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Abstract. A condensed specification of a multi-level marketing enter-
prise in the Z specification language is presented and a number of proof
obligations that result from operations on the state is stated. The feasibil-
ity of using certain reasoning heuristics for discharging proof obligations
emerging from the specification is investigated and we show how two
important proof obligations arising from the specification of a real-life
enterprise may successfully be discharged using a suite of well-chosen
heuristics.

1 Introduction

Among the benefits to be gained by using a formal specification language like Z
[1] is that the specifier can prove things about the specification. The process of
constructing proofs can aid in the understanding of the system and may reveal
hidden assumptions [2].

The huge cost and inconvenience of detecting and correcting errors only af-
ter the system has been released [3], justifies the effort to identify and correct
errors at an early stage (e.g. specification phase). However, the readiness with
which the information technology industry would accept such a methodology is
likely to depend on the availability of environments that ease the burden on the
specifier by automating much of the specifier’s tasks. The more sophisticated
the environment (and thus the greater its contribution to the partnership), the
more natural becomes the inclusion of a reasoning algorithm as one component.

Reasoning about the properties of an enterprise information system at the
specification level may, however, be a non-trivial task owing to the size of the
system or the complexity of the structures that make up such a system. Ac-
counts of costly, yet failed proof attempts exist. Mokkedem et al. [4] report that
an attempt to generate a proof monolithically in one step from a stated property
to a protocol was prohibitively difficult. The one step proof was abandoned, un-
finished, after 18 months of effort which led to the specifiers eventually adopting
an incremental proof strategy.

Since Z is based on first-order logic and a strongly typed fragment of Zermelo-
Fraenkel (ZF) set theory, it makes sense to investigate to what extent a set of
heuristics [5] for proving theorems in set theory may be used to reason about
the Z specification of a multi-level marketing enterprise.



1.1 Why Reasoning Heuristics?

Traditionally set-theoretic proofs pose demanding challenges to automated rea-
soning programs [6, 7], since unlike number theory or group theory or applica-
tions to real systems such as power stations, the denotations of terms in the
context of set theory are strongly hierarchical: one object (perhaps at a very
fine level of granularity) is a member of another (coarser) object, which in turn
may be a member of a higher-level (even coarser) object, and so on. The pos-
sibility of moving between levels is a provocation to much irrelevant activity;
intelligence would be realised by heuristics that limit the movement up or down
to productive changes of granularity [8].

It is furthermore an open problem as to which inference rule would build set
theory into a theorem prover the same way as paramodulation builds in equality-
oriented reasoning [9]. Paramodulation is a rule applied to a pair of clauses and
requiring that at least one of the two contains a positive equality literal, and
yielding a clause in which an equality substitution corresponding to the equality
literal has occurred. The object of an application of paramodulation is, therefore,
to cause an equality substitution to take place from one clause into another.

Devising a set of heuristics appears to be the best strategy for reasoning about
set-theoretic constructs [8]. Such a set of heuristics was developed by one of the
authors [5] and in this paper we investigate to what extent these heuristics are
useful for reasoning about the properties of a franchise or a multi-level marketing
enterprise [10].

1.2 Structure of this Paper

Section 2 presents a brief overview of OTTER [11], the automated reasoner used
in this work. A number of heuristics for reasoning about set-theoretic structures
is presented in Sect. 3. A brief Z specification of a generic multi-level marketing
enterprise [10] is given in Sect. 4. Some applications of the said heuristics are
illustrated in Sect. 5 where two proof obligations (POs) are stated and discharged
using an automated reasoner. A summary and some ideas about future work
conclude this paper.

2 The OTTER Theorem Prover

OTTER (Organized Techniques for Theorem Proving and Effective Research)
[11] is a resolution-based theorem-proving program for first-order logic with
equality and includes the inference rules binary resolution, hyperresolution (both
positive and negative versions), UR-resolution and binary paramodulation. OT-
TER was written and is distributed by William McCune at the Argonne National
Laboratory in Illinois.

1 At the time of writing the latest version of OTTER is available at: http://www-
unix.mcs.anl.gov/AR /otter.



OTTER can convert first-order formulae into sets of clauses, which constitute
the input to the resolution algorithm. Of course, OTTER cannot accept formulae
in the highly evolved notation of set theory so the user has to rewrite set-theoretic
formulae in terms of a weaker first-order language having the relevant relations
and functions as predicate symbols and function symbols in its alphabet. Some
other capabilities of OTTER are factoring and weighting. The purpose of a
weight clause is give a weight to variables or terms and if such weight is chosen
sufficiently high then the generation of too many irrelevant paramodulants is
effectively blocked. Note, however, that the use of a weight leads to an incomplete
search strategy.

An OTTER program is divided into several sections, each such section made
up of first-order formulae or clauses (an exception is the section containing the
optional demodulators which must be in clausal form already). The most impor-
tant sections are the usable list and the set-of-support (sos) list. It is customary
to place the negation of the theorem to be proven in the sos and the rest of the
information in the usable list.

Next we introduce a number of heuristics for reasoning about set theory.
These heuristics were developed to address the problems discussed in Sect. 1.1.

3 Set-Theoretic Reasoning Heuristics

The heuristics presented in this section are detailed in [5, 12] and have been
developed empirically through observing the behaviour of, as well as studying
the format of the clauses generated by the reasoner during a proof attempt. In
total 14 heuristics were developed and we briefly discuss some prominent ones
below:

1. Weight strategy: Use the setting weight(x,n), for n € {3,4,5}, whenever
the sos consists of the negation of an equality literal. Equality reasoning
with paramodulation generally results in the generation of many irrelevant
clauses. Assigning a weight of n to all variables avoids the generation of too
many irrelevant paramodulants. Empirically we found a weight of 3, 4 or 5
to be sufficient.

2. Ezxtensionality: Use the principle of extensionality to replace an equality in
the sos with the condition under which two sets are equal, i.e. whenever their
elements are the same.

3. Nested functors: Avoid, if possible, the use of nested functor symbols in
definitions. Terms built up with the aid of function symbols (called functors)
are more complex, potentially leading to difficulties with unification of terms,
especially when these functors are nested inside other structures.

4. Divide and Conguer: Perform two separate subset proofs whenever the prob-
lem at hand requires one to prove the equality of two sets. An equality in
the sos implies (via Extensionality) an ‘if and only if’. Hence a specifier may
opt for two proofs, one for the only-if part and another for the if part.

5. Multivariate functors: Make terms in sets as simple as possible — either not
involving functors at all, or else involving functors with the minimum number



10.

4

of argument positions taken up by variables. The more variables occur as
arguments to a functor, the greater the likelihood of thrashing caused by the
unification of these variables with other terms.

Intermediate structures: Avoid complex functor expressions by using an in-
direct definition for an internal structure whenever this appears less likely to
produce complex functor expressions than the direct definition. In practice
we simply give a name to a complex structure that is nested inside another
structure and then define the inner structure externally on its own, instead
of unfolding its definition directly inside the enclosing structure.

Element structure: Define the elements of relations and functions directly in
terms of ordered pairs or ordered n-tuples whenever the tuples need to be
opened to find a proof. An ordered n-tuple is an example of a functor and
projecting out the coordinates of the tuple often avoids the various functor
problems listed above.

Search-guiding: Generate and use half definitions, via the technique of reso-
lution by inspection, for biconditional formulae in the usable list whenever
the sos consists of a conditional formula or a single literal. A half definition
is an implication (e.g. only-if) as opposed to an if and only if definition.
Through inspection it is often possible to trace the initial steps a reasoner
would perform starting with the conditional formula in the sos. Hence it is
possible to predict which half of some definitions in the usable list would
probably be needed and which ‘other halves’ are redundant.

Inference rule selection: Use set(neg_hyper_res) in the place of posi-
tive hyperresolution whenever the combined use of set(hyper_res) and
set (ur_res) rapidly makes the sos empty. If no rapid proof results, try
binary resolution. Both forms of hyperresolution are capable of generating
homogeneous clauses only (i.e. just positive or just negative but not mixed).
Although many researches warn against the use of binary resolution [7] we
found such rule to be occasionally useful (see Sect. 5 below).

Resonance: Attempt to give corresponding terms in formulae a syntactically
similar structure to aid the resolution process [13]. Not only does this ap-
ply to terms just in the usable list, but also to a term in the sos and a
corresponding term in the usable list.

A Multi-level Marketing Enterprise

A multi-level marketing (MLM) enterprise [10] markets consumable products
through people as follows: A new distributor registers with the enterprise either
as a direct associate of the company, or under an existing distributor called an
upline. Both the upline (also called the sponsor) and the new distributor (now
called a downline) then go on to each sponsor more new distributors, and so on.
In this way a network of distributors of the products of the company is built.
Hence, a MLM structure can be modelled by forests and trees [14].

Distributors buy products from the company and every product carries a

point value (pv) as well as a business value (bv). The business value is directly
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Fig. 1. An example network

related to the price of the product. Both the points and the business values are
accumulated per distributor throughout a calendar month. At the end of the
month the total business value in the network for each distributor is calculated,
and the distributor is paid (in the appropriate currency) a certain percentage
(determined by the pv) of the total business value for his or her group. This is
called a bonus.

A small MLM network is shown in Fig. 1. Distributors A1, A2 and A3 asso-
ciated with the company directly are called the roots of the forest (or network
in MLM terms).

The state of our MLM enterprise is (\ represents set-theoretic difference):

_ MLM
known : PID
NRoots : PID

NUplines : ID < ID
NDist : ID + Name x Address x PV x BV x Bonus

known = dom NDist

dom NUplines Uran NUplines C known
NRoots = known \ ran NUplines
Inj(NUplines)

The set known contains the identity codes of all distributors in the system.
NRoots represents all root distributors. The relation NUplines represents the
network of distributors while the function NDist represents a mapping from a
unique identity code to the particulars for that distributor. NDist is not neces-
sarily injective since two (or more) distributors may have the same particulars
(i.e. name, address, etc.). Every distributor has at most one upline, captured by
the following general definition of injectivity:

(VR)(Inj(R) < (Vi) (Vi) (VE)(((5, k) € RA (G, k) € R) — (i =3))) (1)



The following operation registers a new distributor p! below an existing one, ¢7:

— Register_with_upline
AMLM
pl,q? : ID
name? : Name; addr? : Address

p! & known A q? € known

known' = known U {p'}

NUplines" = NUplines U {q? — p!}

NDist" = NDist U {p! — (name?, addr?,0,0.0,0.0)}

A new identity code p! is generated by the system and the new distributor is
linked to ¢? in NUplines'. Initial product information pertaining to p! is reflected
in the personal pv being 0 and both the business value and potential bonus equal
to the real value 0.0.

An order placed by a distributor is given by:

— Order
AMLM
id? : ID; pv?: PV; bu? : BV

id? € known
(3pv:PV; bv:BV e
pv = third(NDist(id?)) + pv? A
bv = fourth(NDist(id?)) + bv? A
NDist' = NDist & {id? —
(first(NDist(id?)), second(NDist(id?)),
pu, bu, fifth(NDist(id?)))})

The functions first, second, etc. project out an element at the appropriate posi-
tion in the tuple. NDist' is obtained from NDist by replacing the tuple with first
coordinate id? as specified above. Many additional operations may be defined
on the state but are beyond the scope of this paper. The interested reader is
referred to [15].

Next we show how some of the heuristics introduced in Sect. 3 may be used
to successfully discharge two proof obligations that arise from the MLM speci-
fication where otherwise proofs are not easily arrived at.

5 Reasoning about the Specification

Showing NRoots = known’ \ ran NUplines’. Normally in Z a correct oper-
ation is assumed to preserve the invariant. Nevertheless, a specifier may want
to verify the following as a postcondition of schema Register_with_upline (Note
that NRoots' = NRoots):

NRoots = known' \ ran NUplines' (2)



In effect the above predicate claims that the set of root elements is still equal
to the new set of all distributors (known') minus the new set of all downline
distributors (ran NUplines'). If we define NewRoots = known' \ ran NUplines'
and pose the negation of the following equality in the sos

NRoots = NewRoots (3)

then OTTER finds no proof in 20 minutes using a weight of 3, 4 or 5 and either
positive or negative hyperresolution. Since neither form of hyperresolution is
able to find a proof, we apply our inference rule selection heuristic and resort to
binary resolution but still using our weight template. Now the reasoner finds a
proof after just 0.66 seconds.

Why does the reasoner fail to find a proof for (3) using hyperresolution? The
sos format (3) requires the axiom of Extensionality [16]

(VA B)[(Va)(z € A+ o € B) - (A = B)] (4)

to ‘open’ the equality in terms of elementhood to (loosely speaking) arrive at
the following form of (3):

(Vz)(xz € NRoots +» © € NewRoots) (5)
The negation of (5) clausifies into:

$cl1 € NRoots V $cl1 € NewRoots (6)
$cl ¢ NRoots V $cl ¢ NewRoots (7)

Formula (2) is unfolded in first-order notation as
(Vz)(z € NRoots <> = € known' A z ¢ ran(NUplines'"))

and it clausifies into

x ¢ NRoots V z € known' (8)
z ¢ NRoots V x ¢ ran(NUplines') 9)
x € NRoots V x ¢ known' V x € ran(NUplines') (10)

Note that positive hyperresolvents can be generated by resolving the sos clause
(6) with (8), but the sos clause (7) is not capable of generating a positive hyper-
resolvent with any of the clauses (8) - (10). The result is that a proof attempt
using positive hyperresolution cannot start off correctly. A similar problem oc-
curs with negative hyperresolution. Binary resolution creates no such problem,
since binary resolvents may be mixed.

Still with this proof attempt, suppose a specifier is initially, due to the weight
clause, concerned about an incomplete search for a proof. If we omit the weight
template in the above binary resolution proof then the reasoner again finds no
proof in 20 minutes (as opposed to a proof in 0.66 seconds). This forms the basis
for a further heuristic that may be applied to our last failed proof attempt.



In the proof of (3) we unfolded the predicate NUplines' = NUplinesU {q? —
p!} in schema Register_with_upline into an ‘OTTER-like’ notation as

(all z)(El(xz, NUplines') <> El(z, NUplines) | El(z, Sin(ORD(q?,p!)))) (11)
using the following first-order definition for a singleton:
(Vz)(Yy)(z € Sin(y) &z =y) (12)

Together with definition (11), we also needed the following fact about ordered
pairs from [16]:

Vu)Vo)Yw)(Vz)(ORD(u,v) = ORD(w,z) + ((u = w) A (v = z))) (13)

Upon studying the clauses generated by the search for a proof, we note that (12)
and (13) interact to generate literals of the form EI(ORD(z,y), Sin(ORD(u, v)))
where z, y, u and v are variables. This literal contains nested functors, a practice
discouraged by our heuristic #3, since it, in the absence of a weight template,
leads to a large number of unnecessary unifications.

If we, therefore, rewrite (11) as

(all z)(El(x, NUplines') <> El(x, NUplines) | (x = ORD(q?,p!))) (14)

and still omit the weight template, then OTTER again finds a proof for (3), but
in 8.70 seconds. According to our element structure heuristic #7 we can further
rewrite (14) as

(Vy)(V2)
(ORD(y, z) € NUplines' ++ (ORD(y, z) € NUplines V (y = q? A z = p!))) (15)

which cuts the execution time of 3.70 seconds down to just 0.06 seconds.
Cardinality proof. After the execution of operation Register_with_upline we

expect the following to hold regarding the cardinality of the set known' =
known U {p'}:

#known' = #known + 1 (16)
We use the following two definitions of cardinality (Card(A, n) denotes #A = n)

(VA)(Card(A,0) < A =2) (17)
(VA)(Yn)(Card(A,n+ 1) & (z)(x € AN Card(A — {z},n))) (18)

Suppose we start with the precondition Card(known,n) and pose the following
question in the sos:

—Card(known',n + 1) (19)



OTTER finds no proof for (19) in 30 minutes and closer investigation reveals
that the term Card(A — {z}, n) above contains nested functors (i.e. a singleton
definition inside a set difference inside the functor Card), a practice discouraged
by our nested functor heuristic. As a first step we unfold definition (18) as:

(VA)(VYn)(Card(A,n+1) &
(3B)3z)(x € AN Card(B,n) AN(Vy)(ye B>y ANy ¢ {z}))) (20)

With this unfolding OTTER still finds no proof, but since such unfolding is
in turn against the recommendation put forward by the intermediate structure
heuristic we replace the definition of set B in (20) with

(Vy)(y € B «» y € DIFF(A,{z})) (21)
where z is still existentially quantified as in (20) and DIFF is defined by:
(Vz)(xz € DIFF (known',{p}) <> z € known' A z ¢ {p}) (22)

With these definitions OTTER, finds a short proof for (19) in just 0.21 seconds.
Definition (22) is in line with our multivariate functor heuristic which advocates
cutting down on the number of variables as arguments of functors. This is mainly
the reason why the nested functor in definition (21) turns out to be harmless.
For example, if we rewrite (22) above as

(VA)(Vp)(Vz)(x € DIFF(A,{p}) & z € ANz ¢{p}) (23)

then OTTER again finds no proof in 20 minutes. Replacing one of the variables
(say A) in (23) above with a constant again helps OTTER to find a proof in
8.59 seconds.

We may also fit our search-guiding heuristic onto the last definition of Card
above. The technique of resolution by inspection reveals that the sos question
(19) needs just the ‘if-direction’ of (20). If we make such adjustments we can
even find a proof using (23), but in 1 minute 27 seconds.

6 Summary and Future Work

This paper illustrated how some set-theoretic reasoning heuristics previously
developed may be used to discharge two proof obligations that arise from the
specification of a multi-level marketing enterprise. We showed that the same PO
may be discharged in more than one way. This is significant, since if a particular
heuristic fails to deliver then another one may be applied instead. The full suite
of heuristics defined in Sect. 3 have been shown to be useful in reasoning about
the properties of an extended version of the Information Enterprise described in
Sect. 4 of this paper. Details appear in [12].

A number of problem areas, however, remain: Our enterprise model is inher-
ently recursive, resulting in the reasoner experiencing difficulty when reasoning



about recursive structures. For example, using our traditional definitions of car-
dinality (17) and (18) allows the reasoner to easily prove that the cardinality of
the empty set is 0, or the cardinality of a singleton equals 1. If we, however, pick
a set with two elements, say X = {2,3}, then OTTER fails to find a proof of the
property #X = 2 in 20 minutes using any of our heuristics listed above. More
work will have to be undertaken to successfully guide the reasoner through the
minefield of recursion.

Further empirical work is also called for to scale up the proofs reported on in
this paper to industrial sized proof attempts and we anticipate that additional
heuristics would have to be developed to address the challenges that may unfold
from such experiments.
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