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Abstract

The Established Strategy for drawing up a Z specification document focuses on a more abstract activity of specifica-
tion, namely, how to combine schemas but is largely silent about how to construct a schema. Schema construction
may benefit from the application of certain heuristics for establishing its content. While formal specification can
be seen as a subsection of software engineering and design heuristics in this area are firmly in place, corresponding
principles and strategies for constructing a formal specification have been relatively rare. In this paper we examine
a number of formal specifications written in Z as well as some design principles from software engineering and
areas of general design. On the strength of these, we propose a preliminary set of heuristics for the construction
of a formal specification and show how these may be embedded in an enhanced strategy for specification work. We
illustrate how one such enhancement, namely the use of primitives, allows a specifier to discharge an important
proof obligation arising from a formal specification, where otherwise a proof is not easily arrived at.
Keywords: Automated reasoning, Established Strategy, formal specification, heuristics, OTTER, primitives, set
theory, Z
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1 Introduction

There exists a well-known pseudo algorithm, called
the Established Strategy (ES) [2, 21] for drawing up a
Z [28] specification. In essence this strategy prescribes
the order in which the various parts that make up a
specification document are to be developed and how
schemas are to be combined to produce robust oper-
ations. This strategy may be looked upon as a set
of guidelines or design principles for giving a common
structure to all Z specifications. Design principles are
‘generalizable abstractions intended to orient design-
ers towards thinking about different aspects of their
design’ [22, p. 20]. Such principles tend to be written
in a prescriptive manner, suggesting to designers what
to support and what to avoid. When design principles
are used in practice they are commonly referred to as
heuristics [22], emphasising that something has to be
done with the guidelines when they are applied to a
given problem. They need to be interpreted in the
design context, drawing on past experience.

General design heuristics are fairly common in the
field of software engineering: Measures for high-level
design are formulated in [3] while design guidelines
from the early work on structured design are given by,
for example, [39] and [11]. These guidelines were later
carried forward by advocates of the object-oriented
approach [38], [12] and [4].

The field of human-computer interaction (HCI)

also advocates a wide variety of usability principles
and heuristics for the design of user interfaces, for ex-
ample [13], [6], [18] and [22]. Principles for industrial
and/or graphic design and the design of artefacts for
human use, are presented in [19] and [26].

Formal specification techniques have been around
for a substantial period of time, and have been used
in various domains, ranging from small scale require-
ments specifications up to full scale implementations
[5] often derived through a process of formal refine-
ment. Although details on the syntax and semantics of
formal specification languages and systems are fairly
well established [27], design heuristics for drawing up
formal specifications have been relatively sparse.

A preliminary set of heuristics to advance the util-
ity of a specification was reported on in [30] and the
aim of the current paper is to show how these may be
embedded in the definition of a new strategy for Z. By
enhancing the current strategy we will be taking one
further step in the process of presenting a specification
in an intelligible way and giving a common structure
to specification documents. A secondary contribution
of this paper is to establish some relationships among
the various heuristics.

The layout of the paper is as follows: In Sec-
tion 2 we introduce the current strategy for presenting
a specification document and discuss the benefits to
be gained by appropriately augmenting the strategy
through the introduction of suitable heuristics. Our
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heuristics are aimed mainly at facilitating schema con-
struction and are introduced in Section 3. A new
strategy, enhanced with the heuristics defined previ-
ously is presented in section 4. In Section 5 we con-
struct a small specification according to our enhanced
strategy. The paper is concluded with an analysis and
pointers for future work.

2 Current Established Strategy

The Established Strategy for setting up a Z specifica-
tion is presented in [2] and [31] and has been distilled
mainly from work by John Wordsworth [35, 36].

The ES embodies the following sequence of steps
for constructing a specification:

• Define all global constants and basic types, and
give a natural language description of these.

• Present the abstract state space, using the con-
stants and basic types above.

• Give an initial state of the system and prove that
such a state exists.

• Introduce partial definitions of each of the system
operations, together with a short informal descrip-
tion of each.

• Calculate the precondition of each abstract oper-
ations on the state and check that the precondi-
tion is explicit in the operation’s predicate; if not,
modify the operation accordingly.

• Draw up a table showing all the partial operations
together with their inputs, outputs and precondi-
tions for correct operation.

• Define all schemas that present error conditions.

• Use the Z schema calculus to make all the partial
operations total.

• Provide any additional information to assist the
reader of the specification, e.g. give a summary of
all the robust operations at the end.

The question of why we may want to enhance the cur-
rent ES for constructing a formal specification boils
down to asking what the specification is to be used
for. An advantage of using a formal notation during
the specification phase is that the specifier can reason
about the specification formally. Reasoning about the
properties of a specification is an important activity
early in the process of constructing a reliable program
[34]. For example, we can show that certain unde-
sirable properties are absent from the specification.
A formal specification may also be used as the start-
ing point of a subsequent refinement phase [16], and
a well-designed specification could possibly be more
easily refined to code than an ad hoc specification.

A further use of a formal specification is for edu-
cating users about the proposed system, creating the
need for the specification to be readable. To this end
Gravell [8] proposes a number of ‘readability’ princi-
ples for constructing a formal specification.

The above ES goes some way towards presenting
a specification document in an intelligible way but is
largely silent about schema content, neither does it
propose any standard for specifying the interaction
among the various operations making up a specifica-
tion document. Established software design principles
such as cohesion [38, 1] are also not officially part of
this strategy, neither is the use of certain accepted HCI
design principles, for example, make things visible to
the user [19]. The results of an analysis of a number
of specifications in the literature support these claims
and serve as motivation for improving a specification
document as follows:

1. Incorporate some established software engineer-
ing design principles normally present in the final
product already at the specification phase.

2. Apply a number of HCI and general design princi-
ples in the construction of a formal specification.

3. Facilitate the initial stages of a subsequent refine-
ment process.

4. Structure the specification so as to facilitate the
process of automatic proof.

In the next section we examine a number of specifi-
cations in the literature and introduce a preliminary
set of heuristics to address (amongst others) the above
four points during the construction of a specification.
The core of these design principles were developed in
[30] but no indication was given as to how these may
enhance the ES for drawing up a specification.

3 Design Guidelines

3.1 Format of a Precondition

Our first design principle aims to facilitate a correct
refinement from a non-deterministic specification and
our vehicle is that of a rudimentary UNIX-like filing
system [17, p. 64]. We have the basic types

[FID , CID ,SYL]

where FID denotes the set of all file identifiers, CID
represents all channel identifiers and SYL is the set of
all syllables used to make up file names (see below).

The expanded abstract state space is given by:
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FS
fstore : FID 7→ FILE
cstore : CID 7→ CHAN
nstore : NAME 7→ FID
dnames : PNAME ; usedfids : PFID

Front(| dnames ∪ dom nstore |) ⊆ dnames
usedfids =

ran nstore ∪ {chan : ran cstore • chan.fid}
usedfids ⊆ dom fstore

where

• FILE = seq BYTE , (i.e. a sequence of bytes) for
BYTE = 0 . . 255,

• NAME = seq SYL (file names are sequences of
syllables) and

• CHAN is given by

CHAN
fid : FID
posn : N

A detailed discussion of FS presented by [17, pp. 45 -
78] is beyond the scope of this paper. The following
operation opens a file [17, p. 74]:

open
∆FS
name? : NAME ; cid ! : CID
fid ,fid ′ : FID
report ! : REPORT

(name? ∈ domnstore ∧ cid ! /∈ dom cstore ∧
fid = fid ′ = nstore(name?) ∧
(∃CHAN ′ • posn ′ = 0 ∧ fid ′ = fid ∧

cstore ′ = cstore ⊕ {cid ! 7→ θCHAN ′}) ∧
nstore ′ = nstore ∧ report ! = OK )

∨
(name? /∈ domnstore ∧ θFS ′ = θFS ∧

report ! = NoSuchName)

∨
(dom cstore = CID ∧ θFS ′ = θFS ∧

report ! = NoFreeCids)

The precondition cid ! /∈ dom cstore is the negation of
dom cstore = CID and vice versa, in the sense that
the system attempts to obtain a new unused channel
identifier (i.e. cid !), and if successful, the condition
cid ! /∈ dom cstore holds. Otherwise there are no free
identifiers left and dom cstore = CID prevails.

The partial preconditions of operation open are:

(name? ∈ domnstore ∧ cid ! /∈ dom cstore) (1)
(name? /∈ domnstore) (2)
(dom cstore = CID) (3)

The total precondition of open, namely (1) ∨ (2) ∨ (3)
is a tautology but not a partition since two of these
conditions overlap. Often in a specification this non-
determinism is deliberate because it allows imple-
menters flexibility. However, if preconditions overlap
in this way, then a sequence of automatic refinement
steps could generate an incorrect structure:

if precondition1 then S1
elseif precondition2 then S2
elseif precondition3 then S3
endif (4)

The semantics of (4) requires the preconditions to be
pairwise disjoint, leading to our first design heuristic:

Heuristic #1 : Ensure that the precondition
to a total operation is a partition whenever
non-determinism is not required.

3.2 Communication with the User

There is a further aspect to the above discussion as
far as feedback to the user is concerned: Consider
the scenario where there is no free channel available
(i.e. CID = dom cstore) and the input file name,
name?, is incorrect (i.e. name? /∈ dom nstore). Sup-
pose further that owing to the above non-determinism
the message ‘NoFreeCids’ is displayed, informing the
user to wait for a channel to become available before
proceeding. However, once a channel is released by
another process, the user can try to reconnect again,
just to be faced with the message ‘NoSuchName’. One
could argue that this message should have been dis-
played together with the message about the channel,
so that the user could have corrected the problem in
the meantime, instead of simply having to wait for a
free channel. This leads to our second design heuristic:

Heuristic #2 : Maximise communication with
the user of the system.

The above heuristic agrees with an important HCI
principle proposed by Norman [19, p. 140]:

‘Narrow the gulfs of execution and evaluation. Make
things visible, both for execution and evaluation’.

A further motivation for Norman’s principle above
is found in a simplified version of a library system
often used in specification work. Starting with the
basic types NAME , denoting the names of all library
users and BOOK , representing all library books we
could have the following state space:

Simple Library
borrowers : NAME 7→ BOOK
current : PNAME

current = dom borrowers
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The component current may be redundant in the
given state, since we could use dom borrowers instead,
but it serves an important purpose in the sense that
it identifies all library users who at any point in time
have one or more books on their name. Hence, it
‘makes things visible’ in line with the current heuris-
tic.

Heuristic #2 may also be viewed as a special case
of heuristic #1 since its application boils down to
partitioning a comprehensive precondition into atomic
parts for maximal user feedback. For schema open we
have:

(name? ∈ domnstore ∧ cid ! /∈ dom cstore)
Correct operation

(name? ∈ domnstore ∧ dom cstore = CID)
File OK but no free channel

(name? /∈ domnstore ∧ dom cstore = CID)
File error and no free channel

(name? /∈ domnstore ∧ cid ! /∈ dom cstore)
File error but channel available

The reader may question the utility of the 3rd and
4th messages above. In the case of a file error and
also no free channel, a user may decide that the sys-
tem is too busy to continue and, therefore, postpose
further working till a later stage. Converseley, with an
available channel the user may want to utilise a quiet
system optimally.

Next we propose a preliminary standard format
for total operations in Z.

3.3 Signature of an Operation

Operations in Z often accept as domain elements the
state and external input and deliver as range elements
the state and additional output (e.g. open above).
In the light of heuristic #2 we notationally separate
the message from other output as formulated in the
following design heuristic for a user-level operation,
i.e., an operation which communicates with the user.

Heuristic #3 : Define every user-level opera-
tion, say f , based on the general format:

f : Input × State → State ×Output ×Message (5)

Definition (5) is stated in a preliminary form and it
will be refined through further heuristics below.

This design principle may seem somewhat obvi-
ous, nevertheless it has the benefit of giving a common
structure to all Z operations and this in turn allows
a specifier to recognise a familiar structure when in-
specting a schema.

Note how this heuristic also supports heuristic #2
in the sense that a familiar structure helps to ‘make
things visible’.

3.4 Undefined Output

Our next design principle is concerned with output
generated in an error case (i.e. when the precondition
to a partial operation is not satisfied). Consider the
following definition of a simple data base [34] where
Key and Data are basic types.

File
contents : Key 7→ Data

A robust operation to read a file is:

Read
contents, contents ′ : Key 7→ Data
k? : Key
d ! : Data
r ! : Message

( k? ∈ dom contents ∧
d ! = contents k? ∧
contents ′ = contents ∧
r ! = okay )
∨

( k? /∈ dom contents ∧
contents ′ = contents ∧
r ! = key not in use )

Note that d ! is unspecified under the error condition
k? /∈ dom contents. Woodcock and Davies [34, p. 222]
claim that an output variable ‘can take any value’ if
the precondition is not satisfied. However, a possible
interpretation of this claim is that the value d ! could
be given a value contents k , for any k ∈ dom contents
which is undesirable.

Instead, we could specify that the value of an out-
put variable like d ! above is undefined in the error case.
This can be achieved by insisting that all sets from
which output may be generated be ‘lifted’ to make
provision for undefined values, similar to techniques
used in programming language semantics [24]. If we
denote an undefined value by ⊥, then we extend the
set Data to Data⊥ = Data ∪ {⊥}.
This observation leads to:

Heuristic #4: Ensure that all sets from which
output may be generated are extended to al-
low for undefined values.

Heuristic #4 supports heuristic #2 (maximise user
communication) since it advocates the value of an out-
put component to be explicitly undefined in the error
case instead of just being silent about its content.

The set Message, representing the set of all mes-
sages, is of course an exception to heuristic #4, since
we simply use an appropriate string to describe an er-
ror condition. Therefore, we do not make the message
part of the general Output parameter in (5) above,
since a specifier may prefer to write this definition as:

f : Input × State → State ×Output⊥ ×Message (6)
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In line with the current heuristic, we make the un-
defined nature of d ! explicit in the last disjunct in
operation Read by adding d ! = ⊥. We also replace
the declaration d ! : Data with d ! : Data⊥.

3.5 Cohesion

Our next heuristic stems from the well-known software
engineering principle of cohesion. Bahrami [1] defines
cohesion as a measure of the ‘single-purposeness’ of an
object. High cohesion is desirable and low cohesion
is considered bad design, since low cohesion implies
the grouping together of unrelated activities. Your-
don [38] states that a module has good cohesion if its
purpose can be expressed by ‘a simple sentence con-
taining a single verb and a single object’.

The highest and most desirable kind of cohesion is
functional cohesion [20], which is the kind of cohesion
described by [38] and which we advocate in the design
of a formal specification. The natural language def-
inition given by Yourdon above is unfortunately too
imprecise and we refine the idea below.

For the purpose of achieving high functional co-
hesion in a formal specification, we propose breaking
up every operation in the specification into a sequence
of primitive operations. Scheurer [23, p. v] puts for-
ward the following thesis in his preface: ‘Set theory,
based on logic, is a universal language in which all
problems may be formulated and solved.’ (Naturally
any such problem must be specifiable in some notation
and must have a solution that can be realised.) Since
Z is based on first-order logic and a strongly typed
fragment of Zermelo-Fraenkel (ZF) set theory [7], we
propose to define every primitive as manipulating just
one component of the abstract state space of our sys-
tem, using an operation or definition from standard
set theory.

The above ideas on cohesion crystallise into the fol-
lowing heuristic:

Heuristic #5: Maintain high cohesion in a
formal specification by defining every opera-
tion on the state as a sequence of primitives
such that every primitive manipulates at most
one state component using a standard set-
theoretic operation or definition.

The use of primitives in this context is illustrated in
Section 5 below. Heuristic #5 has an important ben-
efit when reasoning about the properties of a spec-
ification: In Section 5.8 we show how this heuristic
facilitates an important proof obligation that arises
from the interaction between one primitive and an-
other primitive which reverses the effect of the first
primitive.

3.6 Explicit Preconditions and Rela-
tionships

In this section we return to the golden thread running
through [19], namely to ‘make things visible’ and to
show at every step which actions are applicable or
allowable. For example, on page 183 in [19] Norman
writes:

‘In each state of the system, the user must
readily see and be able to do the allowable
actions. The visibility acts as a suggestion,
reminding the user of possibilities and inviting
the exploration of new ideas and methods.’

This idea is also touched on in [17] through an analysis
of the expanded version of an operation to remove a
file in UNIX:

destroyFS
fstore, fstore ′ : FID 7→ FILE
cstore, cstore ′ : CID 7→ CHAN
nstore,nstore ′ : NAME 7→ FID
usedfids, usedfids ′ : PFID
fid? : FID

fid? ∈ dom fstore ∧
usedfids ⊆ dom fstore ∧ usedfids ′ ⊆ dom fstore ′ ∧
usedfids =

rannstore ∪ {chan.fid | chan ∈ ran cstore} ∧
usedfids ′ =

rannstore ′ ∪ {chan.fid | chan ∈ ran cstore ′} ∧
fstore ′ = {fid?} −C fstore ∧ fid ′ = fid ∧
posn ′ = posn ∧ cstore ′ = cstore ∧
nstore ′ = nstore

Recall that the state, namely, FS was defined in Sec-
tion 3.1. (The complete definition of destroyFS [17]
also mentions directory names, but these definitions
are beyond the scope of our discussion.) The precon-
dition of destroyFS is given by

fid? ∈ dom fstore ∧ usedfids ⊆ dom fstore ∧
usedfids = rannstore ∪ {chan.fid | chan ∈ ran cstore}

where fid? represents the identifier of the file that is
to be deleted and usedfids the set of file identifiers
currently in use (e.g. open files).

A question arises from the definition of destroyFS :
Can a file be deleted while in use? The answer is
no, as we show next:

1. usedfids ′ ⊆ dom fstore ′

[postcondition of destroyFS ]
2. usedfids ′ = usedfids

[nstore ′ = nstore ∧ cstore ′ = cstore]
3. usedfids ⊆ dom fstore ′ [From 1. and 2.]
4. fid? /∈ dom fstore ′ [fstore ′ = {fid?} −C fstore]
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5. fid? /∈ usedfids [From 3. and 4.]

Hence, a file cannot be destroyed while in use. There-
fore, the condition fid? /∈ usedfids is actually a further
precondition of the correct operation of destroyFS .
One could argue that the absence of this condition
from destroyFS violates the above visibility principles
advocated by Norman, that is, to explicitly show all
the conditions which need to hold for an action to
be applicable. In fact, Morgan and Sufrin [17] call
destroyFS a ‘dishonest’ definition.

This leads us to a preliminary version of our next de-
sign heuristic which is in further support of heuristic
#2:

Heuristic #6.0: Ensure that all operations are
honest by listing all preconditions explicitly.

For another kind of ‘dishonesty’ in specification work
we return to a classic specification of a telephone ex-
change by Morgan [15]:

Specify a telephone system whereby subscribers may
engage in telephonic conferences. No phone may be
used in more than one discussion group at a time.
A subscriber may, however, engage in any number of
these discussion groups. Each group is uniquely iden-
tified by a docket, assigned by the system when the first
request for the group is initiated.

A conversation is a set of subscribers, that is, those
who are participating in the conversation:

CONVERSATION
PSUBSCRIBER

A request for a conversation has two components:

REQUEST
subscriber : SUBSCRIBER
conversation : CONVERSATION

Component subscriber represents who made the re-
quest and conversation is what was requested.

A connection provided by the telephone system is de-
fined by:

CONNECTION
phones : PPHONE
subscribers : PSUBSCRIBER
using : SUBSCRIBER 7→ PHONE

dom using = subscribers
ran using = phones

The phones component represents the set of phones
that are connected; subscribers represents the conver-
sation which the connected phones collectively sup-
port and using records for each subscriber in a con-
versation which phone the subscriber is using.

The state of this system is given by

TS
sites : SUBSCRIBER ↔ PHONE
requests : DOCKET 7→ REQUEST
connections : DOCKET 7→ CONNECTION

disjoint (ran connections).phones ∧
(∀ d)(∀ req)(∀ con)

((d , req) ∈ requests ∧ (d , con) ∈ connections
−→ con.subscribers ⊆ req .conversation) ∧⋃

((ran connections).using) ⊆ sites

where SUBSCRIBER, PHONE and DOCKET are
basic types. Consider next an expanded version of
operation plug in, whereby a subscriber makes him-
self or herself available at a telephone by plugging in
to the telephone:

plug in
sites, sites ′ : SUBSCRIBER ↔ PHONE
requests, requests ′ : DOCKET 7→ REQUEST
connections : DOCKET 7→ CONNECTION
connections ′ : DOCKET 7→ CONNECTION
me? : SUBSCRIBER
phone? : PHONE

sites ′ = sites ∪ {me? 7→ phone?}
requests ′ = requests

Note that there is no relationship given between the
before and after state values of connections. The rea-
son is because operation plug in may possibly initiate
a new connection. To illustrate, suppose that sub-
scriber sub1 is currently plugged in to phone ph1 and
wants to talk to subscriber sub2. Subscriber sub1 at-
tempts to connect to sub2 by making a call:

call
∆TS
me? : SUBSCRIBER
request? : REQUEST
docket ! : DOCKET

request?.subscriber = me?
docket ! /∈ dom requests
sites ′ = sites
requests ′ = requests ⊕ {docket ! 7→ request?}

Schema call puts in a request on behalf of sub1 (i.e.
sub1 = me?) and if sub2 is currently plugged in to a
free phone, then the connection is initiated. If, how-
ever, subscriber sub2 is not plugged in to any free
phone, then sub1 has to wait until such time as sub2
(via operation plug in) plugs in to a free phone (say
ph2), whereafter the two subscribers are connected to
each other (i.e. the state component connections is
changed).

The above discussion leads us to a revised version of
heuristic #6.0 :
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Heuristic #6: Ensure that all operations are
honest by

1. listing all preconditions explicitly, and

2. showing the relationship between each
changed state component and its af-
ter state value, unless such relationship
is ‘easily provable’ from the specifica-
tion. (Note that the relationship be-
tween connections and connections ′ is
not easily provable since the specification
is written at a very abstract level.)

In the spirit of item 2 in heuristic #6 one may be
tempted to furthermore require an operation to list
all individual postconditions of the operation, simply
to make the operation even more honest. This will
be valuable to a user since the consequences of an op-
eration would be directly visible. However, this is in
general not very feasible since it may lead to overspec-
ification and such consequences are best left as proof
obligations to be derived and discharged by the spec-
ifier.

3.7 Undo Changes in State Compo-
nents

Consider next the well-known HCI principle of ‘undo’
[19, p. 131]:

Make it possible to reverse actions – to ‘undo’
them – or make it harder to do what cannot
be reversed.

This philosophy suggests the following principle for
specification work:

Heuristic #7: Specify an undo counterpart for
every operation that changes the state. The
idea is to reverse the effect of a state change.

One could argue that heuristic #7 is not really con-
cerned with the actual writing of a formal specifica-
tion. Nevertheless, if an undo operation is not part of
a specification document, then that operation will not
be coded into the final software.

Note however:

1. We propose an undo only if it is feasible to do so.
For example, if an incorrect value is used in spec-
ifying an after state value then we simply ‘redo’
the operation using the correct value instead of
actually ‘undoing’ the erroneous result.

2. We may have to remember some information in
order to specify an undo. For example, suppose
we delete an employee record using some key, only
to discover that it was the wrong record. For the
subsequent undo operation we still have the key
available (since it would be communicated back to

the user — see heuristic #2 above), but the par-
ticulars of the employee (e.g. name, address, etc.)
would be lost. To obviate this problem we intro-
duce a component additional to the state space,
and call it an environment. In the environment
we put all auxiliary information, e.g. the detail of
a deleted employee.

The use of an environment suggests the following re-
definition of (6):

f : Input × Env × State −→
Env × State ×Output⊥ ×Message (7)

3.8 Placing Control Statements

Z allows for the use of an if then else construct [28,
p. 64] and our next heuristic addresses the question
of where in the predicate part of a schema this con-
struct ought to be used. One of the Coad-Yourdon
object-oriented guidelines is called ‘keep methods sim-
ple’ [38], and under that heading a claim is made that
if the method involves a lot of code or contains IF-
THEN-ELSE statements or CASE statements, then
it is a strong indication that the method’s class has
been poorly factored — i.e. procedural code is being
used to make decisions that should have been made in
the inheritance hierarchy.

For specification work the above guideline translates
into limiting control statements to the top level oper-
ations (which include our user-level operations). Our
primitives therefore do not make any decisions, lead-
ing to:

Heuristic #8: Put the control statements in
a formal specification as high up in the hi-
erarchy as possible. In particular, put these
statements in the top-level operations and not
in the primitives.

3.9 Specifying a Control Module

Our last heuristic stems from an observation made of
the structure of a number of Z specifications in the
literature, as well as the golden thread of visibility
advocated in [19].

The Established Strategy for presenting a Z spec-
ification prescribes the use of a table summarising the
names of all the partial operations together with their
respective inputs, outputs and preconditions [31]. Al-
though such a summary goes a long way in showing
when operations are applicable, it does not include er-
ror conditions and it also does not entirely show how
all the total operations are linked together in, for ex-
ample, an interactive version of such a system. In
particular it does not adhere to the visibility concept,
coupled with executions and evaluations as stated in
[19, p. 140]:
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Narrow the gulfs of execution and evaluation.
Make things visible, both for execution and
evaluation. On the execution side make the
options readily available. On the evaluation
side, make the results of each action apparent.

As a first step in adhering to the above call for making
the results of an action apparent, we introduce to a
specification document a control module together with
messages to the user of the system, confirming which
user-level operation has been chosen.

This leads us to our final design heuristic:

Heuristic #9: Specify a control module which
shows when the user-level operations in a for-
mal specification are invoked.

Note how this heuristic again supports heuristic #2,
encouraging user communication. The use of a control
module is illustrated in Section 5 where we specify
a small system according to our enhanced strategy
presented next.

4 The Enhanced Strategy

In this section we show how the heuristics developed
above can be embedded to enhance the Established
Strategy for setting up a Z specification.

Algorithm 4.1 : Producing an intelligible specification.
Input : A natural language requirements definition.
Output : A Z specification adhering to the ES in Sec-
tion 2 and the heuristics of the previous section.

Method :

Step 1: Define all global constants and basic types.
Extend all types from which output is generated
to allow for undefined output. Give a natural lan-
guage description of these types.

Step 2: Present the abstract state space, using the
constants and (extended) basic types above.

Step 3: Give an initial state of the system and prove
that such a state can be realised.

Step 4: Present the environment, again using the
above constants and basic types.

Step 5: Introduce robust definitions for each of the
system operations, say f, where

f : Input × Env × State −→
Env × State ×Output⊥ ×Message

as follows:

5.1 Determine an appropriate sequence of primi-
tives for each robust operation.

5.2 Specify the operation through the primitives
and thereafter specify each primitive accordingly.

For each primitive explicitly show the condition
defining the after state value of the state or envi-
ronment component to be changed by the prim-
itive. Ensure that primitives are devoid of any
control statements.

5.3 Give a short informal description of each robust
operation.

Step 6: Determine the precondition of each robust
operation on the state and check that the precon-
dition is explicit in the operation’s predicate as
follows:

6.1 List all preconditions for invoking primitives
explicitly.

6.2 In the case that non-determinism is not a spe-
cific requirement, check that the calculated pre-
condition is a partition. If not, revisit Step 5
above and modify the operation accordingly.

6.3 Complete the operation by maximising user
communication. This is done by partitioning the
larger precondition for the generation of messages
into atomic parts.

Step 7: Specify an undo counterpart for every robust
operation that changes the state. This is done
through the use of primitives as before.

Step 8: Specify the control module which shows
when each user-level operation (which is also a
robust operation) is invoked.

Step 9: Draw up a table showing all the robust op-
erations together with their inputs, outputs, pre-
conditions for correct operation and error cases.

Step 10: Provide any additional information to as-
sist the reader of the specification, e.g. give a
summary of all the robust operations at the end.

Note how the enhanced strategy avoids the use of
two problematic schema calculus constructs, namely,
schema conjunction (∧) and disjunction (∨). These
constructs are normally used to combine partial op-
erations with success and error schemas to produce
robust operations [28]. However, schema conjunction
and disjunction are known to occasionally generate
ill-formed structures [10, 9].

In the following section we show how the new
strategy may be used to draw up a Z specification
of a familiar library system.

5 A Library System

A specification following the format of the new strat-
egy is constructed. Amongst other things we employ
steps 5 and 7 above to illustrate the use of primi-
tives and an undo operation using an environment. In
Section 5.8 we show how the use of primitives allows
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us to discharge an important proof obligation that
arises from the interaction between an operation and
its undo.

Consider a library system where users may regis-
ter, borrow books from the library, and return these
at a later date. A book is uniquely identified by an
ISBN (for simplicity we assume that our library stocks
at most one copy of a book). Other information per-
taining to a book includes the title, author, publisher
and the year published. A user is uniquely identified
by an identity code. Other relevant information in-
cludes a user name and an address.

5.1 Basic Types

A simple way to extract the basic types from the small
requirements definition above is to underline all nouns
in the definition and consider these for becoming basic
types. Care has to be taken, however, not to identify
a subset of another set, or an aggregate made up of
other basic types as additional basic types.

Our basic types are:

[ISBN ,Title, Author,Publisher, Year, ID,Name,
Address, Option⊥, Message]

The set Option⊥ is not evident from the above require-
ments but we use it in the specification of our control
module, namely, LibCntrl in Section 5.4 below. Sim-
ilarly, the set Message is a standard type used in our
specifications (see Step 6.3 of the enhanced strategy).

At this stage a natural language description of the
above types would normally be given. However, to
save space we rely on the reader’s intuition for a grasp
of these types.

5.2 State Space and Initial State

The state of the library is given by

Library
books : ISBN 7→

Title ×Author × Publisher ×Year
users : ID 7→ Name ×Address
available : P ISBN
borrowed : ISBN 7→ ID
date : ISBN 7→ Date

available ∪ dom borrowed ⊆ dom books
available ∩ dom borrowed = ∅

We assume that the library contains reference works
that are available but cannot be borrowed by a user,
hence the use of a subset (⊆) relationship instead of
equality in the first predicate above.

An initial state is defined as a library with no books,
no users and an empty date set:

InitLibrary
Library ′

books ′ = ∅ ∧ users ′ = ∅ ∧ date ′ = ∅

A proof obligation arises from the initial state:

` ∃Library ′ • InitLibrary (8)

Formula (8) claims that a state can be realised such
that it satisfies the requirements of InitLibrary . The-
orem 8 is easily discharged by the popular and widely
used first-order, resolution-based theorem prover, OT-
TER [14, 37], provided we give to the reasoner the
following ZF [7] axiom describing the existence of an
empty set:

(∃B)(∀ x ) (x /∈ B) (9)

5.3 Definition of the Environment

A user and a book is uniquely identified by an identity
code and an ISBN respectively. Therefore, we need to
remember an identity code or an ISBN in the case of
a subsequent undo operation. Since the requirements
do not specify the removal of books or users from the
system, we need not keep the detail of a deleted book
or user in the environment. Therefore, our environ-
ment is defined as:

LibEnv
id : ID
isbn : ISBN

5.4 Library Control Module

Our enhanced strategy prescribes the definition of a
control module to show when the user-level operations
are invoked. User-level operations to register a new
user (say Register), borrow a book (Borrow Book)
and return a book (Return Book) are evident from
the above natural language description. An operation
to initialise the system is normally done at system
creation only, hence we assume it is not accessible to
any user thereafter.

First, we define a control environment with a single
variable to, in the case of an undo, remember the pre-
vious operation selected.

CEnv
previous : Option⊥

Variable previous is a member of an extended type,
since initially no previous operation exists and in our
model an undo operation cannot be preceded by an-
other undo, therefore it may be undefined. Our con-
trol module is:
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LibCntrl
∆CEnv
choice? : Option⊥
mes! : Message

previous ′ = choice? ∧
mes! = if choice? = Register then

OperationRegister selected
else if choice? = Borrow then
OperationBorrow Book selected

else if choice? = Return then
OperationReturn Book selected

else if choice? = Undo then
if previous = Register then

Undoprevious Register operation
else if previous = Borrow then

Undoprevious Borrow operation
else if previous = Return then

Undoprevious Return operation
else PreviousUndo operation invalid

else Invalid selection

The hard coding of the names of the operations in the
control module is simply a matter of taste since a spec-
ifier may prefer to use a table-driven or parameterised
approach to determine the operation selected by the
user. For example, to test for a normal operation we
can specify choice? ∈ {Register, Borrow, Return} in-
stead of using 3 different predicates. Also, the use of
‘else if ’ in this way is non-standard in Z but the use
of an if P then E1 else E2 construct is [28].

Next we specify one of our user-level operations.

5.5 A User-Level Operation

Schema Borrow Book below issues a book to a user.

Borrow Book
∆Library ; ∆LibEnv
id? : ID ; isbn? : ISBN
mes! : Message

θLibEnv ′ =
if id? ∈ dom users ∧ isbn? ∈ available then

Env id(id?,Env isbn(isbn?, θLibEnv))
else θLibEnv

θLibrary ′ =
if id? ∈ dom users ∧ isbn? ∈ available then

Borrow(UnAvail(θLibEnv ′, θLibrary))
else θLibrary

mes! =
if id? ∈ dom users ∧ isbn? ∈ available then

Book isbn? borrowed by user id?
else if id? /∈ dom users ∧ isbn? ∈ available then

Invalid user id? but book isbn? available
else if id? ∈ dom users ∧ isbn? /∈ available then

Book isbn? unavailable but user id? valid
else Invalid user id? and book isbn? unavailable

Borrow Book is designed in line with steps 5 and 6 of
the enhanced strategy, since it:

• follows the layout given for a robust operation,

• presents the preconditions as partitions,

• is built up through a sequence of primitives to
specify after state values for state and environ-
ment components, and explicitly shows the condi-
tion under which the primitives are invoked,

• places the control statements in the schema and
not in the primitives,

• maximises communication with the user.

5.6 Definition of Primitives

The primitives in Borrow Book are defined using or-
dinary set theory. Env isbn places an isbn in the en-
vironment to be used in the event of an undo and
Env id performs a similar function for a user id.

Primitive Env isbn

Env isbn : ISBN × LibEnv −→ LibEnv
is given by

Env isbn(isbn?, env) = env ′, where
env ′.isbn = isbn?

Primitive Env id

Env id : ID × LibEnv −→ LibEnv
is given by

Env id(id?, env) = env ′, where
env ′.id = id?

Primitive UnAvail makes a book unavailable while
Borrow issues the book to a user:

Primitive UnAvail

UnAvail : LibEnv × Library −→ LibEnv × Library
is given by

UnAvail(env , library) = (env , library ′), where
library ′.available = library .available − {env .isbn}

Primitive Borrow

Borrow : LibEnv × Library −→ Library
is given by

Borrow(env , library) = library ′, where
library ′.borrowed =

library .borrowed ∪ {(env .isbn, env .id)}

5.7 Definition of an Undo

According to step 7 of the enhanced strategy we spec-
ify an undo counterpart for Borrow Book as follows:
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Undo Borrow Book
∆Library ; ΞLibEnv
mes! : Message

θLibrary ′ =
Undo UnAvail(Undo Borrow(θLibEnv , θLibrary))
mes! = Previous borrow operation reversed

Primitive Undo Borrow reverses the effect of Borrow :

Primitive Undo Borrow

Undo Borrow : LibEnv × Library −→
LibEnv × Library

is given by
Undo Borrow(env , library) = (env , library ′), where

library ′.borrowed = { env .isbn } −C library .borrowed

Primitive Undo UnAvail is specified in a similar way.

The ease whereby a proof obligation arising from a
specification may be discharged is often a good indi-
cation of the usefulness of the specification [32]. In
the next section we show how our use of primitives
allows an automated reasoner to obtain a short proof
of a property where a proof is otherwise not easily
obtained.

5.8 Discharging a Proof Obligation

Suppose an unregistered donor donates a new book to
the library and thereby becomes a registered user. In
[21], the following traditional schema describing this
operation is given:

Donate
∆Library ; ∆LibEnv
isbn? : ISBN ; id ! : ID⊥
title? : Title; aut? : Author ; pub? : Publisher
yr? : Year ; name? : Name; addr? : Address
mes! : Message

(id ! /∈ dom users ∧ isbn? /∈ dom books ∧
isbn = isbn? ∧ id = id ! ∧
books ′ =

books ∪ {isbn? 7→ (title?, aut?, pub?, yr?)} ∧
users ′ = users ∪ {id ! 7→ (name?, addr?)} ∧
available ′ = available ∪ {isbn?} ∧
borrowed ′ = borrowed ∧ date ′ = date ∧
mes! = OK )
∨

((dom users = ID ∨ isbn? ∈ dom books) ∧
θLibEnv ′ = θLibEnv ∧
θLibrary ′ = θLibrary ∧
id ! = ⊥ ∧ mes! = System error)

An important proof obligation often stated in Z texts
is to show that an operation followed by its undo coun-
terpart leaves the state unchanged, i.e.:

Donate o
9 Donate∼ ` ΞLibrary (10)

The OTTER reasoner has difficulty in proving (10)
above, but if we rewrite schema Donate as a sequence
of 3 primitives operations

• Capture book (say), a primitive to specify

books ′ =

books ∪ {isbn? 7→ (title?, aut?, pub?, yr?)},
• Register user (say), to specify

users ′ = users ∪ {id ! 7→ (name?, addr?)},
• Avail (say), for available ′ = available ∪ {isbn?},

specify appropriate undo counterparts for each of the 3
primitives above, and perform 3 different proofs at the
level of the primitives and their inverses, then OTTER
easily finds a proof (for example) for

Capture book o
9 Capture book∼ ` books ′ = books (11)

where books represents the component before prim-
itive Capture book and books ′ the same component
after Capture book∼. A successful proof attempt of
(11) is presented in the appendix.

Quick proofs are also obtained for:

Register user o
9 Register user∼ ` users ′ = users

Avail o
9 Avail∼ ` available ′ = available

Failing to prove (10) above is more significant than
it may seem. A specifier may decide to leave schema
Donate as it is and attempt to perform 3 different
simpler proofs, one of which could be:

Donate o
9 Donate∼ ` books ′ = books (12)

Again the theorem-prover fails to find a proof of (12).
While a proof of (11) is found after just 0.06 sec-
onds on a Pentium IV running at a clock speed of
1.8 GHz, the theorem prover finds no proof for (12) in
30 minutes. The architecture of this last failed proof
attempt is characterised by the presence of redundant
information [33] in the sense that changes to the state
components users and available in schema Donate are
irrelevant to a proof of (12). It turns out that such ir-
relevant information leads the theorem prover astray.
Of course, a specifier can remove redundant informa-
tion from a proof attempt and perform a number of
different proofs. But this boils down to an applica-
tion of steps 5.1 and 5.2 of our enhanced strategy, i.e.
defining an operation as a sequence of primitives.

5.9 Summary

We demonstrated in the previous section how the en-
hanced strategy may be used to construct a formal
specification and how our strategy facilitates the dis-
charging of an important proof obligation.
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6 Analysis and Future Work

This paper proposed an enhanced established strat-
egy for drawing up a Z specifiction. The new strategy
is built around the notion of a set of design heuris-
tics, mainly for enhancing schema content. Central to
the new strategy is the use of primitives, allowing a
specifier to specify a robust operation as a sequence
of simpler operations, each possibly manipulating at
most one schema component. We illustrated how the
use of primitives facilitates the task of finding a short
proof of a property of a composition where otherwise
the presence of redundant information leads the the-
orem prover astray.

In defining a sequence of primitives in a user-level
operation one may find that such a sequence some-
times becomes too long to comfortably write down on
a single line. We can use more than one line, but a
specifier may also consider grouping primitives which,
according to the judgement of the specifier, conceptu-
ally belong together into a master operation [29] and
instead replace such sequence in the user-level opera-
tion by the master operation. The definitions of the
individual primitives are not affected.

Although it is often claimed that implementa-
tion issues should not affect specification decisions,
additional implementation benefits may be realised
through the use of primitives. Since every primitive
manipulates at most one component of the state or
environment, we can, on a multi-processor machine,
assign a processor to a primitive and if some of the
primitives happen to be independent, then we may
achieve true concurrency. Furthermore, on a threaded
single-processor machine we can program a user-level
operation as a task and each primitive as a thread [25]
within the task. If a thread should block during ex-
ecution then the possibility exists for another thread
in the same task to start executing, speeding up the
execution of the task as a whole.

Step 4 of the enhanced strategy suggests the use
of an environment in specification work. The envi-
ronment is often used to reverse the effect of a state
change. However, in our model it is possible to undo
only the effect of the previous update operation, and
not any other (update) operation before the last one.
Modern software packages normally allow one to undo
a number of previous operations, one after another.
Typically in our model a sequence of environments
could be used for this purpose and future work could
concentrate on developing such sequences of environ-
ments.
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Appendix

Input to OTTER for a proof of: Capture book o
9 Capture book∼ ` books ′ = books

set(hyper_res). %% Resolution strategies

set(factor). %% and factoring

set(ur_res).

set(para_from). %% Paramodulation

set(para_into). %% and

set(order_eq). %% ordering of equalities

set(process_input).

clear(para_from_right).

clear(para_into_right).

set(dynamic_demod_all).

set(back_demod).

assign(max_seconds,1800). %% Assign 30 mins.

weight_list(pick_and_purge).

weight(x,5).

end_of_list.

formula_list(usable).

%% Reflexivity.

%% ------------

(all x (x = x)).

%% Definition of domain.

%% ---------------------

(all R x ( El(x,dom(R)) <-> (exists y El(ORD(x,y),R)) )).

%% Primitive Capture_book.

%% -----------------------

(all isbn title author pub yr

e_id e_isbn books users available borrowed date

e_id1 e_isbn1 books1 users1 available1 borrowed1 date1

( El(ORD(7TUP(isbn,title,author,pub,yr,ENV(e_id,e_isbn),

STATE(books,users,available,borrowed,date)),

ORD(ENV(e_id1,e_isbn1),

STATE(books1,users1,available1,borrowed1,date1))),

Capture_book) ->

(

-El(isbn,dom(books)) &

(e_isbn1 = isbn) &

%% books1 = books u {isbn |-> (title,author,pub,yr)}.
%% --------------------------------------------------

(all y z

(El(ORD(y,z),books1) <->

(El(ORD(y,z),books) |

((y = isbn) & (z = 4TUP(title,author,pub,yr)))))) &

(users1 = users) &

(available1 = available) &

(borrowed1 = borrowed) &

(date1 = date) ) )).
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%% Primitive Undo_Capture_book.

%% ----------------------------

(all e_id e_isbn books users available borrowed date

e_id1 e_isbn1 books1 users1 available1 borrowed1 date1

( El(ORD(ORD(ENV(e_id,e_isbn),

STATE(books,users,available,borrowed,date)),

ORD(ENV(e_id1,e_isbn1),

STATE(books1,users1,available1,borrowed1,date1))),

Undo_Capture_book) ->

((e_id1 = e_id) & (e_isbn1 = e_isbn) &

%% books1 = DomDiff(books,{e isbn}).
%% ---------------------------------

(all y z

(El(ORD(y,z),books1) <->

(El(ORD(y,z),books) & -(y = e_isbn)))) &

(users1 = users) & (available1 = available) &

(borrowed1 = borrowed) &

(date1 = date) ) )).

%% Definition of: Capture_book ; Undo_Capture_book.

%% ------------------------------------------------

(all isbn title author pub yr

e_id e_isbn books users available borrowed date

e_id2 e_isbn2 books2 users2 available2 borrowed2 date2

( El(ORD(7TUP(isbn,title,author,pub,yr,ENV(e_id,e_isbn),

STATE(books,users,available,borrowed,date)),

ORD(ENV(e_id2,e_isbn2),

STATE(books2,users2,available2,borrowed2,date2))),

Comp(Capture_book,Undo_Capture_book)) ->

(exists e_id1 e_isbn1 books1 users1 available1 borrowed1 date1

( El(ORD(7TUP(isbn,title,author,pub,yr,ENV(e_id,e_isbn),

STATE(books,users,available,borrowed,date)),

ORD(ENV(e_id1,e_isbn1),

STATE(books1,users1,available1,borrowed1,date1))),

Capture_book) &

El(ORD(ORD(ENV(e_id1,e_isbn1),

STATE(books1,users1,available1,borrowed1,date1)),

ORD(ENV(e_id2,e_isbn2),

STATE(books2,users2,available2,borrowed2,date2))),

Undo_Capture_book) )) )).

end_of_list.

formula_list(sos).

%% books’’ = books.

%% ----------------

-(all isbn title author pub yr e_id e_isbn books users available borrowed date

e_id2 e_isbn2 books2 users2 available2 borrowed2 date2

( El(ORD(7TUP(isbn,title,author,pub,yr,ENV(e_id,e_isbn),

STATE(books,users,available,borrowed,date)),

ORD(ENV(e_id2,e_isbn2),

STATE(books2,users2,available2,borrowed2,date2))),

Comp(Capture_book,Undo_Capture_book)) ->

(all y z (El(ORD(y,z),books2) <-> El(ORD(y,z),books))) ) ).

end_of_list.
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