
HYBRID NUMERICAL METHODS FOR STOCHASTIC DIFFERENTIAL EQUATIONS

by

IKPE DENNIS CHINEMEREM

Submitted in fulfillment of the requirements for the degree of

MASTER OF SCIENCE

In the subject

APPLIED MATHEMATICS

UNIVERSITY OF SOUTH AFRICA

February 2009

ABSTRACT

In this dissertation we obtain an efficient hybrid numerical method for the

solution of stochastic differential equations (SDEs). Specifically, our method

chooses between two numerical methods (Euler and Milstein) over a particu-

lar discretization interval depending on the value of the simulated Brownian

increment driving the stochastic process. This is thus a new1 adaptive method

in the numerical analysis of stochastic differential equation. Mauthner (1998)

and Hofmann et al (2000) have developed a general framework for adaptive

schemes for the numerical solution to SDEs, [30, 21]. The former presents

a Runge-Kutta-type method based on stepsize control while the latter con-

sidered a one-step adaptive scheme where the method is also adapted based

on step size control. Lamba, Mattingly and Stuart, [28] considered an adap-

tive Euler scheme based on controlling the drift component of the time-step

method. Here we seek to develop a hybrid algorithm that switches between

euler and milstein schemes at each time step over the entire discretization

interval, depending on the outcome of the simulated Brownian motion incre-

ment. The bias of the hybrid scheme as well as its order of convergence is

studied. We also do a comparative analysis of the performance of the hybrid

scheme relative to the basic numerical schemes of Euler and Milstein.

1in the sense that the adaptiveness depends on the Brownian motion increment and not

on the step size.

ACKNOWLEDGMENTS

I wish to first and foremost acknowledge the efforts of my supervisor, Dr.

E Rapoo. Her patience, understanding and support is one of a kind. Eeva,

I would wish for a supervisor of your kind in my future academic research

works. I also would want to thank the Director of the School of Science, Dr.

Gugu Moche and the Executive Dean of the College of Science,Engineering

and Technology, Prof. Mamokgethi Setati for believing not only in my aca-

demic abilities but also in my extracurricular interests by affording me the

opportunity to be part of “MathsEdge”, a flagship community engagement

project of the college. For this , I shall remain ever grateful.

This acknowledgment won’t be complete if I fail to acknowledge the entities

on whose platform this Masters dissertation was conducted. I thank UNISA

for not only providing me the opportunity to be identified with it but for also

providing me with financial support in the form of tuition fees and field work

associated costs. I also thank the South African National Research Foundation,

NRF for the financial support through the 2007 Africa Scholarship for non-

South African citizens.

Last but not least, I wish to thank all members of my family, my mum

in particular for single-handedly raising me with much care, love and support

and for her encouragement to me during the period of this research work. My

friends from Wits university: Gideon, Okeke, Florence, Bulelwa and Thibaut,

my friends from Unisa, Martin, Kennedy, Rendani, Phila and Raymond, your

interests and encouragements in this work kept me going all through the period

of this dissertation. I also wish to thank Farai from UCT for the valauble

comments after reading this manuscript.

iv

To God almighty I give all the glory for giving me the wisdom and under-

standing that enables me to pursue a career in such a subject area as Applied

Mathematics.

DECLARATION

I hereby certify that this project was independently written by me. No

material was used other than that referred to. Sources directly quoted and

ideas used, including figures, tables, sketches, drawings and photos, have been

correctly denoted. Those not otherwise indicated belong to the author.

Contents

Table of Contents vi

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Outline of the Research . 2

2 General Theory of Stochastic Differential Equations 4
2.1 Stochastic process . 4
2.2 Brownian Motion . 5

2.2.1 Equivalence transformations 5
2.3 Stochastic Integrals . 7

2.3.1 Construction of the stochastic integrals 7
2.3.2 Itô integrals . 10
2.3.3 Stratonovich Integral . 10

2.4 Stochastic differential equations, SDEs 11
2.4.1 Existence and Uniqueness of the Solution of SDEs 12
2.4.2 Itô Process . 13

3 Numerical Methods for solutions of SDEs 15
3.1 Introduction . 15
3.2 Stochastic Taylor Expansions . 16

3.2.1 Strong and Weak Convergence of Stochastic Taylor Approxi-
mation . 17

3.3 Euler-Maruyama Method . 17
3.3.1 Numerical Example . 19
3.3.2 Strong and Weak Order of Convergence of the Euler Scheme . 20

3.4 Milstein method . 23
3.4.1 Strong Convergence of the Milstein method 26

3.5 Order 1.5 stochastic schemes . 29

vi

CONTENTS vii

4 Adaptive Numerical Schemes for SDEs 33
4.1 Adaptive schemes for ODEs and R-K schemes 34
4.2 An Adaptive Euler-Maruyama scheme for SDEs 35
4.3 An asymptotically adaptive algorithm 36
4.4 An adaptive algorithm based on embedded Runge-Kutta scheme . . . 37
4.5 A variable Riemannian sum for Itô integrals 38
4.6 Summary: adapted approaches . 39

5 Hybrid Numerical Methods for the Solution of SDEs 41
5.1 Introduction . 41
5.2 Euler-Milstein hybrid Scheme . 42

5.2.1 An intuitive illustration of the order convergence
of the Euler-Milstein hybrid scheme 43

5.2.2 Bias of the hybrid scheme . 49
5.2.3 Strong order of the error of the hybrid scheme 53

6 Numerical Experiments 65
6.1 The ε-Complexity of the Hybrid Scheme 65
6.2 Numerical Comparison . 66

6.2.1 Strong Orders of Convergence 67
6.2.2 Efficiency . 70

7 Summary 76

A MATLAB CODES FOR HYBRID METHOD PLOTS 79
A.1 Matlab Codes: Hybrid Bias . 79
A.2 Matlab Codes:hybrid order of Convergence 83
A.3 Matlab Codes: Numerical Experiments 86

List of Figures

2.1 A single discretised Brownian motion path 7
2.2 50 discretised Brownian motion paths 8

3.1 Euler Approximation of an SDE . 21
3.2 Strong Order of Euler convergence 22
3.3 Milstein Approximation of an SDE 27
3.4 Strong convergence of the Milstein scheme 28

5.1 graph of the functions G1 and C1 . 51
5.2 Bias of the hybrid scheme vs h, ε = 1, 2, h = 0 : 10 52
5.3 bias of the hybrid scheme vs h, ε = 1, 7, h = 0 : 10 53
5.4 Bias of the hybrid scheme vs h, ε = 0.1;h = N ∗ ε,N = [2 : 10] 54
5.5 Bias of the hybrid scheme vs h, ε = 1, h = N ∗ ε,N = [2, 40] 55
5.6 Bias of the hybrid scheme vs h, ε = 0.000001,h = 0.001:0.01 56
5.7 bias of the hybrid scheme vs h, ε = 0.1, h = 0 : 011 57
5.8 Mean square error vs h, ε = 0.00001 58
5.9 Numerically calculated global hybrid error vs ε, ε = [3 ∗ 10−6, 5.5 ∗

10−5, 0.0001], h = 0.001 . 59
5.10 Maximum mean square error vs h, ε = 0.00001 60
5.11 Mean square error of the extra term vs h, ε = 0.00001 60
5.12 Mean square error of the extra term vs h, from left,right to bottom

ε = 0.1, 0.01, 0.00001 . 61
5.13 Mean square error of the extra term vs h, ε = 0.00001 61
5.14 Order of hybrid method vs h, for different values of ε 62
5.15 Order of the hybrid method vs h, for different values of ε 63
5.16 Order of convergence for different methods 64

6.1 Comparison of the strong order of convergence of the Euler and Mil-
stein schemes with the hybrid scheme. 1. SDE(1) with µ = 1 and σ =
0.1 2. SDE(1), with µ = 1 and σ = 1 3. SDE(1) with µ = 1 and σ = 2.
In the calculation we use ε = 0.000054 and , h = 0.001, for Euler and h =
0.02 for Milstein . 68

6.2 Comparison of the strong order of convergence of the Euler and Mil-
stein schemes with the hybrid scheme. 1. SDE(2) 2. SDE(3) 69

viii

LIST OF FIGURES ix

6.3 Comparison of strong order of convergence of the Euler and Milstein
schemes with the hybrid scheme. 1. SDE(1) with µ = 1 and σ = 0.1
2. SDE(1), with µ = 1 and σ = 1. 3. SDE(1) with µ = 1 and σ = 2. . 70

6.4 Comparison of strong order of convergence of the Euler and Milstein
schemes with the hybrid scheme. 1. SDE(2) 2. SDE(3) 71

6.5 Comparison of the Euler and Milstein schemes with the hybrid scheme
using the same computational cost. 1. SDE(1) with µ = 1 and σ = 0.1
2. SDE(1), with µ = 1 and σ = 1. 3.SDE(1) with µ = 1 and σ = 2. . 73

6.6 Comparison of the Euler and Milstein schemes with the hybrid scheme
using the same computational cost, (SDE(2)). 74

6.7 Comparison of the Euler and Milstein schemes with the hybrid scheme
using the same computational cost, (SDE(3)). 75

List of Tables

3.1 Average terminal errors of the Euler method 20
3.2 Average terminal values and errors of the Milstein method 27

x

Chapter 1

Introduction

The theory of stochastic differential equations is well developed (See[33]). Applica-

tions of SDEs are available in many fields of research reaching from mathematical

finance to optimal control, helicopter rotor and satellite orbit stability, blood clotting

dynamics and theoretical physics. Analytical solutions of stochastic differential equa-

tions can be found for few SDEs, consequently the study of their numerical solutions

has become essential. Many numerical methods for solving stochastic differential

equations have been developed in recent years (see [26, 27, 32]) but there is still a

huge space left to be filled in this area of numerical analysis: There is a need for

efficient methods with low complexity. Lehn et al (2003) noted that some of the pro-

posed methods in the recent literature are unrealistic; some of these have never been

implemented or tested. For instance, methods of higher order convergence require

the simulation of the correlated Itô integrals of the Itô stochastic Taylor expansion1,

a difficult and time consuming task or, as in the case of Monte Carlo methods, need

generation of too many Brownian motion paths, a costly exercise in most applications.

To this end, the Euler and Milstein scheme methods remain the method of choice for

many. This is mainly due to their efficiency and low complexity (see[29]). However,

greater efficiency in the strong sense is necessary for higher dimensional applications;

1See [29] for a comprehensive study of stochastic Taylor expansions

1

1.1 Outline of the Research 2

in this case, adaptive schemes may be one solution. But still, in the adaptive scheme

arena, Euler-Maruyama and Milstein schemes are the ideal method for many.

The adaptive scheme environment is dominated by step-size adaptiveness. In

this dissertation we propose a completely new type of method, a hybrid adaptive

method, where instead of step-size the adaptiveness is based on the increment of

Brownian motion. More specifically, our approach is a numerical method that chooses

a method (Euler or Milstein) based on the outcome of the generated Brownian motion

process.We prove that the new method outperforms both Euler and Milstein in giving

better accuracy for the same average cost. In what follows, we give a brief outline of

the structure of the dissertation.

1.1 Outline of the Research

, Chapter Two Introductory topic: A brief explanation of stochastic differential

equations and a detailed discussion of their numerical properties will begin this sec-

tion. Existence and uniqueness theorems for SDEs are also stated.

Chapter Three Numerical Methods for SDEs: The basic numerical methods for

stochastic differential equations are derived from the stochastic Taylor expansions of

the previous chapter. The convergence properties of these methods are also studied.

Chapter Four Adaptive numerical schemes for SDEs: some adaptive schemes for

the solution of SDEs in the literature will be presented.

Chapter Five Hybrid Euler-Milstein Algorithm: The structure of the adaptive hy-

brid method will be given and the main choice criterion will also be presented. Con-

vergence and analysis of the error of this method will be studied.

Chapter Six: Comparison: We start this chapter by discusing briefly the computa-

tional complexity of numerical methods. We compare the performance with respect

to accuracy and computational complexity of the Hybrid method with those of ordi-

nary Euler and Milstein methods.

1.1 Outline of the Research 3

Chapter Seven: Conclusion: We conclude using the results obtained in Chapters

five and six.

Chapter 2

General Theory of Stochastic

Differential Equations

This chapter is of an informative nature; the necessary definitions are given together

with statements of theorems. The intention is to make the work somewhat self-

contained and place the rest in proper perspective. We start this introductory chapter

with the definition and properties of stochastic processes. A basic knowledge of

measure theoretical probability theory is assumed. Please see [11, 23, 9] for details.

2.1 Stochastic process

Definition 2.1.1. A continuous-time stochastic process is a family of random vari-

ables {X(t) = Xt, t ∈ [0,∞)} defined on some probability space (Ω, F , P) and indexed

by [0,∞).

A stochastic process will have the following properties:

• For fixed t it is a random variable, i.e Xt = Xt(ω)

• For fixed ω it is a function of time : t→ Xt(ω) = X(t, ω).

This function is called a sample path (realization or trajectory) of the stochastic

process X = ({Xt}t≥0)

4

2.2 Brownian Motion 5

• It can also be seen as a function of two variables: X(t, ω)→ Xt(ω).

A more specific example and a process which is commonly used in the modelling of

real life applications is the Brownian motion process.

2.2 Brownian Motion

Definition 2.2.1. A stochastic process B on a filtered probability space (Ω,F ,F =

{Ft}t≥0,P) is called a standard Brownian motion w.r.t F = {F}t≥0, if the following

properties hold.

1. B0 = 0 almost surely

2. Bt −Bs is independent of Fs for all t ≥ s

3. Bt −Bs has a normal distribution with zero mean and variance t− s

i.e Bt −Bs ∼ N (0, t− s), for all 0 ≤ t < s <∞

4.

Zero mean of the Brownian motion reflects that the Brownian particles is as likely

to go up as it is to go down. The independent increment property implies that for

any integer k ≥ 1 and real numbers 0 = t0 < t1 < t2 < ... < tk <∞, the increments

Bt1 = Bt1 −Bt0 , Bt2 −Bt1 , ..., Btk −Btk−1

are independent.In other words the displacement is lack of memory, the displacement

of the Brownian particle during [t0, tk−1] in no way influences the displavement during

[tk−1, tk]. The variance of the Brownian increment grows linearly as the length of the

interval increases.

2.2.1 Equivalence transformations

LetBt be a standard Brownian motion. Then the following processes are also standard

Brownian motions.

2.2 Brownian Motion 6

1.

X1(t) = cBt/c2 , (c > 0 a fixed constant)

2.

X2(t) = tB1/t, (t > 0)

3.

X3(t) = Bt+h −Bh, (h > 0 a fixed constant)

4.

X4(t) = −Bt

Definition 2.2.2 (Arithmetic Brownian motion). Let {Bt, t ≥ 0} ba a standard

Brownian motion and let x0 ∈ R then the process

Xt = x0 + µt+ σBt , t ≥ 0

is called arithmetic Brownian motion with drift µ and diffusion σ.

Arithmetic Brownian motion has stationary independent increments and has a normal

distribution N (µt,
√
σt). It has continuous paths starting at X0 = x0.

Definition 2.2.3 (Geometric Brownian motion). Let {Bt, t ≥ 0} ba a standard Brow-

nian motion, then the process

Xt = exp (x0 + µt+ σBt), t ≥ 0

is called Geometric Brownian motion with drift µ and difusion coefficient σ

For computational purposes, we usually consider discretised Brownian motion

over a given interval [0, T], with Bt specified at discrete points t. Figure (2.2.1) below

shows one simulation of discretised Brownian motion over [0, 1] while Figure(2.2.1)

shows 50 paths of the Brownian motion. (See [20] or Appendix A for more on how

to generate discretised Brownian Motion using MATLAB)

2.3 Stochastic Integrals 7

Figure 2.1: A single discretised Brownian motion path

2.3 Stochastic Integrals

In this section, we give a brief discussion of the meaning of a stochastic integral and

differentiate between the two most popular forms of stochastic integrals in literature:

the Itô and Stratonovich integrals.

2.3.1 Construction of the stochastic integrals

Our goal is to give meaning to the stochastic integral
∫ T

0
H(t)dB(t) for a certain

class of processes adapted to the filtration1 (Ft)t≥0 where Bt is a Brownian motion

w.r.t. {Ft}. We shall define the integral for simple processes, that is processes which

1See [33, 8, 9, 36] for more on adapted processes, measurability and Filtration

2.3 Stochastic Integrals 8

Figure 2.2: 50 discretised Brownian motion paths

are constant on finitely many intervals. By a limiting procedure the integral is then

defined for more general processes.2

Definition 2.3.1. (Ht)0≤t≤T is called a simple process if it can be written as

Ht(ω) =
N∑
i=1

φi(ω)1(ti−1,ti](t)

where 0 = t0 < t1 < ... < tN = T and φi is Fti−1
- measurable and bounded.

Then by definition, the stochastic integral of a simple process H is the continous

process
∫ T

0
HsdBs defined for any t ∈ (tk, tk+1]almost surely

displaymath
∫ T

0
HsdBs =

∑
1≤i≤k

φi(Bti −Bti−1
) + φk+1(Bt −Btk).

Stochastic integrals are first defined for simple processes then by extension defined

for a general class of regular adapted processes.

2 See [5, 26] for the full details of these processes and the proof of their properties

2.3 Stochastic Integrals 9

Let Hn(t) be a sequence of simple processes convergent in probability to the process,

H(t). Then under some conditions3, the sequence of their integrals
∫ T

0
Hn(t)dB(t)

also converges in probability to a limit J . The random variable J is taken to be the

integral
∫ T

0
H(t)dB(t).

Theorem 2.3.2. Let H(t) be a regular adapted process such that with probability one∫ T
0
H2(t)dt < ∞. Then the stochastic integral

∫ T
0
H(t)dB(t) is defined and has the

following properties (See [5], pg 97-98 for the proof.).

1. Linearity. If the stochastic integrals of H(t) and H ′(t) are defined and c1 and

c2 are constants then∫ T
0

(c1H(t) + c2H
′(t))dB(t) = c1

∫ T
0
H(t)dB(t) + c2

∫ T
0
H ′(t)dB(t)

2.
∫ T

0
H(t)I(a,b](t)dB(t) =

∫ b
a
H(t)dB(t).

3. Zero mean property. Let ∫ T

0

E(H2(t))dt <∞ (2.1)

If condition(2.1) holds then

E

(∫ T

0

H(t)dB(t)

)
= 0 (2.2)

4. Isometry property. If condition (2.1) holds then

E

(∫ T

0

H(t)dB(t)

)2

=

∫ T

0

E(H2(t))dt. (2.3)

In what follows we point out by way of definition the difference between the two

most popular types of stochastic integrals.

3See [5] pg. 36-38

2.3 Stochastic Integrals 10

2.3.2 Itô integrals

Suppose H(t) is a suitable function,4 Then the integral
∫ T

0
H(t)dt may be approxi-

mated by the Riemann sum

N−1∑
i=0

H(ti)(ti+1 − ti), (2.4)

where ti = i∆t with ∆t = T/N . The exact value of the above integral is obtained by

taking the limiting value of (2.4) as ∆t→ 0. Analogously, we may consider a sum of

the form
N−1∑
i=0

H(ti)(B(ti+1)−B(ti)), (2.5)

as with (2.4), the above sum,(2.5) may be regarded as the approximation to the

stochastic integral,
∫ T

0
H(t)dB(t). This form of stochastic integral is known as the

Itô integral. Here, we are integrating H with respect to the Brownian motion B(t)

over the interval [0, T] with H evaluated in the approximation (2.5) at the left-end

point of each subinterval [ti, ti+1]. Note that H can be a stochastic process depending

on the Brownian motion. In particular, we can set H(t) = B(t).

2.3.3 Stratonovich Integral

From deterministic integration (see [13]), the sum given by

N−1∑
i=0

H

(
ti + ti+1

2

)
(ti+1 − ti), (2.6)

is also a Riemann sum approximation to
∫ T

0
H(t)dt. Hence the corresponding alter-

native to (2.5) is
N−1∑
i=0

H

(
ti + ti+1

2

)
(B(ti+1)−B(ti)), (2.7)

Unlike the deterministic case, (2.5) and (2.7) do not result in the same approximate

value to
∫ T

0
H(t)dB(t) even as ∆t → 0. This midpoint Riemann-like sum (2.7)

4regular adapted process and
∫ T

o
|Hs|2ds <∞ P almost surely. See [8] for the definition of regular

adapted processes and additional properties of H

2.4 Stochastic differential equations, SDEs 11

produces the Stratonovich integral5. Itô and Stratonovich integrals both have their

uses in many applications. Throughout this dissertation we shall consider stochastic

integrals in the Itô sense. However, it is a simple exercise to transform an Itô integral

to a Stratonovich integral and vice versa (see [26]). Having introduced the stochastic

integrals, we now define the stochastic differential equations, whose components are

stochastic integrals.

2.4 Stochastic differential equations, SDEs

Let B(t), t ≥ 0, be Brownian motion process. An equation of the form

dX(t) = K((t,Xt))dt+H((t,Xt))dB(t) (2.8)

where functions K(t, x) and H(t, x) are given and Xt is the unknown process, is called

a stochastic differential equation (SDE) driven by the Brownian motion.

The functions K(t, x) and H(t, x) are called the drift and diffusion coefficients, re-

spectively.

This equations are used to model many financial assets, like stocks or interest rate

processes.

Definition 2.4.1. A process X(t) is called a strong solution of the SDE (2.8) if for

all t > 0 the integrals
∫ t

0
K(s,X(s))dt and

∫ t
0
H(s,X(s))dB(s) exist (the second being

an Itô integral) and

X(t) = X(0) +

∫ t

0

K(s,X(s))ds+

∫ t

0

H(s,X(s))dB(s) (2.9)

We now state a few theorems about the solution of stochastic differential equations.

We also state and briefly discuss some important properties of the solution to SDEs.

5Alternatively, Stratonovich integral is
N−1∑
i=0

1
2 (H(ti) +H(ti+1))(B(ti+1)−B(ti))

2.4 Stochastic differential equations, SDEs 12

2.4.1 Existence and Uniqueness of the Solution of SDEs

Consider the nonautonomous6 stochastic differential equation

dXt = K(t,Xt)dt+H(t,Xt)dBt, (2.10)

which in the integral form is given by

Xt = Xt0 +

∫ t

t0

K(s,Xs)ds+

∫ t

t0

H(s,Xs)dBs (2.11)

where the first integral is a Riemann (or Lebesque) integral for each sample path

and the second integral is an Itô integral. In order to ensure that these integrals

are meaningful, some regularity conditions are required of the drift and the diffusion

coefficient in (2.10), that is K and H above. This in turn ensures that the solution

to (2.10) exists and with additional assumptions is unique. Throughout this disserta-

tion we shall consider SDEs whose drift and diffusion coefficient satisfy the following

properties: Suppose that t0, 0 ≤ t0 ≤ T is arbitrary and fixed and that the coefficient

functions K,H:[t0, T]× R→ R are given and satisfy the following

• C1 (Measurability): K = K(t,Xt) and H = H(t,Xt) are jointly (L2) measur-

able in (t,Xt) ∈ [t0, T]× R;

• C2 (Lipschitz condition): There exist a constant C > 0 such that

|K(t, x)−K(t, y)| ≤ C|x− y| and |H(t, x)−H(t, y)| ≤ C|x− y|

for all t ∈ [t0, T] and x, y ∈ R.

• C3 (Linear growth bound): There exist a constant C > 0 such that

|K(t, x)|2 ≤ C2(1 + |x|2) and |H(t, x)|2 ≤ C2(1 + |x|2)

for all t ∈ [t0, T] and x, y ∈ R.

6drift and diffussion coefficients are functions of both time and state

2.4 Stochastic differential equations, SDEs 13

• C4 (Initial Value): Xt0 is Ft0- measurable7 with E(|Xt0|2) <∞ where Ft0 is the

σ-algebra generated by Bt0

Below we state in a more formal way without proof8 the theorem that guarantees the

existence and uniqueness of a solution to (2.10).

Theorem 2.4.2 (Existence and Uniqueness Theorem [26]). Under the assump-

tions C1−C4, the stochastic differential equation,(2.10) has a pathwise unique strong

solution Xt on [t0, T] with

sup
t0≤t≤T

E (|Xt|2) <∞

Yet another important member of the family of stochastic processes is the Itô

process.

2.4.2 Itô Process

Definition 2.4.3. Let (Ω, F ,(Ft≥0), P) be a filtered probability space satisfying the

usual conditions9 and B = Bt be a standard Brownian motion with respect to Ft. A

real-valued process X = (Xt)0≤t≤T is an Itô process if it can be written as

Xt = X0 +

∫ t

0

Ksds+

∫ t

0

HsdBs (2.12)

where ∀t ≤ T and

1. X0 is F0-measurable

2. {Kt}0≤t≤T and {Ht}0≤t≤T are Ft-adapted processes

3.
∫ T

0
|Ks|ds <∞ P a.s

4.
∫ T
o
|Hs|2ds <∞ P a.s

7See[25] for more information on sigma algebra and measurability
8See [26] for the proof.
9See [26]

2.4 Stochastic differential equations, SDEs 14

and where
∫ t

0
HsdBs is an Itô integral (which we described in section (2.3)) An Itô

process is by convention symbolically expressed in terms of the (stochastic) differential

equation10

dXt = Ktdt+HtdBt

X0 = Initial condition , (2.13)

The term Kt is called the drift of the Itô process while Ht is called the diffusion

coefficient of the process. Itô processes do not follow the conventional chains rule

of ordinary differential equations hence we briefly state the Itô formula of stochastic

processes.

Theorem 2.4.4. (One Dimensional Itô Formula) Let X be an Itô process de-

termined by dXt = K(Xt, t)dt + H(Xt, t)dBt and f ∈ C1,2 ([0,∞]× R), continuous

in t and the doubly differetiable with respect to x. Then the process f(t,X) follows

the SDE

df(t,Xt) =
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)dXt +

1

2

∂2f

∂x2
(t,Xt)(dXt)

2

=
∂f

∂t
(t,Xt)dt+

∂f

∂x
(t,Xt)[K(t,Xt)dt+H(t,Xt)]dBt

+
1

2

∂2f

∂x2
(t,Xt)[K(t,Xt)dt+H(t,Xt)dBt]

2

=

(
∂f

∂t
(t,Xt) +K(t,Xt)

∂f

∂x
(t,Xt) +

1

2
H2(t,Xt)

∂2f

∂x2
(t,Xt)

)
dt

+H(t,Xt)
∂f

∂x
(t,Xt)dBt, (2.14)

and is also an Itô process.

10Note: This is a mere short hand representation of a stochastic integral(2.12) Stochastic differ-

ential equations do not exist except in terms of stochastic integrals.

Chapter 3

Numerical Methods for solutions of

SDEs

3.1 Introduction

In this chapter, we present some numerical schemes resulting from the Itô Taylor

expansion (3.2) of an Itô process. Numerical methods are time discrete approxima-

tions in which the continuous time differential equation is replaced by a discrete-time

difference equation generating values X̂1, X̂2,...X̂N at discrete times t1, t2, ..., tN . The

study of numerical methods is neccessary as it is not possible in general to find an ex-

plicit solution of stochastic diferential equations that occur in scientific and financial

models. Another important reason for the continuing study of numerical methods is

the need for these schemes to be considerably more accurate. We shall investigate

their strong and weak orders of convergence and analyze their local and global er-

rors. To start with, we briefly discuss the stochastic Taylor expansion from which the

standard numerical schemes are derived.

15

3.2 Stochastic Taylor Expansions 16

3.2 Stochastic Taylor Expansions

The stochastic Taylor formula allows a function of an Itô process, f(Xt) to be ex-

panded about f(X0) in terms of multiple stochastic integrals weighted by coefficients

which are evaluated at X0.

Let f(Xt) be a smooth function of the Itô process Xt, for t ∈ [0, T]. The stochastic

Taylor expansion of f(Xt) is given by

f(Xt) = f(X0) + c1(X0)

∫ t

0

ds+ c2(X0)

∫ t

0

dBs + c3(X0)

∫ t

0

∫ s

0

dBudBs +R, (3.1)

with the coefficients defined as below

c1(x) = K(x)f ′(x) +
1

2
H2(x)f ′′(x)

c2(x) = H(x)f ′(x)

c3(x) = H(x){H(x)f ′′(x) +H ′(x)f ′(x)}

The remainder term R in (3.1) consists of higher order multiple stochastic integrals

involving the function f , the drift and the diffusion coefficient of the Itô process,

Xt and their derivatives. (See [26] for a more comprehensive study of the stochastic

Taylor expansion). Basic numerical schemes for the solution of SDEs are obtained

by truncating the stochastic Taylor expansion such as (3.1) about successive dis-

cretization points. To obtain a numerical scheme with a higher order of strong or

weak convergence one must include the appropriate terms from the corresponding

stochastic Taylor expansion. It is not enough to only obtain a numerical method ap-

proximating the solution of SDEs, such a scheme should at least satisfy the minimum

requirement of a good numerical algorithm; This requirement is that the sequence

generated by the algorithm converges to the true solution of the SDE. In addition,

such convergence should be reasonably fast. This gives rise to the notion of order of

convergence of a numerical scheme.

3.3 Euler-Maruyama Method 17

3.2.1 Strong and Weak Convergence of Stochastic Taylor Ap-

proximation

Let X̂t be a strong pathwise approximation1 of the Itô process X. The absolute error

criterion for X̂ is given by

e = E(|XT − X̂T |), (3.2)

This is simply the expectation of the absolute value of the difference between the Itô

process and the approximation at finite terminal time T.

An approximation X̂0, X̂∆t, X̂2∆t, ..., X̂T of a stochastic process X is said to have

strong order of convergence γ if , for small enough ∆t, there exist a constant C, such

that

E
[
|X̂i∆t −Xi∆t|

]
≤ C(∆t)γ

for every i ≥ 0; On the other hand the approximation is said to have weak order of

convergence γ if for small enough ∆t, there exists a constant C such that

E
[
|X̂i∆t|

]
− E [|Xi∆t|] ≤ C(∆t)γ

for every i ≥ 0. Having stated the stochastic Taylor expansion, we then rederive some

of the numerical schemes for the solutions of SDEs. We proceed in the conventional

way, that is, in order of increasing rate of convergence.

3.3 Euler-Maruyama Method

Consider the autonomous stochastic process X defined by

dXt = K(Xt)dt+H(Xt)dBt, X0 a constant (3.3)

where K, H ∈ C2(R). X is clearly an Itô process2 and the stochastic process is of the

type, (3.3) is found in many real life applications for instance, in the modelling stock

1a numerical scheme on a particular Brownian motion path.See [26]pp. 327-329
2See definition in (2.1) above

3.3 Euler-Maruyama Method 18

price dynamics. Letting f ∈ C2(R) and applying Itô formula (in integral form) we

have

f(Xt+∆t) = f(Xt) +

∫ t+∆t

t

(
K(Xs)

df

dx
(Xs) +

1

2
H2(Xs)

d2f

dx2

)
ds

+

∫ t+∆t

t

H(Xs)
df

dx
(Xs)dBs

= f(Xt) +

∫ t+∆t

t

L0f(Xs)ds+

∫ t+∆t

t

L1f(Xs)dBs (3.4)

where L0 and L1 are operators defined by

L0 : = K
d

dx
+

1

2
H2 d

2

dx2
, (3.5)

L1 : = H
d

dx
(3.6)

Now, rewriting (3.3) in integral form and applying (3.4) to K and H we obtain

Xt+∆t = Xt +

∫ t+∆t

t

(
a(Xt) +

∫ s

t

L0K(Xr)dr +

∫ s

t

L1K(Xr)dBr

)
ds

+

∫ t+∆t

t

(
H(Xt) +

∫ s

t

L0H(Xr)dr +

∫ s

t

L1H(Xr)dBr

)
dBs

= Xt +K(Xt)

∫ t+∆t

t

ds+H(Xt)

∫ s

t

dBs +R(t, t+ ∆t)

= Xt +K(Xt)∆t+H(Xt)∆Bt +R(t, t+ ∆t) (3.7)

≈ Xt +K(Xt)∆t+H(Xt)∆Bt (3.8)

where we write

R(t, t+ ∆t) :=

∫ t+∆t

t

(∫ s

t

L0K(Xr)dr +

∫ s

t

L1K(Xr)dBr

)
ds (3.9)

+

∫ t+∆t

t

(∫ s

t

L0H(Xr)dr +

∫ s

t

L1H(Xr)dBr

)
dBs

=

∫ t+∆t

t

∫ s

t

L0K(Xr)drds+

∫ t+∆t

t

∫ s

t

L1K(Xr)dBrds

+

∫ t+∆t

t

∫ s

t

L0h(Xr)drdBs +

∫ t+∆t

t

∫ s

t

L1H(Xr)dBrdBs

and ∆B = Bt+∆t − Bt is an increment of a Brownian motion which follows a nor-

mal distribution with zero mean and variance ∆t, that is N (0,∆t). The approx-

imation in (3.8) is the discretization in the Euler scheme. More generally in the

3.3 Euler-Maruyama Method 19

multi-dimensional case with a scalar Brownian motion i.e, m = 1 and d = 1, 2, ... the

rth component of the Euler scheme is given by:

Xr
t+∆t = XR

t +Kr(Xt)∆t) +Hr(Xt)∆Bt (3.10)

for r = 1, 2, ... where K = (K1, ..., Kd) and H = (H1, ...Hd).

For the general multi-dimensional case with d,m = 1, 2, ... the rth component of the

Euler scheme has the form:

Xr
t+∆t = Xr

t +Kr(Xt)∆t+
m∑
j=1

Hr,j(Xt)∆B
j
t . (3.11)

Here ∆Bj = Bj
t+∆t − B

j
t is an N (0,∆t) distributed increment of the jth component

of the m−dimensional Brownian motion process B on [t, t+ ∆t] and ∆Bj1
t and ∆Bj2

t

are independent for j1 and j2. Similarly H = [Hr,j] is a d×m - matrix with at least

one of its components not equal to zero.

3.3.1 Numerical Example

We now apply the Euler scheme to the popular3 linear SDE

dXt = µXtdt+ σXtdBt, (3.12)

where µ and σ are constants. In analogy with our general SDE, (2.10), K = µXt and

H = σXt.

The exact solution (see for example [26]) to (3.12) is given by

Xt = X0 exp

(
(µ− 1

2
σ2)t+ σBt

)
. (3.13)

The following Figure 3.1 plots the Euler approximation of (3.12) over the interval,

[0, 1] for different step sizes and compares them with the exact solutions. In Table

3.1, we present the average terminal errors using the absolute error criterion (3.2)

at the terminal point, which shows increased convergence as the step size,h tends to

zero.

3.3 Euler-Maruyama Method 20

h = 2−2 h = 2−6 h = 2−10

Error 0.8513 0.4445 0.2443

Table 3.1: Average terminal errors of the Euler method

In what follows we use (3.12) to verify some of the numerical properties of the

Euler method and start by looking at its strong and weak orders of convergence.

3.3.2 Strong and Weak Order of Convergence of the Euler

Scheme

We now use the result of section, 3.3.1 to illustrate both the strong and weak order

of convergence of the Euler method. In the above example, Table 3.1, the Euler

approximation for 5000 Brownian motion paths with µ = 2, σ = 1 and X0 = 1,

matches the exact solution of the SDE very closely as h decreases. In other words

as the step-size decreases, convergence seems to occur. We shall use the definition of

convergence in section 3.2.1 to determine the strong and weak order of convergence

of the Euler approximation. If the conditions of Theorem 2.4.2 are satisfied, it can

be shown that (see [26]) the Euler approximation has strong order of convergence of

γ = 1
2
. Note that this is different from the deterministic case, H = 0, where γ = 1.

To numerically test for this order of convergence, we use the absolute error criterion

3.2.1 at the terminal point, t = T . We denote the terminal error in the strong sense

by

estrh = E|X̂T −XL|, (3.14)

where L∆t = T . If conditions (C1-C4) in section 2.4.1 hold with γ = 1
2

at any fixed

point in the interval [0, T], then it certainly must hold at the end point, hence we

3This SDE is also known as geometric Brownian motion; it is used in the famous Black-Scholes

asset pricing model in the mathematics of finance (see [23])

3.3 Euler-Maruyama Method 21

Figure 3.1: Euler Approximation of an SDE

,

have for small enough ∆t

estrh ≤ C∆t
1
2 . (3.15)

If (3.15) holds with actual equality, then by taking logs we have

log estrh = logC +
1

2
log ∆t. (3.16)

The upper graph on Figure 3.2 plots estrh against ∆t on a log-log scale together with

a dashed line of slope s = 1
2
. We see that the slopes of both curves apparently

match well and this verifies (3.15). The strong order of convergence measures the

rate which the mean of the error decays as ∆t → 0. On the other hand, the weak

order of convergence measures the rate at which error of the mean4 as ∆t → 0. For

appropriate K and H it can be shown (see for instance [26]) that the Euler method

4Note the difference with the strong of order convergence

3.3 Euler-Maruyama Method 22

Figure 3.2: Strong Order of Euler convergence

,

has a weak order of convergence of γ = 1. Similar to the strong order of convergence,

we denote the error of the mean as

eWk
h := |EX(T)− EXL|, (3.17)

3.4 Milstein method 23

where L∆t = T .

Using the SDE(3.12) above with X(0) = 1 we have

EX(T) = E exp((µ− 1

2
σ2)T + σ[B(T)−B(0)])

=

∫ ∞
−∞

exp((µ− 1

2
σ2)T + σx)

1√
2πT

exp

(
−x2

2T

)
dx

= exp(µT)

∫ ∞
−∞

1√
2πT

exp

(
−x2

2T
+ σx− 1

2
σ2T

)
dx

= exp(µT)

∫ ∞
−∞

1√
2πT

exp

(
−(x− σT)2

2T

)
dx

= exp(µT). (3.18)

In the same vein, with γ = 1 we have for small enough h, with C > 0

eWk
h ≤ C∆t, (3.19)

Here we examine the weak convergence of the Euler method. We solve (3.12) with

µ = 2, σ = 0.1 and X0 = 1. Again we sample 5000 discretized Brownian paths and

use five step sizes h = 2−s for s = [−10 : 1 : −5] in the Euler method. We use the

sample average approximation to EXL and (3.18) for EX(T) to compute eWk
h . The

lower graph in Figure 3.2 shows how the weak error varies with h on a log-log scale,

and a reference line of slope 1 shows that (3.19) approximately holds with actual

equality. In addition we do a least square power law fit that gives q = 0.9693 and

residue r = 0.0471, verifying the observation in Figure3.2.

3.4 Milstein method

If we use (3.4) to expand the last term in the expression for R(t, t + ∆t), (assuming

K,H ∈ C4(R)), we get∫ t+∆t

t

∫ s

t

L1H(Xr)dBrdBs =

∫ t+∆t

t

∫ s

t

L1H(Xt)dBrdBs

+

∫ t+∆t

t

∫ s

t

∫ r

t

L0L1H(Xq)dqdBrdBs

+

∫ t+∆t

t

∫ s

t

∫ r

t

L1L1H(Xq)dBqdBrdBs.

3.4 Milstein method 24

Evaluating the first term above using Itô formula, we have∫ t+∆t

t

∫ s

t

L1H(Xt)dBrdBs

= L1H(Xt)

∫ t+∆t

t

∫ s

t

dBrdBs

= H(Xt)
dH

dx
(Xt)

∫ t+∆t

t

(Bs −Bt)dBs (3.20)

= H(Xt)
dH

dx
(Xt)

(
1

2
(B2

t+∆t −B2
t −∆t)−Bt∆Bt

)
(3.21)

, =
1

2
H(Xt)

dH

dx
(Xt)((Bt+∆t +Bt)∆Bt − 2Bt∆Bt −∆t)

=
1

2
H(Xt)

dH

dx
(Xt)((∆Bt)

2 −∆t).

Notice the use of Itô formula in (3.21). Substituting in (3.8), we get

Xt+∆t

= Xt +K(Xt)∆t+H(Xt)∆Bt

+
1

2
H(Xt)

dH

dx
(Xt)((∆Bt)

2 −∆t) + R̄(t, t+ ∆t)

≈ Xt +K(Xt)∆t+H(Xt)∆Bt +
1

2
H(Xt)

dH

dx
(Xt)((∆Bt)

2 −∆t) (3.22)

where

R̄(t, t+ ∆t) :=

∫ t+∆t

t

∫ s

t

L0K(Xr)drds+

∫ t+∆t

t

∫ s

t

L1K(Xr)dBrds

+

∫ t+∆t

t

∫ s

t

L0H(Xr)drdBs

+

∫ t+∆t

t

∫ s

t

∫ r

t

LoL1H(Xq)dqdBrdBs

+

∫ t+∆t

t

∫ s

t

∫ r

t

L1L1H(Xq)dBqdBrdBs.

Thus, the Milstein approximation scheme is a sequence of random variables

X̂0, X̂∆t, X̂2∆t, ..., X̂T generated from (3.22) by setting

X̂i∆t := X̂(i−1)∆t +K
(
X̂(i−1)∆t

)
∆t+H

(
X̂(i−1)∆t

)
∆Bt

+
1

2
H
(
X̂(i−1)∆t

) dH
dx

(
X̂(i−1)∆t

)
((∆Bt)

2 −∆t). (3.23)

3.4 Milstein method 25

From (3.23) we see that the one-dimensional Milstein scheme is simply an extension

of the one-dimensional Euler method obtained by an addition of the extra term

1
2
H
(
X̂(i−1)∆t

)
dH
dx

(
X̂(i−1)∆t

)
((∆Bt)

2 − ∆t) from the stochastic Taylor expansion5.

In the multi-dimensional case with m = 1 and d = 1, 2, ... the rth component of the

Milstein scheme has the form:

X̂r
i∆t := X̂r

(i−1)∆t +Kr
(
X̂(i−1)∆t

)
∆t+Hr

(
X̂(i−1)∆t

)
∆Bt (3.24)

+
1

2

(
d∑
l=1

H l
(
X̂(i−1)∆t

) ∂Hr

∂xl

)(
X̂(i−1)∆t

)
{(∆Bt)

2 −∆t}.

The Milstein scheme is a bit complex in the general multi-dimensional case, with

m, d = 1, 2, ... This is because of the presence of the multiple Itô (Stratonovich)

integrals in the scheme, which are usually difficult to generate. In the general multi-

dimensional case, the kth component of the Milstein scheme is given by

X̂r
i∆t := X̂r

(i−1)∆t +Kr
(
X̂(i−1)∆t

)
∆t+

m∑
j=1

Hr,j
(
X̂(i−1)∆t

)
∆Bj

t

+
m∑

j1,j2=1

Lj1Hr,j2
(
X̂(i−1)∆t

)
I(j1,j2)

(
X̂(i−1)∆t

)
, (3.25)

where

Lj1 =
d∑
r=1

Hr,j1 ∂

∂xr
, and

I(j1,j2) =

∫ ti+1

ti

∫ s2

ti

dBj1
s1
dBj2

s2
(3.26)

The complexity in the evaluation of the multidimensional Itô integral can be circum-

vented depending on the nature of the SDE modelling the situation. Platen et al in

[26] proposed an approximation to the iterated integral in (3.26) in case it cannot

be avoided. (See [26, 27] for more details). If the SDE has time additive noise, i.e

H(t,X) = H(t), so that the diffusion coefficient depends at most on time and not on

the space variable x, the Milstein scheme reduces to the Euler scheme.

5The same scheme can be obtained from the truncated Stratonovich Taylor expansion (see [2, 3,

27])

3.4 Milstein method 26

In the case of diagonal noise, i.e if d = m, each component of Xr of the Itô-process

is disturbed only by the corresponding component Br of the Brownian motion B and

the diagonal diffusion coefficient Hr,r depends only on Xr, i.e for each (t, x) ∈ R+×Rd

and j, r = 1, ...m with r 6= j, Hr,j = 0 and ∂Hj,j

∂xr
(t, x) = 0, the Milstein scheme thus

becomes

X̂r
i∆t := X̂r

(i−1)∆t +Kr
(
X̂(i−1)∆t

)
∆t+Hr,r

(
X̂(i−1)∆t

)
∆Br

t

+
1

2
Hr,r

(
X̂(i−1)∆t

) ∂Hr,r

∂xr

(
X̂(i−1)∆t

)
{(∆Bt)

2 −∆t}. (3.27)

There is a more general case, that of commutative noise, in which the diffusion matrix

satisfies the commutativity condition,Lj1Hr,j2 = Lj2Hr,j1

where Lji = Lji as in (3.26). The Milstein scheme here becomes

X̂r
i∆t := X̂r

(i−1)∆t +Kr
(
X̂(i−1)∆t

)
∆t+

m∑
j=1

Hr,j
(
X̂(i−1)∆t

)
∆Bj

t

+
1

2

m∑
j1,j2=1

Lj1Hr,j2
(
X̂(i−1)∆t

)
∆Bj1∆Bj2, (3.28)

and again the iterated integrals are not needed.

3.4.1 Strong Convergence of the Milstein method

It can be shown that under appropriate conditions on the drift and the diffusion

coefficients6, the Milstein scheme has the order of strong convergence γ = 1 (See [26]

for the proof). To numerically test for this order of strong convergence, we solve the

one-dimensional SDE,

dXt = aXt(b−Xt)dt+ βXtdB,X0 = initial condition (3.29)

over the time interval [0, 1] with X0 = 0.5, a = 3, b = 1.5 and β = 0.25. We generate

5000 simulations of terminal values of the reference solutions7 X(T) as a proxy to the

6That is the conditions C1− C4 in section2.4.1
7where we have used the Milstein solution with step size h = 2−11 as a proxy to the exact solution

3.4 Milstein method 27

exact solution and of the values X̂T of the corresponding Milstein approximation. In

Table 3.2, we present the average terminal values and errors of the Milstein scheme

using the absolute error criterion. The table shows increasing convergence of the

milstein scheme as the step size decreases. Figure 3.3 plots the exact solution

h = 2−4 h = 2−5 h = 2−6 h = 2−7

Error 0.0151 0.0072 0.0035 0.0016

Table 3.2: Average terminal values and errors of the Milstein method

Figure 3.3: Milstein Approximation of an SDE

,

and the Milstein approximation for different step sizes, h = 2k for k = [4, 5, ..., 7]

respectively.

3.4 Milstein method 28

Figure 3.4: Strong convergence of the Milstein scheme

,

The log-log plot of the absolute error (solid line) along with a reference line (dot-

ted) as shown in Figure 3.4 confirms the assertion of strong order of convergence, γ = 1

of the Milstein scheme. In addition, the least-square power law fit gives q = 0.9705

and residue = 0.0366 which further verifies the order of convergence of the Milstein

scheme.

To illustrate the complexity, notwithstanding the benefits of the higher order

schemes and to further emphasize the need to optimize the Euler and the Milstein

schemes, we present below the order 1.5 stochastic scheme.

3.5 Order 1.5 stochastic schemes 29

3.5 Order 1.5 stochastic schemes

The order 1.5 Itô- Taylor scheme is obtained by including additional multiple inte-

grals from the Itô-Taylor expansion in the Milstein scheme. These multiple stochastic

integrals contain additional information about the sample path of the Brownian mo-

tion.

In the autonomous 1-dimensional case, d = m = 1, the order 1.5 strong Itô scheme

according to Platen and Wagner [35] is given by

X̂i∆t = X̂(i−1)∆t +K(X̂(i−1)∆t)∆t+H(X̂(i−1)∆t)∆Bt (3.30)

+
1

2
H(X̂(i−1)∆t)

dH

dx
(X̂(i−1)∆t)[(∆Bt)

2 −∆t]

+
dK

dx
(X̂(i−1)∆t)H(X̂(i−1)∆t∆Zt +

1

2
(K(X̂(i−1)∆t)

dK

dx
(X̂(i−1)∆t)

+
1

2
[H2(X̂(i−1)∆t)

d2K

dx2
(X̂(i−1)∆t)]∆t

2 + [K(X̂(i−1)∆t)
dK

dx
(X̂(i−1)∆t)

+
1

2
H2(X̂(i−1)∆t)

d2H

dx
(X̂(i−1)∆t)](∆Bt∆t−∆Zt)

+
1

2
H(X̂(i−1)∆t)[H(X̂(i−1)∆t)

d2H

dx
(X̂(i−1)∆t) + (

dH

dx
(X̂(i−1)∆t))

2]...

[
1

3
(∆Bt)

2 −∆t]∆Bt

where

∆Zt =

∫ i∆t

(i−1)∆t

∫ s2

(i−1)∆t

dBs1dBs2 (3.31)

It can be shown (see [26]) that ∆Z is normally distributed with mean E[∆t] = 0,

variance E[(∆Z)2] = 1
2
∆t3 and covariance E[∆Z∆B] = 1

2
∆t2. In particular, the

pair of correlated normally distributed random variables can be determined from two

independentN (0, 1) distributed random variables n1 and n2 by means of the following

transformation;

∆B = n1

√
∆t,∆Z =

1

2
∆t

3
2 (n1 +

1√
3
n2) (3.32)

3.5 Order 1.5 stochastic schemes 30

Notice that if we set H(X̂) = 0 then (3.30) reduces to the deterministic 2nd order

truncated Taylor method.

With d = 1, 2... and m = 1 i.e scalar noise, the kth component of the 1.5 order strong

Taylor scheme is given by

X̂r
i∆t = X̂r

(i−1)∆t +Kr(X̂(i−1)∆t)∆t+Hr(X̂(i−1)∆t)∆Bt (3.33)

+
1

2
Hr(X̂(i−1)∆t)

dHr

dx
(X̂(i−1)∆t)[(∆Bt)

2 −∆t]

+
dKr

dx
(X̂(i−1)∆t)H

r(X̂(i−1)∆t∆Zt +
1

2
(Kr(X̂(i−1)∆t)

dKr

dx
(X̂(i−1)∆t)

+
1

2
[(Hr)2(X̂(i−1)∆t)

d2Kr

dx2
(X̂(i−1)∆t)]∆t

2 + [Kr(X̂(i−1)∆t)
dKr

dx
(X̂(i−1)∆t)

+
1

2
(Hr)2(X̂(i−1)∆t)

d2Hr

dx
(X̂(i−1)∆t)](∆Bt∆t−∆Zt)

+
1

2
Hr(X̂(i−1)∆t)[H

r(X̂(i−1)∆t)
d2Hr

dx
(X̂(i−1)∆t)

+(
dHr

dx
(X̂(i−1)∆t))

2][
1

3
(∆Bt)

2 −∆t]∆Bt

For consistency with the other schemes and using the notation earlier in this

chapter, in the multi-dimensional case, i.e d,m = 1, 2, 3, ..., the kth component of the

order 1.5 strong Taylor scheme takes the form

X̂r
i∆t = X̂r

(i−1)∆t +Kr(X̂(i−1)∆t)∆t+
1

2
L0Kr(X̂(i−1)∆t)∆t

2 (3.34)

+
m∑
j=1

(Hr,j(X̂(i−1)∆t)∆Bt
j + L0Hr,j(X̂(i−1)∆t)I(0,j) + LjKr(X̂(i−1)∆t)I(j,0)

+
m∑

j1,j2=1

Lj2Hr,j2(X̂(i−1)∆t)I(j1,j2) +
m∑

j1,j2,j3=1

Lj1Lj2Hr,j3(X̂(i−1)∆tI(j1,j2,j3)

where we have used the following general notations due to Kloeden and Platen

3.5 Order 1.5 stochastic schemes 31

(see[26]).

L0 =
∂

∂t
+

d∑
r=1

Kr ∂

∂xr
+

1

2

d∑
r,l=1

m∑
j=1

Hr,jH l,j ∂2

∂xr∂xl

Lj =
d∑
r=1

Hr,j ∂

∂xr

I(j1,...,jl) =

∫ (i+1)∆t

i∆t

...

∫ s2

i∆t

dBj1
s1 ...dB

jl
sl

The above multidimensional scheme is difficult to implement due to the presence of

multiple Itô integrals. Kloeden et al introduced a method for approximating the

multiple integrals by representing them in terms of multiple Stratonovich integrals.

(See[26],pp. 354). However, in many practical situation, the order 1.5 taylor scheme

reduces to a form in which the multiple Itô integrals with respect to the Brownian

motion do not appear. One such case is the additive noise, where H is a constant or

depends only on time t; here the 1.5 strong Taylor scheme reduces to the form

X̂r
i∆t = X̂r

(i−1)∆t +Kr(X̂)∆t+
m∑
j−1

Hr,j(X̂)∆Bj +
1

2
L0K(X̂)∆t2 (3.35)

+
m∑
j=1

[LjKr(X̂)∆Zj +
∂

∂t
Hr,j(X̂){∆Bj∆t−∆Zj}]

for j = 1, ...,m.

Another special case is that of diagonal noise for which we have

X̂r
i∆t = X̂(i−1)∆t +Kr(X̂)∆t+Hr,r∆Br +

1

2
L0Kr(X̂)∆t2 (3.36)

+
1

2
LrHr,r(X̂){(∆Br)2 −∆t}+ L0Hr,r{∆Br∆t−∆Zr} (3.37)

+LrKr∆Zr +
1

2
LrLrHr,r{1

3
(∆Br)2 −∆t}∆Br.

A more general case is the commutative noise of the second kind in which the diffusion

matrix satisfies the second commutativity condition

Lj1Lj2Hr,j3(X̂) = Lj2Lj1Hr,j3(X̂) (3.38)

for r = 1, ...d and j1, j2, j3 = 1, ...,m for x ∈ Rd.

3.5 Order 1.5 stochastic schemes 32

The order 1.5 Taylor scheme for commutative noise of the second kind is given by

X̂r
i∆t = X̂r

(i−1)∆t +Kr∆t+
m∑
j=1

Hr,j(X̂)∆Bj (3.39)

+
1

2
L0Kr∆t+

1

2

m∑
j=1

LjHr,j{(∆Bj)2 −∆t}

+
m∑

j1=1

j1−1∑
j2=1

Lj1Hr,j2∆Bj1∆Bj2

+
m∑
j=1

(L0Hr,j{∆Bj∆t−∆Zj}) + LjKr∆Zj

+
1

2

m∑
j1,j2=1,j16=j2

LjiLj2Hr,j3∆Bj1{(∆Bj2)2 −∆t}

+
m∑

j1=1

j1−1∑
j2=1

j2−1∑
j2=1

Lj1Lj2Hr,j3∆Bj1∆Bj2∆Bj3

+
1

2

m∑
j=1

LjLjHr,j{1

2
(∆Bj)2 −∆t}∆Bj.

We notice that it is not necessary to generate the ∆Zj term when the diffusion

coefficients satisfy

L0Hr,j = Ljar (3.40)

for all j = 1...m with r = 1, ..., d.

The coefficients of the 1.5 order Ito-Taylor scheme need to satisfy the regularity

condition for it to actually attain order 1.5 strong convergence(See [26]).

So far in this chapter, we have been looking at the standard8 numerical meth-

ods. Order 1.5 and other higher order schemes do give better approximations to the

solutions of SDEs, however, because of the difficulty in the implementation of these

higher order schemes, there is the need to improve the perfomance of the lower order

schemes by other means such as adaptation.

8schemes obtained directly from Itô-Taylor expansion of SDEs

Chapter 4

Adaptive Numerical Schemes for

SDEs

In this chapter, we take a tour of the usual approaches in the literature to adaptive

schemes for stochastic differential equations. As previously mentioned, the classical

approach to improving the performance of standard numerical schemes is through

step-size control. We shall start with a brief introduction of adaptive schemes to

ordinary differential equations as well as adaptive Runke-Kutta schemes. This will

be followed by a review of some of the most recent step-size control adaptive schemes

for SDEs in the literature. The step-size control is not as simple for SDEs as it is for

ODEs; this is because in the former, we are not allowed to look into the future i.e

stochastic schemes usually need to be non-anticipating. Specifically, we shall present

adaptive schemes due to Lamba et al, Hofmann, Rapoo, and Mauthner respectively.

This list is not exhaustive, However, more such schemes can be found in the following

references, [4, 10, 39, 44].

33

4.1 Adaptive schemes for ODEs and R-K schemes 34

4.1 Adaptive schemes for ODEs and R-K schemes

Several approaches have been developed in the literature to improve the efficiency

of a standard numerical method approximating the solution to ordinary differential

equations. The most popular amongst these approaches are control theory, signal

processing and adaptivity (see [15]). These approaches are based on the assumption

that the step size should follow some prescribed function of the solution. Control

theory seeks to keep the estimated error equal to the tolerance. To achieve this, one

needs to measure the difference between the error and the target tolerance, then use

it in a feedback control system to continually correct the step size. A full control

theoretical analysis for explicit as well as implicit Runge-Kutta methods was first

introduced in [16, 17]. See [14] for a review of the use of control theory for ODEs.

Signal processing is closely related to control theory, but shifts emphasis towards

obtaining a smooth step size sequence. The aim is to create a regular sequence of

step sizes from the errors while keeping the error sufficiently close to the tolerance

(see [15]). Regularity here means that the sequence has the appearance of a sample

drawn from a smooth signal and can be analysed in terms of spectral content. It has

been shown using well-known codes that a regular step size sequence has a significant

impact on the computational stability of a code, see [18, 19]. While both control

theory and signal processing can be termed adaptive, the step size sequence can be

adapted to a prescribed function of the solution. See [42].

For the Runge-Kutta type schemes for ODEs, adaptive methods are designed to

obtain an estimate of the local truncation error of a single Runge-Kutta step. This is

done by embedding two methods in the tableau (see[6]), one with order p and the other

with order p−1. The simplest adaptive Runge-Kutta method involves combining the

Heun method, which is order 2, with the Euler method, which is order 1. The runge-

Kutta-Fehlberg method has two methods of orders 5 and 4. The error estimate from

the lower-order step is used to control the step size. Other adaptive Runge-Kutta

methods are the Bogacki-Shampine method (orders 3 and 2), the Cash-Karp method

4.2 An Adaptive Euler-Maruyama scheme for SDEs 35

and the Dormand-Prince Method (both with orders 5 and 4). See [6].

In the following sections, we discuss briefly some of the stochastic adaptive schemes

in the literature.

4.2 An Adaptive Euler-Maruyama scheme for SDEs

The adaptive Euler-Maruyama scheme proposed by Lamba et al works for SDEs of

the form:

dXt = K(Xt)dt+H(Xt)dBt, (4.1)

where X0 = x, Xt ∈ Rd for each t, Bt is an m-dimensional Brownian motion and

K : Rd → Rd and K : Rd → Rd×m. The initial condition X0 is assumed to be

deterministic (independent of B). The adaptive algorithm for [28] is given as follows:

λn = H(xn, λn−1), λ−1 = Λ (4.2)

xn+1 = K(xn,∆n) +
√

∆nK(xn)ηn+1, x0 = x (4.3)

where ∆n = 2−λn∆max. Here K(x, t) = x+ tK(x) and

H(x, l) = min{λ ∈ Z+ : |K(K(x, 2−λ∆max))−K(x)| ≤ τ&λ ≥ l − 1}

The random variables, ηj form an i.i.d sequence distributed asN (0, 1). The parameter

Λ defines the initial time-step and τ > 0 the tolerance. The whole idea of the adaptive

Euler-Maruyama scheme of Lamba et al is that the size of the next step is determined

such that the increment based only on the drift term over the suggested step length

is within a pre-determined tolerance. That is, take the drift step only and accept or

reject the step length based on it and finally take the real stochastic step.

4.3 An asymptotically adaptive algorithm 36

4.3 An asymptotically adaptive algorithm

In [21], Hofmann et al proposed a numerical algorithm that works for SDEs of the

form

dXt = K(t,Xt)dt+H(t,Xt)dBt, (4.4)

on [0, 1]. The Brownian motion B is 1-dimensional and the drift and diffusion co-

efficients K,H : [0, 1] × R → R have to be scalar respectively. Also, they have to

be differentiable with respect to the state variable. Again, K and H together with

their derivatives have to satisfy a linear growth bound and Lipschitz conditions. That

is, the conditions of Theorem 2.4.2, the initial random variable has to be indepen-

dent of B and has to admit finite moments of fourth order. It is stated in [29] that

the numerical approximation of Hofmann et al works in the pathwise sense and the

adaptive discretization reflects the local smoothness properties of each trajectory by

approximating the conditional Hölder constant, |H(t,Xt)| along the way and then

taking a step size proportional to 1
|H(τn,Xτn)| . To approximate Xτn for an arbitrary

discretization 0 = τ0 < ... < τN∗ = 1, Hofmann et al proposed the following scheme:

X̄0 = X0

X̄τn+1 = X̄τn +K(τn, X̄τn)hn +H(τn, X̄τn)∆Bτn (4.5)

+
1

2
H(τn, X̄τn)H(0,1)(τn, X̄τn)[(∆Bτn)2 − hn],

where H(0,1) denotes the partial derivative of H with respect to the second or the

state variable, with hn = τn+1−τn and N∗ determined by the algorithm. To calculate

the adaptive step-size with τn = 0, one has to choose a basic step size, h∗ > 0 and

τn+1 = τn + min

{
1

|H(τn, X̄τn)|
, (h∗)

2
3

}
(4.6)

where X̄τn is the result of the Milstein scheme. Again, 4.6 means that the next step

length is selected based on the value of the diffusion term at the previous step. It

is stated in [29] that Hofmann et al’s algorithm is constructed based on the L2-error

criterion,
(
E(
∥∥X − X̄∥∥2

2
)
) 1

2
. The authors prove that the algorithm is asymptotically

optimal with respect to this criterion.

4.4 An adaptive algorithm based on embedded Runge-Kutta scheme 37

4.4 An adaptive algorithm based on embedded Runge-

Kutta scheme

Another step size control approach for the solution of stochastic differential equation

is the algorithm proposed by Mauthner in [30]. The algorithm for autonomous SDEs

is of the form

dXt = K(Xt)dt+H(Xt)odBt (4.7)

Xt0 = X0, in the Stratonovich sense (Itô equations have to be transformed into

Stratonovich ones, non-autonomous SDEs have to be made autonomous). See [26] for

detailed study on how to transform Itô SDEs to Stratonovich and non-autonomous

SDEs to autonomous. Unlike Hoffmann et al’s scheme, K and H may be multi-

dimensional, however, the Brownian motion B needs to be one-dimensional. The

basic step size h∗ gives the equidistant discretization 0 = τ ∗0 < ... < τ ∗N = T with

h∗ = τ ∗n − τ ∗n−1. The stochastic Runge-Kutta method of Mauthner is of the form:

X̄τn+1 = X̄τn + hn

s∑
i=1

αiK(Yi) +
s∑
i=1

(
γ

(1)
i J1 + γ

(2)
i

J10

hn

)
H(Yi), (4.8)

Yi = X̄τn + hn

i−1∑
j=1

αijK(Yj) +
s∑
i=1

(
β

(1)
ij J1 + β

(2)
ij

J10

hn

)
H(Yj),

where X̄0 = X0 and 0 = τ0 < τ1 < ... < τN = T is an arbitrary discretization. J1 and

J10 are defined as follows: J1 =
∫ τn+1

τn
odBt, J10 =

∫ τn+1

τn

∫ t
τn
odBt1dt2. The embedded

stochastic Runge-Kutta method of Mauthner is based on two stochastic Runge-Kutta

schemes with strong order 1.0 and a strong order between 1.0 and 1.5 respectively.

The high-order solution y1 serves as a basis for the strong approximation and

is used to estimate the local error of the low-order solution, ŷ1. For the automatic

step-size control one wants to reach |y1i − ŷ1i | ≤ toli, 1 ≤ i ≤ d for each component,

where

toli = Atoli +max{|y0i |, |y1i|}Rtoli.

Rtoli and Atoli describe the limit for the relative and absolute error and one calculates

4.5 A variable Riemannian sum for Itô integrals 38

err =

√
1
d

∑d
i=1

(
y1i − ŷ1i

toli

)2

as an estimation of the local error. One step is accepted

with the accompanying step-size h if err ≤ 1 holds.

The step-size h may only be halved or doubled. In a situation where err > 1, one

calculates the last step again with h
2
. On the other hand, if err < 1, the result is

accepted and one fixes the approximation value to X̄τn+1 .

The Runge-Kutta algorithm with step-size control calculates solutions which con-

verge strongly to the exact solution of the examined SDE as the step-size converges

to zero [30].

4.5 A variable Riemannian sum for Itô integrals

Using a Riemannian sum with random subintervals, Rapoo, in [40] investigates the

problem of approximating the iterated Itô integral,
∫
wdw, hence solving a corre-

sponding stochastic differential equation by the Euler method with variable step-size.

The full or half step-size strategy involves a dyadic subdivision. For any given value

of n, the interval [0, 1] is divided into N(n) = 2n intervals of h = 2−n. This results to

preliminary subdivision points τn = {k2−n, k = 0, ..., 2n}. For each of these intervals

of length h = 2−n, the step length is either accepted as it is, or is rejected and two

steps of length h = 2−(n+1) are taken. The criterion to reject or accept is based on

the size of the Brownian increment over the interval: a step of length h is rejected if

∆ω ∈ Ah, where, for each h > 0, Ah is a predetermined set.

The above condition gives rise to a final random subdivision τ̂n with

τn ⊆ τ̂n ⊆ τn+1 and,

τ̂n = τn∪
(⋃
k:∆wk∈A−n2

(tk + 2−(n+1))

)
Hence,the numerical approximation is

X(n)(1) =
∑
ti∈τ̂n

2ω(ti)∆ωi (4.9)

4.6 Summary: adapted approaches 39

or alternatively,

X(n)(1) =
∑
ti∈τn

∆X̂i, (4.10)

where ∆X̂i, the increment of the solution over the ith step is adjusted according to

the variable-step scheme: ∆Xi = 2ω(ti)∆ωi if ∆ωi ∈ ACh (the complement of Ah)

on the other hand, if ∆ωi ∈ Ah then ∆X̂i = 2ω(ti)∆1ωi + 2ω(ti + h
2
)∆2ωi. Here,

h = 2−n and ∆1ωi and ∆2ωi are the increments of the Brownian motion over the

two half-steps of lengths h
2
. For different types of sets Ah, there are different types of

variable step-size schemes.The main result of Rapoo’s work is the theorem that gives

an optimal choice of the set Ah. Optimality is defined based on the following criteria:

• which selections of Ah give unbiased methods, i.e for which the expected error

is zero for all h.

• which selections give convergent methods

• which methods improve on a fixed-step Euler method by given better accuracy

at the same cost, or the same accuracy at less cost.

Theorem 4.5.1. E[Ê] = 0 for the following choices of sets, Ah:[40]

(a) Ah = R− or Ah = R+,

(b) Ah = {x : |x| ≤ K
√
hor|x| ≥ L

√
h}, where L ≥ 1 and

K = −W (−L2 exp(−L2)),

(c) = {x : K
√
h < |x| < L

√
h}

Here W (x) is the product logarithm’ function: z = W (x) is the (real) solution to

z exp(z) = x.

4.6 Summary: adapted approaches

One of the above discussed adaptive stochastic schemes determines next step length

based on current value, the other three(Lamba et al [28],Holfmann et al [21] and

4.6 Summary: adapted approaches 40

Rapoo [40]) attempt a step and then reject or accept and one of them(Lamba et

al) takes initially a deterministic step. The other two(Hofmann et al and Rapoo)

attempt a full random step and then adjust the step length based on the result. It is

also important to note that in Mathner’s approach the numerical method must be of

high enough order to work (that is, it must include iterated path integrals).

In Rapoo [40], the step-size decision is based on the value of ∆B over the step.

The ‘classic’ adaptive scheme of taking a step and then accepting or rejecting it

based on what happens may backfire with stochastic integrals because the construc-

tion of stochastic integrals only works if we assume that we do not look into the future

(the numerical scheme must be non-anticipating). A try-a-step-then-accept-or-reject

approach is anticipating. Mauthner’s Runge-Kutta rule gets around this because

of a result by T. Lyons & J. Gaines [10] which states that any step discretization,

even an adapted (anticipative) one will work if the scheme gets the iterated integrals

right- which means it needs to be a 1.5 order scheme, which is difficult to implement.

Rapoo’s scheme works for a low-order (Euler) scheme but only when one makes an

effort to ensure no bias, which is a very important factor to consider in an anticipating

low-order scheme. In this dissertation, we develope a hybrid method which continues

that idea but rather chooses a method base on Brownian motion increment instead

of step-size.

Chapter 5

Hybrid Numerical Methods for the

Solution of SDEs

5.1 Introduction

In this chapter, we present our idea of a hybrid numerical scheme for the solution

of stochastic differential equations. The global error, convergence as well as the

unbiasedness of the hybrid method are investigated. For any given value of n, let the

interval [t, T], t ≥ 0 be divided into N(n) = 2n intervals of length h = 2−n(T − t). Let

X and Y be any two standard numerical schemes, with different orders of convergence,

approximating the solution of an SDE over each of these subintervals. At each interval,

either of X or Y is used to numerically compute the solution to the SDE. The choice of

which scheme to apply is determined based on a function of the Brownian increment

over the interval. Let g(z) be a real function of the Brownian increment over the

interval [t, t + h]1, where, z = Bt+h − Bt, h > 0. The scheme with the lower order of

convergence, which we assume is X, is applied to the solution if g(z) ∈ Λ, where Λ is

a predetermined set; otherwise the other scheme is used. The actual expression for

g(z) is determined based on X or Y . Then at each discretization point t, the hybrid

1t in this case is an arbitrary point on [0, T]

41

5.2 Euler-Milstein hybrid Scheme 42

numerical scheme, Ŝ(∆B) obtained from the standard schemes is given by:

Ŝ(∆B) = X1Λ(∆B) + Y 1ΛC (∆B), (5.1)

where ΛC is the complement of Λ. Here 1Λ(z) is the indicator function of the event

{g(z) ∈ Λ}, and z is the increment of the Brownian motion over the interval. If

Λ = ∅ then there is no hybrid scheme; the resulting numerical scheme is equivalent

to Y . On the other hand if ΛC = ∅ the hybrid scheme corresponds to X, the lower

order standard scheme. More importantly, for Λ 6= ∅ and ΛC 6= ∅, we have a hybrid

algorithm given by (5.1). The question of the optimal choice of the set Λ needs to

be answered in the light of improvement in accuracy in comparison to the standard

scheme of lower order of convergence. To this end, we compute the error as well as

the order of convergence of the hybrid algorithm. In the following sections, we look

at a specific hybrid scheme and investigate its global and local error as well as its

order of convergence. Because our method is anticipating, it becomes neccessary that

the unbiasedness of the hybrid scheme be investigated.

In general, one can obtain many hybrid schemes using a combination of the stan-

dard stochastic schemes provided the choice criterion leads to an improved perfor-

mance compared to the parent schemes. However, for brevity and for the purpose

of this dissertaion, we only look at the Euler-Milstein hybrid scheme based on simu-

lated Brownian increments. Development of other hybrid schemes using higher order

stochastic schemes and perhaps the Runge-Kutta methods in line with this idea would

be of great research interest in future.

5.2 Euler-Milstein hybrid Scheme

We now turn to the Euler-Milstein hybrid scheme. Throughout this chapter, we shall

consider the one dimensional SDE of the form

dXt = K(Xt)dt+H(Xt)dBt, (5.2)

5.2 Euler-Milstein hybrid Scheme 43

where X0 is a constant and t is an arbitrary point on the interval [0, T]. Note that

the multidimensional case follows similarly but component-wise. The Euler scheme

for the above SDE is given by (3.8) and the Milstein scheme by (3.23). From (5.1),

the Euler-Milstein hybrid scheme at the point t+ ∆t is given by

X̂t+∆t = {X̂t +K(X̂t)∆t+H(X̂t)∆Bt}1Λ(∆B) (5.3)

+{X̂t +K(X̂t)∆t+H(X̂t)∆Bt +
1

2
H(X̂t)

dH

dX
(X̂t)((∆Bt)

2 −∆t)}1ΛC (∆B)

In our case, we define g(z) = z2 −∆t. Then the set Λ is defined as {z : |g(z)| ≤ ε}

for t ∈ [0, T]. where ε is a predetermined value. Applying the quadratic variation

property of Brownian motion,(see [8]), we have that E[g(∆Bt)] = 0 for all t. The

choice of ε determines how often we apply Euler or Milstein respectively. for instance,

setting ε = 0; Λ = φ implies that we always use Milstein and never Euler and ε =∞

means the opposite. The idea here is that the hybrid scheme uses the Euler algorithm

when a factor of the additional term that differentiates the Euler and Milstein schemes

over any particular discretization interval is significantly small and uses the Milstein

scheme otherwise. This saves the computational cost of computing the first derivative

of the diffusion coefficients needed for the Milstein method. However, other types of

criteria can still be used to define the setΛ, provided the choice results in an unbiased2

method. In what follows, we investigate the unbiasedness as well as the error and

strong order of convergence of the Euler-Milstein hybrid scheme.

5.2.1 An intuitive illustration of the order convergence

of the Euler-Milstein hybrid scheme

Since the Euler-Milstein scheme is partly Euler and partly Milstein, it is obvious that

the global error of the Euler-Milstein hybrid scheme is partly due to the Euler and

partly due to Milstein schemes. The error contribution of each subscheme depends

only on the value of the Brownian motion increment at any discretization interval

2The expected value of the global error vanishes

5.2 Euler-Milstein hybrid Scheme 44

over the interval, [0, T]. Because the hybrid scheme is partly Milstein, it is expected

to have a a higher order of convergence compared to the Euler scheme, and perhaps

have better accuracy as well. However, what is not trivial is the improvement(in in-

creased order of convergence and better accuracy) on the Euler scheme as a result of

the choice of Λ and not as a result of the part-use of the Milstein scheme in computing

the solution at some points on the interval. We now proceed to analyse the local and

global error of the Euler-Milstein hybrid scheme. Before we look at the theoretical

strong order of the mean square error of the hybrid scheme, we first give an intuitive

illustration of why the strong order of the hybrid scheme is bounded below and above

by the strong orders of convergence of Euler and Milstein, respectively. It should be

noted that this is not a proof of order of convergence of the hybrid scheme, but an

illustration that it is in line with the idea of a hybrid scheme. From (5.1) we see that

the global error, Ehyb = X − X̂ can be written as

Ehyb =
∑

Λi∈[Λ,ΛC]

eΛi (5.4)

where for i ∈ [1, 2], eΛ = err(X)1Λ & eΛc = err(Y)1Λc

For simplicity, we analyse the local and global error of the hybrid scheme using the

geometric Brownian motion,

dXt = µXtdt+ σXtdBt (5.5)

where µ and σ are constants. Recall that the exact solution for this process is given

by (3.13), i.e

Xt = X0 exp{(µ− 1

2
σ2)t+ σBt}

Now if Λ = R then the hybrid algorithm coincides with the Euler scheme and we

have

X̂tj+1
= X̂tj + µX̂tj∆t+ σX̂tj∆Btj

5.2 Euler-Milstein hybrid Scheme 45

i.e

X̂tj+1
= X̂tj [1 + µ∆t+ σ∆Btj],

which implies that at the point t = tk

X̂tk = X0

k−1∏
j=0

[1 + µ∆t+ σ∆Btj].

For t0 = 0, t1 = T
n
, t2 = 2T

n
, ..., tn = T the error in strong convergence is given by

E
∣∣∣X̂T −XT

∣∣∣ (5.6)

= X0E

∣∣∣∣∣
n−1∏
j=1

[1 + µ∆t+ σ∆Btj]− exp{(µ− 1

2
σ2)T + σBT}

∣∣∣∣∣
The exponential term in (5.6) evaluated to O(∆t)2 Taylor expansion leads to

exp{(µ− 1

2
σ2)∆t+ σBtj} = 1 +

[(
µ− 1

2
σ2

)
∆t+ σ∆Btj

]
(5.7)

+
1

2

[(
µ− 1

2
σ2

)
∆t+ σ∆Btj

]2

+
1

6

[(
µ− 1

2
σ2

)
∆t+ σ∆Btj

]3

+ ...

= 1 +

[(
µ− 1

2
σ2

)
∆t+ σ∆Btj

]
+(µ− 1

2
σ2)σ∆t∆Btj +

1

2
σ2[∆Btj]

2

+
1

6
σ3[∆Btj]

3 +O(∆t)2

= 1 + µ∆t+ σ∆Btj + µ
′
σ∆t∆Btj +

1

6
[∆Btj]

3 +O(∆t)2

where, µ
′
= (µ− 1

2
σ2) and assuming that ∆Bt ≈ ∆t. Then,

1 + µ∆t+ σ∆Btj (5.8)

= exp{(µ− 1

2
σ2)∆t+ σBtj} − µ

′
σ∆t∆Btj −

1

6
[∆Btj]

3 −O(∆t)2

5.2 Euler-Milstein hybrid Scheme 46

and

n−1∏
j=0

[1 + µ∆t+ σ∆Btj] (5.9)

=
n−1∏
j=0

[
exp{(µ− 1

2
σ2)∆t+ σ∆Btj} − µ

′
σ∆t∆Btj −

1

6
[∆Btj]

3 −O(∆t)2

]
...

n−1∏
j=0

[1 + µ∆t+ σ∆Btj] (5.10)

=

[
exp{(µ− 1

2
σ2)T + σBT}+ nO(∆t∆Btj) + nO([∆Btj]

3) + nO(∆t)2

]
Therefore, the error (5.6) is

E
∣∣∣X̂T −XT

∣∣∣ = E
∣∣nO(∆t∆B) + nO(∆B)3 + nO(∆t)2

∣∣ (5.11)

= E
∣∣∣∣ T∆tO(∆t∆B) +

T

∆t
O(∆B)3 +

T

∆t
O(∆t)2

∣∣∣∣
= TE

∣∣∣∣ 1

∆t
O(∆t∆B) +

1

∆t
O(∆B)3 +

1

∆t
O(∆t)2

∣∣∣∣
= O(∆t)

1
2

which is the same as the order of strong convergence of the Euler method.

Similarly, when Λ = φ then the hybrid scheme reverts to the standard Milstein

scheme in which case we have

X̂tj+1
= X̂tj + X̂tjµ∆t+ X̂tjσ∆Btj +

1

2
X̂tjσ

2((∆Btj)
2 −∆t)

= X̂tj [1 + µ∆t+ σ∆Btj +
1

2
σ2{(∆Btj)

2 −∆t)}]

The exact solution, (3.13) evaluated to O(∆t)3 Taylor expansion gives the following

1 + µ∆t+ σ∆Btj +
1

2
σ2(∆B2

tj
−∆t) (5.12)

= exp{(µ− 1

2
σ2)∆t+ σ∆Btj} −

1

2
µ′2∆t+

1

2
µ′σ2∆t2 +

1

6
µ′3∆t3

5.2 Euler-Milstein hybrid Scheme 47

where µ′ = (µ− 1
2
σ2)

Then we get

n−1∏
j=0

[1 + µ∆t+ σ∆Btj +
1

2
σ2(∆B2

tj
−∆t)] (5.13)

=
n−1∏
j=0

[exp{(µ− 1

2
σ2)∆t+ σ∆Btj} −

1

2
µ′2∆t2 (5.14)

+
1

6
µ′3∆t3 +

1

2
µ′σ2∆t∆Btj

2]

= [exp{(µ− 1

2
σ2)T + σ∆BT +

1

2
σ2(∆B2

T − T)}

+nO(∆t)2 + nO(∆t)3 + nO(∆t∆Btj
2)]

then the error expression becomes.

E
∣∣∣X̂T −XT

∣∣∣
= E

∣∣nO(∆t)2 + nO(∆t∆Bt
2) + nO(∆t)3

∣∣
= E

∣∣∣∣ T∆tO(∆t)2 +
T

∆t
O(∆t∆Bt

2) +
T

∆t
O(∆t)3

∣∣∣∣
= TE

∣∣∣∣∣∣∣∣
1

∆t
O(∆t)2︸ ︷︷ ︸
O(∆t)

+
1

∆t
O(∆t∆Bt

2)︸ ︷︷ ︸
O(∆t)

+
1

∆t
O(∆t)3︸ ︷︷ ︸
O(∆t)2

∣∣∣∣∣∣∣∣
= O(∆t)

which again coincides with the order of the Milstein scheme.

Of more importance is the case where Λ 6= ∅ and ΛC 6= ∅. Here the hybrid Euler-

5.2 Euler-Milstein hybrid Scheme 48

Milstein scheme is given by (5.3) i.e

X̂tj+1

= {X̂tj [1 + µ∆t+ σ∆Btj]}1Λ
+ {X̂tj [1 + µ∆t+ σ∆Btj +

1

2
σ2{(∆Btj)

2 −∆t)}]}1
ΛC

= {X̂tj

{
[1 + µ∆t+ σ∆Btj]}1Λ

+ [1 + µ∆t+ σ∆Btj +
1

2
σ2{(∆Btj)

2 −∆t)}]}1
ΛC

}
= X̂tj{[1 + µ∆t+ σ∆Btj] +

1

2
(∆Btj

2 −∆t)1ΛC}

= X0

n−1∏
j=1

{[1 + µ∆t+ σ∆Btj] +
1

2
(∆Btj

2 −∆t)1ΛC}

Using the stochastic Taylor expansion as in (5.7) we obtain

1 + µ∆t+ σ∆Btj +
1

2
(∆Btj

2 −∆t)1ΛC

= exp{(µ− 1

2
σ2)∆t+ σBtj} − [µ

′
σ∆t∆Btj]1Λ − [

1

6
[∆Btj]

3]1Λ − [O(∆t)2]1Λ

−[O(∆t∆Bt
2)]1ΛC − [O(∆t)

3
2]1ΛC − [O(∆t)3]1ΛC

Leting n(Λ) and n(ΛC) be the number of times the hybrid scheme uses Euler and

Milstein schemes respectively, we have that n(Λ) = T
∆t
ρ(Λ) and similarly n(Λc) =

T
∆t
ρ(Λc) where ρ(Λ) and ρ(ΛC) is the probabilty that we use Euler and Milstein

respectively.

Hence
n−1∏
j=0

[1 + µ∆t+ σ∆Btj]1Λ
=

n(Λ)−1∏
j=0

[1 + µ∆t+ σ∆Btj]

similarly,

n−1∏
j=0

[1 + µ∆t+ σ∆Btj] +
1

2
σ2(∆Btj

2 −∆t)1ΛC

= exp{(µ− 1

2
σ2)T + σBT}+ n(Λ)O(∆t∆Btj) + n(Λ)O([∆Btj]

3) + n(Λ)O(∆t)2

+n(ΛC)[O(∆t∆Bt
2)] + n(ΛC)[O(∆t)2∆Btj] + n(ΛC)[O(∆t)3]

5.2 Euler-Milstein hybrid Scheme 49

Therefore, the terminal error of the hybrid scheme becomes

E
∣∣∣X̂T −XT

∣∣∣
= E

∣∣∣∣ T∆tρ(Λ)O(∆t)2 +
T

∆t
ρ(ΛC)O(∆t∆Btj

2) +
T

∆t
ρ(ΛC)O(∆t)3

∣∣∣∣
= TE

∣∣∣∣ 1

∆t
ρ(Λ)O(∆t)2 +

1

∆t
ρ(ΛC)O(∆t∆Bt

2) +
1

∆t
ρ(ΛC)O(∆t)3

∣∣∣∣
= O(∆t)α

where α ∈ [1
2
, 1]. Next we investigate the unbiasedness of the Euler-Milstein algo-

rithm.

5.2.2 Bias of the hybrid scheme

In [40] an unbiased method is one in which for all h = ∆t, the expected value of the

global error vanishes. Using the above definition and the notation of the previous

sections, we see that the Euler-Milstein hybrid scheme is unbiased if E[Ehyb] = 0.

It is sufficient to investigate the unbiasedness of the local (one-step) error Ehyb, defined

as (see (5.3))

E[Ehyb
j] = E(Eulererrorj)− Eerr([1ΛC (∆Btj

2 −∆t)]) (5.15)

= E(Milsteinerrorj) + Eerr([1Λ(∆Btj
2 −∆t)])

where Eerr([1Λ(∆Btj
2 − ∆t)]) is the error of the differentiating term between Eu-

ler and Milstein methods for a particular discretization interval, and Eulererrorj and

Milsteinerrorj are the one-step error of the Euler and Milstein methods, respectively.

The expectation in (5.15) can be evaluated as follows

E[Ehyb
j] =

∫
Λ

(x2 − h)

h
ρ(h, x)dx (5.16)

where ρ(h, x) is the transition probability density function of the standard Brownian

motion. i.e. ρ(t, x) = 1√
2πt

exp(−x
2

2t
). Since the standard Euler and Milstein schemes

are known to be unbiased (see [24],[10] and [26]) it follows then that the Euler-Milstein

5.2 Euler-Milstein hybrid Scheme 50

hybrid scheme is locally unbiased if

Eerr([1Λ(∆Btj
2 −∆t)]) = 0.

Now going back to the bias nature of the Euler-Milstein hybrid scheme, we have

that our hybrid scheme is unbiased if, for any, h = ∆t, Λ is such that

E[ej] = −1

2

∫
Λ

(x2 − h)

h
ρ(h, x)dx = 0

Again, using the approach and notation in [40], we write

E[ej] =

∫
Λ

Gh(x)dx

where

Gh(x) =
(x2 − h)

h

1√
2πh

exp(−x
2

2h
).

Scaling the function Gh(x) with respect to h we get

G1 = −1

2

√
hGh(x

√
h)

The graph of G1 is shown in Figure 5.1. Note that Gh = 0 at x = ±
√
h.

The cumulative integral of Gh(x) denoted by Ch(x), in closed form is calculated as

Ch(x) =

∫ x

−∞
Gh(y)dy =

1

2
√

2π

x√
h

exp(−x
2

2h
)

similarly, Ch scales as C1 = Ch(x
√
h). Naturally, the value of the cumulative function

equals the bias for the hybrid method in which ΛC = (−∞, x]. Note that x = −∞ or

+∞ lead to ΛC = R and ΛC = φ (corresponding to the Euler and Milstein schemes

respectively), which are seen to be unbiased methods.

As evident in the graph of C1 (see figure 5.1) the absolute maximum and minimum

at x = ±h of Ch for each set, Λ have the same value. That is,

max{Ch(x), x ∈ R} =
1√
2π

exp(−1

2
) ≈ 0.1209

min{Ch(x), x ∈ R} =
1√
2π

exp(−1

2
) ≈ −0.1209

5.2 Euler-Milstein hybrid Scheme 51

Figure 5.1: graph of the functions G1 and C1

,

Using the chosen criterion3 of our hybrid scheme, we now analyse the behaviour

of the hybrid scheme’s bias with respect to ε. If h > ε, we have that the one-step bias

is given by

Eej = 2

∫ √h+ε

√
h−ε

Gh(x) (5.17)

On the other for h < ε, the hybrid scheme bias becomes

Eej =

∫ √h+ε

−
√
h+ε

Gh(x) (5.18)

The maximum bias is obtained when h = ε and the value is 0.207552 (see Figure 5.2).

We can see from Figure 5.2 that there is always a peak at the value h = ε moreover,

the size of the peak is a constant for all h and ε.

3(i.e. |(∆B2 −∆t)| < ε)

5.2 Euler-Milstein hybrid Scheme 52

Figure 5.2: Bias of the hybrid scheme vs h, ε = 1, 2, h = 0 : 10

,

We further establish that the bias of the hybrid scheme scales is as follows

bias(h, ε) = bias(N ∗ h,N ∗ ε) (5.19)

where N is a positive integer Figure (5.3). An important question to consider would

therefore be, what would N need to be so that h > N ∗ ε gives a bias less that δ?

Another important factor is the rate at which the the bias goes to zero as N increases;

see Figures 5.4 and 5.5

According to Figure (5.5), the bias with fixed ε (of whatever value) and h fixed as

h = N ∗ ε is of order N−3(this is found by fitting a linear function through the data

points in Figure (5.5); the slope is 3.016) for N > 2 so that already at h = ε ∗ 10,

the bias would be 1
1000

. Of course we must look at that in relation to the error of the

hybrid method: we would want the bias to be small in relation to the order of the

error. With h = 0.001, the Milstein error (local) would also be of the order 10−3, so

to make the bias negligible, we would just need to take h a hundred times larger than

ε. In conclusion, by taking h sufficiently smaller than ε, the bias is negligible. (See

5.2 Euler-Milstein hybrid Scheme 53

Figure 5.3: bias of the hybrid scheme vs h, ε = 1, 7, h = 0 : 10

,

also Figure 5.6).

Figure 5.7 deals with the case, h << ε. Again we fix ε and vary h. We observe

that the bias goes to zero as h decreases.

5.2.3 Strong order of the error of the hybrid scheme

We now look more theoretically into the strong order of convergence of the hybrid

scheme. We started by analysing the local mean square error of the hybrid scheme,

then use the result by Milstein (see [31], pp. 13) to analyse the global mean square

error of the hybrid scheme. Let ei be the local error of the hybrid sheme at the

interval ti− ti+1, and p1, a real number, be the strong order of the mean square error

of the method, if

E[(ei)
2]

1
2 ≤ O(h)p1 (5.20)

Then, in effect, Milstein’s result, [31] stated that

E[(eglobal)
2]

1
2 ≤ O(h)(p1− 1

2
). (5.21)

5.2 Euler-Milstein hybrid Scheme 54

Figure 5.4: Bias of the hybrid scheme vs h, ε = 0.1;h = N ∗ ε,N = [2 : 10]

. The local error of the hybrid scheme is given by

Ehyb
j = Eulererrorj − err(1ΛC (∆Btj

2 −∆t)) (5.22)

= Milsteinerrorj + err(1Λ(∆Btj
2 −∆t)) (5.23)

Since we know the orders of the mean square error of both Euler and Milstein, it

suffices to calculate any of err(1ΛC (∆Btj
2 −∆t)) or err(1Λ(∆Btj

2 −∆t)) in order to

determine the strong order of the mean square error of the hybrid scheme. Using the

conditional distribution derived in [40] we have that err(1Λ(∆Btj
2 −∆t)) is given by

E[e2
j] =

∫
Λ

(x2 − h)2ρ(h, x)dx (5.24)

where ej is the local error of the err(1Λ(∆Btj
2−∆t)) and ρ(h, x) is the transition prob-

ability density function of the standard Brownian motion i.e. ρ(t, x) = 1√
2πt

exp(−x
2

2t
).

5.2 Euler-Milstein hybrid Scheme 55

Figure 5.5: Bias of the hybrid scheme vs h, ε = 1, h = N ∗ ε,N = [2, 40]

In particular, for our chosen criterion, if the step length h > ε then 5.24 becomes

E[e2
j] = 2

∫ √h+ε

√
h−ε

(x2 − h)2ρ(h, x)dx (5.25)

on the other hand if ε ≤ h then we get

E[e2
j] =

∫ √h+ε

−
√
h+ε

(x2 − h)2ρ(h, x)dx (5.26)

The maximum error is obtained at h = ε (see Figure 5.8), the left plot shows how the

maximum error is attained at h = ε and how error decreases as h >> ε. The plot at

the right of (Figure 5.8) shows how the maximum error increases as ε increases. A

further investigation specifically shows that the maximum error grows as ε2 (see Figure

5.10). (Figure 5.11) illustrates how the error varies with h only for the case where

h > ε with ε = 0.00001. It is remarkable here that beyond the initial maximum values,

the error actually gets smaller as h increases, in particular the errors for h > 10∗ε are

5.2 Euler-Milstein hybrid Scheme 56

Figure 5.6: Bias of the hybrid scheme vs h, ε = 0.000001,h = 0.001:0.01

far below the Milstein errors. This is in agreement with the numerically computed

error of the hybrid scheme using a non-linear SDE with polynomial coefficients, (6.4).

(See Figure 5.9).

A joint plot of the mean square error of the Euler scheme of order h2 and Mil-

stein, order h3 together with the mean square error of the extra term of the hybrid

scheme reveals that at some stage, the error of the extra term falls below the Milstein

order of mean square error, h3 (see Figure 5.12). To obtain the actual order of

mean square error of the hybrid scheme we use (5.23). The local mean square error

in the hybrid method would then be roughly4 the calculated mean square error of

the extra term plus the mean square error of the Milstein method of order h3. The

combined error is as shown in (Figure 5.13). (Figures 5.14 and5.15) show how the

order of mean square error of the hybrid scheme decreases as ε increases. This is

4 Only roughly, since we have not added the correct coefficients

5.2 Euler-Milstein hybrid Scheme 57

Figure 5.7: bias of the hybrid scheme vs h, ε = 0.1, h = 0 : 011

expected since with our chosen criterion, there is a higher chance of using Milstein

instead of Euler as ε becomes smaller. We notice an interference at some stage in

which case the loglog plot is no longer a straight line; in particlar the best result with

a nice straight line was obtained at ε = 10−9 with h at least 100 times larger than

ε and mean square order of h2.9404.(see Figure 5.14). Using Milstein’s result,(5.21),

half of 2.9404 is 1.4702, which would give roughly the global order of convergence of

the hybrid scheme as 0.97199. Figure 5.16 compares the numerically determined

orders of convergence of standard Euler and Milstein schemes with that of the hybrid

scheme using the problem in (3.12), where we have used ε = 0.0000003. The plot at

the bottom of Figure 5.16, a reference line (dotted) of slope 0.8 is used to numerically

estimate the order of convergence of the Euler-Milstein hybrid method. That is, in

this case we have α = 0.8. A least square fit test of the error C = ∆tq for the three

methods gives; q = 0.52, 0.96 and 0.71 for the Euler, Milstein and the Euler-Milstein

5.2 Euler-Milstein hybrid Scheme 58

Figure 5.8: Mean square error vs h, ε = 0.00001

hybrid schemes respectively.

So far in this chapter, we presented the idea of a hybrid numerical scheme for the

solution of stochastic differential equations. In particular, we were able to establish

roughly the strong order of the mean square error of the Euler-Milstein hybrid scheme.

Since the hybrid scheme is anticipating, in the sense that it looks into the future before

choosing a method, we investigated the biasedness of the hybrid scheme where we

establish the condition under which the hybrid scheme is locally sufficiently unbiased,

as long as h >> ε.

In the following chapter, we perform numerical experiments in order to determine,

numerically, the payoff of the Euler-Milstein hybrid scheme.

5.2 Euler-Milstein hybrid Scheme 59

Figure 5.9: Numerically calculated global hybrid error vs ε, ε = [3 ∗ 10−6, 5.5 ∗

10−5, 0.0001], h = 0.001

5.2 Euler-Milstein hybrid Scheme 60

Figure 5.10: Maximum mean square error vs h, ε = 0.00001

,

Figure 5.11: Mean square error of the extra term vs h, ε = 0.00001

,

5.2 Euler-Milstein hybrid Scheme 61

Figure 5.12: Mean square error of the extra term vs h, from left,right to bottom

ε = 0.1, 0.01, 0.00001

,

Figure 5.13: Mean square error of the extra term vs h, ε = 0.00001

,

5.2 Euler-Milstein hybrid Scheme 62

Figure 5.14: Order of hybrid method vs h, for different values of ε

,

5.2 Euler-Milstein hybrid Scheme 63

Figure 5.15: Order of the hybrid method vs h, for different values of ε

,

5.2 Euler-Milstein hybrid Scheme 64

Figure 5.16: Order of convergence for different methods

,

Chapter 6

Numerical Experiments

6.1 The ε-Complexity of the Hybrid Scheme

The ε-complexity, comp (ε), of a numerical problem is the minimal computational cost

to solve the problem with error at most ε [10]. In this dissertation, the error shall be

the mean of the absolute value of the difference between the numerical solution and

the exact solution, i.e. (|XT − X̂T |2)
1
2 and the problem is the pathwise approximation

of stochastic differential equations. For a particular method and trajectory the cost

of solving a particular problem is determined by the following quantities:

• The number of evaluations of the drift and diffusion coefficients as well as their

derivatives.

• The number of Brownian increment ∆B that are generated.

We shall compare the computational cost of solving some SDEs with known explicit

solutions using Euler-Maruyama, the Milstein and the hybrid schemes for a particular

error estimate.

65

6.2 Numerical Comparison 66

6.2 Numerical Comparison

We now analyze the performance of the Euler-Milstein hybrid scheme for stochastic

differential equations as presented in the previous chapters. To determine the quality

of perfomance of the hybrid scheme, we compute the error at time T = 1 referring

to a particular path of the Brownian motion and the exact solution. In what follows,

we will use the number of calculated steps as a measure of the computational cost.

Obviously, the computational cost of the methods is a constant factor for each cal-

culated step for the Euler and Milstein methods, but will depend on the Brownian

increment ∆B for the hybrid method.

To determine the payoff of the hybrid scheme, for a fixed cost,we compare the

accuracy of each of the schemes where they use the same number of function eval-

uation. For this, we need to compute the number of steps which leads to a given

number of functional evaluation for each method . To be more specific, if we use N

steps for the Euler method, we use N
2

for the Milstein since the Euler method uses

one function evaluation per step while the Milstein method uses two per step. For

the hybrid scheme, we find Nhyb such that

E(number of function evaluations)= N . Since in the hybrid method we use Euler in

each step if ∆B ∈ Λ and Milstein if ∆B ∈ ΛC , we should have

N = Nhyb[1.P(Λ) + 2.P(ΛC)] (6.1)

= Nhyb[(1− P(ΛC)) + 2P(ΛC)]

= Nhyb[1 + P(ΛC)]

which implies that N
2
≤ Nhyb ≤ N . This gives us the equivalent number of steps used

by the Euler-Milstein hybrid scheme, which enables us to make a direct comparison

of the hybrid method to the standard Euler and Milstein methods.

To obtain more information about the performance of the hybrid scheme, we

study the numerical solution of three stochastic differential equations of which the

6.2 Numerical Comparison 67

exact solutions can be calculated [26, 29]. Specifically, we shall consider the three

SDEs used by [29] to compare the performance of the schemes proposed by [30] and

[21].

The SDEs are as listed below.

1. A linear homogeneous SDE with constant coefficient

dXt = µXtdt+ σXtdBt, X0 = 1, (6.2)

i.e (3.12), whose solution is given by the geometric Brownian motion, (3.13)

2. An autonomous SDE with trigonometric drift and diffusion

dXt = −sin(Xt)cos
3(Xt)dt+ cos2(Xt)dBt, X0 = 0 (6.3)

with the solution

Xt = arctan(Bt + tan(X0))

3. An autonomous SDE with polynomial drift and diffusion

dXt = −(1 +Xt)(1−X2
t)dt+ (1−X2

t)dBt, X − 0 = 0 (6.4)

with the solution

Xt =
(1 +X0) exp (−2t+ 2Bt) +X0 − 1

(1 +X0) exp (−2t+ 2Bt) + 1−X0

6.2.1 Strong Orders of Convergence

We start by studying the comparative strong order of convergence of the hybrid

scheme once again using the SDEs described above. We categorize the SDEs into

linear and non-linear. We present the results with respect to the strong order of

convergence,q for the linear equation in Figure 6.1. and the non-linear equations

6.2 Numerical Comparison 68

Figure 6.1: Comparison of the strong order of convergence of the Euler and Milstein

schemes with the hybrid scheme. 1. SDE(1) with µ = 1 and σ = 0.1 2. SDE(1),

with µ = 1 and σ = 1 3. SDE(1) with µ = 1 and σ = 2. In the calculation we use

ε = 0.000054 and , h = 0.001, for Euler and h = 0.02 for Milstein

in Figure 6.2. To show explicitly the approximate value of the strong order of

convergence of the schemes for the given problems, we carry out a least squares fit

that give rise to the plots in Figure 6.3 and Figure 6.4. As can be seen in Figure 6.3,

we first look at the nearly deterministic case of SDE(1), with µ = 1 and σ = 0.1.

The three schemes converge with the same order q ≈ 0.9, which is expected as the

Milstein scheme corresponds to the Euler scheme and our hybrid scheme is just an

optimal combination of the two schemes.

For the increasing stochastic influence, with µ = 1 and σ = 1, the Euler and

Milstein schemes maintain strong order of convergence of 0.5 and 0.9 respectively

while for the hybrid scheme we have a strong convergence order of 0.6. As the

6.2 Numerical Comparison 69

Figure 6.2: Comparison of the strong order of convergence of the Euler and Milstein

schemes with the hybrid scheme. 1. SDE(2) 2. SDE(3)

stochastic influence dominates SDE(1), with µ = 1 and σ = 2, the Milstein scheme

maintains a strong order of convergence of 0.9 while the Euler and the hybrid scheme

converge with 0.42 and 0.48 respectively, as in Figure 6.3.

We conclude by looking at the non-linear SDEs(2) and (3). As shown in Fig-

ure (6.4), the Euler-Milstein hybrid scheme converges with strong order 0.58 for the

first non-linear SDE with trigonometric coefficients. The Euler and Milstein schemes

maintain their respective strong orders of 0.5 and 1. It is important to note that the

strong order of convergence of the hybrid scheme is consistent with the order of con-

vergence of the parent schemes. In each case, the strong order of convergenceq of the

hybrid scheme lies between the orders of convergence of the Euler and the Milstein

schemes. The hybrid scheme maintains the same level of consistency even with the

second non-linear SDE(3), where the three scheme Euler, hybrid and Milstein have

6.2 Numerical Comparison 70

Figure 6.3: Comparison of strong order of convergence of the Euler and Milstein

schemes with the hybrid scheme. 1. SDE(1) with µ = 1 and σ = 0.1 2. SDE(1), with

µ = 1 and σ = 1. 3. SDE(1) with µ = 1 and σ = 2.

almost the same orders of convergence q = 0.57.

6.2.2 Efficiency

Of more importance than the order of convergence is the efficiency (accuracy vs.

cost). As in [29], we studied the performance of the Euler-Milstein hybrid scheme

with respect to different levels of stochastic influence. Hence, we consider constant

drift, µ = 1 with increasing diffusion coefficients σ = 0.1, 1 and 2 for the linear SDE.

We study the second and the third SDEs to get an idea of the performance of the hy-

brid scheme with non-linear equations. For each of the three SDEs above, we proceed

as follows. We specify a number of time steps for the Euler method and use the rela-

6.2 Numerical Comparison 71

Figure 6.4: Comparison of strong order of convergence of the Euler and Milstein

schemes with the hybrid scheme. 1. SDE(2) 2. SDE(3)

tionship in (6.2) to determine the equivalent number of time steps for the hybrid and

Milstein schemes. This provides a natural means of comparing the accuracy of the

three schemes. We first calculate the Euler approximation, X̄k
T , k = 1, ...5000 using

N time steps. Using our chosen criterion we numerically calculate the probability in

(6.2) from which we calculate the equivalent number of steps, Nhyb to be used for the

hybrid scheme. Then we proceed to calculate the approximation, X̄ l
T , l = 1, ..., 5000

using Nhyb time steps. We perform similar calculations for the Milstein approxima-

tion as well, using N
2

steps. With the terminal value of the exact solutions of the

examined SDEs we obtain the mean error for each of the schemes as

e =
1

5000

5000∑
i=0

(XT − X̄ i
T) where i = k, l,m

6.2 Numerical Comparison 72

for Euler, hybrid and Milstein schemes respectively. All the calculations used ε =

0.000054, h = 0.00054 and h = 0.001 for Euler, h = 0.02 for Milstein and for the

hybrid, h is determined using 6.2.

The results of the above computations are shown in Figures (6.5), (6.6) and (6.7).

The mean error of 5000 calculations based on different Brownian motion paths are

plotted for the hybrid scheme and for Euler and Milstein schemes which serve as

references for every described SDE. Thus we compare the mean error of the hybrid

scheme for the cases of nearly equal level of computational effort or cost for each

studied SDE. The linear SDE results are shown in Figure 6.5. From the result, we

see that there is no significant improvement for the almost deterministic case of the

linear SDE. i.e, when σ = 0.1. However, for increasing levels of stochastic influences,

σ = 1 and σ = 2, we see that the hybrid scheme has lower mean error compared to

the Euler and the Milstein schemes. For the second SDEs, the non-linear one with

trigonometric coefficients, the Euler-Milstein hybrid scheme still performs better than

the Euler method but only slightly better than the Milstein scheme (see Figure 6.6).

Finally for the third SDE with polynomial drift and diffusion coefficients, the hybrid

scheme again performs significantly better than both the Euler and Milstein schemes,

with very low mean error as shown in Figure 6.7.

6.2 Numerical Comparison 73

Figure 6.5: Comparison of the Euler and Milstein schemes with the hybrid scheme

using the same computational cost. 1. SDE(1) with µ = 1 and σ = 0.1 2. SDE(1),

with µ = 1 and σ = 1. 3.SDE(1) with µ = 1 and σ = 2.

,

6.2 Numerical Comparison 74

Figure 6.6: Comparison of the Euler and Milstein schemes with the hybrid scheme

using the same computational cost, (SDE(2)).

,

6.2 Numerical Comparison 75

Figure 6.7: Comparison of the Euler and Milstein schemes with the hybrid scheme

using the same computational cost, (SDE(3)).

,

Chapter 7

Summary

In Chapter 1, we started by introducing the real life applications of stochastic differ-

ential equations. We further emphasized the need for numerical solutions (schemes)

for SDEs. We concluded this chapter by giving a brief outline of the structure of the

dissertation.

In Chapter 2, we introduced the general theory of stochastic differential equations

which is a necessary concept to understand in order for an average reader to have

a firm grasp of the entire research work. We defined stochastic processes and more

specifically, we stated the main properties of Brownian motion as well as those of Itô

processes. We also briefly discussed the Itô and Stratonovich integrals and gave their

respective numerical approximations from Riemannian integral point of view. This

was followed by the statement of the famous Itô formula, we went on to introduce the

concept of SDEs and their strong solutions. We stated without proof, the existence

and uniqueness theorem of solutions of stochastic differential equations. This was

necessary as it specifies the class of SDEs we are trying to solve by our method.

In Chapter 3, we introduced some numerical methods for the solution of stochastic

differential equations by showing how they are derived from truncating the stochastic

Itô-Taylor expansion; specifically, we derived the Euler, Milstein and the order 1.5

schemes and investigate numerically their strong order of convergence. This paved the

76

77

way for a brief discusion of adaptive schemes, and this was the theme of in chapter 4.

We introduce the concept of adaptive schemes for SDEs by first presenting the ODE

counterparts. In particular we did a thorough review of the most recent adaptive

schemes in the literature. Precisely we reviewed the adaptive schemes of Lamba et

al, Hoffman, Rapoo and Mauthner respectively and clearly stated how these adaptive

schemes differ from the hybrid scheme of chapter 5.

We started Chapter 5 by introducing the concept of a hybrid scheme. Since our

hybrid scheme is based on the simulated Brownian motion increment over an interval.

The method is anticipating, as it looks at the value of the Brownian motion over an

interval before choosing a method. This neccesitated us to introduced the concept

of biasedness. More specifically, we developed a hybrid scheme based on Euler and

Milstein schemes which we referred to as the ‘Euler-Milstein hybrid scheme’. Both

biasedness and strong order of convergence of this scheme was investigated.

Finally, in Chapter 6 we conducted a comparative numerical analysis to investigate

the performance of the Euler-Milstein hybrid scheme. An investigation on the order

of convergence of the hybrid scheme reveals that the hybrid scheme is consistent with

respect to strong order of convergence as the order of convergence across different

levels of stochastic influence and for both linear and non-linear SDEs is between

those of the Euler and Milstein methods. Also, for equal computational cost, we

compared the accuracy, measured by the size of mean absolute errors, of the Euler

and Milstein schemes to the accuracy of the hybrid scheme. The comparison shows

that for different levels of stochastic influence on a linear SDE, the Euler-Milstein

hybrid scheme has a better accuracy than both Euler and the Milstein methods at

the same level of computational cost. We have thus proven that the new hybrid

scheme is an improvement on the parent (Euler and Milstein) schemes as it gives

better accuracy at the same average cost, and is thus more efficient.

In this dessertation, we have developed a hybrid scheme based on the Euler and

Milstein schemes which we reffered to as the Euler-Milstein hybrid scheme. It is

hoped that the general idea of path-dependent hybrid schemes as introduced in this

78

dessertation can be used to improve the efficiency, if not hte order of convergence,

of low=order numerical methods for SDEs. In the future, the extension of the work

this dissertation to higher order stochastic numerical schemes,to Runge-Kutta type

schemes, also incorporating iterated path integrals, should be of interest. One still

also need to embark on a thorough investigation the order of the error for the hybrid

method. Questions of stability and perhaps higher dimensional case would be very

exciting and hopefully attainable. Finally, we note that the choice of the set Λ in

this dessertation is not neccesary an optimal one; further investigations into this are

under way.

Appendix A

MATLAB CODES FOR HYBRID

METHOD PLOTS

A.1 Matlab Codes: Hybrid Bias

%function g = G(x). Plot of G(x) vs epsilon

h = 0.0001;

epsil =0.0001*h:0.0001*h: 0.2243*h;

N = length(epsil);

bias = zeros(1,N);

for i = 1:N

x = sqrt(epsil(i)-h):(sqrt(epsil(i)+h))/100:sqrt(epsil(i)+h);

g = @(x)-0.5*((x.^2-h)/(h*sqrt(2*pi*h))).*exp(-x.^2/(2*h));

bias(i) = 2*quad(g,sqrt(epsil(i)-h),sqrt(epsil(i)+h));

end

plot(epsil,bias)

%%

79

A.1 Matlab Codes: Hybrid Bias 80

% THIS FUNCTION PLOTS THE THE FUNCTION G_h(x) AND C_1(x)

T =1; N = 2^(11); dt = T/N;

h = dt;

x =[-4:0.1:4];

G1 = ((x.^2-1)/(sqrt(2*pi*1))).*exp(-x.^2/(2*1));

subplot(2,1,1);

C1 = 1/(sqrt(2*pi))*x.*exp(-x.^2/2);

max1 = 1*1/(sqrt(2*pi))*exp(-1/2);

plot(x,G1)

subplot(2,1,2);

plot(x,C1)

%%%

%Fix both h and epsilon

h = 0.01;

epsil =0.000001;

N = length(epsil);

bias = zeros(1,N);

for i = 1:N

x = sqrt(h-epsil(i)):(sqrt(epsil(i)+h))/100:sqrt(epsil(i)+h);

g = @(x)-((x.^2-h)/(h*sqrt(2*pi*h))).*exp(-x.^2/(2*h));

bias(i) = quad(g,sqrt(h-epsil(i)),sqrt(epsil(i)+h));

end

plot(epsil,bias)

%%

% Fix epsilon, vary h

h = 0:0.01:10;

A.1 Matlab Codes: Hybrid Bias 81

epsil =[0.9,2];

N1 = length(h);

N2 = length(epsil);

bias = zeros(N1,N2);

%x = zeros(1,N2);

for j = 1:N2

for i = 1:N1

if epsil(j) < h(i)

x = sqrt(h(i)-epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)-((x.^2-h(i))/(h(i)*sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

bias(j,i) = quad(g,sqrt(h(i)-epsil(j)),sqrt(epsil(j)+h(i)));

else

x = -sqrt(h(i)+epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)-0.5*((x.^2-h(i))/(h(i)*sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

bias(j,i) = quad(g,-(sqrt(h(i)+epsil(j))),sqrt(epsil(j)+h(i)));

end

end

end

subplot(2,2,[1 3]);plot(h,bias(1,:))

subplot(2,2,[2 4]);plot(h,bias(2,:))

max1 = max(bias(1,:))

Max2 = max(bias(2,:))

%%%

% Fix epsilon vary h

h= 0:0.001:0.01;

epsil =0.000001;

%h = n*epsil;

A.1 Matlab Codes: Hybrid Bias 82

N1 = length(h);

N2 = length(epsil);

bias = zeros(N1,N2);

%x = zeros(1,N2);

for j = 1:N2

for i = 1:N1

if epsil(j) < h(i)

x = sqrt(h(i)-epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)-((x.^2-h(i))/(h(i)*sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

bias(j,i) = quad(g,sqrt(h(i)-epsil(j)),sqrt(epsil(j)+h(i)));

else

x = -sqrt(h(i)+epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)-0.5*((x.^2-h(i))/(h(i)*sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

bias(j,i) = quad(g,-(sqrt(h(i)+epsil(j))),sqrt(epsil(j)+h(i)));

end

end

end

%subplot(2,2,[1 3]);

%plot(h,bias(1,:))

%subplot(2,2,[2 4]);

plot(h,bias(1,:))

max1 = max(bias(1,:))

%Max2 = max(bias(2,:))

%%%

A.2 Matlab Codes:hybrid order of Convergence 83

A.2 Matlab Codes:hybrid order of Convergence

% Fix epsilon, vary h

h = 0.00002:0.00001:0.001;

epsil =0.00001;

N1 = length(h);

N2 = length(epsil);

VI = zeros(N1,N2);

%x = zeros(1,N2);

for j = 1:N2

for i = 1:N1

if epsil(j) < h(i)

x = sqrt(h(i)-epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)2*(((x.^2-h(i))).^2/(sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,sqrt(h(i)-epsil(j)),sqrt(epsil(j)+h(i)));

else

x = -sqrt(h(i)+epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)((x.^2-h(i))).^2/(sqrt(2*pi*h(i))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,-(sqrt(h(i)+epsil(j))),sqrt(epsil(j)+h(i)));

end

end

end

subplot(2,2,4);plot(h,VI(1,:))

% subplot(2,2,[2 4]);plot(h,VI(2,:))

% max1 = max(bias(1,:))

% Max2 = max(bias(2,:))

%%5

% Fix epsilon, vary h

A.2 Matlab Codes:hybrid order of Convergence 84

h = 0:1:10;

epsil =0:1:10;

N1 = length(h);

N2 = length(epsil);

VI = zeros(N1,N2);

VI_2 = zeros(1,N1);

%x = zeros(1,N2);

for j = 1:N2

for i = 1:N1

if epsil(j) < h(i)

x = sqrt(h(i)-epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)2*(((x.^2-h(i))).^2/(sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,sqrt(h(i)-epsil(j)),sqrt(epsil(j)+h(i)));

elseif epsil(j) == h(i)

x = -sqrt(h(i)+epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)((x.^2-h(i))).^2/(sqrt(2*pi*h(i))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,-(sqrt(h(i)+epsil(j))),sqrt(epsil(j)+h(i)));

VI_2(i) = VI(j,i);

else

x = -sqrt(h(i)+epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)((x.^2-h(i))).^2/(sqrt(2*pi*h(i))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,-(sqrt(h(i)+epsil(j))),sqrt(epsil(j)+h(i)));

end

end

end

%subplot(2,2,[1 3]);plot(h,VI(1,:))

subplot(2,2,[2 4]);plot(h,VI_2)

% max1 = max(bias(1,:))

A.2 Matlab Codes:hybrid order of Convergence 85

% Max2 = max(bias(2,:)

%%%

% Fix epsilon, vary h

n = 2:1:10;

h = 10.^(-n);

epsil =0.000000000001;

N1 = length(h);

N2 = length(epsil);

VI = zeros(N1,N2);

VI_2 = zeros(1,N1);

%x = zeros(1,N2);

for j = 1:N2

for i = 1:N1

if epsil(j) < h(i)

x = sqrt(h(i)-epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)2*(((x.^2-h(i))).^2/(sqrt(2*pi*h(i)))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,sqrt(h(i)-epsil(j)),sqrt(epsil(j)+h(i)));

else

x = -sqrt(h(i)+epsil(j)):(sqrt(epsil(j)+h(i)))/100:sqrt(epsil(j)+h(i));

g = @(x)((x.^2-h(i))).^2/(sqrt(2*pi*h(i))).*exp(-x.^2/(2*h(i)));

VI(j,i) = quad(g,-(sqrt(h(i)+epsil(j))),sqrt(epsil(j)+h(i)));

end

end

end

%subplot(2,2,1);plot(h,[h.^3 + VI(1,:)],’b-’,h,h.^3,’g-’)

subplot(2,2,4);

loglog((h),[h.^3 + VI(1,:)], ’b-’)

%%%% Least square fit of error = C *Dt^q%%%%

A1 = [ones(length(h),1),log(h)’]; rhs = log([h.^3 + VI(1,:)]’);

A.3 Matlab Codes: Numerical Experiments 86

sol = A1\rhs

q1 = sol(2)

resid = norm(A1*sol - rhs)

%%555

A.3 Matlab Codes: Numerical Experiments

#1.

% THIS FUNCTIONS SOLVES THE LINEAR SDE WITH SIGMA = 0.1, USING EULER METHOD

% AND COMPUTES THE ERROR.

function [L2,ave1] = EulerComp(M)

randn(’state’,sum(100*clock))

lambda = 2; mu = 0.1; Xzero = 1;

T =1; N = 2^(11); dt = T/N; % problem parameters

Xerr = zeros(M,1);

count1 = zeros(1,1);

count2 = zeros(1,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue = Xzero *exp((lambda-0.5*mu^2) + mu*W(end));

for p = 2:2

R = 2^(p-1); Dt = R*dt; L = N./R;

Xtemp = Xzero;

Xtemp3 = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*lambda*Xtemp + mu * Xtemp *Winc(j);

A.3 Matlab Codes: Numerical Experiments 87

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1;

else

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

end

end

count1;

count2;

prob_A = count1/(count1 + count2);

N_hyb = L/(1+ prob_A);

L2 = round(N_hyb);

for i = 1:1

ave(i) = mean(Xerr(:,i)); var1(i) = var(Xerr(:,i));

end

%%

#2.

% THIS FUNCTION SOLVES THE LINEAR SDE USING MISTEIN SCHEME AND OBTAIN THE

% ERROR. AND ALSO CALCULATE THE EQUIVALENT NUMBER OF STEPS TO BE USED IN

% THE HYBRID SCHEME.

function [L2,mave1] = MilstComp(M)

randn(’state’,sum(100*clock))

lambda = 2; mu = 0.1; Xzero = 1;

T =1; N = 2^10; dt = T/N; % problem parameters

Xerr = zeros(M,1);

count1 = zeros(1,1);

count2 = zeros(1,1);

A.3 Matlab Codes: Numerical Experiments 88

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue = Xzero *exp((lambda-0.5*mu^2) + mu*W(end));

for p = 2:2

R = 2^(p-1); Dt = R*dt; L = N./R;

Xtemp2 = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp2 = Xtemp2 + Dt*lambda*Xtemp2 + mu*Xtemp2*Winc(j) +...

0.5* mu^2* Xtemp2*(Winc(j)^2 - Dt);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1;

else

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp2-Xtrue); % store the error at t= 1

end

end

count1;

count2;

prob_A = count2/(count1 + count2);

N_hyb = L/(1+prob_A);

L2 = round(N_hyb)

for i = 1:1

ave(i) = mean(Xerr(:,i)); var1(i) = var(Xerr(:,i));

end

A.3 Matlab Codes: Numerical Experiments 89

mave1 = ave;

%%%

#3.

% THIS FUNCTION SOLVES THE FIRST NON-LINEAR SDE WITH TRIG. COEFFICIENTS

% USING EULER METHOD.

function [L2,ave1] = EulerComp7(M)

randn(’state’,sum(100*clock))

Xzero = 0;

T =1; N = 2^(11); dt = T/N; % problem parameters

Xerr = zeros(M,1);

count1 = zeros(1,1);

count2 = zeros(1,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

B_T = (W(end)+ tan(Xzero));

Xtrue =atan(B_T);

for p = 2:2

R = 2^(p-1); Dt = R*dt; L = N./R;

Xtemp = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*(-sin(Xtemp)*cos(Xtemp)^3) + ...

cos(Xtemp)^2*Winc(j);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1;

else

count2(p-1) = count2(p-1)+1;

A.3 Matlab Codes: Numerical Experiments 90

end

end

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

end

end

count1;

count2;

prob_A = count2/(count1 + count2);

N_hyb = L/(1+ prob_A);

L2 = round(N_hyb);

for i = 1:1

ave(i) = mean(Xerr(:,i)); var1(i) = var(Xerr(:,i));

end

ave1 = ave;

%%%5

#4

% THIS FUNCTION SOLVES THE FIRST NON-LINEAR SDE USING MILSTEIN METHOD.

function [L2,ave1] = MilstComp7(M)

randn(’state’,sum(100*clock))

Xzero = 0;

T =1; N = 2^10; dt = T/N; % problem parameters

Xerr = zeros(M,1);

count1 = zeros(1,1);

count2 = zeros(1,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

B_T = (W(end)+ tan(Xzero));

Xtrue =atan(B_T);

A.3 Matlab Codes: Numerical Experiments 91

for p = 2:2

R = 2^(p-1); Dt = R*dt; L = N./R;

Xtemp = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp +dt*(-sin(Xtemp)*cos(Xtemp)^3)+ ...

cos(Xtemp)^2*Winc(j)+0.5*cos(Xtemp)^2*...

(-2*cos(Xtemp)*sin(Xtemp))*(Winc(j)^2 - dt);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1;

else

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

end

end

count1;

count2;

prob_A = count2/(count1 + count2);

N_hyb = L/(1+prob_A);

L2 = round(N_hyb);

for i = 1:1

ave(i) = mean(Xerr(:,i)); var1(i) = var(Xerr(:,i));

end

ave1 = ave;

%%

A.3 Matlab Codes: Numerical Experiments 92

#5

% THIS FUNCTION SOLVES THE FIRST SDE USING THE HYBRID METHOD.

function [ave2,ave3,milave1] = EulerComp8(M)

randn(’state’,sum(100*clock))

Xzero = 0;

[L2, ave1] = EulerComp7(M);

[Lm2,mave1] = MilstComp7(M);

ave2 = ave1;

N = L2; T = 1; dt = T/N; % problem parameters

Xerr3 = zeros(M,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

B_T = (W(end)+ tan(Xzero));

Xtrue =atan(B_T);

L = N;

Xtemp3 = Xzero;

test = dW.^2-dt;

for j = 1:L

Winc(j) = sum(dW(1*(j-1)+1:1*j));

if abs(test(j)) < abs(mean(test))

Xtemp3 = Xtemp3 + dt*(-sin(Xtemp3)*cos(Xtemp3)^3) + ...

cos(Xtemp3)^2*Winc(j);

else

Xtemp3 = Xtemp3 + dt*(-sin(Xtemp3)*cos(Xtemp3)^3) +...

cos(Xtemp3)^2*Winc(j)+ 0.5*cos(Xtemp3)^2*...

(-2*cos(Xtemp3)*sin(Xtemp3))*(Winc(j)^2 - dt);

end

end

A.3 Matlab Codes: Numerical Experiments 93

Xerr3(s,1) = abs(Xtemp3-Xtrue); % store the error at t= 1

end

for i = 1:1

ave3(i) = mean(Xerr3(:,i)); %var3(i) = var(Xerr3(:,i));

end

err7 =ave2;

% ave2

err8 = ave3;

milave1 = mave1;

err7;

err8;

merr4 = milave1;

%%

#6

%THIS FUNCTION SOLVES THE NON-LINEAR SDE WITH POLINOMIAL COEFFICIENTS USING

%EULER METHOD.

function [L2,ave1] = EulerComp9(M)

randn(’state’,sum(100*clock))

Xzero = 0;

T =1; N = 2^(11); dt = 2*T/N; % problem parameters

Xerr = zeros(M,1);

count1 = zeros(1,1);

count2 = zeros(1,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue =((1+Xzero)*exp(-2*T + 2*W(end))+Xzero-1)/((1+Xzero)*exp(-2*T + ...

2*W(end))+1-Xzero);

for p = 2:2

A.3 Matlab Codes: Numerical Experiments 94

R = 2^(p-1); Dt = R*dt; L = N./R;

Xtemp = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*(-(1+Xtemp)*(1-Xtemp^2)) + ...

(1-Xtemp^2)*Winc(j);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1;

else

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

end

end

count1;

count2;

prob_A = count2/(count1 + count2);

N_hyb = L/(1+ prob_A);

L2 = round(N_hyb);

for i = 1:1

ave(i) = mean(Xerr(:,i)); var1(i) = var(Xerr(:,i));

end

ave1 = ave;

%%%

#7

%THIS FUNCTION SOLVES THE NON-LINEAR SDE WITH POLINOMIAL COEFFICIENTS USING

%MILSTEIN METHOD.

A.3 Matlab Codes: Numerical Experiments 95

function [L2,ave1] = MilstComp9(M)

randn(’state’,sum(100*clock))

Xzero = 0;

T =1; N = 2^10; dt = T/N; % problem parameters

Xerr = zeros(M,1);

count1 = zeros(1,1);

count2 = zeros(1,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue =((1+Xzero)*exp(-2*T + 2*W(end))+Xzero-1)/((1+Xzero)*exp(-2*T + ...

2*W(end))+1-Xzero);

for p = 2:2

R = 2^(p-1); Dt = R*dt; L = N./R;

Xtemp3 = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp3 = Xtemp3 + dt*(-(1+Xtemp3)*(1-Xtemp3^2)) ...

+ (1-Xtemp3^2)*Winc(j)+0.5*(-2*Xtemp3)*(Winc(j)^2 - dt);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1;

else

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp3-Xtrue); % store the error at t= 1

end

end

A.3 Matlab Codes: Numerical Experiments 96

count1;

count2;

prob_A = count2/(count1 + count2);

N_hyb = L/(1+prob_A);

L2 = round(N_hyb);

for i = 1:1

ave(i) = mean(Xerr(:,i)); var1(i) = var(Xerr(:,i));

end

ave1 = ave;

%%%

#8

%THIS FUNCTION SOLVES THE SECOND NON-LINEAR SDE USING THE HYBRID

%METHOD.

function [ave2,ave3,milave1] = EulerComp10(M)

randn(’state’,sum(100*clock))

Xzero = 0;

[L2, ave1] = EulerComp9(M);

[Lm2,mave1] = MilstComp9(M);

ave2 = ave1;

N = L2; T = 1; dt = T/N; % problem parameter

Xerr3 = zeros(M,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue =((1+Xzero)*exp(-2*T + 2*W(end))+(Xzero-1))/((1+Xzero)*exp(-2*T + ...

2*W(end))+(1-Xzero));

L = N;

Xtemp3 = Xzero;

test = dW.^2-dt;

A.3 Matlab Codes: Numerical Experiments 97

for j = 1:L

Winc(j) = sum(dW(1*(j-1)+1:1*j));

if abs(test(j)) < abs(mean(test))

Xtemp3 = Xtemp3 + dt*(-(1+Xtemp3)*(1-Xtemp3^2)) + ...

(1-Xtemp3^2)*Winc(j);

else

Xtemp3 = Xtemp3 + dt*(-(1+Xtemp3)*(1-Xtemp3^2)) ...

+ (1-Xtemp3^2)*Winc(j)+0.5*(-2*Xtemp3)*(Winc(j)^2 - dt);

end

end

Xerr3(s,1) = abs(Xtemp3-Xtrue); % store the error at t= 1

end

for i = 1:1

ave3(i) = mean(Xerr3(:,i)); %var3(i) = var(Xerr3(:,i));

end

err9 = ave2;

milave1 = mave1;

err10 = ave3;

merr5 = milave1;

err9;

err10;

%%%

#9

%THIS FUNCTION CALCULATES THE STRONG ORDER OF CONVERGENCE OF THE THREE SDEs FOR THE LINEAR

%SDE.

function [q1 q2 q3]= conv1(M)

randn(’state’,sum(100*clock))

lambda = 2; mu = 0.1; Xzero = 1;

T =1; N = 2^(11); dt = T/N; % problem parameters

A.3 Matlab Codes: Numerical Experiments 98

%M = 5000; % number of paths sampled

Xerr = zeros(M,5); % preallocate array sample over discrete Brownian paths

count1 = zeros(6,1);

count2 = zeros(6,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue = Xzero *exp((lambda-0.5*mu^2) + mu*W(end));

for p = 2:7

R = 2^(p-1); Dt = R*dt; L = N/R;

% L Euler steps of size Dt = R*dt

Xtemp = Xzero;

Xtemp2 = Xzero;

Xtemp3 = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*lambda*Xtemp + mu * Xtemp *Winc;

Xtemp2 = Xtemp2 + Dt*lambda*Xtemp2 + mu*Xtemp2*Winc + 0.5* mu^2*...

Xtemp2*(Winc^2 - Dt);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1 ;

Xtemp3 = Xtemp3 + Dt*lambda*Xtemp3 + mu * Xtemp3 *Winc;

else

Xtemp3 = Xtemp3 + Dt*lambda*Xtemp3 + mu*Xtemp3*Winc + 0.5* ...

mu^2* Xtemp3*(Winc^2 - Dt);

count2(p-1) = count2(p-1)+1;

end

end

A.3 Matlab Codes: Numerical Experiments 99

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

Xerr2(s,(p-1)) = abs(Xtemp2 - Xtrue);

Xerr3(s,(p-1)) = abs(Xtemp3-Xtrue);

end

end

count1;

count2;

for i = 1:6

ave1(i) = mean(Xerr(:,i)); %var1(i) = var(Xerr(:,i));

ave2(i) = mean(Xerr2(:,i)); %var2(i) = var(Xerr2(:,i));

ave3(i) = mean(Xerr3(:,i)); %var3(i) = var(Xerr3(:,i));

end

Dtvals = dt*(2.^([1:6])); % top LH picture

format short

ave1;

ave2;

ave3;

%%%% Least square fit of error = C *Dt^q%%%

A1 = [ones(6,1),log(Dtvals)’]; rhs = log(ave1’);

A2 = [ones(6,1),log(Dtvals)’]; rhs2 = log(ave2’);

A3 = [ones(6,1),log(Dtvals)’]; rhs3 = log(ave3’);

sol = A1\rhs; q1 = sol(2);

sol2 =A2\rhs2; q2 = sol2(2);

sol3 = A3\rhs3; q3 = sol3(2);

resid = norm(A1*sol - rhs);

resid2 = norm(A2*sol2 - rhs2);

resid3 = norm(A3*sol3 - rhs3);

%%

#10

A.3 Matlab Codes: Numerical Experiments 100

% THIS FUNCTION CALCULATES THE STRONG ORDER OF CONVERGENCE OF THE THREE

% SCHEMES FOR THE FIRST NON-LINEAR SDE.

function [q1 q2 q3]= conv4(M)

randn(’state’,sum(100*clock))

lambda = 2; mu = 2; Xzero = 0;

T =1; N = 2^(11); dt = T/N; % problem parameters

%M = 5000; % number of paths sampled

Xerr = zeros(M,5); % preallocate array sample over discrete Brownian paths

count1 = zeros(6,1);

count2 = zeros(6,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

B_T = ((W(end)+ tan(Xzero)));

Xtrue =atan(B_T);

for p = 2:7

R = 2^(p-1); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt

Xtemp = Xzero;

Xtemp2 = Xzero;

Xtemp3 = Xzero;

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*(-sin(Xtemp)*cos(Xtemp)^3) +

cos(Xtemp)^2*Winc(j);

Xtemp2 = Xtemp2 + Dt*(-sin(Xtemp2)*cos(Xtemp2)^3) +...

cos(Xtemp2)^2*Winc(j)+0.5*cos(Xtemp2)^2*(-2*cos(Xtemp2)*...

sin(Xtemp2))*(Winc(j)^2 - Dt);

if abs(test(j)) < abs(mean(test))

A.3 Matlab Codes: Numerical Experiments 101

count1(p-1) = count1(p-1) + 1 ;

Xtemp3 = Xtemp3 + Dt*(-sin(Xtemp3)*cos(Xtemp3)^3) +...

cos(Xtemp3)^2*Winc(j);

else

Xtemp3 = Xtemp3 + Dt*(-sin(Xtemp3)*cos(Xtemp3)^3) + ...

cos(Xtemp3)^2*Winc(j)+0.5*cos(Xtemp3)^2*(-2*cos(Xtemp3)*...

sin(Xtemp3))*(Winc(j)^2 - Dt);

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

Xerr2(s,(p-1)) = abs(Xtemp2 - Xtrue);

Xerr3(s,(p-1)) = abs(Xtemp3-Xtrue);

end

end

count1;

count2;

for i = 1:6

ave1(i) = mean(Xerr(:,i)); %var1(i) = var(Xerr(:,i));

ave2(i) = mean(Xerr2(:,i)); %var2(i) = var(Xerr2(:,i));

ave3(i) = mean(Xerr3(:,i)); %var3(i) = var(Xerr3(:,i));

end

Dtvals = dt*(2.^([1:6])); % top LH picture

format short

ave1;

ave2;

ave3;

%%%% Least square fit of error = C *Dt^q%%%%

A1 = [ones(6,1),log(Dtvals)’]; rhs = log(ave1’);

A.3 Matlab Codes: Numerical Experiments 102

A2 = [ones(6,1),log(Dtvals)’]; rhs2 = log(ave2’);

A3 = [ones(6,1),log(Dtvals)’]; rhs3 = log(ave3’);

sol = A1\rhs; q1 = sol(2);

sol2 =A2\rhs2; q2 = sol2(2);

sol3 = A3\rhs3; q3 = sol3(2);

resid = norm(A1*sol - rhs);

resid2 = norm(A2*sol2 - rhs2);

resid3 = norm(A3*sol3 - rhs3);

%%%

#11

% THIS FUNCTION CALCULATES THE STRONG ORDER OF CONVERGENCE OF THE THREE

% SCHEMES FOR THE SECOND NON-LINEAR SDE.

function [q1 q2 q3]= conv5(M)

randn(’state’,sum(100*clock))

lambda = 2; mu = 2; Xzero = 0;

T =1; N = 2^(11); dt = T/N; % problem parameters

Xerr = zeros(M,5); % preallocate array sample over discrete Brownian paths

count1 = zeros(6,1);

count2 = zeros(6,1);

for s = 1:M,

dW = sqrt(dt)*randn(1,N); %Brownian increment

W = cumsum(dW); % discrete Brownian path

Xtrue =((1+Xzero)*exp(-2*T + 2*W(end))+Xzero-1)/((1+Xzero)*exp(-2*T + ...

2*W(end))+1-Xzero);

for p = 2:7

R = 2^(p-1); Dt = R*dt; L = N/R; % L Euler steps of size Dt = R*dt

Xtemp = Xzero;

Xtemp2 = Xzero;

Xtemp3 = Xzero;

A.3 Matlab Codes: Numerical Experiments 103

test = dW.^2-Dt;

for j = 1:L

Winc(j) = sum(dW(R*(j-1)+1:R*j));

Xtemp = Xtemp + Dt*(-(1+Xtemp)*(1-Xtemp^2)) + (1-Xtemp^2)*Winc(j);

Xtemp2 = Xtemp2 + Dt*(-(1+Xtemp2)*(1-Xtemp2^2)) ..

+ (1-Xtemp2^2)*Winc(j)+0.5*(-2*Xtemp2)*(Winc(j)^2 - Dt);

if abs(test(j)) < abs(mean(test))

count1(p-1) = count1(p-1) + 1 ;

Xtemp3 = Xtemp3 + Dt*(-(1+Xtemp3)*(1-Xtemp3^2)) +...

(1-Xtemp3^2)*Winc(j);

else

Xtemp3 = Xtemp3 + Dt*(-(1+Xtemp3)*(1-Xtemp3^2)) + ...

(1-Xtemp3^2)*Winc(j)+0.5*(-2*Xtemp3)*(Winc(j)^2 - Dt);

count2(p-1) = count2(p-1)+1;

end

end

Xerr(s,(p-1)) = abs(Xtemp-Xtrue); % store the error at t= 1

Xerr2(s,(p-1)) = abs(Xtemp2 - Xtrue);

Xerr3(s,(p-1)) = abs(Xtemp3-Xtrue);

end

end

count1;

count2;

for i = 1:6

ave1(i) = mean(Xerr(:,i)); %var1(i) = var(Xerr(:,i));

ave2(i) = mean(Xerr2(:,i)); %var2(i) = var(Xerr2(:,i));

ave3(i) = mean(Xerr3(:,i)); %var3(i) = var(Xerr3(:,i));

end

Dtvals = dt*(2.^([1:6])); % top LH picture

A.3 Matlab Codes: Numerical Experiments 104

format short

ave1;

ave2;

ave3;

%%%% Least square fit of error = C *Dt^q%%%%

A1 = [ones(6,1),log(Dtvals)’]; rhs = log(ave1’);

A2 = [ones(6,1),log(Dtvals)’]; rhs2 = log(ave2’);

A3 = [ones(6,1),log(Dtvals)’]; rhs3 = log(ave3’);

sol = A1\rhs; q1 = sol(2);

sol2 =A2\rhs2; q2 = sol2(2)

sol3 = A3\rhs3; q3 = sol3(2);

resid = norm(A1*sol - rhs);

resid2 = norm(A2*sol2 - rhs2)

resid3 = norm(A3*sol3 - rhs3);

%%%5

#12

% THIS FUNCTION PLOTS ORDER OF CONVERGENCE FOR THE SCHEMES AND FOR THE

% THREE LEVELS OF STOCHASTIC INFLUENCE.

function convplot1(M)

T =1; N = 2^(11); dt = T/N;

Dtvals = dt*(2.^([1:6]));

[ave1,ave2,ave3] = conv_1(M);

[ave4,ave5,ave6] = conv_2(M);

[ave7,ave8,ave9] = conv_3(M);

subplot(3,1,1);

loglog(Dtvals, ave1, ’r:’),hold on

loglog(Dtvals, ave2, ’b:’),hold on

loglog(Dtvals, ave3, ’g:’),hold off

axis([1e-3 1e-1 1e-4 1]);

A.3 Matlab Codes: Numerical Experiments 105

ave1;

ave2;

ave3;

xlabel(’\Delta t’), ylabel(’Sample average of |X(T)-X_L|’)

title(’Linear SDE with Drift = 0.1 ’,’Fontsize’,10)

subplot(3,1,2);

loglog(Dtvals, ave4, ’r:’),hold on

loglog(Dtvals, ave5, ’b:’),hold on

loglog(Dtvals, ave6, ’g:’),hold off

axis([1e-3 1e-1 1e-4 1]);

xlabel(’\Delta t’), ylabel(’Sample average of |X(T)-X_L|’)

title(’Linear SDE with Drift =1. ’,’Fontsize’,10)

subplot(3,1,3);

loglog(Dtvals, ave7, ’r:’),hold on

loglog(Dtvals, ave8, ’b:’),hold on

loglog(Dtvals, ave9, ’g:’),hold off

axis([1e-3 1e-1 1e-4 1]);

xlabel(’\Delta t’), ylabel(’Sample average of |X(T)-X_L|’)

title(’Linear SDE with Drift = 2. ’,’Fontsize’,10)

%%

#13

% THIS FUNCTION PLOTS THE ORDR OF CONVERGENCE FOR THR THREE SCHEMES AND FOR

% THE TWO NON-LINEAR SDEs

function convplot2(M)

T =1; N = 2^(11); dt = T/N;

Dtvals = dt*(2.^([1:6]));

[ave1,ave2,ave3] = conv_4(M);

[ave4,ave5,ave6] = conv_5(M);

%[ave7,ave8,ave9] = conv3(M);

A.3 Matlab Codes: Numerical Experiments 106

subplot(2,1,1);

loglog(Dtvals, ave1, ’r:’),hold on

loglog(Dtvals, ave2, ’b:’),hold on

loglog(Dtvals, ave3, ’g:’),hold off

axis([1e-3 1e-1 1e-4 1]);

ave1

ave2

ave3

%loglog(Dtvals,(Dtvals.^(.5)),’r--’), hold off % reference slope of 1/2

xlabel(’\Delta t’), ylabel(’Sample average of |X(T)-X_L|’)

title(’Non Linear SDE with Trig. Drift’,’Fontsize’,10)

subplot(2,1,2);

loglog(Dtvals, ave4, ’r:’),hold on

loglog(Dtvals, ave5, ’b:’),hold on

loglog(Dtvals, ave6, ’g:’),hold off

axis([1e-3 1e-1 1e-4 1]);

xlabel(’\Delta t’), ylabel(’Sample average of |X(T)-X_L|’)

title(’Non Linear SDE with Polynomial Drift =1. ’,’Fontsize’,10)

%%

#14

% THIS FUNCTION GIVES THE BAR PLOTS TO ERROR OF THE LINEAR SDE

function barplot3(M)

[err1,err2,merr1] = EulerComp2(M);

[err3,err4,merr2] = EulerComp4(M);

[err5, err6,merr3] = EulerComp6(M);

errMat = [err1,err2,merr1;err3,err4,merr2;err5,err6,merr3];

figure;

bar(errMat,’group’)

A.3 Matlab Codes: Numerical Experiments 107

%%

#15

% THIS FUNCTION GIVES THE BAR PLOTS OF THE ERROR FOR THE TWO NON-LINEAR SDEs

function nonbarplot3(M)

[err7,err8,merr4] = EulerComp8(M);

[err9, err10,merr5] = EulerComp10(M);

errMat = [err7,err8,merr4;err9, err10,merr5];

figure;

bar(errMat,’group’)

%%

#16

% THIS FUNCTION GIVES THE BAR PLOTS FOR THE TWO NON-LINEAR SDEs

function nonbarplot3(M)

[err7,err8,merr4] = EulerComp8(M);

[err9, err10,merr5] = EulerComp10(M);

errMat = [err7,err8,merr4;err9, err10,merr5];

figure;

bar(errMat,’group’)

%%

#17

% THIS FUNCTION GIVES THE BAR PLOTS OF THE STRONG ORDER OF CONVERGENCE OF

% THE THREE SCHEMES FOR THE TWO NON-LINEAR SDEs

function nonconvbarplot3(M)

[q10,q11,q12] = conv4(M);

[q13,q14,q15] = conv5(M);

convMat = [q10,q12,q11;q13,q15,q14];

figure;

bar(convMat,’group’)

Bibliography

[1] Brain, D. H. (1997). Essential Matlab: for Scientists and Engineers, John Wiley

and sons Inc, New York.

[2] Burrage, K. Burrage, P. and Mitsui, T. (2000). Numerical Solutions

of Stochastic Differential Equations: implementation and stability issues, J.

Comp.and Appl. Maths, 125, 171-182.

[3] Burrage, K. and Burrage, P. M., (2000). Order Conditions of

Stochastic Runge-Kutta Methods: by B-Series, J. Numer. Anal, 38,

(5) 1626-1646.

[4] Burrage, K. and Burrage, P. M. (2004). Adaptive step size based on

control theory for stochastic differential equations,J. Compt. Appl.

Math., 170, 317-336.

[5] Damien, L. and Bernard, L. (1996). Introduction to Stochastic Cal-

culus Applied to Finance, Chapman and Hall , London.

[6] Dormand, J., R., Prince, P., J. (1980). “A family of embedded Runge-

Kutta Formulae”, SIAM J. Appl. Maths 6,(1),19-26.

[7] Faure, O. (1990). Numerical Pathwise Approximation of Stochastic

Differential Equations. L.A.M.M.(CERMA), France.

[8] Fima, C. and Klebaner (2006). Introduction to Stochastic Calculus

with Application,2ndẽdn. Imperial College Press.

108

BIBLIOGRAPHY 109

[9] Friedman, A. (1975). Stochastic Differential Equations and Applica-

tions, Academic Press.

[10] Gaines, J, G. and Lyons, T. J. (1997). Variable step-size Control In

The Numerical Solutions of Stochastic Differential Equations, SIAM

J. Appl. Maths , 57 1455-1484,

[11] Gard, T. C. (1987). Introduction to Stochastic Differential Equation,

chapter 7.,

[12] George, L. and John, P. (1999). Numerical methods using Matlab,

2nd edn Prentice-Hall Inc, New Jersey.

[13] Gerald, C.F. and Patrick, O.W. (1999). Applied Numerical Analysis

, 6th edn. Addison-Wesley Longman Inc.

[14] Gustaf, S. (2002). Automatic control and adaptive time-stepping ,

Numer. Algorithms, 31 281-310

[15] Gustaf, S. (2006). Time-step selection algorithm: Adaptivity, control

theory and signal processing, Applied Numerical Mathematics, 56 488-

502.

[16] Gustafsson, K. (1991). Control theoretical techniques for stepsize se-

lection in explicit Runge-Kutta methods, Numer. Algorithms, 17 533-

554.

[17] Gustafsson, K. (1991). Control theoretical techniques for stepsize se-

lection in explicit Runge-Kutta methods, Numer. Algorithms, 17 533-

554.

[18] Gustaf, S., Wang, L. (2006). Evaluating numerical ODE/DAE meth-

ods, algorithms and software, Comp. Appl. Math, 185 244-260.

BIBLIOGRAPHY 110

[19] Gustaf, S. and Wang, L. (2005). Adaptive time-stepping and com-

putational stability, Comp. Methods in Sc. ans Eng., 2 3 1-3.

[20] Higham, D. J. Mao, X. and Stuart, A.M. (2002). Strong Conver-

gence of Euler-Type methods: For non- linear Stochastic Differential

Equations,SIAM J. Numer. Anal., 40 1041-1063.

[21] Hofmann, N. Mller-Gronbach, T. and Ritter, K.(2000). Opti-

mal Approximation of SDEs: by Adaptive Step-size Control, maths.

Comp. 69 1017-1032.

[22] Hofmann, N. Mller-Gronbach, T. and Ritter, K. (2001). The Op-

timal Discretization of SDEs, J. of Complexity, 17 117-153.

[23] Ikeda, N. and Watanabe, S. (1981). “Stochastic Differential Equa-

tions and Diffusion processes”, North-Holland, Amsterdam,

[24] Kamagawa, S. (1988). On the Rate of Convergence for Maruyama’s

Approximate of SDEs, Yokohama mathematical journal vol, 36

[25] Karatzas, I., Shreve, S. (1992). Brownian motion and stochastic

Calculus, 2nd Editon, Springer , Berlin, New York.

[26] Kloeden, P.E. and Platen, E. (1999). Numerical Solutions of

Stochastic Differential Equations., Springer, Berlin.

[27] Kloeden, P.E. and Platen, E. (1991). Stratonovich and Itô Stochas-

tic Taylor Expansion, J. maths Nachr, 151 33-50.

[28] Lamber, H. Mattingly, J.C. and Stuart, A. M. (2006). An adaptive

Euler-Maruyama Scheme for SDEs: Convergence and Stability, IMA

J. Numerical Analysis, 1-28.

BIBLIOGRAPHY 111

[29] Lehn, J. Roler, A. and Schein,O. (2002). Adaptive Schemes for

Numerical Solutions of SDEs: A Comparison, J. comp. Appl.

Maths, 138 297-308.

[30] Mauthner, S. (1998). Step-size Control in the Approximation of

Stochastic Differential Equations, J. Comp. Appl. Maths 100 93-109.

[31] Milstein, G.N. (1995). Numerical Integration of Stochastic Differ-

ential Equations, Kluwer, London.

[32] Newton, N.J. (1991). Asymptotically efficient Runge-Kutta methods

for a class Of It and Stratonovich Equations, SIAM J. Appl. Math.

2 542-567.

[33] Oksendal, B. (2000). Stochastic Differential Equations: An intro-

duction with Application., Springer, Berlin.

[34] Peter, L. and Richard, L. C. (2000). Exploring Numerical Meth-

ods: An Introduction to scientific computing Using matlab., Jones

and Bartlett publishers, Inc. USA.

[35] Platen, E. and Wagner, W. (1982). On a Taylor formular for a class

of Itô process, Prob. Math. statist. (3) 37-51.

[36] Protter, P. (1991). Stochastic Integration and Differential equa-

tions, springer, New york.

[37] Richard, L.B. and Faires, J.D. (2005). Numerical Analysis , 8th edn,

Thomson brooks/Cole, USA.

[38] Roger, P. (1992). Stratonovich-Taylor Expansion and numerical

Methods, journal of Stochastic Analysis and applications 10 (5) 603-

612.

BIBLIOGRAPHY 112

[39] Romisch, W.,Winkler, R.(2006). Stepsize control for mean-square

numerical methods for stochastic differential equations with small

noise., SIAM J. Sci. Comput. 28 604-625.

[40] Rapoo E. (2008). A Variable step Riemannian Sum for an Itô Inte-

gral, J. Appl. Prob., 45, 551-567.

[41] Rumelin, W. (1982). Numerical treatment of stochastic Differential

Equations, SIAM J. Numer. Anal. 19 604-613.

[42] Stoffer, G. (1995). Variable steps for reversible integration meth-

ods, J. of Computing , 55 15-25.

[43] Stuart, A. M. and Humphreis, A. R. (1995). The Essential Stability

of Local Error Control for Dynamical Systems, SIAM J. Numer. Anal.

32 1940-1971.

[44] Szepesy, A.,Tempone R. and Zouraris G. E (2001). Adaptive weak

approximation of stochastic differential equation., Commun. Pure and

Appl.Math. 54 1169-1214.

[45] Talay, D. (1999). Expansion of the Global error for Numerical

Schemes solving stochastic differential Equations, Stochastic analysis

and Applications, 4 483-509.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Outline of the Research

	General Theory of Stochastic Differential Equations
	Stochastic process
	Brownian Motion
	Equivalence transformations

	Stochastic Integrals
	Construction of the stochastic integrals
	Itô integrals
	Stratonovich Integral

	Stochastic differential equations, SDEs
	Existence and Uniqueness of the Solution of SDEs
	Itô Process

	Numerical Methods for solutions of SDEs
	Introduction
	Stochastic Taylor Expansions
	Strong and Weak Convergence of Stochastic Taylor Approximation

	Euler-Maruyama Method
	Numerical Example
	Strong and Weak Order of Convergence of the Euler Scheme

	Milstein method
	Strong Convergence of the Milstein method

	Order 1.5 stochastic schemes

	Adaptive Numerical Schemes for SDEs
	Adaptive schemes for ODEs and R-K schemes
	An Adaptive Euler-Maruyama scheme for SDEs
	An asymptotically adaptive algorithm
	An adaptive algorithm based on embedded Runge-Kutta scheme
	A variable Riemannian sum for Itô integrals
	Summary: adapted approaches

	Hybrid Numerical Methods for the Solution of SDEs
	Introduction
	Euler-Milstein hybrid Scheme
	 An intuitive illustration of the order convergence of the Euler-Milstein hybrid scheme
	Bias of the hybrid scheme
	Strong order of the error of the hybrid scheme

	Numerical Experiments
	The -Complexity of the Hybrid Scheme
	Numerical Comparison
	Strong Orders of Convergence
	Efficiency

	Summary
	MATLAB CODES FOR HYBRID METHOD PLOTS
	Matlab Codes: Hybrid Bias
	Matlab Codes:hybrid order of Convergence
	Matlab Codes: Numerical Experiments

