

Abstract— The aim of this paper is to document experiences
with augmenting multilevel security with usage control at
the application level within the aspect-oriented paradigm.
Multilevel access control is an access control policy that
supports systems that process especially sensitive data.
However, attribute-based access control is sometimes in-
sufficient and needs to be combined with additional fea-
tures in order to meet the demands of modern applications
and systems. Usage control enables finer-grained control
over the usage of digital objects than do traditional access
control policies and models.

Index Terms—Multilevel Security, Aspect-Orientation, Usage

Control

I. INTRODUCTION
Several authors have cited the benefits of using as-

pect-oriented programming (AOP) to implement security con-
cerns (see [1] and [2]). As security is often extracted as a
separable concern due to its orthogonal nature with respect to
the functional requirements of a system, the separa-
tion-of-concerns principle of the aspect-oriented paradigm is
suited to address security concerns [3]. Aspect-oriented soft-
ware development is relevant for all major pillars of security –
authentication, access control, integrity, non-repudiation – as
well as for the supporting administration and monitoring dis-
ciplines required for effective security [4]. Multilevel security
was once thought to be relevant only to military systems, but
recently it has been gaining acceptance into other domains such
as trusted operating systems, and in grid applications [5].
Maintaining the privacy of individuals is one of the most
compelling reasons for implementing strong access controls in
an organization. Research has shown that the efficacy of as-
pect-orientation in comparison to object-orientation can guar-
antee better security assurance when implementing multilevel
security [5]. The aim of this paper is to

Manuscript received 28/11/ 2006. Keshnee Padayachee is with the University
of South Africa, School of Computing, Pretoria 0003 South Africa (e-mail:
padayk@unisa.ac.za).
J.H.P. Eloff is with the Department of Computer Science, University of Preto-
ria, Pretoria 0002 South Africa (e-mail: eloff@cs.up.ac.za).

explore the usability of aspect-orientation to implement multi-
level security augmented with usage control.

The fundamental benefit of using AOP within security is that
it assists the abstraction of security-related programming tasks
such as authentication, access control and integrity. These
security concerns tend to crosscut objects. Crosscutting con-
cerns are related issues that are scattered throughout the func-
tionality of an application [6]. An additional benefit is that a
security aspect may be reused for other applications [6]. For
example, access control has similar requirements for most
applications. Vanhaute and De Win [7] have demonstrated how
to convert these security concerns into reusable generic aspects.
Significantly, aspect-oriented software design is flexible
enough to accommodate the implementation of additional se-
curity features after the functional system has been developed,
as crosscutting concerns may be added or removed without
making invasive modifications on original programs [8].

This paper investigates the strategy of using the as-
pect-oriented paradigm to facilitate the implementation of a
non-intrusive, yet stricter enforcement of multilevel security in
a functional system. The subsequent section discusses the
concept of complementing multilevel security with usage con-
trol, while the discourse in the next two sections focuses on
AOP and its influence on software security. Section 5 demon-
strates and evaluates the aspect-oriented paradigm in terms of
implementing multilevel access control in a fully functional
system, while Section 6 concludes with directions for future
work and insights gathered from the experiment conducted.

II. COMPLEMENTING MULTILEVEL SECURITY WITH USAGE CONTROL
Multilevel Security was developed by the military and in-

volves every object and user in the system being assigned a
sensitivity label that consists of a level of secrecy and a set of
compartments [9]. For example, the sensitivity label of a file is
SECRET [ALPHA, VENUS], where SECRET indicates the
level and [ALPHA, VENUS] the compartments. The security
level is an element of a totally ordered set. The levels generally
considered are TOPSECRET, SECRET, CONFIDENTIAL
and UNCLASSIFIED, where TOPSECRET > SECRET >
CONFIDENTIAL > UNCLASSIFIED [10]. The set of com-
partments is unordered. An access class ci dominates (≥) an
access class cj if and only if the security level of ci is higher than

An Aspect-Oriented Approach to Enhancing
Multilevel Security with Usage Control: An

Experience Report
Keshnee Padayachee and J.H.P. Eloff

or equal to cj and the compartments of ci include that of cj.
Note that the term ‘object’ does not imply ‘object’ in the

typical object-oriented sense. In fact, the term ‘subject’ is the
active process that requests access to the ‘object’, which refer
to passive entities such as files or records. The Bell-LaPadula
security model (BLP) is a formalization of the Multilevel Se-
curity policy that enforces two rules, namely the No Read Up
and the No Write Down rules. These ensure that information
flowing from a higher security level to a lower one is pre-
vented. However, the BLP model displays a number of defi-
ciencies [11], as is indicated below:
• ‘Blind write-up’ – The inability to inform low-security

 data whether a write to high-security data has happened
 correctly.

• ‘Downgrading’– Moving information from a
 high-security level to a lower level is sometimes de-
sirable.

• ‘TCB bloat’ – A large subset of the operating system
 may end up in the Trusted Computing Base (TCB).

Using AOP, it is possible to circumvent these problems,
because the model for the control is embedded in the pro-
gramming code and occurs while the application is executing.
Problems such as ‘blind write-up’ and ‘downgrading’ may
therefore be resolved within the code context when required. A
semantic gap has been created between access controls of op-
erating systems and programming languages because lan-
guages such as the Java Virtual Machine lack mechanisms to
enforce such forms of mandatory access controls [12]. It is
possible for AOP to fill this ‘semantic gap’ and thereby to
reduce ‘TCB bloat’.

Multilevel Security is a type of a mandatory access control
scheme and was once thought to be relevant to the military
only. However, multilevel access control is highly applicable in
areas such as privacy, as ‘access to privacy-sensitive data’ can
be regarded as analogous to accessing multilevel security data
[13]. Even though users may be authorized to view informa-
tion, this does not ensure that they respect the confidentially of
the information that they have access to. Hence complementing
traditional authorization with other forms of controls may in-
fluence individuals to behave in a trustworthy manner.

Sandhu and Park [14], recognizing the inadequacy of tradi-
tional access control models, proposed a new approach to ac-
cess control called Usage Control (UCON). This model en-
compasses emerging applications such as trust management in
a unified framework. They claim that the missing components
of traditional access control are the concepts of obligations and
conditions. Obligations require some action by the subject so as
to gain or sustain access, e.g. by clicking the ACCEPT button
on a licence agreement. Conditions represent system-oriented
factors such as time-of-day, where subjects are allowed access
only within a specific time period.

A family of models for usage control exists, involving
pre-authorization and ongoing-authorizations. This paper will
focus on the simplest model, the pre-authorization model,
where a decision process is performed before access is allowed.
Sandhu and Park [14] show how mandatory access control may

be stated in terms of the UCON model, however only in terms
of lattice-based authorization. In the Bell-LaPadula formaliza-
tion of the multilevel security policy, security levels represent
the pair consisting of the sensitivity level and the compart-
ments. The security levels on objects are called classifications
and the security levels on subjects are called clearance. The
following represents a formalization of complementing multi-
level security with conditions and obligations:

L is a lattice of security labels with dominance ≥
clearance: S →L, classification O →L
SUBJECT ATTRIBUTES = {clearance},
OBJECT ATTRIBUTES = {classification}
allowed(s,o,read) ⇒ clearance(s) ≥ classification(o)
 ∧ preB(s,o,read) → {true, false}
 ∧ preC(s,o,read) → {true, false}
allowed(s,o,write) ⇒ clearance(s) ≤ classification(o)
 ∧ preB(s,o,write) → {true, false}
 ∧ preC(s,o,write) → {true, false}
 where allowed(s,o,r) predicate indicates that the subject is
 allowed to access object o with right r only if the indicated
 condition is true.
 preB(s,o,r) predicate determines if the subject has fulfilled
 obligations in order to access object o with right r.
 preC(s,o,r) predicate determines if the subject s is allowed
 to access object o under the current system conditions.

It is evident that this enforcement of security is very strong

and possibly impractical, as it involves sensitivity levels,
compartments, conditions and obligations. However this pro-
vides an opportunity to fully assess the flexibility of the as-
pect-oriented paradigm.

III. BACKGROUND WORK ON ASPECT-ORIENTED PROGRAMMING

An aspect is a modular unit of a crosscutting implementation
that is provided in terms of pointcuts and advices, specifying
what (advice) and when (pointcut) its code is going to be exe-
cuted [15]. In terms of codification, aspects are similar to ob-
jects. However, aspects observe objects and react to their be-
havior [16]. An aspect is a piece of code that describes a re-
curring property of a program and can span multiple classes or
interfaces [17]. Aspects improve the separation of concerns by
making it possible to cleanly localize crosscutting design con-
cerns. They also allow programmers to write, view and edit a
crosscutting concern as a separate entity.

In the execution of a program, there will be certain
well-defined points where calls to aspect code would be in-
serted [15]. These are known as join points. A pointcut is a set
of join points described by a pointcut expression [18]. The
pointcut is used to find a set of join points where an aspect code
would be inserted. An advice declaration can be used to specify
code that should run when the join points specified by the
pointcut expression are reached [18]. The advice code will be
executed when a join point is reached, either before or after the
execution proceeds. For example, AspectJ supports before,

after and around advices, depending on the time the code is
executed [19]. A before in advice on a method execution de-
fines code to be run before (after) the particular method is
actually executed. An around advice defines code that is exe-
cuted when the join point is reached and has control over
whether the computation at the join point (i.e. an application
method) is allowed to be executed or not [20].

Combining the application functional code and its specific
aspects generates the final application. These two entities will
be combined at compilation time by invoking a special tool
called a weaver [17].

IV. AN ASPECT-ORIENTED APPROACH TO EXTENDING MANDATORY
ACCESS CONTROL WITH USAGE CONTROL

De Win, Vanhaute and Decker [6] delineated aspects for
discretionary access control within the aspect-oriented para-
digm. Fortifying this access control model with multilevel
security has been accomplished by Ramachandran, Pearce and
Welch [5]. This paper considers how the usability of as-
pect-orientation could facilitate the process of complementing
multilevel security (developed with aspect-orientation tech-
niques) by means of usage control. It does not address the
aspects of identification and authentication. Although
Ramachandran, Pearce and Welch [5] developed an adequate
aspect-oriented implementation of multilevel security, they do
concede the following shortcoming: 'When a read or write to
some stream type is intercepted, we have to access to the stream
object in question. From this we must determine the true sub-
ject (i.e. the actual file being manipulated). Unfortunately, the
Java API does not permit this directly (e.g. we cannot get back
a file name from an instance of FileInputStream). To overcome
this, we intercept creation points of these streams and manually
associate with them the file name in question'. This paper pre-
sents an alternative approach to circumvent this problem to-
gether with a proposal of extending aspect-oriented languages
to resolve such problems. Furthermore, Ramachandran, Pearce
and Welch [5] assume that the user's clearance is embedded
within the original implementation. We assume that the original
implementation contains no data relating security. We wanted
to demonstrate that multilevel security policy may be totally
separated from the original program, to assess the versatility,
flexibility and extensibility of aspect-orientation. To this end,
the aspect's constructor is involved in assigning security poli-
cies. The following statements define the MLSAspect aspect:

public aspect MLSAspect {
public MLSAspect(){
 //Assign security policies
}
pointcut Write(Object object, Subject
subject): call(* Subject.write(Object)) &&
args(object) && target(subject);
void around (Object object,Subject subject):
Write(object,subject){
if (cleareance(subject) <= classification
(object)){
 if (Obligations(subject,object,write)){

 if (Conditions(subject,object,write))
 proceed (subject,object);
 }
 }
pointcut Read (Object object, Subject
subject): call(* Subject.read(Object)) &&
args(object) && target(subject);
void around(String object, Subject subject):
Read (object,subject){
if (cleareance(subject) >= classification
(f)){
 if (Obligations(subject,object,read)){
 if (Conditions(subject,object,read))
 proceed (object, subject);
 }
 }
boolean Obligations(){
 // Obtain Obligations}
boolean Conditions(){
 //Test Conditions}
}

The MLSAspect is a generalized aspect which implements
multilevel security in terms of obligations and conditions. The
aspect contains two pointcuts that represent each of the ac-
cesses, namely read and write accesses. Essentially these
pointcuts will pick up all joinpoints in the program's execution
that indicate a Write or Read access to a particular Object by a
Subject. The aspect will allow the process to proceed only if all
the authorizations, obligations and conditions are met. (Note:
Object is not implied in the object-oriented sense and will
probably indicate a file.) Significantly this aspect has around
advices instead of before advices as specified in [5]. If before
advices were used instead of around advices, then the aspect
will allow the process to continue irrespective of whether the
authorizations, obligations and conditions were fulfilled or not.
Both around advices parallel the principles of No read-up and
No write-down. This enforcement was subsequently comple-
mented with the obligations and conditions requirements.

The next section will show a worked example demonstrating
how the aspect may be extended for specific access control
requirements.

V. A WORKED EXAMPLE

With respect to the extended multilevel security model de-

scribed above, a small case study was generated to demonstrate
the possibility that such a system may be fully implemented
using AspectJ (ajdt_1.2_for_eclipse_3.0). The system initially
contained only a single Personnel class to represent the Sub-
jects of the system. Three access control requirements had to be
enforced. Firstly, Personnel should be prevented from access-
ing files that they are not authorized to read from or write to as
prescribed by multilevel access control policies. Secondly,
whenever a Personnel member accesses a file, he/she should
indicate whether he/she accepts the "Terms and Conditions" of
accessing the file. Thirdly, no Personnel member is allowed
access to files between 5pm and 6am. For example, Personnel
Jane has a security clearance of SECRET [ALPHA] and the
LOGISTICS file has a clearance of SECRET [VENUS, AL-

PHA]. According to the multilevel security policy, Jane should
not be able to read file LOGISTICS. Accordingly, the Read
around advice of the MLSAspect should not allow the fol-
lowing statement in application to execute:
‘Jane.read("Logistics"). However, Jane may write to
Logistics, provided she accepts the obligations and abides
by the timing conditions.

As a very simple system was built, it was easy to identify
where access control needed to be applied. In short, one could
surmise the joinpoints as the points where reading or writing
operations were to be performed. The two pointcuts of the
generalized MLSAspect were refined accordingly (see Ap-
pendix): Write, which intercepts all methods called ‘write’,
and Read which intercepts all methods called ‘read’.

It is essential for the objects of the system not to have any
code relating to access control, as it defeats the purpose of
using aspect-orientation. Therefore, the labeling of each object
and subject also had to be confined to an aspect. This allows for
ease of modification of sensitivity labels. The intertype
declaration below provides a mechanism for tagging classes
with a classification. This is a special aspect that allows
additional data members and member functions to be included
in a class without modifying the class itself. It saves on look-up
time as opposed to inspecting an access control matrix instead.
The following statements define the ClassificationTag
aspect which assigns security levels to the Personnel class:

 public aspect ClassificationTag {
 private int Personnel.level;
 private Set Personnel.compartments = new
 HashSet();
 //relevant mutator and accessor
 //functions
}

In addition to tagging the user defined class Personnel,
the file that is accessed by a Personnel object has to be
tagged as well. Unfortunately tagging a Java class such as
java.io.File cannot be implemented in the same manner
as for the user-defined classes, since Java classes such as the
java.io.File class or java.lang.Object class are
“not exposed to the weaver:” The file classifications are con-
trolled by a general aspect that associates the file name with a
sensitivity label using a hash map. The following statements,
defines an aspect FileClassifictions which assigns
security levels to the file objects:

public aspect FileClassifications {
 private static HashMap hashmap = new
 HashMap();
 private static class FClassifications {
 private int level;
 private Set compartments;
 //appropriate accessors and mutators
 }
 public static void Add(String name, int
 level, Set s){
 FClassifications FC = new
 FClassifications(level,s);

 hashmap.put(name, FC);
 }
 //appropriate accessors and mutators
}

This solution does not directly resolve the problem articu-
lated by Ramachandran Pearce and Welch [5]. Instead, it is the
object-oriented design that allows the aspect to access the file
name. This illustrates an important lesson – although aspects
may be designed after core functionally has been implemented,
practical solutions are more probable if one iterates between the
object-oriented design and the aspect-oriented design.
 When designing security aspects, it is important to make

them as generic as possible in order to facilitate reuse. In this
particular case only read and write operations were considered,
but this could have been expanded to other methods through the
use of wildcards as proposed by Ramachandran Pearce and
Welch [5].

The claim that aspect-oriented software design is flexible
enough to accommodate the implementation of additional fea-
tures after the functional system has been developed without
making modifications on original program has been validated
by the above experiment. However the challenges encountered
does seem to indicate that implementing all nuances of the
UCON model may not be feasible with AOP. It is questionable
whether aspects could be used to implement ongo-
ing-authorizations efficiently. It would be useful, if in addition
to the before, around and after advice – AspectJ could offer a
'during advice' which could allow for such 'parallel processing'.

We now attempt to address the problem identified by
Ramachandran Pearce and Welch [5] by suggesting an exten-
sion to AspectJ. The limitations of AspectJ posed a problem in
identifying the objects. It was easy to identify the classes used
by referencing the variable called thisJoinpoint (a language
construct of AspectJ) which contains reflective information
about the current join point. It was, however, difficult to de-
termine the name of the object itself, and it would have been
ideal if the thisJoinpoint variable could be expanded to resolve
this issue.

VI. CONCLUSION
The implementation of multilevel security within as-

pect-orientation allowed the access control features, together
with the conditions and obligations, to be abstracted. If this
implementation needs to be modified, it requires the consid-
eration of only one separated modular unit, namely the
MLSAspect. However, the cognitive understanding required
to determine the interaction between intertype declarations and
other aspects is challenging. More empirical studies need to be
conducted to explore how implementation decisions made
during the object-orientation design, either aid or impede the
aspect-oriented design process.

APPENDIX
Listing A: Showing an example of MLS with Usage Control
public aspect MLSAspect {
public MLSAspect(){
 SetUp.SetFileClassifications();
}
pointcut Write (String file, Personnel p):
 call(* Personnel.write(String)) && args(file)
 && target(p);
void around (String file,Personnel p):
 Write (file,p){
 int pLevel = p.GetLevel();
 int fLevel = FileClassifications.GetLevel(file);
 Set pCompartments = p.GetSet();
 Set fCompartments = FileClassifica-
tions.GetSet(file);
 if
 ((pLevel <= fLevel)
 && (fCompartments.containsAll(pCompartments))){
 System.out.println(p.getName()+
 " allowed to write only to " +file);
 if (Obligations()) {
 if (Conditions())
 proceed(file,p);
 }
 }
 else{
 System.out.println(p.getName()+" cannot write to
"+file);
 }
}

pointcut Read(String file, Personnel p):
 call(* Personnel.read(String)) && args(file)
 && target(p);
void around(String file,Personnel p):
 Read (file,p){
 int pLevel = p.GetLevel();
 int fLevel = FileClassifications.GetLevel(file);
 Set pCompartments = p.GetSet();
 Set fCompartments = FileClassifica-
tions.GetSet(file);
 if ((pLevel >= fLevel)
 && (pCompartments.containsAll(fCompartments))){
 System.out.println(p.getName()+
 " allowed to read only from "+file);
 if (Obligations()){
 if (Conditions())
 proceed(file,p);
 }
 }
 else{
 System.out.println(p.getName()+" cannot read
from "+file);
 }
}
boolean Obligations(){
 InputStreamReader stdin = new InputStream-
Reader(System.in);
 BufferedReader console = new Buffere-
dReader(stdin);
 String Answer = "";
 System.out.println("Do you accept the terms and
conditions required to access this file ?");
 try{
 Answer = console.readLine();
 }
 catch(IOException ioex){
 System.out.println("Input error");
 System.exit(1);
 }
 if(Answer.equals("YES"))
 return true;
 else
 return false;
}
boolean Conditions(){
 Calendar cal = new GregorianCalendar();

 int hour24 = cal.get(Calendar.HOUR_OF_DAY);
 if ((hour24 >= 7) && (hour24 <= 17))
 return true;
 else
 return false;
}
}

REFERENCES
[1] B. De Win, F. Piessens and W. Joosen, "On the Importance of the Sepa-

ration-of-Concerns Principle in Secure Software Engineering," in
Workshop on the Application of Engineering Principles to System Secu-
rity Design, 6-8 November 2002, pp.1-10.

[2] J. Viega and D. Evans, "Separation of Concerns for Security," in ICSE
2000 Workshop on Multi-Dimensional Separation of Concerns in Soft-
ware Engineering, June 2000, pp.126-129.

[3] P. Robinson, M. Rits and R. Kilian-Kehr, "An Aspect of Application
Security Management," presented at AOSD'04 International Conference
on Aspect-Oriented Software Development, Lancaster, UK, 2004.

[4] R. Bodkin, "Enterprise Security Aspects," presented at AOSD'04 Inter-
national Conference on Aspect-Oriented Software Development, Lan-
caster, UK, 2004.

[5] R. Ramachandran, D.J. Pearce and I. Welch, "Aspectj for Multilevel
Security," in The 5th AOSD Workshop on Aspects, Components, and
Patterns for Infrastructure Software (ACP4IS), 21 March 2006, pp.1-5.

[6] B. De Win, B. Vanhaute and B. Decker, "Security through As-
pect-Oriented Programming," in Advances in Network and Distributed
Systems Security, IFIP TC11 WG11.4 First Working Conference on
Network Security, November 2001, pp.125-138.

[7] B. Vanhaute and B. De Win, "Aop, Security and Genericity," presented at
1st Belgian AOSD Workshop, Vrije Universiteit Brussel, Brussels, Bel-
gium, 2001.

[8] N. Ubayashi, H. Masuhara and T. Tamai, "An Aop Implementation
Framework for Extending Joint Point Models," presented at ECOOP'
2004 Workshop on Reflection, AOP and Meta-Data for Software Evolu-
tion, Oslo, Norway, 2004.

[9] E. Bell and L.J. LaPadula, "Secure Computer Systems: Unified Exposi-
tion and Multics Interpretation," Tech. Rep. Technical Report
ESD-TR-75-306, 1976.

[10] D. Russell and G.T. Gangemi Computer Security Basics. O'Reilly and
Associate, Sebastopol, California., 1991.

[11] R.J. Anderson. Security Engineering: A Guide to Building Dependable
Distributed Systems. Wiley, Computer Publishing, New York, 2001.

[12] V. Haldar, D. Chandra and M. Franz., "Practical, Dynamic Information
Flow for Virtual Machines," in PLID'05 2nd International Workshop on
Programming Language Interference and Dependence, 6 September 2005.

[13] W. Rjaibi and P. Bird, "A Multi-Purpose Implementation of Mandatory
Access Control in Relational Database Management Systems," in Pro-
ceedings of 30th VLDB Conference, pp.1010-1020.

[14] R. Sandhu and J. Park, "Usage Control: A Vision for Next Generation
Access Control," in The Second International Workshop on Mathematical
Methods, Models and Architectures for Computer Networks Security,
pp.17-31.

[15] F. Ortin and J.M. Cueva, "Dynamic Adaptation of Application Aspects,"
Journal of Systems and Software, vol. 71, pp.229-243, May 2004.

[16] J. Viega and J. Voas, "Can Aspect-Oriented Programming Lead to More
Reliable Software," IEEE Software, vol. 17, pp.19-21, November 2000.

[17] J.P. Choi, "Aspect-Oriented Programming with Enterprise Javabeans," in
Fourth International Enterprise Distributed Object Computing Confer-
ence (EDOC'00), September 2000, pp.252-261.

[18] D. Mahrenholz, O. Spinczyk and W. Schröder-Preikschat, "Program
Instrumentation for Debugging and Monitoring with Aspectc++," in
Proceedings of The 5th IEEE International Symposium on Ob-
ject-oriented Real-time Distributed Computing, April - May 2002,
pp.249-256.

[19] B. De Win, W. Joosen and F. Piessens. "Developing Secure Applications
through Aspect-Oriented Programming." in Aspect-Oriented Software
Development, Aksit, M., Clarke, S., Elrad, T. and Filman, R.E. Eds.,
Boston: Addison-Wesley, 2002, pp.633–650.

[20] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten and J. Palm, "Getting
Started with Aspectj," Communications of the ACM, vol. 44, pp.59-65,
October 2001.

