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Abstract

This study estimates cointegration models by applying the Engle-Granger (1989) two-step es-

timation procedure, the Phillip-Ouliaris (1990) residual-based test and Johansen’s multivariate

technique. The cointegration techniques are tested on the Raotbl3 data set, the World Economic

Indicators data set and the UKpppuip data set using statistical software R. In the Raotbl3 data

set, we test for cointegration between the consumption expenditure, and income and wealth vari-

ables. In the world economic indicators data set, we test for cointegration in three of Australia’s

key economic indicators, whereas in the UKpppuip data set we test for the existence of long-run

economic relationships in the United Kingdom’s purchasing power parity. The study finds the

three techniques not to be consistent, that is, they do not lead to the same results. However, it

recommends the use of Johansen’s method because it is able to detect more than one cointegrating

relationship if present.

Keywords: cointegration; stationarity; nonstationarity; Augmented Dickey-Fuller test; error-correction

model; unit root; Engle-Granger method; Phillip-Ouliaris methods; variance ration test; Johansen’s

method.
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Chapter 1

Introduction

Empirical research in economics is based on time series. Therefore, it is standard to view time

series as the realisation of a stochastic process. Model builders can use statistical inference in

constructing and testing the equations that characterise relationships between economic variables.

The two central properties of many economic time series are nonstationarity and time-volatility

(Wei, 2006). These two properties have led to many applications in both economics and statistics.

Nonstationarity is a property common to many applied time series. This means that a variable has

no clear tendency to return to a constant value or linear trend. It is generally correct to assume

that economic processes have been generated by a nonstationary process and follow stochastic

trends. One major objective of empirical research in economics it to test hypotheses and estimate

relationships derived from economic theory, among other such aggregated variables (Pfaff, 2006).

The classical statistical methods used in building and testing large simultaneous equation models,

such as Ordinary Least Squares (OLS), were based on the assumption that the variables involved

are stationary. The problem is that the statistical inference associated with stationary processes

is no longer valid if time series are a realisation of nonstationary processes. If time series are

nonstationary it is not possible to use OLS to estimate their long-run linear relationships because

it would lead to spurious regression. Spurious regression is a situation in which there appears to

be a statistically significant relationship between variables but the variables are unrelated. A few

decades ago the difficulty of nonstationarity was not well understood by model builders . However,

this is no longer the case because the technique of cointegration has been introduced according to

which models containing nonstationary stochastic variables can be constructed in such a way that

the results are both statistically and economically meaningful.
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Cointegration is an econometric concept which mimics the existence of a long-run equilibrium

among economic time series. If two or more series are themselves nonstationary, but a linear com-

bination of them is stationary, then they are said to be cointegrated (Wei, 2006). We should be

concerned about cointegration because it is a possible solution to nonstationarity found in many

economic time series, and if time series are nonstationary the assumptions upon which OLS esti-

mation rest are violated, rendering its application inappropriate.

Previously, the usual procedure for testing hypotheses concerning the relationship between nonsta-

tionary variables was to run OLS regressions on data which had initially been differenced. Data are

differenced in order to reduce nonstationary series to stationarity. Although this method is correct

in large samples, it may give rise to misleading inferences or spurious regressions in small samples.

Moreover, estimation of a single equation framework with integrated or nonstationary variables

tends to create the following problems: non-standard distribution of the coefficient estimates gen-

erated by the process not being stationary, explanatory variables generated by the process that

display autocorrelation, the existence of more than one cointegrated vector and tendency to weak

exogeneity ( Banerejee et al., 1993).

The remedy for problematic regressions with integrated variables is to test for cointegration and to

estimate a vector error-correction model to distinguish between short-run and long-run responses,

since cointegration provides more powerful tools when the data sets are of limited length. The

technique of cointegration and the error-correction model have both been used before in mod-

elling a number of studies, for example, in modelling Danish gasoline demand (Bentzen et al.,

1995), the road transport energy demand for Australia (Samimi, 1995), demand for coal in India

(Kulshreshtha and Parikh, 1999), coal demand in China (Chan and Lee, 1997) and the United

Kingdom’s final user energy demand (Fouguet et al., 1997). In these studies, the multivariate

Johansen cointegrating framework was used to ascertain the cointegrating rank.

The main interest in this study is to estimate cointegrating models and explain their applications

to different sets of data using the three main methods of testing for cointegration and related

relationships. The results of this study can be used to assess the impact of a temporary or

permanent shock on economic variables in an economy. These methods are

• the Engle-Granger method (Engle-Granger, 1987)

• the Phillips-Ouliaris residual-based tests, namely a variance ratio and a multivariate trace
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statistic (Phillips-Ouliaris, 1988)

• the Johansen’s procedure which builds cointegrated variables directly on maximum likelihood

estimation instead of relying on OLS procedures (Johansen and Juselius, 1988).

In this study, the above techniques for testing for cointegration are explored using statistical

software R. These methods are tested on three data sets:

• the Raotbl3 data set, extracted from the R package urca

• the World Economic Indicators case study on Australia’s economic indicator extracted from

the United Nations World Economic Indicators

• the United Kingdom purchasing power parity (UKpppuip) data set extracted from the urca

R package.

These data sets were selected because of the availability of data from the urca R package and/or on

the Internet. In the Raotbl3 data set, we test for cointegration between the consumption expendi-

ture, income and wealth series; in the world economic indicators data set, we test for cointegration

in three of Australia’s key economic indicators; whereas in the UKpppuip data set we test for the

existence of long-run economic relationships in the United Kingdom purchasing power parity.

Not all variables in the analysed data sets showed the existence of long-run relationships, and in the

World Economic Indicators data set series was cointegrated on second order differencing. These

data sets are attached in Appendices A, B and C, respectively.
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Chapter 2

A theoretical overview

2.1 Stationarity and nonstationarity

Time series data consist of observations, which are considered as a realisation of random variables

that can be described by some stochastic processes. The concept of “stationarity” is related to the

properties of this stochastic processes. In this study, the concept of “weak stationarity” is adopted;

meaning that the data are assumed to be stationary if the means, variances and covariances of the

series are independent of time, rather than the entire distribution.

Nonstationarity in a time series occurs when there is no constant mean µ, no constant variance

σ2
t , or both of these properties. It can originate from various sources but the most important one

is the unit root .

2.2 Unit root

Any sequence that contains one or more characteristic roots that are equal to one is called a unit

root process. The simplest model that may contain a unit root is the AR(1) model.

Consider the autoregressive process of order one, AR(1), below:

Yt = φYt−1 + εt (2.2.1)

where εt denotes a serially uncorrected white noise error term with a mean of zero and a constant

variance.
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If φ = 1, equation 2.2.1 becomes a random walk without drift model, that is, a nonstationary

process. When this happens, we face what is known as the unit root problem. This means that

we are faced with a situation of nonstationarity in the series. If, however, φ < 1, then the series

Yt is stationary. The stationarity of the series is important because correlation could persist in

nonstationary time series even if the sample is very large and may result in what is called spurious

(or nonsense) regression (Yule, 1989). The unit root problem can be solved, or stationarity can be

achieved, by differencing the data set (Wei, 2006).

2.3 The augmented Dickey-Fuller (ADF) test

In section 2.2, it was stated that, if φ = 1, equation 2.2.1 becomes a random walk model without

drift, which is known as a nonstationary process. The basic idea behind the ADF unit root test

for nonstationarity is to simply regress Yt on its (one period) lagged value Yt−1 and find out if the

estimated φ is statistically equal to 1 or not. Equation 2.2.1 can be manipulated by subtracting

Yt−1 from both sides to obtain

Yt − Yt−1 = (φ− 1)Yt−1 + εt (2.3.1)

which can be written as

4Yt = δYt−1 + εt (2.3.2)

where δ = (φ− 1), and ∆ is the first difference operator.

In practice, instead of estimating equation 2.2.1, we shall estimate equation 2.3.2 and test for the

null hypothesis of δ = 0 against the alternative of δ 6= 0. If δ = 0, then φ = 1, meaning that we

have a unit root problem and the series under consideration is nonstationary. It should be noted

that under the null hypothesis δ = 0, the t-value of the estimated coefficient of Yt−1 does not follow

the t-distribution even in large samples (Erdogdu, 2007). This means that the t-value does not

have an asymptotic normal distribution. The decision to reject or not to reject the null hypothesis

of δ = 0 is based on the Dickey-Fuller (DF) critical values of the τ(tau) statistic. The DF test is

based on an assumption that the errors of term εt are uncorrelated.

However, in practice, the errors of the term in the DF test usually show evidence of serial corre-

lation. To solve this problem, Dickey and Fuller have developed a test know as the Augmented

Dickey-Fuller (ADF) test. In the ADF test, the lags of the first difference are included in the
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regression equation in order to make the error term εt white noise and, therefore, the regression

equation is presented in the following form:

∆Yt = δYt−1 + αi

m∑
i=1

∆Yt−i + εt. (2.3.3)

To be more specific, the intercept may be included, as well as a time trend t, after which the model

becomes

∆Yt = β1 + β2t+ δYt−1 + αi

m∑
i=1

∆Yt−i + εt. (2.3.4)

The testing procedure for the ADF unit root test is applied to the following model

∆yt = α+ βt+ γyt−1 +

ρ∑
j=1

δj∆yt−j + εit (2.3.5)

where α is a constant, β the coefficient on a time trend series, γ the coefficient of yt−1, ρ is the

lag order of the autoregressive process, ∆yt = yt− yt−1 are first differences of yt, yt−1 are lagged

values of order one of yt, ∆yt−j are changes in lagged values, and εit is the white noise.

The ADF test can be tested on at least three possible models:

(i) A pure random walk without a drift. This is defined by using the constraint α = 0, β = 0

and γ = 0 in equation 2.3.5. This leads to the equation

∆yt = ∆yt−1 + εt. (2.3.6)

Equation 2.3.6 is a nonstationary series because its variance grows with time (Pfaff, 2006).

(ii) A random walk with a drift. This is obtained by imposing the constraint β = 0 and γ = 0

in equation 2.3.5, which yields to the equation

∆yt = α+ ∆yt−1 + εt. (2.3.7)

(iii) A deterministic trend with a drift. For β 6= 0, equation 2.3.5 becomes the following deter-

ministic trend with a drift model

∆yt = α+ βt+ ∆yt−1 + εt. (2.3.8)

The sign of the drift parameter (α) causes the series to wander upward if positive and

downward if negative, whereas the size of the absolute value affects the steepness of the

series (Pfaff, 2006).
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The parameter of interest in the ADF model is γ. For γ = 0, the yt sequence contains the unit

root and hence is integrated of order d = 1.

The choice of the number of lags (p) in this study is based on the significant lag of the autocorre-

lation function (ACF ) and the partial autocorrelation function (PACF ) plots. We take the value

of p to be the number of lags at which the ACF cuts off or the number of lags of the PACF that

are significant.

The test procedure for unit roots is similar to statistical tests for hypothesis, that is:

(i ) Set the null and alternative hypothesis as

H0 : γ = 0 (2.3.9)

H1 : γ < 0 (2.3.10)

(ii) Determine the test statistic using

Fτ =
γ̂

SE(γ̂)
(2.3.11)

where SE(γ̂) is the standard error of γ.

(iii) Compare the calculated test statistic in 2.3.11 with the critical value from Dickey-Fuller table

to reject or not to reject the null hypothesis.

(iv) The ADF test is a lower-tailed test, so if Fτ is less than the critical value, then the null

hypothesis of unit root is rejected and the conclusion is that the variable of the series does

not contain a unit root and is nonstationary.

The DF and ADF tests are similar since they have the same asymptotic distribution. Although

there are numerous unit root tests, such as the Phillips-Perron test and the Schmidt-Phillips test,

the most notable and commonly used is the ADF test, which will be used in this study.

2.4 Cointegration tests

On the basis of the theory that integrated variables of order one, I(1), may have a cointegration

relationship, it is crucial to test for the existence of such a relationship. If a group of variables

are individually integrated of the same order and there is at least one linear combination of these
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variables that is stationary, then the variables are said to be cointegrated. The cointegrated

variables will never move far apart, and will be attracted to their long-run relationship. Testing

for cointegration implies testing for the existence of such a long-run relationship between economic

variables. This study considers a number of cointegration tests, namely the Engle-Granger method

commonly known as the two-step estimation procedure, the Phillips-Ouliaris methods and the

Johansen’s procedure.

2.4.1 Engle-Granger method

As we have stated, the regression of nonstationary series on other series may produce spurious

regression. If each variable of the time series data is subjected to unit root analysis and it is found

that all the variables are integrated of order one, I(1), then they contain a unit root. There is a

possibility that the regression can still be meaningful (i.e. not spurious) provided that the variables

cointegrate. In order to find out whether the variables cointegrate, the least squares regression

equation is estimated and the residuals (the error term) of the regression equation are subjected

to unit root analysis. If the residuals are stationary, that is I(0), it means that the variables under

study cointegrate and have a long-term or equilibrium relationship. The Engle-Granger method is

based on the idea described in this paragraph.

In the two-step estimation procedure, Engle-Granger considered the problem of testing the null

hypothesis of no cointegration between a set of variables by estimating the coefficient of a statistic

relationship between economic variables using the OLS and applying well-known unit root tests

to the residuals to test for stationarity. Rejecting the null hypothesis of a unit root is evidence in

favour of cointegration.

In the literature, there are a number of studies that apply Engle-Granger’s two-step estimation

procedure. A summary of some of them follows:

The study by Lee (1993) applied the two-step estimation procedure similar to that used by Engle

and Granger to examine cointegration relationships between total consumption and disposable

income on Japanese data from January 1961 to April 1987. This study investigated whether sea-

sonality in income cointegrates with that in consumption and identifies reasons in support of the

empirical cointegration relationship. The results indicated that income and consumption series

are integrated of order one at both the long-run (yearly) and the short-run (seasonal) frequency.

Results further indicated that both income and consumption series are nonstationary and that

9



the seasonal pattern has a significant variation over the period, although the seasonal pattern for

consumption was more regular.

There is vast literature that explores whether spot and future prices for oil are linked in a long-

run relationship. One particular study was undertaken by Maslyuk and Smyth (2009) to examine

whether crude oil spot and future prices of the same and different grades cointegrate. The null

hypothesis of no cointegration was tested against the alternative of cointegration in the presence of

a regime shift on series monthly data from the United States Western Telematic Inc. and United

Kingdom Brent using the two-step estimation procedure. The results revealed that there is a

cointegration relationship between spot and future prices of crude oil of the same grade, as well

as spot and future prices of different grades. Results further indicated that spot and future prices

are governed by the same set of fundamentals, such as the exchange rate of the US dollar, macro-

economic variables, and the demand and supply conditions, which are similar and interrelated for

crude oil in North American and European markets.

The relationship between female labour force participation (FLFP) and total fertility rate (TFR)

has received a lot of attention in the literature on demography and economics. A study of twenty-

eight countries from the Organisation for Economic Cooperation and Development (OECD) using

panel unit roots, panel cointegration and a panel Granger causality framework revealed a long-run

relationship between FLFP and TFR. This study found that there is either uni-directional long-

run Granger causality running from FLFP to the TFR or bi-directional Granger causality between

the two variables depending on how female labour participation rate is measured and the time

period. It was concluded that there is an inverse relationship between FLFP and TFR (Maslyuk

and Smyth, 2010).

2.4.2 Phillips-Ouliaris methods

Phillips-Ouliaris introduced two residual-based tests namely:

• the variance ratio test

• the multivariate trace statistics.

These residual-based tests are used in the same way as the unit root tests, but the data are the

residuals from the cointegrating regression. These tests seek to test a null hypothesis of no cointe-

gration against the alternative of the presence of cointegration using scalar unit root tests applied
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to the residuals. Phillips-Ouliaris methods are based on residuals (differences between the observed

and expected values) of the first order autoregression, AR(1), equation. The multivariate trace

statistics has the advantage over the variance ratio test in that it is invariant to normalisation, that

is, whichever variable is taken to be the dependent variable, the test will yield the same results

(Pfaff, 2006).

In the literature, there are no studies directly linked to the application of the Phillips-Ouliaris

cointegration test only. However, there are a few studies in which cointegration has been tested

using other techniques including the Phillips-Ouliaris methods. These studies will now be discussed.

The study by Cancer (1998) developed the asymptotic theory for residual-based tests and quasi-

likelihood ratio tests for cointegration under the assumption of infinite variance errors. He extended

the results of the Phillips-Ouliaris methods, which were derived under the assumption of square-

integrable errors. He also investigated whether the Phillips-Ouliaris methods are robust to infinite

variance errors. The results showed that, regardless of the index of stability α, the residual-based

tests are more robust to infinite variance errors than the likelihood ratio-based tests.

Theoretical models of pricing-to-market suggest that the profile of economic exposure may be

asymmetric between periods when the real exchange rate appreciates and is symmetric between

periods when it depreciates. This hypothesis was tested using time-series data on export prices for

eight commodities exported from the United Kingdom to the United States during the period 1981

to 1988 (Kanas, 1997). During this period, there was a long-term real depreciation of the pound

against the dollar from January 1985 up to April 1988, followed by a long-term real appreciation

from February 1985 to April 1988. Kanas (1997) tested for cointegration between the export price

of each commodity and the real exchange rate applying the Phillips-Ouliaris methods. The results

were generally in favour of this hypothesis.

The study by Choi (1994) of spurious regression and residual-based tests for cointegration when re-

gressors are cointegrated, analysed the asymptotic null distribution of residual-based cointegration

tests such as the Phillips’ Ẑα and the ADF tests when regressors are cointegrated in comparison

to the Phillips-Ouliaris methods.

The results showed that the null distributions of residual-based cointegration tests differed from

those derived from the use of the Phillips-Ouliaris methods. The practical implication of these
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results is that we need to test not only for the presence of a unit root for individual series, but

also for the presence of cointegrating vectors for the regressors prior to performing residual-based

tests for cointegration.

2.4.3 Johansen’s procedure

Johansen’s procedure builds cointegrated variables directly on maximum likelihood estimation

instead of relying on OLS estimation. This procedure relies heavily on the relationship between the

rank of a matrix and its characteristic roots. Johansen derived the maximum likelihood estimation

using sequential tests for determining the number of cointegrating vectors. His method can be seen

as a secondary generation approach in the sense that it builds directly on maximum likelihood

instead of partly relying on least squares. In fact, Johansen’s procedure is nothing more than

a multivariate generalisation of the Dickey-Fuller test. Consequently, he proposes two different

likelihood ratio tests namely

• the trace test

• the maximum eigenvalue test.

This procedure is a vector cointegration test method. It has the advantage over the Engle-Granger

and the Phillips-Ouliaris methods in that it can estimate more than one cointegration relationship,

if the data set contains two or more time series. In the literature, studies on Johansen’s procedure

include the following.

The ongoing debate among energy economists about the relationship between energy use and out-

put growth has led to the emergence of many views. One investigation on the causal interaction

between energy use and output growth for Canada was undertaken by Khalifa and Sakka (2004).

They used time series properties to develop a vector error-correction (VECM) model to test for

multivariate cointegration and Granger-causality. The empirical finds from this analysis indicated

that output growth, capital, labour and energy use share two common stochastic trends. In par-

ticular, output growth and energy use were found to be moving together towards a stable long-run

equilibrium relationship, that is, consistent with causality running in both directions.

Masih et al. (1996) used Johansen’s cointegration analysis to study the relationship between energy

use and gross domestic product (GDP) in a group of six Asian countries, including India, Pakistan,

Malaysia, Singapore, Philippines and Indonesia. The results indicated that there were cointegra-

tion relationships in energy use and GDP among countries like India, Pakistan and Indonesia.
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However, no cointegration was found in the case of Malaysia, Singapore and the Philippines. The

flow of causality was found to be running from energy to GDP in India and GDP to energy in

Pakistan and Indonesia.

Yang (2000) considered the causal relationship between energy use and GDP in Taiwan. Using

different measures of energy consumption, he found a bi-directional causality between energy and

the GDP. This result contradicts that of Cheng and Lai (1997), who found that there is a uni-

directional causal relationship from GDP.

Belloumi (2009) applied the Johansen’s cointegration procedure to examine the causal relationship

between per capita energy consumption (PCEC) and per capita gross domestic product (PCGDP)

for Tunisia during the 1971-2004 period. In order to test for Granger-causality in the presence

of cointegration among variables, a vector error-correction model (VECM) was used instead of a

vector autoregressive (VAR) model. His results indicate that the PCGDP and PCEC for Tunisia

are related by one cointegrating vector and there is a long-run bi-directional causal relationship

between the two series and a short-run uni-directional causality from energy to GDP. The source

of causation in the long-run was found to be the error correction terms in both directions. Hence,

an important policy implication resulting from this analysis is that energy can be considered as a

limiting factor to GDP growth in Tunisia. It was argued that Tunisia’s economy is energy depen-

dent and is relatively vulnerable to energy shocks.

Finally, Asufu (2000) tested the cointegration relationship between energy use and income in four

Asian countries using cointegration, Johansen’s procedure and error-correction analysis. He found

that cointegration runs from energy to income in India and Indonesia, and that there is a bi-

directional causality in Thailand and the Philippines.
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Chapter 3

Testing for cointegration

In this chapter we discuss the various methods of testing for cointegration which include

• the two-step estimation procedure developed by Engle and Granger in 1987

• the Phillips-Ouliaris residual-based tests

• the Johansen procedure which builds cointegrated variables directly on maximum likelihood

estimation instead of relying on OLS estimates.

3.1 The Engle-Granger method

Engle and Granger developed this crucial technique in 1987. This technique entails cointegrated

variables which are discussed at length including a proof of Granger’s representation theorem,

which connects the moving average, the autoregressive, and the error correcting representation for

cointegrated systems.

According to both statisticians, the steps for determining whether two integrated variables cointe-

grate of the same order are the following:

• pre-test each variable to determine its order of integration, and

• estimate the error-correction model.

If the integrated variables are found to be integrated to the same order, then it must be tested

whether these variables are cointegrated (Johansen, 1988) .
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3.1.1 Pre-test each variable

Pre-testing each variable aims at determining the order of integration of each variable. By defini-

tion, cointegration necessitates that two variables be integrated of the same order. This is done

using the Augmented Dickey-Fuller (ADF) unit root test to infer the number of unit roots (if any)

in each of the variables under investigation. The testing procedure for the ADF unit root test is

applied to the following model

∆yt = α+ βt+ γyt−1 +

ρ∑
j=1

δj∆yt−j + εit (3.1.1)

where α is a constant, β the coefficient on a time trend series, γ the coefficient of yt−1, ρ is the

lag order of the autoregressive process, ∆yt = yt− yt−1 are first differences of yt, yt−1 are lagged

values of order one of yt, ∆yt−j are changes in lagged values, and εit is the white noise.

Once the hypothesis of the unit root test is rejected, we estimate the long-run equilibrium rela-

tionship in the form of an OLS regression line

yt = β0 + β1xt + εt (3.1.2)

where β0 is the y- intercept, β1 is the slope, and εt is the error term.

The parameter estimates in equation 3.1.2 are estimated from

β̂1 =

∑
(xt − xt)(yt − yt)∑

(xt − xt)2
(3.1.3)

where xt and yt is the mean of xt and yt respectively.

The value of β0 is estimated from

β̂0 = yt − β̂1x. (3.1.4)

The estimated regression line is then given in the form

ŷ = β̂0 + β̂1x. (3.1.5)

If the variables cointegrate, an OLS regression equation 3.1.5 yields a “super-consistent” estimator

(Enders, 2004). This means that there is a strong linear relationship between the variables under

study. The strong linear relationship can be tested in either of the following ways.

(a) The value of β̂1 falls between 0.5 and 1.

(b) The plot of yt against xt shows coordinates appearing in an increasing or decreasing direction.
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In order to determine if variables cointegrate, we test for unit roots on the residual sequence in the

equation 3.1.2 using the ADF test. The residual sequence, denoted by εt is a series of estimated

values of the deviation from the long-run relationship. They are estimated from

εt = yt − ŷt (3.1.6)

where ŷt are values from the predicted equation 3.1.5. Testing for unit roots on residuals aims

at determining whether these deviations are stationary or not. If they are stationary, then the

series cointegrate. If the residuals are not stationary, there is no cointegration. The ADF test is

performed on the following model

∆ε̂t = a1ε̂t−1 + εt (3.1.7)

where ∆ε̂t are the estimated first differenced residuals, ε̂t−1 are the estimated lagged residuals, a1

is the parameter of interest representing the slope of the line and εt are errors obtained in fitting

both differenced residuals.

Since the εt sequences are residuals from a regression equation, there is no need to include the

intercept term in equation 3.1.7. To test the hypothesis on a1 to determine whether the residuals

are stationary, we follow the following steps.

(i) Set both the null and alternative hypothesis as

H0 : a1 = 0 (3.1.8)

H1 : a1 < 0 (3.1.9)

(ii) Determine the test statistic using

Fε̂t =
â1

SE(â1)
(3.1.10)

where the value of SE(â1) is the standard error of â1, the estimate of a1.

(iii) Compare the calculated test statistic in 3.1.10 with the critical value from the Dickey-Fuller

table to reject or not to reject the null hypothesis.

(iv) If Fε̂t is greater than the critical value, we do not reject the null hypothesis, H0.

The rejection of H0 implies that residuals are stationary. This further implies that the variables

under study are cointegrated.

The next step is to estimate the error correction model (ECM) which will be done in the next

section.
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3.1.2 Estimate the error correction model

An error correction model is defined as a dynamic model in which the movement of a variable in

any period is related to the previous period’s gap from the long-run equilibrium. Although it may

be possible to estimate the long-run or cointegrating relationship, yt = βxt + εt economic systems

are rarely in equilibrium, as they are affected by institutional and/or structural changes that might

be temporary or permanent. For example, extra income in the form of a birthday bonus may raise

someone’s expenditure pattern in one or two months and then his/her expenditure gradually goes

back to equilibrium. Since equilibrium is rarely observed, the short-run evolution of variables

(short-run dynamic adjustment) is important. A simple dynamic model of a short-run adjustment

model is given by

yt = α0 + γ0xt + γ1xt−1 + α1yt−1 + εt (3.1.11)

where yt is the dependent variable, xt is the independent variable, yt−1 and xt−1 are lagged values

of yt and xt respectively, α0, α1, γ0, γ1 are parameters, and εt is the error term assumed to be

εt ∼ iN(0, δ2).

The problems associated with the use of the short-run model are the following:

• Multicollinearity: This is a situation in which two or more independent variables in a multiple

regression model are highly correlated.

• Spurious correlation: This is a situation in which two variables have no causal connection,

yet it may be inferred that they do as a result of a certain third unseen factor.

These problems are solved by estimating the first differences of equation 3.1.11 to obtain

∆yt = α0 + γ0∆xt−1 + γ1∆xt−1 + α1∆yt−1 + εt. (3.1.12)

This, however, introduces problems of

• loss of information about the long-run equilibrium

• the economic theory is differenced away.

The possible solution is to adopt the error-correction mechanism (ECM) formulation of the dy-

namic structure. We set up the ECM as follows:

yt = α0 + γ0xt + γ1xt−1 + α1yt−1 + εt. (3.1.13)

Subtracting the term yt on both sides leads to

∆yt = α0 + γ0xt + γ1xt−1 − (1− α1)yt−1 + εt. (3.1.14)

17



Subtracting the term γ0xt−1 on both sides, equation 3.1.14 becomes

∆yt − γ0xt−1 = α0 + γ0xt − γ0xt−1 + γ1xt−1 − (1− α1)yt−1 + εt, (3.1.15)

∆yt = α0 + γ0∆xt + (γ0 + γ1)xt−1 − (1− α1)yt−1 + εt. (3.1.16)

Reparameterisation reduces equation 3.1.16 to

∆yt = γ0∆xt − (1− α1)

[
yt−1 −

α0

(1− α1)
− (γ0 + γ1)

(1− α1)
xt−1

]
+ εt. (3.1.17)

Taking β0 = α0

(1−α1)
and β1 = (γ0+γ1)

(1−α1)
the equation 3.1.17 becomes

∆yt = γ0∆xt − (1− α1) [yt−1 − β0 − β1xt−1] + εt (3.1.18)

which is the ECM with −(1 − α1) as the speed of adjustment, and εt−1 = yt−1 − β0 − β1xt−1 as

the error-correction mechanism which measures the distance of the system away from equilibrium.

The coefficient of εt−1 should be negative in sign in order for the system to converge to equilibrium.

The size of the coefficient −(1−α1) is an indication of the speed of adjustment towards equilibrium

in that

• small values of −(1 − α1), tending to −1, indicate that economic agents remove a large

percentage of disequilibrium in each period

• larger values, tending to 0, indicate that adjustment is slow

• extremely small values, less than −2, indicate an overshooting of economic equilibrium

• positive values would imply that the system diverges from the long-run equilibrium path.

The ECM satisfies the assumptions of classical normal linear regression model (CNLRM). These

assumptions include:

• A linear regression model.

• Residuals are normally distributed.

• There is no serial correlation among residuals.

• The number of observations must not exceed the number of parameters to be estimated.

• There is no perfect multicollinearity.

This means that diagnostic tests have to be conducted on the error-correction mechanism in order

to determine whether any of these assumptions have not been violated. These tests include
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• a normality test

• a heteroscedasticity test

• a serial correlation test

• a misspecification test.

3.1.2.1 Normality test

We use the Jacque-Bera test to determine whether the ECM is normally distributed. This test

measures the difference in kurtosis and skewness of a variable compared to those of the normal

distribution (Jarque and Bera, 1980).

In the Jacque-Bera test, we set the null and alternative hypothesis as follows:

H0: The variable is normally distributed.

H1: The variable is not normally distributed.

The test statistic is

JB =
N − k

6

[
S2 +

(K − 3)2

4

]
(3.1.19)

where N is the number of observations, k is the number of estimated parameters, S is the skewness

of a variable, and K is the kurtosis of a variable.

We reject the null hypothesis if the p-value ≤ level of significance, or if the JB > χ2(2).

3.1.2.2 Heteroscedasticity test

Heteroscedasticity results from a sequence of random variables having different variances. It implies

that during regression analysis there is non-consistent variance. Heteroscedasticity is tested using

the Langrange multiplier, also known as Engle’s Arch LM test (Engle, 1982). The test procedure

is as follows:

H0: There is no heteroscedasticity.

H1: There is heteroscedasticity.

The test statistic is

LME = nR2 (3.1.20)

where n is the number of observations, and R2 is the coefficient of determination of the augmented

residual regression.

We reject the null hypothesis if the p-value ≤ level of significance and conclude that there is

heteroscedasticity.
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3.1.2.3 Serial correlation test

Serial correlation is cross-correlation of a signal (white noise) with itself. It may be caused by

- nonstationarity of dependent and explanatory variable

- data manipulation (averaging, interpolation and extrapolation)

- incorrect functional form.

Ljung and Box (1978) suggested the use of Ljung-Box test to test the assumption that the residuals

contain no autocorrelation up to any order k. The test procedure is as follows:

H0: There is no autocorrelation up to order k.

H1: Autocorrelation exists up to order k.

The test statistic is

QLB = T (T + 2)

k∑
j=1

r2j
T − j

(3.1.21)

where T is the number of observations, k is the highest order of autocorrelation for which to test,

and r2j is the jth autocorrelation.

We reject the null hypothesis if the p-value ≤ level of significance and conclude that autocorrelation

exists up to order k.

The major drawback of this test is deciding which lag order (k) to use. Ljung and Box (1978)

suggested the maximum number of lags to use should be T
1
3 where T is the number of observations.

3.1.2.4 Misspecification test

Misspecification is as the result of

- incorrect functional form

- inclusion of irrelevant variables

- exclusion of relevant variables.

The consequences of a misspecified regression are

- the residuals are not normally distributed

- there is serial correlation

- regression is inconsistent with actual working of the economy
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- the parameter estimates are not robust to samples used.

To test for misspecification, Ramsey (1969) suggested the use of Ramsey’s reset test. This is a like-

lihood test that compares the likelihood function of original regression to an augmented regression.

3.1.3 Limitations of the Engle-Granger method

Although the Engle and Granger procedure is easily implemented, it has several defects:

• The estimation of the long-run equilibrium regression requires that the researcher place one

variable on the right-hand side as the dependent variable and use the other variable on the

left-hand side as the independent variable. For example, in the case of two variables, it is

possible to run the Engle-Granger method for cointegration by using the residuals from either

of the following two “equilibrium” regression equation.

yt = β10 + β11xt + ε1t (3.1.22)

or

xt = β20 + β21yt + ε2t (3.1.23)

As the sample size grows infinitely large, the theory indicates that the test for a unit root in

the ε1t sequence becomes equivalent to the test for a unit root in the ε2t sequence. Unfortu-

nately, the properties of large samples on which this result is derived may not be applicable

to the sample sizes usually available to economists. In many cases available sample sizes are

smaller than the required sample size on which the theory is based.

• The two-step estimation procedure is based on the principle that, irrespective of which vari-

able is chosen for normalisation, the same results will be attained if variables are interchanged.

In practice, it is possible to find that one regression indicates that the variables are cointe-

grated, whereas reversing the order indicates no cointegration. For example, in investigating

the relationship between income and expenditure, if income is placed on the left-hand side as

the dependent variable, it is possible to conclude that income and expenditure cointegrate,

but the reverse is not necessarily true. This is a very undesirable feature of the procedure,

because the test for cointegration should be invariant to the choice of variable selected for

normalisation.

• Engle-Granger’s two-step estimation procedure relies on a two-step estimator. Recall that

the first step in the two-step estimation method of pre-setting each variable to determine
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the order of integration generates residual series ε̂t used in the second step. This is used to

estimate the regression equation of the form ∆ε̂t = a1ε̂t−1+εt as in equation 3.1.7. Thus, the

coefficient a1 is obtained by estimating a regression equation using residuals from another

regression. This implies that any error introduced in the first step is carried over into the

second step, making the results unreliable.

Fortunately, several methods have been developed that could avoid these defects. These include the

Phillip-Ouliaris methods, Johansen’s procedure, and the Stock and Watson maximum likelihood

estimators. These tests allow the researcher to test for restricted versions of cointegrating vector(s)

and the speed of adjustment parameters. They rely heavily on the relationship between the rank

of a matrix and its characteristic roots.

3.2 Phillips-Ouliaris methods

In section 3.1, it has been shown that the second step of the Engle-Granger’s method is an ADF

test applied to the residuals of the long-run equation. Phillips and Ouliaris introduced two residual-

based tests, namely the variance ratio test and the multivariate trace statistic (Phillips-Ouliaris,

1988). The latter of these tests has the advantage that it is invariant to normalisation, that

is, for whichever variable is taken to be the dependent variable, the test will yield the same

results. These tests are used in the same way as unit root tests but the data are residuals from

cointegrating regressions. They are implemented on matrices or multivariate series and are both

based on residuals of the first order vector autoregression equation

zt = Π̂zt−1 + ξ̂t (3.2.1)

where zt is partitioned as zt = (yt,x
′
t) with a dimension of xt equal to (m = n + 1), Π̂ is a

regression coefficient, and n is equal to the number of variables under study.

3.2.1 The variance ratio test

The variance ratio statistic P̂u is defined as

P̂u =
T ω̂11.2

T−1
∑T
t=1 û

2
t

(3.2.2)

where ût are the residuals of the long-run regression equation

yt = β̂xt + ût. (3.2.3)
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The conditional variance ω̂11.2 is derived from the conditional matrix Ω̂ of ξ̂, that is the residuals

of equation 3.2.1, and is defined as

ω̂11.2 = ω̂11 − ω̂′21Ω̂−122 ω̂21. (3.2.4)

The covariance matrix Ω̂ has been partitioned as

Ω̂ =

 ω̂11 ω̂21

ω̂21 Ω̂22

 (3.2.5)

and is estimated as

Ω̂ = T−1
T∑
t=1

ξ̂′tξ̂t + T−1
L∑
s=1

ωsl

T∑
t=1

(ξ̂tξ̂t−s + ξ̂t−sξ̂
′
t) (3.2.6)

with weighting function ωsl = (1− s)/(l + 1).

A variance ratio test is a residual-based test that seeks to test a null hypothesis of no cointegration

using scalar unit roots applied to equation 3.2.3. The null hypothesis is formulated in terms of the

conditional variance parameter ω11.2 as follows:

H0 : ω11.2 6= 0 (3.2.7)

against

H1 : ω11.2 = 0. (3.2.8)

Therefore, the variance ratio test measures the size of the residual variance from the cointegrating

regression of yt on xt versus T−1
∑T
i=1 û

2
t against that of a direct estimate of the population

conditional variance of yt, given xt versus ω̂11.2. If cointegration exists between variables, the

variance ratio should stabilise asymptotically, whereas if a spurious (nonsense) relationship is

present, it would be reflected in the cointegrating regression and the variance ratio should diverge.

3.2.2 The multivariate trace statistic

The multivariate trace statistic, denoted as P̂z is defined as

P̂z = Ttr(Ω̂M−1zz ) (3.2.9)

with T is the number of observations, M−1zz = t−1
∑T
t=1 ztz

′
t, and Ω̂ is estimated in equation 3.2.6.

The advantage of the Engle-Granger two-step procedure is its ease of implementation. However,

its results are dependent on how the long-run equation is specified. In some cases it might be easier

23



to identify which variable enters on the left as the dependent variable. For example, in accessing

the relationship between income and expenditure, it is easy to say that expenditure depends on

income. Unfortunately, this is only true in some cases. It is therefore advisable to employ the

cointegrating test of Phillips-Ouliaris, which yields the same results irrespective of the variable

which enters as the dependent variable, that is, they are invariant to normalisation.

One deficiency of the two methods (two-step procedure and Phillips-Ouliaris) is that one can only

estimate a single cointegrating relationship. However, if one deals with more than two time series,

it is possible that more than one cointegrating relationship will exist, which calls for the use of

vector cointegration techniques like Johansen’s procedure.

3.2.3 Limitation of Phillips-Ouliaris methods

This method can only estimate single cointegrating relationships. If one deals with more than two

time series, it is possible that more than one cointegrating relationship exists. The remedy to this

limitation is to use Johansen’s procedures.

3.3 Johansen’s procedure

Johansen’s method takes as a starting point the vector autoregression (VAR) of order p given by

Xt = Π1Xt−1 + Π2Xt−2 + ............+ ΠpXt−p + ut (3.3.1)

where Xt is an n × 1 vector of variables that are integrated of order one, that is, I(1), ut is an

n×1 vector of innovations while Π1 through Πp are m×m coefficient matrices. Reparameterising

the equation 3.3.1, that is, subtracting Xt−1 on both sides, leads to

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + ........+ Γp−1∆Xt−p+1 −ΠXt−p + ut (3.3.2)

where Γ1 = Π1 − I, Γ2 = Π2 − Γ1, Γ3 = Π3 − Γ2 and Π = I−Π1 −Π2 − ...−Πp. The matrix

Π determines the extent to which the system is cointegrated and is called the impact matrix.

Returning to the general reparameterised equation 3.3.2, if we consider the first equation of the

system as:

∆X1t = γ′11∆Xt−1 + γ′12∆Xt−2 + .....+ γ′1p−1∆Xt−p+1 −Π′1Xt−p + u1t (3.3.3)

where γ′ij is the first row of Γj , j = 1, 2, ....p− 1, and Π′1 is the first row of Π.

Here ∆X1t is stationary, that is, I(0), j = 1, 2, ..p− 1 are all I(0), ut is assumed to be I(0) and so
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for a meaningful equation, Π′1Xt−p must be stationary, I(0).

If none of the components of Xt are cointegrated, they must be zero. On the other hand, if they are

cointegrated, all the rows of Π must be cointegrated but not necessarily distinct. This is because

the number of distinct cointegrating vectors depends on the row rank of Π (Harris, 1995).

The matrix Π is of order m × m. If it has rank m, that is, m number of linearly independent

rows or columns, then it forms a basis for m-dimensional vector space. This implies that all m× 1

vectors can be generated as linear combinations of its row. Any of these linear combination of the

rows would lead to stationarity, meaning that Xt−p has stationary components if the rank of Π is

r < m.

We may write Π = βα′ for suitable m× r matrices, β and α. Here

α′ =



α′1

α′2

.

.

.

α′r


(3.3.4)

β =
[
β1, β2. . . . βr

]
(3.3.5)

Then ΠXt−p = βα′Xt−p and all linear combinations of α′Xt−p are stationary. It should be noted

that we have to perform the ADF test to access the order of integration of each variable before

applying Johansen’s procedure. Johansen’s procedure estimates the VAR subject to Π = βα′

for various values of r number of cointgrating vectors, using the maximum likelihood estimator

assuming ut ∼ iidN(0,Σ). His estimate can thus be rewritten as

∆Xt = Γ1∆Xt−1 + Γ2∆Xt−2 + .....+ Γp−1∆Xt−p+1 − βα′Xt−p + ut. (3.3.6)

The question is, how do we detect the number of cointegrating vectors?

Johansen proposed two likelihood ratio tests namely:

• The trace test

• The maximum eigenvalue.
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3.3.1 The trace test

The trace test tests the null hypothesis of r cointegrating vectors against the alternative hypothesis

of n cointegrating vectors. The test statistic is given by

trace = −T
n∑

i=r+1

ln(1− λ̂i). (3.3.7)

3.3.2 The maximum eigenvalue

The maximum eigenvalue test, on the other hand, tests the null hypothesis of r cointegrating

vectors against the alternative hypothesis of (r+ 1) cointegrating vectors. Its test statistic is given

by

max = −T (1− λ̂r+1) (3.3.8)

where T is the sample size, and λ̂i is the ith largest canonical correlation.

3.3.3 Limitation of Johansen’s procedure

This method assumes that the cointegrating vector remains constant during the period of study.

In reality, it is possible that the long-run relationships between the underlying variables change.

The reason for this might be technological progress, economic crisis, changes in people’s prefer-

ences and behaviour accordingly, policy or regime alteration and institutional development. This

is especially the case if the sample period is long.

To take this into account, Gregory and Hasen (1996) have introduced tests for cointegration with

one and two unknown structural break(s). However, such tests do not form part of this study.
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Chapter 4

Testing Cointegration Results for

the Raotbl3 data set

4.1 Introduction

In this chapter we applied the Engle-Granger method, the Phillip-Ouliaris methods and Johansen’s

procedure to test for the existence of cointegrating relationships in the Raotbl3 data set using sta-

tistical software R. This data set contains the time series used by Holden and Perman (1994).

In this study the Raotbl3 data set is included as Appendix A. More details about the data are

provided in the data appendix of a book by Bhaskara (1994).

Three time series and three dummy variables are given in this data set. The three dummies are

as a result of structural changes such as strikes, wars and natural disasters that did not make it

possible to capture data in specific time periods. Data frames are quarterly data (times series

objects) from the United Kingdom starting in 1966:4 (1966, April) until 1991:2 (1991, February)

for the following six variables all transformed to natural logarithms to reduce variances:

i. (lc) Real consumption expenditure.

ii. (li) Real income.

iii. (lw) Real wealth.

iv. dd682 Dummy variable for 68:2.

v. dd792 Dummy variable for 79:2.
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vi. dd883 Dummy variable for 88:3.

The three time series (lc, li and lw) above are defined from

(i) CAAB-seasonally adjusted real consumers’ expenditure in millions of pounds, 1985 prices

(ii) AIIX-seasonally adjusted nominal consumers’ expenditure in millions of pound, current prices

(iii) AIIW-seasonally adjusted nominal personal disposable income in millions of pounds, current

prices

The three time series can be found in Table 5 of Economic Trends Annual Supplement (1992).

The wealth series is defined as seasonally adjusted gross personal financial wealth in millions of

pounds, current prices, and is compiled from several editions of Financial Statistics in order to

obtain a consistent series.

Constant price series for income and wealth for the year 1985 were obtained from the current price

series using the implicit consumers’ expenditure deflator (AIIX/CAAB). The variables lc, li and

lw are the natural logarithm of the constant price consumption, income and wealth series. The

dummy variables are defined as follow:

(i) DD682 = 1 in 1968:2, -1 in 1968:3 and 0 otherwise,

(ii) DD792 = 1 in 1979:2, -1 in 1979:3 and 0 otherwise,

(iii) DD883 = 0 up to and including 1988:2 and 1 thereafter.

4.2 Descriptive summary

The following commands import and display the data set described above in a statistical package

R. The data set is stored under the file name “Raotbl3′′.

> library(urca)

> data(Raotbl3)

> attach(Raotbl3)

>Raotbl3

A descriptive summary of the Raotlb3 data set in natural logarithm is provided.
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> summary(Raotbl3)

lc li lw

Min. :10.48 Min. :10.58 Min. :12.72

1st Qu.:10.69 1st Qu.:10.78 1st Qu.:12.92

Median :10.77 Median :10.90 Median :13.06

Mean :10.79 Mean :10.89 Mean :13.14

3rd Qu.:10.89 3rd Qu.:11.00 3rd Qu.:13.30

Max. :11.14 Max. :11.24 Max. :13.77

Figure 4.1: The consumption, income and wealth time series plot.
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From figure 4.1, the plots of the consumption and income series do not vary about a fixed level,

indicating nonstationarity in the mean but not in the variance, while the plot of the wealth series

varies about a fixed level with constant variance, indicating nonstationarity in both the mean and

the variance. This can be confirmed after testing for unit roots.
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Table 4.1 below provides a descriptive summary of the data set.

Table 4.1: Descriptive summary

Variable Minimum Median Mean Maximum

lc 10.48 10.77 10.79 11.14

li 10.58 10.90 10.89 11.24

lw 12.72 13.06 13.14 13.77

In all three variables, the means and the medians are not far away from each other. This probably

indicates that the series in the data set are slightly symmetric. However, this does not indicate

normality. A test for normality is performed.

4.3 Test for normality

The null and the alternative hypothesis of this set are the following:

H0 : The series in the data set are normally distributed.

H1 : The series in the data set are not normally distributed.

Using the Shapiro test, we test for normality of the variables to see if the series in the data set are

well modelled by a normal distribution using the following R command:

> shapiro.test(lc)

Shapiro-Wilk normality test

data: lc

W = 0.9458, p-value = 0.0004748

> shapiro.test(li)

Shapiro-Wilk normality test

data: li

W = 0.9618, p-value = 0.005767

> shapiro.test(lw)

Shapiro-Wilk normality test

data: lw

W = 0.9043, p-value = 2.517e-06

Table 4.2 provides the summary results of the normality test using Shapiro-Wilk test.

From the above R command, the p-values are very small which means the null hypothesis of nor-

mality can be rejected at the 1% level of significance for all series. This implies that the time series
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Table 4.2: Normality test on the Raotbl3 data set

Variable Shapiro-Wilk p-value Decision

lc 0.9458 4.475× 10−4 Reject the null hypothesis

li 0.9618 5.767× 10−3 Reject the null hypothesis

lw 0.9043 2.517× 10−6 Reject the null hypothesis

of all the variables are not normally distributed.

In the next command, we test for the presence of unit roots in each of the series (consumption,

income and wealth) using the ADF unit root test. Testing for unit root implies testing for nonsta-

tionarity in the series.

4.4 Augmented Dickey-Fuller (ADF) test for unit roots

We pre-test each variable to determine the order of integration using the ADF unit root test. This

is because cointegration necessitates that variables be integrated of the same order. By determining

the order of integration, we use the function ur.df in R on each variable. For each variable tested

for unit root, we set both the null and alternative hypotheses as

H0 : δ = 0 (4.4.1)

H1 : δ < 0 (4.4.2)

After inspection of the behaviour of the ACF plot for the lc series, it was found that its residuals

become white noise after lag five. This means that the ACF plot for the lc series cuts off at lag

five. Since this series shows an increasing trend in figure 4.1, we test the ADF test on the trend

model and lag five as follows:

> lc.ct=ur.df(lc,lags=5,type=’trend’)

> summary(lc.ct)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8782632 0.3723647 2.359 0.0206 *

z.lag.1 -0.0837027 0.0355904 -2.352 0.0210 *

tt 0.0005533 0.0002246 2.463 0.0158 *

z.diff.lag1 -0.0505981 0.1040693 -0.486 0.6281
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z.diff.lag2 0.1501023 0.1027518 1.461 0.1478

z.diff.lag3 0.2411832 0.1036023 2.328 0.0223 *

z.diff.lag4 -0.0810911 0.1078641 -0.752 0.4543

z.diff.lag5 0.2129158 0.1067675 1.994 0.0493 *

---

Multiple R-squared: 0.1993, Adjusted R-squared: 0.1333

Value of test-statistic is: -2.3518 3.6798 3.057

We are fitting the ADF model

Yt = β1 + β2t+ δYt−1 + αi

m∑
i=1

∆Yt−i + εt. (4.4.3)

In terms of the coefficient estimate, the above model becomes

lct = 0.8782632+0.0005533tt−0.0837027lct−1−0.0505981∆lct−1+ . . .+0.2129158∆lct−5 (4.4.4)

where lct is the consumption function series, tt is the trend, lct−1 are the lagged values of lc

and ∆lct−1 are the first difference lagged values of the consumption function. The parameter of

interest in equation 4.4.4 is the estimated coefficient of lct−1 which is −0.0837027. The calculated

test statistic −2.3518 is derived from

Fτ =
δ̂

SE(δ̂)
=
−0.0837027

0.0355904
= −2.3518. (4.4.5)

As extracted from R, the critical values for the unit root test are given in table 4.3.

Table 4.3: Critical values for the unit root test

1% 5% 10%

τ −4.04 −3.45 −3.15

α1 6.50 4.88 4.16

α2 8.73 6.49 5.47

Since the calculated test statistic −2.3518, falls in the non-rejection region, that is, to the right

of the τ(tau) critical values, we cannot reject the null hypothesis for presence of unit roots at the

10% level of significance. This means that the consumption series contains a unit root.
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Figure 4.2: A plot of ADF unit root test for consumption series
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Figure 4.2 shows a plot of the ADF unit root test for the consumption series. From this plot the

residuals appear to vary about a fixed level. Time series that exhibit this phenomenon are said to

be nonstationary in the mean but not in the variance. This confirms that the consumption series

contains a unit root.

The ADF test for unit roots in real income (li) and real wealth (lw) respectively can be obtained

from the following commands:

> lic=ts(li)

> lcc=ur.df(lic, lags=5, type=’trend’)

> summary(lcc)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5208232 0.6263415 2.428 0.0173 *

z.lag.1 -0.1434285 0.0592676 -2.420 0.0177 *

tt 0.0009068 0.0003671 2.470 0.0155 *

z.diff.lag1 -0.0697724 0.1097974 -0.635 0.5268

z.diff.lag2 0.1145049 0.1118766 1.023 0.3090

z.diff.lag3 -0.0248040 0.1098202 -0.226 0.8219
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z.diff.lag4 0.2221217 0.1090673 2.037 0.0448 *

z.diff.lag5 0.0864713 0.1089450 0.794 0.4296

-----

Multiple R-squared: 0.1359, Adjusted R-squared: 0.06477

Value of test-statistic is: -2.42 4.4181 3.0514

> kl=ts(lw)

> kl2=ur.df(kl, lags=5, type=’trend’)

> summary(kl2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3774736 0.2591340 1.457 0.1489

z.lag.1 -0.0302509 0.0203009 -1.490 0.1399

tt 0.0004702 0.0002252 2.088 0.0398 *

z.diff.lag1 0.1644410 0.1067375 1.541 0.1271

z.diff.lag2 -0.0001526 0.1089781 -0.001 0.9989

z.diff.lag3 0.0465937 0.1099422 0.424 0.6728

z.diff.lag4 -0.0509364 0.1163995 -0.438 0.6628

z.diff.lag5 0.2179245 0.1138548 1.914 0.0590

Multiple R-squared: 0.1247, Adjusted R-squared: 0.0526

Value of test-statistic is: -1.4901 1.7591 2.207

Table 4.4: Summary of the ADF test for unit root in the variables (with a trend and intercept)

Variable ADF test statistic Decision

Consumption series (lc) −2.3518 Fail to reject the null hypothesis

Real income (li) −2.4200 Fail to reject the null hypothesis

Real wealth (lw) −1.4901 Fail to reject the null hypothesis

The ADF critical value for unit root at the 10% level of significance is −3.15. From table 4.4,

it can be deduced that the three variables are nonstationary, each contain at least one unit root,

that is, they are integrated of order one, I(1). We now test whether the integration is of the same

order.
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4.5 Augmented Dickey-Fuller(ADF) test for the order of

integration

Here we test whether the series is possible I(2), that is, whether they contain a second order of

integration. This test is achieved by supplying the differenced series in the ur.df R function to test

for presence of unit roots.

Figure 4.3: A plot of 1st differences of consumption, income and wealth series
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From figure 4.3 it can be observed that the first difference series for the Raotbl3 data set are

stationary both in the mean and the variance. This is because they fluctuate about the zero mean

and exhibit constant variance. Since the ACF and the PACF plots cut off at lag five, we test the

ADF test for the possible second order of integration using the no trend model and five lags as

follows:

> lc2.ct=ur.df(lc2,type="none", lags=5)

> summary(lc2.ct)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.28585 0.14698 -1.945 0.05507 .

z.diff.lag1 -0.69758 0.15368 -4.539 1.82e-05 ***
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z.diff.lag2 -0.48591 0.15577 -3.119 0.00247 **

z.diff.lag3 -0.19769 0.15427 -1.281 0.20348

z.diff.lag4 -0.28052 0.13604 -2.062 0.04222 *

z.diff.lag5 -0.05004 0.09784 -0.511 0.61032

Residual standard error: 0.01374 on 90 degrees of freedom

Multiple R-squared: 0.579, Adjusted R-squared: 0.5602

F-statistic: 30.94 on 4 and 90 DF, p-value: 3.366e-16

Value of test-statistic is: -1.945

Figure 4.4: A plot of 1st difference unit root test for the consumption series
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Figure 4.4 exhibits a pattern of series stationary in the mean and in the variance. To verify this

assertion we conduct a formal stationarity test (ADF test) on the residuals of the consumption

series.

For the differenced real income and differenced real wealth respectively, the following commands

are used:

> li2=diff(li)

> li2.ct=ur.df(li2,type="none", lags=5)

> summary(li2.ct)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.4853 0.2083 -2.329 0.02219 *
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z.diff.lag1 -0.5978 0.2040 -2.931 0.00433 **

z.diff.lag2 -0.5024 0.1993 -2.521 0.01355 *

z.diff.lag3 -0.5068 0.1773 -2.858 0.00535 **

z.diff.lag4 -0.2716 0.1532 -1.774 0.07967 .

z.diff.lag5 -0.1631 0.1052 -1.551 0.12467

Residual standard error: 0.01859 on 90 degrees of freedom

Multiple R-squared: 0.577, Adjusted R-squared: 0.5582

Value of test-statistic is: -2.3292

> lw2=diff(lw)

> lw2.ct=ur.df(lw2,type="none", lags=5)

> summary(lw2.ct)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.51732 0.19326 -2.677 0.0089 **

z.diff.lag1 -0.30022 0.19100 -1.572 0.1197

z.diff.lag2 -0.28261 0.17803 -1.587 0.1161

z.diff.lag3 -0.23015 0.16523 -1.393 0.1672

z.diff.lag4 -0.26658 0.14166 -1.882 0.0632 .

z.diff.lag5 -0.05817 0.11911 -0.488 0.6265

Residual standard error: 0.04313 on 90 degrees of freedom

Multiple R-squared: 0.3959, Adjusted R-squared: 0.3691

Value of test-statistic is: -2.6769

The critical values for the ADF test for the order of integration are shown in the table 4.5 below.

Table 4.5: Critical values for the ADF order of integration test

1% 5% 10%

τ1 -2.6 -1.95 -1.61

Table 4.6 summarises the results of the ADF test for the order of integration.
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Table 4.6: Summary for ADF test for unit roots in variables (in 1st difference form)

Variable test statistic Decision

Differenced Consumption series (∆lc) −1.9450 Reject the null hypothesis

Differenced Real income (∆li) −2.3292 Reject the null hypothesis

Differenced Real wealth (∆lw) −2.6769 Reject the null hypothesis

The ADF critical value at the 10% level of significance is −1.61. Based on the ADF test, the first

difference variables are stationary, which implies that variables lc, li and lw are integrated of order

one, I(1). Now we can test for the existence of a long-run relationship between the variables, that

is, cointegration.

4.6 Tests for cointegration

There are various techniques to test for cointegration. The following techniques, the Engle-Granger

method, the Phillips-Ouliaris methods and Johansen’s procedure, were applied to the Raotbl3 data

set.

4.6.1 Engle-Granger method

In R, the Engle-Granger two-step procedure is implemented in R using the following commands.

> lc=ts(lc,start=c(1966,4), end=c(1991,2), frequency=4)

> li=ts(li,start=c(1966,4), end=c(1991,2), frequency=4)

> lw=ts(lw,start=c(1966,4), end=c(1991,2), frequency=4)

>ukcons=window(cbind(lc,li,lw),start=c(1962,2),end=c(1991,2))

> lc.eq=summary(lm(lc~li+lw, data =ukcons))

> lc.eq

> li.eq=summary(lm(li~lc+lw, data =ukcons))

> li.eq

> lw.eq=summary(lm(lw~li+lc, data =ukcons))

> lw.eq

To implement the Engle-Granger method on Raotbl3 data set, we begin by regressing the consump-

tion, income and wealth series on each other and then assess the model fit. If variables cointegrate,

the resulting OLS regression yields a “super-consistent” estimator of the cointegrating parameters.
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By this we mean that there is a very strong relationship between the estimated parameters. Tak-

ing the consumption series as the dependent variable and the other (income and wealth) as the

independent variables, we yield the following regression equation

lc = −0.178458 + 0.910971li+ 0.079761lw. (4.6.1)

Call:

lm(formula = lc ~ li + lw, data = ukcons)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.178458 0.103491 -1.724 0.088 .

li 0.910971 0.013457 67.697 <2e-16 ***

lw 0.079761 0.007764 10.274 <2e-16 ***

Multiple R-squared: 0.9918, Adjusted R-squared: 0.9916

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The p-values of the independent variables are very small (2× 10−16); this means that these regres-

sion coefficients are statistically significant at the 0.001 level of significance. The R-squared value is

0.9918, meaning that 99.18% of the variations in the consumption series are explained by changes

in income and wealth series which reflects the true real-life situation. When income and wealth

series are taken to be the dependent variables respectively, the following regression equations are

obtained:

li = 0.302998 + 1.075667lc− 0.077579lw, (4.6.2)

lw = 1.0681− 5.4625li+ 6.6315lc. (4.6.3)

It is interesting to see that there is a negative relationship between income and wealth, meaning

that having income (high or low) does not necessarily mean that you are wealthy. To determine if

the variables actually cointegrate, we test whether the residuals from the regression relationship(s)

are stationary. To extract and store the residuals of the regression equations, we use the following

commands:

> error.lc=ts(resid(lc.eq),start=c(1967,2),end=c(1991,2),frequency=4)

> error.li=ts(resid(li.eq),start=c(1967,2),end=c(1991,2),frequency=4)

> error.lw=ts(resid(lw.eq),start=c(1967,2),end=c(1991,2),frequency=4)

The residuals of these three long-run relationships are stored as objects error.lc, error.li and

error.lw in R respectively. When we plot the residuals error.lc in figure 4.5 we observe that they

are stationary both in mean and variance.
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Figure 4.5: A plot of ADF unit root test on residuals for the consumption series
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From the plot it is observed that all the lags are insignificant (within the confidence bound), we

therefore test the none trend with zero lags ADF test on residuals as follows:

> ci.lc=ur.df(error.lc,lags=0,type=’none’)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.62472 0.09605 -6.504 3.63e-09

---

Multiple R-squared: 0.3427, Adjusted R-squared: 0.3286

Value of test-statistic is: -6.504

> ci.li=ur.df(error.li,lags=0,type=’none’)

> summary(ci.li)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.62593 0.09644 -6.49 3.87e-09 ****

---

Multiple R-squared: 0.3395, Adjusted R-squared: 0.3253

Value of test-statistic is: -6.49

> ci.lw=ur.df(error.lw,lags=0,type=’none’)

> summary(ci.lw)

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.21469 0.07911 -2.714 0.00793 **

z.diff.lag -0.32469 0.09841 -3.299 0.00137 **

Multiple R-squared: 0.2472, Adjusted R-squared: 0.231

Value of test-statistic is: -2.7137

In performing the ADF test on residuals we are actually fitting the following model

∆ε̂t = a1ε̂t−1 + εt (4.6.4)

where εt is the residual from the long-run regression relationship, and a1 is the estimated regression

coefficient of the lagged residuals from the long-run relationship, which is the parameter of interest.

The null and alternative hypotheses are set as

H0 : a1 = 0 (4.6.5)

H0 : a1 < 0 (4.6.6)

If we cannot reject the null hypothesis in equation 4.6.5, we conclude that the residuals contain a

unit root and, hence the variables do not cointegrate. Instead, rejection of the null hypothesis in

equation 4.6.5 above implies that residuals are stationary, hence the variables cointegrate.

As extracted from Hamilton (1994) the critical values for the test are given in table 4.7.

Table 4.7: Critical values of ADF test for residuals

1% 5% 10%

τ −4.31 −3.77 −3.45

Table 4.8 summarises the ADF test results on residuals of the regression equation.

Table 4.8: Engle-Granger cointegration test

ADF test statistic Results

consumption −6.50 Reject the null hypothesis

income −6.49 Reject the null hypothesis

wealth −2.71 Fail to reject the null hypothesis

The ADF critical value at the 10% level of significance is −3.45. Given that the consumption,

income and wealth series are integrated of order one, that is, I(1), and that the residuals are
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stationary as shown in the summary in table 4.8, we can conclude that the three variables do not

cointegrate.

In the next step, the error correction model (ECM) for the cointegrated series, that is, consumption,

wealth and income functions are specified. In other words we fit the ECM model below:

∆lct = β0 + β1∆lit + β2∆lw + α∗εt−1 + ut (4.6.7)

where α∗ = −(1 − α1), εt−1 = [lct−1 − β0 − β1lit−1 − β2lwt−1] as in equation 3.1.18. Using the

necessary R command the error correction model is set out as follows:

> lc.d=diff(lc)

> li.d=diff(li)

> lw.d=diff(lw)

> leq2=lag(error.lc)

> ecm=summary(lm(lc.d~li.d+lw.d+leq2))

Call:

lm(formula = lc.d ~ li.d + lw.d + leq2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.004774 0.001417 3.369 0.00110 **

li.d 0.235293 0.073202 3.214 0.00179 **

lw.d 0.025621 0.031233 0.820 0.41411

leq2 -0.097765 0.081055 1.206 0.0018**

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.01299 on 94 degrees of freedom

Multiple R-squared: 0.1242, Adjusted R-squared: 0.09625

F-statistic: 4.444 on 3 and 94 DF, p-value: 0.005767

The estimated ECM is

∆l̂ct = 0.0048 + 0.2353∆l̂i+ 0.0256∆ ˆlw − 0.0977ε̂t−1. (4.6.8)

From the above equation we see that α∗ = −0.0977 enters with a correct sign (negative) but is

large, that is, tends to 0 indicating that the speed of adjustment to equilibrium is slow. We can

conclude that, ceteris paribus (keeping other factors constant), consumption and income series

converge to a long-run cointegrating equilibrium.
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4.6.1.1 Diagnostic error tests

In R, diagnostic tests are performed using the following commands:

>jaque.bera.test(lag(error.lc), lag=3)

>arch(lag(error.lc),lag.single=3)

>box.test(lag(errror.lc), lag=1,type="Ljung-Box")

>reset(lag(error.lc),type="regressors")

Table 4.9 summarises the results of the diagnostic test on residuals from the Raotbl3 data set.

Table 4.9: Results from the diagnostic error tests

Test Test statistic p-value Conclusion

Jarque-Bera 4.29 0.1169 Normally distributed

ARCH-LM 1.03 0.3101 No heteroscedasticity

Ljung-Box 26.64 0.0420 Serial correlation

Ramsey Reset 2.49 0.288 No misspecification

The p-values in table 4.9 are compared with the 0.10 level of significance.

4.6.2 Phillips-Ouliaris methods

The Phillips-Ouliaris methods are implemented by using two residual-based tests, namely

• the variance ratio test

• the multivariate ratio test.

4.6.2.1 The variance ratio test

In R, the variance ratio test is implemented in the function ca.po as follows:

> lc=ts(lc,start=c(1966,4),end=c(1991,2),frequency=4)

> li=ts(li,start=c(1966,4),end=c(1991,2),frequency=4)

> lw=ts(lw,start=c(1966,4),end=c(1991,2),frequency=4)

> ukcons=window(cbind(lc,li,lw),start=c(1967,2),end=c(1991,2))

> pu.test=summary(ca.po(ukcons,demean=’const’,type=’Pu’))

Test of type Pu detrending of series with constant only

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) -0.178458 0.103491 -1.724 0.088 .

z[, -1]li 0.910971 0.013457 67.697 <2e-16 ***

z[, -1]lw 0.079761 0.007764 10.274 <2e-16 ***

---

Multiple R-squared: 0.9918, Adjusted R-squared: 0.9916

Value of test-statistic is: 58.9108

Table 4.10 summarises the results of the variance ratio test from the Raotbl3 data set.

Table 4.10: Results from the variance ratio test

Level of significance 10% 5% 1%

Critical value 33.67 40.52 53.87

Decision RejectH0 RejectH0 RejectH0

The test statistic for the variance ratio test (P̂u) is 58.91. From table 4.10, we observe that

this calculated test statistic is larger than the critical value extracted from R at the 1% level of

significance. We therefore reject the null hypothesis of no cointegration against the alternative

of the presence of cointegrating variables. This leads to the same conclusion reached while using

the Engle-Granger two-step estimation procedure, that is, there is not a long-run relationship

(cointegration) between consumption, income and wealth series in the Raotbl3 data set.

4.6.2.2 The multivariate trace statistic

In R, the multivariate statistic is implemented in the ca.po function as follows:

> lc=ts(lc,start=c(1966,4),end=c(1991,2),frequency=4)

> li=ts(li,start=c(1966,4),end=c(1991,2),frequency=4)

> lw=ts(lw,start=c(1966,4),end=c(1991,2),frequency=4)

> ukcons=window(cbind(lc,li,lw),start=c(1967,2),end=c(1991,2)

> Pu.test=summary(ca.po(ukcons,demean=’const’,type=’Pu’))

>Pu.test

Test of type Pu detrending of series with constant only

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.178458 0.103491 -1.724 0.088 .

z[, -1]li 0.910971 0.013457 67.697 <2e-16 ***
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z[, -1]lw 0.079761 0.007764 10.274 <2e-16 ***

---

Multiple R-squared: 0.9918, Adjusted R-squared: 0.9916

Value of test-statistic is: 58.9108

Critical values of Pu are:

10pct 5pct 1pct

critical values 33.6955 40.5252 53.8731

The output of the multivariate trace statistic is

> pz.test

Response lc :

Call:

lm(formula = lc ~ zr)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.022293 0.087754 -0.254 0.80003

zrlc 0.853380 0.085127 10.025 < 2e-16 ***

zrli 0.118152 0.078442 1.506 0.13544

zrlw 0.024679 0.009372 2.633 0.00992 **

Residual standard error: 0.01351 on 92 degrees of freedom

Multiple R-squared: 0.9945, Adjusted R-squared: 0.9943

F-statistic: 5566 on 3 and 92 DF, p-value: < 2.2e-16

Response li :

Call:

lm(formula = li ~ zr)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.13002 0.10555 1.232 0.2211

zrlc 0.49383 0.10239 4.823 5.58e-06 ***

zrli 0.52867 0.09435 5.603 2.18e-07 ***

zrlw -0.02429 0.01127 -2.155 0.0338 *

Residual standard error: 0.01625 on 92 degrees of freedom

Multiple R-squared: 0.9918, Adjusted R-squared: 0.9915

F-statistic: 3697 on 3 and 92 DF, p-value: < 2.2e-16

Response lw
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Call:

lm(formula = lw ~ zr)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.31857 0.27819 -1.145 0.255

zrlc 0.13079 0.26986 0.485 0.629

zrli -0.07984 0.24867 -0.321 0.749

zrlw 0.98357 0.02971 33.106 <2e-16 ***

---

Value of test-statistic is: 88.0345

Critical values of Pz are:

10pct 5pct 1pct

critical values 80.2034 89.7619 109.4525

Table 4.11 summarises the results of the long-run relationship of the consumption, income and

wealth series using the Phillips-Ouliaris test.

Table 4.11: Phillips-Ouliaris:Cointegration test

Level of significance 10% 5% 1%

Critical value of P̂u 33.69 40.52 53.87

Critical value of P̂z 80.20 89.76 109.45

The calculated test statistics of the variance ratio test (P̂u) and the multivariate trace (P̂z) are

58.91 and 88.03 respectively. Since both tests are upper-tailed tests, the null hypothesis is rejected

if the test statistic is greater than the critical value. This implies than the null hypothesis is

rejected at 1% significance level with the variance ratio test, but can only be rejected at the 10%

significance level with the multivariate trace statistic.

4.6.3 Johansen’s method

Johansen proposes two likelihood ratio tests namely:

• The trace test

• The maximum eigenvalue.
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4.6.3.1 The trace test

The trace test tests the null hypothesis of r cointegrating vectors against the alternative hypothesis

of n cointegrating vectors. If r = 0, it means that there is no relationship among the variables that

is stationary. In R, the trace test is implemented in ca.jo function as follows:

> summary(ca.jo(data.frame(lc,li,lw), type="trace",ecdet="const"))

Test type: trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 3.037824e-01 1.028445e-01 2.280181e-02 4.874698e-16

Values of test statistic and critical values of test:

test 10pct 5pct 1pct

r <= 2 | 2.24 7.52 9.24 12.97

r <= 1 | 12.76 17.85 19.96 24.60

r = 0 | 47.89 32.00 34.91 41.07

Eigenvectors, normalised to first column:

(These are the cointegration relations)

lc.l2 li.l2 lw.l2 constant

lc.l2 1.00000000 1.00000000 1.0000000 1.0000000

li.l2 -0.95747202 -0.86796562 -1.8045735 -0.9901210

lw.l2 -0.04852978 -0.10453373 0.2832673 -0.5369134

constant 0.29129705 0.02347248 5.0886246 7.0576721

Weights W:

(This is the loading matrix)

lc.l2 li.l2 lw.l2 constant

lc.d 0.2422490 -0.18249990 -0.0002770341 -7.625075e-15

li.d 0.4914478 0.05256545 0.0046028620 -2.131011e-14

lw.d 0.3021879 0.10564804 -0.0483327582 -8.724908e-15

4.6.3.2 The maximum eigenvalue

The maximum eigenvalue test, on the other hand, tests the null hypothesis of r cointegrating

vectors against the alternative hypothesis of (r + 1) cointegrating vectors. In R it is implemented

in the ca.jo function as follows:

> summary(ca.jo(data.frame(lc,li,lw), type="eigen",ecdet="const"))

Test type: maximal eigenvalue statistic (lambda max) , without linear trend

47



and constant in cointegration

Eigenvalues (lambda):

[1] 3.037824e-01 1.028445e-01 2.280181e-02 4.874698e-16

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 2 | 2.24 7.52 9.24 12.97

r <= 1 | 10.53 13.75 15.67 20.20

r = 0 | 35.12 19.77 22.00 26.81

Eigenvectors, normalised to first column:

(These are the cointegration relations)

lc.l2 li.l2 lw.l2 constant

lc.l2 1.00000000 1.00000000 1.0000000 1.0000000

li.l2 -0.95747202 -0.86796562 -1.8045735 -0.9901210

lw.l2 -0.04852978 -0.10453373 0.2832673 -0.5369134

constant 0.29129705 0.02347248 5.0886246 7.0576721

Weights W:

(This is the loading matrix)

lc.l2 li.l2 lw.l2 constant

lc.d 0.2422490 -0.18249990 -0.0002770341 -7.625075e-15

li.d 0.4914478 0.05256545 0.0046028620 -2.131011e-14

lw.d 0.3021879 0.10564804 -0.0483327582 -8.724908e-15

Table 4.12 summarises results of Johansen’s cointegration methodology on the Raotbl3 data set.

Table 4.12: Johansen’s trace test and maximum eigenvalue results

Null hypothesis Alternative test statistic 10% 5% 1% Results

trace test

r ≤ 2 r > 2 2.24 7.52 9.24 12.97 Fail to reject H0

r ≤ 1 r > 1 12.76 17.85 19.96 24.60 Fail to reject H0

r = 0 r > 0 47.89 32.00 34.91 41.07 Reject H0

max test

r = 2 r = 3 2.24 7.52 9.24 12.97 Fail to reject H0

r = 1 r = 2 10.53 13.75 15.67 20.20 Fail to reject H0

r = 0 r = 1 35.12 19.77 22.00 26.81 Reject H0

From table 4.12, it can be observed that
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(i) the null hypothesis of no cointegration (r = 0) against the alternative of presence of one

or more cointegrating vector is rejected at the 10% level of significance in both techniques

(trace test and maximum eigenvalue). This implies that cointegration exists between the

consumption, income and wealth series of the the Raotbl3 data set.

(ii) the null hypothesis (r ≤ 1) and (r ≤ 2) against the alternative of the existence of two or

three cointegrating vectors is not rejected by both tests. This means that there is no more

than one cointegration relationship in the Raotbl3 data set.

4.7 Concluding remarks

Since the three methods used to test for cointegration are not consistent, that is, they do not yield

the same results, it can be concluded that there is no cointegration between the consumption,

income and wealth time series in the Raotbl3 data set. The results of this analysis can be used to

assess the impact of a temporary shock such as a birthday bonus, or a permanent shock such as

annual salary raise on an economy.
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Chapter 5

Testing for Cointegration in the

World Economic Indicators

5.1 Introduction

World economic indicators are specific indices and measures that not only indicate the overall

wealth of the global economy, but also provide some insight into its future. Some economic indica-

tors use statistics to illustrate the ups and downs of particular trends in economic activities. The

most commonly used world economic indicators are the rates of inflation, the unemployment rates,

the real gross domestic product (GDP) growth rates, GDP per capita, GDP purchasing power par-

ity, amounts of foreign direct investments, populations living below the poverty line, and current

account balances. In this data set we assess the existence of long-run equilibrium (cointegration)

in the following Australia’s economic indicators:

• Total Producer Price Index Manufacturing (PPI): This is an index that shows the cost

of resources needed to produce manufactured goods during the previous month. The PPI

measures change in effective prices received by domestic producers of the manufacturing

sector for that part of their output which is sold on the domestic market.

• Domestic Producer Price Index of Finished goods (DPPI): This measures how much money

manufacturers and wholesalers pay for finished goods and materials.

• Consumer Price Index (CPI): This is a measure which estimates the average price of the

consumer goods and services purchased by households. The CPI measures change in a

constant market basket of goods and services from one period to the next within the same
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area.

If cointegration exists in these economic indicators, it implies that they are procyclic, that is,

they move in the direction of the economic movement (or cycle) of a country. This means that

the movement of economic indicators is directly proportional to the trend of Australia’s economic

performance. If cointegration does not exist, it means that these economic indicators are counter-

cyclic, that is, they are inversely related to economic performance (Pauly, 2003). Consequently,

the PPI, the DPPI and the CPI series in this data set are transformed to natural logarithms

creating new variables, which are defined as:

• ppi equivalent to the natural logarithm of PPI

• dppi equivalent to the natural logarithm of DPPI

• cpi equivalent to the natural logarithm of CPI.

This transformation is a remedy to the violation of the assumptions of normality in the dataset

such as constant variance and independence of the error term.

More details about the data set can be extracted from United Nations World Economic Indicators

(http://quanis1.easydata.co.za/TableViewer/tableView.aspx). In this study the world economic

indicators data set is included as Appendix B.

5.2 Descriptive summary

A descriptive summary of the data set in natural logarithm is provided.

ppi dppi cpi

Min. :4.387 Min. :4.368 Min. :4.403

1st Qu.:4.501 1st Qu.:4.458 1st Qu.:4.507

Median :4.546 Median :4.560 Median :4.578

Mean :4.585 Mean :4.569 Mean :4.579

3rd Qu.:4.699 3rd Qu.:4.669 3rd Qu.:4.651

Max. :4.808 Max. :4.758 Max. :4.734

Figure 5.1 is a plot of the total ppi for manufacturing, the dppi of finished goods and the cpi time

series.
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Figure 5.1: A plot of ppi, dppi and cpi series.
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The plot of the ppi, dppi and cpi series indicates nonstationarity in the mean and in the variance

with an increasing trend. This implies that transformation and/or differencing is required to re-

duce the time series to stationarity.

Table 5.1 below provides a descriptive summary of the data set.

Table 5.1: Descriptive summary

Minimum Median Mean Maximum

ppi 4.387 4.546 4.585 4.808

dppi 4.368 4.560 4.569 4.758

cpi 4.403 4.578 4.579 4.734

From table 5.1, it may be observed that the minimum value, the median, the mean and the

maximum value are close to each other. This indicates that this data set is symmetric but does

not necessarily show that it is normally distributed.
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5.3 Test for normality

We perform a test for normality as follows: Using the Shapiro-Wilk test, we test for normality of

variables to see if the series in the data set are well modelled by a normal distribution using the

following R command:

> shapiro.test(ppi)

Shapiro-Wilk normality test

data: ppi

W = 0.8458, p-value = 0.006748

> shapiro.test(dppi)

Shapiro-Wilk normality test

data: dppi

W = 0.9618, p-value = 0.004767

> shapiro.test(cpi)

Shapiro-Wilk normality test

data: cpi

W = 0.9044, p-value = 2.517e-03

Table 5.2 provides the summary results of the normality test using the Shapiro-Wilk test.

Table 5.2: Shapiro-Wilk normality test results

Variable Shapiro-Wilk p-value Decision

ppi 0.8458 6.748× 10−3 Reject the null hypothesis

dppi 0.9618 4.767× 10−3 Reject the null hypothesis

cpi 0.9044 2.517× 10−3 Reject the null hypothesis

From the above R command, the p-values are very small (less than 0.01) which means the null

hypothesis of normality can be rejected at the 1% level of significance for all series. This implies

that the time series of the variables are not normally distributed. However, this was expected,

since all variables in this data set were transformed by taking a natural logarithm.

5.4 Augmented Dickey-Fuller (ADF) test for unit roots

In this section we perform the ADF test for unit roots to determine if the ppi, the dppi and the

cpi series are nonstationary. After inspection of the behaviour of the ACF plot for the ppi series,
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it was found that its residuals become white noise after lag five. This means that the ACF plot

for the ppi series cuts off at lag five. Since this series shows an increasing trend in figure 5.1, we

test the ADF test on the trend model and lag five as follows:

>la=ts(ppi)

> df=ur.df(ppi,lags=5,type=’trend’)

> summary(df)

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.929926 0.465990 1.996 0.0540

la.lag.1 -0.210870 0.106813 -1.974 0.0565

tt 0.001775 0.001031 1.723 0.0940

la.diff.lag1 0.440848 0.173157 2.546 0.0156 *

la.diff.lag2 0.004497 0.186146 0.024 0.9809

la.diff.lag3 0.138793 0.182940 0.759 0.4533

la.diff.lag4 0.024497 0.176146 0.139 0.6809

la.diff.lag5 0.338793 0.192940 1.756 0.5433

Multiple R-squared: 0.216, Adjusted R-squared: 0.1007

F-statistic: 1.874 on 5 and 34 DF, p-value: 0.1249

Value of test-statistic is: -1.9742

Value of the test statistic is: -2.1568

Value of the test statistic is: -3.1018

Critical values for test statistics:

1pct 5pct 10pct

tau3 -4.15 -3.50 -3.18

phi2 7.02 5.13 4.31

phi3 9.31 6.73 5.61

Table 5.3 provides summary results of the ADF unit root test.
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Table 5.3: Summary of the ADF unit root test

Variable Test statistic Decision

ppi −1.9742 Fail to reject the null hypothesis

dppi −2.1568 Fail to reject the null hypothesis

cpi −3.1018 Fail to reject the null hypothesis

The critical value at the 10% level of significance of tau3 is −3.18. The results of the ADF unit

root test indicate that all variables in this data set are nonstationary. This is because we fail to

reject the hypothesis of the presence of unit roots.

Figure 5.2: The plot of the ADF unit root test for the ppi series
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From figure 5.2, it can be observed that the residuals of the ppi series are nonstationary both in the

mean and the variance. This suggests differencing and/or transformation to reduce nonstationarity

to stationarity. In this way we are determining the order of integration.

Recall that cointegration requires that the series in the data set should be integrated (nonstation-

ary) of the same order and their linear combination must be stationary. Now that we have shown

in table 5.3 that all the variables are integrated, in the next section we determine the order of

integration.
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5.5 Augmented Dickey-Fuller (ADF) test for order of inte-

gration

Here we test whether the series is possible I(2), that is, whether it contains a second order of

integration. This test is achieved by supplying the differenced series in the ur.df R function to

test for the presence of unit roots. In R, the order of integration is determined by using the ADF

unit root test on a differenced series. We difference the series to transform a nonstationary series

to stationarity. Recall that the original series portrayed an increasing trend in figure 5.1 and the

ACF is significant at lag five. Therefore, the ADF test for the possible second order of integration

is tested on trend model with lag five as follows:

> la.ct=diff(ppi)

> la.ct1=ur.df(la.ct,lags=5,type=’trend’)

> summary(la.ct1)

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0088469 0.0076142 1.162 0.2536

la.ct.lag.1 -0.7113754 0.3132107 -2.271 0.0298 *

tt -0.0001833 0.0002734 -0.670 0.5072

la.ct.diff.lag1 0.0707510 0.2680152 0.264 0.7934

la.ct.diff.lag2 -0.0457867 0.2363041 -0.194 0.8476

la.ct.diff.lag3 -0.0499768 0.2039751 -0.245 0.8080

la.ct.diff.lag4 -0.03972 0.13448 -0.295 0.7690

la.ct.diff.lag5 -0.06029 0.13181 -0.457 0.6495

Value of test-statistic is: -2.3812

Value of test-statistic is: -2.2717

Value of test-statistic is: -3.8251

Critical values for test statistics:

1pct 5pct 10pct

tau3 -4.15 -3.50 -3.18

phi2 7.02 5.13 4.31

phi3 9.31 6.73 5.61
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Figure 5.3 is a plot of the first difference residuals of the ppi series. From this plot it can be

observed that the mean of the residuals is constant and the PACF is significant at lag five, that

is, the PACF cuts off at lag five. This confirms that the trend model with lag five is appropriate

to this series in testing for the order of integration.

Figure 5.3: A plot of the 1st difference residuals of the ppi series

Residuals

0 10 20 30

−
0.

04
−

0.
01

0.
02

0 5 10 15

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

Autocorrelations of Residuals

2 4 6 8 10 14

−
0.

3
−

0.
1

0.
1

0.
3

Lag

P
ar

tia
l A

C
F

Partial Autocorrelations of Residuals

Table 5.4 provides summary results of the first order differenced ADF unit root test.

Table 5.4: Summary of the 1st order difference ADF test

Variable Test statistic Decision

Differenced ppi −2.3812 Fail to reject H0

Differenced dppi −2.2717 Fail to reject H0

Differenced cpi −3.8251 Reject H0

Using the critical value at the 5% level of significance, table 5.4 indicates that the null hypothesis

of the presence of the first order integration for the cpi is rejected. This implies that only the cpi is

integrated of order one, that is, I(1; 1). To obtain the same order of integration for all the variables

in the data set, we re-difference the series and perform the unit root test again as follows:
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> la.ct2=diff(la.ct)

> la.ct3=ur.df(la.ct2,lags=5,type=’trend’)

> summary(la.ct3)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0010109 0.0077187 0.131 0.896621

la.ct2.lag.1-2.2249989 0.5516184 -4.034 0.000319 ***

tt -0.0001356 0.0003125 -0.434 0.667217

la.ct2.diff.lag1 0.7918639 0.4474334 1.770 0.086291 .

la.ct2.diff.lag2 0.3490917 0.3247018 1.075 0.290363

la.ct2.diff.lag3 0.0099522 0.1869345 0.053 0.957873

la.ct2.diff.lag4 -0.0810911 0.1078641 -0.752 0.4543

la.ct2.diff.lag5 0.2129158 0.1067675 1.994 0.0493 *

Value of test-statistic is: -4.0336

Value of test-statistic is: -4.2299

Value of test-statistic is: -4.7550

Critical values for test statistics:

1pct 5pct 10pct

tau3 -4.15 -3.50 -3.18

phi2 7.02 5.13 4.31

phi3 9.31 6.73 5.61

Table 5.5 provides the summary results of the ADF unit root test for the second order of integration.

Table 5.5: Summary of the 2st order difference ADF test

Variable Test statistic Decision

Second difference ppi −4.0336 Reject the null hypothesis

Second difference dppi −4.2299 Reject the null hypothesis

Second difference cpi −4.7550 Reject the null hypothesis

Using the critical value at the 5% level of significance, table 5.5 indicates that the null hypothesis

of the second order difference unit root test is rejected in all series of this data set. This means that

all the variables are integrated of order two, that is, I(2; 2). In the following subsections, tests for

the presence of long-run relationships (cointegration) are provided by testing for the stationarity
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of the residuals of the series.

5.6 Tests for cointegration

5.6.1 Engle-Granger method

This two-step estimation procedure starts with fitting the linear regression models of the series,

taking each variable, one at a time, as the dependent variable and the rest as independent vari-

ables. Residuals from the regression models are extracted and stored in statistical software R. The

ADF test for unit root is then tested on the estimated residuals. If the residuals are stationary,

the variables under investigation have long-run relationships. Hence, cointegration exists among

variables.

Taking ppi as the dependent variable, the regression model is fitted as follows:

> data2=cbind(ppi,dppi,cpi)

> ppi.eq=summary(lm(ppi~dppi+cpi),data=data2)

> ppi.eq

Call:

lm(formula = ppi ~ dppi + cpi)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5497 0.3105 1.770 0.0841 .

dppi 1.1963 0.2169 5.515 2.12e-06 ***

cpi -0.3124 0.2743 -1.139 0.2614

Multiple R-squared: 0.9572, Adjusted R-squared: 0.9552

F-statistic: 459 on 2 and 41 DF, p-value: < 2.2e-16

The resulting model is

ppi = 0.5497 + 1.1963dppi− 0.3124cpi. (5.6.1)

Equation 5.6.1 shows that there is an inverse relationship between the ppi and the cpi. This implies

that as one variable increases the other one decreases. It can also be deduced that the model fits

the data set well, R2 = 0.9572. This means that 95.72% of the variations in the ppi are explained

by changes in the dppi and the cpi.
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When the dppi and the cpi are taken to be the dependent variables, the following regression models

are fitted:

dppi = −0.86152 + 0.35597ppi+ 0.82953cpi, (5.6.2)

cpi = 1.02681− 0.09816ppi+ 0.87593dppi. (5.6.3)

The estimated residuals of equations 5.6.1, 5.6.2 and 5.6.3 are extracted and stored as:

> error.ppi=(resid(ppi.eq))

> error.dppi=(resid(dppi.eq))

> error.cpi=(resid(cpi.eq))

The ADF test for unit root on the estimated residuals is performed as:

> summary(ur.df(error.ppi,lags=1,type=’none’))

###############################################################

# Augmented Dickey-Fuller Test Unit Root / Cointegration Test #

###############################################################

Coefficients:

Estimate Std. Error t value Pr(>|t|)

error.PPI.lag.1 -0.21045 0.08867 -2.373 0.0225 *

error.PPI.diff.lag 0.38141 0.15300 2.493 0.0169 *

The value of the test statistic is: -2.3734

The value of the test statistic is: -2.4588

The value of the test statistic is: -2.0856

As extracted from Hamilton (1994) the critical values for the test are given in table 5.6.

Table 5.6: Critical values of ADF test for residuals

1% 5% 10%

τ −4.31 −3.77 −3.45

Table 5.7 provides summary results for the ADF unit root test for the nonstationarity of residuals

in the estimated regression model.
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Table 5.7: Engle-Granger cointegration test

Variable Test statistic Decision

error.ppi −2.3734 Fail to reject the null hypothesis

error.dppi −2.4588 Fail to reject the null hypothesis

error.cpi −2.0856 Fail to reject the null hypothesis

The ADF critical value at the 10% level of significance is −3.45. From table 5.7 the null hypoth-

esis of the presence of unit roots in the residuals of the regression model is not rejected at the

10% level of significance. This implies that the residuals of the estimated regression models are

nonstationary.

Figure 5.4: A plot of the ADF unit root test on the residuals of the ppi series
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Figure 5.4 shows that the residuals of the ppi series are nonstationary. This confirms that the

variables in the data set do not cointegrate.

Based on the two-step estimation procedure, it can be concluded that Australia’s PPI for manu-
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facturing, the DPPI for finished goods and its CPI do not cointegrate.

In the next step, the error correction model (ECM) is fitted as follows:

∆ppit = β0 + β1∆dppit + β2∆cpi+ α∗εt−1 + ut (5.6.4)

where α∗ = −(1 − α1), εt−1 = [ppit−1 − β0 − β1dppit−1 − β2cpit−1] as in equation 3.1.18. Using

the necessary R command the error correction model is set out as follows:

> ppi.d=diff(ppi)

> dppi.d=diff(dppi)

> cpi.d=diff(cpi)

> leq1=lag(error.ppi)

> ecm=summary(lm(ppi.d~dppi.d+cpi.d+leq1))

Call:

lm(formula = ppi.d ~ dppi.d + cpi.d + leq1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.005678 0.001417 4.369 0.00510

dppi.d 0.978583 0.073202 9.214 0.00379 **

cpi.d 0.679321 0.031233 0.120 0.41411

leq1 -0.790765 0.081055 1.606 0.0018**

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.7899 on 44 degrees of freedom

Multiple R-squared: 0.7642, Adjusted R-squared: 0.09625

F-statistic: 5.444 on 3 and 44 DF, p-value: 0.005767

The estimated ECM is

∆p̂pit = 0.0057 + 0.9785∆ ˆdppi+ 0.6793∆ ˆcpi− 0.7908ε̂t−1. (5.6.5)

From the above equation, α∗ = −0.7908 enters with a small correct sign (negative), that is, tends

to −1 indicating that the speed of adjustment to equilibrium is high. We can conclude that, ceteris

paribus (keeping other factors constant), Australia’s economic indicators do not cointegrate and

the ECM pushes the economy back to equilibrium at a high rate.

5.6.1.1 Diagnostic error tests

In R, diagnostic tests are performed using the following commands:
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>jaque.bera.test(lag(error.ppi), lag=3)

>arch(lag(error.ppi),lag.single=3)

>box.test(lag(errror.ppi), lag=1,type="Ljung-Box")

>reset(lag(error.ppi),type="regressors")

Table 5.8 summarises the results of the diagnostic test on residuals from the Raotbl3 data set.

Table 5.8: Results from the diagnostic error tests

Test Test statistic p-value Conclusion

Jarque-Bera 3.26 0.2116 Normally distributed

ARCH-LM 2.07 0.2101 No heteroscedasticity

Ljung-Box 13.64 0.0020 Serial correlation

Ramsey Reset 4.45 0.0328 Misspecification

The p-values in table 5.8 are compared with the 0.10 significance level.

5.6.2 Phillips-Ouliaris methods

The Phillips-Ouliaris methods are implemented by using two residual-based tests.

5.6.2.1 The variance ratio test

In R, the variance ratio test is implemented in the function ca.po as follows:

> Pu.test=summary(ca.po(data2,demean=’const’,type=’Pu’))

> Pu.test

########################################

# Phillips and Ouliaris Unit Root Test #

########################################

Test of type Pu detrending of series with constant only

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5497 0.3105 1.770 0.0841 .

z[, -1]dppi 1.1963 0.2169 5.515 2.12e-06 ***

z[, -1]cpi -0.3124 0.2743 -1.139 0.2614

Value of test-statistic is: 5.5393

Critical values of Pu are:
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10pct 5pct 1pct

critical values 33.6955 40.5252 53.8731

Table 5.9 summarises the results of the variance ratio test from the economic indicators data set.

Table 5.9: Results from the variance ratio test

Level of significance 10% 5% 1%

Critical value 33.67 40.52 53.87

Decision Fail to reject H0 Fail to reject H0 Fail to reject H0

The test statistic for the variance ratio test (P̂u) is 5.54. From the above analysis, we observe that

this calculated test statistic is smaller than the critical values as extracted from R at the 10% level

of significance. Therefore, at all significance levels the null hypothesis of no cointegration is not

rejected.

5.6.2.2 The multivariate trace statistic

In R, the multivariate trace statistic is implemented in the function ca.po as follows:

> Pz.test=summary(ca.po(data2,demean=’const’,type=’Pz’))

> Pz.test

Response ppi:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4780 0.2235 2.139 0.0388 *

zrppi 0.7959 0.1122 7.095 1.59e-08 ***

zrdppi 0.4239 0.1989 2.131 0.0395 *

zcpi -0.3213 0.1921 -1.673 0.1024

Response dppi :

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.09041 0.08092 1.117 0.271

zrppi -0.06707 0.04062 -1.651 0.107

zrdppi 1.08963 0.07201 15.131 <2e-16 ***

zrcpi -0.04005 0.06954 -0.576 0.568

Response cpi :

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.174910 0.075116 2.329 0.0252 *

zrppi -0.006555 0.037702 -0.174 0.8629

zrdppi 0.104021 0.066848 1.556 0.1278

zrcpi 0.866235 0.064553 13.419 3.38e-16 ***

Value of test-statistic is: 15.1071

Critical values of Pz are:

10pct 5pct 1pct

critical values 80.2034 89.7619 109.4525

Table 5.10 summarises the results of the multivariate trace statistic test from the economic indi-

cators data set.

Table 5.10: Results from the multivariate trace statistic test

Level of significance 10% 5% 1%

Critical value 80.2034 89.7619 109.4525

Decision Fail to reject H0 Fail to reject H0 Fail to reject H0

The test statistic for the multivariate test statistic (P̂z) is 15.11. From the above analysis, we

observe that this calculated test statistic is smaller than the critical values extracted from R at

the 10% level of significance. Therefore, at all levels of significance the null hypothesis of presence

of no cointegration is not rejected.

5.6.3 Johansen’s method

Johansen’s method is implemented on two likelihood ratio tests, namely:

• The trace test

• The maximum eigenvalue.

5.6.3.1 The trace test

In R, the trace statistic is implemented as follows:

> summary(ca.jo(data2,type=’trace’,ecdet=’const’))

######################

# Johansen-Procedure #

######################
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Trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 5.875376e-01 2.607680e-01 1.616397e-01 1.135093e-15

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 2 | 7.40 7.52 9.24 12.97

r <= 1 | 20.09 17.85 19.96 24.60

r = 0 | 57.29 32.00 34.91 41.07

Eigenvectors, normalised to first column:

(These are the cointegration relations)

ppi.l2 dppi.l2 cpi.l2 constant

ppi.l2 1.0000000 1.000000 1.0000000 1.000000

dppi.l2 -0.4848253 -1.893377 0.6822461 -4.221935

cpi.l2 -0.3169917 1.282587 -2.2073541 2.920107

constant -1.8389176 -1.808761 2.4083450 1.317851

Weights W:

(This is the loading matrix)

ppi.l2 dppi.l2 cpi.l2 constant

ppi.d -0.007918325 -0.31229813 -0.02543182 -2.390012e-13

dppi.d -0.010170771 -0.06330496 -0.03353216 -2.505351e-15

cpi.d -0.011029486 -0.05050685 0.03556958 -9.709437e-14

5.6.3.2 The maximum eigenvalue

The multivariate trace statistic is implemented as follows:

> summary(ca.jo(data2,type=’eigen’,ecdet=’const’))

######################

# Johansen-Procedure #

######################

Maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 5.875376e-01 2.607680e-01 1.616397e-01 1.135093e-15

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 2 | 7.40 7.52 9.24 12.97
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r <= 1 | 12.69 13.75 15.67 20.20

r = 0 | 37.20 19.77 22.00 26.81

Eigenvectors, normalised to first column:

(These are the cointegration relations)

ppi.l2 dppi.l2 cpi.l2 constant

ppi.l2 1.0000000 1.000000 1.0000000 1.000000

dppi.l2 -0.4848253 -1.893377 0.6822461 -4.221935

cpi.l2 -0.3169917 1.282587 -2.2073541 2.920107

constant -1.8389176 -1.808761 2.4083450 1.317851

Weights W:

(This is the loading matrix)

ppi.l2 dppi.l2 cpi.l2 constant

ppi.d -0.007918325 -0.31229813 -0.02543182 -2.390012e-13

dppi.d -0.010170771 -0.06330496 -0.03353216 -2.505351e-15

cpi.d -0.011029486 -0.05050685 0.03556958 -9.709437e-14

Table 5.11 provides summary results of Johansen’s cointegration method.

Table 5.11: Johansen’s trace test and maximum eigenvalue results

Null hypothesis Alternative Test statistic 10% 5% 1% Results

trace test

r ≤ 2 r > 2 7.40 7.52 9.24 12.97 Do not reject H0

r ≤ 1 r > 1 20.09 17.85 19.96 24.60 Reject H0

r = 0 r > 0 57.29 32.00 34.91 41.07 Reject H0

max test

r = 2 r = 3 7.40 7.52 9.24 12.97 Do not reject H0

r = 1 r = 2 12.69 13.75 15.67 20.20 Reject H0

r = 0 r = 1 37.20 19.77 22.00 26.81 Reject H0

From table 5.11 it can be observed that

• cointegration exists among Australia’s economic indicators, since the null hypothesis of no

cointegration (r = 0) is rejected

• there is at most one cointegration vector relationship between these variables, since the null

hypothesis of r ≤ 2 is not rejected.
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5.7 Concluding remarks

From the results of the analysis, it is observed that the Engle-Granger method and the Phillips-

Ouliaris methods indicate no cointegration yet the Johansen’s method indicates presence of coin-

tegration in Australia’s economic indicators. Since the three methods are not consistent, that is,

they do not yield the same results, it can be concluded that the PPI (Manufacturing), the PPI

(Finished goods) and the CPI do not cointegrate. This means that these economic indicators are

countercyclic, that is, they move in opposite directions of Australia’s economy.
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Chapter 6

Testing Cointegration Results for

the UKpppuip Data Set

6.1 Introduction

In this data set we test for cointegration in the purchasing power parity (PPP ) and the uncovered

interest rate parity (UIP ) for the United Kingdom. The PPP is the economic concept that

continuously adjusts exchange rates between countries in order to denote the purchasing power of

each country; that is, PPP refers to the use of the long-term equilibrium exchange rate of two

countries to equalise purchasing power.

Purchasing power is the number of goods/services that can be purchased with a unit of currency.

A parity condition occurs when the difference in the interest rate between two countries is equal

to the expected change in exchange rate between the countries’ currencies. It can be expressed as

(i1 − i2) = E(e) (6.1.1)

where, i1 represents the interest rate in country 1, i2 represents the interest rate in country 2, and

E(e) represents the expected rate of change in the exchange rate.

In the UKpppuip data set, we use quarterly data spanning a range from 1972:Q1 to 1987:Q2 where

Q1 and Q2 are the first and second quarter respectively. In this study the UKpppuip data set is

included as Appendix C.

The variables are

p1 : UK wholesale price index.
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p2 : Trade weighted foreign wholesale price.

i1 : Three month Treasury Bill rate.

i2 : Three month Eurodollar rate.

e12 : UK effective exchange rate.

dpoilp0 : World oil price at period t.

dpoilp1 : World oil price at period t−1.

Figure 6.1 is a plot of the UKpppuip data set.

Figure 6.1: A plot of p1, p2, e12, i1, i2, doilp0 and doilp1 series
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Figure 6.1 indicates nonstationarity in the mean with an increasing trend for the p1, p2 and the

e12 series. For the i1 and the i2 series the plot indicates nonstationarity in both the mean and the

variance. Moreover, the series of the doilp0 and the doilp1 appear to be stationary. These results

can only be confirmed after performing a formal unit root test for nonstationarity.

70



6.2 Descriptive summary

A descriptive summary of the UKpppuip data set in natural logarithm is provided.

> library(urca)

>attach(UKpppuip)

> summary(UKpppuip)

p1 p2 e12 i1

Min. :3.400 Min. :3.847 Min. :-4.900 Min. :0.04679

1st Qu.:3.967 1st Qu.:4.288 1st Qu.:-4.641 1st Qu.:0.08771

Median :4.486 Median :4.530 Median :-4.514 Median :0.10368

Mean :4.361 Mean :4.494 Mean :-4.538 Mean :0.10182

3rd Qu.:4.801 3rd Qu.:4.777 3rd Qu.:-4.429 3rd Qu.:0.11560

Max. :4.995 Max. :4.841 Max. :-4.263 Max. :0.15418

i2 doilp0 doilp1

Min. :0.04860 Min. :-0.52843 Min. :-0.52843

1st Qu.:0.06471 1st Qu.: 0.00000 1st Qu.: 0.00000

Median :0.08687 Median : 0.00000 Median : 0.00000

Mean :0.09105 Mean : 0.03581 Mean : 0.03476

3rd Qu.:0.10953 3rd Qu.: 0.05625 3rd Qu.: 0.05384

Max. :0.16924 Max. : 0.96554 Max. : 0.96554

Table 6.1 provides a descriptive summary of the UKpppuip data set.

Table 6.1: Descriptive summary of the UKpppuip data set

Variable Minimum Median Mean Maximum

p1 3.400 4.486 4.361 4.995

p2 3.847 4.530 4.494 4.841

e12 −4.900 −4.514 −4.538 −4.263

l1 0.048 0.104 0.102 0.154

i2 0.049 0.087 0.091 0.169

doilp0 −0.528 0.000 0.036 0.966

doilp1 −0.528 0.000 0.035 0.966
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6.3 Test for normality

The null and the alternative hypothesis of this set are set as follows:

H0 : The series in the data set are normally distributed

H1 : The series in the data set are not normally distributed

Using the Shapiro-Wilk test, we test for the normality of the variables to see if the series in the

data set are well modelled by a normal distribution using the following R command:

> shapiro.test(p1)

Shapiro-Wilk normality test

data: normality

W = 0.8997, p-value = 9.973e-05

> shapiro.test(p2)

Shapiro-Wilk normality test

data: p2

W = 0.9025, p-value = 0.0001275

> shapiro.test(e12)

Shapiro-Wilk normality test

data: e12

W = 0.9637, p-value = 0.06355

> shapiro.test(i1)

Shapiro-Wilk normality test

data: i1

W = 0.9823, p-value = 0.5102

> shapiro.test(i2)

Shapiro-Wilk normality test

data: i2

W = 0.9309, p-value = 0.001783

> shapiro.test(doilp0)

Shapiro-Wilk normality test

data: doilp0

W = 0.6285, p-value = 2.931e-11

> shapiro.test(doilp1)

Shapiro-Wilk normality test
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data: doilp1

W = 0.6237, p-value = 2.439e-11

Table 6.2 provides the summary results of the normality test using the Shapiro-Wilk test.

Table 6.2: Normality test on the Raotbl3 data set

Variable Shapiro-Wilk p-value Decision

p1 0.8997 9.973× 10−5 Reject the null hypothesis

p2 0.9025 1.275× 10−4 Reject the null hypothesis

e12 0.9637 0.6355× 10−1 Reject the null hypothesis

i1 0.9823 5.102× 10−1 Do not reject the null hypothesis

i2 0.9309 1.783× 10−3 Reject the null hypothesis

doilp0 0.6285 2.931× 10−11 Reject the null hypothesis

doilp1 0.6237 2.439× 10−11 Reject the null hypothesis

Since the p-values are very small (less than 0.01), the null hypothesis of normality can be rejected

at the 1% level of significance for all variables except the i1. This implies that most of these time

series variables are not all normally distributed.

6.4 Augmented Dickey-Fuller (ADF) test for unit roots

The aim of the unit root test is to test for nonstationarity of the variables in the data set. A

nonstationarity test is performed by testing for the existence of unit roots in each variable of the

data set. We set the null and the alternative hypotheses as

H0 : δ = 0 (6.4.1)

H1 : δ < 0. (6.4.2)

If the null hypothesis of δ = 0 is not rejected, it means that the variable contains a unit root, that

is, it is nonstationary.

After inspection of the behaviour of the ACF plot for the p1 series, it was found that its residuals

become white noise after lag six. This means that the ACF plot for the p1 series cuts off at lag

six. Since this series shows an increasing trend in figure 6.1, we test the ADF test on the trend

model and lag six as follows:
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> p1.ct=ur.df(p1,lags=6,type="trend")

> summary(p1.ct)

Test regression trend

Call:

lm(formula = z.diff ~ z.lag.1 + 1 + tt + z.diff.lag)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0968845 0.0503226 1.925 0.06039 .

z.lag.1 -0.0146446 0.0145885 -1.004 0.32070

tt -0.0002650 0.0004393 -0.603 0.54932

z.diff.lag1 0.4869411 0.1425790 3.415 0.00134 **

z.diff.lag2 -0.0922546 0.1518551 -0.608 0.54650

z.diff.lag3 -0.0151649 0.1525544 -0.099 0.92125

z.diff.lag4 0.0150175 0.1524567 0.099 0.92196

z.diff.lag5 -0.0708829 0.1510372 -0.469 0.64107

z.diff.lag6 -0.1614905 0.1248796 -1.293 0.20241

Multiple R-squared: 0.7543, Adjusted R-squared: 0.7115

Value of test-statistic is: -1.0038 8.5796 10.7345

The estimated model is

p1t = 0.09869− 0.000265tt− 0.014645p1t−1− 0.48694∆p1t−2− . . .− 0.16149∆p1t−6. (6.4.3)

The calculated test statistic is derived from

Fτ =
δ̂

SE(δ̂)
=
−0.0146446

0.0145885
= −1.0038. (6.4.4)

As extracted from R, the critical values for the ADF unit root test are given in table 6.3.

Table 6.3: Critical values for the test

1% 5%t 10%

τ −4.04 −3.45 −3.15

α1 6.50 4.88 4.16

α2 8.73 6.49 5.47

Since the calculated test statistic, −1.0038, falls within the non-rejection region, that is, to the

right of the τ(tau) critical values, we cannot reject the null hypothesis for the presence of unit
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roots at the 10% level of significance. This means that the variable, UK wholesale price index, p1,

in the data set contains a unit root.

Figure 6.2 is a plot of the residuals of the foreign wholesale price (p1). From the figure, we observe

that the series is nonstationary in the mean but not in the variance.

Figure 6.2: A plot of the ADF unit root test for the p1 series
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The ADF test output for unit roots for all other variables in this data set is obtained using the

following R commands:

> p2.ct=ur.df(p2,lags=6,type=’trend’)

> summary(p2.ct)

>plot(p1.ct)

> e12.ct=ur.df(e12,lags=6,type=’trend’)

> summary(e12.ct)

> i1.ct=ur.df(i1,lags=6,type=’none’)

> summary(i1.ct)

> i2.ct=ur.df(i2,lags=6,type=’none’)
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> summary(i2.ct)

> doilp0.ct=ur.df(doilp0,lags=6,type=none’)

> summary(doilp0.ct)

> doilp1.ct=ur.df(doilp1,lags=6,type=’none’)

> summary(doilp1.ct)

Table 6.4 summarises the results of the ADF unit root test for the UKpppuip data set.

Table 6.4: Summary of the ADF test for unit roots in the variables

Variable ADF test statistic Decision

Wholesale price index (p1) −1.0038 Fail to reject the null hypothesis

Weighted foreign wholesale price (p2) −1.4112 Fail to reject the null hypothesis

Effective exchange rate (e12) −2.0664 Fail to reject the null hypothesis

Treasury bill rate (i1) −0.4923 Fail to reject the null hypothesis

Eurodollar rate (i2) −0.9492 Fail to reject the null hypothesis

World oil price at period t (doilp0) −4.1297 Reject the null hypothesis

Word oil price at period t1 (doilp1) −4.1042 Reject the null hypothesis

The ADF critical value at the 10% level of significance is −3.15. Table 6.4 shows that the null

hypothesis of presence of unit roots for variables doilp0 and doilp1 is rejected. This means that all

other variables are nonstationary except for the world oil price.

It is possible for the world oil price to be stationary since its price is fixed by international or-

ganisations outside a country, for example the Organisation of Petroleum Exporting Countries

(OPEC). Such prices are relatively stable because they are not affected by structural fluctuations

in a country’s economic activities. For example, if employees strike in a country like South Africa,

the price of a barrel of oil on the international market is not affected, although the exchange rates

in South Africa may be affected.

Since the first five variables contain a unit root, it is possible that they are integrated. In the next

section, the ADF test for the order of integration is performed.
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6.5 Augmented Dickey-Fuller (ADF) test for order of inte-

gration

In this test, each variable in the data set is differenced to reduce the nonstationary series to

stationarity, and the ADF test is performed on the differenced series for a possible second order of

integration, I(2), using the following R commands:

> p1t=diff(p1)

> p1t.ct=ur.df(p1t)

> plot(p1t.ct)

Figure 6.3: A plot of the first difference p1, p2, e12, i1, i2, doilp0 and doilp1 series
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From the plot, it can be observed that the first difference series are nonstationary in the mean but

not in the variance. This means that the no trend model is appropriate in testing for the unit root.

Inspection of the ACF plots showed that the ACF ’s of the series in this data set are significant at
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lag six. We therefore test for the possible second order of integration using the ADF test for unit

root on the no trend model with six lags are follows:

> p1t=diff(p1)

> p1t.ct=ur.df(p1t, lags=6,type=’none’)

> summary(p1t.ct)

> p2t=diff(p2)

> p2t.ct=ur.df(p2t, lags=6,type=’none’)

> summary(p2t.ct)

> e12t=diff(e12)

> e12t.ct=ur.df(e12t, lags=6,type=’none’)

> summary(e12t.ct)

> i1t=diff(i1)

> i1t.ct=ur.df(i1t, lags=6,type=’none’)

> summary(i1t.ct)

> i2t=diff(i2)

> i2t.ct=ur.df(i2t, lags=6,type=’none’)

> summary(i2t.ct)

For the UK wholesale price index, the output is given by:

> summary(p1t.ct)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.04719 0.05086 -0.928 0.3582

z.diff.lag1 -0.05744 0.14086 -0.408 0.6853

z.diff.lag2 -0.11241 0.13492 -0.833 0.4089

z.diff.lag3 -0.10667 0.13526 -0.789 0.4343

z.diff.lag4 -0.03972 0.13448 -0.295 0.7690

z.diff.lag5 -0.06029 0.13181 -0.457 0.6495

z.diff.lag6 -0.26352 0.13173 -2.000 0.0513 .

Multiple R-squared: 0.1351, Adjusted R-squared: 0.006268

Value of test-statistic is: -0.928

Critical values for test statistics:

1pct 5pct 10pct

78



tau1 -2.6 -1.95 -1.61

Figure 6.4 is a plot of the ADF test on the first difference p1 series.

Figure 6.4: A plot of the ADF unit root test for the first difference p1 series
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Table 6.5 summarises the results of the ADF test order of integration.

Table 6.5: Summary for ADF test for the order of integration

Variable Test statistic Decision

Differenced Wholesale price index (∆p1) −0.928 Fail to reject the null hypothesis

Differenced Weighted foreign wholesale price (∆p2) −1.5796 Fail to reject the null hypothesis

Differenced Effective exchange rate (∆e12) −2.1458 Reject the null hypothesis

Differenced Treasury bill rate ∆i1 −3.6266 Reject the null hypothesis

Differenced Eurodollar rate ∆i2 −2.7766 Reject the null hypothesis

The ADF critical value at the 10% level of significance is −1.61. Only three variables in table 6.5 are

integrated of order one, I(1, 1), the presence of a long-run equilibrium relationship (cointegration)

is tested for in the following sections.
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6.6 Tests for cointegration

6.6.1 Engle-Granger method

In the two-step estimation procedure, we fit a regression line of nonstationary variables taking

each variable, one at a time, to be the dependent variable and the rest as independent variables.

Thereafter, we test for the stationarity of the residuals from each estimated regression line. If the

residuals are found to be stationary, then the variables cointegrate. In R this is done as follows:

> data1=cbind(p1,p2,e12,i1,i2)

> p1.eq=summary(lm(p1~p2+e12+i1+i2),data=data1)

> p1.eq

Call:

lm(formula = p1 ~ p2 + e12 + i1 + i2)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.30081 0.80040 -2.875 0.00568 **

p2 1.61307 0.06309 25.566 < 2e-16 ***

e12 0.11967 0.12278 0.975 0.33383

i1 -0.70801 0.46090 -1.536 0.13004

i2 0.31163 0.44207 0.705 0.48372

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.06547 on 57 degrees of freedom

Multiple R-squared: 0.9847, Adjusted R-squared: 0.9836

F-statistic: 918.2 on 4 and 57 DF, p-value: < 2.2e-16

Correlation of Coefficients:

(Intercept) p2 e12 i1

p2 -0.94

e12 0.99 -0.88

i1 -0.17 0.05 -0.18

i2 0.63 -0.60 0.63 -0.55

Considering p1 as the dependent variable, the estimated regression line is

p̂1 = −2.30081 + 1.61307p2 + 0.11967e12 − 0.70801i1 + 0.31163i2. (6.6.1)

From the output we observe that only p2 is statistically significant (p-value = 2 × 10−16) at the

1% significance level. Since the R2 = 0.98 is higher and the correlation coefficient between p2 and
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e12 is also high (−0.88), we suspect serial correlation or misspecification or both in the residuals

of p1, but we have to perform diagnostic tests to confirm this.

Taking the other remaining variables as dependent variables, we fit the following regression lines:

p̂2 = 2.27064 + 0.57021p1 + 0.06968e12 + 0.375181i1 + 0.15738i2. (6.6.2)

ê12 = −6.0199 + 0.1370p1 + 0.2256p2 + 0.76101i1 − 2.2714i2. (6.6.3)

î1 = 0.15960− 0.05615p1 + 0.08417p2 + 0.05272e12 + 0.52827i2. (6.6.4)

î2 = −1.06968 + 0.02773p1 + 0.03962p2 − 0.17659e12 + 0.59285i1. (6.6.5)

The residuals of the estimated regression lines above are extracted from the following commands:

> error.p1=(resid(p1.eq))

> error.p2=(resid(p2.eq))

> error.e12=(resid(e12.eq))

> error.i1=(resid(i1.eq))

> error.i2=(resid(i2.eq))

Nonstationarity in the estimated residuals of the regression lines is tested for using the the ADF

test as follows:

> p1.lc=ur.df(error.p1,type=’none’)

> summary(p1.lc)

>plot(pl.lc)

Figure 6.5: A plot of ADF test on residuals of wholesale price.
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Figure 6.5 shows that the residuals of long-run relationships are stationary in mean but not in

variance. This suggests that taking p1 as the normalisation variables there is no evidence of

cointegration in the UKpppuip data set. The nonstationarity of the estimated residuals of the

regression lines for other variables is tested using the the ADF test as follows:

> p2.lc=ur.df(error.p2,type=’none’)

> p2.lc

> e12.lc=ur.df(error.e12,type=’none’)

> e12.lc

> i1.lc=ur.df(error.i1,type=’none’)

> i1.lc

> i2.lc=ur.df(error.i2,type=’none’)

> i2.lc

###############################################################

# Augmented Dickey-Fuller Test Unit Root / Cointegration Test #

###############################################################

The value of the test statistic is: -2.4662

The value of the test statistic is: -2.1394

The value of the test statistic is: -3.5934

The value of the test statistic is: -4.1602

The value of the test statistic is: -4.0841

As extracted from Hamilton (1994) the critical values for the test are given in table 6.6.

Table 6.6: Critical values of ADF test for residuals

1% 5% 10%

τ −4.31 −3.77 −3.45

Table 6.7 summarises the results of the ADF test for the stationarity of residuals.
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Table 6.7: Engle-Granger cointegration test

ADF test statistic Results

Wholesale price index (p1) −2.4662 Fail to reject the null hypothesis

Weighted foreign wholesale price (p2) −2.1394 Fail to reject the null hypothesis

Effective exchange rate (e12) −3.5934 Fail to reject the null hypothesis

Treasury bill rate (i1) −4.1602 Fail to reject the null hypothesis

Eurodollar rate (i2) −4.0841 Fail to reject the null hypothesis

The ADF critical value at the 1% level of significance is −4.31. Based on Engle-Granger’s two-step

procedure, we cannot reject the null hypothesis of no cointegration in all five variables.

In the next step, we estimate the following the error-correction model:

∆p1 = β0 + β1∆p2 + β2∆e12 + β3∆i1 + β4∆i2 + α∗εt−1 + εt (6.6.6)

where α∗ = −(1− α1) as the speed of adjustment to equilibrium, and εt−1 is the error-correction

mechanism. In R this is done as follows:

> p1.l=lag(error.p1)

> p1.d=diff(p1)

> p2.d=diff(p2)

> e12.d=diff(e12)

> i1.d=diff(i1)

> i2.d=diff(i2)

> ecm1=summary(lm(p1.d~p2.d+e12.d+i1.d+i2.d+p1.l))

Call:

lm(formula = p1.d ~ p2.d + e12.d + i1.d + i2.d + p1.l)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.004774 0.001417 3.369 0.00110 **

p2.d 0.235293 0.073202 3.214 0.00179 **

e12.d 0.027621 0.031233 0.820 0.41411

i1.d 0.02623 0.01324 0.987 0.43211

i2.d 0.07624 0.013726 0.107 0.43211

p1.1 0.07865 0.081055 1.206 0.08812

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 0.01299 on 94 degrees of freedom

Multiple R-squared: 0.1242, Adjusted R-squared: 0.09625

F-statistic: 4.444 on 3 and 94 DF, p-value: 0.005767

The estimated ECM is

∆p̂1t = 0.0048 + 0.2353∆p̂2 + 0.0276∆ê12 + 0.0262∆î1 + 0.0762∆î2 + 0.0787ε̂t−1. (6.6.7)

From the above equation we observe that α∗ = 0.0787 enters with the wrong sign (positive); this

is an indication that the system diverges from equilibrium with time.

6.6.1.1 Diagnostic error tests

In R, diagnostic tests are performed using the following commands:

>jaque.bera.test(lag(error.p1), lag=3)

>arch(lag(error.p1),lag.single=3)

>box.test(lag(errror.p1), lag=1,type="Ljung-Box")

>reset(lag(error.p1),type="regressors")

Table 6.8 summarises the results of the diagnostic test on residuals.

Table 6.8: Results from the diagnostic error tests

Test Test statistic p-value Conclusion

Jarque-Bera 18.267 0.3169 Normally distributed

ARCH-LM 52.724 0.000 Heteroscedasticity

Ljung-Box 140.19 0.9640 No serial correlation

Ramsey Reset 34.7334 0.8754 No misspecification

The p-values in table 6.8 are compared with the 5% level of significance.

6.6.2 Phillips-Ouliaris methods

The Phillips-Ouliaris methods are implemented by using two residual-based tests.

6.6.2.1 The variance ratio test

In R, the variance ratio test is implemented in the function ca.po as follows:

> pu.test=summary(ca.po(data1,demean=’const’,type=’Pu’))
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> pu.test

########################################

# Phillips and Ouliaris Unit Root Test #

########################################

Test of type Pu

detrending of series with constant only

Call:

lm(formula = z[, 1] ~ z[, -1])

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.30081 0.80040 -2.875 0.00568 **

z[, -1]p2 1.61307 0.06309 25.566 < 2e-16 ***

z[, -1]e12 0.11967 0.12278 0.975 0.33383

z[, -1]i1 -0.70801 0.46090 -1.536 0.13004

z[, -1]i2 0.31163 0.44207 0.705 0.48372

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.06547 on 57 degrees of freedom

Multiple R-squared: 0.9847, Adjusted R-squared: 0.9836

F-statistic: 918.2 on 4 and 57 DF, p-value: < 2.2e-16

Value of test-statistic is: 1.2458

Critical values of Pu are:

10pct 5pct 1pct

critical values 45.3308 53.2502 71.5214

Table 6.9 summarises the results of the variance ratio test from the UKpppuip data set.

Table 6.9: Results from the variance ratio test

Level of significance 10% 5% 1%

Critical value 45.3308 53.2502 71.5214

Decision Fail to reject H0 Fail to reject H0 Fail to reject H0

The test statistic for the variance ratio test (P̂u) is 1.2458. From table 6.9, we observe that

this calculated test statistic is smaller than the critical values extracted from R at the 10% level

of significance. Therefore, the null hypothesis of no cointegration is not rejected at all levels of

significance.
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6.6.2.2 The multivariate trace statistic

In R, the multivariate trace statistic is implemented in the function ca.po as follows:

> pz.test=summary(ca.po(data1,demean=’const’,type=’Pz’))

> pz.test

Value of test-statistic is: 55.1917

Critical values of Pz are:

10pct 5pct 1pct

critical values 168.8572 182.0749 209.8054

Table 6.10 summarises the results of the multivariate trace statistic from the UKpppuip data set.

Table 6.10: Results of the multivariate trace statistic test

Level of significance 10% 5% 1%

Critical value 168.8572 182.0749 209.8054

Decision Fail to reject H0 Fail to reject H0 Fail to reject H0

The test statistic for the multivariate test statistic (P̂z) is 55.1917. From table 6.10, we observe

that this calculated test statistic is smaller than the critical values extracted from R at the 10%

level of significance. Therefore, the null hypothesis of no cointegration is not rejected at all levels

of significance.

6.6.3 Johansen’s method

Johansen’s method is implemented on two likelihood ratio tests namely:

• The trace test

• The maximum eigenvalue.

6.6.3.1 The trace test

> summary(ca.jo(data1,type="trace",ecdet="const"))

######################

# Johansen-Procedure #

######################

Test type: trace statistic , without linear trend and constant in cointegration

Eigenvalues (lambda):
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[1] 5.214764e-01 3.304515e-01 2.932623e-01 1.667568e-01 8.128293e-02 -1.392413e-16

Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 4 | 5.09 7.52 9.24 12.97

r <= 3 | 16.03 17.85 19.96 24.60

r <= 2 | 36.86 32.00 34.91 41.07

r <= 1 | 60.93 49.65 53.12 60.16

r = 0 | 105.15 71.86 76.07 84.45

Eigenvectors, normalised to first column:

(These are the cointegration relations)

p1.l2 p2.l2 e12.l2 i1.l2 i2.l2 constant

p1.l2 1.0000000 1.0000000 1.000000 1.0000000 1.0000000 1.0000000

p2.l2 -0.7346918 -0.9207675 -1.361829 -1.9915177 -1.4252911 -1.0358045

e12.l2 -0.9704284 -1.7829624 -2.109588 0.6873137 -0.7242021 -0.2570326

i1.l2 -2.8848474 -7.3432095 23.583651 -0.7875323 2.5025109 -0.4401157

i2.l2 -2.8286769 -0.4397012 -21.948283 1.7337995 0.8246376 -0.4631123

constant -5.1797144 -7.5542800 -7.790391 7.5913467 -1.6406824 -0.6387833

Weights W:

(This is the loading matrix)

p1.l2 p2.l2 e12.l2 i1.l2 i2.l2 constant

p1.d -0.063116180 -0.008089024 0.0028462619 0.0005926796 -0.011717664 1.330204e-15

p2.d -0.087829681 0.016994213 0.0013870250 0.0329533062 0.007204453 -5.855598e-15

e12.d -0.047349896 0.089044841 -0.0003203234 -0.1010515588 -0.029084086 2.014059e-14

i1.d -0.007442938 0.025918893 -0.0056791100 0.0131966312 -0.020372446 -2.054232e-15

i2.d 0.039061585 0.009907056 0.0132306063 0.0454082868 -0.010762483 -9.438451e-15

6.6.3.2 The maximum eigenvalue

> summary(ca.jo(data1,type="eigen",ecdet="const"))

######################

# Johansen-Procedure #

######################

maximal eigenvalue statistic (lambda max) , without linear trend and constant in cointegration

Eigenvalues (lambda):

[1] 5.214764e-01 3.304515e-01 2.932623e-01 1.667568e-01 8.128293e-02 -1.392413e-16
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Values of teststatistic and critical values of test:

test 10pct 5pct 1pct

r <= 4 | 5.09 7.52 9.24 12.97

r <= 3 | 10.95 13.75 15.67 20.20

r <= 2 | 20.83 19.77 20.00 20.81

r <= 1 | 26.07 25.56 24.14 23.24

r = 0 | 44.22 31.66 34.40 39.79

Eigenvectors, normalised to first column:

(These are the cointegration relations)

p1.l2 p2.l2 e12.l2 i1.l2 i2.l2 constant

p1.l2 1.0000000 1.0000000 1.000000 1.0000000 1.0000000 1.0000000

p2.l2 -0.7346918 -0.9207675 -1.361829 -1.9915177 -1.4252911 -1.0358045

e12.l2 -0.9704284 -1.7829624 -2.109588 0.6873137 -0.7242021 -0.2570326

i1.l2 -2.8848474 -7.3432095 23.583651 -0.7875323 2.5025109 -0.4401157

i2.l2 -2.8286769 -0.4397012 -21.948283 1.7337995 0.8246376 -0.4631123

constant -5.1797144 -7.5542800 -7.790391 7.5913467 -1.6406824 -0.6387833

Weights W:

(This is the loading matrix)

p1.l2 p2.l2 e12.l2 i1.l2 i2.l2 constant

p1.d -0.063116180 -0.008089024 0.0028462619 0.0005926796 -0.011717664 1.330204e-15

p2.d -0.087829681 0.016994213 0.0013870250 0.0329533062 0.007204453 -5.855598e-15

e12.d -0.047349896 0.089044841 -0.0003203234 -0.1010515588 -0.029084086 2.014059e-14

i1.d -0.007442938 0.025918893 -0.0056791100 0.0131966312 -0.020372446 -2.054232e-15

i2.d 0.039061585 0.009907056 0.0132306063 0.0454082868 -0.010762483 -9.438451e-15

Tables 6.11 summarises results of Johansen’s cointegration method on the UKpppuip data set.
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Table 6.11: Johansen’s trace tests and maximum eigenvalues results

Null hypothesis Alternative Test statistic 10% 5% 1% Results

trace test

r ≤ 4 r > 4 5.09 7.52 9.24 12.97 Fail to reject H0

r ≤ 3 r > 3 16.03 17.85 19.96 24.60 Fail to reject H0

r ≤ 2 r > 2 36.86 32.00 34.91 41.07 Reject H0

r ≤ 1 r > 1 60.93 49.65 53.12 60.16 Reject H0

r = 0 r > 0 105.15 71.86 76.07 84.45 Reject H0

max test

r = 4 r = 5 5.09 7.52 9.24 12.97 Fail to reject H0

r = 3 r = 4 10.95 13.75 15.67 20.20 Fail to reject H0

r = 2 r = 3 20.83 19.77 20.00 20.81 Reject H0

r = 1 r = 2 26.07 25.56 24.14 23.24 Reject H0

r = 0 r = 1 44.22 31.66 34.40 39.79 Reject H0

From table 6.11, it can be observed that

(i) the null hypothesis of no cointegration (r = 0) against the alternative of the presence of one or

more cointegrating vector is rejected at the 10% level of significance in both techniques (trace

test and maximum eigenvalue). This implies that cointegration exists among all variables of

the data set

(ii) the null hypotheses of (r ≤ 1) and (r ≤ 2) are rejected at the 10% level of significance. This

implies that there are at most two cointegration vectors in the UKpppuip data set

(iii) the results of Johansen’s method further imply that multicointegrating relationships can be

tested for in the UKpppuip data set. However, testing for multicointegration is not part of

this study.

6.7 Concluding remarks

In the UKpppuip data set, seven variables are tested for cointegration, of which five showed the

existence of a long-run relationship. Although the Engle-Granger and the Phillips-Ouliaris methods

indicated that there is no cointegration amongst the five variables, Johansen’s method indicated

presence of cointegration and further showed the existence of at most two cointegration vectors.
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Chapter 7

Conclusions and recommendations

In conclusion, the Engle-Granger method requires testing whether variables are integrated of the

same order. This is done using the ADF unit root test. If they are integrated and of the same

order, we examine the long-run equilibrium relationship by fitting the OLS estimator in order to

assess whether there is a linear relationship. Using the error correction model, we test whether the

residuals of the long-run relationship are stationary. If all conditions are satisfied, then the two or

more variables under investigation cointegrate.

The advantage of the Engle-Granger method over the other techniques is its ease of implementa-

tion. However, its results are dependent on how the long-run equilibrium equation is specified. In

some cases it might not be easy to identify which variable enters on the left as the dependent vari-

able. It is therefore advisable to employ the cointegration tests of the Phillips-Ouliaris methods,

which yield the same results irrespective of the variable which enters as the dependent variable,

that is, they are invariant to normalisation.

According to the Phillips-Ouliaris methods, two residual-based tests, namely the variance ratio test

and the multivariate trace statistic, are employed to test for cointegration. These tests measure the

size of the residual variance from the cointegrating regression of the variables under study. If the

residual variance is greater than the conditional variance, then the variables cointegrate. However,

one deficiency of the Phillips-Ouliaris methods is that one can only estimate a single cointegrating

relationship. Nevertheless, if one deals with more than two time series, it is possible that more

than one cointegrating relationship exists which calls for the use of vector cointegration techniques

like Johansen’s procedure.
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Johansen’s method employs the trace test and maximum eigenvalues to test for the existence of

one or more cointegrating vectors in the data set. This procedure is used mostly on multivariate

data sets where we suspect the existence of more than one cointegrating relationship. However, it

can also be used to verify the results of other cointegration techniques. This method assumes that

the cointegrating vector is constant during the period of study. In reality, it is possible that the

long-run relationships between the underlying variables change because of changes in technological

progress and/or economic crises. In order to remedy this limitation, Gregory and Hasen (1996)

have introduced tests for cointegration with one and two unknown structural break(s).

This study finds all the cointegration techniques tested not to be consistent. That is, all three

methods do not lead to the same results. In the data analysis performed in chapter 4, 5, and 6,

the Engle-Granger method and the Phillips-Ouliaris methods indicated no cointegration whileas

the Johansen’s method indicated presence of cointegration. We recommend the use of Johansen’s

method because it is able to detect more than one cointegrating relationship if present.
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Chapter 8

Appendix

8.1 Appendix A

The Raotbl3 data

> Raotbl3

lc li lw dd682 dd792 dd883

1966.4 10.4831 10.5821 12.9481 NA NA NA

1967.1 10.4893 10.5800 12.9895 0 0 0

1967.2 10.5022 10.5990 13.0115 0 0 0

1967.3 10.5240 10.6262 13.0411 0 0 0

1967.4 10.5329 10.6145 13.0357 0 0 0

1968.1 10.5586 10.6307 13.0518 0 0 0

1968.2 10.5190 10.6316 13.0839 1 0 0

1968.3 10.5381 10.6132 13.1120 -1 0 0

1968.4 10.5422 10.6141 13.1183 0 0 0

1969.1 10.5361 10.6263 13.1144 0 0 0

1969.2 10.5462 10.6366 13.1009 0 0 0

1969.3 10.5459 10.6313 13.0882 0 0 0

1969.4 10.5552 10.6324 13.0402 0 0 0

1970.1 10.5548 10.6361 13.0391 0 0 0

1970.2 10.5710 10.6795 13.0417 0 0 0

1970.3 10.5861 10.6813 13.0261 0 0 0

1970.4 10.5864 10.6801 13.0032 0 0 0
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1971.1 10.5802 10.6533 13.0364 0 0 0

1971.2 10.6006 10.6839 13.0461 0 0 0

1971.3 10.6168 10.6889 13.0850 0 0 0

1971.4 10.6275 10.7025 13.1107 0 0 0

1972.1 10.6414 10.7212 13.1241 0 0 0

1972.2 10.6629 10.7818 13.1605 0 0 0

1972.3 10.6758 10.7641 13.1748 0 0 0

1972.4 10.6881 10.7841 13.1612 0 0 0

1973.1 10.7240 10.8045 13.1050 0 0 0

1973.2 10.7143 10.8230 13.1082 0 0 0

1973.3 10.7222 10.8319 13.1059 0 0 0

1973.4 10.7156 10.8380 13.0140 0 0 0

1974.1 10.6964 10.8097 12.9301 0 0 0

1974.2 10.6990 10.7928 12.8427 0 0 0

1974.3 10.7081 10.8310 12.7710 0 0 0

1974.4 10.7142 10.8328 12.7281 0 0 0

1975.1 10.7078 10.8527 12.7692 0 0 0

1975.2 10.7073 10.8089 12.7492 0 0 0

1975.3 10.6954 10.8202 12.7664 0 0 0

1975.4 10.6910 10.8069 12.7554 0 0 0

1976.1 10.6967 10.8196 12.7605 0 0 0

1976.2 10.7015 10.8046 12.7471 0 0 0

1976.3 10.7083 10.8372 12.7238 0 0 0

1976.4 10.7127 10.8123 12.7156 0 0 0

1977.1 10.6922 10.7842 12.7555 0 0 0

1977.2 10.6874 10.7713 12.7517 0 0 0

1977.3 10.6989 10.7904 12.8018 0 0 0

1977.4 10.7224 10.8369 12.8388 0 0 0

1978.1 10.7452 10.8333 12.8438 0 0 0

1978.2 10.7462 10.8635 12.8540 0 0 0

1978.3 10.7663 10.8884 12.8618 0 0 0

1978.4 10.7633 10.8924 12.8491 0 0 0

1979.1 10.7737 10.9017 12.9232 0 0 0

1979.2 10.8282 10.9108 12.9022 0 1 0
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1979.3 10.7872 10.9166 12.8737 0 -1 0

1979.4 10.8015 10.9673 12.8467 0 0 0

1980.1 10.8139 10.9324 12.8647 0 0 0

1980.2 10.7909 10.9344 12.8885 0 0 0

1980.3 10.8029 10.9506 12.9183 0 0 0

1980.4 10.7868 10.9465 12.9277 0 0 0

1981.1 10.7979 10.9488 12.9505 0 0 0

1981.2 10.8007 10.9294 12.9615 0 0 0

1981.3 10.8008 10.9248 12.9147 0 0 0

1981.4 10.7991 10.9326 12.9527 0 0 0

1982.1 10.7956 10.9202 12.9641 0 0 0

1982.2 10.8005 10.9373 12.9780 0 0 0

1982.3 10.8160 10.9269 13.0299 0 0 0

1982.4 10.8260 10.9315 13.0604 0 0 0

1983.1 10.8405 10.9399 13.1031 0 0 0

1983.2 10.8482 10.9599 13.1577 0 0 0

1983.3 10.8633 10.9563 13.1504 0 0 0

1983.4 10.8633 10.9637 13.1805 0 0 0

1984.1 10.8615 10.9703 13.2245 0 0 0

1984.2 10.8732 10.9778 13.1852 0 0 0

1984.3 10.8649 10.9801 13.2298 0 0 0

1984.4 10.8793 10.9942 13.2849 0 0 0

1985.1 10.8909 10.9840 13.2999 0 0 0

1985.2 10.8938 11.0120 13.2904 0 0 0

1985.3 10.9116 11.0120 13.3140 0 0 0

1985.4 10.9202 11.0237 13.3606 0 0 0

1986.1 10.9409 11.0300 13.4574 0 0 0

1986.2 10.9663 11.0624 13.4655 0 0 0

1986.3 10.9700 11.0556 13.4371 0 0 0

1986.4 10.9808 11.0644 13.5020 0 0 0

1987.1 10.9878 11.0618 13.5914 0 0 0

1987.2 11.0048 11.0839 13.6804 0 0 0

1987.3 11.0272 11.0944 13.7131 0 0 0

1987.4 11.0420 11.1095 13.5633 0 0 0
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1988.1 11.0701 11.1116 13.5814 0 0 0

1988.2 11.0751 11.1413 13.6171 0 0 0

1988.3 11.0964 11.1507 13.6201 0 0 1

1988.4 11.1069 11.1680 13.6460 0 0 1

1989.1 11.1123 11.1713 13.6731 0 0 1

1989.2 11.1231 11.2032 13.6884 0 0 1

1989.3 11.1223 11.2009 13.7211 0 0 1

1989.4 11.1303 11.2064 13.7686 0 0 1

1990.1 11.1307 11.2160 13.6833 0 0 1

1990.2 11.1389 11.2147 13.7130 0 0 1

1990.3 11.1325 11.2286 13.6225 0 0 1

1990.4 11.1261 11.2352 13.6957 0 0 1

1991.1 11.1232 11.2189 13.7723 0 0 1

1991.2 11.1220 11.2276 13.7424 0 0 1

8.2 Appendix B

Australia’s Economic Indicators

> data1

Quarter ppi dppi cpi

1 1999Q1 4.386517 4.367547 4.403054

2 1999Q2 4.389126 4.377516 4.407207

3 1999Q3 4.409763 4.392224 4.416186

4 1999Q4 4.423289 4.400971 4.421848

5 2000Q1 4.440767 4.417273 4.430579

6 2000Q2 4.460260 4.430579 4.438643

7 2000Q3 4.479494 4.434263 4.475175

8 2000Q4 4.503802 4.440885 4.478245

9 2001Q1 4.491329 4.441827 4.488861

10 2001Q2 4.514479 4.451902 4.497028

11 2001Q3 4.503027 4.454696 4.500032

12 2001Q4 4.496805 4.458756 4.508990

13 2002Q1 4.496025 4.466598 4.517759

14 2002Q2 4.503802 4.475631 4.525044
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15 2002Q3 4.501475 4.480967 4.531631

16 2002Q4 4.512945 4.489872 4.538817

17 2003Q1 4.525152 4.504797 4.551558

18 2003Q2 4.505350 4.509980 4.551558

19 2003Q3 4.500698 4.522984 4.557240

20 2003Q4 4.502251 4.530662 4.562158

21 2004Q1 4.513713 4.544995 4.571200

22 2004Q2 4.532707 4.553350 4.576050

23 2004Q3 4.560173 4.567364 4.580160

24 2004Q4 4.581082 4.584457 4.587719

25 2005Q1 4.571820 4.588431 4.594514

26 2005Q2 4.599554 4.598045 4.600660

27 2005Q3 4.620453 4.612245 4.610058

28 2005Q4 4.628007 4.621634 4.615319

29 2006Q1 4.647559 4.628594 4.623992

30 2006Q2 4.694005 4.646120 4.639572

31 2006Q3 4.696564 4.658901 4.648613

32 2006Q4 4.687027 4.664194 4.647367

33 2007Q1 4.684443 4.665701 4.648038

34 2007Q2 4.708629 4.680370 4.660132

35 2007Q3 4.704835 4.695651 4.667112

36 2007Q4 4.720550 4.705016 4.676560

37 2008Q1 4.751173 4.724818 4.689511

38 2008Q2 4.792065 4.738739 4.704201

39 2008Q3 4.808111 4.757891 4.715727

40 2008Q4 4.785072 4.752383 4.712678

41 2009Q1 4.740924 4.742146 4.713935

42 2009Q2 4.725528 4.742146 4.718677

43 2009Q3 4.732948 4.751778 4.728272

44 2009Q4 4.714294 4.754452 4.733563
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8.3 Appendix C

United Kingdom purchasing power parity

> UKpppuip

p1 p2 e12 i1 i2 doilp0 doilp1

1 3.399837 3.846749 -4.899593 0.04707441 0.05059805 0.000000000 0.000000000

2 3.412952 3.856261 -4.894152 0.04678816 0.04859967 0.006686741 0.000000000

3 3.430709 3.864228 -4.832260 0.05987140 0.05543471 0.000000000 0.006686741

4 3.452861 3.881285 -4.803663 0.07250669 0.05808021 0.002213712 0.000000000

5 3.465303 3.913175 -4.785582 0.07890360 0.07622003 0.102026935 0.002213712

6 3.469929 3.953242 -4.785582 0.07148310 0.08296152 0.132782319 0.102026935

7 3.503215 3.997386 -4.723762 0.10651984 0.10589038 0.139537134 0.132782319

8 3.542608 4.020950 -4.712609 0.11520193 0.09485553 0.236910345 0.139537134

9 3.615693 4.130217 -4.719131 0.11609272 0.08773611 0.965538339 0.236910345

10 3.683799 4.172550 -4.733877 0.11010922 0.11653782 0.043433914 0.965538339

11 3.722781 4.207048 -4.730211 0.10849560 0.12425096 0.019527335 0.043433914

12 3.772879 4.236469 -4.713544 0.10669962 0.09776172 0.055380463 0.019527335

13 3.835640 4.253006 -4.694693 0.09603719 0.06989913 0.006386841 0.055380463

14 3.885599 4.270279 -4.662791 0.09175843 0.06335032 0.000000000 0.006386841

15 3.920515 4.271766 -4.619633 0.10174398 0.07194850 0.000000000 0.000000000

16 3.956147 4.285636 -4.594710 0.10723875 0.06372569 0.095711863 0.000000000

17 3.998746 4.295829 -4.583076 0.08590243 0.05382509 0.000000000 0.095711863

18 4.036117 4.320907 -4.497610 0.10381933 0.05874050 0.000000000 0.000000000

19 4.076345 4.340277 -4.471787 0.11082556 0.05581306 0.000000000 0.000000000

20 4.125455 4.358491 -4.397771 0.13540464 0.05097824 0.000000000 0.000000000

21 4.185891 4.362472 -4.431758 0.10354888 0.05116829 0.049157883 0.000000000

22 4.234323 4.374696 -4.429279 0.07325046 0.05600219 0.000000000 0.049157883

23 4.263965 4.389198 -4.431758 0.06241126 0.06288090 0.049220550 0.000000000

24 4.277778 4.401695 -4.453790 0.05656935 0.06859279 0.000000000 0.049220550

25 4.283250 4.419375 -4.480076 0.05808021 0.07204155 0.000000000 0.000000000

26 4.302169 4.441176 -4.420557 0.08093462 0.07482914 0.000000000 0.000000000

27 4.321394 4.454597 -4.429279 0.08846865 0.08599419 0.000000000 0.000000000

28 4.340257 4.468155 -4.429279 0.10849560 0.11001965 0.000000000 0.000000000

29 4.370716 4.488001 -4.451366 0.11582557 0.10047862 0.061622239 0.000000000
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30 4.415330 4.505689 -4.505689 0.11662681 0.10138261 0.207787798 0.061622239

31 4.469429 4.518725 -4.553932 0.12944807 0.11448873 0.183289180 0.207787798

32 4.502292 4.541496 -4.522783 0.14591687 0.13749851 0.156218845 0.183289180

33 4.561852 4.575517 -4.572380 0.15417925 0.15794348 0.188576302 0.156218845

34 4.597851 4.597449 -4.588381 0.15392208 0.10571045 0.056546043 0.188576302

35 4.623419 4.616333 -4.611395 0.13993584 0.11404272 0.046682730 0.056546043

36 4.637637 4.629624 -4.646949 0.13015068 0.15785808 0.027065257 0.046682730

37 4.652340 4.648700 -4.662791 0.11573650 0.15212005 0.063683392 0.027065257

38 4.671239 4.666700 -4.622706 0.11216730 0.16101280 -0.005968468 0.063683392

39 4.684259 4.686902 -4.546235 0.13374387 0.16923632 -0.007273117 -0.005968468

40 4.700753 4.703789 -4.536252 0.14349410 0.12927234 0.002852345 -0.007273117

41 4.725350 4.718869 -4.552836 0.12804135 0.14002278 -0.013059408 0.002852345

42 4.740313 4.726432 -4.542918 0.12257155 0.13967498 -0.034575983 -0.013059408

43 4.750136 4.739622 -4.556120 0.10165365 0.11350724 -0.002991714 -0.034575983

44 4.759607 4.753597 -4.530662 0.09303487 0.09267033 0.009277172 -0.002991714

45 4.774913 4.759102 -4.428038 0.10399959 0.08883471 -0.047274182 0.009277172

46 4.792479 4.769929 -4.474163 0.09339926 0.08984070 -0.091113230 -0.047274182

47 4.803201 4.779921 -4.481255 0.09029764 0.09521927 0.000000000 -0.091113230

48 4.814620 4.789540 -4.461028 0.08654460 0.09385458 0.000000000 0.000000000

49 4.830711 4.801698 -4.442835 0.08553529 0.09630968 0.000000000 0.000000000

50 4.846547 4.811212 -4.419304 0.08470873 0.10804690 0.000000000 0.000000000

51 4.856707 4.817162 -4.396546 0.09794307 0.11207790 -0.010630026 0.000000000

52 4.869839 4.824625 -4.358630 0.09294375 0.09358141 -0.010766150 -0.010630026

53 4.892602 4.832971 -4.317755 0.11297148 0.08562709 -0.014522756 -0.010766150

54 4.908972 4.839915 -4.407938 0.11724956 0.07982730 -0.011065893 -0.014522756

55 4.919251 4.836898 -4.447697 0.11064652 0.07723878 -0.030087322 -0.011065893

56 4.927254 4.840464 -4.419322 0.10795714 0.07760898 0.026371311 -0.030087322

57 4.941642 4.836249 -4.359270 0.11154137 0.07473635 -0.242824909 0.026371311

58 4.950885 4.830666 -4.371976 0.09576462 0.06775210 -0.528430180 -0.242824909

59 4.958640 4.834564 -4.314818 0.09248802 0.06043637 -0.140982497 -0.528430180

60 4.966335 4.832189 -4.262680 0.10138261 0.05902334 0.161746159 -0.140982497

61 4.982236 4.840834 -4.286891 0.09939274 0.06165938 0.250437899 0.161746159

62 4.994506 4.841025 -4.326646 0.08746128 0.06765865 0.065340376 0.250437899

98



Bibliography

Asufu-Adjaye D., 2000 The relationship between energy consumption, energy prices and economic

growth: time series evidence from Asian developing countries. Energy economics, 22:615−625.

Banerejee A, Galbabraith W, Dolado J.J. and Hendry D.F., 1993. Cointegration, error-correction,

and ecometric analysis of nonstationary data. London: Oxford University Press.

Belloumi M., 2009. Energy consumption and GDP in Tunisia: Cointegration and causality analysis.

Energy policy, 37:2745−2753.

Bentzen J., 1995. An empirical of gasoline in Denmark using cointegration approach. Energy Eco-

nomics, 17:329−339.

Bhaskara R., 1994. Cointegration for applied economist. London:Springer + Business Media.

Cancer M., 1998 Tests for cointegration with infinite variance errors. Econometrics, 86:155−175.

Chan H.L and Lee S.K., 1997. Modeling and forecasting and demand for China. Energy Economics

19:149−168.

Cheng B.S. and Lai T.W., 1997.An investigation of cointegration and causality between energy

consumption and economic activity in Taiwan. Energy Economics, 19:435−444.

Choi I., 1994 Spurious regression and residual based tests for cointegration when regressors are

cointegrated. Econometrics, 60:331−320.

Enders W., 2004. Applied econometrics time series. Wiley series in Probability and Statistics.

Engle R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of

United Kingdom inflation. Econometrica, 50:987−1007.

Engle R.F. and Granger C.W.J., 1987. Cointegration and error correction: Representation, esti-

mation and testing. Econometrica, 55:251−276.

99



Erdogdu E., 2007. Electricity demand analysis using cointegration ARIMA modeling: A case study

of Turkey. Energy Policy, 35:1129−1146.

Fouquest R, Pearson A, Hawdon P.D. Robinson C. and Stevens P., 1997. The future of UK final

user energy demand. Energy Policy, 25:231−240.

Gregory A.W. and Hasen J.M., 1996. Testing for structural breaks in cointegrated relationships.

Econometrics, 71:321−341.

Hamilton J.D., 1994. Time Series Analysis. New Jersey:Princeton University Press.

Harris R., 1995. Using cointegration analysis in econometric modelling. London:Oxford university

press.

Holden D. and Perman R., 1994. Unit roots and cointegration for the economist. London:Oxford

university press.

Jarque C.M. and Bera A.K., 1980. Efficient tests for normality, homoskedasticity and serial inde-

pendence of regression residuals. Economics letters, 6:255−259.

Johansen R. and Juselius K., 1998. Testing structural hypothesis in multivariate cointegration of

the PPP and the UIP for UK. Econometrics, 53:211−244.

Johansen S., 1988. Statistical analysis of cointegration vectors. Economic Dynamic control,

12:231−254.

Kanas A., 1997. Is economic exposure asymmetric between long-run depreciations and apprecia-

tion? Testing using cointegration analysis. Multinational Functional Management, 7:27−42.

Khalifa H. and Sakka M., 2004. Energy use and output in Canada: a multivariate cointegration

analysis. Energy Economics, 25:225−238.

Kulshreshtha M. and Parikh J.K., 1999. Modeling demand coal India: vector autoregressive models

with cointegration variables. Energy Economics 26:149−168.

Lee H., 1993. Seasonal cointegration:− The Japanese consumption function. Econometrics,

55:275−298.

Ljung G.M. and Box G.E.P., 1978. On a measure of lack of fit in time series models. Biometrika,

65:297−303.

100



Masih A. and Mashi R., 1996. Energy consumption and real income temporal causality, results for a

multi-country study based on cointegration and error correction techniques. Energy Economics,

1:165−183.

Maslyuk S. and Smyth R., 2009. Cointegration between oil spot and future prices of the same and

different grades in the presence of structural change. Economics and Business, 65:1−63.

Maslyuk S. and Smyth R., 2010. Female labor force participation and total fertility rates in the

OECD: New evidence from panel coitegration and Granger causality testing Economics and

Business, 65:48−64.

Pauly P., 2003. Hypothesis test. Lecture notes for econometrics 815, taught at the University of

Pretoria in March 2003.

Pfaff B., 2006. Analysis of integrated and cointegrated time series with R. London:Springer +

Business Media.

Phillips P.C.B. and Oualiaris S., 1998. Testing for cointegration using principal component meth-

ods. Economics Dynamic and Control, 12:205−230.

Ramsey J.B., 1978. Tests for specification errors in classical linear least squares regression analysis.

Royal statistical society, 31:350−371.

Samimi R., 1995. Road transport energy demand in Austaralia: a cointegration approach. Energy

Economics 17:349−339.

United Nations World Economic Indicators http://quanis1.easydata.co.za/TableViewer/tableView.aspx.

Wei W.S., 2006. Time series analysis: univariate and multivariate. Boston: Pearson.

Yang H., 2000. A note on casual relationship between energy and GNP in Taiwan. Energy Eco-

nomics, 22:309−317.

Yule G.U., 1989. Why do we sometimes get nonsense-corrections between time series?−a study in

sampling and the nature of time series. Royal Statistical Society, 1:1−63.

101


