Significance of the research

This work is an intermediate phase towards exploiting the benefits of UCMs, to ameliorate
the complexities of formal specification techniques. The aim is to create an iterative and
interactive environment for generating 7Z and Object-Z specifications, where UCMs serve as
an interface. The work also aims to provide a mechanism to evaluate and compare software

specifications.

1.5 Dissertation layout

As mentioned above, chapters and the links between them are depicted in Figure 1.3. Chap-
ter 2 presents an overview of the literature on UCMs, Z and Object-Z. It starts with an
overview of UCMs, where the general concepts of the notation and elements of UCMs are
presented. This is followed by a summary of some extensions of the original notation, pro-

posed in the literature and the available tool support. Thereafter, an overview of Z and
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Object-Z are presented. Important concepts are illustrated, with examples, as well as a list
of a number of Z and Object-Z tool supports.

Chapter 3 focuses on the case study. It defines user requirements and indicates the
approach to be followed. A UCM model, as well as a Z specification, are derived from the
case study. Some observations made during the UCM modelling and the Z specification are
noted.

Chapter 4 aims to transform the Z specification of the case study, into Object-Z. The
transformation process is first presented, followed by the Object-Z transformation of the
input Z document, where Object-Z class schemas are created to encapsulate Z elements.

Chapter 5 proposes a framework mechanism, to generate Z and Object-Z specifications
from a UCM. The basic transformation strategy is first presented, followed by an analy-
sis of the conceptual relationship between the three specifications UCM, Z and Object-Z.
Concepts in these three notations are analysed, and a set of guidelines is proposed for the
transformation process.

Chapter 6 applies the framework, proposed in Chapter 5, to the UCMs of the case study
to generate a Z and an Object-Z (UCM-OZ) specification. A UCM stubbing technique is first
applied to the input UCM, to split it into sub-maps, as recommended by the framework.
Then, each sub-map is transformed individually. Where necessary, formulas are included
in the class schemas to describe the relationships between resulting sub-systems such, as
inheritance, polymorphism, etc.

Chapter 7 proposes a generic framework to guide the validation of a software specification.
A conceptual relationship between a software specification and four aspects of a system is
analysed. These are stakeholder expectations; the application domain; notation language
and tool support; and finally, the envisioned software product. The characteristics of a
quality software specification are briefly explored, followed by the proposed specification
validation strategy, based on Boehm'’s spiral model.

Chapter 8 applies the framework in Chapter 7, to Z-OZ and UCM-OZ. A common scope
for the validation is first defined. A sample list of properties expected from a satisfactory
specification is identified and related to stakeholder expectations, by means of mathematical
formulas. This is followed by a brief presentation of the validation criteria. The two speci-
fications, Z-OZ and UCM-OZ, are respectively validated relative to each property identified
earlier.

Chapter 9 presents an analysis of the results of the validation in Chapter 8, by compar-
ing Z-OZ and UCM-OZ. The aim is to evaluate the impact of using UCMs in the process
of generating Z and Object-Z documents. The analysis approach is first presented where
guidelines are defined. This is followed by a comparison of the two specifications relative to

the list of properties identified earlier in Chapter 8. The result of the comparison is shown
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in a tabular form.
Chapter 10 concludes this dissertation. It summarises the main findings and relates them
to the research questions, as well as presenting the advantages of this work and highlights

further research which could be undertaken.



Chapter 2

Introduction to Use Case Maps, Z
and Object-Z

This chapter introduces the three modeling and specification languages used in this disser-
tation: the Use Case Maps (UCMs), the Z and Object-Z notations. Since each of these
notations covers a large spectrum of concepts, for space purpose, only those concepts that
are used in this dissertation are discussed, starting with UCMs, then followed by Z and
Object-Z.

2.1 Use Case Maps

The UCMs modelling technique was proposed by Buhr and Casselman [20] to document and
view a system (that Buhr called behavioural fabric) as mentally perceived by a designer in
the light of requirements. Such perception has not been documented in software develop-
ment process, the model thus, aims to bridge the gap between User requirements and design
models (see Buhr [17, 19]). Figure 2.1 illustrates a UCM model documenting high level de-
sign constructs to represent a designer’s perception of how the behaviour of a system forms

part of in the development process.

Use Case Maps accept as inputs user requirements, either expressed in natural language,
or transformed into Use Cases (as indicated by Amyot [4]). A Use Case may be described as
a set of scenarios, which are sequences of actions performed by the system to yield an observ-
able result to its environment (see Booch et al. [11]). A Use Case Map as a scenario-based
notation, describes in an abstract way, how the organisational structure and the emergent
behaviour of a system are intertwined (van der Poll et al. [94]). It gives a road-map-like view
of the cause-effect paths, traced through a system by scenarios, in a compact map. It enables

many scenario paths to be expressed in a single diagram in a way that reveals patterns and
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Design

Figure 2.1: Documenting a behavioural fabric

saves them for reuse (see Buhr [17]). Figure 2.2 shows a simple UCM model that illustrates

the graphical representation of some UCM elements. A Use Case Map basically comprises

Cashier

Check Customer Pay cash

.— Create account __I

Cuskomer wanks bo payjcredit Irvnice paid

Figure 2.2: An example of a UCM model

a set of abstract components, discussed below, to describe the organisational structure of a

system and a set of paths to describe Use Cases.

The UCM elements that appear on Figure 2.2 are explained in the next Sections.

2.1.1 UCM abstract components

An abstract component may be viewed as a self-contained operational unit with internal state
and links that enable the component to interact with others. Each component is responsible
for performing responsibility points located in it and chained with path segments. Different
types of components are provided by the UCM notation: Team, Process and Object (see
Figure 2.3).
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Process Object

Team

Figure 2.3: Abstract components

Team

A Team component is a generic component allowed to contain any other component type

including other teams. It is represented graphically by a rectangle.

Process

A Process is an autonomous, active component, that may operate concurrently with other
processes. A process may contain passive components, those that do not have control over
the responsibilities that they perform, such as Objects. It is represented graphically by a

parallelogram.

Object

An Object is a passive component, that supports data or procedural abstraction through
an interface. Objects perform their own responsibilities but do not have ultimate control of

when they are activated.

2.1.2 Basic path notation

Figure 2.4 shows an example of basic path notation. It comprises: a Start Point, a Path

Segment, a Responsibility Point, and an End Point.

Skart Paink Responsibility End Paink

® 3¢ |

Figure 2.4: Basic UCM path notation

Start point

A Start Point is represented graphically by a filled circle. It is defined as a set of possible
triggering events and optionally a precondition. The execution of a path begins when some

triggering events occur with the precondition enabled.
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Responsibility

A Responsibility Point is represented graphically by a cross. It illustrates a generic processing
that is to be performed, which can be for example, an operation, a task, an action, a function

and so forth.

End Point

An End Point is represented by a vertical bar and is defined by a set of resulting events and
an optional post-condition that terminates the execution of a path.

Path Segment

A UCM path segment is represented graphically by a continuous line with any possible and
unambiguous shape. It may sometimes be useful to indicate the direction of a path segment,
but in general it is not necessary. A path segment is used to express an ordered sequence of

UCM elements that require to be executed.

Use Case Maps provide the concept of path connectors to describe alternative use cases,

and parallel executions of scenarios.

2.1.3 Path connectors

A UCM path is the execution route of one or more scenarios, and may be composed of
a number of path segments, interconnected by means of path connectors to achieve path
coupling, and express interactions between scenarios. Amongst others, path connectors are:
OR-forks, OR-joins, AND-forks, and AND-join (see Figure 2.5).

."“z“

T [False] e - ?

OR-fork OR-join AND-fork AND-join

Figure 2.5: Path connectors

OR-forks

An OR-fork splits a path segment into two or more branches. Alternative path segments
may be guarded by conditions, depicted inside square brackets. For example, in Figure 2.2,
the condition [false] indicates that the customer wanting to make a payment does not have

a valid account in the system.
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OR-join

An OR-join is a place on a UCM diagram where two or more path segments merge into
a single one. The merging of the path segments does not require any synchronisation or

interaction between the incoming paths.

AND-forks

An AND-fork is represented graphically by a vertical ticked bar that splits an incoming path
segment into two or more parallel paths. This connector helps to represent the concurrent

progression of scenarios along path segments.

AND-join

An AND-join connector collapses two or more parallel paths into a single one. It is repre-

sented graphically by a vertical bar.

The AND-fork/join elements provide a strong form of representing inter-scenario synchroni-
sation in which scenarios along different paths are mutually synchronised. The OR~fork/join
UCM concept allows for multiple scenarios to progress along a single path segment and be

separated independently only where necessary.

Two types of path elements called stubs are discussed next.

2.1.4 Stubbing techniques

A UCM provides for the concept of stubs to help sub-divide complex maps into two or more
sub-maps. A stub is a mechanism for (paths) abstraction that represents on a UCM diagram,
a place where a sub-map is needed, but for which details are referred to elsewhere. It saves
as maps connectors that help to link the execution of a scenario from a map containing
the stub (called root-map) to a sub-map called a “plug-in”. The two types of stubs are:

static-stubs, and dynamic-stubs (see Figure 2.6).

Static-stub

When only a single sub-map is needed, a static-stub is used. The binding of the plug-in
to the root-map is made as follows: the input path segment(s) entering the stub (generally
noted INX, where X stands for a referencing number) is (are) associated to the Start point(s)
of the plug-in, and the End point(s) of the plug-in is (are) associated to the output path
segment(s), leaving the stub (generally noted by OUTX as in Figure 2.6). This association
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Figure 2.6: An example of a static and a dynamic stub

is called a Binding Relationship. In the case of the static-stub in Figure 2.6, it is indicated
by:{(IN1,S51),(OUT1, E1)} (Amyot [6]).
Dynamic-stub

A dynamic-stub is used where more than one alternative sub-diagram is needed, for which
the binding to a specific diagram is determined during the execution of the scenario being

modelled. A selection policy to determine the plug-in to execute is, therefore defined.

Other key notation elements are: Failure-point, Waiting-place and Timer. These are pre-
sented next, through the Timeout-recovery mechanism that is provided - by UCM - to model

the enhancing of network failures in a network communication.

2.1.5 Timeout-recovery mechanism

Figure 2.7 shows the graphical representation of the three UCM elements: Failure-point,

Waiting-place and Timer; it also includes a model for a Timeout-recovery mechanism. In

MNetwork

51 Waiting place E1 Timeout path
s1 ‘“——I

._“. - Timerv_’ B
- ) El

-

El

Handle failure

1

a1

— 1|

Timeout-recovery i

ure point ; -
mechanism P Triggering paths

Figure 2.7: An application of the use of a UCM Failure-point and Waiting place

each of the three components in the figure, the path from start-point S1 to the end-point
E1, is called the main path. It is the path on which a scenario progresses to reach the

waiting-place or timer. The triggering paths are also indicated. Those are paths along
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which triggering events occur, to cause a waiting scenario to continue progressing along the

main path.

Failure-point

A failure-point indicates a place along a path where the progression of a scenario may stop
leaving the system in an incomplete state, possibly jeopardising other paths in execution.
For example, a network communication may fail, causing a sent message not to reach its

destination or an acknowledgement not to reach the sender.

Waiting-place

A waiting-place indicates a place where a scenario progressing along a main path, may need
to pause waiting for an event to occur along the triggering path, before it continues. The
triggering path may terminate at the waiting-place or touch it tangentially, and continues.
Identifying a path as a main path, or triggering path, is relative, since the same path may

play both roles depending on the scenario under consideration.

Timer

A Timer, also known as a timed waiting-place, is just a variation of a waiting-place that
uses a time clock to control the occurrence of the triggering event. The timeout path on the
diagram in Figure 2.7 is used to model the situation when the waiting time expires before

the occurrence of the triggering event.

With the Timeout-Recovery mechanism in Figure 2.7, a message is sent via the network
component and concurrently, the Timer is set up to wait for an acknowledgment that may
be sent back via the network. If the acknowledgment is not received before timeout, then net-
work communication failure is assumed, and the responsibility point labeled Handle failure

is performed. Otherwise, the execution continues to the end-point E'1.

2.1.6 Extending the original UCM notation

As mentioned earlier, a UCM aims to bridge the gap between user requirements and detailed
design (Buhr [17, 18], Buhr and Casselman [20]). Its core notation does not completely cover
the notational needs in some specific application domains. Some extensions have been pro-
posed, either to the basic features of a UCM, or to its applicability. Some notational elements
and concepts were added to the basic UCM features to support the agent systems (Amyot
[4]). As reported by van der Poll et al. [94], UCM support for designing user interfaces is still

15



acknowledged to be insufficient. In this regard, an extension of the basic UCM, that rein-
forces the exchange of messages between users and the system aimed at allowing the notation
to adequately support the user interfaces and usability requirements analysis and modeling
was suggested. For a similar reason, a number of heuristics were proposed to facilitate the

validation of the three important properties: consistency, completeness and precision.

UCMs efficiently address functional requirements, but leave non-functional requirements
uncovered. The visual notation language, GRL (Goal-oriented Requirement Language[1]),
is used to describe business goals, non-functional requirements, alternatives, and rationales.
Aiming to capitalise on the advantages of each of the two notations, Amyot and Mussbacher
[7] proposed combining UCMs and GRL notations, into a single notation, namely, URN

(User Requirements Notation), which is now standardised as reported in Amyot [5].

2.1.7 UCM tool support

Two freely available editing tools now support UCMs: the oldest is UCM Navigator (UCM-
Nav) (Miga [59]) and more recently jUCMNav (Mussbacher and Amyot [64], Roy et al. [72]).

UCMNav is a graphical software system that helps to create UCMs diagrams. This tool
supports most of the features defined in the UCM reference manual (Buhr and Casselman
[20]). It maintains binding between plug-ins and stubs, responsibilities to components, sub-
components to components etc. It allows users to visit and edit the plug-ins related to stubs
at all levels. It loads, exports and imports UCM as XML files. It can also export a UCM di-
agram to formats such as Encapsulated Postscript (EPS), Maker Interchange Format (MIF),
and Computer Graphics Meta-file (CGM). As reported by Kealy [48], the main drawback of

this tool is that it is hard to install and maintain.

The jUCMNav tool is a user-friendly graphical editor under the Java-based open-source
Eclipse platform. As an improved version of UCMNav, it provides more functionality in-
cluding a support for Goal-oriented Requirements Language(GRL). Its export-import pos-
sibilities are various, and include the generation from an input UCM of different types of
files such as XML files, MSC (Message Sequence Charts) files, and the CSM (Core Scenario
Model) files.

The following section presents an overview of the 7 specification language.
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2.2 7 specification

Z (pronounced 'zed’) is a formal specification notation based on the first-order predicate
logic and a strongly-typed fragment of Zermelo-Fraenkel (ZF) set theory (see e.g. Lightfoot
[52], Mole [62], O’Regan [66], Spivey [83]). The notation was initiated by Jean-Raymond
Abrial in France, and developed at the Programming Research Group (PRG) of Oxford
University, in England, since the late 1970s. The main construct in Z is called schema,

which is built upon basic types and global variables.

2.2.1 Basic types and global sets

The concept of a basic type (also called a Given Type), is provided in Z, to specify the set
of elementary objects, for which details are left unspecified. The list of basic types, for a

specification, is enclosed inside square brackets and separated by commas. For example:

[Customer, Book, Account]

defines a list of basic types in Z, for which for example, Customer specifies the set of all
possible customers. Detail information about customers, books and accounts are deferred to
the design phase. A basic type may be used anywhere in the specification after its definition
(see Bowen [13]).

Similar to basic types, a global variable may be used anywhere in the specification after

its definition. The axiomatic definition of a global variable is presented as follows:

‘ declaration part

‘ predicate part

For example:

‘ mazx : N

‘ maxr < 50

The concept of Free types is also used to list, for a type, the identifiers of its element. The

general form is:

freetype = elementy | element, | | element,

E.g. Response := yes | no

The central concept in Z is the Schema introduced next.
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2.2.2 7 schemas

The general form of a schema is:

__SchemaName
declarations

predicate

SchemaName represents the name of the schema. The declarations include a list of typed
variables, called components, which are constructed from a list of Basic types identified
during the construction of a Z specification. The predicate defines constraints or relationships
between the components in the declaration part. The abbreviated notation of the above

schema 1is:

SchemaName == [declaration part | predicate part|

Two types of schemas are encountered: “state schemas”, to describe the static behaviour
of a system, and “operation schemas” to describe the dynamic behaviour. For illustration

purpose, the Airport example below from Lightfoot [52] is considered:

The air-traffic control of an airport keeps a record of the planes waiting to land and the

assignment of planes to gates on the ground.

State schema

In Z, an abstract state, also called a state schema, specifies the static behaviour of a system.

For example, with the airport example above, assume the given types:

[Plane, Gate]

Where Plane denotes the set of all possible, uniquely identified planes, and Gate the set of

all gates at the airport. The state schema is:

___Airport
waiting : P Plane
assignment : Gate =~ Plane

waiting N (ran assignment) = &

The component waiting maintains a list of planes waiting to be assigned to a gate, and
assignment maps each gate to one, and only one, plane. The predicate part indicates that
only planes that have not yet been assigned a gate, are kept in the waiting list. An important

aspect of a system state is its inherent variability in time, e.g. when a new plane is assigned
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a gate, the value of each of the two components waiting and assignment changes and hence,
the state of Airport. 7 provides an operation called “schema decoration” to describe the

change of system states.

Schema decoration

A schema S is decorated by adding a prime to its name (S). The effect of decorating S,
is that all the variables in the declaration and predicate part of S, are also decorated (see
Potter et al. [70]). Since an operation performed on a state schema may change the state of
the system, an important aspect of schema decoration is to facilitate the specification state
change within the operation schema. The state before and after the operation, are both
included in the declaration of an operation schema, and related in the predicate part, to

show, for example, how state variables are changed by the operation.

Schema as a type

To define composite (complex) structures, Z allows a schema to be used as a type (Jacky
[42], van der Poll [90]). Such a type is similar to a record type in conventional programming
languages such as Pascal. An instance of a schema type is called a binding. Z provides the

unary operator 6 to reference each binding. E.g. an instance of the schema Airport is:

(waiting = @, assignment = )

For each abstract state space, a realisable initial state is required.

Initialising the state space

It may be assumed that initially, the list of planes in the waiting list is empty and the list
of gates assigned to planes is also empty. Therefore the state of the Airport is initially
represented as:

__InitAirport
Airport’

waiting' = & N assignment’ = &

Although it is relatively easy to observe that this state is realisable, in general, it is recom-
mended to establish that the initial state is realisable. To this end, the initialisation theorem

is used:
F Airport’ e InitAirport

This implies the need to demonstrate that there exists a state Airport’ of the state space

Airport, for which the components waiting = @ and assignment = .
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Partial operation

To illustrate the concept of an operation in Z, consider the following schema that assigns a

gate to a plane.

—_assignGate
A Airport
plane? : Plane
gate? : Gate

plane? € waiting
assignment’ = assignment U {gate? — plane?)}
waiting’ = waiting \ {plane?}

The delta (A) symbol is used to indicate the state schema that the operation changes. The
question mark (?7) that follows the two variables plane? and gate? indicates that those are

input variables. An exclamation mark (!) is used to denote an output.

The logical expression plane? € waiting in the predicate part, constraints the input plane
to be taken only from the waiting list. This defines the condition under which the opera-
tion becomes applicable, i.e the precondition. The precondition of each operation may be
calculated (Woodcock [100]) to determine the circumstances under which an operation is
applicable. For example, if the input plane is not in the waiting list, an error is generated
and further operations are needed to handle the error. Hence, assignGate is said to be a

partial operation, since further operations may be needed to specify error conditions.

Error condition

As mentioned in the previous section, if a plane used as input in the operation assignGate is
not in the waiting list, an error occurs and the following operation is specified for the error

case.

__unknownPlane
= Airport
plane? : Plane
resp! : Response

plane? & waiting
resp! = PLANE_UNKNOWN

The symbol = is used to indicate that the operation operates on Aurport but, does not change

1ts state.
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Total operation

In Z, a complete version of the operation that maps each plane to a specific gate may be

formed by combining the operation under normal circumstances, and those to handle errors.

totalAssignment = assignGate V unknownPlane

The definition of the operation totalAssignment is a predicate schema expression that uses
the Z disjunction operator V, to combine two operations. The semantics of this operation is
the following: The declaration part of the composed operation, is obtained by merging the
declarations of each of the individual operations. The predicates of the individual schemas
are disjoined. More schema operators are available to facilitate the construction of predicate

schema expressions.

Schema calculus

Amongst others, the following operators are provided in Z: schema inclusion, schema con-
junction (A), schema negation (= ) and sequential composition (3), (see e.g. Potter et al.
[70]).

(a) Schema inclusion: This operator allows the name of a schema S1, describing an
abstract state space to be included in the declaration part of another state space schema
S2. The declarations of S1 are included in those of S2, and the predicate of S1 is
appended (ored) to that of S2.

(b) Schema negation (—): The negation of a schema S, is a schema denoted by — 5. It

has the same declarations as S, and its predicate, is the negation of the predicate of S.

(¢) Schema conjunction (A): Let R and S be two schemas, and P = R A S. Pisa
schema obtained as follows: the declarations of R and S are merged to form that of P

and their predicates are conjoined (anded) to form that of P.

(d) Schema composition (3): Consider an operation C, defined as: C' = A § B where A
and B are two operation schemas. The semantics of C' is the following: if the operation
A can change the state of the system from S to S1, and B from S1 to §2, then C is
an operation that changes the state of the system from S to 52.

Some limitations of Z due to schema calculus and the use of schemas as types were
analysed by van der Poll [90]. However, the major disadvantage of using Z for large systems
is its inherent lack of object-oriented structures, making it hard to group and manage a
rapidly increasing number of schema structures. To this end, the notation was extended
to Object-Z to accommode object-orientation (Carrington and Smith [22], Smith [78]). An

overview of Object-Z is presented next.
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2.3 Object-Z specification

As mentioned by Taylor et al. [86], Object-Z (see Duke and Rose [26], Duke et al. [27], Smith
[77]) is one of the most developed of several Z-like Object-Oriented specification languages.
It employs the concept of a class schema to encapsulate Z schemas. A class schema is, in

general, structured as follows (Smith [77]):

— ClassName [genem’c pammeters]

[visibility]
[Inherited classes]
[local definitions]
[state schemal
[initial state schema]
[operations]

The generic parameters list is optional as is each component of the class. The visibility list
denoted by [, restricts access to some components and operations of the class. Similarly,
the list of inherited classes is optional. Z-like type and constant definitions may be specified.
Unlike in Z, operations and the state schemas are described within the class. The order
in which those components appear is prescriptive. A class schema may include only one
state schema, which is very similar to Z state schemas, and does not carry a name. The
components in the state schema may be initialised to some realisable values. The only
initial state is named INIT. It includes only instances of the components declared in the
state schema. Operations are described in the same vein as in Z, with some differences as

indicated next.

2.3.1 Operation schema

The concept of an operation in Object-Z is similar to that of Z. The only difference is that
an operation in Object-Z operates on a single state schema. The Delta (A) operator lists
specific components changed by the operation, whereas the Xi (Z) operator is simply dis-
carded in Object-Z. The concepts of partial, total operations and error handling, are not
provided since an operation in Object-Z becomes applicable only when the precondition of
the operation is satisfied. Most of the Z schema calculus operators (e.g. V, A, §, etc.),
are also used in Object-Z. However, the semantics of some of them may vary slightly in the
context of a class schema. Additional schema operators are also provided. Two examples
are: the nondeterministic choice ( | ) and scope enrichment operators ( e ) (see Duke and

Rose [26], Smith [77]).

An example of a class schema to specify the airport example from Section 2.2 is given
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next. The two components (waiting and assignment) and the operation totalAssignment are

made accessible from the system environment.

—_ ClsAirport
[ (waiting, assignment, totalAssignment)

[Plane, Gate, Response]

waiting : P Plane
assignment : Gate =~ Plane

waiting N (ran assignment) = &

__INIT
waiting = S N\ assignment = &

—_assignGate
A(waiting, assignment)

only the parameters of the Delta operator has changed

__unknownPlane

only the Xi operator is removed

totalAssignment =
[plane? : Plane, gate? : Gate] o
assignGate

I

unknownPlane

The choice operator ( || ) is used in the definition of the operation totalAssignemt, allowing
the system to choose one of the two alternative operations assignGate and unknownPlane
without user intervention. The variables in square brackets are those for which input values
are expected from the system environment. The operator e is used to promote!, when
necessary, operations through the selected objects (in square brackets). This operator has
the advantage of providing a way to inherit operations from objects of other classes. The
concept of inheritance, discussed below, may be introduced in the definition of a class in

different ways.

2.3.2 Inheritance

The concept of inheritance allows for the reuse of features of an inherited class (the su-

perclass) when creating a new class schema (the subclass). As mentioned earlier, Object-Z

!promotion allows for the reuse of an operation to specify another one
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provides different specification constructs to define the inheritance mechanism, e.g. through

class inclusion, by using a class as a type or promoting an operation.

(a) Class inclusion
The name of the inherited class is listed in the declaration of the inheriting class. In
that case, the type and constants of both classes are merged as well as their schemas.
But, state schemas as well as those that share the same name are joined. The visibility

list is not inherited.

(b) Class schema as a type
Consider the following declaration allowed in Object-Z where ClsAirport is the class

defined earlier:

orTambo : ClsAirport

This definition specifies the variable orTambo as an identifier of an object of the class
ClsAirport. Object identity is modelled in Object-Z by associating with each class name
a countable infinite set of values (Smith [77]). Through the variable orTambo and the
dot (.) notation, the features of the class ClsAirport become accessible to the class in
which it is declared. E.g. an operation may change the state of the referenced object
as follows: orTambo.waiting’ = orTambo.waiting U {planel}, where planel is of type
Plane.

(c) Operation promotion
The scope enrichment operator (o), the dot and the possibility to use a class as a type
in Object-Z provide meaningful ways to specify the reuse of operations. Consider for

example the following operation:

newAssign = [orT? : ClsAirport | orT?. waiting # &) e orT?.totalAssignment

The operation newAssign in a class, is defined by promoting the operation totalAssignment

of an object of the class ClsAirport referenced by orT.

The concept of polymorphism is briefly discussed in the following section.

2.3.3 Polymorphism

In Object-orientation, the concept of polymorphism defines a mechanism which allows a

variable to be declared, whose value can be an object from any of a given collection of
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classes. In Object-Z, polymorphism is introduced with the unary class operator denoted by

th symbol |, e.g. the declaration

orTambo : | ClsAirport

specifies an object of the class ClsAirport or any other class derived from it by inheritance.

2.3.4 Tool support for Z and Object-Z

An important advantage of using Z, is the availability of tool supports, allowing for the
possibility to reason about the properties of the specification (van der Poll [90]). Z tools
include amongst others the following: CadiZ (Toyn and Mcdermid [87]) for formal reasoning,
and Fuzz Mike Spivey’s type checker for Z. The Community Z Tools (CZT)(Malik and Utting
[54]) are used for type-checking and animating Z. Unlike Z, the tools associated to Object-Z
are still limited and many of them operate specifically under Linux. Examples are: the latex
macro OZ.sty (Allen [3]) for editing Z and Object-Z specifications. The Wizard (Johnston
[43]) and the Object-Z version of the Community Z Tools (CZT) (Malik and Utting [54]) for
type checking. It has been proposed to encode Object-Z into existing theorem provers (e.g.
Smith et al. [80]). A methodology to animate Object-Z specifications using a Z animator
(McComb and Smith [56]) and for model-checking Object-Z using Abstract State Machine
(ASM) (Winter and Duke [98]) have also been suggested.

2.4 Chapter summary

This chapter presented an overview of the three specification notations used in this disserta-
tion. The semi-formal notation UCMs (Use Case Maps) was initiated by Buhr to facilitate
the capturing and analysis of requirements from users, to model an early perception of the
static and dynamic behaviours of a system and its architectural structuring of components
in map-like diagrams. 7 and Object-Z are state-based formal specification languages based
on set theory and first order predicate logic. The central concept in Z is the schema, to
describe the possible states and operations of a system. In Object-Z the central concept is
the class schema to encapsulate Z types and schemas and to introduce object-orientation to
standard Z.

The next chapter presents the case study used in this dissertation.
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Chapter 3
Case study

This chapter describes a case study that will be used to explore the topic of this research.
It also describes the two approaches adopted to develop the case study. A UCM model for
the case study is developed and some observations are made regarding the use of UCMs. A
7 specification of the same case study is presented including, calculating preconditions for
operations and the construction of total operations that are summarised in a table, leading

to a conclusion.

3.1 Case study description

Imagine a group of rival companies geographically dispersed world-wide who wish to co-
operate. Each of them provides amongst others, sales services and allows for credit, return
and replacement of goods purchased (e.g. those under guarantee or warranty). Fach com-
pany has both local and international customers, and uses its own sales systems. Assume
that after some market studies and analysis, the representatives of those companies come to a
common conclusion that a very high percentage of their revenue is due to their international
customers whose transactions are, nevertheless, very limited because of the difficulty to re-
turn or replace items. Additionally, they also realise that those customers incur enormous
charges when paying with credit cards or bank transfers, compared to a zero charge of a
direct payment at a cashier in a local outlet. In this regards, they decide to help each other,
to encourage their international customers and hence, increase their benefits. They came up
with an innovative idea of having each company acting at the customers’ level, as an agency
of any other one, relative to the above-mentioned operations (return items, replace items,
and pay credit), provided that the independence and privacy of each individual company
should not be violated. That is,

e No individual strategic plan and mission statement should be affected;
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e None of the standards and policies adopted by each individual company should be

influenced;

e A company should not be forced to operate with a language or currency that it is not

used to;
e The organisational structure of a company should not be affected.

Let’s further assume that the representatives of those companies believe that such innovation
should be software-based and therefore, in order to take further decisions, they need a good
system specification that would facilitate their understanding, and stimulate a thorough
discussion about the feasibility of the idea, and therefore, help them to discover a possible way
to render such an idea operational. Finally, assume that the number of member companies

is not limited, and it is agreed to produce an Object-Z specification to serve the purpose.

3.2 Specification approach

To design the specification for this case study, a number of approaches are plausible. For
example, a Use Case approach where Use Cases are identified and transformed into an
Object-Z specification (Moreira and Aradjo [63]). But as one of the main objectives of this
dissertation is to explore the impact of using the UCM notation in the construction of Object-
Z (including Z), two different specification processes are adopted (see fig. 1.3, Chapter 1)
to produce two Object-Z specifications. One approach uses UCMs, and the other not. The

two resulting Object-Z specifications are then compared.

e With the first approach, a UCM model for the case study is constructed then, trans-
formed into Z and Object-Z.

e With the second approach, a Z specification of the case study is constructed and

transformed into Object-Z.

For both approaches, the informal requirements described above are used as input, first
to derive a UCM in Section 3.3, and a Z specification in Section 3.4. The transformation
of those intermediary specifications is done in upcoming chapters. The main operations
retained in each case consist of returning items, replacing items, and credit payment by
customers. When any of those operations is initiated at an agency A, to assist a customer
of another agency B, A is named Helper, and B, the Beneficiary.

It is also assumed that an Interface subsystem is available at each company to facilitate
the communication between the system under specification, and a local sale system. Figure

3.1 depicts an example of interconnection between agencies in an operational view. Each
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Figure 3.1: Example of agencies interconnections

rectangle represents a company, and the dotted ellipse those companies that are in the
same area, e.g. the same country. A solid line joining two agencies indicates a network

connection between the two companies. Figure 3.2 gives an overview of the system layering.

Application

Interface sub-system

Local sales system

Figure 3.2: Subsystems layering

The Interface and the Local Sales sub-systems are shaded because there are not explicitly
part of the system under discussion. A top-down approach is considered as we start with the
three given higher-level functionalities, and then refine them continuously, while constructing
the specification, until a reasonable level of detail is reached. The refinement process is
done according to the ability of the specification technique, to allow such decomposition by
providing mechanisms to represent sub-operations in a traceable way. It is assumed that a
reasonable level of detail is reached when the execution steps of each scenario are clearly
defined, and the overall size of the system is still manageable in the context of this work

(with its time and space limitations).
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3.3 Deriving a UCM for the case study

This section proposes a Use Case Maps Model for the case study. The construction process is
based on guidelines from the literature. Two types of documents are used: a quick tutorial
on UCM by Amyot [4], and the UCM book authored by Buhr and Casselman [20], the
initiators of UCMs. The scenarios are initially considered at a high-level of abstraction, and
progressively refined to include detail activities. Functionalities are first represented then,

the architectural components are added to the map.

3.3.1 Initial UCM

Figure 3.3 represents the initial UCM map for the case study. Each high-level functionality
is considered a complete scenario. The initial UCM diagram is progressively refined until a
“reasonable” level of detail is reached, that is, a map including all the user operations required

by the system. The path from the start point S1 to E1 models the scenario of returning a

51 Retltem El
o |
52 Replltem E|3
® 1
53 PayCredit E'3
¢ '

Figure 3.3: Initial UCM

purchased good. This path includes only one responsibility point Retltem, which stands for
return. Similarly, the path from S2 to E2 models the scenario to replace a purchased item,

and the path from S3 to E3 models the scenario to pay a credit.

Triggering events

Although it is not explicitly stated in the description of requirements, the execution of each of
the above scenarios may begin when a customer contacts an agency wanting to pay a credit,
or return or replace a purchased good. For the return and replacement of a purchased item,
the customer may be required to present an invoice together with the item. A customer’s
identity document (or any other acceptable personal information document) may also be

required for any of the three scenarios.
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Path preconditions

At this point, it seems reasonable to suggest that for an item to be replaced or returned, the
invoice provided by the customer should be valid. Additionally, the customer must have a

valid account in the provider’s local sales system.

Resulting events and post conditions

The execution of the scenario to return an item begins when the start point S1 is triggered
and terminates at the end point E1. At this point, the returned item has been collected by
the provider, and all the accounts that may be affected by the operation are updated. The
scenario to replace a purchased item terminates at the end point E2, when the execution is
successful. At this time, the returned item has been sent to the provider (where traditional
routine procedures may be followed to finalise the operation). Finally, when the payment of
a credit is successfully performed, the effect at the end point E3, is that the Helper agency
has received some amount of money from a customer, and all the accounts affected by the

operation have been updated.

The simplicity of the map in Figure 3.3 shows that the modelling of the system at this
point remains very abstract and hence, keeps some aspects of the system (for example, the
sequence of activities for each scenario) hidden. For such reason, a more explicit UCM map,

which stands to be an improved version of the previous one, is proposed next.

3.3.2 An improved UCM

Based on the UCM in figure 3.3 and the analysis of the case study description, a more
detailed UCM is proposed in Figure 3.4. Large scale responsibilities are refined to allow
detail functionalities to be modeled. Consider for instance, a precondition that requires an
invoice to be valid to allow the return or replacement of a purchased item. This precondition
to be reinforced requires the provider of the item, to first validate the invoice presented to the
Helper by the customer. The validation of an invoice is therefore considered an important
functionality of the system. Figure 3.4 includes such new functionalities, which improve the
diagram in Figure 3.3. The diagram in Figure 3.4 shows both the behaviour (the execution
of the sequence of activities) of the system, and the interaction between scenarios. The next
two sub-sections provide more detailed explanations on those two aspects, with the purpose

of improving the understanding of the UCM in Figure 3.4.
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Figure 3.4: Improved UCM

The system behaviour

In general, the execution of a scenario begins when some events occur at some start points
and the preconditions at those points are satisfied. As mentioned previously, a customer
arriving at an agency with an invoice, a purchased item and a personal identity, may be al-
lowed to return or replace the item. A customer’s identifier is a prerequisite for the payment
of a credit. At the Helper agency, only a visual inspection of the invoice, item and customer
ID may constitute a valid precondition to trigger the start points S1 and S2. Following the
payment of a credit, only the customer ID document may be required at the start point S3.
The next paragraph considers the scenario to return an item, aiming to clarify the activities
of the system along paths. This case covers much of the responsibility points and other path

elements encountered on the UCM in Figure 3.4.

When returning an item, after S1 is successfully triggered, the invoice and the customer’s
identity are checked to permit further actions. The responsibility points ChkInv to validate
an invoice, and ChkCust to validate a customer’s identity, are performed. With the responsi-
bility point AcceptOp, the beneficiary agency may allow the operation to continue or not. If
the invoice is found to be invalid, the execution reaches the end point E12a, and terminates.
Similarly, if the validation of the customer fails, the end point E123a is reached, causing the
scenario to be terminated. When the validation of the invoice and customer succeed, and
the operation is not denied by the provider, the item brought by the customer is temporally
kept in a store (storeltem) at the Helper agency waiting to be shipped back shipltem. At
the provider’s agency, the returned item is collected and evaluated Evlltem to determine its

present value. At this point, the beneficiary agency follows their traditional procedures to
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update the customer’s account (UAcc), and, for example, refund the customer (RfdCust).

The execution of the scenario is terminated at the end point E'1.

The progression of the other two scenarios may be interpreted in the same vein. The only
two operations not encountered, are Divitem that may be performed when replacing an item
to provide a substitute item to a customer; and PayCredit to allow a customer to pay some
amount of money at the Helper agency which is then transferred to the benefiary agency.
The sub-section below illustrates some interactions between scenarios as depicted in the
UCM model of Figure 3.4.

Scenario interactions

Interactions between the three scenarios are observable from the UCM in Figure 3.4. For
example, the fact that the scenarios to return a purchased item, and the one to replace an
item, both share most of their path segments and responsibility points, shows that these
two scenarios are closely related. This observation indicates that the procedure to perform
each of the scenarios may be very similar. The analysis of scenario interactions presents the
advantage to facilitate the understanding of the system, and guides further design decisions.

For example, the above observation readily suggests a strong use of polymorphism.

Contrary to the above observation, the procedure to perform the scenario to pay a credit is
clearly very different from the others. The three scenarios share in common only one respon-
sibility point (“ChkCust”), on a single path segment. More interactions may be analysed
by considering other path elements, e.g. path connectors: OR-join, OR-fork, AND-fork and
AND-join. This analysis, at an early stage of the requirement specification, also presents
the advantage to facilitate the detection of conflict points in the system. For example, since
the responsibility point “ChkCust” is shared by all the scenarios, more attention may be

required at the design of this operation.

The following section presents a more detailed version of the UCM that includes abstract

components.

3.3.3 A more detailed UCM

Although the UCM map in Figure 3.4 adds more detail into the previous diagram, it still
does not reveal important information that needs to be addressed explicitly. For instance,
the validation of an invoice or a customer, also involves sending a request, over a commu-

nication network (see fig.3.1), to the benefiary agency and waiting for a response. The role
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of the three parties: Helper agency, Beneficiary agency, and the Network are not distinctly
illustrated in such operations. To address this issue, in Figure 3.5, architectural elements are
introduced into the map and some responsibility points are sub-divided into separate sub-

activities. In this last version of the map, the team components named respectively “Helper”

Agncy:Beneficiary

Agency:Helper
Network

S1 InitChecking CrtNetworkCom Validai

at
*—_ InitChklnv Ll El2a
S2
—__
S3
&

E3

i UCustAcc
AllocTrans Shipltem 3
RfdCust
UMyAcc QR Cashier Store
Divitem
l PayCredit l M} Revitem

R

Figure 3.5: Final UCM

and “Beneficiary” logically sub-divide the system into two sub-systems. The first includes
the activities performed in an agency when acting as a Helper, and the second, groups those
activities that are executed in an agency, when playing the role of a Beneficiary agency. Any
agency may play both roles; it acts as a helper when helping a customer, and as a beneficiary
when its customer is being helped by another agency. As more than one agency is involved,
many identical copies of the components can be superimposed to indicate the multiplicity of
the sub-systems.The component named Network, in between the two sub-systems, handles

any electronic communication between the two sub-systems.
The next two sub-sections explain each of the sub-systems.

Helping sub-system

This sub-system includes all the activities that are performed in an agency when acting as a
helper. Those activities are structurally grouped into two abstract components (processes):

“InitChecking” and “CrtNetworkCom”, and two team components (see Figure 3.5).
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The process named InitChecking has the responsibility to handle the triggering of scenarios
at the start points, and prepare requests to be forwarded over the network to demand, for
example, the validation of an invoice, or a customer, by the Beneficiary sub-system. It there-
fore performs “InitChkInv” to initialise the validation of an invoice and “InitCustAcc” to
initialise the validation of a customer. It also controls scenario interactions, that are modeled
with path elements placed within it; those are the OR~join path connector that introduces
path sharing, and the AND-join connector, which enables the concurrent execution of the

two operations placed before it.

The process CrtNetworkCom has the responsibility to control the incoming and outgoing
network communications. It transmits the requests prepared by InitChecking over the net-
work and waits for responses using the UCM component timer (T1 on Figure 3.5). With
the timer, it implements a timeout-recovery mechanism (see Buhr and Casselman [20]) to
resolve network failures. Any incoming request is forwarded to the network component and
the timer is set-up with an appropriate value, which represents the maximum waiting time
for a response to arrive. If the time elapses before any response is received, failure is as-
sumed, and the responsibility point “NetFail” is performed, and the execution of the scenario
is terminated at the end point E123b.

Similarly to InitChecking, the process is responsible for controlling interactions between
UCM path segments that are bound to it. For example, path sharing is introduced by
the OR-join connector, and parallel execution of responsibility points introduced by the
AND-fork connector. The execution of a scenario to return or to replace an item, may con-
tinue after the AND-fork bar, only when the invoice, together with the customer, have been
successfully validated. Beyond this component, an appropriate path segment is followed

depending on the scenario being executed.

After a customer has paid an amount of money at a cashier in a Helper agency (Pay-
Credit), the system updates the account of the beneficiary agency (UMyAcc) and sends a
request to demand the beneficiary agency to update the customer’s account (AllocTrans).
An object component is used to model a cashier and a store. These objects are each placed

in a component that controls their activities.

Beneficiary sub-system

This sub-system aims to assist Helper agencies in validating invoices (ChkInv) and customers

(ChkCust), and to authorise (AcceptOp) a return or a replacement of a purchased item. Cus-
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tomers’ accounts and profiles are locally managed by a local sales system (see Figure 3.2)
to which external agencies do not have direct access. It also assumes the responsibility to
finalise any operation initiated at a helper sub-system. With a credit payment, it updates
the customer’s account on request, and ends the scenario at the end point E3. In the case
of the other two scenarios, it collects the item (Recvltem) shipped from another agency,
evaluates the item (Evlltem) and Updates the customer’s account (UCustAcc) accordingly.
Then, it performs some local routines to either refund the customer (RfdCust), or to deliver
another item to the customer (DIlvltem). Some of those local routines may not be integrated
or known by this system, because its purpose is to facilitate the liaison between customers

and their providers (agencies).

This sub-system is structurally composed of one UCM team component, that includes two
other team components. One process that ensures the validation tasks, authorises remote
operations, and controls premature terminations of scenarios such as terminating a scenario
when the validation fails. Another process evaluates returned items and updates customers’

accounts.

The next section presents in a textual form, scenarios as described in the UCM Model
of Figure 3.5.

3.3.4 Scenarios

A number of UCM traversal techniques that can help to extract scenarios from a UCM
diagram have been proposed (e.g. Amyot et al. [9], Kealey and Amyot [47]). This section
presents a textual description of scenarios as described on the map in Figure 3.5 to explain
the clarification brought so far, by UCM, to facilitate the comprehension and the description
of the case study. Naturally such textual description may not reveal all the important aspects
of the map. It does not, for instance, address interactions between scenarios, path sharing,
parallel progression of scenarios along paths, and is largely silent about the architectural

structure of a system.

(a) Return item

Description: this scenario describes the sequence of steps that are followed, in an
agency, e.g, Helper, to help a customer to return an item purchased from another

agency, e.g., Beneficiary.

S1: A customer comes to the agency wanting to return an item. The customer holds

an invoice, the item to return, and a personal identifier document.
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1. InitChkInv. Helper initialises the invoice checking and sends a request, via the net-

work, to the Beneficiary to validate the invoice.

2. InitCustAcc. Helper initialises the authentication of the customer, and sends a request

to the Beneficiary to check if the customer holds a valid account.

3. T1. The Helper sets up a timer, forwards the request through a network, and waits

for a response from the Beneficiary.
4. ChckInv. The Beneficiary validates the invoice.
5. ChckCust. The Beneficiary validates the customer’s account.

6. AcceptOp. The Beneficiary allows or denies the operation and sends a result back to

the helper via the network.

7. Storeltem. The Helper receives the item from the customer and keeps it temporarily

waiting to be forwarded.
8. Shipltem. The Helper ships the item to the Beneficiary.
9. Evlltem. The Beneficiary evaluates the present value of the item.
10. UcustAcc. The Beneficiary updates the customer’s account.

11. RfdCust. The Beneficiary, locally, uses its own routine procedure to satisfy the cus-

tomer outside the system.

Alternatives:

1. NetFail. Timeout event occurs before any response from the Beneficiary, the Helper

performs NetFail to manage the failure.

2. F12b. The Beneficiary denies the operation; the path segment to E12b is followed to

terminate the scenario.
3. E12a. The invoice is not valid; the path to E12a is followed to terminate the scenario.
4. E123a. The customer does not have any account with the beneficiary; the path
segment to E123a is followed to terminate the scenario.

(b) Replace item

Description: this scenario describes the sequence of steps that are followed, in an
agency e.g. Helper, to help a customer to replace an item purchased from another

agency e.g. Beneficiary.

S2: A customer comes to the agency wanting to replace a purchased item. The customer

holds an invoice, the item to be replaced and a personal identifier document.
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According to the model, the sequence of steps for this is similar to those of the previous
one. Only the routine tasks, performed locally to satisfy the customer that is outside
the scope of the system, are different. Alternative scenarios are also identical. We then,

refer the reader to the above-description.
(c) Pay credit

Description: this scenario describes the sequence of steps followed, to help a customer
to pay for a credit at a company e.g. Helper, to the benefit of another company

e.g. Beneficiary.

S3: A customer comes to the Helper wanting to pay for a credit. The customer holds a
personal identifier document (or a reference number of the account at the Benefi-

ciary company).
Sequence of steps:
1. InitCustAcc. Helper initialises the invoice checking and sends a request, via the net-

work, to the Beneficiary to validate the invoice.

2. T1 The Helper sets up a timer, forwards the request through a network, and waits

for a response from the Beneficiary.
3. ChckCust. The Beneficiary validates the customer’s account.
4. PayCredit. The Helper receives cash from the customer at the cashier.
5. UmyAcc. Helper Updates the common account associated to the cashier.

6. AllocTrans. Helper allocates the transaction into the Beneficiary account kept locally
in the system, and sends a summary of the transaction to the beneficiary through a

network connection.

7. UcustAcc. The Beneficiary updates the customer’s account.
Alternatives:

1. NetFail. A timeout event occurs before any response from the Beneficiary is received;

the Helper performs NetFail to manage the failure.

2. E123a. The customer is not recognised (an invalid customer) the path segment to

E123a is followed to terminate the scenario.

Referring to the literature and the previous UCM specification experience, the following

section addresses some important issues on UCMs. They are presented as observations.
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3.3.5 Some observations on UCMs

Arguably, UCMs do not, sufficiently, formally define certain aspects of a specification, for

example, UCMs do not provide for a means to calculate preconditions for paths, path seg-

ments or responsibility points. However, the notation presents a number of advantages. The

core of these advantages stems from the fact that it conveys different type of information,

on complex systems, in a map-like diagram, using simple graphical elements; and is mainly

human oriented. The following are some useful observations that may be inferred from the

experience of the above case study guided by insights from the literature.

1-

4-

A UCM facilitates the capturing and description of scenarios (Amyot [4]). It is flexible
in terms of allowing the modification of the existing model to include changes in require-
ments. This may be observed in the incremental construction process that is used in
the specification of the case study; moving from the initial UCM of Figure 3.3 to that
of Figure 3.5. The method allows users to change, delete path elements, change their
position in the map, as well as to add new elements. Similarly, abstract components that

are also graphical elements can be manipulated.

The UCM techniques may offer the possibility, as illustrated in the previous observa-
tion, to explore different ways of grouping the functionalities of a system with abstract
components to yield an appropriate architectural structuring of the system and hence,
the final UCM may constitute an important input for the design and analysis of system

components .

The technique provides a “global view” of a system, in a map like-diagram, including
scenarios, scenario interactions, and structural organisation (see Figure 3.5). Such a view
may facilitate the analysis of the system as a whole, as well as the analysis of individual
scenarios at an earlier stage, as it aims to represent the intended picture of an overall
system (e.g. Buhr and Casselman [20], chap.2). It may also make it easier to simulate
the execution of a system at an early stage, resulting for instance, in speeding-up the
process of building prototypes, specification animation, and consequently the detection
of some potential problems in requirements such as inconsistencies, missing requirements,

undesirable effects of scenario interactions, bottlenecks in scenario coupling, etc.

For example, referring to the diagram in Figure 3.5, knowing that the operation UCustAcc
is solicited by all scenarios, and that, at some stage, multiple instances of such scenarios
operate concurrently during the operational phase, could positively influence some design

decisions.
The construction and manipulation of a UCM model does not require extra effort from
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a specifier who has a basic understanding of the concepts used in requirements engi-
neering (e.g. Requirements, Use Cases, Scenarios, etc.). The two main construction
tools: UCMNav and JUCMNav are also downloadable from the Internet free of charge
(URL:http: //www.UseCaseMaps.org/). To explore their potential, both of them
were used in this dissertation. JUCMNav is more recent and includes more functionali-
ties than UCMNayv.

5- Although the notation does not have a formal semantic definition, its formal syntax,
and the fact that the basic notation is based on simple graphical elements, make it
transformable into other models. A number of transformations have been proposed (e.g.
Bordeleau and Buhr [12], Miga et al. [60], Zeng [102]). This transformability quality,
coupled with the above observation on its ease of use may contribute to provide the
model with the ability to be used as a “bridging tool” in software specification and design
(Dongmo and van der Poll [23]). The notation was initially intended to bridge the gap

between user requirements and design (Buhr [17], Buhr and Casselman [20]).

6- The model may also be a potential candidate for feasibility studies and estimations in
software project management. Not only can it be flexibly constructed from a “fuzzy”
set of requirements, but it also clarifies the understanding of scenarios (as illustrated in
Section 3.3.4) in large and complex systems (Buhr [18], Buhr et al. [21]).

The next section constructs a Z specification for the case study.

3.4 Z specification

In practical projects, multiple source of information may be available. Those include, for
instance, users, clients, domain experts, etc. The present specification relies on our under-
standing of the case study description and is guided by the established strategy for con-
structing a Z document as given in a number of texts on Z (e.g. Lightfoot [52], Potter et al.
[70]). When necessary, use will also be made of some principles suggested by van der Poll
and Kotzé [93] to reinforce the original Z strategy. In line with principle no# 4, [93], which
recommends extending each set to include undefined outputs, an assumption is made that
types in this specification readily include the undefined value that is denoted by the symbol
1. Promoting operations ! is avoided, wherever possible, at this stage of the specification,
since this will be included in the Object-Z specification version (Z-OZ) through inheritance.
More detail on operation promotion, and framing in Z are found in: Woodcock and Davis
[101, Chapter 13] and Stepney et al. [84].

!That is to extend an operation defined on a smaller state schema to be used in larger one
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Next a Z specification of the case study is provided. It starts with the basic types.

3.4.1 Given sets and global variables

By convention, each element of the list is in singular, with the first letter capitalised. The

list of basic types is:

[Item, Customer, Agencyld, Invoice, Currency, Transaction,
Accountno, Money, Language, Report, Address, Date]

The list was progressively constructed during the specification process, by adding new types

when needed. The following is a brief description of the listed types:
Item is the set of all possible items that exist.
Customer is the set of all possible customers.
Agencyld is the set of all possible identifiers of agencies.
Invoice is the set of all invoices.
Currency is the set of all possible currencies.
Transaction is the set of all possible transactions.
Accountno is the set of all possible account numbers.
Money is the set of all possible amounts of money.
Language is the set of all possible human languages.
Report is the set of all possible messages that may be exchanged with the system.
Address is the set of all possible addresses.
Date represents all possible dates.

As different currencies may be used in the system, the function exchange is defined to

exchange money from one currency to another.

‘ exchange : Money x Currency x Currency -+ Money

Similarly, the system may need to translate a message from one language to another; the

function translate is defined to serve this purpose.
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‘ translate : Message X Language X Language - Message

A transaction is defined as an object from which the value can be extracted using the function

amount.

‘ amount : Transaction - Money

To optimise the communication with users (van der Poll and Kotzé [93, principle no.2]), a
number of possible Report Messages are defined. Each message reports on the success or

failure of an operation.

Success,
ItemAlreadyReturned,
Unknownldentifier
AgencyNotFound,
InvalidInvoice,
ItemAlreadySent,
ItemNotReceived,
IncorrectAddress,
TransactionNotFound,
UnknownCustomer,
AgencyAccountNotFound,
PaymentNotFound,
TransactionNotAllocated

(Success, ItemAlreadyReturned, Unknownldentifier, AgencyNotFound,
InvalidInvoice, ItemAlreadySent, ItemNotReceived, IncorrectAddress,
TransactionNotFound, UnknownCustomer, AgencyAccountNotFound,
PaymentNotFound, TransactionNotAllocated) € iseqReport

The next section presents the abstract state schemas of the system.

3.4.2 Abstract state space

Due to the fact that some operations in the case study involve cash payments, an abstract

state is defined to describe the object accounts, to facilitate such operations.

_ Account
accountno : Accountno
balance : Money

account #_1

An object of type Account is uniquely referenced with an accountno. It contains a variable
balance to specify the balance of the account, which value is meaningless when the accountno

is undefined.
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The following abstract state specifies the state of the communication interface between the

system under-consideration and the Local Sales System in an agency (see Figure 3.2).

__ISales
custaccounts : Account -~ Customer
statements : Account x Transaction + Date
1nwoices : P Invoice

dom(dom statements) C dom custaccounts

The variable custaccounts represents the list of all customer accounts in the local system,
that are made accessible to other agencies. The variable keeps the set of all the transactions
made on a customer’s account. The set of all the invoices are maintained in the variable,
invoices. Only information made accessible from outside the local sales system is contained
in the state space, ISales. As indicated in the predicate, transactions are recorded only for
those customers who have an account in the local system. The state schema that follows de-
scribes a database containing essential components that may reveal the status of the system,
relative to the three major services - return, replace items, and pay credits - of the system
(see Section 3.1 and Figure 3.1).

The schema Database is relevant at the level of an agency. It includes a list of references
(agencies) to those agencies that are part of the system. A unique account is also created
for each individual agency to record the balance of all its transaction (agencyaccounts). The
component itemsin, records all the items received from customers, and itemsout maintains
a set of items received from customers and sent out to the beneficiary agency. A cashin
specifies a cashier where all payments are made at an agency. For each payment opera-
tion, a transaction is created and mapped to the corresponding account (statements). The

component collected captures all the returned items forwarded by other agencies (Helpers).
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_Database
agencies : P Agencyid

agencyaccounts : Account »~ Agencyid

itemsin : Invoice X Item X Date - Agencyid
itemsout : Item x Date -+ Address

collected : Item x Agencyid -+ Date

cashin : Customer x Money x Date - Agencyid
statements : Account x Transaction + Date

ran(agncyaccounts) C agencies A ran(itemsin) C agencies
dom(dom itemsout) C ran(dom(dom itemsin))
ran cashin C ran agencyaccounts
dom(dom statements) C dom(agencyaccounts)
ran(dom collected) C agencies
(V Account | O Account € dom(statements)) o
(Fid : Agencyid e id € ran(cashin) N\ 0 Account — id € agencyaccounts)

As indicated in the predicate, a service is rendered for a Beneficiary agency only when an
account and a valid identifier are created for the agency. The system requires that any item
shipped to a provider must have been received from a customer. The last predicate indicates
that transactions recorded in statements, capture exclusively payments made at a cashier

for Beneficiary agencies.

The next schema describes the state of an agency, which includes the above schema.

__Agency
Database

identifier © Agencyid
dcurrency : Currency
address : Address
language : Language
ssales : ISales

identifier € agencies
dom(ssales.custaccounts) N dom(agencyaccounts) = @

Additionally to the data provided by the schema Database, some information is added to
personalise each agency. The variable dcurrency contains the currency that can be used
from outside the agency. Similarly, address and language represent respectively the address
and language that can be used to communicate with the agency. The unique reference of the
agency is recorded in identifier. Each agency provides to others a unique interface ssales to

communicate with its local sales system. The sharing of accounts is not allowed.

The system itself is modeled in the next schema as a set of agencies (see Figure 3.1).
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System
known : P Agency

The next section proposes realisable initial states for the above state schemas.

3.4.3 Initialising the state space

This section presents for each abstract state schema previously defined, an initial state that is
assumed. Although a formal proof needs to be provided according to the established strategy
for deriving Z documents, such proofs are omitted. However, the following initialisation
theorem may be followed, when necessary, to establish that each assumed initial state is

realisable.
F State’ e InitState.
Initially the balance of an account is assumed to be zero, and the database is empty.

_ InitAccount
Account’

balance’ = 0 N accountno’ # 1

__InitDatabase
Database’

Agencies’ = @ N agencyaccounts’ = & A itemsin’ = &
itemsout’ = & N cashin’ = @ A statements’ = & A collected’ = &

Initially, the database in an agency is at its initial state, and the interface of communication
is assumed empty.
__InitAgency

Agency’
Init_Database

ssales’.custaccounts = & A ssales’.statements = & A ssales’.invoices’ = &

_ InitSystem
System’

known' = @

Next, are presented the partial operations of the system.

45



3.4.4 Partial operations

This section describes the partial operations of the system. Those are the operations that
model the activities of the system under normal circumstances without considering errors
that may occur. The focus at this stage is to identify and describe the essential operations
of the system. The Z established strategy for deriving Z documents, clearly indicates the
structure of a Z specification (Potter et al. [70]) and how schemas can be constructed (van der
Poll and Kotzé [93]). The difficult part is therefore more on how to identify operations and
objects of a system to be specified, than to worry about how to build their schemas. In
general, some case studies on Z (Bowen [13]), introduce the operation, explain what it does,
define the schema and complete the description with a prose text. In this work, the operations
that follow are based on a dissection of the case study description in Section 3.1 and our

understanding of the major services to be rendered by the system.

Receiving an item from a customer

A customer returns an item to an agency, whereupon the item is temporarily kept in a store

waiting to be forwarded to the original provider of the returned item.

__receweltemOk
AAgency
item? : Item; inv? : Invoice; id? : Agencyid; date? : Date
addr! : Address; lang! : Language; resp! : Report

item? ¢ ran(dom(dom itemsin)) A id? € agencies
(3 Agency o
0 Agency.identifier = id? N\ inv? € 0 Agency.ssales.invoices N
addr! = 0 Agency.address N lang! = 0 Agency.language)
itemsin’ = itemsin U (inv?, item?, date?) — id? N\ resp! = Success

For this operation to be performed, values must be provided for the input variables dec-
orated with “?”. That is, for example, information about the returned item (item?), the
identifier of the company that provided the item (id?), etc. The system uses the input id?
to determine the beneficiary, to validate the invoice (inv?) and obtain the necessary infor-
mation to facilitate the communication: agency’s address (addr!) and local language (lang!).
This information is specified for the user, and the item is temporarily kept at the “Helper”
agency. The operation is allowed only when the customer’s provider is part of the system

(id? € agencies).

Items temporarily kept in stores are to be forwarded to their final destination. The fol-

lowing operation serves this purpose.
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Sending an item back to the provider

Y

The operation is executed to forward an item previously received to its “beneficiary”.

___sendltemOk
ASystem
item? . Item; dateout?, datecollected? : Date
addr? : Address; id? : Agencyid; resp! : Report

item? € ran(dom(dom itemsin))

(Finv : Invoice; datein : Date) o (inv, item?, datein) — id? € itemsin
itemsout’ = itemsout U (item?, dateout?) — addr?

3 Agency € known e 0 Agency.identifier = id? A 0 Agency.addr = addr?
0 Agency.collected’ = 0 Agency.collected U (item?,id?) — datecollected?
resp! = Success

As indicated in the previous operation, input variables are decorated with a question mark
symbol (7) and output variables are decorated with the exclamation mark symbol (!). Only
items previously received from customers can be sent. A record is kept for items that are
shipped to their provider with the date of the operation (dateout?). The operation succeeds

when the item is collected and acknowledged by the beneficiary agency.

After collecting the item, the agency may then use its own local routine procedure to com-
plete the transaction. However, our opinion is that the system under consideration may need
to update the customer’s account with an amount of money equivalent to the value of the

returned item, as described next.

Refunding a customer

This operation updates a customer’s account with an amount of money equivalent to the
present value of a good returned by the customer. Due to the fact that different companies
may have different management policies, the idea of updating a customer’s account does not
necessarily mean the customer will be refunded in cash. It may serve as guideline for further

decisions. For example, it may help to choose a replacement item.

This operation relies on the communication interface to be visible to other agencies,
and through them to the customer, which makes it possible for the customer to access the

information from any agency.
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__refundCustOk
AlSales
amount? : Money; cust? : Customer; date? : Date
resp! : Report

Jtrans : Transaction e
trans ¢ ran(dom statements) A amount(trans) = amount?
3 Account e
0 Account — cust? € custaccounts
statements’ = statements U (0 Account, trans) — date?
resp! = Success

The value of the input amount? is assumed to be the present value of a returned item if the
operation is performed when a customer is returning or replacing a purchased item. The
system creates a new transaction of the value of amount? and applies it to the customer’s
account. The system communicates with the Local Sales System of the beneficiary agency

to identify the customer’s account affected by the transaction.

Receiving cash from a customer

This operation registers a credit paid by a customer to a cashier in a “Helper” agency.

__receiwCashOk
AAgency
cust? : Customer; amount? : Money; id? : Agencyid; date? : Date
resp! : Report

3 Agency | 0 Agency.identifier = id? e

3 Account e 8 Account — cust? € 0 Agency.ssales.accounts
cashin’ = cashin U {(cust?, amount?, date?) — id?}
resp! = Success

The input variable cust? captures information about the customer, amount? the amount
of money paid by the customer, id? the identifier of the beneficiary agency, and date? the
date of the operation. The system reports the success of the operation with the output vari-
able resp!. The system uses the communication interface with the Local Sales System (see
Figure 3.2) to ensure that the customer has a valid account with the provider company be-

fore proceeding with the payment at the cashier where details of the transaction ar recorded.

After a successful payment, it is suggested the transaction be transferred into the account

of the target agency. The operation allocateTransOk is defined to serve this purpose.
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Allocating a payment to an agency’s account

The input date? represents the date of this operation and not the date of the earlier trans-

action made by the customer at the cashier.

__allocateTransOk
AAgency

cust? . Customer; id? : Agencyid; date? : Date
resp! : Response

(3 Account; trans : Transaction; date : Date) o
(cust?, amount(trans), date) — id? € cashin N\
0 Account — id? € agencyaccounts
statements’ = statements U (6 Account, trans) — date?
resp! = Success

The system uses the inputs containing information about the customer cust? and the ben-
eficiary agency identifier 7d? to determine the payment made by the customer at a cashier.
A transaction is then created to permanently record the payment in the provider’s account
at the Helper agency. When this operation is successfully performed, a notification is sent
to the Beneficiary company. In this regard, the following operation (notifyCustTransOK) is
defined:

Notification of payment

The system uses this operation to update, via the communication interface, a customer’s

account at the “beneficiary” agency after the customer has made a payment.

—notifyCust TransOk
ASystem

cust? : Customer; trans? : Transaction; datenotice? : Date; id? : Agencyid
resp! : Report

(3 Agency | 0 Agency € known; 3 acc, custacc : Account; datel, date2 : Date) o
(cust?, amount(trans?), datel) — id € cashin N\
(acc, trans?) w— date2 € statements
0 Agency.identifier = id? N acc — id? € agencyaccounts
custacc — cust? € 0 Agency.ssales.custaccounts
0 Agency.ssales.statements’ =
(0 Agency.ssales.statements U (custace, trans?) — datenotice)
resp! = Success

The input variable trans? captures the transaction allocated to the beneficiary agency’s

account at the “Helper” side, and datenotice? models the notification date. The system
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determines all the information recorded on the transaction and uses the communication in-
terface with the Local Sales System at the Beneficiary agency to determine the customer’s
account and submits the notification. A notification includes information about the cus-
tomer’s account, all the information on the transaction, and the date of the notification

(datenotice).

Note, that at this stage, the nature of some operations are kept rather abstract. For exam-
ple, allocating a transaction to an account does not specify explicitly whether the account
is debited or credited.

As prescribed by the Z established strategy, preconditions need to be calculated for im-
portant operations of the system. This may help to determine circumstances under which
an operation is likely to be problematic. Calculating preconditions for the above partial

operations is therefore the object of the following section.

Preconditions and total operations

A precondition is an operation, denoted by pre, that applies to operation schemas. As
advocated by Woodcock [100], a “specifier” has a vital responsibility to ensure the correct
precondition for each robust operation that changes the state of a system. Calculating a
precondition of an operation helps to describe precisely the conditions under which the op-
eration is applicable, and therefore helps to avoid applying operations outside their domain.
Such calculation involves, in general, two major steps (see Potter et al. [70], Woodcock
[100], Woodcock and Davis [101]):

e First, to define the precondition schema of the operation by removing the after-state
variables and outputs from the declaration part of the operation schema and existen-

tially quantifying them in the predicate.

e Secondly to simplify the schema by applying predefined inference rules and techniques,

such as the one-point-rule, which is defined later in this section.

To be realistic, the simplification process may be further deconstructed in multiple steps
depending on the complexity of the particular case under consideration; van der Poll and
Kotzé [92] illustrate this with an example.

Next, the calculation of the precondition for the partial operation receivltem, is considered

in detail.

Operation receivltem:

Define Pre receivltem = preReceivltem represented with the schema below:
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___preReceivltem
Agency
item? : Item; inv? : Invoice; id? : Agencyid; date? : Date

(3 Agency’; ag : Agency; addr! : Address; lang! : Language; resp! : Report) e
item? ¢ ran(dom(dom itemsin)) A id? € agencies A ag.identifier = id?
inv? € ag.ssales.invoices N\ addr! = ag.addr A lang! = ag.lang
itemsin' = itemsin U (inv?, item?, date?) — id?resp! = Success

The schema preReceivitem would be extremely hard to use if not simplified. Before at-
tempting to simply this precondition schema, observe that the state invariant still holds for
both the before state Agency, and the after state Agency’. It may also be observed that the
quantified variables in the after state that are not changed by the operation, may be omit-
ted in the precondition schema. A formal justification of the last observation is presented

shortly, but first, the statement of the one-point-rule used in the proof (e.g. Potter et al. [70]):

If we have an existentially quantified statement, part of which gives us an exact value for
the quantified variable then the quantification can be removed, replacing the variable by its

known value wherever it appears.

This rule can be translated as follows:
If x is not free in ¢, then (Jz: S e P(z) Az =1t) = P(1)).

Now the proof:
If a predicate p(z) is a tautology, S a state schema, and S’ the after state of S returned by
an operation, then,

1. dJ2/:TeS ez’ ' =2 [Hypothesis]

2. J':TeSepla'yNa' =z [p(a)) is true]

3. z:TAp(x) [One Point Rule]
4. p(z) [fact as z € S|

Expanding the reference to Agency’ and considering only those variables that are changed

by the operation in the predicate part, leads us to:

(Fitemsin' : Invoice x Item x Date + Agencyid; ag : Agency; addr! : Address; lang! :
Language; resp! : Report) e

(
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item? ¢ ran(dom(dom itemsin)) A
1d? € agencies N

ag.identifier = id? A

inv? € ag.ssales.invoices N

addr! = ag.addr N

lang! = ag.lang N

itemsin' = itemsin U (inv?, item?, date?) — id? A

P NS T W

resp! = Success

The quantified variable itemsin’, and the output variable resp!, are given exact values and

hence, applying the one-point-rule yields:

(Fag : Agency; addr! : Address; lang! : Language) o
(

item? ¢ ran(dom(dom itemsin)) A

1d? € agencies N

ag.identifier = id? A

inv? € ag.ssales.invoices N\

addr! = ag.addr N

lang! = ag.lang N

NS e W

itemsin U (inv?, item?, date?) — id? € Invoice X Item x Date - Agencyid

Each agency is uniquely referenced with an identifier, hence an agency is completely de-
fined when its identifier is known, and therefore, the existence of any other component of a

defined agency is implied.

(Fag : Agency | (id? € agencies) A (ag.identifier = id)) e
(3 addr! : Address; lang! : Language | addr! = ag.addr A lang! = ag.lang).

The conditions numbers 5 and 6 above, may now be removed, and the output variables
may also be removed from the quantification, as their exact values are given, rendering the

One-Point-Rule applicable.

1. item? ¢ ran(dom(dom itemsin)) A
2. 1d? € agencies N\
7. itemsin U (inv?, item?, date?) — id? € Invoice x Item x Date - Agencyid N\
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Jag : Agency e
(
3. ag.identifier = id? N\

4. inv? € ag.ssales.invoices

).

For clarity, unbound conditions have been placed outside the quantified expression. Next,

we prove condition number 7

1. item? ¢ ran(dom(dom itemsin)) [assumption]
2. Vi:Item; d: Date; id : Agencyid e (i,item?, d) — id & itemsin [deduction from 1]
3. (inv?,item?, date?) — id? & itemsin [deduction from 2]
4. itemsin € Invoice X Item x Date + Agencyid [by definition]
5. (inv?,item?, date?) — id? € Invoice x Item x Date + Agencyid [from 4]

= (conditionT.)
6. (inv?,item?, date?,id?) € Invoice X Item x Date x Agencyid [inputs declaration]
7. (id? € agencies N

Jag : Agency e ag.identifier = id? A inv? € ag.ssales.invoices)
= (inv?, item?, date?) — id? € Invoice X Item X Date + Agencyid [from 6]

Since the function that maps the triple elements (inv?, item?, date?) to id? is not total,
having an instance for the triple elements does not necessary imply that there will always
be an identifier ¢d? associated to that instance. The mapping holds under the assumption

that the target agency is part of the system and the input invoice is valid.

The simplified version of preReceivltem is:

__preReceiwltem
Agency
item? : Item; inv? : Invoice; id? : Agencyid; date? : Date

item? ¢ ran(dom(dom itemsin)) A id? € agencies
Jag : Agency e ag.identifier = id? N inv? € ag.ssales.invoices

Negating this precondition, leads to the error conditions listed next:

Errl: dtem? € ran(dom(dom itemsin)):

A user trying to register an input item that was already received.
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___ItemAlreadyReturned
=Agency
item? : Item; resp!: Report

item? € ran(dom(dom itemsin)) A resp! = ItemAlreadyReturned

Err2:  id? & agencies:
The identifier of the input agency is not recognised by the system.

— Unknownldentifier
ZAgency
1d? : Agencyid; addr! : Address

1d? & agencies N\ resp! = Unknownldentifier

Err3: Vag : Agency e ag.identifier # id?:
The system cannot determine the agency with the input identifier. That is, the
system cannot get connected to the agency with the input identifier.

—_ AgencyNotFound

=Agency
1d? : Agencyid; resp! : Report

1d? € agencies NV ag : Agency e ag.identifier # id?
resp! = AgencyNotFound

Errd:  inv? & ag.ssales.invoices:

The invoice presented by the customer is not recognised by the provider company.

__InvalidInvoice
ZAgency
mo? : Invoice; id? . Agencyid
resp! : Report

1d? € agencies N
Jag : Agency e ag.identifier = id? A inv? & ag.ssales.invoices
resp! = InvalidInvoice

The Next Z schemas calculus expression defines the total operation for receivltemOk.

Receivltem = receivltemOk V ItemAlreadyReturn V Unknownldentifier V
AgencyNotFound V InvalidInvoice

Following the same process, the preconditions for other operations may be calculated.

For those operations, only the simplified versions of their preconditions with error conditions,
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are here presented.

Operation: Forwarding an item from one agency, to another agency.
Define pre sendltem = preSendltem.

The schema of the simplified version of this precondition is shown below.

__preSendltem
Agency
item? : Item; dateout?, datecollected? : Date; addr? : Address; id? : Agencyid

item? & dom(dom itemsout)
item? € ran(dom(dom itemsin)) A id? € ran itemsin
id? € agencies N\ ag : Agency e ag.identifier = id? A ag.addr = addr?

Negating the schema preSendltem, yields the following error conditions:

The first error occurs when a user attempts to send the same item more than once.

__ ItemAlreadySent
=ZAgency
item? . Item; resp! : Report

item? € ran(dom(dom itemsin)) A item? € dom(dom itemsout)
resp! = ItemAlreadySent

The condition for the error is item? € dom(dom itemsout). Another error condition occurs
when item? ¢ ran(dom(dom itemsin)): the item was never received.
—ItemNotReceiv

=Agency
item? . Item; resp! : Report

item? & ran(dom(dom itemsin)) A resp! = ItemNotReceived

The error case where the agency cannot be determined was described previously with the
schema AgencyNotFound (Err2). The next operation schema handles the case of an incorrect
address that occurs when the address provided by the user, does not match the real address

of the target agency.

__IncorrectAddress
=Agency

addr? : Address; id? : Agencyid
resp! : Report

1d? € agencies
3 Agency o 0 Agency.identifier = id? N\ 0 Agency.addr # addr?
resp! = IncorrectAddress
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The schema calculus expression that specifies the total operation for forwarding items is:

SendItem = sendltemOk V ItemAlreadySent V ItemNotReceiv V
AgencyNotFound V IncorrectAddress

Operation: refunding a customer

Define pre refund_cust = preRefundCust. The simplified schema is:

__preRefundCust
ISales

amount? : Money; cust? : Customer; date? : Date

cust? € ran custaccounts

Only one error may occur, that is, when the customer does not have an account with the

comparny.

__ UnknownClust
=1Sales
cust? : Customer; resp! : Report

cust? & ran custaccounts A resp! = UnknownCustomer

The total operation for this operation is therefore:

RefundCust = refundCustOk VvV UnknownCust

Operation: Cash deposit
Define pre ReceivCash = preReceivCash. The simplified schema of this operation is:

__preReceivCash
Agency
cust? : Customer; amount? : Money; id? : Agencyid
date? : Date

1d? € agencies
Jag : Agency e ag.identifier = id? A cust? € ran ag.ssales.accounts

When this precondition schema is negated, a list of error conditions (for which operations

were described in the previous cases) are obtained. The schema calculus expression of the
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total operation is therefore:

ReceivCash = receivCashOk N Unknownldentifier V AgencyNotFound V' UnknownCust

Operation: Allocating a transaction to an agency’s account

The schema of the precondition for this operation is:

__preAllocateTrans
Agency
cust? : Customer; id? : Agencyid; datetrans? : Date

cust? € dom(dom(dom(cashin t> id?)))
id? € ran(agencyaccounts)

As with the previous cases, the schema of the precondition is negated to yield error con-
ditions. Having cust? ¢ dom(dom(dom(cashin > id?))) implies that the customer has not
issued any payment, and the operation to allocate the customer’s transaction to the agency’s

account fails. The system then, continues with TransNotFound to handle the error.

— TransNotFound
=Agency

cust? : Customer; resp! : Response
cust? ¢ dom(dom(dom(cashin t> id?)))
resp! = TransactionNotFound

Another error occurs when no account was created for the target agency.

__AgencyAccountNotFound
=Agency

cust? : Customer; id? : Agencyid
resp! : Report

id? & ran(agencyaccounts) A resp! = AgencyAccountNotFound

The total operation is summarised as:

Allocate Trans = allocate TransOk vV TransNotFound V
AgencyAccountNotFound

Operation: Notification of the other agency about a cash deposit

The schema for the precondition of this operation is shown below:
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__preNotifyCustTrans
Agency; System
cust? : Customer; trans? : Transaction
datenotice? : Date; id? : Agencyid

id? € ran(agencyaccounts)

cust? € dom(dom(dom(cashin > id?))) A

trans? € ran(dom(dom(statements)))

Jag : Agency e ag.identifier = id? A cust? € ran(ag.ssales.custaccounts)

The precondition preNotifyCustTrans is negated to yield error conditions. So, the first error
to consider is when the system cannot determine a transaction made by a customer. That
is, when cust? € dom(dom(dom(cashin > id?))). This error was previously defined, and the
operation TransNotFound was described to handle the error.
The next error occurs when a payment made at a cashier is not yet allocated to any agency’s
account.
— TransNotAllocated
=Agency
cust? : Customer; trans? : Transaction; resp!: Report

cust? € dom(dom(dom(cashin > id?)))
trans? ¢ ran(dom(dom(statements)))
resp! = TransactionNotAllocated

At this point, all possible error conditions have been specified and will simply be re-used in
further total operations when needed. Observe, that some of the operations so far described
may need to be promoted to accommodate their application environment. As mentioned

before, we are not considering such structuring activities here for the reasons stated in
Section 3.4, P. 40.

— UnknownCustRemote
=Agency; ZSystem
cust? : Customer; id? : Agencyid; resp! : Report

id? € ran(agencyaccounts)

Jag : Agency € known e ag.identifier = id? N\ cust? ¢ ran(ag.ssales.custaccounts)
resp! = UnknownCustomer

The total operation is:

notifyCust Trans = NotifyCustTransOk V TransNotFound vV AgencyNotFound
V AgencyAccountNotFound vV UnknowCustRemote

The table presented next, gives a summary of the total operations.
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3.4.5 Table of total operations

Operation Inputs and Outputs | Preconditions

Receivltem item? : Item item? ¢ ran(dom(dom itemsin))
inv? : Invoice 1d? € agencies
1d? : Agencyid dag : Agency e ag.identifier = id? A
date? : Date mv? € ag.ssales.invoices
resp! : Report

Sendltem item? : Item item? ¢ dom(dom itemsout)
id? : Agencyid item? € ran(dom(dom itemsin))
dateout? : Date 1d? € ran itemsin
addr? : Address 1d? € agencies
resp! : Report Jag : Agency e ag.identifier = id? A
dateallocated? : Date ag.addr = addr?

RefundCust amount? : Money
cust? : Customer pers? € custaccounts
date? : Date
resp! : Report

ReceivCash cust? : Customer 1d? € agencies
1d? : Agencyid d Agency e 0 Agency.identifier = id? N
amount? : Money cust? € ran(f Agency.ssales.accounts)
date? : Date
resp! : Report

AllocateTrans cust? . Customer cust? € dom(dom(dom(cashin > id?)))
id? : Agencyid id? € ran(agencyaccounts)
datetrans? : Date
resp! : Report

NotifyCustTrans | cust? : Customer id? € ran(agencyaccounts)
id? : Agencyid cust? € dom(dom(dom(cashin > id?)))
trans? : Transaction | trans? € ran(dom(dom statements))
datenotice? : Date J Agency o 0 Agency.identifier = id? A
resp! : Report cust? € ran(f Agency.ssales.custaccounts)

Table 3.1: Summary of total operations

Each of the three high-level services of the system are defined.

DefineReturnitem = Receivltem g Sendltem §

RefundCust
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DefineReplaceltem = Receivltem g Sendltem
DefinePaycredit = ReceivCash § Allocate Trans § NotifyCust Trans

3.5 Observations on Z

The following may be observed from the above Z specification:

1. The elegance of using Z to specify a system is highlighted. Each abstract state of the
system is described in detail. For each operation, the precondition is calculated and

the error conditions are clearly determined.

2. Abstract state spaces and operations are specified at the same level of abstraction as

in the informal requirements definition.

3. Apart from using schema calculus operators to combine different schemas to form a
new one, components from one schema, may be included or used in formulas within

another schema.

Although these observations bring to light the precision that Z adds into the description of
the functionalities of a system, they also demonstrate some limitations of the notation. E.g.
they suggest the difficulties to modify, for example, an operation after the specification is
built, since different components may be affected. They also support the idea of using a
formal specification technique after some anlaysis and refinement of the initial requirements
have been performed, as users generally do not initially know what they want until some pre-
analysis of their needs is performed. Another important point, from the above observations,
is that using Z at this stage, may result in specifying only the user-view of the system,
instead of the system functionalities that may be obtained by refining the initial goals or

user requirements.

3.6 Chapter summary

This chapter presented a natural language (English) description of the case study used in
this work. A UCM model and a Z specification for the case study were suggested. Some of
the advantages of using the UCM technique to capture and model user requirements were

presented. Also a number of observations on the use of Z were put forward.
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In the following chapter, based on the knowledge gained from the literature relating con-
cepts in Z and Object-Z, and some guidelines proposed to help transform a 7Z document into

Object-Z, the Z specification developed in this chapter, is transformed into Object-Z.
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Chapter 4
Transforming the Z specification

Chapter 3 described the case study used in this work and proposed a UCM model and a Z
specification for the case study. This chapter aims to transform the Z specification (see Chap.
3, Sec. 3.4) into Object-Z (see Figure 1.3). The following section presents the transformation

process.

4.1 Transformation process

The feasibility of transforming a 7Z document into Object-Z, is supported by the fact that
Object-Z is itself an extension of Z to accommodate Object-orientation (Carrington and
Smith [22]). The general idea is, therefore, to group Z schemas to form Object-Z class
schemas. To achieve this structuring work, some changes need to be made to those schemas,
as well as the initial Z types and axiomatic definitions, to make them amenable to their new
object-oriented environment. For example, a basic type which denotes some set of objects
in 7, needs to be transformed into a class in Object-Z, to allow for the use of the same
set of objects in Object-Z. Details regarding the rules of transformation applicable to each
particular type of element(s) in Z, are not explicitly presented here however, Periyasamy
and Mathew [68] provide important guidelines in this regard. During the transformation
process, a summary of the mechanism used is given for each case. When necessary, detailed
explanations are also provided whenever the idea may be unclear or not explicitly addressed

in the referenced guide document.

The next section describes on the step-by-step transformation.
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4.2 The Object-Z specification

Two basic steps are followed to create the Object-Z version of the input specification. Firstly,
all the Z basic types are transformed. And secondly, class schemas are created, based on the
transformation of the initial Z axiomatic definitions, state schemas and operation schemas.
Descriptive text attached to those elements are, when necessary, modified to accommodate

the changes.

4.2.1 Basic types

Since a given type in Z represents a set of undefined objects, the Object-Z transformation
of such a type may yield a class containing no state and no operation, namely, an empty
class. For that reason, each given type of the input specification is therefore transformed
into an empty class. The name of the class will be kept identical to that of the Z-type for
re-usability purposes. For brevity, only one such class will be represented graphically to
illustrate the idea, and the rest will be assumed. Below is the graphical representation of

the class Customer; the Object-Z transformation of the given type Customer.

i

As stated above, an instance of this class is a customer object. At this stage nothing is said

Customer

about the properties and behaviour of a customer. Nevertheless, the class can be used in
any other class, for example, by instantiation (the new class refers to it, as an attribute of

its variable), or by inheritance. The list of empty classes resulting from the transformation

are:
Item the class of items
Customer the class of all possible customers
Agencyid the class of class identifiers
Invoice the class of all invoices
Currency the class of all possible currencies

Transaction the class of transactions

AccountNo  the class of account numbers

Money the class all possible amounts of money

Language the class of all human languages

Report the class of all possible messages that may be exchanged with the system
Address the class of all possible addresses

Date the class of dates.
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Note that Z basic types are part of Object-Z and may be incorporated directly into Object-Z
classes. The difficulty would be to partition the initial list of types, in a way to place only

those that are required into a class.

The Object-Z class schemas for the input Z specification are presented next.

4.2.2 Class schemas

The Object-Z classes resulting from the transformation of the input Z specification are gen-

erated from the following premises:

e For each abstract state space, a class schema is created. The name of the class is that of
the state schema with “Cls” added to it as prefix. The unnamed version of the abstract

state is added to the class as its only state.

e A realisable initial state of the state space from which a class is formed, is also added to

the class.

e Any operation that applies to a state, from which a class is generated, is added to the
class. The delta operator (A) in the definition of an operation within a class indicates

the components that are changed by the operation. The Z operator Xi (Z) is simply

eliminated from the operation.

e Any variable used in an operation is defined in the class containing the operation. Because
global variables may be used in different operations and classes, and hence, be defined
multiple times, this may cause confusion. For that reason, it is suggested a single class
that encapsulates all the global variables be created, this allows each class to inherit

variables from such a single class.

The next paragraph describes the class of global variables.

The class of global variables

This class encapsulates the global variables defined in the input Z specification. The meaning
of each variable within the class remains unchanged from that of Chapter 3 (Section 3.4.1,
p.41). The purpose in creating this class is to make those variables accessible to any other

class, for example by inheritance.
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__ ClsGlobalVariables
[ (exchange, translate, amount, Report)

‘ exchange : Money x Currency x Currency - Money
‘ translate : Message X Language X Language -+ Message
‘ amount : Transaction -+ Money

Success,
ItemAlreadyReturned,
Unknownldentifier
AgencyNotFound,
InvalidInvoice,
ItemAlreadySent,
ItemNotReceived,
IncorrectAddress,
TransactionNotFound,
UnknownCustomer,
AgencyAccountNotFound,
PaymentNotFound,
TransactionNotAllocated

(Success, ItemAlreadyReturned, Unknownldentifier, AgencyNotFound,
InvalidInvoice, ItemAlreadySent, ItemNotReceived, IncorrectAddress,
TransactionNotFound, UnknownCustomer, AgencyAccountNotFound,
PaymentNotFound, TransactionNotAllocated) € iseqReport

The class of “Accounts”

The class ClsAccount results from the transformation of the Z abstract state Account that
describes the properties of an account object. The class includes only the operation of
initialisation as a method, because in the input Z specification, there is no other operation
that applies exclusively to the state Account. The components of the class are accessible
and can be initialised from the environment of the system. Each object of the class includes

a unique number and a balance which is initially equal to zero.

— ClsAccount
[ (accountno, balance, INIT)

accountno : AccountNo
balance : Money

account # 1

__INIT
balance’ = 0 N accountno’ # 1
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Next is the class of objects known as communication interfaces between this system and a

local sales system in an agency.

The class of “Communication interfaces”

The class ClsISales results from the transformation of the Z abstract state ISales. It includes
components that are provided by a local sales system, in an agency, to facilitate the com-
munication with this system, as indicated in Figure 3.2, Chapter 3. The description of these
components as given in Chapter 3, Section 3.4.2, on page 42 remains unchanged. It inherits
the variables Report, and the function amount from the class of global variables. The vari-
able Message is defined to promote the list of reports into the class, and getAmount is defined

to render the function amount, from the class ClsGlobalVariables, usable in ClsISales.

__ClslSales
[ (custaccounts, statements, invoices, INIT, RefundCust)

var : ClsGlobalVariables

custaccounts : ClsAccount -~ Customer
statements : ClsAccount x Transaction - Date
mwoices : P Invoice

dom(dom statements) C dom custaccounts

__INIT
custaccounts = & N statements = & N invoices = &

Message = var.Report A getAmount = var.amount

— refundCustOk
A(statements)
amount? : Money; cust? : Customer; date? : Date
resp! : Message

Jtrans : Transaction e
trans ¢ ran(dom statements) N\ getAmount(trans) = amount?
3 Account e
0 Account — cust? € custaccounts
statements’ = statements U (6 Account, trans) — date?
resp! = Success

— UnknownCust
cust? : Customer; resp! : Report

cust? & ran custaccounts N resp! = UnknownCustomer

RefundCust = RefundCustOk [| UnknownCust
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The class defines the total operation RefundCust (as described in the previous chapter) and
makes it visible to other classes. Components of the class are made accessible to other

classes, except for the variable var.

The following class describes database components required in each agency.

The class of “Databases”

The class ClsDatabase is the Object-Z transformation of the Z abstract state space Database.
Similar to the class ClsAccounts, the only method of the class is the operation of initialisation.
It includes the Z state schema, namely, database and its initial state, as defined in Chapter
3. All the components in the state are made accessible to other classes and can be initialised

from the environment.

__ClsDatabase

[ (agencies, agencyaccounts, itemsin, itemsout, collected, cashin, statements, INIT)

agencies : P Agencyid

agencyaccounts : ClsAccount - Agencyid
itemsin : Invoice X Item x Date -+ Agencyid
itemsout : Item x Date + Address

collected : Item x Agencyid + Date

cashin : Customer x Money x Date + Agencyid
statements : ClsAccount x Transaction + Date

ran(agncyAccounts) C agencies A ran(itemsin) C agencies
dom(dom itemsout) C ran(dom(dom itemsin))
ran cashin C ran agencyaccounts
dom(dom statements) C dom(agencyaccounts)
ran(dom collected) C agencies
(V Account | O Account € dom(statements)) o
(Fid : Agencyid e id € ran(cashin) A 0 Account — id € agencyaccounts)

__InitDatabase
Agencies’ = @ N\ agencyaccounts’ = @ N itemsin' = &
itemsout’ = @ A cashin' = & N statements’ = & A collected’ = &

This class is meant to be used by other classes; notably by the class of agencies presented
next.
The class of “Agencies”

The class ClsAgency, is the Object-Z transformation of the Z state schema Agency from

the input Z specification. An object of this class inherits properties from the two classes
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ClsDatabase and ClsISales as a result of having the two abstract states spaces, Databases and
ISales included in the state space Agency, from the input Z specification. The component db
defines the identity of an object of the class of databases; this object encapsulates the data
used locally in an agency. The component ssales defines the identity of an object of the class
ClsISales to handle communications between an object of this class, representing an agency,

with other agencies. Global variables are inherited from the class ClsGlobalVariables.

— ClsAgency

[ (db, ssales, identifier, dcurrency, address, language, Receivltem, ReceivCash,
AllocateTrans)

ClsGlobalVariables

db : ClsDatabase
ssales : ClsISales
identifier : Agencyid
dcurrency : Currency
address : Address
language : Language

identifier ¢ agencies
dom(ssales.custaccounts) N dom(agencyaccounts) = &

__INIT
db.INIT A ssales’.custaccounts = &
ssales’.statements = @ N ssales’.invoices’ = &

__recetweltemOk
A(db.itemsin)
item? : Item; inv? : Invoice; id? : Agencyid; date? : Date
addr! : Address; lang! : Language; resp! : Report

item? ¢ ran(dom(dom itemsin)) A id? € agencies
(3 Agency e
0 Agency.identifier = id? N inv? € 0 Agency.ssales.invoices N
addr! = 0 Agency.address A lang! = 0 Agency.language)
db.itemsin' = db.itemsin U (inv?, item?, date?) — id? A resp! = Success

__ItemAlreadyReturned
item? : Item; resp!: Report

item? € ran(dom(dom db.itemsin)) A resp! = ItemAlreadyReturned

__ Unknownldentifier
id? . Agencyid; addr! : Address

id? & db.agencies N resp! = Unknownldentifier
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— AgencyNotFound

id? : Agencyid; resp! : Report

id? € db.agencies NV ag : Agency e ag.identifier # id?
resp! = AgencyNotFound

_InwalidInvoice

inv? : Invoice; id? : Agencyid
resp! : Report

1d? € agencies N
Jag : Agency e ag.identifier = id? A inv? & ag.ssales.invoices
resp! = InvalidInvoice

Receivltem = ReceivltemOk || ItemAlreadyReturn || Unknownldentifier ||
AgencyNotFound || InvalidInvoice

__receivCashOk

A(db.cashin)
cust? : Customer; amount? : Money; id? : Agencyid; date? : Date
resp! : Report

Jagency : ClsAgency | agency.identifier = id? e

Jaccount : ClsAccount e accoung — cust? € agency.ssales.accounts
db.cashin’ = db.cashin U {(cust?, amount?, date?) — id?}
resp! = Success

ReceivCash = ReceivCashOk || Unknownldentifier || AgencyNotFound ||
UnknownCust

__allocate TransOk

A(db.statements)
cust? . Customer; id? : Agencyid; date? : Date
resp! : Response

(3 account : ClsAccount; trans : Transaction; date : Date) o
(cust?, amount(trans), date) — id? € cashin N\
account — id? € agencyaccounts
db.statements’ = db.statements U (account, trans) — date?
resp! = Success

_ TransNotFound

cust? : Customer; resp! : Response

cust? ¢ dom(dom(dom(db.cashin t> id?)))
resp! = TransactionNotFound
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_ AgencyAccountNotFound
cust? : Customer; id? : Agencyid
resp! : Report

id? & ran db.agencyaccounts A resp! = AgencyAccountNotFound

AllocateTrans = Allocate TransOk || TransNotFound ||
AgencyAccountNotFound

The operations of the class are: the initialisation operation and three other operations.

1. Receivltem: An object of the class representing an agency uses this operation to handle

the receipt of an item returned by a customer that is to be forwarded to another agency.

2. ReceivCash: This operation is used within an agency to receive cash deposited by a

customer for a credit payment, to the benefit of another company.
3. AllocateTrans: Transfer of cash deposited by a customer into the appropriate account.

Each of these operations is composed of an operation that describes the behaviour of the
system under normal circumstances, and a set of other operations defining error conditions
as required by standard Z. Note that in Object-Z, the idea of calculating precondition is not
applicable, since each operation is independently defined without being subjected to be ei-
ther total, partial or meant to complement another operation by specifically handling errors.
In this regard, using Z as an intermediary step in an Object-Z specification, is advantageous
in benefiting from the precondition calculation, which helps to evaluate different conditions
that may in turn influence the execution of an operation. Each of the composed operations
becomes applicable when the precondition of one of the composing operations is satisfied.
In that case, the operation, for which the precondition is satisfied, is internally selected by

the system.

All the components of an object of the class are accessible to its environment from which the
components may be initialised. The three main operations of the class are made available

from outside the class.

Next the class schema that describes the entire system is presented .

The class System

The class ClsSystem of objects, representing a copy of the system as perceived from an

agency, is derived from the state schema System of the input Z specification. The component
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this is added to reference the agency in which the system is operating and distinguishes it

from the others. Operations locally performed in an agency, are thus accessible through this.

___ ClsSystem
[(INIT, SendItem, NotifyCust Trans)

this : ClsAgency; known : P ClsAgency
this & known

__INIT
this. INIT N\ known = &

__sendltemOk
A(this, known)
item? : Item; dateout?, datecollected? : Date
addr? . Address; id? : Agencyid; resp! : Report

item? € ran(dom(dom this.db.itemsin))
(Finv : Invoice; datein : Date) o
(inv, item?, datein) — id? € this.db.itemsin
this.db.itemsout’ = this.db.itemsout U (item?, dateout?) — addr?
(Fagency : ClsAgency ‘ agency € known) e
agency.identifier = id? N\ agency.addr = addr?
agency.db.collected” = agency.db.collectedU
(item?,4d?) — datecollected?
resp! = Success

_ TtemAlreadySent
item? : Item; resp!: Report

item? € ran(dom(dom this.db.itemsin)) A item? € dom(dom this.db.itemsout)
resp! = ItemAlreadySent

__ItemNotReceiv
item? : Item; resp! : Report

item? ¢ ran(dom(dom itemsin)) A resp! = ItemNotReceived

__IncorrectAddress
addr? : Address; id? : Agencyid
resp! : Report

id? € agencies
Jagency : ClsAgency o agency.identifier = id? N agency.addr # addr?
resp! = IncorrectAddress

SendItem = SendltemOk || ItemAlreadySent || ItemNotReceiv ||
AgencyNotFound || IncorrectAddress
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_notifyCust TransOFk
A(known)
cust? : Customer; trans? : Transaction; datenotice? : Date; id? : Agencyid
resp! . Report

(F agency : ClsAgency | agency € known A
Jaccount, custaccount : ClsAccount; datel, date2 : Date) ®
(cust?, amount(trans?), datel) — id € this.db.cashin A
(account, trans?) — date2 € this.db.statements
agency.identifier = id? N\ account — id? € this.db.agencyaccounts
custaccount — cust? € agency.ssales.custaccounts
agency.ssales.statements’ =
(agency.ssales.statements U (custaccount, trans?) — datenotice)
resp! = Success

_ TransNotAllocated
cust? : Customer; trans? : Transaction; resp! : Report

cust? € dom(dom(dom(this.db.cashin > id?)))
trans? ¢ ran(dom(dom(this.db.statements)))
resp! = TransactionNotAllocated

_ UnknownCustRemote
cust? : Customer; id? : Agencyid; resp! : Report

id? € ran(this.db.agencyaccounts)
Jag : Agency € known e ag.identifier = id? N\ cust? ¢ ran(ag.ssales.custaccounts)
resp! = UnknowCustomer

NotifyCustTrans = NotifyCustTransOk || TransNotAllocated || this. AgencyNotFound
[| this.AgencyAccountNotFound || UnknowCustRemote

An object of this class defines two composed operations that involve at least two agencies.

Those are:

1. Sendltem, to forward an item returned by a customer to the appropriate agency where

the item was purchased.

2. NotifyCustTrans, to update the account of a customer in the agency, in which the cus-

tomer has deposited some amount of money.

These operations are accessible from the environment of the system. The user can also ini-

tialise the components of the system.

A brief summary of the chapter follows.
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4.3 Chapter summary

This chapter concentrated on transforming the Z specification of the case study, (presented
in Chapter 3) into Object-Z. The transformation process was guided by knowledge from the
literature, and supported with concepts from ordinary Z, Object-Z and Object-orientation.
As observed earlier, a remarkable advantage of this transformation is to exploit the Z
precondition calculation to determine error conditions for the operations before integrating
them into Object-Z classes.
The next chapter presents a framework for transforming a Use Case Map (UCM) model

of a system into Object-Z.
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Chapter 5

A Framework for transforming a
UCM into Z and Object-Z

In Chapter 3 the description of the case study was presented, and a UCM map was con-
structed from it. The purpose of this chapter is to demonstrate the transformability of a
UCM to a Z and an Object-Z specification, by proposing a framework to translate generic
elements of UCMs to Z and Object-Z elements. Examples are given to illustrate concepts
that may not be easily understandable. The basic transformation strategy, supported by
a small diagram, is first presented in Section 5.1. This is followed in Section 5.2 with the
analysis of the threefold relationship between UCMs, Z and Object-Z, as well as the anal-
ysis, in Section 5.3, of concepts used in UCMs, Z and Object-Z. Thereafter, the proposed

transformation process is presented in Section 5.4, prior to a conclusion in Section 5.5.

The main concept in this chapter constitutes one of the important contributions of this
dissertation. The summary was presented, as a research paper, at the 7th International
Workshop on Modelling Simulation Verification and Validation of Enterprise Information
Systems (MSVVEIS 2009) in Milan Italy (Dongmo and van der Poll [23]).

5.1 Basic transformation strategy

Although UCM, as a semi-formal notation, may share with natural languages some limi-
tations, such as allowing ambiguous requirements, non-detection of errors, etc., it has the
advantage of encapsulating different types of information in a single view. Thus, a drawback
of a transformation process, would be the loss of information (e.g. when a UCM is trans-
formed into a Message Sequence Chart, some information on the scenario interactions is lost
(Miga et al. [60])). The architecture of the proposed mechanism is presented in Figure 5.1. 7Z

is used as an intermediate transformation step. This way, the rigour of Z may be exploited to
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Figure 5.1: Basic transformation strategy

allow for clear and precise definitions of static and dynamic behaviours of systems, extracted
from an input UCM. At the same time, meta-classes are used to extract necessary architec-
tural information. Thereafter Z schemas are combined with the meta-classes, to form the
Object-Z class schemas. A two-step transformation mechanism is presented in more detail

in Section 5.4.

In the diagram above, the double-headed arrow between the input UCM, and the Z schemas,
indicates possible iteration at the level of unit component. That is, after a conceptual unit
element of UCM is transformed, the precision brought into the corresponding Z schemal(s)
may help, reverse-wise to improve the initial UCM element. For example, the precondition of
a critical operation may be formally calculated in Z, and the result reported back to improve
its description in UCM.

At the level of the system, the double-headed arrow indicates the fact that the corresponding
7 description may be simply used to improve the input UCM and hence, serve as a through
away specification, to suit the need of a designer who prefers, for example, to work with
graphical models, since these may be easier to manipulate, and enhance communication

between stakeholders.

5.2 Relationship between UCM, Z and Object-Z

To evaluate the feasibility of the above mechanism, it is necessary to analyse the relationships
between the UCM, Z and Object-Z notations:

e Both notations are specification techniques that focus on system functionalities at the
requirement level; both can also be used during later stages of the software development

process.
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e Their documentations includes, for clarification purposes, natural language descrip-

tions aimed at explaining the possible intricacies of UCMs and schemas.

e UCMs target the static, dynamic and architectural aspects of a system, while Z focuses
on the static and dynamic aspects only. However, the architectural component of

UCMs can be compensated with the class structures of Object-Z (see Figure 5.1).

e Users and industries may more easily adopt the usage of UCMs. This might be because
the UCM notation is graphic in nature, and therefore more appealing to humans than
the terse mathematical notation of Z. Formal methods tend to be perceived by industry
as being unsuitable for serious system design. It is believed that this situation stems
from the fact that the Established Strategy for constructing Z documents (van der
Poll and Kotzé [93], van der Poll et al. [94]), is largely silent about the architecture
of a system. Schemas are defined, and it is left to the user to perceive how these
fit together in the final system. Some suggestions, notably principles to guide the
construction process have been made (van der Poll and Kotzé [93], van der Poll et al.
[94]); the difficulties seem to persist among practitioners since the said heuristics are
still surrounded by technical terms. This is a further justification for using UCMs as

an initial step in the use of a formal method.

e UCMs use scenario-based reasoning to target the general aspects of system function-
ality and structure, and are not concerned with detailed descriptions. Z, on the other
hand, fills this gap as far as system functionality is concerned, but also fails to provide
any construction process for the schemas. Sommerville (Sommerville [82]) suggests
that formal methods in general, should be used at the system-requirements level, after
the user requirements specification, but before any detailed design. This suggests that
a one-to-one relationship between the elements of a UCM model and Z schemas may
not be feasible in general, but the UCM elements may constitute important starting

points in the construction of schemas.

Next, this analysis continues by investigating how concepts in UCM may be linked to those
in Z and Object-Z.

5.3 Conceptualisations in UCM, Z, Object-Z

Since in a UCM, the two important concepts are paths (including path elements to describe
scenarios) and components (to describe the architecture of the system), it is necessary to
analyse the 3-tiered relationship between the above concepts in UCMs, schemas and types

in Z and class schemas in Object-Z.
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UCM path

A UCM path consists of one or more path segments. Each path segment includes, amongst
others, path elements and a sequence of responsibilities, each representing an abstraction
of service provided by the system. A path segment may be bound to a component that
handles the execution of the responsibilities on such path. These UCM constructs may be
modelled in Z, by a set of operation schemas to describe the bound responsibilities, a set
of state schemas used to describe the portion of the system state that is controlled by the
component and is likely to be consulted or changed by the bound responsibilities, and a list

of basic types necessary to define the two sets of schemas mentioned above.

Responsibility points

A sequence of responsibility points in a path segment can, therefore, be modeled in Z,
by schema composition. Alternatively, a Z sequence structure with schema operations as
elements could be considered. A sequence structure may assist a specifier with traceability

aspects of the transformed model.

Scenario interactions

Scenario interactions are represented in a UCM with path connectors, i.e. AND-fork, AND-
join, OR~fork and OR-join. Such connectors may be described in Z using appropriate schema
operators. Although the splitting and joining of path segments with those connectors may
sometimes be associated together, in many real situations this might not be the case. That
is, for instance, a UCM may include one or more OR-forks without any associated OR-join,

and vice versa. For this reason, they are considered separately.

(a) OR-fork
Consider an OR~fork connector with one entry path segment and two outgoing alterna-
tives (see Figure 5.2). Let Opl be the composed schema that models the sequence of
responsibilities of the entry path segment, and Opl1l and Opl2 schemas that specify the

two alternative exit segments.

Opll gy oplil

op2 E

[Falze]
Cplz

Or-Faork. v

Cpl2
F Cir-join

Figure 5.2: OR-fork and OR~join connectors
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The resulting operation along such a path can therefore be described by the following Z
schema calculus expression:

opl g (OpllV Opl2) (5.1)
A text description may be added to indicate the selection policy at the OR-fork connec-

tion point, represented in the formula by the schema disjunction operator (V).

OR-join

With this connector, the responsibilities along one incoming path segment are performed.
This is followed sequentially by the responsibilities along the outgoing path segment.
Hence, as in the case of the OR-fork, the activities around such a connector are described

with the following expression:
(Opl11V Opl2)g Op2 (5.2)

From both expressions, it may be inferred that the combination of OR-~fork and OR-join

connectors, could be described in Z, by the schema expression 5.3 below:
Oplg(OpllV Opl2)g Op2 (5.3)

Op1 represents a schema operation, or a schema expression, for the operations performed
on the incoming path segment. Opll is a schema expression for the operations on one
of the two alternative path segments, Op12, the schema expression that describes the
operations on the other alternative path segment, and Op2 the schema expression that

describes the operations on the joined path segment.

When more than two alternative path segments are to be considered, more schema
disjunction operators may be used to include, in the middle part of expression (5.3),

operations performed on the additional path segments.

AND-fork

Both the AND-fork and AND-join, are illustrated in Figure 5.3. Opl represents the com-
posed schema that models the sequence of responsibilities of the incoming path segment.
And Opll and Opl2, respectively, represent the composed sequence of responsibilities
on each of the synchronised path segments. The resulting operation along such a path

in Z, is described with the following Z schema calculus expression:
Opl§(Opll A Opl2) (5.4)

Where Opl, Opll or Opl2 are, respectively, the schema expressions that describe Opl,
Opl1, and Opl2. Text may be added to the schema expression in Formula 5.4 to provide

more clarification on the synchronization policy.
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Figure 5.3: AND-fork and AND-join connectors

(d) And-join

With this connector, all the responsibilities along both incoming path segments are
performed before any other responsibility along the outgoing path segment. Hence, if,
as mentioned above, Opll, Opl2, Op2 , describe operation along path segments (as
in Figure 5.3), then the following schema calculus expression may describe the set of

activities around the connector:

(opll A opl2) g op2 (5.5)

In a situation where the AND-join is associated to an AND-Fork, the Z schema expression
in Formula 5.6 may be appropriate to model the situation. And when multiple branches
are synchronized, we may simply use more schema conjunction operators in the sub-
expressions in the middle of Formula 5.6, to add the description of the operations on the

additional branches.

Oplg(opll A opl2) g op2 (5.6)

Waiting place

A waiting place is a notational element that implicitly blocks the execution of a scenario,
progressing along a path (main path), waiting for some action along the clearing path to
occur. In Z, such element may be described by defining a state schema to handle the
state of the waiting place, some operation schemas to describe the above mentioned control
activities, and a schema expression to combine them. For example, consider in Figure 5.4
the responsibility point “Rin” executed before entering the waiting place, “Rout” the one
executed just after the main path is released, and “Cin”, executed on the clearing path to
unblock the main path. In Z, we may define an abstract state space, and two operation

schemas, namely “block” and “release” to describe the situation.
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Figure 5.4: Waiting place

We define
[Identifier]

Identifier defines the set of all possible identification numbers that can be used to synchronise

a blocking and release of a sequence of activities.

__waitingPlace
opened : Boolean
waitingld : Identifier

opened = true = waitingid = 1

When the system is not waiting for any clearing activity along the clearing path, the progres-
sion of any scenario may freely pass across the waiting place and the value of the variable
waitingld is meaningless. This is to accommodate the fact that any path traversing the

waiting place, may serve either as a main path or a clearing path.

—block
A WaitingPlace
id! : Identifier

opened = true
Jid : Identifier ® waitingid = id A id! = id
opened = false

This operation is executed immediately after the blocking responsibility “Rin” is performed.
It generates an identifier that is passed to the clearing operation “Cin” to release the main

path.

__release
A WaitingPlace
id? : Identifier

waitingld = id? = opened = true N\ waitingld = 1

This operation is triggered immediately after “Cin” is performed to unblock the execution

of the scenario on the main path. The identifier passed to it by the clearing operation must
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be identical to the one kept in the state variable waitingld. To model the complete sequence
of activities along a waiting place, it is assumed schemaRin, schemaRout, and schemaCin
are respectively the Z schemas, associated with the responsibilities “Rin”, Rout, and “Cin”,

and then propose the Z schema calculus expression below:

(schemaRin A block) § (schemaCin A release) § schemaRout (5.7)

The above model, presents a case where each time a waiting place is waiting to be released,
all other instances of the blocking activities are also blocked. For example, consider Rin
is an operation that sends information to remotely update a database, via a network, and
waits for a response. The above model allows the next request to update the database to be

forwarded only after the previous request has been responded to.

Timer

A Timer is a special case of a waiting place where the waiting time is limited. When a
timeout occurs, an appropriate action (indicated by “Tout” in Figure 5.5) may be taken on
the timeout path. To model a timer in Z, it is suggested to add one more variable to the
above state space of a normal waiting place, and two more schema operations to handle the

setting-up of the timer, and to take proper corrective action when a timeout occurs.

Figure 5.5: Timer

— Timer
opened : Boolean
wastingld : Identifier; maztime : N

opened = true = waitingld = L A maxtime =0

The variable maztime holds the maximum time allowed for a clearing action to occur. Oth-

erwise, a timeout responsibility may be performed when such time expires.
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__setup
A Timer
time? : N

time? > 0 A\ maztime = time?

In this model, it is assumed that the operation that blocks the timer may decide on how long
it will wait for a response from a clearing path, before taking any corrective action. Hence,

the operation “BlockTimer” would be described as:

BlockTimer = block N setup (5.8)

where the operation block is defined as in the case of a waiting place, but operates on the
state of Timer. The schema calculus expression to define the behaviour of the timer would

be as in Formula 5.9 below.

(schemaRin A blockTimer) § ((schemaCin NV schemaTout) A release) § schemaRout  (5.9)

with the operation release modelled as follows:

__release
ATimer
1d? : Identifier

waitingld = id? =
opened = true N\ waitingld = L N maxtime = 0

Stubs

A stubbing technique is a mechanism used in Use Case Maps to defer some details of a map
to sub-maps called plug-ins. There are two types of stubs: static and dynamic stubs. These

will be considered separately.

(a) Static stub

with a static stub, the start points and end points of the bound plug-in are statically
associated to the incoming and outgoing path segments of the stub. That is, whenever
the execution gets into the stub through an incoming path, the same plug-in is reached,
and as soon as the plug-in is executed, the progression continues through the outgoing
path segments of the stub. As the sub-map is itself a complete map, it may therefore,
be transformed separately. The challenge is to model in Z/Object-Z the integration of

the plug-in into the main map. In this regard, the following is suggested:
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Figure 5.6: Example of a static stub

Define a list of basic types:
[Input, Output, Start, End)]
where Input is the list of all possible path segments that enter into a stub. Qutput is

the set of all path segments that goes out from a stub. Similarly, Start and End are the

list of all possible start and end points of plug-ins.
Define a function that associates each input-path segment to a start-point.
Call : Input -+ Start
Define a function that associates each end-point of the plug-in with an output of the

stub that is, the list of static returning points after the plug-in has been executed.

Return : End -+ Output

Based on the above, the state of a static stub can be defined as:

__staticStub
callpoints : Input - Start
returnpoints : End + Qutput

predicate

It is assumed that each input from a stub is associated to only one start-point on the
plug-in, and that such associations are not infinite. The component callpoints is hence,

of a limited size and represents different possible ways the main maps may be linked to
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the plug-in depending on the inputs. In the Object-Oriented concept, this would suggest
polymorphism, where the behaviour of the plug-in depends on callpoints that link inputs
to the appropriate arguments. Similarly, it is assumed that each end-point is mapped to
one output, and the list of such mapping is of a limited size. The variable returnpoints

represents such a list.

In the predicate part, depending on each particular case under consideration, appro-
priate formulas may be added to express possible constraints on inputs and outputs to
indicate, for example, which outputs can be reached from given inputs. Descriptive text

may also be included for more clarity.

At this point, two descriptive operations, call and return, may be defined respectively at
runtime, to direct the execution of a scenario to the plug-in, and to return the execution

back to the main map.

—_call
=ZstaticStub
in? : Input; s!: Start

in? — s! € callpoints

In this model, to facilitate the understanding of our idea, a simple case, is considered
when the execution reaches the stub from only one incoming path segment. But, in
practice, multiple inputs may be involved concurrently; in this case, the list of those
path segments, may be considered as the input to the function. Hence, the task of the
function would be to find those start points, from where the execution will continue.

Next, the operation return is presented.

___return
=staticStub
end? : End; out!: Output

end? — out! € returnpoints

Dynamic stub

As pointed out by Amyot [6], dynamic stubbing is an interesting construct for scenario
integration, as it may include multiple plug-ins, with only one of them being dynamically
selected at runtime according to a selection policy. The transformation challenge for
such constructs is, therefore, to describe in Z, the dynamic mapping of plug-ins. An

example of a dynamic stub is presented in Figure 5.7. For the transformation purpose,
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Figure 5.7: Example of a dynamic stub

we reconsider the basic types defined above for static stubbing, and propose the state

schema dynamicStub described next.

— dynamicStub
listInputs : F Input
listStartPoints : F Start
listEndPoints : F End
listOutputs : F Qutput

predicate

The variable listInputs, is the set of incoming path segments, to which Start-points from
the set listStartPoints of plug-ins, may be connected. Similarly, listEndPoints is the set
of outgoing path segments (on the stub), to which End-points from the set listEndPoints

of plug-ins, may be connected.

As stated in the case of the static stub, depending on the particular dynamic stub under
consideration, constraints on the state variables may be included in the predicate part.

Descriptive prose text may also be added to facilitate the understanding of the model.

The implicit control operation of a dynamic stud is described next:

—_call
=ZdynamicStub
in? : Input; s!: Start

dstart : Start e in? — start € Input + Start
s! = start

During runtime, when the execution of a scenario enters the stub through an input seg-

ment (e.g. IN1in Figure 5.6), the system determines, according to a predefined selection
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policy, the start point(s) of the plug-in that is to be executed. After the execution of
the selected plug-in, the control (of the system) is returned, by linking the end point(s)
of the plug-in to the appropriate output(s) of the stubs.

A 7 model for the descriptive function return in the case of a dynamic stub is pre-

sented.

—_return
=staticStub
end? : End; out! : Qutput

Jout : Output e end? — out € End + Output
out! = out

The execution of the selected plug-in terminates at the end-point end?, where the system
determines the appropriate output segment from which the execution will continue. This
segment is returned as output. The selection of such an output may be described by means of

predicates, or conditional statements, as they are mapped to end-points, only during runtime.

As the reader may notice, this chapter only considers those UCM path elements that were
involved in the specification presented in Chapter 3. Modelling other UCM path elements is
beyond the scope of this dissertation.

Active components

Active components, e.g. “Teams” and “Processes”, have the responsibility to control the
execution of responsibilities points bound to them (see Figure 5.8). Therefore, it is suggested
that for each active component, an implicit generic operation (shared by all paths bound to
the component), to control the execution of responsibilities, be considered, to this end, an
additional schema operation should be created in Z to describe the generic control operation
for each active component. Such “control” operations are traditionally not part of a Z
specification. To illustrate the idea of a control operation that may be performed by active
components, consider the example of UCM in Figure 5.8. The motivation in using this
example is firstly, to make it clear that having a process in a map without any responsibility
point bound to it is legal in UCM, and secondly, to show that in the absence of responsibility
points bound to an active component, the component still have a purpose. For example,
the component may be placed on the map to co-ordinate interaction between the scenario

or their synchronization through path segments connectors bound to it.
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Figure 5.8: Example of implicit activities

UCM components

Components in a UCM describe the structure of a system. The class schema of Object-Z is
a clear candidate to fulfill this role. It is, therefore, suggested to create a meta-class for any
component that is not a team, as well as a hierarchy of meta-classes for each team component

with one super-class, as well as and sub-classes.

Start point

A start point in a UCM is a place where triggering events occur to enable the execution
of a scenario. Such events may possibly provide the system with some information that
might need to be kept for further processing. In this regard, it is suggested adding, to the
Z description of the UCM, an operation (e.g. start(?)), to consider the effect of such events

on the system state.

End point

An end point in a UCM is a place where the execution of a scenario ends, enabling the
resulting events to occur, and where post-conditions are gathered. They may therefore
constitute, for example, in an operational system appropriate points to perform tasks such
as: free temporary files, update log files, perform garbage collection and undo unachieved
transactions. These constitute for plug-ins, the points from where the execution is returned

to the main map.

5.4 Transformation process

This process assumes the use of one of the existing UCM traversal techniques, (Kealey and
Amyot [47]), to scan an input UCM to identify individual map elements. This work considers
only UCM elements discussed previously in Section 5.3 i.e. elements used in the case study;

other UCM elements are beyond the scope of this dissertation. The core of the process
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follows a bottom-up strategy that starts with the Z description of scenario paths, from their

path segments, and the transformation of team components from their sub-components. If a

map has no component, one implicit component for the system is assumed. In case the input

map is complex or difficult to understand, before applying this process, it is recommended to

use stubbing mechanisms to sub-divide the map into smaller and more manageable sub-maps.

The proposed transformation steps are:

Step 1- Construct Basic types, Abstract states, Operation schemas and Meta-classes: Ini-

tialise a list of basic types that will be populated progressively during the transfor-
mation of the input UCM.

1-1

1-2

1-3

1-4

1-5

1-6

1-7

For each UCM component that is not a team, specify a state schema to describe
the part of the system state, controlled or represented by the component. When
defining the invariant, consider relevant information such as the component’s

type, inter-component interactions, bounded scenarios, etc.

For each team component, recursively specify state schemas as follows: Cre-
ate schemas for the contained components, and one schema for the container
component. Combine these schemas using Z’s schema calculus (e.g. schema
inclusion or schema typing). Combining schemas aims to capture inheritance in

a UCM. Where appropriate, use natural language prose to aid the specification.

For each stub, specify a state schema to describe the stub. Include in the
predicate part as much information as possible that may help to relate the
stub’s incoming path segments, and the start and end points of plug-in(s). Add

descriptive text wherever necessary for clarity.

For any other path element for which variables are required to keep information
needed to describe their static or dynamic behaviour, create an appropriate Z
state schema to model the state of such elements. For example, with a Timer,

such a Z state schema may include a variable for the waiting time limit.

Complete the system state schema(s) and define realisable initial state(s) for

the system.

For each path segment, create operation schemas to specify responsibilities (and
other active path elements). In general, schemas for bound responsibilities, will
apply to the local state of the binding component, but in some cases, they may

apply to a larger, or even the whole system state.

For each start point, when necessary, create an operation schema, to consider

the effect of the triggering events on the system state space.
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1-8 For each end-point, when necessary, create operations to take into considera-
tion resulting events and post-conditions, for the terminated scenario, in order
to bring the system to a reusable state. With plug-ins, such operations should,
for instance, return the execution to the main map. The list of those operations,
for a given plug-in, would therefore constitute the component returnPoints (dis-

cussed earlier).

1-9 Create schemas for control operations, (see Section 5.3 above on stubbing tech-

niques and active components), associated to each active component.

1-10 Use schema composition to construct a sequence of schemas, that will describe
scenarios over a full path, (a sequence of path elements). Also consider path

elements and path connectors.

1-11 When necessary, create, a meta-class for each component (an Object-Z class
for which properties and methods are not yet defined), that will in later stages

encapsulate both the state and operations performed by the component.

Step 2- Complete the Z schemas, and generate Object-Z class schemas (Periyasamy and
Mathew [68] provide more details on mechanisms to transform Z schemas into

Object-Z).

2-1 Calculate preconditions for important operations to generate partial operations
for error conditions. At this point, the calculated preconditions may help to im-
prove the input UCM. One also may employ guiding principles for constructing

Z schemas (van der Poll et al. [94]), where appropriate.

2-2 Define total operations (covering error conditions) corresponding to each partial

operation, defined in Step 21 above.

2-3 Complete each meta-class with appropriately selected schemas. In general, those
schemas must have been generated from elements of path segments, that are

bound to the component.

5.5 Chapter summary

This chapter has demonstrated the transformability of UCMs, by proposing a generic frame-
work to translate a UCM, into a Z, and an Object-Z, specification. The suggestion consisted
to initially transform the functional or behavioural aspects of the input map, into Z schemas,
and its architectural components into meta-classes of Object-Z. Afterwards, combine the Z
schemas and meta-classes to obtain Object-Z classes. The fundamental Object-Oriented con-

cepts of inheritance and encapsulation are used to capture information on the structuring of
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UCM components. Concepts in UCM, Z and Object-Z (and possible relationships between
them), were analysed leading to a conclusion that a one-to-one transformation may be hard
to achieve, since the notations involved, operate at different levels of detail. Nevertheless,
the proposed description of UCM concepts in Z, and Object-Z, may constitute a reason-
able move in Requirements Engineering, as this may provide designers with key important
benefits through the use of formal methods in systems engineering. In fact, the main ideas
proposed here, were summarised in a full research paper, presented at the 7th International
Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information
System in 2009 (MSVVEIS 2009). Full details may be reached in (Dongmo and van der Poll
23], P. 3-13).

The next chapter, demonstrates the applicability of this framework, by applying it to the

UCMs of the Case Study developed in Chapter 3, and aims to produce the UCM-0OZ version,
of the Object-Z specification, of the case study.
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Chapter 6

Applying the UCM transformation

framework

This chapter applies the UCM transformation framework proposed in Chapter 5, to the UCM
model of the case study developed in Chapter 3, to generate an Object-Z specification. The
input map is presented in Section 6.1, and the stubbed version of the same map is developed
in Section 6.2. In Section 6.3, the stubbed Map is transformed to Z and Object-Z. The
chapter concludes with a brief summary in Section 6.4.

NB: Due to the automatic generation of references by Latex, references to guidelines
from Chapter 5 are presented as follows: e.g. the original Guideline#1 — xy becomes

Guideline#1zy without the (—) separator.

6.1 The input UCM map

This section presents the input map from Chapter 3 that will be transformed, in this chapter,
to an Object-Z specification using the guidelines proposed in Chapter 5. The descriptive text
used to explain some aspects of the map, is not reproduced, as it is accessible from Chapter 3.
To facilitate the comprehension and the transformation process of the input UCM, presented
in Figure 6.1, a stubbing mechanism is used to sub-divide it into sub-maps (as recommended
in the framework presented in Chapter 5, Section 5.4). Four different maps, therefore, result
from sub-dividing the input UCM: the main map presented in Figure 6.2, including a static
stub, namely, NetControl, and a dynamic stub, namely, Validate. The other three maps
are: the plug-in in Figure 6.3 associated to the static stub, and two alternative plug-ins (see
respectively, figures 6.4 and 6.5 associated to the dynamic stub). The following names are
proposed for the abstract components that were unnamed in the original map: Pay_point,
Transit_point, Check_point, and Update_point (Figure 6.2). Those names are for referencing

purposes.
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6.2 The stubbed UCMs

In the main map presented in Figure 6.2, the static stub named NetControl represents
a place where the sub-map (called a plug-in) shown in Figure 6.3, fits during runtime, to
perform the task of forwarding incoming requests to a beneficiary agency through the network
component. It includes four input segments, namely IN1, IN2, IN3 and IN4 through which
stimuli flow from the main map to the plug-in, and three output segments named OUT1,
OUT2, and OUT3, through which the plug-in forwards the result of its execution to the

main map.

51 El
| |
1
52
Tl
E123b 4
MatFail

Figure 6.3: Expansion of the NetControl stub in Figure 6.2

Similar to the stub, the plug-in (see Figure 6.3), associated with the static stub, has four
start points connected to the four input segments of the stub. It also has three end-points
which are connected to the output segments of the stub. The end-point labelled E123b
(Figure 6.3) may be reached during runtime to terminate a scenario, after the responsibility
point labelled “NetFail”, which is performed responding to a timeout event. A timeout event
occurs when the maximum waiting time elapses, before any response for a remote request
arrives. Within the main map, the binding relationship that statically links the input path
segments to start-points of the plug-ins, and the end-points of the plug-in to the output path

segments of the stub, are denoted in UCM as follows:

- (IN1,S81),(IN2,52),(IN3,S53),(IN4,S54). Each such binding, for example between E1
and S1, indicates that the start point 51, is triggered by a stimulus from the input segment
E1.

- (E1,0UT1),(E2,0UT3),(E3, OUT2). The binding relationship between E1 and OUT1,
for example, indicates that a resulting event at the end-point £1 flows to the main map,

via the output segment OUT1.
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The plug-in in Figure 6.3 implements a timeout recovery mechanism to control the trans-
mission of requests over a network. Any request that arrives at the plug-in by triggering
one of the start points S1, S2, or 53, is re-transmitted to an appropriate agency via the
binding channel (F1, OUT1), after the timer is setup with an appropriate time limit. If a
response for a particular request is not received, through (IN4,54), before timeout occurs,
the process within the plug-in performs the responsibility named “NetFail”, and terminates
the scenario. Otherwise, the sub-map transmits the resulting event at F2 or £3, depending
on the request, to the main map, via the links (E2, OUT3) or (E3, OUT2). The sub-map
was indeed extracted from the initial input UCM (see Figure 6.1), and the semantics of the

path elements remain unchanged (as described in Chapter 3, Section 3.3.3).

Ell

El2

_‘

Figure 6.4: Validate an invoice
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Figure 6.5: Validate a customer

The dynamic stub in the main map (Figure 6.2), may select either the plug-in (in Figure
6.4) to check an invoice, or that of Figure 6.5, to validate a customer. The stub includes two
input and five output segments. The selection of a plug-in during runtime depends on the
input segment from which a stimulus reaches the stub. The dynamic binding relationship
that links the input segments of the main map to start points on the sub-maps and those
that link the end points of the sub-maps (figures 6.4 and 6.5), to output segments of the

main map (Figure 6.2), are presented in UCM as follows:

- (IN1,81),(F11,0UT1),(FE12,0UT2). The sub-map in Figure 6.4 is selected when a

stimulus comes from IN1.

- (IN2,52),(E21,0UT5),(E22,OUT3),(E23, OUT4). The plug-in in Figure 6.5, is se-

lected when a stimuli comes from the path segment, labelled IN2.
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The sub-maps (plug-ins)(figures 6.3, 6.4 and 6.5) and the main map (Figure 6.2) are
extracted from the initial UCM map (Figure 6.1). Therefore, the prose text descriptions
given in Chapter 3, Section 3.3.3, to explain UCM elements, remain valid for each element

of the main map and plug-ins.

The binding relationship between the stub, in the main map, and the two alternative plug-
ins, indicates that: a request to check an invoice reaches the stub via IN1, and is performed
by the plug-in of Figure 6.4. A request to validate a customer, or to update a customer’s
account, arrives to the stub, via IN2, and is performed by the plug-in in Figure 6.5. When
the validation of an invoice fails, the system follows to E11; otherwise, it continues to £12
(Figure 6.4).

The plug-in forwards all requests to update a customer’s account to the end point E23,
and when a request is received to validate a customer, the plug-in performs the responsi-
bility point labelled ChkCust(see Figure 6.5), to validate a customer. If such a validation
fails, the system continues to the end point F21, otherwise, it follows the path segment to
the end point E22.

In the next section, guidelines proposed in the framework of Chapter 5 are followed to
transform the stubbed UCM, so far described, into Z and Object-Z (see Figure 1.3).

6.3 The Z and Object-Z specifications

As indicated in Figure 6.6, the original UCM has been decomposed into four sub-maps in-
cluding one main map, namely, the Stubbed UCM, that represents the UCM in Figure 6.2,
and three plug-ins.

Stubbed
UCM iMain Map
Theinput UCM  f-—ccooo> _______//_"_ ______ % ______ Si _______ JE ___________
Forward | | Validate | | Validate iPIug-ins
requests Invoices | |Customersii

Figure 6.6: Decomposing the input UCM
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There is also a plug-in to forward requests over the network (shown in Figure 6.3), namely,
NetControl, and two alternative plug-ins for the dynamic stub: one to Validate Invoices
(shown in Figure 6.4) and the other to Validate Customers (shown in Figure 6.5). The ar-
rows from plug-ins to the main map indicate the binding relationship between each plug-in
and the stubbed map. To accommodate the “bottom-up” strategy adopted in the transfor-
mation framework (see Chapter 5), the sub-maps, which are included in the main map, are

first transformed, followed by the main map.

Despite the fact that sub-maps may be treated separately, as suggested in Chapter 5, Section
5.4 on page 89, they remain part of the main map; the principal reason for the stubbing
mechanism is to bring clarity into large or complex maps. For this reason, for the Z transfor-
mation, only one list of basic types, and one of the global variables for the system, (including
the main map and sub maps), are presented in Section 6.3.1. Each of the lists is obtained
by applying the instruction # 11 of the framework (see Section 5.4, Chapter 5), to each of
the UCM maps. In Section 6.3.1, those variables are encapsulated into a single class schema
named ClsGlobalVariables, making it possible for other classes to inherit it, when needed.

An overview of the transformation process is presented below:

e Section 6.3.1: Generate basic types, and global variables;

Section 6.3.2: Apply the transformation framework to the plug-in, to forward requests;

Section 6.3.3: Apply the transformation framework to the plug-in, to validate invoices;

e Section 6.3.4: Apply the transformation framework to the plug-in, to validate cus-
tomers;
e Section 6.3.5: Apply the transformation framework to the stubbed map taking into

consideration the binding relationships with the plug-ins.

Next, the given sets and variables for the entire system are presented.

6.3.1 Given sets and global variables

A set of given types for the whole system (including the main map and the three plug-ins)

is given below:

[Request, Identifier, Customer, Account, Invoice, Address, Item, Agency,
Money, Date, Message, Time]

Request represents the set of all possible requests. Identifier is the set of all possible iden-

tifiers. The types Customer, Account, and Invoice represent, respectively, the set of all
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possible customers, accounts, and invoices. Similarly, Address, Item, Agency, and Money
are respectively, the sets of all possible addresses, items, agencies that may be involved,
and all possible amounts of money, with associated currencies. The set Date is used for all
possible dates; Message is the set of all possible messages that may be exchanged between

the system and the environment, and Time is the type of possible times.

Next the definition of the datatypes is presented.
Response ::= Ok ‘ Failed ’ Accepted ‘ Denied ‘ Unknown

The balance of an account is defined as a partial function, that associates the account to an

amount of money:.

‘ balance : Account + Money

The function debit is needed, for example, to issue a payment into an account.

‘ debit : Account x Money + Account

Y acc, acc’ . Account; amnt, m : Money e
((ace, amnt) — acc’ € debit) <
((acc, m) € balance = (acc’, m + amnt) € balance)

The partial function addressOf, maps each agency to its address.

‘ addressOf = Agency -+ Address

It is assumed each item has a value at a particular given time. The function itemsValue

maps each item to its present value.

itemsValue : Item - Money

The partial function reqOption uniquely maps to each request, which involves a purchased

item, the invoice that includes the item.
‘ reqOption : Request - Invoice
There are three types of scenarios as defined below:

Scenario == {sceneReturnltem, sceneReplaceltem, scenePayCredit }

Since a request is issued only when a particular scenario is in progress, the same request
may not be shared by more than one scenario. So, the identifier associated with a request

may be used to identify the scenario. In this regard, the function idScenario is defined.

‘ idScenario : Identifier - Scenario

The class schemas representing the Object-Z transformation of the basic types and variables

thus far defined, are presented next.

99



Class schemas for basic types and variables

The Object-Z transformation of a basic type, yields a class with no state and no operation
(see Dongmo and van der Poll [23], Periyasamy and Mathew [68]). The reason is that a
given type, describes objects of which properties and methods are undefined. So, each of the
types defined above, is transformed in Object-Z, into such class schema. Next, an example
is shown of a graphical representation of the class corresponding to the transformation of

the set Request into Object-Z. Other such classes may be similarly represented.

i

For these classes, we prefer to keep the same name in Z and Object-Z. The purpose is to

Request

maintain the coherence between the Z and the Object-Z versions.

The class schema, represented below, is created to encapsulate the global variables described
above, to make them accessible to other classes, for example, by aggregation or inheritance
(see Duke and Rose [26]).

_ ClsGlobalVariables

[ (addressOf , items Value, balance, debit, Response, Scenario,
invoiceInReq, customerInReq)

‘ addressOf = Agency + Address

‘ items Value : Item - Money

invoicelnReq : Request + Invoice
customerInReq : Request - Customer

‘ dom invoicelnRequest N dom customerinReq = @

1dScenario : Identifier + Scenario

‘ balance : Account + Money
Response == Ok, Fuiled, Accepted, Denied, Unknown

‘ debit . Account x Money + Account

Y acc : Account, acc’ : Account; amnt, m : Money o
((ace, amnt) — acc’ € debit) <
((acc, m) € balance = (acc’, m + amnt) € balance)

Scenario == {sceneReturnltem, sceneReplaceltem, scenePayCredit }

Next, a transformation into Z and then, Object-Z of the sub-map is proposed (see Figure
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6.3), which is associated with the static stub, on the main map in Figure 6.2.

6.3.2 Applying the framework to the plug-in to forward requests

This plug-in is activated when one of the start points S1, S2, or S3 is triggered. An in-
coming segment is triggered when the progression of a scenario along a path reaches the
sub-map. In the plug-in under consideration, the purpose of such a triggering event may
be to request the validation of an invoice, the validation of a customer, or to request the
update of a customer’s account. Due to the fact that the given sets and global variables
for the whole system are readily available (see Section 6.3.1), and may be used wherever
necessary in the system, they do not need to be redefined. The next step, is to describe
the possible Z states that may result from transforming the plug-in, to a Z specification. In

this regard, the UCM elements included in the sub-map are considered in the next paragraph.

The UCM elements encountered when traversing the map from start to end points are

respectively:
e Four start points: S1, S2, S3 and 54,
e A process (representing a UCM abstract component),
e An OR-join (joining together the path segments from S1, S2 and 53),

e An AND-fork (that synchronises the progression of a scenario along the path segment

to E'1 and the timing operations),
e A Timer 71,

e An OR-fork (it splits the path segment from S4 into two: one through which is for-
warded a response for a request to validate an invoice, and another path through which

a request to validate a customer is forwarded),

e An AND-join (to ensure that for some scenario, both the invoice and customer are

successfully validated before progressing towards the end point E3), and
e Three end points: E1, E2 and E3.

In the light of the analysis, relative to the above listed UCM elements, performed in Chapter
5, Section 5.3 and the transformation guidelines # 11 to 15 which depict the Z states of a
UCM, the abstract state spaces resulting from this sub-map are suggested.
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Abstract state definition

The state schema netComTemp is created for the UCM abstract component Process, to
temporarily keep information on pending requests until they are processed. For that reason,
it will be referred to as a “temp” file. The schema derives from Guideline # 11 (Chapter 5,
Section 5.4), that suggests creating a state space for each abstract component other than a
team component.
__netComTemp
reqInvoices : Identifier »~ Invoice x Address
reqCustomers : Identifier -~ Customer X Address

reqTransactions : Identifier -~ Customer x Money x Address
reqRespones : Identifier + Message

dom reqlnvoices N dom reqCustomers = &

dom reqInvoices N dom reqTransactions = &

dom reqCustomers N dom reqTransactions = &

dom reqResponses C dom reqlnvoices U dom reqCustomers U dom reqTransactions

The variable reqlnvoices keeps a list of mappings in which, for each record, an identifier is
uniquely mapped to a product of an Invoice, with an Address. The invoice requires to be
validated, and the address is that of the agency from which the invoice was issued. The
variable reqCustomers records a list of mappings between identifiers and products of a cus-
tomer and an address. The customer, who holds the invoice, also needs to be validated and
the address is that of the agency where the customer’s account is. The information main-
tained in those two variables is used to support the activities of the system when returning
or replacing items. The variable reqTransactions is helpful to the system when a customer
is paying a credit. Each record in it contains an identifier that is used during the entire
process to uniquely identify the product of the three objects needed: the customer who is
paying (Customer), the amount of money involved (Money), and the address of the target
agency that holds the customer’s account that needs to be updated. The partial function
reqResponses associates each response, to an identifier that may be used to trace a record in
one of the above mentioned components. The predicate part indicates that an identifier is
not allowed to reference more than one request, and a response may be provided only for a

pending request.

The next state schema Timer, is created to describe the state of the timer (Guideline # 14).

— Timer
opened : Boolean
waitingld : Identifier; maxtime : Time

opened = true = waitingid = 1L N\ maxtime = 0
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The variable opened indicates the status of the Timer. For example, when the timer is not
activated, the value of opened is true, or conversely false otherwise. When the timer is not
activated, the variable waitingld that contains a request identifier, is undefined. This schema

results from the analysis performed in Section 5.3 of Chapter 5.

In the next section, the effect of the AND-fork connector on the system, is presented as

a general theory (Potter et al. [70]).

Some general theory: AND-fork

An AND-fork path element in a map synchronises the timing activities and the execution
of the path segment, between the element and the end-point E1 (Figure 6.3). Although no
responsibility point is placed on this path segment, an implicit activity is to be considered,
for the reason that, at F'1, a request must have been sent over the network. In this regard,
three operations are created in Section 6.3.2, to handle respectively, the sending of requests

over the network to:

a) check an invoice (reqCheckInvoice),
b) validate a customer (reqCheckCustomer), and

c) update a customer’s account (reqUpdateAccount).

Since the plug-in (Figure 6.3) sends all the requests via the network component (Figure
6.2), a state schema is required to specify the communication interface between the plug-in,
and the network. The interface illustrates the coupling between the plug-in (and also the
static stub in Figure 6.2), and the network component. This coupling is revealed by the
path segment, (incoming path segment IN4) that joins the static stub (Figure 6.2) with the

network component. The state schema presented next, is created in line with the Guideline
# 11.

interface
reqToForward : Identifier -~ Request
reqToReceive : Identifier - Request

The state space interface, groups the two main components of the network made available to
the environment and netInterface; the schema presented next, is more generic, as it includes
constraints on components, hence, linking interfaces to each other.

__netlnterface
interface

(Vid — req € reqToReceive) (3, Interface ‘ id € dom OInterface.reqToFoward)
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The variable reqToFoward contains the list of requests sent via the network, and reqToReceive,
the set of requests waiting to be retrieved at a network terminal. The predicate indicates

that a request received at a network was previously sent through another network interface.

At this stage, the state of the system as a whole includes the three state schemas defined

above.

___requests
netComTemp
timer
netInterface

waitingld € dom regInvoices U dom reqCustomers U dom reqTransactions

As recommended by the enhanced strategy for documenting a Z specification (Lightfoot
[52], Potter et al. [70]), the next section presents some initial states for the above defined,

abstract states.

Initialisation

It is assumed that the system starts with both netComTemp and netInterface empty, and

the timer open.

__InitNetComTemp
netComTemp'

reqInvoices’ = @ A reqCustomers’ = & A reqTransactions’ = &

The condition reqResponses’ = @ may be deduced from the values of the three components

included in the initial state. For brevity (Gravell [34]), it is therefore taken out of the schema.

_ InitTimer
timer’

opened’ = true N waitingid’ = 1 N\ maxtime’ = 0

Note, that having a component equal to an undefined values (e.g. waitingid’ = L), simply
means that the value of the component is not yet defined, or is unknown. Although the
notation may be misleading if minterpreted, it may equally bring more clarity (Gravell [34])

into a specification, and help to avoid some common mistakes that occur in error conditions
(van der Poll and Kotzé [93]).

__InitNetInterface
netInterface’

reqToFoward" = & N reqToReceive’ = &
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Next the partial operations for the part of the system modelled by the UCM in Figure 6.3

are discussed.

Partial operations

This section starts with the description of operations associated with the start points (see
Guideline # 17, Chapter 5). By convention, the name of each of those operations is the
same as that of the start point (but in lower case, as the names of start points are in upper

case).

The start points S1, S2 and S3, are respectively triggered to request the validation of
an invoice, a customer account, or the updating of a customer’s account. The associated
operations sl, s2 and s3 capture the input information from the environment and keep
them temporarily during the scenario execution. They also ensure that a unique identifier
is attached to each pending request.

sl

AnetComTemp
id? : Identifier; inv? : Invoice; ad? : Address

id? & dom reqInvoices U dom reqCustomers U dom reqTransactions
reqInvoices’ = reqlnvoices U {id? — (inv?, ad?)}

52
AnetComTemp
1d? . Identifier; customer? : Customer; ad? : Address

id? ¢ dom reqInvoices U dom reqCustomers U dom reqTransactions
reqCustomers’ = reqCustomers U {id? — (customer?, ad?)}

53
AnetComTemp
id? : Identifier; customer? : Customer; amnt? : Money

ad? : Address

1d? & dom reqInvoices U dom reqCustomers U dom reqTransactions
reqTransactions’ = reqTransactions U {id? — (customer?, amnt?, ad?)}

The condition given by the expression

id? & dom reqlnvoices U dom reqCustomers U dom reqTransactions

in the predicate part of each of the three operations defined so far, ensures that the input

identifier ¢d? is not currently associated with any pending request. Due to the fact that the
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expression is repeated in each operation, it is arguable that, for brevity, it may be given a
name and be referenced in the operation, by that name. Nevertheless, it is preferred to re-
peat the expression, so as to make its meaning clear (Gravell [34, Section 2.1]) while reading

the specification.

The start point S4, is triggered when a message from the network, referenced by a re-
quest identifier, reaches the plug-in. The operation s4 is activated to commit the message

into the temp file. The operation is described as:

54
AnetComTemp
1d? : Identifier; resp? : Message

1d? € dom reqInvoices U dom reqCustomers U dom req Transactions
reqResponses’ = reqResponses U {id? — resp?}

The input variable id? contains the identifier of the request for which the incoming response
in resp? is passed as input to the operation. The system uses the two inputs to update the

list reqResponses.

Next, the schema of an operation send provided by the network interface, to send requests

over the network, is considered.

__send
Anetlnterface
1d? : Identifier; req? : Request

reqToFoward" = reqToFoward U {id? — req?}

This operation is provided by the network interface to facilitate the sending of messages
through a network. Although the operation is not explicitly represented as a responsibility
point on the initial UCM, it results from the natural activities of the component Network
(Figure 6.2), which is to serve as an active support for a bi-directional communication be-
tween agencies (see Figure 3.1). The operation is therefore created in line with Guideline #16
in the transformation framework (Chapter 5, Section 5.4) to update the list reqToFoward of
requests. The list contains those requests that are being transmitted by the network, from

one agency to another.

The three operations of the plug-in that use the interface operation send to forward the
three types of requests over the network, are defined next. Each generates a request for

which an identifier is provided as an input. The identifier and the request are passed to the
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interface via the operation send, that handles the responsibility to transmit the request to

its destination via the network.

As mentioned above, the operation reqCheckInvoice presented next, submits a request to

check an invoice.

__reqCheckInvoice
=netComTemp
Anetlnterface
1d? - Identifier

1d? € dom reqlnvoices
dreq : Request e Send(id?, req)

This operation is applicable when the input id? is a valid identifier associated to an invoice
in reqlnvoices. The system generates a request, and sends it to the appropriate agency by
the means of the interface operation Send. Note, that the use of the operation Send in
the expression of the predicate, may be suspected because an operation does not explicitly
represent a logic expression. Such constructions are, however, allowed, since similar cases
are found in the literature, notably in Bowen [13] (when defining a schema operation for se-
quential composition of two operations) and Potter et al. [70] (when describing the Schema
hiding operators, e.g. EnterNewCopy = dc? : Copy ‘ c¢? & dom stock e ToStock where

ToStock is an operation).

Similar to reqCheckInvoice, the operations reqCheckCustomer and reqUpdateAccount, re-
spectively, generate requests to check a customer, and update customer accounts, and send

them through the network interface using the operation send.

__reqCheckCustomer
=netComTemp
Anetlnterface
1d? = Identifier

1d? € dom reqCustomers
dreq : Request e send(id?, req)

__reqUpdateAccount
=netComTemp
Anetlnterface
1d? - Identifier

id? € dom reqTransactions
dreq : Request e send(id?, req)
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At this stage, when necessary, one may consider to improve the original UCM by adding
to it, the three operations described previously (as the double-headed arrows in Figure 5.1,
Chapter 5 suggests). For example, they may be added as responsibility points before or after

calculating their preconditions.

The general form of the schema calculus expression that defines the operations related to a

timer, was given (in Chapter 5, on page 82). The formula is:
(schemaRin A blockTimer) § ((schemaCin NV schemaTout) A release) § schemaRout

The schema schemaRin describes operations performed by the system, immediately before
sending a request and activating the timer. In the case of the present UCM, this operation

may be omitted because no such operation is performed by the plug-in.

blockTimer was given as: blockTimer = block N setup with block and setup defined as:

__block
A Timer
1d? : Identifier

opened = true A\ waitingld" = id? N\ opened’ = false

This operation is allowed when the timer is opened. The identifier associated to the request

is passed to the variable waitingid, and the timer is blocked (opened’ = false).

__setup
A Timer
time? : N

time? > 0 A\ maztime’ = time?

This schema specifies an operation to attribute a value to the maximum waiting time vari-

able, maxtime.

The schema calculus expression schemaCin, is constructed from the operations that de-
scribe the reaction of the system when an event occurs on the clearing path (see Chapter 5).
Such an event reaches the plug-in, via the binding relationship (In4,S4) (see Section 6.2,
Page 95). In this particular case, the operation s4, associated with the start point, is per-
formed to temporarily maintain the input data provided by the environment. The operation

respond described below, is performed to allow the timer to be unblocked.
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__respond
=timer
id? : Identifier; resp?, resp! : Message

1d? = waitingld N resp! = resp?

When the value of id? is the same as the one held in waitingld, the incoming message from
the network is made available to the user, and the timer is unblocked. Otherwise, the system

keeps on waiting.

The schema schemaTout (see equation 6.3.2) is intended to describe the reaction of the
system when a timeout event occurs. In the case of this system, the operation netFail is
performed to recover from the failure network. In practice this operation may become very
complex depending, for example, on the criticality of the problem under consideration. For
instance, a late response in a medical application system would not have the same impact
as in an ordinary emailing system. In this work, the netFail specifies a warning message for
the user.
__netFail

=Timer
Resp! : Message

maztime < 0 A resp! = Timeout

The operation release, unblocks the timer and makes it available. It follows a successful

execution of respond or netfail.

release

A Timer
opened’ = true N\ waitingld’ =1 A maztime’ =0

The schema schemaRout, from Equation 6.3.2, is meant to describe any operation performed
immediately after the timer is released. It may be omitted because, in the UCM in Figure
6.3, no explicit activity takes place on the main path, between the timer and the next path

element.

The schema expression for the timing operations becomes:
opTimer = blockTimer § (((s4 § respond) V netFail) A release) (6.1)
The sending of requests may also be summarised as:
sendRequest = reqCheckInvoice V' reqCheckCustomer \V reqUpdateAccount (6.2)
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where the schemas of the operations reqCheckInvoice, reqCheckCustomer and
reqUpdateAccount were defined above. The next three sections illustrate, respectively, the
influence of the path connectors: AND-fork, OR-join and AND-join in the Z description of
the operations of the system as modelled with the input UCM, in Figure 6.3.

The AND-fork

Because of the AND-fork connector (placed before the timer), a scenario is allowed to con-
tinue only after the sending of a request, as well as the timing operations, have both been
completed. That is, when the operation defined by the schema expression 6.3, is successfully

performed.

sendRequest A opTimer (6.3)

The OR-join

This path connector allows scenarios to share the path segment placed after it. A generic
operation schema, that includes the effect of an OR-join path element, in combination with
the operations along the incoming and outgoing path segments, was given in Chapter 5 by

the schema expression:
(Op11V Opl2) 3 Op2 (6.4)

Where Op11, Op2 and Op2 respectively describe operations on the first and second incoming
path segments, and the operation on the outgoing path segment (see Figure 5.3). With the
input UCM (Figure 6.3), there are three incoming path segments, and the only operations
bound to them are those that were described to handle triggering events on start points
S1, S2 and S3. Hence, in line with Guideline # 110 of the framework in Chapter 5, in this
transformation process toward the construction of the sequence of activities performed along

paths, the expression 6.4 may therefore be instantiated to:

(s1V s2V s3) 5 ((sendRequest A\ opTimer) § op) (6.5)

The Schema expression op, describes the operations performed when the Timer is released.
The composite activities SendRequest and opTimer were respectively defined with the for-
mulas 6.1 and 6.2. Although the schema calculus expression in 6.5 illustrates the influence of
the path connector on the system operations along paths, further consideration may be made
when defining an individual operation, on the outgoing path segment. When necessary, in
the predicate part of the control module, or in operation encountered on the outgoing path
segment, a disjunct clause, or an if/then/else statement, should be included to enable the

system to distinguish which scenario is in progress along a shared path.
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The OR-fork

This path connector is placed immediately after the timer, and before the AND-fork (see
Figure 6.3. It allows the execution of a scenario to follow one of the two outgoing paths
depending on whether the current request is to validate an invoice, or a customer’s account.
As in the case of the OR-join above, the generic schema expression 6.6 below, and suggested
in Chapter 5, illustrates the influence of the path elements on the structuring of the sequence

of system operations along paths.
Oplg(OpllV Opl2) (6.6)

The schema Op1 specifies all the operations in the incoming path segment, and the schemas
Opll and Opl2 each specify the operations along an outgoing path segment. Referring to
the input UCM in Figure 6.3, in line with Guideline # 110 of the proposed framework in
Chapter 5, this would therefore extend the schema expression in 6.5, to includes Op11 and
Opl2:

(s1V s2V s3) g ((sendRequest A\ opTimer) §(Opll V Opl2)) (6.7)

The two operations Opll and Opl2 are described in subsequent sections.

The AND-join

This path connector is the last element, before the end-points £2 and E3 (see Figure 6.3). It
influences the system only when returning or replacing an item. It helps to ensure that both
the invoice, and customer, have been successfully validated before the system can continue
to the end point £3. When paying a credit, the scenario progresses directly to the end-point
E2. Because this connector impacts two instances of the same plug-in (one that checks the
invoice, and the other that checks the customer), its effect would be reflected in the predicate

part of the control operation, for example in the form of a conjunct clause.

In line with Guideline # 18 of the framework given in Chapter 5, and Section 5.4, schemas
for the operations associated with the end-points (see Figure 6.3) are defined next.
End-points

As in the case of start points, the name of an operation associated to an end-point remains
the same, but in lower case. In this work, the main purpose of those operations is to illustrate
their roles in a specification, as suggested in Chapter 5.

The operation associated with the end-point E1 is described as:
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el
=ZnetComTemp
1d? : Identifier; resp! : Message

1d? € dom reqInvoices A resp! = RequestSentTo ValidateInvoice

V
1d? € dom reqCustomers A resp! = RequestSentTo ValidateCustomer
\%
1d? € dom reqTransactions A resp! = RequestSentToUpdateAccount
V

resp! = UnknownRequestld

Depending on the type of a request sent over the network, the operation issues an appropri-

ate message to the user. The variable id? contains the identifier of the request sent.

At the end-point E2 (see Figure 6.3), the system must successfully have validated an invoice
in order to pay a credit. The operation associated with this point removes from the abstract
state space netComTemp all the information related to the completed request, and specifies

a message that may be interpreted as a signal to allow the active scenario, to continue.

€2
AnetComTemp
id? : Identifier; resp! : Message

reqCustomers’ = id? < reqCustomers N reqResponses’ = id? < reqResponses
resp! = CustomerOk

The input variable id? contains the identifier of the request that was processed. The predi-

cate part indicates that any information related to id?, is removed from the system.

The end-point E3 may be reached when both the invoice and the customer involved have
been successfully validated, and the operation accepted (see the responsibility point named

AcceptOp in Figure 6.2) by the beneficiary agency.

_e3
AnetComTemp
1di?, idc? : Identifier; resp! : Message

reqInvoices’ = idi? 4 reqInvoices N\ reqResponses’ = idi? <Q reqResponses
reqCustomers’ = idc? 9 reqCustomers A reqResponses’ = idc? < reqResponses
resp! = OperationAccepted

The operation removes from the state space netComTemp, all information related to the

input identifiers (idi? and idc?), and specifies a message to report on its success.
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In the light of Guideline # 19, in Chapter 5, the next section illustrates the implicit operation
of the UCM abstract component, Process (see Figure 6.3).

The UCM component: Process

The UCM active component “process” plays an important role in the overall functioning of
the system. It coordinates the execution of the operations in the system. To make such
an operation visible, a control module was suggested in Chapter 5, page 87 based on the
suggestion of van der Poll and Kotzé [91, 93]. To save space, the Z specification of this

operation is not presented; its Object-Z specification is presented in Section 6.3.2.

In line with Guideline # 111 of the framework in Chapter 5, that suggests creating a meta-

class for each UCM component, the following section defines such meta-classes.

Meta-classes

Due to the fact that the input UCM, contains only one abstract component (see Figure 6.3),
only one meta-class is generated with the name, ClsRequest; a detailed description of this

class is not discussed at this stage.

A number of cases were presented in (Chapter 3, Section 3.4.4) to illustrate how precon-
ditions for partial operations may be calculated. To save space, preconditions will not be
calculated in this chapter. However, to accommodate Guideline # 21 of the framework sug-
gested in Chapter 5, one example of such a calculation is presented in the following section,

to illustrate the implementation of the framework.

Calculating preconditions

The precondition for the operation reqCheckInvoice is calculated, and the total operation

derived from it.
The precondition is defined as:

Define pre reqCheckInvoice = preReqCheckInvoice and the schema is:
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__preReqCheckInvoice
netComp Temp; netInterface
1d? : Identifier

dreq : Request, reqToFoward' : Identifier = Request o
id? € dom reqlnvoices
reqToFoward' = reqToFoward U {id? — req}

The after state variable reqToFoward' is existentially quantified. To simplify this schema,

its predicate part is written in a textual form:

(I req : Request, regToFoward’ : Identifier -~ Request) ®
1. 1d? € dom reqInvoices

2. reqToFoward' = reqToFoward U {id? — req}

By applying the One-point Rule, the existentially quantified variable reqToFoward’, is given
an exact value. It may thus, be removed, to remain only with the condition in line #1. The

predicate id? € dom reqlnvoices, is therefore the precondition of the operation.

Negating the precondition yields the predicate id? ¢ dom reqInvoices which is the precondi-

tion of the operation in case of an error, for which the schema is defined as followed:

__reqCheckInvoiceFailed
=ZnetComTemp
id? : Identifier; rep!: Message

1d? & dom reqInvoices A resp! = Fuiled

In line with the Guideline # 22, Chapter 5, the total operation is:,

reqCheckInvoice = reqCheckInvoice Ok N reqCheckInvoiceFailed. (6.8)

To complete the transformation of the input UCM, Object-Z classes (including meta-classes)
are described next, in respect of Guideline # 23 of the UCM transformation framework (see
Chapter 5).

The Object-Z class schemas

In the previous sections, the Z specification of the plug-in (Figure 6.3) was presented. In this
section, class schemas corresponding to the Object-Z transformation of the Z schemas are
described. The transformation process requires each abstract state schema of Z, to become

a class schema (Periyasamy and Mathew [68]). Such a class encapsulates the Z operation
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schemas that operate on the state space. Wherever a meta-class is likely to encapsulate a
state space, the class resulting from that same state space, is simply ignored. The two classes
will be redundant since they encapsulate the same state, and the same set of operations that
operate on it. As Z schemas were previously described, further explanations will be given
only, where changes have occurred due, for example, to the transformation. First the class

schema ClsTimer, generated from the abstract state schema Timer, is defined.

__ ClsTimer

[ (block, setup, respond, release, netFail, INIT)

opened : Boolean
waitingld : Identifier
maxtime : N

opened = true = waitingid = L N maxtime =0

__INIT
opened = true
waitingid = 1
maztime = 0

— block
A(opened, waitingld)
id? . Identifier

opened = true N\ waitingid = id? N\ opened’ = false

__release
A(opened, waitindld, maztime)

opened’ = true N\ waitingid = 1. A\ maztime’ =0

__setup
A(maxtime)
time? : N

time? 0 A maxtime’ = time?

__respond
id? = Identifier; resp?, resp! : Message

id? = waitingld N resp! = resp?

—_netFail
resp! : Message

mazxtime < 0 A resp! = Fuailed
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All the operations of this class are made accessible from the environment, especially to allow
the UCM component, namely, process (see Figure 6.3) to control the activities of the Timer.
The description of specific components and operations within the class remain unchanged
compared to the Z version, except that in Object-Z, only one unnamed state schema is al-
lowed in a class. The A operator, in an operation schema, applies to the list of variables that
are changed by the operation, and the = operator is ignored (see Duke and Rose [26], Smith
[77]).

The next schema describes the class generated from the state schema netinterface. Be-
cause netlnterface itself includes another state schema, the class for the internal schema,

namely ClsInterface, is first presented.

___ClsInterface

reqToForward : Identifier = Request
reqToReceive : Identifier = Request

__INIT
reqToForward' = &
reqToReceive’ = &

The Class ClsInterface, does not make any of its components accessible from outside. Its

purpose is to facilitate the construction of the class ClsNetInterface, presented next.

__ ClsNetInterface

[(INIT, send)
ClsInterface

(Vid : Identifier; req : Request e id — req € reqToReceive)
(3, net : ClsInterface | id € dom net.reqToFoward)

__send

A(reqToForward)
id? : Identifier; req? : Request

reqToFoward" = reqToFoward U {id? — req?}

—_netReceive
A(reqReceive)
1d? = Identifier; req? : Request

let net : ClsNetInterface | id? € dom net.reqToFoward e
reqToReceive’ = reqToReceive U {id? — req?}
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The operations send and netReceive are accessible externally. The class extends ClsInterface
to include a constraint on the set of requests received from other companies. The operation
netReceive updates the component reqToReceive with a new request that arrives from an-

other agency.

The class ClsNetComTemp is:

__ClsNetComTemp

[ (reqInvoices, reqCustomers, reqTransactions, reqResponses,
reqCheckInvoices, reqCheckCustomer, reqUpdate Account, Response)

forward = [network? : ClsNetInterface]| o network.send

reqInvoices : Identifier -~ Invoice X Address

reqCustomers : Identifier = Customer x Address
reqTransactions : Identifier = Customer x Money x Address
reqResponses : Identifier + Message

dom regInvoices N dom reqCustomers = &

dom reqInvoices N dom reqTransactions = &

dom reqCustomers N dom reqTransactions = &

dom reqResponses C dom reqInvoices U dom reqCustomers U
dom reqTransactions

__INIT
reqInvoices = & N reqCustomers = &
reqTransactions = & N\ reqResponses = &

__reqCheckInvoice
id? = Identifier

id? € dom reqInvoices
dreq : Request o forward(id?, req)

__reqCheckCustomer
id? : Identifier

1d? € dom reqCustomers
dreq : Request o foward(id?, req)

—reqUpdateAccount
1d? : Identifier

id? € dom reqTransactions
3 Request o forward(id?, req)
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This class derives from the Z state space netComTemp. It defines the operation forward in
terms of the send operation of ClsNetInterface, making it usable within the class ClsNetCom Temp.
The definition of forward requires the environment to provide an object of ClsNetInterface,
from which the operation send is promoted (more insight on promoting Object-Z operations
may be found in the books by Duke and Rose [26] and Dunne [28]). Other operations of
the class use the promoted operation to send requests over the network. Those operations
do not include the A operator, because the state of the network interface is not directly

accessible from outside, and is therefore updated through the promoted operation.

Next the meta-class, ClsRequest, previously introduced, is defined more comprehensively.
It inherits variables from the class of variables ClsGlobalVariables, and properties from two
other classes: ClsTimer and ClsNetComTemp. The two classes StartPoints and EndPoints
are also included even though they are not described in detail. The class StartPoints en-
capsulates all the Z schemas to the start-points, and the class EndPoints groups all the Z
schemas associated to all the end-points. The class ClsRequest defines by promotion, the
operations endCheckInvoice and endCheckCustomer as well as three blocks of composite

operations that are explained in subsequent paragraphs.

__ ClsRequest
[(s1, 52,53, s4)
ClsGlobalVariables
ClsTimer
ClsNetComTemp
StartPoints
EndPoints

endCheckInvoice = [Jid € (dom reqCheckCustomer) N (dom reqResponses) |
idScenario(id) = idScenario(id1?)] e e3(id1?,1id)

endCheckCustomer =
[idScenario(id2?) = scenePayCredit] o e2(id27?)
V

[Fid € dom reqCheckInvoice N dom reqResponses |
idScenario(id) = idScenario(id1?)] e e3(id, id2?)

Activity #1
[¢d17 : Identifier, inv? : Invoice, ad? : Address| o sl §
reqCheckInvoice(id17?) g el(id1?) A (block N setup)

o
9

((s4 g respond) V (netFail § €123b)) A release) § endCheckInvoice
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Activity #2
[id27? : Identifier, cust? : Customer, ad? : Address] o s2§
(reqCheckCustomer(id27) § e1(id27?)) A (block A setup)

{
9
((s4 g respond) V (netFail § €123b)) A release} § endCheckCustomer
Activity #3

[1d37 : Identifier, cust? : Customer, amnt? : Money, ad? : Address| o s33
reqUpdateAccount § el

The operation endCheckInvoice terminates the validation process of an invoice. It uses
the scope enrichment operator e (see Chapter 2) to promote the operation e3. When
the condition imposed by the AND-join element, described above, is reinforced, at this
stage, the customer was thusable to be successfully validated. The system determines the
identifier id, which is used by the operation e3, to terminate the appropriate scenario.
The other parameter id17, is the identifier of the request that is used (in the compos-
ite operation labeled Activity #1) to validate the corresponding invoice. The condition
idScenario(id) = idScenario(id1?) ensures that the two requests referenced by id and id1?

are linked to the same scenario. This operation aims to shorten the expression of Activity

#1

Similarly to endCheckInvoice, the operation endCheckCustomer terminates the validation
process of a customer. It is a composite operation that acts according to the scenario in
execution. It either promotes the operation e2 when the customer is paying a credit, or
acts like the operation endCheckInvoice, when returning or replacing a purchased item. To
reinforce the effect of the AND-join connector, it ensures that both the customer and invoice
involved are successfully validated. The identifier ¢d2? was provided by the environment
when triggering the start-point S2 (see block of Activity #2), and identifies the request

used to validate the customer. This operation aims to shorten the expression of Activity

42,

The three main activities of this sub-system are the following:

1. Activity #1
This composite operation describes the reaction of the system, when the start-point S1

is triggered to initiate the validation of an invoice.

2. Activity #2

This operation describes the sequence of activities performed by the system when the
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start-point S2 is triggered to initiate the validation of a customer.

3. Activity #3
This schema expression defines the sequence of activities that the system performs in

reaction to the triggering of the start-point S3, to update a customer’s account.

In the definition of the class ClsRequest, the labels listed above are merely text comments
used to reference the expression of the composite operations placed below them. The para-

graph that follows explains Activity #1 so that the two others may be similarly understood.

Recall from the previous discussion on partial operations, that the reason to trigger the
start-point S1, is to initiate the validation of an invoice. For such a triggering event to
succeed, the environment provides appropriate information to render the operation sl ap-
plicable. In the expression of the composite operation, the scope enrichment operator (e) is
introduced to make it possible to indicate that a request identifier ¢d1?7, the invoice to be
validated inv?, and the address ad? of the agency to which the request is to be forwarded,
are the information required from the environment, to enable start the validation process.

The activities of the system involve:

1. Handling the triggering event with the operation s1,

2. Requesting, with the identifier ¢d1, the validation of the input invoice, block and set-up
the timer, with an appropriate maximum waiting time as indicated by the expression

below:
(reqCheckInvoice(id17) § el(id1?)) A (block N setup)
At the level of this sub-system, the sending operation terminates at the end-point E'1

(see the UCM in Figure 6.3), hence, the operation el associated with the end-point

immediately follows the operation send.

3. Waiting for the start-point S4 (Figure 6.3) to be triggered, indicating the availability of

a response, therefore the operation Respond is performed.
s4 § respond
Or waiting for a timeout event to occur indicating a failure; when the process fails, the

system reacts by performing netFail and the progression of the scenario is terminated at
E123b with the operation e123b associated.

netFail § e123b

At that point, either a response is received, or a timeout has occurred, the timer is released
and the whole validation process is terminated (see earlier discussion on the operation

enCheckInvoice).
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As discussed earlier in this chapter (see Section 6.2), the plug-in for which the Object-Z
transformation has just been completed in this section, has the responsibility to forward
requests from one agency, to another, using the network support. The other two plug-ins in
figures 6.4 and 6.5, respectively, handle those requests from the network aiming to validate
invoices and customers. Thus, continuing with the Z and Object-Z specification of the input
UCM (Figure 6.1), the following two sections focus on the remaining two plug-ins. Due to
the reason that neither of the two sub-maps include new UCM elements that have not yet
been discussed previously, for brevity, some steps of the transformation process are omitted.

Only the resulting Object-Z classes are discussed here.

6.3.3 Applying the framework to the Plug-in to validate invoices
(Figure 6.4)

As mentioned previously, the Z transformation of the sub-map in Figure 6.4 is not presented.

This section describes two class schemas: ClsLocalSales and ClsCheckInvoices that repre-
sents the Object-Z specification resulting from the transformation of the diagram in Figure
6.4.

1- The class ClsLocalSales describes objects that interface with the local sales system (Figure
3.2 shows the sub-system layout). It makes accessible to the environment the functions
findInvoice and findAccount, and is not included in either of the two plug-ins. Instead,
it provides two functions to help them query a local sales system of an agency when

validating an invoice or a customer.

__ClsLocalSales

[ (findInvoice, findAccount)

inwoices : Invoice + Customer
customers : Customer - Account

dom invoices C ran customers

__INIT
muoices = I N\ customers = &

__findInvoice
inv? : Invoice; resp!: B

inv? € dom invoices A resp! = true
V

resp! = false
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__ findAccount
cust? : Customer; resp! : B

cust? € dom customers N resp! = true
\%

resp! = false

The operation findInvoice checks the availability of an input invoice in the local sales
system. A boolean value is used to specify a message returned to the user to indicate
whether the invoice is in the system, or not. The operation findCustomer acts in a similar

way as findInvoice relative to customers.

The class ClsCheckInvoice checks invoices responding to remote requests. Its state defines
a set of requests. The variable out12 indicates whether or not the validation has succeeded
and hence, guides further decisions to be taken. An object of the class may be initialised

from the system environment, with the operation INIT.

_ ClsCheckInvoice

[(INIT, 51, out12)

outl2 : B
requests : Identifier - Invoice

__INIT
requests = & A outl12 =1

_ sl
A(requests)
id? : Identifier; inv? : Invoice

requests’ = requests U {id? — inv?}

—ell
A(requests)
id? : Identifier; resp! : Message

requests’ = {id?} < requests A resp! = UnknownlInvoice

—el2
A(requests)
id? : Identifier

requests’ = {id?} < requests
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ChkInv = [view? : ClsLocalSales] o view?.findInvoice(inv, out12)

[3(id, inv) € requests ‘ requests # &) o ChkInv §
[—outl12] A ell
V
[out12] A el2

The operation s1 is awaken to keep a new request in the system each time the start-point
S1, is triggered with an appropriate identifier associated to the request. The two opera-
tions ell and el2, respectively associated with the end-points £F11 and E'12 of the plug-in
(Figure 6.4), are defined to terminate the validation process of an invoice. The class also
uses the scope enrichment operator to define the operation ChkInv. The environment
provides the object view? of the class ClsLocalSales, for which, the operation findInvoice
is put forward to be used locally as ChkInv, to validate invoices. The last expression
describes the reaction of the system against the set of incoming requests. One request is
selected from the list, and checked with the operation ChkInv. Depending on whether
the validation has failed [ Out12] or not, the system continues to the end-point £11 or
F12.

Similarly, the next section presents the single class that results from the Object-Z transfor-

mation of the plug-in to validate, a customer.

6.3.4 Applying the framework to the Plug-ins to validate cus-
tomers (Figure 6.5)

The only Object-Z class schema resulting from the diagram in Figure 6.5 is the class
ClsCheckCustomer. The definition of the class ClsCheckCustomer is very similar to that
of ClsCheckInvoice, in the sense that both include in their state, a set of incoming requests
and inherit operations from the class ClsLocalSales to query the local sales system of an
agency. This classes validates customers and forwards the requests to update a customer’s
account to the end-point £23 (see Figure 6.5). The component out345 indicates the result
of actions taken within the class, and aims to guide further decisions. The possible values of

the component are:

1. out345 = 3: indicates that the validation of the current customer has failed, and the

end-point £21 is reached;

2. out345 = 4: indicates that the validation of the current customer has succeeded and

the end-point E22 is reached, or
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3. out345 = 5: indicates that the current request is to update the customer’s account,
and the end-point E23 is reached.

The end-points £21, E22 and E23 are those on the UCM of Figure 6.5. The operation s2

adds a new request into the set of pending requests each time the start point S1 is triggered.

_ ClsCheckCustomer

[(INIT, s2, out345)

out345 : N
requests : Identifier - Customer

out34b #1 = out345 € {3,4,5}

__INIT
requests = & A out345 = L

_ 52
A(requests)
1d? - Identifier, cust? : Customer

requests’ = requests U {id? — cust?}

_e21
A(requests)
id? : Identifier; rep!: Message

requests’ = {id?} < requests A rep! = UnknownCustomer N\ out345 =5

—e22
A(requests)
1d? - Identifier

requests’ = {id?} < requests N\ out345 =3

—e23
A(requests)
1d? - Identifier

requests’ = {id?} < requests N\ out345 = 4

ChkCust = [view? : ClsLocalSales; resp! : B] @ view?. FindAccount(cust, resp!)

[3(id, cust) € requests; op? € {check, update} | request # 2|
if op? = check then ChkCust § (([7 resp!] A €21) V ([resp!] A €22))
V
if op? = update then e23
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The operations e21, €22 and e23 are, respectively, associated to the end-points E21, E22
and F23, and are activated each time the end-point is reached. The class also defines
ChkCust to promote the function findAccount of ClsLocaleSales. The last expression uses
the scope enrichment operator (e ) to describe the sequence of actions taken by the
plug-in to react whenever there are pending requests. The first expression of the operator
[3(id, cust) € requests; op? € {check,update} | request # @] indicates that the system
selects a pending request, and the environment provides a value to the input parameter op?,
to indicate the nature of the action needed. The expression at the right side of the operator,
indicates the sequence of actions taken by the system depending on whether the request is

to validate a customer (op? = check), or to update a customer’s account (op? = update).

At this point, the transformation of the three plug-ins resulting from the break-down of
the initial input UCM (see Figure 6.6) is completed. In the next section, the Object-Z

transformation of the stubbed map, namely, main map is presented .

6.3.5 Applying the framework to the main UCM

Traversing the main UCM in Figure 6.2 from left to right, reveals that the map includes
hierarchical structured abstract components and stubs. Those UCM elements taken together
with the sub-maps or plug-ins, (treated in the previous sections), model the envisioned sys-

tem. Figure 6.7 illustrates the hierarchical structuring of those components.

_____________

Beneficiary

Check_point Update point

Figure 6.7: The hierarchical structuring of components in the stubbed UCM

A component at a higher level of the hierarchy, serves as a container for those at the next
lower level attached to it by means of directional arrows. As suggested in the framework (Sec-
tion 5.4, Chapter 5 ), during the transformation process, a bottom-up strategy is adopted.

To accommodate the Guidelines # 11 and # 12 of the framework, components at the lowest
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level are considered first, followed by those at the next higher level, until the ones at the

highest level are considered.

The structuring (in Figure 6.7) of the main UCM (in Figure 6.2), reveals the two major

roles played by the system in an agency:

(a) Helper role
The system plays a “helper” role whenever the agency, in which it is operating, assists a
customer of another agency, aiming to achieve one of the three user requirements listed
in the case study (see Chapter 3). In that case, the operations needed are provided by
the UCM components encompassed by the abstract component, namely, Helper (see

Figure 6.2), or connected to it, in Figure 6.7, (by means of the arrows).

(b) Beneficiary role
The system plays a “Benefiary” role whenever the agency, in which the system is op-
erating, collaborates remotely with the agency that is helping its customer. In that
case, the operations needed are provided by the UCM components encapsulated in the
component, namely, Beneficiary (see Figure 6.7), or connected to it, in Figure 6.7),

(by means of the arrows).

The communication between a Helper and a Beneficiary is conducted via the services of a
network component, which is assumed to be external to the system. However, the commu-
nication interfaces are part of the system, since they are necessary to enable the use of the
network. Each UCM component contained in one of the two abstract components at the
highest level of hierarchy in Figure 6.7, may request the services of the network. For exam-
ple, the component “Helper” uses the UCM stub element to control and monitor network
connections. The UCM paths joining the stub and other abstract components (see Figure

6.2) indicate a network communication involving those components.

As discussed in the previous sections, the stubs included in this main map (in Figure 6.2)

are:
e A static stub, to which is bound the Plug-in, to forward requests (Figure 6.3), and

e A dynamic stub, to which are associated the plug-in to validate invoices, (Figure 6.4)

and the plug-in to validate customers (Figure 6.5).

A stub in a UCM represents a place where the service of a sub-map (plug-in) is needed. In
Chapter 5, Guideline # 1/ of the UCM transformation framework, as well as Section 5.3

(relating the static and dynamic stub concepts of UCM to Z schemas) were proposed to assist
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the Z specification of a binding relationship, between a stub and its plug-in(s). For brevity,
the step-by-step Z transformation of the main map is not presented in detail. However, Table
6.1 is constructed to indicate the list of the Z abstract state schemas generated. For each
schema, the UCM element, from which the schema was derived, is also shown. Similarly,

Table 6.2 is constructed to show the list of the Z partial operations generated.

The step-by-step application of the transformation process was implemented in the previous
sections when generating the Z and Object-Z versions of the sub-maps in figures 6.3, 6.4 and
6.5. Therefore, repeating the same details for the main map or similar UCM elements will
certainly increase the size of this dissertation, but may not provide any new insight. Hence,
for the Z and Object-Z specification of the main UCM, only results are presented (details

pertaining to the transformation process are not shown).
The next section presents in a tabular form, the list of the abstract state schemas generated.

Summary of Z state schemas

As mentioned above, the list of state schemas resulting from the 7 transformation of the
stubbed UCM is presented. Each schema is associated with the UCM elements from which
the Z schema was generated. The type of the UCM element is also presented, to show
that the Z elements were generated on the strength of the proposed guidelines (Section 5.4,
Chapter 5). An abstract state schema associated with a UCM element, encapsulates the

properties of the system that is under the control of the UCM element.

State schema UCM element | Type of Element
stateInitChecking | InitChecking process component
stateCashier Cashier object component
statePayPoint Pay_point team component
stateInStore Store object component
state TransitPoint | Transit_point team component
stateHelper Helper team component
stateCheckPoint | Check_point team component
stateUpdatePoint | Update_point team component
stateBeneficiary Beneficiary team component

Table 6.1: List of the Z abstract state schemas

In accordance with Guideline # 12 of the framework (in Section 5.4, Chapter 5), each state
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schema derived from a UCM team component that contains other components, includes
the schemas generated from the integral components. For example, the schema named
statePayPoint, includes the state schema stateCashier, which is in turn encapsulated in the

stateHelper, that also includes statelnitChecking, and State TransitPoint.
The list of meta-classes is presented next.

Meta-classes generated from Main UCM

The list of the meta-classes pertaining to the idea of creating a meta-class for each UCM

active component (see Guideline # 111, Chapter 5) are listed below:

e (lsInitChecking, derived from the component InitChecking

ClsPayPoint, derived from the component Pay_point

ClsTransitPoint, derived from the component Transit_point

ClsCheckPoint, derived from the component Check_point

ClsUpdatePoint, derived from the component Update_point

ClsHelper, derived from the component Helper and
e (lsBeneficiary, derived from the component Beneficiary.

Meta-classes are not associated to Object components, as those componens do not have con-
trol over the tasks they perform. Detailed descriptions of meta-classes are presented later in

this chapter.

Next, the list of the Z partial operations generated from the stubbed UCM is shown in

a tabular form.

Summary of Z partial operations
Following the suggestion of Potter et al. [70] wherein the idea was put forward that:

“It is useful to give a summary of what is discovered in a table, showing for each opera-

tion its inputs, outputs and preconditions.”

A non-conventional way of presentation follows. Without intending to change the stan-

dard way of presenting Z partial operations, in Table 6.2, in place of preconditions, a prose
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text description to indicate the purpose of the operation is shown. Formal definitions of

some of the operations are discussed in the forthcoming section, where Object-Z classes that

encapsulates them, are presented.

Operation Inputs and Outputs Purpose
item? : Item
s1 mwvoice? : Invoice Starts a scenario
customer? : Customer to return an item
agency? : Agency
item? : Item
s2 wmwvoice? : Invoice Starts a scenario to
customer? : Customer replace an item
agency? : Agency
53 customer? : Customer Starts a scenario to
agency? : Agency pay a credit
item? : Item
inwvoice? : Invoice Prepares a request to be sent
initCheckInvoice agency? : Agency over the network to check
resp! : Identifier x Invoice the validity of an invoice
X Address
cust? . Customer Prepares a request to be sent
initCheckCustomer | agency? : Agency over the network to check
resp! : Identifier x Invoice the validity of a customer
X Address
cust? : Customer
payCredit amnt? : Money Handles a customer’s payment
agency? : Agency at a cashier
date? : Date
cust? : Customer
agency? : Agency Transfers a payment into
alloc Transaction date? : Date a specific account
resp! : Identifier x Customer
x Money x Address
cust? : Customer
storeltem item? : Item Keeps a returned item
mv? : Invoice in a store before shipping
date? : Date
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item? : Item

Ships a returned item

shipltem date? : Date to the provider
mnv? : Invoice Provider allows a return or replace
acceptOp resp! : B operation to continue or not
item? : Item
item? : Item
recetvltem mnv? : Invoice Provider receives a shipped item
from? . Agencyid
amount? : Money Provider updates a customer’s
update CustAcc custAcc? . Account account to reflect a payment or
resp! : Message the value of a returned item
el2a mw? : Invoice Terminates a scenario when
resp! : Message the invoice is not valid
Terminates a scenario when
el2b mu? : Invoice provider of a returned item
resp! : Message does not allow the operation
Terminates a scenario when
el23a cust : Customer customer does not have valid
resp! : Message account with the provider
deliverltm item? : Item Deliver a new Item to Customer
customer? : Customer to replace the returned one
refundCustomer amount? : Money Refund a customer for
customer? : Customer a returned Item
mv? : Invoice Successfully terminates a scenario
el item? : Item after customer is refunded for
resp! : Message a returned item
inv? : Invoice Successfully terminates a scenario
e2 item? : Item after a returned item is replaced
resp! : Message by the provider
amount? : Money Successfully terminates a scenario
e3 cust? : Customer to pay credit

resp! : Message

Table 6.2: Partial operations for the main UCM in fig.6.2

As suggested by the UCM transformation framework (see Guideline # 23, Chapter 5), the
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following Section aims to complete the specification of Object-Z class schemas, generated

earlier in this section.

The Object-Z Class schemas

By applying the UCM transformation framework, proposed in Chapter 5, to the stubbed
UCM (in Figure 6.2), Object-Z class schemas are generated. Some derive from meta-classes
directly associated to UCM abstract components that may have control over the tasks they
perform; others are derived from the transformation of the Z abstract state spaces obtained
from the input UCM (see Chapter 4). Such a transformation was illustrated in Section
6.3.2, during the transformation process of the Plug-in to forward requests. The list of the

generated classes is:

# | Class name Derived from
01 | ClsInitChecking meta-class
02 | ClsCashier stateCashier
03 | ClsPayPoint meta-class
04 | ClsInStore stateStore
05 | ClsTransitPoint meta-class
06 | ClsHelper meta-class
07 | ClsCheckPoint meta-class
08 | ClsUpdatePoint meta-class
09 | ClsBeneficiary meta-class
10 | ClsMainStartPoints stateHelper
11 | ClsMainEndPoints stateHelper

Table 6.3: List of OZ classes for the stubbed UCM

The task of the two classes ClsHelper and ClsBeneficiary generated, respectively, from the
UCM abstract components Helper and Beneficiary (see figures 6.7 and 6.2), is to monitor
(through the mechanism of inheritance) the activities of the other classes generated from
the UCM components, or elements that they encapsulate. A complete description of those
two classes may be valuable to show how the UCM transformation framework, (which is
one of the main contributions of this dissertation), can be applied to connect static and
dynamic stubs to the corresponding sub-maps. Note that a complete development of the

other classes may not be so important, since similar classes have already been developed in
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previous sections.

In Figure 6.2, by following a UCM path from the start-point S1 or 52 to the end-point
E1 or E2, it appears that a complete scenario, for returning or replacing a purchased
item, can be traced, by considering the classes ClsInitChecking, ClsTransitPoint, ClsHelper,
ClsCheckPoint, ClsUpdatePoint, and ClsBeneficiary. For the reasons stated in the above
paragraph, only the classes ClsHelper and ClsBeneficiary are fully described. The other four
classes are partially described: the predicate part of some operations are not presented here.

The rest of the classes listed in Table 6.3 are not presented.

Next, the Class ClsInitChecking is defined.

The class ClsInitChecking

The purpose of this class is to prepare requests to be sent over the network to check an invoice
or a customer. The class ClsInitChecking is the comprehensive version of the meta-class, ob-
tained from the abstract component named InitChecking. It inherits variables from the class
ClsGlobalVariables (see Section 6.3.1) and properties from the class ClsMainStartPoints,
(which is not defined here, as mentioned above).

This class encapsulates two operations, initCheckInvoice and initCheckCustomer, to ini-
tialise a request to check respectively, an invoice or a customer, and generate an identifier

for the request. Its schema is shown next followed, by further explanations.

__ ClsInitChecking
[ (INIT, initCheckInvoice, init CheckCustomer)
ClsGlobalVariables

ClsMainStartPoints

__nitCheckInvoice
item? . Item; inv? . Invoice; agency? : Agency
resp! : Identifier X Invoice X Address

(item, inv?, cmpy?) € dom items
(Fid : Identifier) o resp! = (id, inv?, addressOf (agency?))

—_initCheckCustomer
cust? : Customer; agency? : Agency
resp! : Identifier x Customer x Address

(cust?, agency?) € dom customers
(Fid : Identifier) o resp! = (id, cust?, addressOf (agency?))

This class keeps temporary information on a scenario, as long as the scenario is in progress.
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The component that holds temporary information is inherited from the class ClsMainStartPoints

and comprises three records:
scenarios : F Scenario, which defines the finite set of active scenarios;

items : Item x Invoice x Company -+ Scenario, which defines the set of items to be re-
turned or to be replaced, depending on the scenario under consideration.
Each element of the set is composed of: an item; an invoice (which is the proof of purchase

of the item); and the agency where the item was purchased,;

customers : Customer x Agency -+ Scenario defines the set of customers whose requests

are being processed.

A record is maintained in items or customers only as long as the scenario for which it

was created remains active. Initially, the component is assumed to be empty.

The precondition for the operation initCheckInvoice requires the triple elements formed
by the values of the input variables item?, inv? and agency? to be mapped, in the temp file,
to a scenario in progress. The operation generates an identifier (that is output) together
with inv?, and the address of the target agency. The function addressOf is inherited from
ClsGlobalVariables.

The class ClsTransitPoint

The class ClsTransitPoint provides a complete version of the meta-class generated from
the UCM team component Transit_Point, (that includes the UCM object element Store).
It temporarily keeps (in Store) items received from customers, and ships them to their
providers. It inclusively inherits the list of stored items, from the class ClsInStore, and
additionally contains the variable shippedltems, to record the set of items taken from the
store and shipped to the appropriate agencies. It is assumed that the system starts operating

with an empty list of items.
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_ ClsTransitPoint

[ (shippdItems, INIT, shipItem)
ClsInStore

shippedltems : Item -+ Date

dom shippedltems C dom(dom storedItem)

__INIT
shippedltems = &

__shipltem
A(shippedItems)
item? : Item; date? : Date

item? € dom(dom(dom storeltems))
shippedltems’ = shippedItems U {item? — date?}

The class inherits the operation storeltem from the class ClsInStore, and defines the opera-
tion shipltem, to perform the activity of transferring an item, from the store to the provider

of the item.

Next is the class that defines the activities of the sub-system, namele, Helper.

The class Helper

The class ClsHelper, is an update of the meta-class derived from the UCM component named
Helper, which normally represents a sub-system. The class specifies the chain of activities

performed by the sub-system for scenarios that are in progress.

__ClsHelper

[(INIT, startFromS1, startFromS2, startFromS3)

plugin : ClsRequest

__INIT
plugin.INIT

IN1 = [id? : Identifier; inv? : Invoice; addr? : Address] o plugin.sl
IN2 = [id? : Identifier; cust? : Customer; addr? : Address] e plugin.s2
IN3 = [id? : Identifier; cust? : Customer; cash? : Money;

addr? : Address| o plugin.s3
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startFromS1 = [item? : Item; inv? : Invoice; cust? : Customer;
agency? : Agency; checker : ClsInitChecking| e
(checker.s1 g ((checker.initCheckInvoice § IN1) A
(checker.initCheckCustomer § IN2))
9
[store? : ClsTransitPoint] e (store?.storeltem § store?.shipltem)
startFromS2 = [item? : Item; inv? : Invoice; cust? : Customer;
agency? : Agency; checker : ClsInitChecking| e
(checker.s2 § ((checker.initCheckInvoice § IN1) A
(checker.initCheckCustomer § IN2))
9
[store? : ClsTransitPoint] e (store?.storeltem § store?.shipltem)
startFromS3 = [cust? : Customer; agency? : Agency;
checker : ClsInitChecking] e
(checker.s3 § (checker.initCheckCustomer § IN2)3
[payer? : ClsPayPoint] e (payer?.payCredit N
payer?.alloc Transaction)y
payer.initUpdate CustomerAcc § IN 3)

An object of this class has the important role of coordinating the sequence of operations
that may be performed within an agency, when acting as a Helper. It uses the variable
plugin (an object of the class ClsRequest), to inherit properties and methods from the class
ClsRequest (see Section 6.3.2), generated from the UCM sub-map (in Figure 6.3), connected
to the static stub.

The operations IN1, IN2 and IN3 are specified to define input points to plugin. For each
input variable in the square brackets, each of those points is activated whenever a value is
provided (e.g. from the system environment). When those values are provided, for example,
for the IN1, the start-point S1 of the plugin is triggered (plugin.sl), and the sequence of

activities within the plugin (see Section 6.3.2) that follows, are performed.

Each of the three operations startFromS1, startFromS2, and startFromS3 specifies a se-
quence of activities performed whenever any of the start-points (S1, 52, or S3) (see Figure
6.2), is triggered. For example, a scenario to return a purchased item, may commence if
a value is provided for each of the input variables in the square brackets, and an object of
the class ClsInitChecking is created. In that case, the operation sl (Checker.s1), handles
the triggering event, to temporarily conserve the values for the input variables, for further
use. A request to check the invoice is prepared (Checker.initCheckInvoice) and submit-

ted via the input point IN1. Concurrently, a request to check the customer is prepared
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(Checker.initCheckCustomer), and submitted via the input point IN2. As shown in the
above paragraph, IN1 or IN2 connects to the plugin, that controls the communication,
through the network. An object of the class ClsTransitPoint is required from, (or created
by), the system environment to temporarily keep (store?.storeltem) the input item in a store,

before shipping it (store?.shipItem) to the provider.

The construction of this class requires the specification of the classes ClsRequest, (seen
in Section 6.3.2), ClsInitChecking, ClsTransitPoint, and ClsPayPoint, which were all gen-
erated from UCM elements, included in the team component Helper (as shown in figures
6.2 and 6.7). Such a construction illustrates the use of the bottom-up strategy adopted in
the transformation framework (see Chapter 5, Section 5.4). Similar reasoning is followed to
construct the class ClsBeneficiary, generated from the UCM team component Beneficiary
(see Figure 6.7).

The class ClsCheckPoint

The Class ClsCheckPoint specifies the activity to collect and process incoming requests from

the network.

_ ClsCheckPoint
[ (INIT)

ClsGlobalVariables

collectedReq : Identifier -~ Request
plugindInv : ClsCheckInvoice
plugind Cust : ClsCheckCustomer

let listReq == ran collectedReq o
(listReq <1 invoicelnReq, listReq <1 customerInReq) partitions listReq

__INIT
collectedReq = &
plugindInv.INIT

plugind Cust.INIT

__respond
[undefined|
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__collectReq

A(collectedReq)
net? : clsNetInterface

net.reqToReceive # &

(Vid : identifier; req : Request ‘ id — req € net.reqToReceive) o
collectedReq’ = collectedReq @ {id — req}
net.reqToReceive = reqToReceive \ {id — req}

IN1 = [id? : Identifier; inv? : Invoice] o plugindInv.sl
outl = plugindInv.out12 = false

out2 = plugindInv.out12 = true

IN2 = [id? : Identifier; cust? : Customer| e plugindCust.s2
outd = plugin4d Cust.out345 = 3

outd = plugind Cust.out345 = 4

outh = plugind Cust.out345 =5

The class inherits variables from the class ClsGlobalVariables. It defines the component
collectedReq to keep the set of incoming requests that are pending, for processing. The two
variables, plugindInv and plugind Cust define respectively, a reference to an object of the
class ClsCheckInvoice to check invoices, and ClsCheckCustomer to check customers. The set

of pending requests is empty initially.

The operation collectReq, collects incoming requests from the network, and transfers them
into the set collectedReq. After checking an invoice or a customer, the function respond, for-
wards the result via the network. Similarly to the class ClsHelper, depending on the request
under consideration, IN1 and IN2 each specify a point of connection to activate the sequence
of operations, defined in an object of the class ClsCheckInvoice or ClsCheckCustomer when-
ever appropriate values are provided by the system environment to the input variables inside
the square brackets. The components outl, out2, out3, out4, and out5 contain the results

after a request is processed, and may guide further actions to be taken to effect a scenario.

Next the class ClsUpdatePoint is presented .

The class ClsUpdatePoint

This class specifies the functionalities to estimate (evalltem) the actual value of a re-
turned item, and to update (updateCustAccount) a customer’s account when, for example,
a customer has issued a payment at an agency. The state of the class includes the vari-
able returnedltem, to record the set of returned items. An object (interface) of the class

ClsLocalSales (see Section 6.3.3) is included to ensure, for example, that any returned item
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was effectively provided by the agency to which it is returned.

__ClsUpdatePoint

[ (INIT, returnedltems, evalltem, updateCustAccount)

returnedltems : Item x Customer - Date
interface : ClsLocalSales

Y customer € ran dom returnedltems e
interface.findCustomer(customer, resp!) = resp! = true

__INIT
returnedltems = &
interface. INIT

__evalltem
item? : Item; amnt! : Money

[to be specified]

__updateCustAccount
amnt? : Money; account? : Account

[to be specified]

As mentioned earlier, it may not be necessary to present a complete specification of func-
tionalities, as these may not bring any useful information to evaluate the impact of a UCM
model in the construction of a Z and Object-Z specification (see research questions RQ 2
and 3 in Chapter 1).

Next the class ClsBeneficiary is presented

The class ClsBeneficiary

The class ClsBeneficiary derives from the UCM component Beneficiary whose role is to mon-
itor the activities modelled by the UCM sub-components Check_Point and Update_Point.
The Object-Z class schemas derived from those sub-components ( ClsCheckPoint and ClsUpdatePoint)

were presented earlier.
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__ ClsBeneficiary

[ (INIT, receivitem, deliverItem, refundCustomer, el, €2, e3)

ClsCheckPoint
ClsMainStartPoints

deliveredltems : Item x Item x Customer + Date
update : ClsUpdatePoint

YVitem1, item2 : ITEM; customer : CUSTOMER |
(item1, item2, customer) — date € deliveredltems o
(item?2, customer) € dom update.returnedltems

__INIT
deliveredltems = &
update.INIT

__recewvltem
A(update.returnedltems)
item? : Item; customer? : Customer; date? : Date; resp! : Message

plugind Invoice.findCustomer(customer?, sol!) A sol! = true
update.returnedltems’ = update.returnedltems U {(item?, customer?) — date?}
resp! = ReturnedltemReceived

__deliverltem
A(deliveredItems)
item? : Item; customer? : Customer; date? : Date

item? € dom update.returnedltems
returnedltems’ = returnedltems U {(item?, customer?) — date?}

__refundCustomer
customer? : Clustomer; amount? : Money

[specify operation to refund a customer]

_ el
A(Scenarios, items, customers)
id? . Identifier; item? : Item; inv? : Invoice; cust? : Customer

scenarios’ = scenarios \ {id? — sceneReturnltem}
items’ = items ~ {(item?,inv?, ag?) — sceneReturnltem}
customers’ = customers \ {(cust?, compagny?) — sceneReturnltem}

_e2

[specify operation similar to that in el for sceneReplaceltem|
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_e3

[specify operation similar to that in el for scenePayCredit|

let listReq == ran collected Req
Vid : Identifier; inv : Invoice ’ dreq : Request e
id — req € collectedReq N req — inv € listReq < invoicelnReq| o
IN1g (outl A el2a) || ([acceptOp : Boolean| e
(out2 A acceptOp) g respond
s recewvltem N update.evalltem
s (refundCustomer A el

[

deliverltem A €2)

[

(out2 A = acceptOp? N el2b)

[specify a similar sequence of operations for a scenario to pay credit]

This class inherits properties and operations from the class ClsCheckPoint, and components
from the class ClsMainStartPoints. The state schema of the class ClsBeneficiary, contains
an object of the class ClsUpdatePoint, to inherit its operations and to access (by inheri-
tance) the component returnedltems, which is updated by the operation receivltem. The
component deliveredltems is defined to specify the set of items sent to customers for the re-
placement of returned items. The predicate part of the state schema stops the agency from
delivering a replacement item to a customer only once the returned item has been collected.

Initially, the set of delivered items is empty.

The operation receiwvltem is specified to collect returned items, shipped from distant com-
panies. A new item is added to the list of returned items (returnedltem). The operation
deliverItem specifies the activity that consists of sending an item to a customer to replace the
one that the customer returned. It adds the item to the set of delivered items deliveredltems.
Similarly, the operation refundCustomer specifies the activity that refunds a customer for a
returned item. The operations el, e2, and e3 each specify, the reaction of the system when
a scenario is terminated successfully. Such operations may be simple or complex, depend-
ing on the situation under consideration. For example, it may be the right time to think
about archiving all the documents that were involved, or removing or destroying all the
documents or information that were temporarily used to assist the operation, and/or any
other resource that is of no use after the scenario is terminated. For illustration purposes, el

is specified in detail, whereas, e2 and e3 are left unspecified, as they can be similarly defined.

Similarly to the class ClsHelper, an expression is used to specify the sequence of operations
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needed to perform a scenario to return, or to replace an item. A pair of square brackets,
enclosing input variables, specifies a place where some actions are needed from the environ-
ment, for example, to select some specific values from a given list, or to provide values for

the variables. For example, the expression:
[acceptOp : B]

specifies a place where the system requires an action from the environment, e.g., an operator

to indicate with a boolean value, whether the operation must continue or not.

6.4 Chapter summary

This chapter aimed to demonstrate the applicability of the framework proposed in the previ-
ous chapter, by applying it to the UCM model of the case study (see Figure 6.1), developed in
Chapter 3. The purpose was to generate the UCM-OZ version of the Object-Z specification
of the case study (see Chapter 1, Figure 1.3).

In line with the recommendations in the framework, the UCM model was sub-divided,
by means of stubbing techniques, into three sub-maps, depicted in figures 6.3, 6.4, 6.5 and
one principal map (see Figure 6.2). Figure 6.6 was also presented to reveal the connection
between the sub-maps and the principal map. During the transformation process, each
map was treated individually; starting with sub-maps, followed by the principal map. Since
the map in Figure 6.2 was more complex than others (contained more varieties of UCM
elements), Figure 6.7 was presented to reveal the hierarchical structuring of its components.
The transformation process led to an Object-Z specification, namely UCM-OZ.

The next chapter proposes a generic framework to guide the validation process of a

software specification.
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Chapter 7

A Framework for validating a software

specification

In Chapter 4, an Object-Z transformation of the Z description of the case study was devel-
oped. Chapter 6, proposed another version of the Object-Z specification, obtained by trans-
forming the UCM model, of the same case study. This chapter presents a generic framework
to evaluate a software specification. This framework is used in subsequent chapters to eval-
uate the qualities of the Object-Z specifications of the case study, since this dissertation is

about evaluating two different paths (seen in Figure 1.3) to address the research questions
RQ2 and RQ3 (Chapter 1, Section 1.2).

The layout of the chapter is: a brief analysis of the conceptual relationship of a specifi-
tion is first presented with reference to stakeholders (Section 7.1.1), the application domain
(Section 7.1.2), language notation with tool support (Section 7.1.3) and the envisioned sys-
tem (Section 7.1.4). Section 7.2 briefly outlines the difficulty of evaluating a comprehensive
set of characteristics for a quality software specification. A “spiral strategy” is proposed in
Section 7.3 to guide the validation of a specification. As part of the strategy there follows a
brief analysis of the scope of the system. This is followed by an iterative process, consisting
of validating the input specification with respect to the expectations of the stakeholders,
(Upward validation) in Section 7.3.2, consideration of the application domain (Leftward val-
idation) in Section 7.3.3, the specification language and tool support (Rightward validation)
in Section 7.3.4, and the final product (Downward validation) in Section 7.3.5.

In Section 7.4 a two-step mechanism that exploits the result of the validation framework,

to compare two specifications of the same set of requirements is proposed. Finally, a brief

summary of the chapter is presented in Section 7.5.
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The main ideas of this chapter constitute one of the important contributions of this dis-
sertation. The summary was compiled into a full research paper, which was presented at the
South African International Conference for Computer Scientists and Information Technolo-
gists (SAICSIT’10)(Dongmo and van der Poll [24]).

7.1 Conceptual relationship in a Software specification

Ever since, Brooks [15] published his classic text, in which he stated the importance of
conceptual concepts in software development, research in Requirements Engineering has be-
comes evermore important. As mentioned by Nuseibeh and Easterbrook [65], software ought
not to be isolated from the system in which it operates, that is, the application domain. It
is commonly accepted that the success of a software system is highly related to the extent to
which it meets stakeholders’ expectations. Thus, the importance of a proper consideration
of stakeholders’ needs during a software specification validation process is essential. The
emergence of software specification notation languages and associated tool supports, implies
the importance of those languages in software specifications. Therefore, to determine the
validity of a software specification, we consider analysing, at the requirements level, the con-
ceptual relationships between four aspects. These are stakeholders; the application domain;
the specification language and tool support; and the envisioned operational system. Figure

7.1 illustrates these relationships.

Stakeholders
Expectations

A
Spegfication

Prpcess
\A § o
s B

2 e - Q . Language
»_Specification )= & Tgoofi

Application
Domain

Functionalities

Operational
System

Figure 7.1: Conceptual relationship

Rectangles in Figure 7.1 represent participants in the relationship. The ellipse represents
the specification, and arrows pointing to it identify those participants contributing to the
construction of the specification document. The arrow pointing to the Operational Sys-
tem indicates that the specification itself, participates in the construction of the envisioned

software system. The arrows with dashed lines indicate possible feedbacks from the speci-
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fication, reporting on, for example, agreements or disagreements with the party which the

arrow is pointing at.

The contribution of each of the participants in the relationship is discussed next, starting
with the Stakeholders.

7.1.1 Stakeholder expectations

Stakeholders denote different people (customers, users, developers, etc.) fulfilling different
roles, and often having contradictory requirements which they expect a system to fulfill. For
instance, a customer paying for a system expects it to produce benefits within a given time.
A user expects the system to be user-friendly and include appropriate functionalities. It is
well known that these two categories of stakeholders, often do not know exactly what they
require, and fail to express their needs clearly and unambiguously. The development team
on the other hand, has the responsibility to produce, within a reasonable time and budget,

a system that unambiguously responds to such expectations (see Schach [74]).

During the early phases of a software development process, the specification document plays
a vital role among stakeholders. One difficult objective is to construct a specification that
satisfies all stakeholders (see Nuseibeh and Easterbrook [65]). Much work in this area has
been conducted (e.g. Jureta et al. [45]). Other software verification and validation (V & V)
techniques appear in (Dupuy-Chessa and Bousquet [29], McComb and Smith [56], Plagge and
Leuschel [69], Sargent [73], Schaefer and Poetzsch-Heffter [75]). Popular trends in require-
ments elicitation favour the active participation of all stakeholders in the process. Notable
examples are JAD!(see Wood and Silver [99]) and placing the developer in the working en-

vironment of a stakeholder, as discussed by Friedrich and van der Poll [31].

Since a specification may result from successive refinements of stakeholder expectations
(Van Lamsweerde [96]), it is argued that the adequacy of such a refinement process ought to
be subject to a validation. Hence, any attempt to validate a specification against initial goals
should consider both the specification, and the goal refinement processes. Such an approach
may facilitate the identification of, not only the expected characteristics of an appropriate

specification, but also those of a reliable goal refinement process.

1Join Application Development
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7.1.2 The Application domain

An application domain is here considered as the operational software environment, and is,
therefore, the source of various types of information (processes, services, data, actors, etc.).
Naturally, these are needed to define the boundaries and functionalities of the specification.
Work in the areas of domain analysis and modelling (e.g. Evans [30], Miller [61], Valerio et al.
[88]), attempts to make such information readily available and reusable. Techniques such
as the Service Oriented Architecture (SOA by Brown [16]) attempt to modularise domain
information into services. Hence, given a set of objectives to be achieved by an envisioned
software product, an appropriate specification technique would consider all the appropriate
information in the domain, to construct the specification. It is argued that a good software
specification should therefore, be generated from domain-tr