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Abstract

After a review of the notions of Hausdorff and Fourier dimensions from fractal geometry

and Fourier analysis and the properties of local times of Brownian motion, we study the

Fourier structure of Brownian level sets. We show that if δa(X) is the Dirac measure

of one-dimensional Brownian motion X at the level a, that is the measure defined by

the Brownian local time La at level a, and µ is its restriction to the random interval

[0, L−1
a (1)], then the Fourier transform of µ is such that, with positive probability, for all

0 ≤ β < 1/2, the function u → |u|β|µ(u)|2, (u ∈ R), is bounded. This growth rate is the

best possible. Consequently, each Brownian level set, reduced to a compact interval, is

with positive probability, a Salem set of dimension 1/2. We also show that the zero set

of X reduced to the interval [0, L−1
0 (1)] is, almost surely, a Salem set. Finally, we show

that the restriction µ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier

transform satisfies E (|µ̂(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0.

Key words: Hausdorff dimension, Fourier dimension, Salem sets, Brownian motion,

local times, level sets, Fourier transform, inverse local times.
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Introduction

This thesis is a study of the Fourier structure of level sets of a one-dimensional Brownian

motion using the notion of local times. The idea developed from a series of lectures

by Prof Fouché (my supervisor) which focused on Fractal geometry, Brownian motion,

Fourier analysis and the problem of uniqueness of trigonometric series.

In 1869 Heine proposed to Cantor the problem of determining whether a trigonometric

series that converges to 0 at all real numbers must have all its coefficients equal to 0

(that is the series is identical 0). This is equivalent to the following problem: If two

trigonometric series converge to the same limit at all real numbers, are they equal (or do

they have the same coefficients)? In 1870, using Riemann’s ideas, Cantor proved that the

answer to the question was “yes” and that was the beginning of various generalizations.

The main problem now became the following: Does the answer remain “yes” if exceptional

points are allowed. That is, if it is known that the series converge to the same points for

all reals, but nothing is known for points in a certain subset E, is it true that the series

are identical? Cantor showed that if this exceptional set E is a countable closed set, then

again the answer to the question is “yes”.

A set E ⊂ [0, 1] is a set of uniqueness if every trigonometric series which converges to

0 for x /∈ E is identically 0, or equivalently any two trigonometric series that converge

to the same points for every real x /∈ E are identical. Intuitively, this means that the

complement Ec of E in [0, 1] is “large” enough that if the two series agree on it, then

they are the same on [0, 1] (they have the same coefficients). A set which is not a set

of uniqueness is called a set of multiplicity. More clearly, a subset M ⊂ [0, 1] is a set

of multiplicity if there exist different (multiple) trigonometric series that converge to the

same points outside M . The convergence to the same limit in M c is thus not sufficient to

guarantee that the series are equal. The problem of uniqueness can thus be formulated

as follows: Given a subset E ⊂ [0, 1], is E a set of uniqueness? Simplest examples of

sets of uniqueness are countable closed subsets of [0, 1]. It is known that if E is a set

of uniqueness and is Lebesgue-measurable, then its Lebesgue measure is 0. It has first

been suggested that all Lebesgue null sets should be sets of multiplicity until Menshov

constructed an example of a closed set of multiplicity of measure 0. Major progress was

made by Salem and Zygmund (see for example [44]) when they completely characterized

Cantor type sets of fixed ratio ξ in terms of the number theoretical structure of ξ. However,

the characterisation of sets of uniqueness is very far from being complete despite efforts
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by different mathematicians. (More historical details on the problems of uniqueness can

be found in the book by Kechris [28].)

The problem of uniqueness has many interactions with other areas of classical analysis,

measure theory, functional analysis, number theory, and set theory. For example, it is

well know that if a compact subset E of [0, 1] supports a measure µ such that its Fourier

transform µ̂(u) =
∫
eiuxdµ(x) → 0 as |u| → 0, then E is a set of multiplicity. For example,

the Lebesgue measure λ on [0, 1] is such that |λ̂(u)| converges to 0 (with rate |u|−1). It

is, therefore, natural to ask for the asymptotic rate at which the Fourier transform of a

finite measure tend to zero (if it really tends to 0). It is known that if E is a compact

subset of [0, 1] with Hausdorff dimension α ∈ [0, 1], then any measure µ supported by E

is such that |u|β|µ̂(u)|2 is unbounded for any β > α. A compact set E ⊂ [0, 1] is said to

have Fourier dimension α ∈ (0, 1] if for any β < α, there exists a measure µ supported by

E such that |u|β|µ̂(u)|2 is bounded and no such measure exists for β > α. The Hausdorff

dimension is, therefore, an upper-bound of the Fourier dimension. Salem [43] constructed

the first example of a compact subsets of R whose Fourier and Hausdorff dimensions are

the same. Such sets were later called Salem sets. The interval [0, 1] is itself a trivial

example of Salem set. The first non-trivial deterministic example was given by Kaufman

[27] when he showed that the set α-well approximable numbers contains a Salem set of

dimension 2/(2 + α). (See also Bluhm [5]).

Kahane, in his seminal book [24], gives a large class of Salem sets by showing, surprisingly

that, for any compact E ⊂ [0, 1] of dimension α < 1/2, if X denotes the one-dimensional

Brownian motion, then the image X(E) is a Salem set (with dimension 2α). There are

many interplays between fractal geometry and Brownian motion and stochastic properties

in general in such a way that, fractal geometry defines a proper framework to explore

deep Brownian motion properties. Conversely, Brownian motion is a source of examples

to illustrate fractal properties. For example, knowing that the Hausdorff dimension of the

zero set of Brownian motion is 1/2 indicates how “irregular” a Brownian path is. It is

now common that in many textbooks on stochastic processes some sections are reserved

for fractal properties.

Motivated by Kahane’s ideas, we decided to study the Fourier dimension of level sets of

Brownian motion. We show that if δa(X) is the Dirac measure of Brownian motion at the

level a, that is the measure defined by the Brownian local time La at level a, and µ is its

restriction to the random interval [0, L−1
a (1)], then the Fourier transform of µ is such that,

with positive probability, for all 0 ≤ β < 1/2, the function u→ |u|β| ̂δa(X)(u)|2, (u ∈ R),

is bounded. From this we deduce that each Brownian level set, reduced to a compact

interval, is with positive probability, a Salem set of dimension 1/2. The proofs are based

on the fact that the inverse local time process of Brownian motion has independent and

stationary increments.

Using Lévy’s original definition of local times, we also show that, almost surely, the

restriction of the Dirac measure δ0(X) to the deterministic interval [0, 1] is such that its
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Fourier transform verifies E (|µ̂(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0.

We have extensively used the ideas of Kahane (from his book [24]) and many beautiful

results of Lévy on local times and Brownian motion in general (many of them are given

in the epoch-making book by Ito and McKean [22] and the book by Peres and Mörters

[39]).

If, from the point of view of stochastic processes, Brownian motion can be seen as a

simple model because more elaborated models become now available, its fractal properties

pose very difficult problems which are far from being fully understood. Its connection

with Kolmogorov complexity and descriptive set theory as described in various papers by

Fouché ([16], [17], [18]) shows that it has many beautiful and interesting properties that

are still to be discovered.

The notion of Salem set (or set of multiplicity in general) is not fully understood and we

hope that by exploring different examples provided by nature, it will become clearer how

such sets can be characterized.

The thesis is organized as follows. In chapter 1 we introduce the notions of Hausdorff

dimension and capacities of compact sets of Rn. Frostman’s lemma, which plays a central

role in fractal geometry, is discussed in great detail.

Chapter 2 contains a discussion on Fourier transforms of distributions and measures. We

provide a detailed proof of the Fourier transform variant of the energy formula. Available

proofs in the literature are very sketchy and every effort is made to clarify them. The

notions of Fourier dimension and Salem sets are finally presented at the end of the chapter.

General properties of Brownian motion are summarized in chapter 3. We are only inter-

ested by those properties which are relevant to the study of fractal and Fourier properties

of Brownian motion.

Chapter 4 deals with the notion of local times of Brownian motion. After a brief intro-

duction of the stochastic integration with respect to a Brownian motion, we review some

properties of level sets of Brownian motion and present the definition and relevant prop-

erties of local times. The notions of Dirac measure and inverse local times of Brownian

motion, on which the proofs of the results of this thesis are based, form the last section

of the chapter.

In chapter 5 we discuss some fractal properties of Brownian motion. Firstly, we discuss

the Hausdorff dimension of level sets and the doubling property of Brownian motion.

Secondly, we provide a full proof of Kahane’s theorem on the Salemness of Brownian

images of compact subsets of Hausdorff dimension < 1/2. This chapter is in preparation

of the proofs provided in chapter 6.

Finally, in chapter 6 are discussed in depth the asymptotic decays of Fourier transforms

of Dirac measures of Brownian motion. We prove in particular that level sets are, with

positive probability, Salem sets. The thesis ends with some concluding remarks.
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Chapter 1

Hausdorff dimension in Euclidean

space

In this chapter we introduce some fundamental notions of fractal geometry that will

be used in the sequel. We start with the notion of Hausdorff dimension and we prove

Frostman’s lemma using ideas of graph theory. Energy and capacities on compact sets

and Frostman’s theorem which play a central role in this thesis are also discussed in some

extent. More details and results of fractal geometry can be found in [13],[24] or [36]) for

example. Our exposition is influenced by lectures of Willem Fouché based on Chapter 10

of the book by Kahane [24] as well as the combinatorial treatment of Frostman’s lemma

by Mörters and Peres [39, Chapter 4].

1.1 Definition of Hausdorff dimension

Given a subset E of the Euclidean space Rd, and real numbers α ∈ [0, d], ǫ > 0, consider

all coverings of E by balls (Bn : n = 1, 2, . . .) of diameter ≤ ǫ and the corresponding sums

∑

n≥1

|Bn|α,

where |B| = sup{|x − y| : x, y ∈ B} is the diameter of B. The infimum of these sums

over all such coverings by balls of diameter ≤ ǫ is denoted by Hǫ
α(E). When ǫ decreases

to zero, Hǫ
α(E) increases to a limit (which may be infinite). This limit is called the

Hausdorff measure of E in dimension α and is denoted by Hα(E). In fact one can check

that E 7→ Hα(E) is an outer measure.

If 0 < α < β ≤ d, then, for any covering (Bn) of E by balls of diameter ≤ ǫ, we have that,

∑

n≥1

|Bn|β ≤ ǫβ−α
∑

n≥1

|Bn|α,

from which it follows that

Hǫ
β(E) ≤ ǫβ−αHǫ

α(E).
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Hence, if Hα(E) <∞, then Hβ(E) = 0 and equivalently, if Hβ(E) > 0, then Hα(E) = ∞.

Therefore,

sup{α : Hα(E) = ∞} = inf{β : Hβ(E) = 0}.

This common value is called the Hausdorff dimension of E and is denoted by dimH(E).

It has the following elementary properties [36, p 59]:

1. If E ⊂ F , then dimH E ≤ dimH F ,

2. dimH(∪∞
n=1En) = sup{dimH(En) : n = 1, 2, . . .},

If E ⊂ F , then dimH E ≤ dimH F . Any subset of Rd of positive Lebesgue measure

has Hausdorff dimension d and countable subsets have Hausdorff dimension 0. We will

frequently refer to Cantor type sets and we briefly recall their construction. Let 0 < ξ <

1/2. Starting from the interval [0, 1] we remove an open interval of length 1 − 2ξ at the

middle of the original interval [0, 1], that is, remove the interval (ξ, 1−ξ). Then from each

of the two remaining intervals, remove the interval of length ξ(1 − 2ξ) at the middle of

the original intervals. At the nth step, we have 2n closed intervals of common length ξn

and each of these generates two subintervals of length ξn+1 by removing an open interval

of length ξn(1 − 2ξ) at the middle. Let En the union of the 2n intervals of step n and

Cξ = ∩∞
n=1En. We will call Cξ the Cantor type set of dissection ratio ξ. We have that

Hα(Cξ) = 1 where α = log 2/ log(1/ξ). (See, for example, the book by Falconer [13]).

Then

dimH Cξ =
log 2

log(1/ξ)
.

The classical ternary Cantor set corresponds to ξ = 1/3.

The following proposition provides an upper bound of the Hausdorff dimension of the

image of a compact subset by a Hölder-continuous function.

Proposition 1.1 If E is a compact subset of Rn and f : E → Rd is a function such that

|f(x) − f(y)| ≤ C|x− y|β, x, y ∈ E

where C > 0 is a constant and 0 < β < 1, then

dimH f(E) ≤ min

{
dimH E

β
, d

}
.

Proof It is clear that dimH f(E) ≤ d since f(E) is a subset of Rd. We want to show that

if α ≥ 0 is such that Hα(E) < 1, then Hα/βf(E) < ∞ and in particular if α > dimH E,

then α/β ≥ dimH f(E). From this it will follow that

dimH f(E) ≤ dimH E

β
.

Since for any ǫ > 0, Hǫ
α(E) ≤ Hα(E) < 1, we can cover E by balls (Bn) of diameter ≤ ǫ
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such that
∑

n≥1

|Bn|α < 1.

Clearly,

|f(Bn)| ≤ C|Bn|β, for any n ≥ 0.

Let Kn be a ball of diameter δ = C|Bn|β containing f(Bn). Then

Hδ
α/βf(E) ≤

∑

n≥1

|Kn|α/β ≤ Cα/β
∑

n≥1

|Bn|α ≤ Cα/β

Therefore,

Hα/βf(E) ≤ Cα/β <∞.

1.2 Frostman’s lemma

In 1935 Frostman [19] proved the celebrated lemma which provides a relationship between

Hausdorff measures and finite measures carried by a compact set. The proof given here

is adapted from a proof given in the book by Mörters and Peres [39, pp 83-85]. Other

proofs can be found elsewhere [36, pp 112-124].

Theorem 1.2 If E is a compact subset of Rd and 0 ≤ α ≤ d, then Hα(E) > 0 if and

only if E carries a probability measure µ such that

µ(B) ≤ c|B|α (1.1)

for all balls B and some constant c > 0.

The proof uses ideas from graph theory and the well-known max-flow min-cut theorem of

Ford and Fulkerson [14]. Before proving the theorem, we recall the following basic notions

of graph theory.

Definition 1.3 Consider a connected graph T = (V, F ) described by a countable set V of

vertices including a distinguished vertex ρ, designated as the root, and a set F ⊂ V × V

of ordered edges. T is a tree if it has the following properties:

(1) for any vertex v ∈ V , v 6= ρ, there exists only one v ∈ V , called the parent of v such

that (v, v) ∈ F ,

(2) for any v ∈ V , there exists a unique path from ρ to v; the number of edges in this

path is called the order of v and denoted |v|,

(3) for every v ∈ V , the set {w ∈ V : (v, w) ∈ F} of offspring of v is finite.
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For any v, w ∈ V , we denote by v ∧ w the vertex which is the common vertex the paths

from the root to v and w with maximal order, that is, the last intersection vertex of the

paths [ρ, v] and [ρ, w]. The order |e| of an edge e = (u, v) is the order of its end-point v.

Every infinite path starting at the root is called a ray. The set of rays is denoted ∂T , and

is called the boundary of the tree T . For any two rays ξ, η ∈ ∂T , we denote by ξ ∧ η the

vertex in the intersection of these rays of maximum order. The order of ξ∧η is, therefore,

the number of edges that these rays have in common. One can show that

d(ξ, η) = 2−|ξ−η|

is a metric on the set ∂T .

Definition 1.4 Let T = (V, F ) be a tree (of root ρ) such that capacities are assigned to

its edges by a mapping k : F 7→ [0,∞). A flow of strength a > 0 through T is a function

f : F 7→ [0, a] such that

(1)
∑
w∈V :(ρ,w)∈F f(ρ, w) = a,

(2) (preservation of the flow): f(v, v) =
∑
w∈V :w=v f(v, w) for any v ∈ V , where v is the

parent of v.

(3) f(e) ≤ k(e), for any e ∈ F.

A set Π of edges is called a cutset if every ray contains an edge from Π.

The following proposition is the celebrated max-flow min-cut theorem of Ford and Fulk-

erson. A proof can be found in Appendix of Mörters and Peres [39].

Proposition 1.5 The maximum strength of a flow through a tree of capacity k is

inf

{∑

e∈ Π

k(e) : Π is a cutset of the tree

}
.

Proof of Theorem 1.2:

Firstly, we prove that the existence of µ implies (1.1). It is clear that µ(E) > 0 since

µ 6= 0 and supp(µ) ⊂ E. If (Bn)n≥1 is any covering of E by balls, then

0 < µ(E) ≤ µ(∪n≥1Bn) ≤
∑

n≥1

µ(Bn) ≤ c
∑

n≥1

|Bn|α

and, therefore,
∑

n≥1

|Bn|α ≥ µ(E)

c
> 0.

It follows that Hǫ
α(E) ≥ µ(E)

c
for any ǫ > 0 and hence Hα(A) ≥ µ(E)

c
> 0.

For the converse of the theorem, we assume without loss of generality that E ⊂ [0, 1]d and

that Hα(E) > 0. The idea is to construct a tree whose boundary contains in some way
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the set E and where cutsets of the tree can be interpreted as coverings of E. Let us split

the cube [0, 1]d into 2d new equal dyadic cubes of sidelength 1/2 and repeat the dissection

indefinitely for all the new cubes. Consider the tree T = (V, F ) defined as follows:

(1) associate a vertex with each cube; the vertex associated with the original cube [0, 1]d

is considered as the root,

(2) for every vertex v, consider 2d edges emanating from it, corresponding to the 2d

subcubes of the cube associated with v,

(3) remove the edges whose endpoints are subcubes which do not contain elements of

E and remove also their endpoints.

It is now clear that a ray of T corresponds to a sequence of nested cubes whose intersection

is a point of E. This defines a map φ : ∂T → E and it is clear that φ is surjective.

Define a capacity k on T by

k(e) = (2−n
√
d)α (1.2)

where n is the order of the edge e (the dimensional factor
√
d is omitted in [39]). Note

that k(e) = |A|α where A is the subcube associated with the endpoint of e.

For any cutset Π of T , consider the family C(Π) of cubes associated with the vertices of

Π. This family is a covering of E. Indeed, any x ∈ E is of the form φ(ξ) for some ξ ∈ ∂T .

Since Π is a cutset it contains at least one edge e of ξ. The subcube corresponding to the

initial point of e contains x. Any cutset can now be seen as a covering of E and therefore

(since there are at least many coverings as many cutsets)

inf

{∑

e∈Π

k(e) : Π is a cutset

}
≥ inf




∑

n≥1

|An|α : E ⊂ ∪n≥1An



 . (1.3)

We can now see that the condition Hα(E) > 0 implies that right hand side of (1.3) is

positive. Indeed, suppose that

inf




∑

n≥1

|An|α : E ⊂ ∪n≥1An



 = 0.

This means that
∑
n |An|α can be taken arbitrary small; which is possible only if each

|An| is arbitrary small. Then, after replacing sets An by balls of diameter |An|, this yields

Hǫ
α(E) = 0, for any ǫ > 0. This contradicts the fact that Hα(E) > 0. Therefore,

inf

{∑

e∈Π

k(e) : Π a cutset

}
> 0.

By the max-flow min-cut theorem, there exists a flow f : E → [0,∞) of positive strength

such that f(e) ≤ k(e) for any edge e ∈ E.
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We want to show how to use the flow f to construct a measure on the boundary ∂T which

will induce a measure on E by the map φ.

For any edge e ∈ F we associate the set T (e) ⊂ ∂T consisting of all rays containing e and

denote by A the class of all such sets. We can add the empty set to this class if it does

not contain it. The class A is a semi-algebra on ∂T in the sense that if A, B ∈ A and

then A∩B ∈ A and Ac is a finite disjoint union of sets in A. In fact, the first property is

obvious, since for any two edges e1, e2, T (e1) ∩ T (e2) 6= ∅ if and only if one of these sets

is a subset of the other. For the second property, note that since T (e)c is the set of rays

that do not contain edge e and the number of offspring of each vertex is finite, there exist

e1, e2, . . . , en ∈ F such that T (e)c = T (e1) ∪ T (e2) ∪ . . . ∪ T (en).

We next consider the map ν̃ : A → [0,∞) defined by

ν̃(T (e)) = f(e) and ν̃(∅) = 0.

If T (e1)∪T (e2)∪. . .∪T (en) = T (e), then because the flow through each vertex is preserved,

ν̃ (T (e1) ∪ T (e2) ∪ . . . ∪ T (en)) = ν̃(T (e)) = ν̃(T (e1)) + . . .+ ν̃(T (en)),

which means that ν is finitely additive and hence countably additive, since for each T (e)

there is only a finite number of disjoints sets in A such that T (e) is their union. This is

justified by the fact that if e = (u, v) and v1, . . . , vn are the offspring of v, then the only

possible decomposition of T (e) as a union of disjoint sets in A is T (e) = T (e1)∪ . . .∪T (en)

where (e1 = (v, v1), . . . , en = (v, vn).

By the Caratheodory extension theorem, there exists a measure ν on the σ-algebra σ(A)

spanned by A which extends ν̃. The idea is now to consider the image measure µ of ν

by φ, which will be a measure on E. Before that, we need to show that φ is measurable

with respect to σ(A) and the Borel σ-algebra B(E) on E. We first mention the fact that

the Borel σ-algebra on [0, 1] is also spanned by the family of intervals of the form [0, a],

(0 ≤ a ≤ 1). If we consider the binary expansion

a =
∞∑

n=1

an2
−n, an = 0 or 1,

the interval [0, a] can be written as a countable union of dyadic intervals:

[0, a] = [0, a12
−1] ∪ [a12

−1, a12
−1 + a22

−2] ∪ . . . (1.4)

This indicates that the Borel σ-algebra on [0, 1]d is also spanned by the family of subcubes

obtained from the dissection procedure. It is, therefore, sufficient to show that φ−1(S) ∈
σ(A), for any subcube S. If S ∩ E = ∅, then φ−1(S) = ∅ and there is nothing to prove.

Otherwise, we can consider the vertex v associated with S and the edge e pointing to v.

Then φ−1(S) = T (e) and hence it is an element of σ(A).

9



Therefore,

µ(S) = ν(φ−1(S)) = ν(T (e)) = ν̃(T (e)) = f(e).

The measure µ is nonzero because

µ(E) = ν(∂T ) = ν
(
∪nj=1T (ej)

)
=

n∑

j=1

f(ej) = strength(f) > 0

where e1, e2, . . . en are the edges with common initial point ρ (the source of the tree).

It remains to show that µ(B) ≤ c|B|α for any ball B of Rd and some fixed constant c.

Consider the integer n ≥ 1 such that

2−n <
|B ∩ [0, 1]d|√

d
≤ 2−(n−1).

Intuitively this means that B∩[0, 1]d is contained in a cube of side length between 2−n and

2−(n−1). In dimension 1, it is clear that at most 3 subcubes (or subintervals) of side length

2−n are needed to cover B ∩ [0, 1] and one can easily generalise this to 3d in dimension d.

Let us denote these subcubes by Sj , j = 1, 2, . . . , 3d and consider the edges ej pointing to

the vertices associated with these subcubes. We have that

µ(B) = µ(B ∩ [0, 1]d ≤ µ (∪jSj)
≤

∑

j

µ(Sj) =
∑

j

f(ej) ≤
∑

j

k(ej)

≤ 3d(2−n
√
d)α from relation (1.2))

≤ 3d|B ∩ [0, 1]d|α

≤ 3d|B|α.

An obvious scaling of µ by µ(E) yields a probability measure.

1.3 Energy and capacity

From Frostman’s lemma, the Hausdorff dimension of a compact subset of Rd is closely

related to probability measures carried by this set. Another very useful way to characterize

a compact subset of Rd is to consider the energy integrals of non-zero finite measures

supported by this set. These energies define another dimension concept which turns out

to be identical to Hausdorff dimension by the celebrated theorem of Frostman [19] (see

also [24, p 133]).

Definition 1.6 Consider a compact subset E of Rd and a real number α such that

0 < α < d. For a given non-zero finite measure µ supported by E, the energy integral of

10



µ with respect to the kernel k(x) = |x|−α is given by

Iα(µ) =
∫

Rd

∫

Rd

dµ(x)dµ(y)

|x− y|α .

The measure µ is said to have finite energy with respect to k if Iα(µ) <∞. We say that

E has positive capacity with respect to k and write Capα(E) > 0 if E carries a non-zero

finite measure of finite energy with respect to k. If there is no such measure we say that

E has capacity zero with respect to this kernel and write Capα(E) = 0. The following is

the Frostman theorem.

Theorem 1.7 For any compact subset E of Rd and 0 < α < β < d,

(1) if Hβ(E) > 0 then Capα(E) > 0 and if Capα(E) > 0 then Hα(E) > 0,

(2) sup{α : Capα(E) > 0} = inf{β : Capβ(E) = 0} = dimH(E).

Proof (1) If Hβ(E) > 0, then, by Frostman’s lemma, there is some non-zero finite mea-

sure µ carried on E such that µ(B) < c|B|β, for all balls B ⊂ Rd and a constant c. In

particular, µ is a non-atomic measure. For any fixed y ∈ Rd, we can partition Rd into

the subsets

Aj =
{
x ∈ Rd :

1

2j+1
≤ |x− y| ≤ 1

2j

}
, j = 1, 2, . . .

A0 =
{
x ∈ Rd : |x− y| > 1

2

}
.

Then we have that

∫

Rd

dµ(x)

|x− y|α =
∫

A0

dµ(x)

|x− y|α +
∞∑

j=1

∫

Aj

dµ(x)

|x− y|α .

The first integral on the right-hand side is bounded by 2αµ(E) and is, therefore, finite

since µ(E) is finite. For any j ≥ 1, because |Aj| ≤ 1/2j, we have that

∫

Aj

dµ(x)

|x− y|α ≤
∫

Aj

2(j+1)αdµ(x) = 2(j+1)αµ(Aj) ≤ 2(j+1)αc
(

1

2j

)β
=

2αc

2j(β−α)
.

It is now clear that ∫

Rd

dµ(x)

|x− y|α <∞

and, therefore, Iα(E) <∞ since µ(E) <∞. We conclude that CapαE > 0.

Let us assume that CapαE > 0 and show that HαE > 0. Since CapαE > 0, there exists

a non-zero finite measure µ carried on E such that Iα(µ) <∞. For any t > 0, define

Et =

{
y ∈ E :

∫

Rd

dµ(x)

|x− y|α ≤ t

}
.
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We can choose t so large such that µ(Et) > 0. Indeed, suppose that for any t > 0,

µ(Et) = 0, that is, µ(Ec
t ) = µ(E). Then for any t > 0,

Iα(µ) =
∫

Ec
t

(∫

Rd

dµ(x)

|x− y|α
)
dµ(y) >

∫

Ec
t

tµ(y) = tµ(E).

It follows that Iα(µ) = ∞, which is a contradiction. Let us now fix t > 0 such that

µ(Et) > 0 and consider a covering (Bn), n = 1, 2, . . . of Et by balls of Rd. Our aim to

estimate
∑
n |Bn|n from below. For this purpose, we may assume that Bn ∩ Et 6= ∅, for

all n. Select yn ∈ Bn ∩ Et, n = 1, 2, . . . Since |Bn|α ≥ |x− yn|α for any x ∈ Bn,

µ(Bn) ≤ |Bn|α
∫

Bn

dµ(x)

|x− yn|α
≤ t|Bn|α (since yn ∈ Et).

Then
∑

|Bn|α ≥ 1

t
µ(∪nBn) ≥

1

t
µ(Et) > 0

for any covering (Bn). Therefore, Hα(Et) ≥ 1
t
µ(Et) and hence Hα(E) > 0.

(2) The first equality is obvious by definition. The second is a consequence of (1). Indeed,

denote γ = sup{α : Capα(E) > 0}. For any α < γ, we have that CapαE > 0 and then

from (1), Hα(E) > 0. Thus dimH(E) ≥ α and, therefore, dimH(E) ≥ γ. If dimH(E) > γ,

then Hδ(E) > 0 for γ < δ < dimH(E) and then from (1), Capδ(E) > 0 which is a

contradiction. It follows that dimH(E) = γ.
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Chapter 2

Fourier transforms and Fourier

dimension

The purpose of this chapter is to introduce the notions of Fourier dimension and of Salem

sets. These notions are based on the Fourier transforms of measures. In order to give a

complete proof of the Fourier transform variant of the capacity formula, we review basic

ideas of the Fourier transform of tempered distributions. This formula is one of the most

important relations of fractal geometry. A full proof of this formula based on a sketchy

proof found in Mattila [36] is provided.

2.1 Fourier transform of integrable functions

Given a function f ∈ L1(Rn), its Fourier transform is the function defined by

f̂(u) =
∫
eiuxf(x)dx, u ∈ Rn. (2.1)

The function f̂ is continuous.

If f̂ is also summable, that is, f̂ ∈ L1(Rn), then we have the following Fourier inversion

formula [42, p 185]:

f(x) =
1

(2π)n

∫
e−iuxf̂(u)du, almost everywhere in Rn. (2.2)

If f1, f2 ∈ L1(Rn) and their Fourier transforms f̂1, f̂2 belong to L2(Rn), then we have the

formula [42, p 187]:

1

(2π)n

∫
f̂1(u)f̂2(u)du =

∫
f1(x)f2(x)dx. (2.3)

In particular,
1

(2π)n

∫
|f̂1(u)|2du =

∫
|f1(x)|2dx.

13



The Fourier transform of the Gaussian function

f(x) = e−s|x|
2

, s > 0

is given by (see, for example [47, p 38-41])

f̂(u) = (π/s)n/2e−|u|2/4s. (2.4)

2.2 Fourier transform of tempered distributions

We will need Fourier transforms of functions that are not necessarily in L1(Rn) but are

locally integrable. The usual way to define their Fourier transforms is to consider them

as tempered distributions.

Let us introduce the following common notations. For any α = (α1, . . . , αn) ∈ Nn and

x = (x1, . . . , xn) ∈ Rn,

|α| = α1 + . . .+ αn

xα = xα1
1 . . . xαn

n

∂α =
∂|α|

∂xα1
1 . . . ∂xαn

n

.

Consider an open subset W of Rn and the linear space C∞
0 (W ) of C∞-functions defined

on W having compact support. This space can be endowed by the structure of locally

convex topological space as follows [1, pp 24-25]:

1. Write

C∞
0 (W ) = ∪K∈KC

∞
K (W )

where K is the class of all compact subsets of W , and C∞
K (W ) the subset of C∞

0 (W )

whose elements have support in K.

2. Endow C∞
K (W ) with the topology defined by the family of norms

pi(φ) = sup{|∂αφ(x)| : x ∈ K, |α| ≤ i}, i ∈ N

that is, consider the neighborhood system of zero to be the family of balls

Bi(r) = {φ ∈ C∞
K (W ) : pi(φ) < r}, r > 0 and i ∈ N.

3. Endow C∞
0 (W ) with the inductive limit topology of the topologies on the spaces

C∞
K (W ), that is, the neighborhood system of zero is the class of subsets U ⊂ C∞

0 (W )

such that U ∩ C∞
K (W ) is a neighborhood of zero in C∞

K (W ) and that U is convex

and balanced in the sense that, for any f ∈ U and λ ∈ C such that |λ| ≤ 1, it

follows that λf ∈ U .
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The space C∞
0 (W ) endowed with this topology is denoted D(W ).

Definition 2.1 A distribution on W is a continuous linear functional on D(W ).

The set of distributions on W is denoted D′(W ). For any locally integrable function f on

W , the linear functional

〈f, φ〉 =
∫

W
f(x)φ(x)dx, φ ∈ D(Rn),

is a distribution on W . Another important example of distribution is the classical Dirac

distribution δx, x ∈ Rn defined by

〈δx, φ〉 = φ(x), φ ∈ D(Rn).

We will simply denote δ0 by δ. Any Borel measure µ with compact support defined on

Rn induces a distribution on Rn as follows:

〈µ, φ〉 =
∫
φ(x)dµ(x), φ ∈ D(Rn)

Definition 2.2 A sequence (Tn) in D′(W ) converges (weakly) to the distribution T if, for

every φ ∈ D(W ), the sequence 〈Tn, φ〉 converges to 〈T, φ〉 in C.

Usually, it is useful to consider the Dirac distribution as the limit of a sequence of inte-

grable functions. The following proposition gives such a sequence [1, pp 48-49]:

Proposition 2.3 For any non-negative integrable function f on Rn such that
∫
f(x)dx = 1, the family (fǫ), ǫ > 0 defined by

fǫ(x) =
1

ǫn
f
(
x

ǫ

)

converges to δ in D′(Rn) as ǫ→ 0.

An example is given by

fǫ(x) =
1

(2πǫ)−n/2
e−|x|2/2ǫ.

We now turn to a specific class of distributions called tempered distributions, to which it

is possible to extend Fourier transforms.

Definition 2.4 A function φ ∈ C∞(R) is said to be rapidly decreasing if

sup
x∈Rn

|xα∂βφ(x)| <∞

for all multi-indices α and β. This is equivalent to

sup
|β|≤m

sup
x∈Rn

(
1 + |x|2

)m |∂βφ(x)| <∞,
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for all integers m ≥ 1.

The space of rapidly decreasing functions on Rn is denoted S(Rn). It is a linear topological

space where the topology is defined by the family of semi-norms pα,β, α, β ∈ Nn such

that

pα,β(φ) = sup
x∈Rn

|xα∂βφ(x)|, φ ∈ S(Rn).

The topological space D(Rn) is a dense subspace of S(Rn).

Definition 2.5 A tempered distribution is a continuous linear functional on S(Rn).

The set of tempered distributions is denoted S ′(Rn). Clearly, S ′(Rn) ⊂ D′(Rn).

Example 2.6

Many properties of fractal geometry are based on the function k defined on Rn − {0} by

k(x) =
1

|x|α , for some 0 ≤ α < n.

For any φ ∈ S(Rn), let

〈k, φ〉 =
∫
k(x)φ(x)dx.

Then |〈f, φ〉| is finite. Indeed, for some real A > 0, we have that

|〈k, φ〉| ≤
∫
|k(x)φ(x)|dx

=
∫

|x|≥A
k(x)|φ(x)|dx+

∫

|x|<A
k(x)|φ(x)|dx

For |x| ≥ A, k(x) ≤ 1/Aα and for |x| < A, there exists M > 0 such that |φ(x)| ≤ M

(since φ is bounded). Therefore,

|〈k, φ〉| ≤ 1

Aα

∫

|x|≥A
|φ(x)|dx+M

∫

|x|<A
k(x)dx.

To show that
∫
|x|≥A |φ(x)|dx <∞, we note since φ ∈ S(Rn), then

sup
x∈Rn

(1 + |x|2)n|φ(x)| <∞

and hence

|φ(x)| = (1 + |x|2)−n(1 + |x|2)n|φ(x)| ≤ H(1 + |x|2)−n, for some H > 0.

Therefore, ∫
|φ(x)|dx ≤ H

∫ dx

(1 + |x|2)n <∞.

The function k defines a tempered distribution (see for example [47] for a more general

result).
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We have that S(Rn) ⊂ L1(Rn) and it is true in general that S(Rn) ⊂ Lp(Rn) for any

1 ≤ p ≤ ∞. Also, Lp(Rn) ⊂ S ′(Rn), ([1, p 122].

The Fourier transform of any φ ∈ S(Rn) exists. One of the most important properties

of the space S(Rn) is that the Fourier transform defines a continuous linear operator in

S(Rn) and the Fourier inversion formula holds, that is: If φ ∈ S(Rn) then φ̂ ∈ S(Rn)

and if φn converges to φ then φ̂n converges to φ̂ and, for any x ∈ RN ,

φ(x) =
1

(2π)n

∫
e−iuxφ̂(u)du, φ ∈ S(Rn).

(See for example, Theorems 4.3 and 4.4 in [1, p 124-125]).

We are now ready to extend the Fourier transform operator on tempered distributions.

Definition 2.7 For any T ∈ S ′(Rn), the Fourier transform T̂ of T is defined by

〈T̂ , φ〉 = 〈T, φ̂〉.

If φ ∈ S(Rn), then φ defines a tempered distribution Tφ by 〈Tφ, ψ〉 =
∫
φ(x)ψ(x)dx and

its Fourier transform is denoted T̂φ. The Fourier transform φ̂ of φ also defines a tempered

distribution because it is an element of S(Rn). Let us denote it by Tφ̂. Then we have

that T̂φ = Tφ̂.

Let us now find the Fourier transform of the tempered distribution defined by the function

k(x) = 1/|x|α.

Proposition 2.8 For any 0 ≤ α < n, the Fourier transform of the tempered distribution

defined by the function k(x) = 1
|x|α , x ∈ Rn − {0}, is the tempered distribution defined by

the function

k̂(u) =
πn/22α+nΓ(α/2 + n/2)

Γ(α/2)
|u|α−n, u ∈ Rn, (2.5)

where

Γ(z) =
∫ ∞

0
tz−1e−tdt, z > 0

is the gamma function.

Proof The following proof is adapted from the book by Strichartz [47, pp 50-51] We start

by considering the integral

I =
∫ ∞

0
s

α
2
−1e−s|x|

2

ds

With the variable change h = s|x|2, we find, that,

I =
1

|x|α
∫ ∞

0
s

α
2
−1e−sds =

Γ(α/2)

|x|α .
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Therefore, we have the identity

1

|x|α =
1

Γ(α/2)

∫ ∞

0
s

α
2
−1e−s|x|

2

ds, x 6= 0.

For any φ ∈ S(Rn), we have that

〈k̂, φ〉 = 〈k, φ̂〉
=

∫

Rn
k(x)φ̂(x)dx

=
1

Γ(α/2)

∫

Rn

(∫ ∞

0
s

α
2
−1e−s|x|

2

ds
)
φ̂(x)dx

=
1

Γ(α/2)

∫

Rn

(∫ ∞

0
s

α
2
−1e−s|x|

2

ds
) ∫

Rn
eixzφ(z)dzdx

=
1

Γ(α/2)

∫

Rn

∫ ∞

0

(∫

Rn
eixze−s|x|

2

dx
)
s

α
2
−1φ(z)dsdz (by Fubini’s theorem)

=
1

Γ(α/2)

∫

Rn

∫ ∞

0
(π/s)n/2e−|z|2/4ss

α
2
−1φ(z)dsdz (from relation (2.4))

=
πn/2

Γ(α/2)

∫

Rn

(∫ ∞

0
s

α
2
−n

2
−1e−|z|2/4sφ(z)ds

)
dz

=
πn/22n−α

Γ(α/2)

∫

Rn

(∫ ∞

0
|z|α−ne−hh−α

2
+ n

2
−1dh

)
φ(z)dz (by taking s = |z|2/4h)

=
πn/22n−αΓ((n− α)/2)

Γ(α/2)

∫

Rn
|z|α−nφ(z)dz

= c(α, n)〈g, φ〉

where g(z) = |z|α−n and

c(α, n) =
πn/22n−αΓ((n− α)/2)

Γ(α/2)
.

It follows that k̂ is the tempered distribution defined by the function c(α, n)g.

2.3 Fourier transform of measures

We will need the notion of Fourier transform of finite measure of compact support.

Definition 2.9 The Fourier transform of a finite measure µ on Rn of compact support

is the function defined by

µ̂(u) =
∫
eiuxdµ(x), u ∈ Rn.

Since µ(Rn) <∞, the function µ̂ is bounded uniformly continuous. In the sequel, it will

be useful to approximate measures by convolution products. We consider the following

definitions.

Definition 2.10 Let f and g be real functions on Rn and let µ be a finite measure of

compact support on Rn. The convolutions f ∗ g of f and g, and f ∗ µ of f and µ are
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defined by

f ∗ g(x) =
∫
f(x− y)g(y)dy

f ∗ µ(x) =
∫
f(x− y)dµ(y)

provided the integrals exist.

Clearly, we have that

̂f ∗ g = f̂ ĝ and ̂f ∗ µ = f̂ µ̂ (2.6)

provided the involved integrals exist.

Definition 2.11 An approximate identity (φǫ)ǫ>0 is a family of non-negative continuous

functions on Rn such that the support of each φǫ is contained in the ball B(ǫ) of centre 0

and radius ǫ and
∫
φǫdx = 1.

Such families are usually constructed by taking a continuous function f : Rn → [0,∞)

such that its support is contained in B(1) and
∫
f(x)dx = 1 and then to define

φǫ(x) = ǫ−nf(x/ǫ), ǫ > 0.

We have the following proposition. The first part is adapted from [36, p 20] and the

second from [42, p 184].

Proposition 2.12 Let (φǫ) be an approximate identity.

(1) If µ is a compactly supported finite measure defined on Rn, then the family of func-

tions φǫ ∗ µ converges weakly to µ as ǫ tends to 0, in the sense that

lim
ǫ→0

∫
f(x)(φǫ ∗ µ)(x)dx =

∫
f(x)dµ(x)

for any uniformly continuous bounded function f defined on Rn.

(2) If g is a locally integrable function defined on an open subset of Rn and continuous

at x, then

lim
ǫ→0

g ∗ φǫ(x) = g(x).

Proof (1) Because
∫
φǫdx = 1, we have that

∫
f(x)(φǫ ∗ µ)(x)dx−

∫
f(x)dµ(x)

=
∫
f(x)

(∫
φǫ(x− y)dµ(y)

)
dx−

∫
f(y)dµ(y)

∫
φǫ(x)dx

=
∫ (∫

f(x)φǫ(x− y)dx
)
dµ(y)−

∫ (∫
f(y)φǫ(x)dx

)
dµ(y) (by Fubini’s theorem)
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=
∫ (∫

f(h+ y)φǫ(h)dh
)
dµ(y) −

∫ (∫
f(y)φǫ(x)dx

)
dµ(y) (by taking h = x− y)

=
∫ (∫

(f(x+ y) − f(y))φǫ(x)dx
)
dµ(y).

Since f is uniformly continuous and bounded, then for any γ > 0, there exists δ > 0

such that for any h, y with |h − y| < δ we have |f(h) − f(y)| < γ. Then by taking

ǫ > 0 sufficiently small such that ǫ < δ, we have that for any x ∈ B(ǫ), and any y ∈ Rn,

|(x+y)−y| < δ and hence |f(x+y)−f(y)| < γ. Using the fact B(ǫ) contains the support

of φǫ, one finds that

∣∣∣∣
∫
f(x)(φǫ ∗ µ)(x)dx−

∫
f(x)dµ(x)

∣∣∣∣ =

∣∣∣∣∣

∫ (∫

B(ǫ)
(f(x+ y) − f(y))φǫ(x)dx

)
dµ(y)

∣∣∣∣∣

≤
∫ ∫

γφǫ(x)dxdµ(y)

= γµ(Rn).

Since µ(Rn) <∞, we conclude that

lim
ǫ→0

∫
f(x)(φǫ ∗ µ)(x)dx−

∫
f(x)dµ(x) = 0.

(2) As previously, we write

g ∗ φǫ(x) − g(x) =
∫

B(ǫ)
(g(x− t) − g(x))φǫ(t)dt.

Since g is continuous at x, for any γ > 0, there exists δ > 0 such that |g(y)−g(x)| < γ holds

for any y such that |y−x| < δ. By taking y = x−t and ǫ < δ, we find |g(x−t)−g(x)| < γ,

for any |t| < ǫ. It follows that

|g ∗ φǫ(x) − g(x)| ≤ γ
∫
φǫ(t)dt = γ

and hence limǫ→0 g ∗ φǫ(x) = g(x).

2.4 Fourier transform and capacities

Consider a compact subset E of Rn. We recall that, by Frostman’s theorem (Theorem

1.7), the energy integrals

Iα(µ) =
∫ ∫

k(x− y)dµ(x)dµ(y) =
∫ ∫

dµ(x)dµ(y)

|x− y|α

are very useful in the calculation of the Hausdorff dimension of E.

The following theorem, which relates Iα(µ) to µ̂, is an important result of fractal geometry

[9, p 22-23], [36, pp 162-163].
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Theorem 2.13 For any finite measure µ on Rn with compact support, and any

0 ≤ α < n,

Iα(µ) =
1

(2π)n

∫
k̂(u)|µ̂(u)|2du, (2.7)

where k̂ is given by relation (2.5).

Proof The following proof, which is quite long, is adapted from a sketchy proof given in

the book by Mattila [36, pp 162-163].

We approximate the function k(x) = 1/|x|α by the convolution product of k by an ap-

proximate identity. Consider an approximate identity (φǫ) defined by φǫ(x) = ǫ−nf(x/ǫ)

where f is a C∞-function whose support is contained in the ball B(1/2) of radius 1/2 and

centre 0 and such that
∫
f(x)dx = 1. It is clear that ψǫ = φǫ ∗ φǫ is also an approximate

identity and we have that ψ(x) = ǫ−nf ∗ f(x/ǫ). We will also assume that f(x) = f(−x)
and that the Fourier transform f̂ is a non-negative function.

For any x 6= 0, the function k is continuous at x and from Proposition 2.12, it follows

that limǫ→0 k ∗ ψǫ(x) = k(x). This is also true for x = 0 if we take k(0) = ∞. Then, by

Fatou’s lemma,

Iα(µ) =
∫ ∫

k(x− y)dµ(x)dµ(y) ≤ lim inf
ǫ→0

∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y).

(1) Firstly, we want to show that

lim inf
ǫ→0

∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) ≤ 1

(2π)n

∫
k̂(u)|µ̂(u)|2du. (2.8)

In order to make use of Fubini’s theorem to compute these integrals, we need to show

that ∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) <∞.

We have that, for any z 6= 0 in Rn, if |z|
2
> ǫ then for any u ∈ B(ǫ),

1

|z − u|α ≤ 2−α

|z|α . (2.9)

Indeed, the function u→ |z − u|α attains its minimum at u = ǫz/|z| and hence

sup
u∈B(ǫ)

|z|α
|z − u|α =

1

(1 − ǫ/|z|)α ≤ 2−α.

Now for x− y 6= 0, and |x− y|/2 > ǫ, we find that

k ∗ ψǫ(x− y) =
∫

B(ǫ)
k(x− y − u)ψǫ(u)du ≤ 2−αk(x− y)

∫

B(ǫ)
ψǫ(u)du = 2−αk(x− y).
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For |x− y|/2 ≤ ǫ, we have that

k ∗ ψǫ(x− y) =
∫

B(ǫ)
k(x− y − u)ψǫ(u)du

≤ H
∫

B(ǫ)
k(x− y − u)du (where H = supψǫ)

≤ H
∫

B(3ǫ)

dt

|t|α (since |x− y| ≤ 2ǫ) (t = x− y − u)

= C(ǫ).

Therefore, k ∗ ψǫ(x − y) is bounded by a constant depending only on ǫ. Now it follows

that

∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) ≤ 2−α

∫ ∫
k(x− y)dµ(x)dµ(y) + C(ǫ)A <∞

where A = (µ(Rn))2.

(2) We have that,

k ∗ ψǫ(x− y) = (k ∗ φǫ) ∗ φǫ(x− y)

=
∫
k ∗ φǫ(x− y − h)φǫ(h)dh

=
∫
k ∗ φǫ(h− x+ y))φǫ(h)dh (by symmetry of k and φǫ)

=
∫
k ∗ φǫ(z + y)φǫ(z + x)dz (by taking z = h− x)

=
∫ (∫

k(t)φǫ(z + y − t)dt
)
φǫ(z + x)dz.

Using Fubini’s theorem, we find that

∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) =

∫ ∫
k(t)

(∫
φǫ(z + y − t)dµ(y)

)(∫
φǫ(z + x)dµ(x)

)
dtdz.

The first inner integral is

∫
φǫ(z + y − t)dµ(y) =

∫
φǫ(t− z − y)dµ(y) (by symmetry of φǫ)

= φǫ ∗ µ(t− z)

and the second is

∫
φǫ(z + x)dµ(x) =

∫
φǫ(z − x)dµ̃(x) = φǫ ∗ µ̃(z)

where µ̃ is the measure defined by
∫
g(x)dµ̃(x) =

∫
g(−x)dµ(x) for any continuous function

g on Rn with compact support. Therefore,

∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) =

∫
k(t)

∫
φǫ ∗ µ(t− z)φǫ ∗ µ̃(z)dzdt
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=
∫
k(t)(φǫ ∗ µ) ∗ (φǫ ∗ µ̃)(t)dt.

(3) We can now shift to Fourier transforms by using Definition 2.7. By letting

(φǫ ∗ µ) ∗ (φǫ ∗ µ̃) = Ĥǫ, Hǫ ∈ S(Rn)

we have, by the inversion formula, that

Hǫ =
1

(2π)n

(
(φǫ ∗ µ) ∗ (φǫ ∗ µ̃)

)
ˆ

=
1

(2π)n
(φǫ ∗ µ ∗ φǫ ∗ µ̃)̂ (since φ is a real function)

=
1

(2π)n
(φ̂ǫ × µ̂× φ̂ǫ × ˆ̃µ) (from equation (2.3))

=
1

(2π)n
(|φ̂ǫ|2|µ̂|2) (since ˆ̃µ = µ̂).

Therefore,

∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) =

∫
k(t)

∫
φǫ ∗ µ(t− z)φǫ ∗ µ̃(z)dzdt

=
∫
k(t)Ĥǫ(t)dt

=
∫
k̂(t)Hǫ(t)dt (by Definition 2.7)

=
1

(2π)n

∫
k̂(t)|φ̂ǫ(t)|2|µ̂(t)|2dt.

Since for ǫ → 0, it is the case that φ̂ǫ(t) = f̂(tǫ) → 1 (which is the Fourier transform of

the Dirac distribution δ), it follows that

lim inf
ǫ→0

∫
k̂(t)|φ̂ǫ(t)|2|µ̂(t)|2dt =

1

(2π)n

∫
k̂(t)|µ̂(t)|2dt.

Therefore

Iα(µ) ≤ 1

(2π)n

∫
k̂(t)|µ̂(t)|2dt.

(4) Let us now show that

Iα(µ) ≥ 1

(2π)n

∫
k̂(t)|µ̂(t)|2dt. (2.10)

For this end it is sufficient to show that

lim sup
ǫ→0

∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) ≤ Iα(µ). (2.11)
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For x− y 6= 0,

k ∗ ψǫ(x− y) = ǫ−n
∫
k(x− y − h)(f ∗ f)(h/ǫ)dh

=
∫
k(x− y − ǫh)(f ∗ f)(h)dh ( variable change).

A useful observation is that for any z, u ∈ Rn such that |z| = 1 and |u| < 1/2, one has

that

1

|z − u|α ≤ 1 + 2|u|. (2.12)

Indeed, it is clear that among the u’s such that |u| = β < 1/2, the one that maximizes

the function 1/|z − u|α is u = βz (for fixed z). In that case,

1

|z − u|α =
1

|z|α(1 − β)α
=

1

(1 − β)α
.

The Taylor expansion of

(1 − β)−α = 1 + β

(
α +

α(α+ 1)

2!
β +

α(α + 1)(α+ 2)

3!
β2 + · · ·

)

≤ 1 + 2β ( since α < 1, β < 1/2).

Now we write ∫ ∫
k ∗ ψǫ(x− y)dµ(x)dµ(y) = J1 + J2

where

J1 =
∫ ∫ ∫

{h∈B(1):
√
ǫ|h|≤|x−y|}

k(x− y − ǫh)(f ∗ f)(h)dhdµ(x)dµ(y);

J2 =
∫ ∫ ∫

{h∈B(1):
√
ǫ|h|>|x−y|}

k(x− y − ǫh)(f ∗ f)(h)dhdµ(x)dµ(y).

We compute J1 by noting that if 0 < ǫ < 1/4, |h| < 1 and
√
ǫ|h| ≤ |x− y| then

ǫ|h|
|x− y| ≤

√
ǫ ≤ 1

2
.

Now we have that

k(x− y − ǫh) =
1

|x− y|α
1∣∣∣ x−y|x−y| − ǫh

|x−y|

∣∣∣
α

≤ 1

|x− y|α
(

1 +
2ǫ|h|
|x− y|

)
(by relation (2.12))

≤ 1

|x− y|α (1 + 2
√
ǫ).
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Then

J1 ≤ (1 + 2
√
ǫ)Iα(µ) since

∫
f ∗ f(h)dh = 1.

To compute J2, we note that for fixed x and y and for h ∈ B(1) with
√
ǫ|h| > |x − y|},

the function 1/|x − y − ǫh|α attains its maximum for h = (x − y)/
√
ǫ. (In general for

u, v ∈ Rn, |u− v| attains its minimum value for u = Hv for some positive constant H .)

Therefore, for h ∈ B(1) and
√
ǫ|h| > |x− y|,

1

|x− y − ǫh|α ≤ 1

(1 −√
ǫ)α|x− y|α =

c

|x− y|α .

Hence

J2 ≤ c
∫ ∫ ∫

{h∈B(1):
√
ǫ|h|>|x−y|}

1

|x− y|α (f ∗ f)(h)dhdµ(x)dµ(y)

≤ c
∫

y∈Rn

∫

h∈B(1)

∫

{x:√ǫ>|x−y|}

1

|x− y|α (f ∗ f)(h)dµ(x)dhdµ(y) (Fubini’s theorem)

≤ c
∫

y∈Rn

∫

{x:√ǫ>|x−y|}

1

|x− y|αdµ(x)dµ(y)

where the last inequality follows from
∫
B(1) f ∗ f(h)dh = 1.

It follows that J1 → Iα(µ) and J2 → 0 as ǫ→ 0 and relation (2.11) is proven.

2.5 Fourier dimension

We consider a compact subset E of Rn. The Hausdorff dimension of E and many other

notions of dimension give very good indications of the thinness of E. In view of Theorems

1.7(2) and 2.13, the Hausdorff dimension can also be defined as the supremum of the

α ∈ [0, n) for which E carries a nonzero finite measure µ such that

∫
|u|α−n|µ̂(u)|2du <∞. (2.13)

Roughly speaking [36, p 186], the finiteness of this integral indicates, that for most points

u with large norm,

|µ̂(u)| ≤ c|u|−α/2, c > 0.

One might thing that this is the case for all u such that |u| → ∞ but it is not true in

general. For example, there exists a probability measure µ on the ternary Cantor set such

that |µ̂(u)| does not tend to zero for |u| → ∞ even though (2.13) holds for α = log 2/ log 3

(see for example the book by Salem [44, pp 40-41]). This justifies the following definition:

Definition 2.14 A compact subset E of Rn is called a M0-set or a set of multiplicity in

the restricted sense if it carries a non-zero measure µ such that |µ̂(u)|2 → 0 as |u| → ∞.

Such sets are connected with the problem of uniqueness and multiplicity for trigonometric

series. If 1/ξ is an integer > 2, then the Cantor type set Cξ of dissection ratio ξ is not a set
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of multiplicity. This is a particular case of a more general result of Salem and Zygmund

(see [44, p 52]) that Cξ (0 < ξ < 1/2) is a set of multiplicity if and only if 1/ξ is not a

Pisot number. (A Pisot number is a real number > 1 which is a root of a polynomial

with integer coefficients and leading coefficient 1 and that all its other roots have norm

< 1). For example, all integers > 1 are Pisot numbers and a rational number > 1 is a

Pisot number if and only if it is an integer. So, for example, C2/7 is a set of multiplicity.

If E is a compact set of multiplicity, it is interesting to know at which rate |µ̂(u)| → 0.

This is emphasized by the following definition:

Definition 2.15 Let E be a compact subset of Rn. The Fourier dimension of E is the

supremum of the α ∈ [0, n] for which E carries a non-zero finite measure µ such that

|µ̂(u)|2 = O(|u|−α), for |u| → ∞.

We will denote the Fourier dimension of E by dimF (E). The basic fact concerning Fourier

dimension is that it is always less or equal than the Hausdorff dimension. In fact, suppose

that dimF (E) = α > 0. Then for any 0 ≤ β < α, and sufficiently small ǫ > 0,

|µ̂(u)|2 = O(|u|−(β+ǫ)), for |u| → ∞.

That is, for any A > 0 there exists c > 0 such that

|µ̂(u)|2 < c|u|−(β+ǫ), for |u| > A.

Then ∫
|u|β−n|µ̂(u)|2du =

∫

|u|≤A
|u|β−n|µ̂(u)|2du+

∫

|u|>A
|u|β−n|µ̂(u)|2du.

The first integral on the right-hand side is bounded by
∫
|u|≤A |u|β−ndu which is finite and

the second is bounded by

c
∫

|u|>A
|u|β−n|u|−β−ǫdu = c

∫

|u|>A
|u|−n−ǫ <∞.

Therefore, by relation (2.13), dimH E ≥ β and hence dimH E ≥ α, that is dimH E ≥
dimF E. However, the Hausdorff and Fourier dimensions may be different. For example

the Cantor type set Cξ, 0 < ξ < 1/2 where 1/ξ is a Pisot number, have Fourier dimension 0

whereas the Hausdorff dimension is nonzero. One should expect that these two notions of

dimensions are really different. The Hausdorff dimension is based on the metric structure

of the set whereas, as indicated above, the Fourier dimension has something to do with

arithmetical properties of the set.

Definition 2.16 A compact subset of Rn is called a Salem set if its Hausdorff and Fourier

dimensions are the same.

Obvious examples are compact sets of Hausdorff dimension 0 and closed balls of Rn (with
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dimension n). Any sphere of Rn is also a Salem set of dimension n−1. The first example

of Salem set defined by Salem [43] was a random set. We will discuss in chapter 5, the

beautiful results of Kahane [24] on the existence of other random Salem sets via the theory

of Brownian motion. Many other Gaussian stochastic processes generate also Salem sets

[46]. Other random Salem sets have been constructed by Bluhm [6]. He showed that a

“slight” random perturbation of the Cantor type set Cξ is a Salem set.

There are, however, very few known examples of non-random Salem sets. Kaufman [27]

shows that for any α > 0, the set

E(α) = ∩∞
k=1 ∪∞

q=k

{
x ∈ [0, 1] : ‖qx‖ ≤ q−1−α

}

of “α-well approximable numbers” contains a Salem set of dimension 2/(2 + α). (Here

‖t‖ is the distance from t to the nearest integer.) Bluhm [5] showed how, for any α > 0,

one can construct recursively a sequence of integers Mk such that the following set is a

Salem set of dimension 2/(2 + α):

Sα = ∩∞
k=1 ∪p∈PMk

{
x ∈ [0, 1] : ‖px‖ ≤ p−1−α

}
,

where PM is the set of prime numbers contained in the interval [M, 2M ]. Using the notions

of “translation sets”, Kahane [23] has also shown that there exist Salem sets of dimension

one. These are the only deterministic examples of Salem sets known by the author. It is

clear that Salem sets are not easy to construct, mainly because the Fourier dimension is

very difficult to compute. For example, the author does not know if the Fourier dimension

of Cantor type sets Cξ (for ξ non-Pisot) have been calculated.
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Chapter 3

Generalities on Brownian motion

In this chapter we introduce Brownian motion and discuss some results, which are relevant

to the study of its fractal properties. Material presented in this chapter is regarded as

classical and very clear proofs are available in the literature. We review the Markov

properties, the process of passage times and the reflected Brownian motion. Brownian

motion is a vast topic and it is impossible to cover everything here.

3.1 Definition and existence of Brownian motion

Definition 3.1 Let (Ω,F , P ) be a probability space. A Brownian motion on this space is

a stochastic process X = (Xt : t ≥ 0) defined from Ω× [0,∞) to R satisfying the following

properties:

1. Almost surely, X0 = 0, that is, P{ω ∈ Ω : X0(w) = 0} = 1.

2. For each ω ∈ Ω, the path X(ω) : [0,∞) → R, t 7→ Xt(ω) is continuous.

3. For 0 < t1 < t2 < . . . < tn, the random variables

Xt1 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent and normally distributed with mean 0 and variance

t1, t2 − t1, . . . , tn − tn−1 respectively.

The last property means that if A1, A2, . . . , An are Borel subsets of the reals, and X is a

Brownian motion, the probability of the event

{
ω ∈ Ω :

(
Xt1(ω), Xt2(ω) −Xt1(w), . . . , Xtn(ω) −Xtn−1(ω)

)
∈ A1 × A2 × . . .×An

}

is given by
n∏

j=1

1√
2π(tj − tj−1)

∫

Aj

exp

[
−y2

2(tj − tj−1)

]
dy

where t0 = 0 for the sake of convenience.
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The canonical model of Brownian motion is constructed as follows (more details can be

found in the book by Ito and McKean [22, pp 12-16], also elsewhere). The sample space

Ω is C[0,∞), the set of continuous real functions ω on [0,∞). A σ-algebra F and a

probability measure on (C[0,∞),F) are constructed as follows:

For any t = (t1, t2, . . . , tn) ∈ Rn such that 0 < t1 < t2 < . . . < tn, consider the functions

Xt : C[0,∞) → Rn

defined by

Xt(ω) = (ω(t1), ω(t2), . . . ω(tn)).

Consider the family C of subsets C of C[0,∞) of the form

C = X−1

t (B) = {ω ∈ C[0,∞) : Xt(ω) ∈ B} B Borel in Rn.

The class C is an algebra on C[0,∞), (it is non-empty and closed under union and com-

plementary operations). Let us denote the Borel σ-algebra of Rn by Bn. For any fixed

t = (t1, t2, . . . , tn) with 0 < t1 < t2 < . . . < tn, consider the function

Pt : X−1

t (Bn) → [0, 1]

defined by

Pt(C) =
∫

B
g(t1, 0, b1)g(t2 − t1, b1, b2) . . . g(tn − tn−1, bn−1, bn)db1db2 . . . dbn, (3.1)

where C = X−1
t (B) and

g(t, a, b) =
1√
2πt

e−(b−a)2/2t, t > 0, a, b ∈ R,

the density function of the normal distribution with mean a and variance t. Clearly Pt
is a probability measure on the σ-algebra X−1

t (Bn). Using the basic fact that

∫
g(t− s, a, c)g(s, c, b)dc = g(t, a, b)

one can show if C = X−1
t (B) = X−1

s (D) with B Borel in Rn and D Borel in Rm, then

Pt(C) = Ps(C). Then we can consider the function P : C → [0, 1] defined by

P (C) = Pt(C) if C ∈ X−1

t (Bn) for some t and some n.

It is proven in [22, pp 17-18] that P can be (uniquely) extended to a probability measure

on the σ-algebra F on C[0,∞) spanned by C. This probability measure is called the

Wiener measure and we will denote it simply by P . Clearly, the σ-algebra F is also

spanned by the family of sets of the form X−1
t (B), t ≥ 0 and B a Borel subset of R. It
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is now clear that the process

X = (Xt : t ≥ 0) where Xt(ω) = ω(t), ω ∈ C[0,∞)

is a Brownian motion on the space (C[0,∞),F , P ). This is the model that we shall

assume when we refer to Brownian motion.

Associated with P is the family of probability measures (Pa : a ∈ R) on (C[0,∞),F)

such that

Pa(C) =
∫

B
g(t1, a, b1)g(t2 − t1, b1, b2) . . . g(tn − tn−1, bn−1, bn)db1db2 . . . dbn,

for C = X−1
t (B), t = (t1, t2, . . . , tn) with 0 < t1 < t2 < . . . < tn. Obviously, P0 = P . One

can show that for any A ∈ F ,

Pa(A) = P{ω ∈ C[0,∞) : ω + a ∈ A}

where ω + a is the translated path defined by (ω + a)(t) = ω(t) + a, t ≥ 0. For example,

if A = X−1
t (B) for t > 0 and B is a Borel subset of R, then

Pa(A) = P{X(t) + a ∈ B}.

Also, for t, s ≥ 0,

P{Xt+s ∈ B|Xs = a} = Pa{Xt ∈ B}.

Then for C ∈ F , Pa(C) is the probability that the event C occurs given that the Brownian

path starts at level a. In the sequel, unless otherwise indicated, P will be the probability

in use, as defined above.

It is easy to verify that the following processes are also Brownian motions.

Yt = Xt+s −Xs for fixed s ≥ 0.

Yt =
1√
a
Xat for fixed a > 0.

Yt = −Xt.

3.2 Some properties of Brownian motion

3.2.1 Markov properties

Let Ft, for t > 0, be the sub σ-algebra of F spanned by the family (Xs : 0 ≤ s ≤ t) of

random variables, that is, the smallest σ-algebra containing the events of the form

{ω ∈ C[0,∞) : a ≤ ω(s) ≤ b}, 0 ≤ s ≤ t, a, b ∈ R.
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Ft describes the “past” (and the present) with respect to time t. Similarly, the sub

σ-algebra spanned by (Xu : u > t) describes the “future” with respect to t. We shall

associate to any ω ∈ C[0,∞) the shifted path

ω+
t : [0,∞) → R defined by ω+

t (s) = ω(s+ t)

obtained by cutting off the path corresponding to [0, t] and shifting it back to the point

(0, ω(t)). The event {ω ∈ C[0,∞) : ω+
t ∈ A} will be simply denoted {ω+

t ∈ A}.
Let us recall that given a sub σ-algebra G of F and a non-negative or integrable random

variable Y on (C[0,∞),F , P ), the conditional expectation E[Y |G] is the Radon-Nikodym

derivative of the measure µ, defined on (C[0,∞),F) by µ(A) =
∫
A Y dP , with respect to

the restriction of P to G. In that sense, E[Y |G] is the equivalent class of G-measurable

random variables Z such that

∫

A
ZdP =

∫

A
Y dP, A ∈ G. (3.2)

The notation E[Y |G] = Z means that Z is G-measurable and satisfies (3.2).

If H is a random variable, by definition E[Y |H ] = E[Y |σ(H)] where σ(H) is the sub

σ-algebra spanned by H . By definition, the conditional probability P{A|G} is E[1A|G]

for any A ∈ F .

The following basic properties of conditional expectation can be found elsewhere (see, for

example, [12, pp 219-231]):

1. If Y is G-measurable, then E[Y |G] = Y .

2. Assume that Y is independent of G, that is,

P (A ∩B) = P (A)P (B) for any A ∈ G and B ∈ σ(Y ),

then E[Y |G] = E[Y ].

3. If Y is G-measurable, then E[Y Z|G] = Y E[Z|G]

4. E[E[Y |G]] = E[Y ] provided that the two conditional expectations are defined.

The following theorem is the weak Markov property of Brownian motion. For a proof of

a more general statement, see the book by Durrett [12, p 381].

Theorem 3.2 For any Borel subset A of R and s, t ≥ 0, a ∈ R,

Pa{Xt+s ∈ A|Fs} = PXs
{Xt ∈ A}

where PXs
{Xt ∈ A} is the function C[0,∞) → R defined by

PXs
{Xt ∈ A}(ω) = PXs(ω){Xt ∈ A} =

∫

A
g(t, Xs(ω), b)db.
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From this property, we can deduce that for fixed t ≥ 0, the process Y defined by Ys =

Xt+s −Xt, s ≥ 0 is also a Brownian motion and is independent of Ft.

The strong Markov property is an extension of the weak Markov property to some random

functions called stopping times.

Definition 3.3 A random variable Γ : C[0,∞) → [0,∞] is called a Markov time (stop-

ping time or optional time) if {Γ < t} ∈ Ft for any t > 0

Some authors replace the condition {Γ < t} ∈ Ft by {Γ ≤ t} ∈ Ft in the definition of

stopping times but in this thesis we use the terminology of Ito and McKean [22]. Every

constant function C[0,∞) → [0,∞), is a stopping time. Any stopping time Γ is associated

with the sub σ-algebra

FΓ+ = {A ∈ F : A ∩ {Γ < t} ∈ Ft, ∀t > 0}.

In the particular case of a constant stopping time Γ(ω) = t ≥ 0,

FΓ+ = Ft+ = ∩ǫ>0Ft+ǫ.

The weak Markov property remains valid if the sub σ-algebra Ft is replaced by Ft+.

More details on stopping times can be found in the book by Bauer [3, p 435].

Let us recall the Blumenthal 0-1 law as it will prove to be useful in the next chapter.

Theorem 3.4 Let x ∈ R and A ∈ F0+, then Px(A) ∈ {0, 1}.

A proof is given in the book by Mörters and Peres [39, p 35].

The following theorem due to Hunt [21] is called the strong Markov property of Brownian

motion.

Theorem 3.5 For any stopping time Γ, under the condition Γ <∞, the process

(Xt+Γ −XΓ : t ≥ 0) defined on C[0,∞) by

ω → Xt+Γ(ω)(ω) −XΓ(ω)(ω) = ω(t+ Γ(ω)) − ω(Γ(ω))

is a Brownian motion and it is independent of FΓ+.

A detailed proof of this theorem is given in [39, p 38] and an equivalent version of this

result is that [22, p 23], for any stopping time Γ, under the condition Γ <∞,

Pa{ω+
Γ ∈ C|FΓ+} = PXΓ

(C), C ∈ F , (a ∈ R)

where

PXΓ
(C)(ω) = Pb(C) with b = XΓ(ω)(ω), ω ∈ C[0,∞)

and ω+
Γ is the function defined by ω+

Γ (t) = ω(t+ Γ(ω)).
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It is also equivalent to the following: For any measurable function f : C[0,∞) → [0, 1]

E[f(θΓ)|FΓ+] =
∫
f(v)dPXΓ

(v), for Γ <∞, (3.3)

where θΓ(ω) = ω+
Γ . This means that for any A ∈ FΓ+ and A ⊂ {Γ <∞},

∫

A
f(ω+

Γ )dP (ω) =
∫

A

∫
f(v)dPXΓ(ω)

(v)dP (ω),

the inner integral is taken on the whole space C[0,∞). A proof can be found in the book

by Durrett [12, pp 390-392].

The following result, called the reflection principle of André, is a consequence of the strong

Markov property of Brownian motion as shown in [39, p 39]

Theorem 3.6 If Γ is a stopping time, then the process (Yt : t ≥ 0) defined by

Yt(ω) =





Xt(ω) if t ≤ Γ(ω)

2XΓ(ω) −Xt(ω) otherwise
(3.4)

is a Brownian motion.

Intuitively, if we assume that X0(ω) = 0, the path Yt(ω) is obtained by “stopping” the

path ω at time Γ(ω) and considering the symmetry with respect to the line y = ω(Γ(ω))

of the path ω(s) : s ≥ Γ.

3.2.2 Modulus of continuity of Brownian motion

We have assumed that Brownian paths are continuous and if restricted to the interval

[0, 1] (or any other closed interval), they become uniformly continuous. We recall that the

modulus of continuity of a uniformly continuous function f is the function Kf defined by

Kf(h) = sup
|t−s|<h

|f(t) − f(s)|.

Lévy [32] showed that the modulus of continuity of Brownian motion KX is such that,

almost surely,

KX(h) ≤
√

2h log(1/h). (3.5)

More precisely, he showed that, almost surely

lim sup
h↓0

sup
0≤t≤1−h

|Xt+h −Xt|√
2h log(1/h)

= 1.

A proof can also be found in the book by Ito and McKean [22, pp 36-38]. In view

of Proposition 1.1, as will be discussed later, this result yields an upper bound to the

Hausdorff dimension of the image of a compact subset of [0, 1] by a Brownian motion.
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3.3 Passage times of Brownian motion

Definition 3.7 Let a ∈ R. The passage time of Brownian motion at level a is the

function Γa : C[0,∞) → [0,∞] defined by:

Γa(ω) = inf{t ≥ 0 : Xt(ω) = a}

where inf ∅ = ∞.

In fact, the name “first passage time” is often used and is obviously appropriate. The

following well-known result is the starting point in the analysis of passage times. It is

true in general for the hitting time of any closed subset of R (see the book by Bauer [3,

p 439]).

Proposition 3.8 For any a ≥ 0, the passage time Γa is a stopping time.

Proof We want to show that {Γa < t} ∈ Ft, where Ft is the σ-algebra spanned by the

(Xs : 0 ≤ s ≤ t). Let

Tn = inf
{
t ≥ 0 : Xt ∈

(
a− 1

n
, a+

1

n

)}
, n = 1, 2, . . .

For any s > 0,

ω ∈ {Tn < s} ⇔ there exists t < s such that Xt ∈
(
a− 1

n
, a+

1

n

)
.

Then

{Tn < s} = ∪0≤t<s

{
Xt ∈

(
a− 1

n
, a+

1

n

)}
.

Using the continuity of Brownian paths, this union can be restricted to the rational

numbers, that is

{Tn < s} =
⋃

0≤t<s, t∈Q

{
Xt ∈

(
a− 1

n
, a+

1

n

)}
.

Now since {Tn < s} is a countable union of elements of Fs, it follows that {Tn < s} ∈ Fs

and hence Tn is a stopping time. The next step is to show that supn Tn = Γa. Clearly, for

any n, Tn ≤ Tn+1 ≤ Γa and hence supn Tn ≤ Γa. To show that Γa ≤ supn Tn, we consider

3 mutually exclusive cases.

1. If Γa(ω) = 0, then Tn(ω) = 0 for all n. Conversely, Tn(ω) = 0 is equivalent to

0 = inf
{
ω−1

(
a− 1

n
, a+ 1

n

)}
. By continuity of Brownian paths, there exists a sequence tk

converging to 0 such that Xtk(ω) = ω(tk) ∈
(
a− 1

n
, a+ 1

n

)
for all k. Then by continuity,

ω(tk) → ω(0) ∈
[
a− 1

n
, a+ 1

n

]
. Therefore, Tn(w) = 0 for all n implies that

ω(0) ∈ ∩∞
n=1

[
a− 1

n
, a+

1

n

]
= a.
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Hence Γa(ω) = 0. Then for the first case, the equality T = supn Tn = Γa holds.

2. Suppose that Γa(ω) > 0 and T = supn Tn < ∞. Since Γa(ω) > 0 is equivalent to

w(0) 6= a (the path does not start at a), then there exists n0 ≥ 1 such that Tn0(ω) > 0.

Because T <∞, we have that

Tn0(ω) < Tn0+1(ω) < Tn0+2 < . . . < sup
n
Tn.

Since Tn(ω) → T (ω) as n→ ∞, by continuity,

XTn
(ω) = ω(Tn(ω)) → XT (ω) = ω(T (ω)).

But clearly, for n ≥ n0, the fact that Tn(ω) > 0 yields XTn
(ω) ∈ {a− 1/n, a + 1/n}, the

end points of interval
(
a− 1

n
, a+ 1

n

)
. Then,

limXTn
(ω) = a = XT (ω).

From XT (ω) = a we find Γa(ω) ≤ T (ω). It follows that Γa = T = supn Tn.

3. Finally, for Γa(ω) > 0 and supn Tn = ∞, we have that Γa(ω) = ∞.

Therefore, in all cases, Γa(ω) = supTn(ω).

It is now clear that

{Γa ≤ t} = ∩∞
n=1{Tn < t}

from which it follows that {Γa ≤ t} ∈ Ft and {Γa < t} = ∪∞
n=1{Γa ≤ t− 1/n} ∈ Ft.

The maximum function of Brownian motion is defined by

Mt = sup{Xs : 0 ≤ s ≤ t}, t ≥ 0.

For any a ≥ 0, by the reflection principle, the process

Yt(ω) =





Xt(ω) if t ≤ Γa(ω)

2a−Xt(ω) otherwise

is a Brownian motion. As almost all paths start at the origin, we have that

P{Γa ≤ t} = P{Mt ≥ a}
= P{Mt ≥ a,Xt ≥ a} + P{Mt ≥ a,Xt < a}
= P{Xt ≥ a} + P{Γa ≤ t, Xt < a}
= P{Xt ≥ a} + P{Yt ≥ a}
= 2P{Xt ≥ a} (by the reflection principle)

= P{|Xt| ≥ a}.
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The probability distribution of the passage time Γa follows immediately:

P{Γa ≤ t} =
2√
2πt

∫ ∞

a
e−x

2/2tdx

and using the variable change x = a
√
t/s, it follows that

P{Γa ≤ t} =
∫ t

0

a√
2πs3

e−a
2/2sds, (3.6)

a result discovered by Lévy [33].

From this result we deduce that

P{Γa = ∞} = P{Γa > t, for all t} = 0. (3.7)

In the analysis of passage times that will be done in the sequel, we will need the Fourier

transform of their distribution.

For any a > 0,

E
[
eiuΓa

]
= e−a

√
|u|(1−i sign(u)). (3.8)

As proof, one can show that for α > 0,

L(α) = E(e−αΓ(a)) = e−a
√

2α

by direct calculation and using the integral

∫ ∞

0

e−αte−a
2/2t

√
2πt

dt =
e−a

√
2α

√
2α

,

(see [22, p 26]). Another way to prove this result is to use the optional sampling theorem

(see, for example, the book by Medvegyev [38, p 82]). The formula can now be extended

to yield the Fourier transform and the calculations are done on pages 85–86 of the same

book by Medvegyev [38].

The stochastic process (Γa : a ≥ 0) of passage times has interesting properties. The

following result can be ascribed to Lévy [33] (see also [12, p 393]):

Theorem 3.9 The process (Γa : a ≥ 0) of passage times has independent and stationary

increments and its paths are left-continuous.

Proof We can assume, without loss of generality, that all paths start at the origin. For

0 < a < b, and s ≥ 0, we have that Γb(ω) ≤ s+Γa(ω) means that the path ω has reached

level b before time s+Γa(ω). Then, since (Xt+Γa
−XΓa

: t ≥ 0) is also a Brownian motion

(by the strong Markov property),

P{Γb − Γa ≤ s} = P{Γb ≤ s+ Γa}
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= P

{
sup

0≤u≤s
Xu+Γa

≥ b

}
(since XΓa

= a)

= P

{
sup

0≤u≤s
(Xu+Γa

−XΓa
) ≥ b− a

}

= P

{
sup

0≤u≤s
Xu ≥ b− a

}

= P {Γb−a ≤ s} .

Therefore, Γb − Γa and Γb−a have the same distribution.

To prove the independence, let 0 = a0 < a1 < . . . < an be real numbers. It is sufficient to

show that for any measurable and bounded functions fi : R → [0, 1], (i = 1, 2, . . . , n),

E

[
n∏

i=1

fi(Γai
− Γai−1

)

]
=

n∏

i=1

E(fi(Γai
− Γai−1

)). (3.9)

Indeed, for fixed Borel subsets Ai, (i = 1, 2, . . . , n) of R, one may consider fi = 1Ai
for

any i and obtain that

P{Γai
− Γai−1

∈ Ai, ∀i = 1, 2, . . . , n} =
n∏

i=1

P{Γai
− Γai−1

∈ Ai}.

It is clear that for 0 ≤ a < b, Γb(ω) − Γa(ω) = Γb(ω
+
Γa

) for all paths ω. Then Γb − Γa =

Γb ◦ θΓa
where θΓa

(ω) is the path w+
Γa

.

From the strong Markov property (relation (3.3)), we have that for any bounded and

measurable function f : R → [0, 1], and 0 ≤ a < b,

E[f(Γb − Γa)|FΓa+] = E[f(Γb) ◦ θΓa
|FΓa+]

=
∫
f(Γb)(v)dPXΓa

(v)

=
∫
f(Γb)(v)dPa(v) (because XΓa

= a)

= E[f(Γb−a)]

(because Pa{Γb < t} = P{Γb < t|X0 = a} = P{Γb − a < t}.) Therefore

E[f(Γb − Γa)] = E[E[f(Γb − Γa)|FΓa+]] = E[f(Γb−a)].

Now relation (3.9) can be proven by induction by conditioning on FΓan−1
.We use the fact

that for 0 < a < b, Γa < Γb (almost surely), FΓa+ ⊂ FΓb+ and Γa is measurable with

respect to FΓa+. Indeed, if A = {Γa ≤ t}, and t = s, then A∩{Γa < s} = {Γa < s} ∈ Fs.

If t < s, then A ∩ {Γa < s} = A ∈ Fs−ǫ ⊂ Fs for some ǫ > 0. Finally, if t > s, then

A ∩ {Γa < s} = {Γa < s} ∈ Fs.
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Then for any i = 1, 2, . . . , n − 1, the random variable fi(Γai
− Γai−1

) is measurable with

respect to FΓan−1+. Therefore,

E

[
n∏

i=1

fi(Γai
− Γai−1

)|FΓan−1+

]
=

n−1∏

i=1

fi(Γai
− Γai−1

)E[fn(Γan
− Γan−1))|FΓan−1+]

=
n−1∏

i=1

fi(Γai
− Γai−1

)E[fn(Γan−an−1)].

Relation (3.9) follows by induction (after taking the expectation of both sides)

Remark 3.10

The passage time Γa can be seen as the left-continuous inverse of the maximum function

of Brownian motion because Γa = inf{t ≥ 0 : Mt ≥ a}. In fact, Γa is the left-end point of

the interval where Mt = a. It is, therefore, natural to consider the right-hand endpoint

of this interval and define the process

ρa = inf{t ≥ 0 : Mt > a},

the first time the Brownian motion becomes greater than a. By the same arguments

used to study the properties of the process Γ of passage times, one can prove that ρa

is a stopping time (for any a) and the process ρ = (ρa : a ≥ 0) is right-continuous, has

independent and stationary increments and has the same distribution as Γ. The process ρ

will be called the right-continuous inverse of the maximum function of Brownian motion.

3.4 Reflected Brownian motion

In this section, we suppose that all paths start at the origin. Lévy [34] proved that the

process (|Xt| : t ≥ 0), called the reflected Brownian motion, is a Markov process and is

statistically equivalent to the process (Mt −Xt : t ≥ 0) where Mt = sup0≤s≤tXs. Let us

recall the following definition:

Definition 3.11 A function p : [0,∞) × R × B → [0, 1] (where B is the Borel σ-algebra

on R) is called a Markov transition kernel provided

(1) p(., ., A) is measurable on [0,∞) × R for any fixed A,

(2) p(t, x, .) is a probability measure on R for all t and x,

(3) for all A ∈ B, x ∈ R and t, s > 0,

p(t+ s, x, A) =
∫

R
p(t, y, A)p(s, x, dy).

Consider a stochastic process (Yt : t ≥ 0) defined on a probability space (Ω,H, Q), taking

values in R and a filtration {Ht : t ≥ 0} of H (that is, a family of sub σ-algebras of
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H such that Hs ⊆ Ht, for s ≤ t). The process (Yt : t ≥ 0) is a Markov process with

transition kernel p if Yt is Ht-measurable and

P{Yt ∈ A|Hs} = p(t− s, Ys, A),

for all t ≥ s, A ∈ B, where p(t− s, Ys, A) is defined on Ω by

p(t− s, Ys, A)(ω) = p(t− s, Ys(ω), A).

The reflected Brownian motion is a Markov process with transition kernel

p(t, x, A) = Px{|Xt| ∈ A} =
∫

A
g+(t, x, b)db, x ≥ 0, t > 0 and A ⊆ [0,∞),

where g+(t, x, b) = g(t,−x, b) + g(t, x, b) and

g(t, a, b) =
e−(b−a)2/2t
√

2πt
is the Gaussian kernel.

The following result is due to Lévy.

Theorem 3.12 The process (Yt = Mt−Xt : t ≥ 0), where Mt = sup0≤s≤tXs, is a Markov

process and is identical in law with the reflected Brownian motion.

Proof (Adapted from [39, pp 44-45]). We want to show that the two processes have the

same finite dimensional distributions, that is, for any 0 ≤ t1 < t2 < . . . < tn and any

Borel subsets A1, A2, . . . , An of R

P{|Xt1| ∈ A1, . . . , |Xtn | ∈ An} = P{Yt1 ∈ A1, . . . , Ytn ∈ An}.

Because finite dimensional distributions of a Markov process are fully determined by its

transition kernel, in fact, the probability P{|Xt1| ∈ A1, . . . , |Xtn| ∈ An} is given by

∫

A1

p(t1, 0, x1)dx1

∫

A2

p(t2 − t1, x1, x2)dx2 . . .
∫

An

p(tn − tn−1, xn−1, xn)dxn,

it is sufficient to show that (Yt : t ≥ 0) is also a Markov process and has the same

transition kernel as (|Xt| : t ≥ 0). We denote, as previously, the transition kernel of the

reflecting Brownian motion by p. The question is to show that, for any t, s ≥ 0 and any

Borel subset A of R,

P{Yt+s ∈ A|Fs} = p(t, Ys, A) = PYs
{|Xt| ∈ A}. (3.10)

Let us fix s ≥ 0 and consider the Brownian motion

X̃t = Xt+s −Xs, t ≥ 0.
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Let

Mt = sup
0≤u≤t

Xu

M̃t = sup
0≤u≤t

X̃u

Clearly, Ms+t = Ms ∨ (Xs + M̃t) where a∨ b = max(a, b). Then since Ys+t = Ms+t−Xs+t,

we find Ys+t = [Ms∨(Xs+M̃t)]−(Xs+X̃t). From the identity (a∨b)−c = (a−c)∨(b−c),
we have that Ys+t = (Ys ∨ M̃t) − X̃t. Since both M̃t and X̃t are independent of Fs, it is

sufficient to show that for any y ≥ 0,

P{(y ∨ M̃t) − X̃t ∈ A} = Py{|Xt| ∈ A} = P{|y +Xt| ∈ A}.

Let us fix a ≥ 0. From (y ∨ M̃t) − X̃t = (y − X̃t) ∨ (M̃t − X̃t) we have that

P{(y ∨ M̃t) − X̃t ≥ a} = P{y − X̃t > a} + P{y − X̃t ≤ a, M̃t − X̃t) > a}.

By symmetry of Brownian motion, P{y − X̃t > a} = P{y + X̃t > a}. For the second

term, consider the process (Hu : 0 ≤ u ≤ t) (for t > 0 fixed) defined by Hu = X̃t−u − X̃t.

One can easily show that this process is also a Brownian motion (it is called the time

reversed Brownian motion). The corresponding maximum process is

MH
l = sup

0≤u≤l
Hu, for (0 ≤ l ≤ t).

Clearly, MH
t = M̃t − X̃t and because Ht = −X̃t, we have that

P{y − X̃t ≤ a, M̃t − X̃t) > a} = P{Ht ≤ a− y, MH
t > a}.

Consider the Brownian motion (H∗
u : 0 ≤ u ≤ t) defined by (see relation (3.4))

H∗
u(ω) =





Hu(ω) if u ≤ T (ω)

2HT (ω) −Hu(ω) otherwise

(0 ≤ u ≤ t) where T (ω) = inf{u ≥ 0 : Hu(ω) = a}. Since MH
t > a ⇔ T < a and

T < a⇔ H∗
t = 2a−Ht,

P{y − X̃t ≤ a, M̃t − X̃t) > a} = P{H∗
t ≥ a + y} = P{Ht ≥ a + y} = P{−X̃t ≥ a + y}.

Therefore,

P{(y ∨ M̃t) − X̃t > a} = P{y + X̃t > a} + P{y + X̃t ≤ −a}
= P{|y + X̃t| ≥ a}
= P{|y + X̃t| > a} = P{|y +Xt| > a}.
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Chapter 4

Local times of Brownian motion

In this chapter, we discuss the local times of Brownian motion. The local time at a

level a is a measure of the time that a Brownian traveler spends at that level. It is a key

concept in the study of the properties of Brownian motion. The modern approach to local

times is based on the theory of stochastic integration. After an introduction to stochastic

integration with respect to Brownian motion in section 1, some classical properties of

Brownian level sets are given in section 2. We then introduce local times in section 3, the

corresponding measure (called Dirac measure of Brownian motion) in section 4 and the

inverse local times in the final section. We keep our exposition to the minimum necessary

for the exploration of the Fourier structure of the Dirac measures of Brownian motion.

4.1 Introduction to stochastic integration

In this section, we summarise the construction of stochastic integration with respect to

Brownian motion, adapted from the book by Chung and Williams [10, p 28-40]. Proofs

of results and extra detail may be found there. For the general theory of stochastic

integration and different applications, the reader is referred to the book by Medvegyev

[38]. As in the previous chapter, we consider the canonical model of Brownian motion

X = (Xt : t ≥ 0) on (C[0,∞),F , P ). For simplification purposes, we denote C[0,∞) by

Ω. Recall that Xt(ω) = ω(t) (for ω ∈ C[0,∞)) and F is the σ-algebra spanned by all

the variables Xt (t ≥ 0). We also consider the filtration (Ft : t ≥ 0) of F where Ft is

the smallest σ-algebra containing all the P -null sets of F and with respect to which all

Xs , 0 ≤ s ≤ t are measurable. In fact, if we denote by Gt the σ-algebra spanned by the

family (Xs : 0 ≤ s ≤ t) and A the collection of P -null sets of F , then Ft is spanned by

Gt ∪A.

Unless otherwise indicated, all stochastic processes Y = (Yt : t ≥ 0) will be considered as

functions Y : [0,∞)×Ω 7→ R. In order to define integrals of such functions, we first need

to define a σ-algebra on the product space [0,∞) × Ω.

Let R be the set of all rectangles of the form {0} × F0 and (s, t] × F , where 0 ≤ s < t,

F0 ∈ F0 and F ∈ Fs. We will consider in the sequel the ring, the algebra and the σ-algebra
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on [0,∞) × Ω spanned by R.

Recall that a ring on a set S is a non-empty class of subsets of S closed under union and

difference of sets. As a consequence, it is also closed under intersection. An algebra on

S is a ring on S which contains S, or equivalently, is closed under complements, while a

σ-algebra is an algebra which is closed under countable unions.

The ring G spanned by R consists of the empty set and all finite unions of disjoint

rectangles in R. The algebra A generated by R is G ∪ {Ac : A ∈ G}, where Ac denotes

the complement of A.

The σ-algebra on [0,∞)×Ω spanned by R is called the predictable σ-algebra and is denoted

by P. A function Y : [0,∞)×Ω 7→ R is called predictable if it is P-measurable. If A ∈ R
then for any t ≥ 0, the function 1A(t, .) is Ft-measurable. Indeed, if A = (s, h] × F with

F ∈ Fs and B is a Borel subset of R, then {ω : 1A(t, ω) ∈ B} ∈ {F, F c,Ω, ∅} if t ∈ (s, h]

and {w : 1A(t, w) ∈ B} ∈ {Ω, ∅} otherwise. So, in all cases, {1A(t, ω) ∈ B} ∈ Ft because

Fs ⊂ Ft. This means that the process 1A is adapted to the filtration. The same property

holds for Ac. Since for A,B ∈ R, A ∩ B is also in R if it is nonempty, then 1A∩B is

also adapted. Using elementary properties of the indicator function, one can show that

if A is in the ring spanned by R, then 1A is also adapted. The generalization to the

algebra spanned by R follows immediately. The idea is to extend the property to the

whole σ-algebra P. This can be achieved by using the following variant of the monotone

class theorem (see, for example, the book by Dellacherie and Meyer [11, 14-I]: Let V

be a vector space of real-valued bounded functions defined on a set W . Assume that V

contains all the constant functions and is such that: for any uniformly bounded increasing

sequence of positive functions fn ∈ V , the function f = limn fn belongs to V . Let C be a

subset of V which is closed under multiplication. Then V contains all bounded functions

measurable with respect to the σ-algebra σ(C) spanned by C on V .

We take V to be the space of all functions f : [0,∞) × Ω → R that are adapted and

C = {1A : A ∈ A}, where A is the algebra on [0,∞) × Ω spanned by R. Clearly all

the hypotheses of the monotone class theorem are verified and σ(C) = P. Therefore, all

bounded P-measurable functions are adapted. In particular, for A ∈ P, 1A is adapted.

From the fact that any P-measurable function is a pointwise limit of a sequence of finite

linear combinations of indicator functions of sets in P, such a function is an adapted

process.

The next step is to define a measure on the space ([0,∞) × Ω,P). It is useful to regard the

σ-algebra P as a subset of the product σ-algebra B⊗F where B is the Borel σ-algebra on

[0,∞) and F is the fixed σ-algebra on Ω = C[0,∞). A canonical measure on the product

space ([0,∞) × Ω,B ⊗ F) is the product measure λ×P where λ is the Lebesgue measure

on [0,∞) and P is the Wiener measure on Ω (this is the probability measure that we have

fixed on Ω). Then λ×P induces a measure on ([0,∞) × Ω) that will be denoted by µ for

the sake of simplicity. This measure is such that for any A = (s, t] × F ∈ R,

µ(A) = E
[
1F (Xt −Xs)

2
]
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where E denotes the expectation (with respect to probability measure P ). Indeed, since

F ∈ Fs and Xt −Xs is independent of Fs, by conditioning on Fs, we find that

E
[
1F (Xt −Xs)

2
]

= E
[
E
[
1F (Xt −Xs)

2|Fs

]]

= E[1FE
[
(Xt −Xs)

2
]

= E[1F ](t− s)

= (λ× P )[(s, t] × F ].

And the property is obviously true for A = {0} × F0, F0 ∈ F0.

We denote by L2(µ) the space L2([0,∞)×Ω,P, µ) and L2(P ) the space L2(Ω,F , P ). Then

a predictable process Y : [0,∞) × Ω 7→ R is in L2(µ) if

∫

[0,∞)×R
Y 2(s, ω)dµ(s, ω) = E

(∫ ∞

0
Y 2(s, ω)ds

)
<∞.

We define the stochastic integral with respect to a Brownian motion X of a predictable

processes Y as follows:

1. If Y is a R-step function, that is Y = 1(s,t]×F , the indicator function of the rectangle

(s, t] × F in R, then ∫
YsdXs = 1F (Xt −Xs),

and if Y = {0} × F0 , for F0 ∈ F0, then

∫
YsdXs = 0.

2. Suppose now that Y is a finite linear combination of R-step functions (such functions

are called R-simple functions), that is,

Y =
n∑

j=1

cj1(sj ,tj ]×Fj
+ c01{0}×F0

, (4.1)

where cj ∈ R, Fj ∈ Fsj
, sj < tj for all j and F0 ∈ F0. Any such representation can be

taken such that the rectangles (sj , tj] × Fj are disjoint. Then

∫
YsdXs =

n∑

j=1

cj1Fj
(Xtj −Xsj

)

and one can verify that this integral does not depend on the representation of Y .

3. The stochastic integral can be generalised to all predictable processes Y ∈ L2(µ).

Firstly, we note that if Y is an R-step function, then Y ∈ L2(µ) and by direct calculation

this extends to R-simple functions. Then the space E of all R-simple functions is a

subspace of L2(µ). Moreover (see [10, pp 37-38]), we have that for Y ∈ E ,

E

[(∫
YsdXs

)2
]

=
∫

[0,∞)×Ω
Y 2dµ. (4.2)
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Therefore, the map E 7→ L2(P ) defined by Y → ∫
YsdXs is an isometry. To finish the

construction, note that E is a dense subspace of the Hilbert space L2(µ) (see [10], p 38,

Lemma 2.4) and, therefore, the isometry can be extended uniquely to the whole space

L2(µ). By definition
∫
YsdXs is the image of Y by this isometry. This means that the

integral
∫
YsdXs is obtained by approximating Y (in the L2(µ)-norm) by a sequence of R-

simple functions and taking the L2(P )-limit of the sequence of integrals of these functions.

4. For any predictable process Y ∈ L2(µ) and t ≥ 0, the process 1[0,t]Y is also predictable

and belongs to L2(µ). By definition,

∫ t

0
YsdXs =

∫
1[0,t](s)YsdXs.

If Y ∈ E and (4.1) is a representation for Y , then for t ≥ 0, 1[0,t]Y ∈ E and

∫ t

0
YsdXs =

n∑

j=1

cj1Fj
(Xtj∧t −Xsj∧t),

(a ∧ b = min(a, b)). By continuity of Brownian paths, we see that the process

Ht =
∫ t
0 YsdXs for R-simple processes Y also has continuous paths. This fact is generalized

as follows (see [10, p 40] for a proof):

Theorem 4.1 For any predictable process Y ∈ L2(µ), the process (Ht : t ≥ 0) defined

by Ht =
∫ t
0 YsdXs has a continuous modification, in the sense that there exists a process

(Kt : t ≥ 0) with continuous paths such that for each t ≥ 0, Ht = Kt, almost surely.

We conclude the section with the famous Ito formula (see [10, pp 88-90] for the proof).

Theorem 4.2 (Ito formula) Let f : R 7→ R be twice continuously differentiable such that

1[0,t]f
′(Xs) ∈ L2(µ) for some t > 0. Then, almost surely, for all 0 ≤ s ≤ t,

f(Xs) − f(X0) =
∫ s

0
f ′(Xu)dXu +

1

2

∫ s

0
f ′′(Xu)du.

4.2 Level sets of Brownian motion

As already mentioned, local times provide a natural measure of the time that the Brownian

motion spends at a given level. For any a ∈ R, the level set of Brownian motion is defined

as Za = {t ≥ 0 : Xt = a}. We use Z instead of Z0. For every ω ∈ Ω, Za(ω) = {t ≥ 0 :

ω(t) = a} is a closed set, because Brownian paths are continuous. Clearly for any t > 0,

P{t ∈ Za} = P{Xt = a} = 0. This means that
∫

1t∈Za(ω)dP (ω) = 0 for any t > 0. Then

if we denote by λ(Za) the Lebesgue measure of Za, by Fubini’s theorem we find that

Eλ(Za) =
∫ ∫ ∞

0
1{t∈Za(ω)}dtdP (ω) = 0. (4.3)

Therefore, almost surely, λ(Za) = 0. That is, almost surely, for λ-almost every s ≥ 0, we

have that s /∈ Za. So Brownian level sets are almost surely of null Lebesgue measure.
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One surprising property of level sets of Brownian motion is that they are infinite and have

non isolated points. This can be justified as follows [39, p 42]:

Let T = inf{t > 0 : Xt > 0} and R = inf{t > 0 : Xt = 0}. We want to show that

P{R = 0} = 1, which means that for any t > 0, there exists 0 < s < t such that

Xs = 0 and hence Z is infinite. It is clear that, T (ω) = 0 is equivalent to say that

for any n ∈ N, there exists ǫ ∈ (0, 1/n) such that Xǫ > 0. Then {T = 0} = ∩∞
n=1En

where En = {ω : there exists 0 < ǫ < 1/n : Xǫ > 0}. From this it is now clear that

{T = 0} ∈ F0+. By the Blumenthal 0 − 1 law (Theorem 3.4), P{T = 0} ∈ {0, 1}. Let

t > 0. If Xt > 0, then T ≤ t.

Hence, P{T ≤ t} ≥ P{Xt > 0} = 1/2. It follows that P{T = 0} ≥ P{T ≥ t} ≥ 1/2 and

therefore, P{T = 0} = 1. Similarly, if S = inf{t > 0 : Xt < 0}, then P{S = 0} = 1. Then

we have that almost surely, for any t > 0, there exist s1, s2 ∈ (0, t) such that Xs1 > 0 and

Xs2 < 0. By continuity of Brownian paths we conclude that, almost surely, for any t > 0,

there exists 0 < s < t such that Xs = 0. This is equivalent to P{R = 0} = 1.

To show that Z has no isolated point, we fix 0 < t1 < t2 and define

W = {ω ∈ Ω : Z(ω) has only one element in (t1, t2)}.

We want to show that P (W ) = 0. Consider Rt1 = inf{s > t1 : Xs = 0}, which is a

stopping time (in fact, Rt = t + Γ0(ω
+
t ), where Γ0 is the first passage time at 0). By

the strong Markov property, Ys = Xs+Rt1
− XRt1

= Xs+Rt1
is a Brownian motion. For

any ω ∈ W , t1 < Rt1 < t2 and the only element of Z(ω) in the interval (t1, t2) is Rt1 .

From the construction above, P{inf{s > 0 : Ys = 0} = 0} = 1. This means that

inf{s > 0 : Xs+Rt1
= 0} = 0 almost surely. Therefore, almost surely, Z has infinitely

many elements in the interval [Rt1 , t2) and hence W has probability zero.

To extend these properties to other Brownian level sets, it is sufficient to note that, for

any a ∈ R, the level set Za(X) = {t ≥ 0 : Xt = a} is such that Za(X) = Γa + Z(Y ),

where Z(Y ) is the zero set of the Brownian motion Ys = Xs+Γa
− a and Γa is the first

passage time at level a (for the Brownian motion X).

The following proposition, known as Lévy’s arcsine law, gives the distribution of the last

element of Z before a specified t > 0.

Proposition 4.3 For any t > 0, let Kt = sup{s < t : Xs = 0}. Then

P{Kt ≤ h} =
2

π
arcsin

√
h/t, 0 ≤ h < t.

A detailed proof is given in [39, p 113].

4.3 Brownian local times

The following construction is adapted from the book by Chung and Williams ([10], pp

127–142). For other constructions of local times (including Lévy’s original ideas) we refer
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to the book by Ito and McKean [22]. More results on the subject can be found in [4] and

[8].

To introduce local time of Brownian motion at level a ∈ R, consider the function fa(x) =

(x − a)+ = max{x − a, 0}. The idea is to apply the Ito formula but this function is not

differentiable. Firstly, we approximate fa by the family of functions (fa,ǫ : ǫ > 0) defined

as follows:

fa,ǫ(x) =





0, for x ≤ a− ǫ

(x− a+ ǫ)2/4ǫ, for a− ǫ ≤ x ≤ a− ǫ

x− a, for x ≥ a+ ǫ.

Clearly,

f ′
a,ǫ(x) =





0, for x ≤ a− ǫ

(x− a + ǫ)/2ǫ, for a− ǫ ≤ x ≤ a− ǫ

1, for x ≥ a+ ǫ

and

f ′′
a,ǫ(x) =





0, for x < a− ǫ

1/2ǫ, for a− ǫ < x < a− ǫ

0, for x > a + ǫ

and we set f ′′
a,ǫ(x ± ǫ) = 0. The function f ′′

a,ǫ is not continuous at a ± ǫ, so Ito’s formula

is not applicable here. We fix ǫ > 0 and approximate fa,ǫ by a sequence of convolution

products gn = φn ∗ fa,ǫ where (φn) is a sequence of C∞−functions defined on R such that

the support of each φn is contained in the interval [−1/n, 1/n] and
∫
φn(x)dx = 1. (In

fact, (ϕ1/n) defined by ϕ1/n = φn is an approximate of identity (see Definition 2.11)). We

recall that gn is C∞ and

gn(x) =
∫

R
fa,ǫ(x− z)φn(z)dz, for all x

g′n(x) =
∫

R
f ′
a,ǫ(x− z)φn(z)dz, for all x.

Clearly, gn → fa,ǫ and g′n → f ′
a,ǫ uniformly on R and g′′n → f ′′

a,ǫ pointwise except at a± ǫ.

An application of Ito’s formula to gn yields that, almost surely, for all t ≥ 0,

gn(Xt) − gn(X0) =
∫ t

0
g′n(Xs)dXs +

1

2

∫ t

0
g′′n(Xs)ds. (4.4)

We have that

sup
(s,ω)∈[0,t]×Ω

|1[0,t](s)g
′
n(Xs(ω) − 1[0,t](s)f

′
a,ǫ(Xs(ω))| → 0 as n→ ∞.
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Indeed, since supp(φn) ⊆ [−1/n, 1/n] and

|f ′
a,ǫ(y) − f ′

a,ǫ(x)| ≤ |x− y|/2ǫ, for all x, y ∈ R,

then (using the properties of (φn), we find that

|1[0,t](s)[g
′
n(Xs(ω) − f ′

a,ǫ(Xs(ω))]| =

∣∣∣∣
∫ t

0
f ′
a,ǫ(ω(s) − z)φn(z)dz −

∫ t

0
f ′
a,ǫ(ω(s))φn(z)dz

∣∣∣∣

≤
∫ t

0

∣∣∣f ′
a,ǫ(ω(s) − z) − f ′

a,ǫ(ω(s))
∣∣∣φn(z)dz

≤
∫ 1/n

−1/n
|f ′
a,ǫ(ω(s) − z) − f ′

a,ǫ(ω(s))|φn(z)dz

≤
∫ 1/n

−1/n

|z|
2ǫ
φn(z)dz

≤ 1

2nǫ

∫ 1/n

−1/n
φn(z)dz

=
1

2nǫ
.

From this uniform convergence and the fact that 1[0, t]g
′
n(X) is dominated by 1[0, t]

which is in L2(µ), we deduce that the process 1[0,t](s)g
′
n(X) converges to the process

1[0,t](s)f
′
a,ǫ(X) in the L2(µ)−norm. (See for example the book by Bartle [2, p 75] for more

details on convergence results). Therefore, by the isometry between L2(µ) and L2(P ),

∫ t

0
g′n(Xs)dXs →

∫ t

0
f ′
a,ǫ(Xs)dXs

in the L2(P )-norm.

For the last term of (4.4), we also have that g′′n(x) converges to f ′′(x) pointwise except

for x = a ± ǫ. Then g′′n(Xs)(ω) → f ′′(Xs)(ω) except for ω(s) = a ± ǫ (ω ∈ Ω). From

(4.3), we know that for any fixed real b, almost surely, for λ-almost every s ≥ 0, it is

the case that s /∈ Zb. Therefore, almost surely, for λ−almost every s ∈ [0, t], we have

that g′′n(Xs) → f ′′(Xs). Since clearly, |g′′n| ≤ 1/2ǫ, we can use the bounded convergence

theorem to find that, almost surely,

∫ t

0
g′′n(Xs)ds→

∫ t

0
f ′′
a,ǫ(Xs)ds

and this convergence also holds in L2(P )-norm.

Therefore, by letting n→ ∞, we find that, for each a and t, almost surely,

fa,ǫ(Xt) − fa,ǫ(X0) =
∫ t

0
f ′
a,ǫ(Xs)dXs +

1

2

∫ t

0
f ′′
a,ǫ(Xs)ds

=
∫ t

0
f ′
a,ǫ(Xs)dXs +

1

2

∫ t

0

1

2ǫ
1(a−ǫ,a+ǫ)(Xs)ds. (4.5)

One can check that for any x ∈ R, |fa,ǫ(x) − (x − a)+| ≤ ǫ/4 (the maximum being

47



attained at x = a). Then

|(fa,ǫ(x) − fa,ǫ(y)) − ((x− a)+ − (y − a)+)| ≤ ǫ/2, for all x, y ∈ R

because |a− b| ≤ |a| + |b|. In particular, for any t ≥ 0,

|(fa,ǫ(Xt) − fa,ǫ(X0)) − ((Xt − a)+ − (X0 − a)+)| ≤ ǫ/2.

Hence for fixed t ≥ 0,

fa,ǫ(Xt) − fa,ǫ(X0) → (Xt − a)+ − (X0 − a)+ as ǫ→ 0,

both almost surely and in L2(P )-norm.

Also, for every x ∈ R,

|f ′
a,ǫ(x) − 1[a,∞)(x)| ≤ 1(a−ǫ,a+ǫ)(x), for all x ∈ R.

Therefore,

E
[∫ t

0
|f ′
a,ǫ(Xs) − 1[a,∞)(Xs)|2ds

]
≤ E

[∫ t

0
1(a−ǫ,a+ǫ)(Xs)ds

]

=
∫ t

0
P{Xs ∈ (a− ǫ, a+ ǫ)}ds

=
∫ t

0

2√
2πs

∫ a+ǫ

a
e−h

2/2sdhds

≤
∫ t

0

2ǫ√
2πs

ds (because e−h
2/2s ≤ 1)

→ 0 (as ǫ→ 0).

This means that, for ǫ → 0, f ′
a,ǫ(Xs) converges to 1[a,∞)(Xs) in L2(µ). It follows, by the

isometry L2(µ) → L2(P ), that
∫ t
0 f

′
a,ǫ(Xs)dXs converges to

∫ t
0 1[a,∞)(Xs)dXs in L2(P ).

We conclude that, for every t ≥ 0 and a ∈ R, almost surely,

(Xt − a)+ − (X0 − a)+ =
∫ t

0
1[a,∞)(Xs)dXs +

1

2
La(t), (4.6)

where

La(t) = lim
ǫ↓0

1

2ǫ

∫ t

0
1(a−ǫ,a+ǫ)(Xs)ds, (4.7)

the limit being considered in the L2(P )-norm.

Definition 4.4 The process (La(t) : t ≥ 0) is called the local time at level a of the

Brownian motion X.

Since by Theorem 4.1, the process (
∫ t
0 1[a,∞)(Xs)dXs : t ≥ 0) has a continuous ver-

sion, then by (4.6), for any a ∈ R, the local time process (La(t) : t ≥ 0) has a
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continuous version. More than that is true: there exists a family of random variables

J = (Ja(t) : (t, a) ∈ [0,∞) × R) and a subset Ω0 of Ω of probability 1 such that the

function (t, a) → Ja(t)(ω) is continuous for all ω ∈ Ω0 and for each fixed (t, a):

P
{∫ t

0
1[a,∞)(Xs)dXs = Ja(t)

}
= 1. (4.8)

(this is Lemma 7.2 of [10]). From this, we can now redefine the local time by replacing

the integral
∫ t
0 1[a,∞)(Xs)dXs by Ja(t) in (4.6). That is,

1

2
La(t) = (Xt − a)+ − (X0 − a)+ − Ja(t).

Now we have a version of local time, which is continuous in (a, t). This is the version that

we will be considering unless otherwise indicated. This fact was first proved by Trotter

[48]. For this new version, we still have relations (4.6) and (4.7).

So far, relation (4.7) is true when the limit is taken in the L2 sense. It is an important

fact that it is also true almost surely.

Theorem 4.5 For any (t, a) ∈ [0,∞) × R, almost surely,

La(t) = lim
ǫ↓0

1

2ǫ

∫ t

0
1(a−ǫ,a+ǫ)(Xs)ds.

Proof (Adapted from [10, pp 134-136] We can easily verify that

f ′
a,ǫ(x) =

1

2ǫ

∫ a+ǫ

a−ǫ
1[x,∞)(x)dx.

The idea is to replace in relation (4.5) the stochastic integral by a deterministic integral

depending on J . We have that

∫ t

0
f ′
a,ǫ(Xs)dXs =

1

2ǫ

∫ a+ǫ

a−ǫ
Jx(t)dx.

Indeed, for fixed t, by continuity of Jx(t), we can approximate the corresponding integral

by Riemann sums:

∫ a+ǫ

a−ǫ
Jx(t)dx = lim

n→∞
1

2n
∑

k∈An

Jk/2n(t), where An = {k ∈ Z : k/2n ∈ (a− ǫ, a+ ǫ)}.

From (4.8),

Jk/2n(t) =
∫ t

0
1[k/2n,∞)(Xs)dXs almost surely. (4.9)

Then, almost surely,

∫ a+ǫ

a−ǫ
Jx(t)dx = lim

n→∞
1

2n
∑

k∈An

∫ t

0
1[k/2n,∞)(Xs)dXs
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= lim
n→∞

1

2n

∫ t

0
φn(Xs)dXs

where

φn =
1

2n
∑

k∈An

1[k/2n,∞).

The sequence (φn) converges uniformly to 2ǫfa,ǫ. Then the process (φn(Xs) : 0 ≤ s ≤ t)

converges to (2ǫf ′
a,ǫ(Xs) : 0 ≤ s ≤ t) uniformly and hence in L2(µ) because φn(x) is

dominated by 1[a−ǫ,a+ǫ](see [2, p 75]). By the isometry L2(µ) → L2(P ), we deduce that

lim
n→∞

∫ t

0
φn(Xs)dXs = 2ǫf ′

a,ǫ(Xs)dXs

and, therefore, ∫ a+ǫ

a−ǫ
Jx(t)dx = 2ǫ

∫ t

0
f ′
a,ǫ(Xs)dXs.

From relation (4.5), we find that, for each fixed ǫ > 0, almost surely,

fa,ǫ(Xt) − fa,ǫ(X0) −
1

2ǫ

∫ a+ǫ

a−ǫ
Jx(t)dx =

1

2

∫ t

0

1

2ǫ
1(a−ǫ,a+ǫ)(Xs)ds. (4.10)

We know fix a subset Ω0 of probability 1 such that (4.10) holds for all ω ∈ Ω. To consider

the limit in (4.10) for ǫ → 0, it is first required that this relation holds almost surely

simultaneously for all ǫ > 0. For this end, we consider the left hand side of this relation

as a function of ǫ > 0 and note that it is continuous (for any ω ∈ Ω). Similarly, the right

hand side, is also continuous (on (0,∞)). Indeed, we can write the integral on the right

hand side as

hǫ = λ
{
[0, t] ∩X−1(a− ǫ, a+ ǫ)

}

where λ is the Lebesgue measure. Then, for α > 0,

lim
ǫ↓α

hǫ = λ
{
[0, t] ∩

(
∩ǫ>αX−1(a− ǫ, a+ ǫ)

)}

= λ
{
[0, t] ∩X−1[a− α, a+ α]

}

= λ
{
[0, t] ∩X−1(a− α, a+ α)

}
+ λ{X−1(a− α)} + λ{X−1(a+ α)}

= hα almost surely,

where the last equality follows from the fact that the level sets of Brownian motion are

of Lebesgue measure zero. Also, limǫ↑α hǫ = hα.

Relation (4.10) holds simultaneously for all rationals. For any positive real number r

consider a sequence (rn) of rationals converging to r. Then by continuity of both sides of

relation (4.10), we deduce that, on Ω0,

fa,r(Xt) − fa,r(X0) −
1

2r

∫ a+r

a−r
Jx(t)dx =

1

2

∫ t

0

1

2r
1(a−r,a+r)(Xs)ds
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Now we can consider the limit to find that

lim
ǫ→0

fa,ǫ(Xt) − fa,ǫ(X0) −
1

2ǫ

∫ a+ǫ

a−ǫ
Jx(t)dx = lim

ǫ→0

1

2

∫ t

0

1

2ǫ
1(a−ǫ,a+ǫ)(Xs)ds.

Then

(Xt − a)+ − (X0 − a)+ = Ja(t) + lim
ǫ→0

1

2

∫ t

0

1

2ǫ
1(a−ǫ,a+ǫ)(Xs)ds

and therefore, almost surely,

La(t) = lim
ǫ→0

1

2ǫ

∫ t

0
1(a−ǫ,a+ǫ)(Xs)ds.

Remark 4.6 : Tanaka’s formula.

By replacing function fa,ǫ in the construction above by the following

fa,ǫ(x) =





a− x, for x ≤ a− ǫ

(a− x+ ǫ)2/4ǫ, for a− ǫ ≤ x ≤ a+ ǫ

0, for x ≥ a + ǫ,

we obtain that

(Xt − a)− − (X0 − a)− = −
∫ t

0
1(−∞,a](Xs)dXs +

1

2
La(t), (4.11)

where (x− a)− = max(0,−(x− a)).

Adding this equation to (4.6) yields

La(t) = |Xt − a| − |X0 − a| −
∫ t

0
sign(Xs − a)dXs. (4.12)

This relation is known as the Tanaka formula. It is an important fact that the process

(∫ t

0
sign(Xs − a)dXs : t ≥ 0

)

is another version of Brownian motion. The simplest proof uses the notion of quadratic

variation and can be found in [10, pp 138-139] while a direct proof is given [39, pp 235-236].

We conclude this section with the occupation measure formula. A proof can be found in

[10, pp 136-137]. See also [41, p 215] and [38, p 435] for a general result. Let f be a Borel

measurable and locally integrable on R. Then for each t ≥ 0, almost surely,

∫
La(t)f(a)da =

∫ t

0
f(Xs)ds. (4.13)
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4.4 The Dirac measure of Brownian motion

We have seen that for any fixed a ∈ R, the local time process (La(t) : t ≥ 0) at level a is

almost surely continuous. Furthermore, for any fixed t ≥ 0, almost surely,

La(t) = lim
ǫ→0

1

2ǫ

∫ t

0
1(a−ǫ,a+ǫ)(Xs)ds.

Therefore, for any 0 ≤ s ≤ t, almost surely,

La(t) = lim
ǫ→0

1

2ǫ

∫ s

0
1(a−ǫ,a+ǫ)(Xh)dh+ lim

ǫ→0

1

2ǫ

∫ t

s
1(a−ǫ,a+ǫ)(Xh)dh. (4.14)

Hence La(s) ≤ La(t) almost surely. This means that the process (La(t) : t ≥ 0) is almost

surely increasing.

We can, therefore, consider the (random) measure whose distribution is La(t). We call it

the Dirac measure of Brownian motion at level a and denote it by δa(X). This name is

justified by the fact that in (4.14),

1

2ǫ
1(a−ǫ,a+ǫ) → δa, as ǫ→ 0

in the distributional sense. So we have that

δa(X)ω[0, t] = La(t)(ω).

Theorem 4.7 The support of δa(X) is contained in the level set Za = {t ≥ 0 : Xt = a}.

Proof Assume that t /∈ Za(ω) for some t ≥ 0. Then in the case where ω(t) > a, by

continuity of ω, there exists s1 < s2 such that ω(s) > a+γ for all s in the interval (s1, s2)

for some fixed rational γ > 0. Then for all sufficiently small rationals ǫ < γ,

λ {s ∈ (s1, s2) : Xs ∈ (a− ǫ, a + ǫ)} = 0.

Since, almost surely,

δa(X)(s1, s2) = lim
ǫ→0

1

2ǫ
λ {s ∈ (s1, s2) : Xs ∈ (a− ǫ, a + ǫ)} ,

then we find that, on a subspace Ω0 of probability 1, δa(X)(s1, s2)(ω) = 1. The same

argument applies for ω(t) < a. Therefore, t /∈ suppδa(X)(ω) on Ω0.

An immediate consequence of this theorem is that local time La is constant on the com-

plement of the level set Za.
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4.5 Inverse local times

To further explore the properties of Brownian local times we need to use the following

classical result of Lévy.

Theorem 4.8 The processes (|Xt|, L0(t)) : t ≥ 0) and (Mt−Xt,Mt) are identical in law.

Proof (Adapted from [39, p 138]). From Tanaka’s formula (4.12), we have that (since

X0 = 0 almost surely)

|Xt| =
∫ t

0
sign(Xs)dXs + L0(t) = Wt + L0(t)

where Wt is another version of Brownian motion. Consider now the version of Brownian

motion W̃ = (W̃t = −Wt) and the corresponding maximum process M̃t. We want to show

that M̃t = L0(t), from which it will follow that the process ((|Xt|, L0(t)) : t ≥ 0) agrees

pointwise with the process ((M̃t − W̃t, M̃t) : t ≥ 0), which has the same distribution with

((Mt −Xt,Mt) : t ≥ 0). Clearly, for any s ≥ 0,

W̃s = L0(s) − |Xs| ≤ L0(s).

Then, since (L0(s)) is increasing, we find M̃t ≤ L0(t). Also since the function L0(t) is

constant on the complement of the zero set Z0 = {t ≥ 0 : Xt = 0} and on the set,

L0(t) = W̃t ≤ M̃t, we conclude that L0(t) = M̃t and the equality follows.

From the proof above, the local time of Brownian motion (at the origin) is the maxi-

mum function of another version of Brownian motion. We can, therefore, transfer all

results concerning probabilistic properties of the maximum function of Brownian motion

to Brownian local time. The distribution of L0(t) is, therefore, equal to the distribution

of Mt. In particular, for any t > 0, almost surely, L0(t) > 0 from which we deduce that

the measure δ(X) is non zero, almost surely.

Definition 4.9 The process L−1
0 = (L−1

0 (t) : t ≥ 0) defined by

L−1
0 (t) = inf{s ≥ 0 : L0(s) > t} (4.15)

is called the inverse local time process at 0.

Because L0(t) is the maximum function of another version of Brownian motion, the process

L−1
0 can be seen as the right-continuous inverse of the maximum function of a Brownian

motion. Therefore, from results of section 3.3, the process L−1
0 is right-continuous, has

independent and stationary increments and has a distribution given by

P{L−1
0 (t) ≤ h} =

∫ h

0

t√
2πs3

e−t
2/2sds, h > 0. (4.16)
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Its Fourier transform is

E
[
eiuL

−1
0 (t)

]
= e−t

√
|u|(1−i sign(u)). (4.17)

These results will be useful in the sequel. In general, the inverse local time of Brownian

motion at level a is defined by

L−1
a (t) = inf{s ≥ 0 : La(s) > t}.
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Chapter 5

Some fractal properties of Brownian

motion

In this chapter we discuss some known fractal properties of Brownian motion on which the

results of chapter 6 will be based. We start with the Hausdorff dimension of Brownian

level sets and show that they are of dimension 1/2. We also discuss, in section 2, the

dimension doubling property of Brownian images of compact subsets. The last section is

devoted to the beautiful construction of Kahane where he showed that Brownian images

of compact subsets of Hausdorff dimension < 1/2 are Salem sets. Kahane’s proof is not

easy to follow and we made every effort to clarify the construction by filling in many gaps

between the main steps of the proof. The main references for this chapter are [22], [24]

and [39].

5.1 Hausdorff dimension of Brownian level sets

Theorem 5.1

(1) Almost surely, for all reals κ > 0, the zero set of Brownian motion

Z = {t ∈ [0, κ] : Xt = 0}

has Hausdorff dimension 1/2.

(2) For any fixed a ∈ R, the level set Za = {t ∈ [0, 1] : Xt = a} is non-empty with positive

probability and in this case, its Hausdorff dimension is also 1/2.

Proof (Adapted from [39] and [31, pp 181-182].) Firstly, let us fix κ > 0 and Consider

the Dirac measure δ(X) of Brownian motion as discussed in section 4.4. For any interval

I = [a, b) ⊂ [0, κ], δ(X)(I) = L0(b) − L0(a). As discussed in section 4.5, the local times

L0(t) is the maximum function of another version of Brownian motion (W̃ (t) : t ≥ 0).

Then δ(X)(I) = M̃b − M̃a where M̃ is the maximum function of W̃ . We have, by the
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modulus of continuity of Brownian motion (see relation (3.5)), that almost surely,

0 ≤ M̃b − M̃a ≤ sup
0≤h≤b−a

|W̃a+h − W̃a| ≤
√

2(b− a) log(1/(b− a))

≤
√

2(b− a)
1
2
−ǫ for any ǫ > 0.

Therefore, almost surely,

δ(X)(I) ≤ C|I| 12−ǫ for any ǫ > 0.

Since the support of δ(X) is contained in Z (Theorem 4.7), Frostman’s lemma implies that

dimH Z ≥ 1
2
− ǫ, for any ǫ > 0. It follows that dimH Z ≥ 1

2
. To prove that dimH Z ≤ 1/2,

we use Lévy’s arcsine law of Brownian motion (see Proposition 4.3). We subdivide the

interval (0, 1] into n subintervals

Ik =

(
k − 1

n
,
k

n

]
k = 1, 2, . . . , n.

We want to determine how many of these subintervals are needed to cover Z ∩ (0, κ] in

order to find an upper bound on the Hausdorff measure H1/2(Z) of Z. For this purpose,

consider the random variables Tk, (k = 1, 2, . . . , n) defined on Ω by Tk = 1 if Ik ∩ Z 6= ∅
and 0 otherwise. The required number is N = T1 +T2 + . . .+Tn and we want to estimate

its expectation E[N ]. Let Kt = sup{s < t : Xs = 0}. Clearly, Ik ∩ Z 6= ∅ is equivalent to

Kk/n > (k − 1)/n. Then, using Lévy’s arcsine law (Proposition 4.3),

P{Tk = 1} = P{Ik ∩ Z 6= ∅}
= 1 − P{Kk/n ≤ (k − 1)/n}

= 1 − 2

π
arcsin

√
k − 1

k
.

Clearly, if y = arcsin
√

k−1
k

, then sin y =
√

k−1
k

, cos y =
√

1
k

and tan y =
√
k − 1.

Therefore

P{Tk = 1} = 1 − 2

π
arctan

√
k − 1.

Hence

E(N) =
n∑

k=1

(
1 − 2

π
arctan

√
k − 1

)
= 1 +

n−1∑

k=1

(
1 − 2

π
arctan

√
k
)
.

Let f(x) = 1 − 2
π

arctan
√
x. Then the sum

f(1)(1 − 0) + f(2)(2 − 1) + . . .+ f(n− 1)(n− 1 − (n− 2))

can be seen as a Riemann sum of the function f corresponding to the partition

[0, 1], (1, 2], . . . , (n−2, n−1] of [0, n−1]. Therefore, since f is a decreasing function, then
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f(k + 1)(k + 1 − k) ≤ ∫ k+1
k f(x)dx. Then

E[N ] ≤ 1 +
∫ n−1

0
f(x)dx

≤ 1 +
∫ n

0
f(x)dx

= 1 + n−
[
2

π

(
(n+ 1) arctan

√
n−

√
n
)]

because an antiderivative of arctan
√
x is (x+ 1) arctan

√
x−√

x.

Since

arctan(
√
n) =

π

2
+O(n−1/2) for n→ ∞,

we find that

1 + n−
[
2

π

(
(n + 1) arctan

√
n−

√
n
)]

= −π
2

[
(n+ 1)O(n−1/2) + n1/2

]
= O(n1/2)

for n→ ∞.

Then

E[N ] = O(n1/2) for n→ ∞.

It follows that

lim
n→∞

E[n−1/2N ] <∞.

Hence, using Fatou’s lemma,

lim
n→∞n

−1/2N <∞ almost surely.

By considering the covering

Cn = (Ik : Ik ∩ Z 6= ∅, k ∈ {1, . . . , n})

of Z ∩ (0, κ], we find that

H
1/n
1/2 (Z) ≤

∑

I∈Cn

|I|1/2 = Nn−1/2 (because |I| = 1/n).

Hence

H1/2(Z) = lim
n→∞

H
1/n
1/2 (Z) ≤ lim

n→∞
Nn−1/2 <∞ almost surely,

from which it follows that dimH Z ≤ 1/2. Therefore, for any fixed κ > 0, almost surely,

dimH{t ∈ [0, κ] : Xt = 0} = 1/2. Then, almost surely, simultaneously, for all rationals

r > 0, dimH{t ∈ [0, r] : Xt = 0} = 1/2. This means that there exists a subset Ω0 of Ω of

probability 1 such that for all ω ∈ Ω0 and for all rationals r > 0,

dimH{t ∈ [0, r] : Xt(ω) = 0} = 1/2.
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Let us show that for all ω ∈ Ω0 and a real κ > 0, dimH{t ∈ [0, κ] : Xt(ω) = 0} = 1/2.

Consider an increasing sequence of positive rationals (rn) converging to κ. Clearly,

{t ∈ [0, κ] : Xt(ω) = 0} = ∪∞
n=1{t ∈ [0, rn] : Xt(ω) = 0}

and hence

dimH{t ∈ [0, κ] : Xt(ω) = 0} = sup
n

dimH{t ∈ [0, rn] : Xt(ω) = 0} = 1/2.

Therefore, on Ω0, we have that dimH{t ∈ [0, κ] : Xt(ω) = 0} = 1/2 simultaneously for all

reals κ > 0.

For the general level set Za = {t ∈ [0, 1] : Xt = 0}, it is clear that, Za is empty if

and only if Γa > 1. (Recall that Γa = inf{t ∈ [0, 1] : Xt = a}). We now want to

show that if Γa < 1, then dimH Za = 1/2. By the strong Markov property, the process

Y = (Yt = Xt+Γa
− a : t ≥ 0) is a Brownian motion and we have that Za = Γa + Z(Y )

where Z(Y ) = {t ∈ [0, 1 − Γa] : Yt = 0}. Under the condition Γa < 1, Theorem 5.1

(i) shows that, Z(Y ) is non-empty and has Hausdorff dimension 1/2. Therefore, Za also

has Hausdorff dimension 1/2 because obviously dimH(x + E) = dimH E (for x ∈ R and

E ⊂ R. We conclude that Za is non-empty with positive p = P{Γa < 1} > 0 and has

Hausdorff dimension 1/2.

5.2 Brownian images: Hausdorff dimension

Theorem 5.2 For any compact subset of E ⊂ [0, 1] of Hausdorff dimension α < 1/2,

almost surely, its Brownian image X(E) = {X(t) : t ∈ E} has Hausdorff dimension 2α.

Proof (Following Fouché’s lectures based on Kahane [24, chapter 14]). Because the

modulus of continuity KX of the Brownian motion satisfies

KX(h) ≤
√

2|h| log(1/|h|) ≤
√

2|h|γ

for any 0 < γ < 1/2, Proposition 1.1 yields that, dimH X(E) ≤ (1/γ) dimH E. Since this

holds for any 0 < γ < 1/2, then dimH X(E) ≤ 2 dimH E.

To prove that dimH X(E) ≥ 2 dimH E, we first choose β ∈ (0, 1) such that β/2 < dimH E.

By Frostman’s theorem (Theorem 1.7), E carries a probability measure θ such that

Iβ/2(θ) =
∫

R

∫

R

dθ(x)dθ(y)

|x− y|β
2

<∞.

Let µ be the image measure of θ under the Brownian motionX, that is, µ(A) = θ(X−1(A))

for any Borel subset A of R. Note that µ is a non-zero random measure carried by X(E).

We want to show that Iβ(µ) <∞, almost surely, which implies that dimH X(E) ≥ β and
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hence dimH X(E) ≥ 2 dimH E. We recall (by Theorem 2.13, n = 1) that

Iβ(µ) = c
∫
|u|β−1|µ̂(u)|2du

for some constant c = cβ > 0. It is sufficient to show that J = E[Iβ(µ)] <∞. By Fubini’s

theorem,

J = c
∫
|u|β−1E[|µ̂(u)|2]du.

We have that (after using several applications of Fubini’s theorem),

E(|µ̂|2) =
∫

Ω

∫

R

∫

R
eiu(x−y)dµ(x)dµ(y)dP

=
∫

Ω

∫

R

∫

R
eiu(Xt−Xs)dθ(t)dθ(s)dP

=
∫

R

∫

R

∫

Ω
eiu(Xt−Xs)dPdθ(t)dθ(s)

Because X is a Brownian motion, X(t) −X(s) has the same distribution as X(t− s) for

t ≥ s. Because −X is also a Brownian motion, X(t)−X(s) also has the same distribution

as X(s− t) for t < s. So in both cases, X(t)−X(s) is normally distributed with mean 0

and variance |t− s|. Therefore,

E(eiu(Xt−Xs)) =
1√

2π|t− s|

∫

R
e−x

2/2|t−s|eiuxdx

= e−|t−s|u2/2, (5.1)

where the last equality is just the Fourier transform of the normal distribution (relation

(2.4). Hence, by another application of Fubini’s theorem,

E(|µ̂(u)|2 =
∫

R

∫

R
e−|t−s|u2/2dθ(t)dθ(s)

Therefore, by another application of Fubini’s theorem,

J = c
∫

R

∫

R

∫

R
|u|β−1e−|t−s|u2/2dudθ(t)dθ(s).

The substitution v = u
√
|t− s| yields

J = C
∫

R

∫

R

1

|t− s|β/2dθ(t)dθ(s),

where

C = c
∫

R
|v|β−1e−v

2/2dv <∞ (see Example 2.6).

It follows that J <∞.

Remark 5.3
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A simple proof of this doubling dimension property using nonstandard analysis is given in

[40]. There are many other interesting fractal properties of Brownian motion. Theorem

5.2 is a particular case of the following result ascribed to McKean [37]: for any fixed

compact subset E ⊂ R+, dimH X(E) = min(2 dimH E, 1). But this property does not

hold simultaneously for all compact sets E ⊂ R+ because this should imply that it also

holds for random compact subsets. For example, it should imply that the Hausdorff

dimension of the image of the zero set of Brownian motion has dimension 1, which is a

contradiction.

For dimH E > 1/2, Kaufman [26] has shown that X(E) has an interior point. Kauf-

man [25] has shown that if X is a Brownian motion in dimension d ≥ 2 (that is X =

(X1, X2, . . . , Xd) and the X i’s are independent one dimensional Brownian motions), then

almost surely, for all E ⊂ [0, 1], dimH X(E) = 2 dimH E.

There are also some results for inverse images. For example, for any compact E ⊂ R,

we have dimH X
−1(E) = (1 + dimH E)/2, almost surely (a more general result is given in

[20]). Serlet [45] proved that this holds simultaneously for all compact subsets E of R,

that is, there exists a subset Ω0 of Ω of probability 1 such that for all compact subsets

E of R and for all ω ∈ Ω0, dimH X
−1(ω)(E) = (1 + dimH E)/2 . Many researchers are

interested in extending Brownian fractal properties to more general processes like Lévy

processes [29], [35].

5.3 Brownian images: Fourier dimension

In this section, we discuss Kahane’s construction of Salem sets via Brownian motion [24,

pp 251-255].

Theorem 5.4 Let E be a compact subset of [0, 1] of Hausdorff dimension 0 < α < 1/2.

Then X(E) is almost surely a Salem set of dimension 2α.

What we have to show is that the Fourier dimension of X(E) is 2α. The proof is based

on the following lemma which is a special case of Lemma 1 of Kahane’s book [24, p 252].

Lemma 5.5 Let µ be a positive finite measure carried by a compact set interior to the

closed interval [−1, 1] such that |µ̂(u)| ≤ 1 for all u ∈ R. Let α ∈ (0, 1) and 0 < κ < 1.

If there exists a constant C > 0 such that

|µ̂(n)| ≤ C
√
|κn|−α log |κn| for all large |n|, with n and integer , (5.2)

then there exists a positive constant C ′ depending only on C and α such that

|µ̂(u)| ≤ C ′
√
|κu|−α log |κu| for all large |u|, with u a real.

Proof Let f be a C∞-function carried by a compact set interior to [−1, 1] and equal to
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1 on the support of µ. For any a ∈ [−1, 1], consider the function

fa(x) = eiaxf(x), x ∈ R.

Because f is differentiable, then we have the equality

fa(x) =
∑

n∈Z

f̂a(n)einx, (5.3)

where

f̂a(n) =
∫

R
einxfa(x)dx

are the Fourier coefficients. Because f is C∞ and has bounded support, then each of

its derivatives is bounded. Using the fact that |a| ≤ 1, one can easily verify that for

any q ∈ N, there exists a constant K > 0 (independent of a) such that the derivative

f (q)
a of order q verifies |f (q)

a (x)| ≤ K. For example, for q = 1, we have that |f ′
a(x)| ≤

|a||f(x)| + |f ′(x)| ≤ ‖f‖ + ‖f ′‖ where ‖f‖ = supx∈R |f(x)|.
This is also true for Fourier transforms

̂
f

(q)
a because |f̂ (q)

a (u)| ≤ ∫ |f (q)
a (x)|dx ≤ 2‖f (q)

a ‖.
Then for any positive integer q, there exists a constant K1 > 0 independent of a, such

that

|̂f (q)
a (u)| ≤ K1, for all u.

Since
̂
f

(q)
a (u) = (−iu)qf̂a(u)

it follows that

|f̂a(u)| ≤ K1|u|−q (5.4)

for arbitrary q (and K1 depending only on q). We can now choose q ≥ 2 and conclude

that the series in (5.3) is absolutely convergent.

Let us now fix m ∈ Z and a ∈ [−1, 1] and estimate µ̂(m + a). Using the fact that f = 1

on the support of µ and relation (5.3) we find that

µ̂(m+ a) =
∫
eimxeiaxdµ(x)

=
∫
eimxeiaxf(x)dµ(x)

=
∫
eimxfa(x)dµ(x)

=
∫
eimx

∑

n∈Z

f̂a(n)einxdµ(x) (by relation (5.3))

=
∑

n∈Z

f̂a(n)
∫
ei(n+m)xdµ(x)

=
∑

n∈Z

f̂a(n)µ̂(n +m).
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Therefore, we write

|µ̂(m+ a)| ≤
∑

|n|≤|m|/2
|f̂a(n)µ̂(n+m)| +

∑

|n|>|m|/2
|f̂a(n)µ̂(n +m)|.

Now from condition (5.2) we have that

|µ̂(n+m)| ≤ C
√
|κ(n+m)|−α log(|κ(n+m)|) for large |m+ n|.

If |n| ≤ |m|/2, then |m|/2 ≤ |n+m| ≤ |2m|. Therefore,

|κ(n+m)|−α log(|κ(n+m)|) ≤ |κm/2|−α log(|2κm|) ≤ 2α|κm|−α log |2κm|
≤ 2α|κm|−α 2 log |κm| (for large m)

It is now clear that for |n| ≤ |m|/2 and m large,

|µ̂(n+m)| ≤ C1

√
|κm|−α log(|κm|)

where C1 = 2(1+α)/2C.

In the case n > |m|/2, we use the fact that |µ̂(u)| ≤ 1 for all u. Therefore,

|µ̂(m+ a)| ≤ C1

√
|m|−α log(|m|)

∑

|n|≤|m|/2
|f̂a(n)| +

∑

|n|>|m|/2
|f̂a(n)|.

From relation (5.4), there exists K > 0 (independent of a) such that

|f̂a(n)| ≤ K|n|−3 ≤ K|n|−2−α/2, for all n.

Then
∑

|n|≤|m|/2
|f̂a(n)| ≤ K

∑

|n|∈Z−{0}
|n|−3 < Kπ2/3.

On the other hand,

∑

|n|>|m|/2
|f̂a(n)| ≤ K

∑

|n|>|m|/2
|n|−α/2|n|−2

≤ K|m/2|−α/2
∑

|n|>|m|/2
|n|−2

≤ 2α/2K(π2/3)|m|−α/2

≤ 2α/2K(π2/3)|κm|−α/2

It follows that, for large m,

∑

|n|>|m|/2
|f̂a(n)| ≤ 2α/2(π2/3)K|κm|−α/2 (log |κm|)1/2 .
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Therefore,

|µ̂(m+ a)| ≤ (C1Kπ
2/3 + 2α/2K(π2/3))

√
|κm|−α log(|κm|) for large |m|,

that is,

|µ̂(m+ a)| ≤ C2

√
|κm|−α log(|κm|) for large |m|

where C2 = C1K(π2/3) + 2α/2K(π2/3) and is independent of a. Now we consider a large

|u| for u real and write u = m+ a for m integer and a ∈ (−1, 1). Then obviously, as |m|
and |u| are large enough, |κm| ≥ |κu/2| and log |κm| ≤ 2 log |κu|. Then we find, for large

|m|,

|µ̂(u)| ≤ C2

√
|κm|−α log(|κm|)

≤ C2

√
2|κu/2|−α log(|κu|).

Therefore,

|µ̂(u)| ≤ C ′
√
|κu|−α log(|κu|)

where C ′ = 2(1+α)/2C2.

The fact that the constant C ′ depends only on C will be helpful in the final part of the

proof of Theorem 5.4. We are now ready to prove Theorem 5.4.

Proof (of Theorem 5.4)

Since dimH E = α, then dimH E > α − γ, for any γ > 0, and hence Hα−γ(E) = ∞.

From Frostman’s lemma, E carries a probability measure θ such that

θ(I) ≤ C|I|α−γ , for any interval I. (5.5)

Let µ be the image measure of θ by the Brownian motion X, that is, µ(A) = θ(X−1(A))

for any Borel subset A of R. It is a random measure carried by X(E). We want to show

that there exists a positive constant C ′ depending only on C and α− γ such that, almost

surely, for any ǫ > 0,

|µ̂(u)| ≤ C ′|u|−α+γ+ǫ, for |u| → ∞.

This will imply that the Fourier dimension of X(E) is ≥ 2α almost surely. The result will

then follow because the dimF X(E) ≤ dimH X(E) and dimH X(E) = 2α (Theorem 5.2).

We have that

µ̂(u) =
∫
eixudµ(x) =

∫
eiXsudθ(s).

Then

|µ̂(u)|2 =
∫

R2
ei(Xs−Xt)udθ(s)dθ(t)
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and for any integer q ≥ 1, this generalizes to

|µ̂(u)|2q =
∫

R2q
exp iu[(Xs1 + . . .+Xsq

) − (Xs
′

1
+ . . .+Xs′q

)]

dθ(s1) . . . dθ(sq)dθ(s
′

1) . . . dθ(s
′

q). (5.6)

To simplify the notation, let

f(u, s1, . . . , sq, s
′

1, . . . , s
′

q) = exp iu[(Xs1 + . . .+Xsq
) − (Xs

′

1
+ . . .+Xs′q

)].

Since obviously, f does not change under any permutation of {s1, s2, . . . , sn} and also for

any permutation of {s′1, s
′

2, . . . , s
′

n}, the integral in (5.6) is equal to

(q!)2
∫

0≤s1...≤sq

∫

0≤s′1...≤s
′

q

f(u, s1, . . . , sq, s
′

1, . . . , s
′

q)dθ(s1) . . . dθ(sq)dθ(s
′

1) . . . dθ(s
′

q).

By rearranging the numbers s1, s2, . . . , sq, s
′

1, s
′

2, . . . , s
′

q as an increasing sequence

0 ≤ t1 ≤ t2 ≤ . . . ≤ t2q, we obtain that

|µ̂(u)|2q = (q!)2∑
(ǫ1,...,ǫ2q)∈T

∫
0≤t1...≤t2q exp[iu(ǫ1Xt1 + ǫ2Xt2 + . . .+ ǫ2qXt2q

)]

dθ(t1)dθ(t2) . . . dθ(t2q)

where T is the set of all sequences (ǫ1, . . . , ǫ2q) such that ǫj ∈ {−1, 1} for each j and

ǫ1 + ǫ2 + . . . + ǫ2q = 0. Clearly, T is the set all sequences of 2q objects, for which q of

tehm are equal to 1 and the other remaining q are equal to −1. Then T has (2q)!/(q!q!)

elements.

For any sequence 0 ≤ t1 ≤ t2 ≤ . . . ≤ t2q, the random variables Xt1 , Xt2 − Xt1 , ...,

Xt2q
−Xt2q−1 are independent. Then

E[exp(iu(ǫ1Xt1 + ǫ2Xt2 + . . .+ ǫ2qXt2q
))]

= E[exp(iu(ǫ1 + . . .+ ǫ2q)Xt1 ] × E[exp(iu(ǫ2 + . . .+ ǫ2q)(Xt2 −Xt1)]

×E[exp iuǫ2q(Xt2q
−Xt2q−1)].

Because these random variables (Xt1 , Xt2−Xt1 , ..., Xt2q
−Xt2q−1) are normally distributed

with mean 0 and variances t1, t2 − t1, . . . , t2q − t2q−1 (respectively), we find, using relation

(5.1), that

E[exp(iu(ǫ1Xt1 + ǫ2Xt2 + . . .+ ǫ2qXt2q
))]

= exp[−u2t1(ǫ1 + . . .+ ǫ2q)
2/2) × exp[−u2(t2 − t1)(ǫ2 + . . .+ ǫ2q)

2/2]

× exp[−u2(t2q − t2q−1)ǫ
2
2q/2].
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Therefore,

|µ̂(u)|2q = (q!)2∑
(ǫ1,...,ǫ2q)∈T

∫
0≤t1...≤t2q exp[−u2t1(ǫ1 + . . .+ ǫ2q)

2/2)

× exp[−u2(t2 − t1)(ǫ2 + . . .+ ǫ2q)
2/2]

× exp[−u2(t2q − t2q−1)ǫ
2
2q/2]

dθ(t1)dθ(t2) . . . dθ(t2q).

Let

ψj = u2(ǫj + . . .+ ǫ2q)
2/2, j = 1, 2, . . . , 2q.

It is clear that for each j, ψj ≥ 0 and for even j’s, ψj ≥ u2/2 since |ǫj + . . . + ǫ2q| ≥ 1

since ǫj ∈ {−1, 1}. Therefore by dropping all the factors corresponding to odd j’s the

inequality is reinforced, that is,

E(|µ̂(u)|2q) ≤ (q!)2
∑

(ǫ1,...,ǫ2q)∈T

∫

0≤t1...≤t2q
exp(−(t2 − t1)ψ2) × exp(−(t4 − t3)ψ4) . . .

× exp(−(t2q − t2q−1)ψ2q)dθ(t1)dθ(t2) . . . dθ(t2q).

We can now integrate with respect to tj for even j’s. For example, for j = 2, we find,

using ψj ≥ u2/2, that

∫ t3

t1
exp[−(t2 − t1)ψ2]dθ(t2) =

∫ t3−t1

0
e−tψ2dθ(t+ t1) ≤

∫ ∞

0
e−tu

2/2dθ(t+ t1). (5.7)

This integral can be calculated by parts as follows: take

U = e−tu
2/2, dU = (−u2/2)e−tu

2/2dt;

dV = dθ(t+ t1); V (t) =
∫ t

0
dθ(s+ t1) = θ[t1, t1 + t]

I :=
∫ ∞

0
e−tu

2/2 dθ(t+ t1) = (u2/2)
∫ ∞

0
e−tu

2/2θ[t1, t1 + t]dt

≤ C(u2/2)
∫ ∞

0
e−tu

2/2tα−γdt from (5.5))

= C Γ(α− γ + 1) 2α−γu−2(α−γ).

By repeating the same calculations for t4, t6, . . . , t2q, we obtain that

E(|µ̂(u)|2q) ≤ (q!)2
∑

(ǫ1,...,ǫ2q)∈T

[
C Γ(α− γ + 1) 2α−γu−2(α−γ)

]q ×
∫

0≤t1≤t3...≤t2q−1

dθ(t1)dθ(t3) . . . dθ(t2q−1).

Because θ is a probability measure, we have by symmetry that,

∫

0≤t1≤t3...≤t2q−1

dθ(t1)dθ(t3) . . . dθ(t2q−1) = 1/q!.
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Hence, since T has (2q)!/(q!q!) elements, we find that

E(|µ̂(u)|2q) ≤ (2q)!

q!
(C1)

q(u−2(α−γ))q, (5.8)

where C1 = C Γ(α− γ + 1) 2α−γ. Because (2q)!/(q!) ≤ (2q)q, relation (5.8) yields,

E(|µ̂(u)|2q) ≤
(
C2qu

−2(α−γ))
)q
, (5.9)

where C2 = 2C1.

Now we write inequality (5.9) for all u = n ∈ Z, n 6= 0, by taking q = qn = [log |n|] , the

integer such that qn ≤ log |n| < qn + 1. Then

E(|µ̂(n)|2qn) ≤
(
C2qnn

−2(α−γ)
)qn

,

and, therefore,

E

[(
|µ̂(n)|2

C2qnn−2(α−γ)

)qn]
≤ 1.

This implies that

E

[
|n|−2

(
|µ̂(n)|2

C2qnn−2(α−γ)

)qn]
≤ |n|−2.

By summing, we find:

E


 ∑

n∈Z,n 6=0

[
|n|−2

(
|µ̂(n)|2

C2qnn−2(α−γ)

)qn]
 <∞.

Therefore, by Fatou’s lemma, the series

∑

n∈Z,n 6=0

[
|n|−2

(
|µ̂(n)|2

C2qn|n|−2(α−γ)

)qn]
(5.10)

converges almost surely. Then, almost surely, its general term tends to zero. That is,

almost surely,

|n|−2

(
|µ̂(n)|2

C2qn|n|−2(α−γ)

)qn
→ 0 as |n| → ∞.

Let

an =
|µ̂(n)|2

C2qn|n|−2(α−γ) .

Then |n|−2aqnn → 0 for |n| → ∞. Since qn + 1 > log |n|, then

log(|n|−2aqnn ) = qn log(an) − 2 log |n| ≥ qn log(an) − 2(qn + 1) = qn(log(an) − 2) − 2.
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Then qn(log(an)− 2)− 2 → −∞ and in particular as qn → +∞, log(an) < 2 for large |n|.
Therefore,

|µ̂(n)|2
C2qn|n|−2(α−γ) < e2

and hence

|µ̂(n)|2 < C3qn|n|−2(α−γ) ≤ C3 log |n||n|−2(α−γ) for large |n|

(C3 = e2C2) and this holds almost surely.

For any κ > 0, we can repeat the procedure above by taking for all u = κn, n ∈ Z, n 6= 0,

qn = [log |κn|] instead of qn = [log |n|] in relation (5.9). Then the series (5.10) becomes

∑

n∈Z,n 6=0

[
|κn|−2

(
|µ̂(κn)|2

C2qn|κn|−2(α−γ)

)qn]
.

Since this series must converge almost surely, we deduce, as above that, almost surely,

|µ̂(κn)|2 < C3qn|κn|−2(α−γ) ≤ C3 log |κn||κn|−2(α−γ) for large |n| (5.11)

(C3 = e2C2).

We now fix a subset Ω0 of Ω (of probability 1) such that inequality (5.11) holds on Ω0

simultaneously for all rational numbers κ > 0. Let us now fix ω ∈ Ω0. Because Brownian

paths are continuous and E is compact, then ω(E) is compact. Suppose now that ω(E)

is contained in (−1/κ, 1/κ), for some rational κ > 0. In the same way, we find

|µ̂ω(κn)|2 < C3qn|κn|−2(α−γ) ≤ C3 log |κn||κn|−2(α−γ) for large |n|,

where µω is the value of the random measure µ at ω.

Consider now the measure νω defined by νω(A) = µω(A/κ) for any Borel set A of the

reals. Clearly the support of νω is contained in (−1, 1) and ν̂ω(u) = µ̂ω(κu) for any

u ∈ R. Indeed, for all Borel-measurable function f ,

∫
f(s)dνω(s) =

∫
f(κs)dµω(s).

In particular,

ν̂ω(u) =
∫
eiusdνω(s) =

∫
eiuκsdµω(s) = µ̂ω(κs).

Furthermore, |ν̂ω(u)| = |µ̂ω(κu)| ≤ θ(E) = 1. Then νω fulfills all the hypotheses of Lemma

5.5. Therefore, there exists a constant C ′ > 0 (depending only on C3 and α − γ) such

that

|µ̂ω(κu)|2 = |ν̂ω(u)|2 ≤ C ′ log |κu||κu|−2(α−γ) for large real |u|.

Then, by the variable change u→ κu, we find that

|µ̂ω(u)|2 ≤ C ′ log |u||u|−2(α−γ) for large real |u|
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and this holds for all ω ∈ Ω0. Hence, almost surely, for any ǫ > 0,

|µ̂(u)|2 ≤ C ′|u|−2(α−γ)+ǫ, as |u| → ∞,

since log |u| ≤ |u|ǫ for large values of |u|.
Summarizing, we have that

for any γ > 0, almost surely, for any ǫ > 0,

|µ̂(u)|2 ≤ C ′|u|−2(α−γ)+ǫ, as |u| → ∞.

Therefore, for any γ > 0, almost surely, dimF X(E) ≥ 2α− γ. By considering a sequence

(γn) of rational numbers converging to 0, this implies that, almost surely,

dimF X(E) ≥ 2α.

This result has been extended by Kahane to fractional Brownian motion [24, pp 265-267].
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Chapter 6

Fourier analysis on Brownian level

sets

In this chapter, we first apply Kahane’s method to study the asymptotic decays of Fourier

transform of Dirac measures of Brownian motion. We show that if δa(X) is the Dirac

measure of Brownian motion at the level a, that is the measure defined by the Brownian

local time La at level a, and µ is its restriction to the random interval [0, L−1
a (1)], then

the Fourier transform of µ is such that, with positive probability, for all 0 ≤ β < 1/2, the

function u→ |u|β| ̂δa(X)(u)|2, (u ∈ R) is bounded. From this result we deduce that each

Brownian level set, reduced to a compact interval, is with positive probability, a Salem set

of dimension 1/2. After using Lévy’s formula of local times, we show that the restriction

µ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier transform satisfies

E (|µ̂(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0.

We consider as previously the canonical model of Brownian motion X = (Xt : t ≥ 0)

defined on the space Ω = C[0,∞) and we assume that all paths start at the origin.

6.1 Fourier analysis on passage times

Let (Γa : a ≥ 0) be the passage times process of Brownian motion. We recall that

Γa = inf{t ≥ 0 : Xt = a} and inf ∅ = ∞.

It is shown in [7] that, for any fixed compact subset E of [0,∞) of dimension α, its image

by a stable process with index γ ∈ (0, 2] in R has, almost surely, Hausdorff dimension

min{αγ, 1}. (See also [29] for recent generalisations to Lévy processes.) We, therefore,

have in particular that dimH Γ(E) = dimH E
2

, because (Γa : a ≥ 0) is a stable process of

index 1/2. The same result applies for the process (ρa : a ≥ 0), the right-continuous

inverse of the maximum function of Brownian motion. Clearly, the closure of the image

Γ(E) is such that

Γ(E) ⊂ Γ(E) ∪ ρ(E).
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Therefore,

dimH Γ(E) = dimH Γ(E) =
dimH E

2
.

To show the claim Γ(E) ⊆ Γ(E)∪ ρ(E), we argue as follows: let x ∈ Γ(E). Then there is

a sequence (xn) of elements of Γ(E) that converges to x. Then we assume that xn = Γ(tn)

for tn ∈ E for each n. If we can extract from (xn) an increasing subsequence (yn = Γ(sn))

that converges also to x, then because Γ is injective and increasing, the sequence sn is

also increasing (in E) and hence converges to some point s ∈ E because E is compact.

Then since Γ is left-continuous, we find that yn = Γ(sn) → Γ(s). Then x = Γ(s).

If such an increasing subsequence (yn) does not exist, then we can consider a decreasing

subsequence (zn) of (xn) that converges to x and assume zn = γ(hn) where hn ∈ E. The

sequence (hn) is therefore decreasing (because Γ is increasing) and hence converges to

a limit t ∈ E. In that case, the sequence ρ(hn) also converges to x. Indeed from the

definition of Γ and ρ, we have that for any n ∈ N,

Γ(hn) ≤ ρ(hn) ≤ Γ(hn+1).

Then

|ρ(hn) − Γ(hn)| ≤ |Γ(hn) − Γ(hn+1)| → 0

and hence Γ(hn) and ρ(hn) converge to the same limit x.

Because ρ is right-continuous, we conclude that ρ(hn) → ρ(t). Therefore, ρ(t) = x.

So, in all cases, x ∈ Γ(E) ∪ ρ(E).

Theorem 6.1 For any compact subset E ⊂ [0, 1] of Hausdorff dimension α, there exists

a subset Ω1 of Ω of probability 1 such that, for each ω ∈ Ω1, the image Γω(E) = {Γa(ω) :

a ∈ E} is bounded and its closure is a Salem set of dimension α/2.

Proof The proof is based on the proof of Theorem 5.4. From relation (3.7), we have that

Γ1 < ∞ almost surely. Then we consider a subset Ω0 of Ω of probability 1 such that Γ1

is finite on Ω0 in the sense that for each ω ∈ Ω0, there exists a positive real number hω

such that Γ1(ω) < hω. This implies that Γω(E) ⊂ [0, hω]. We now restrict ourselves to

Ω0. Since dimH E = α, then for any γ > 0, dimH E > α − γ. We have, by Frostman’s

lemma, a probability measure θ carried by E such that

θ(I) ≤ C|I|α−γ , for any interval I.

Let µ be the image measure of θ by the process (Γa : a ≥ 0). This means that µ(A) =

θ(Γ−1
a (A)) for any Borel subset A of R. It is a random measure carried by the closure

Γ(E) of Γ(E).

We want to show that there exists a positive constant C ′ > 0, depending only on C and

α− γ, such that, almost surely, for any ǫ > 0,

|µ̂(u)| ≤ C ′|u|−α−γ
4

+ǫ, for large |u|.
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This will imply that

dimF Γ(E) ≥ α/2.

From the fact that dimH Γ(E) = α/2, it will follow that the Fourier and Hausdorff di-

mensions are equal to α/2.

We have that

µ̂(u) =
∫
eixudµ(x) =

∫
eiΓsudθ(s).

Then

|µ̂(u)|2 =
∫ ∫

ei(Γs−Γt)udθ(s)dθ(t).

For any integer q ≥ 1,

|µ̂(u)|2q =
∫

R2q
exp iu[(Γs1 + . . .+ Γsq

) − (Γs′1
+ . . .+ Γs′q)]

dθ(s1) . . . dθ(sq)dθ(s
′

1) . . . dθ(s
′

q).

By symmetry this integral is equal to

(q!)2
∫

0≤s1...≤sq

∫

0≤s′1...≤s
′

q

f(u, s1, . . . , sq, s
′

1, . . . , s
′

q)dθ(s1) . . . dθ(sq)dθ(s
′

1) . . . dθ(s
′

q)

where

f(u, s1, . . . , sq, s
′

1, . . . , s
′

q) = exp iu[(Γs1 + . . .+ Γsq
) − (Γs′1

+ . . .+ Γs′q)].

By rearranging s1, s2, . . . , sq, s
′

1, s
′

2, . . . , s
′

q as an increasing sequence t1 ≤ t2 ≤ . . . ≤ t2q,

we obtain that

|µ̂(u)|2q = (q!)2 ∑
(ǫ1,...,ǫ2q)∈T

∫
0≤t1...≤t2q exp[iu(ǫ1Γt1 + ǫ2Γt2 + . . .+ ǫ2qΓt2q

)]

dθ(t1)dθ(t2) . . . dθ(t2q)

where, as previously, T is the set of all sequences (ǫ1, . . . , ǫ2q) such that ǫj ∈ {−1, 1} for

each j and ǫ1 + ǫ2 + . . .+ ǫ2q = 0.

The random variables Γ(t1), Γ(t2) − Γ(t1), ..., Γ(t2q) − Γ(t2q−1) are independent. Then

E[exp(iu(ǫ1Γt1 + ǫ2Γt2 + . . .+ ǫ2qΓt2q
))]

= E[exp(iu(ǫ1 + . . .+ ǫ2q)Γt1)] × E[exp(iu(ǫ2 + . . .+ ǫ2q)(Γt2 − Γt1))]

×E[exp(iuǫ2q(Γt2q
− Γt2q−1))].

We recall that Γx − Γy has the same distribution as Γy−x, x ≤ y and by relation (3.8)

E(exp(iuΓa) = exp[−a
√
|u|(1 − i sgn(u))], a > 0.
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Then

E(|µ̂(u)|2q) = (q!)2
∑

(ǫ1,...,ǫ2q)∈T

∫

0≤t1...≤t2q
exp[−t1

√
|u||ǫ1 + . . .+ ǫ2q|(1 − i sgn(u(ǫ1 + . . .+ ǫ2q)))]

× exp[−(t2 − t1)
√
|u||ǫ2 + . . .+ ǫ2q|(1 − i sgn(u(ǫ2 + . . .+ ǫ2q)))]

× exp(−(t3 − t2)
√
|u||ǫ3 + . . .+ ǫ2q|(1 − i sgn(u(ǫ3 + . . .+ ǫ2q))))

× . . .

× exp[−(t2q − t2q−1)
√
|u||ǫ2q|(1 − i sgn(uǫ2q)))]

×dθ(t1)dθ(t2) . . . dθ(t2q).

There are (2q)!/(q!q!) terms in the sum and each term is there with its conjugate. Since

z + z̄ ≤ |z| + |z̄|, (z complex), we find that

E(|µ̂(u)|2q) ≤ (q!)2
∑

{ǫ1,...,ǫ2q}∈T

∫

0≤t1...≤t2q
exp(−t1

√
|u||ǫ1 + . . .+ ǫ2q|)

× exp(−(t2 − t1)
√
|u||ǫ2 + . . .+ ǫ2q|)

× exp(−(t3 − t2)
√
|u||ǫ3 + . . .+ ǫ2q|)

× . . .

× exp(−(t2q − t2q−1)
√
|u||ǫ2q|)

dθ(t1)dθ(t2) . . . dθ(t2q).

Let ψj =
√
|u||ǫj + . . .+ ǫ2q|. It is clear that for each j, ψj ≥ 0 and for even j’s, ψj ≥

√
|u|

because |ǫj + . . . + ǫ2q| ≥ 1. Therefore, by dropping all the factors corresponding to odd

j’s the inequality remains valid, that is,

E(|µ̂(u)|2q) ≤ (q!)2
∑

{ǫ1,...,ǫ2q}∈T

∫

0≤t1...≤t2q
exp[−(t2 − t1)ψ2] × exp[−(t4 − t3)ψ4] . . .

× exp[−(t2q − t2q−1)ψ2q]dθ(t1)dθ(t2) . . . dθ(t2q).

We can now integrate with respect to tj for j even and obtain for example for j = 2,

∫ t3

t1
exp(−(t2 − t1)ψ2)dθ(t2) =

∫ t3−t1

0
e−tψ2dθ(t+ t1) ≤

∫ ∞

0
e−t

√
|u| dθ(t+ t1). (6.1)

This integral can be calculated by parts as follows: take

U = e−t
√

|u|, dU =
√
|u|e−t

√
|u|dt;

dV = dθ(t+ t1); V (t) =
∫ t

0
dθ(s+ t1) = θ[t1, t1 + t] ≤ Ctα−γ

I :=
∫ ∞

0
e−t

√
|u| dθ(t+ t1) =

√
|u|
∫ ∞

0
e−t

√
|u|θ[t1, t1 + t]dt
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≤ C
√
|u|
∫ ∞

0
e−t

√
|u|tα−γdt.

Using the variable change t→ −t
√
|u|, we find that

I ≤ C Γ(α− γ + 1)|u|−α+γ
2 ,

(here Γ is the gamma function and not the passage time process).

By repeating the same calculation for t4, t6, . . . , t2q, we obtain that

E(|µ̂(u)|2q) ≤ (2q)!

q!
(C1)

q(|u|−α+γ

2 )q,

where C1 = C Γ(α− γ + 1). Therefore,

E(|µ̂(u)|2q) ≤
(
C2q|u|

−α+γ
2

)q
, (6.2)

where C2 = 2C1. Now we use this inequality in the similar way we did for inequality (5.9)

in the proof of Theorem 5.4. We find that, almost surely, for large integer |n|,

|µ̂(n)|2 ≤ C3|n|
−α+γ

2 log |n|, where C3 = e2C2. (6.3)

As we discussed in the proof of Theorem 5.4, there exists a subset Ω1 of Ω0 such that,

simultaneously for all rationals k > 0,

|µ̂(κn)|2 < C3qn|κn|
−(α−γ)

2 ≤ C3 log |κn||κn|−2(α−γ) for large |n| (6.4)

For an arbitrary ω ∈ Ω1, there exists a rational number κ > 0 such that Γ1(ω) ≤ 1/κ. By

the same argument as in the proof of Theorem 5.4, Lemma 5.5 implies that there exists

a constant C ′ depending only on C3 and α− γ such that, for all w ∈ Ω1,

|µ̂ω(u)|2 ≤ C ′|u|−α+γ
2 log |u| for large reals|u|.

Remark 6.2 Kahane’s method can be generalized to other stochastic processes for which

an equivalent of relation (6.2) can be explicitly calculated.

Corollary 6.3 For any compact subset E ⊂ [0, 1] of Hausdorff dimension α, the closure

of Γ(E) is, with positive probability contained in [0, 1] and in that case, its closure is a

Salem set with dimension α/2.

Proof Using the notations of Theorem 6.1, consider A = {ω ∈ Ω1 : Γ1(ω) < 1}. We have

that P (A) = P{Γ1 < 1} > 0 and the closure of Γω(E) is a Salem set with dimension α/2

for every w ∈ A.
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Remark 6.4

If we replace the process (Γa : a ≥ 0) by the process (ρa : a ≥ 0) where

ρa = inf{t ≥ 0 : Mt > a, }, Mt = sup
s∈[0,t]

Xs,

(ρ is the right continuous inverse of the maximum process of Brownian motion), then

using the same ideas as in the proof of Theorem 6.1, we have that, for any compact

subset E ⊂ [0, 1] of dimension α, almost surely, the closure ρ(E) is bounded and is a

Salem set of dimension α/2.

6.2 Fourier dimension of zero set

Now we consider the process L−1
0 = (Λt : t ≥ 0) of inverse local times of Brownian motion.

We recall that

L−1
0 (t) = inf{s ≥ 0 : L0(s) > t},

where L0 is the local time process at 0. As discussed in Section 4.5, L0 can be seen as

the maximum function of another version of Brownian motion. Then L−1
0 is the right-

continuous inverse of the maximum process of another version of Brownian motion. There-

fore, by Remark 6.4, we have the following theorem.

Theorem 6.5 For any compact subset E ⊂ [0, 1] of Hausdorff dimension α, there exists

a subset Ω1 of Ω of probability 1 such that, for each ω ∈ Ω1, the image L−1
0 (ω)(E) =

{L−1
0 (a)(ω) : a ∈ E} is bounded and its closure is a Salem set of dimension α/2.

We will now consider the case where E is the interval [0, 1].

Theorem 6.6 Let Z be the zero set of Brownian motion. Then,

(i) almost surely, Z ∩ [0, L−1
0 (1)] is bounded and is a Salem set of dimension 1/2.

(ii) with positive probability, the intersection Z ∩ [0, 1] is a Salem set with dimension

1/2.

Proof It is clear that (ii) is a direct consequence of (i) because L−1
0 (1) ≤ 1 with positive

probability. If L−1
0 (1) ≤ 1, then Z ∩ [0, L−1

0 (1)] ⊂ Z ∩ [0, 1] and hence Z ∩ [0, 1] is a Salem

set of dimension 1/2 because, obviously, dimF Z ∩ [0, L−1
0 (1) ≤ dimF Z ∩ [0, 1].

The proof of (i) is based on Theorem 6.5. Consider the case where E = [0, 1] and θ

is the Lebesgue measure on [0, 1]. Clearly, θ(I) = |I|. Let us now take the image of

E by the process L−1
0 . We have that L−1

0 (E) ⊂ [0, L−1
0 (1)], because the process L−1

0 is

increasing. Since, almost surely, L−1
0 (1) < ∞, we consider again a subset Ω0 of Ω such

that L−1
0 (1) < ∞ everywhere in Ω0. Then, L−1

0 (E) ⊂ Z. The image measure of θ by the

process L−1
0 is clearly the Dirac measure δ(X) restricted to the interval [0, L−1

0 (1)]. We
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denote this restriction by µ. By Theorem 6.5, there exists a constant C ′ > 0 and a subset

Ω1 of Ω0 such that everywhere in Ω1,

|µ̂(u)|2 ≤ C ′|u|− 1
2 log |u| for large reals|u|.

Because the support of the measure µ is contained in Z ∩ [0, L−1
0 (1)], we conclude that

Z ∩ [0, L−1
0 (1)] is a Salem set everywhere in Ω1.

Remark 6.7

What we have shown in Theorem 6.6 (ii) is that, with positive probability, the restriction

µ of the Dirac measure on [0, L−1
0 (1)] has its support included in the interval [0, 1] and

verifies relation

|µ̂(u)|2 ≤ C ′|u|− 1
2 log |u| for large reals|u|.

Nothing is said about the restriction of the Dirac measure on a deterministic interval like

[0, 1]. We will discuss this issue in the last section of this chapter.

6.3 Fourier dimension of level sets

Theorem 6.8 For any a ∈ R, the Brownian level set Za = {t ≥ 0 : Xt = a} is, such

that, Za ∩ [0, 1] is non-empty with positive probability and in this case, is a Salem set.

Proof The idea is to reduce to zero set by applying the strong Markov property of

Brownian motion. We consider the Dirac measure δa(X) of Brownian motion at level a,

the measure defined by the local time process La(t) at level a. Consider now the Brownian

motion Yt = Xt+Γa
− a, where Γa is the passage time process at a. The zero set ZY of Y

is equal to the level set Za of X. Let us denote by LY0 (t) the local time of the Brownian

motion Y at zero. We have that

LY (t) = lim
ǫ→0

1

2ǫ

∫ t

0
1|Y |≤ǫ(s)ds

= lim
ǫ→0

1

2ǫ

∫ t

0
1|X−a|≤ǫ(s+ Γ)ds

= lim
ǫ→0

1

2ǫ

∫ t

0
1|X−a|≤ǫ(s+ Γa)ds

= lim
ǫ→0

1

2ǫ

∫ t+Γa

Γa

1|X−a|≤ǫ(h)dh

= lim
ǫ→0

1

2ǫ

∫ t+Γa

0
1|X−a|≤ǫ(h)dh

= La(t+ Γa).

We conclude that La(t + Γa) is the local time at zero of another version of Brownian

motion (independent of a) and in particular, it has the same distribution with L0(t) (the
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local time of Brownian motion X at 0). Let L−1
a be the inverse of the local time La (of

X) defined by

L−1
a (t) = inf{s ≥ 0 : La(s) > t}.

Then, we have that

L−1
a (t) = Γa + ΛY (t)

where ΛY (t) is the inverse local time at zero of the Brownian motion Y . The measure

defined by L−1
a (t) is the Dirac measure δa(X) of Brownian motion at level a. We have

that, almost surely, L−1
a (1) < ∞. Let us now fix a subset Ω0 of Ω of probability 1 for

which L−1
a (1) <∞ everywhere. Let νa be the image measure of the Lebesgue measure on

[0, 1] by the process L−1
a . Then νa is the restriction of δa(X) to the interval [0, L−1

a (1)].

We have that

ν̂a(u) =
∫
eiuL

−1
a (t)dt

= eiuΓa

∫
eiu(L−1

a (t)−Γa)dt

= eiuΓa

∫
eiuΛY (t)dt

Then

|ν̂a(u)| = |
∫
eiuΛY (t)dt| = |η̂(u)|

where η is the image measure of the Lebesgue measure on [0, 1] by the process (ΛY (t) :

t ≥ 0). We already know, from the proof of Theorem 6.6 that, there exists a constant

C ′ > 0, and a subset Ω1 of Ω0 of probability 1 such that, everywhere on Ω1,

|η̂(u)|2 ≤ C ′|u|− 1
2 log |u| for large reals|u|.

Then we have that on Ω1,

|ν̂a(u)| ≤ C ′|u|− 1
2 log |u| for |u| → ∞.

It follows that Za ∩ [0, L−1
a (1)] = Za ∩ [Γa, L

−1
a (1)] is a Salem set.

We now consider the subset A of Ω1 defined by A = {w ∈ Ω1 : L−1
a (1) < 1}. Clearly

P (A) > 0 and then on A, we have that Za ∩ [0, L−1
a (1)] ⊂ Za ∩ [0, 1] and is a Salem set.

It follows that, with positive probability, Za ∩ [0, 1] is non-empty and is a Salem set with

dimension 1/2.

6.4 The Fourier transform of the Dirac measure of

Brownian motion on the unit interval

In the previous sections, we analysed the restrictions of the Dirac measure δ(X) of Brow-

nian motion only on random intervals like [0, L−1(1)] where L−1 is the inverse local time
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at 0. We have shown that, if µ denotes the restriction of δ(X) on [0, L−1(1)], then, almost

surely,

|µ̂(u)|2 = O(|u|− 1
2 log |u|) for large reals |u|.

We essentially used the fact that the process of inverse local times of Brownian motion

(at the origin) has independent and stationary increments and considered the measure µ

as the image of the Lebesgue measure λ on [0, 1] by the process (L−1(t) : t ≥ 0).

The restriction of the Dirac measure of Brownian motion on a deterministic interval like

[0, 1] can also be seen as the image measure of the Lebesgue measure on the random

interval [0, L(1)] by the same process L−1 (L is the Brownian local time process zero).

However, it is difficult to analyse its Fourier transform by the method developed in the

proof of Theorem 6.1. Indeed, we should have to calculate the expectation of the integral

∫ L(1)

0
eiuL

−1
0 (t)dt

which seems to be very difficult to handle. There is also a problem of generalization to

other stochastic processes. The notion of local times has been extended to other more

general processes and it is an open problem to study the Fourier structure of their zero

sets [46]. No one can expect that the inverse local times of general processes will have

independent stationary increments as it is the case for Brownian motion. In this section

we develop a different approach to study the Fourier structure of the zero set of Brownian

motion, which may be extended to some general processes.

We consider the restriction of the Dirac measure of Brownian motion δ(X) on the interval

[0, 1] and prove the following result:

Theorem 6.9 For some constant C > 0,

E
(
| ̂δ(X)(u)|2

)
≤ C|u|−1/2, u 6= 0. (6.5)

The proof of this theorem is based on the following propositions. The first is due to

Fouché [15].

Proposition 6.10 Let δ(X) be the Dirac measure of Brownian motion restricted on the

interval [0, 1]. Then, almost surely,

̂δ(X)(u) = lim
n→∞

n

2

∫ 1

0
1|X|≤1/n(s)e

iusds. (6.6)

Proof We recall that the measure δ(X) is defined by the local time L(t) : 0 ≤ t ≤ 1 at

zero and

L(t) = lim
ǫ↓0

1

2ǫ

∫ t

0
1|X|≤ǫ(s)ds.

There exists a subspace Ω0 ⊂ Ω of probability 1 such that for any 0 ≤ t ≤ 1, L(t) exists

(and is finite) on Ω0. So, we restrict ourselves on Ω0. Consider the sequence (Ln) of

77



functions defined on [0, 1] by

Ln(t) =
n

2

∫ t

0
1|X|≤1/n(s)ds, n = 1, 2, . . .

Because Ln is an non-decreasing function, it defines a measure µn on [0, 1] by µn[a, b) =

Ln(b)−Ln(a). Clearly, (Ln) converges pointwise to L and, therefore, by the portmanteau

theorem, the sequence (µn) converges weakly to the Dirac measure δ(X) of Brownian

motion. As a consequence, by the same theorem, the Fourier transform of µn converges

pointwise to the Fourier transform of δ(X), that is

̂δ(X)(u) = lim
n→∞

µ̂n(u) = lim
n→∞

∫ 1

0
eiusdµn(s), u ∈ R.

The distribution function of µn is Ln and is differentiable with derivative

L′
n(s) =

n

2
1|X|≤1/n(s).

Therefore,

µ̂n(u) =
n

2

∫ 1

0
eius1|X|≤1/n(s)ds

from which we deduce that

̂δ(X)(u) = lim
n→∞

n

2

∫ 1

0
1|X|≤1/n(s)e

iusds.

Proposition 6.11 With the notations in the proof of Proposition 6.10, we have that

E
(
| ̂δ(X)(u)|2

)
≤ lim

n→∞
E
(
|µ̂n(u)|2

)

where E denotes the expectation.

Proof This is a consequence of Fatou’s lemma. We already know that |µ̂n(u)|2 converges

to | ̂δ(X)(u)|2 pointwise on Ω0. Then

E
(
| ̂δ(X)(u)|2

)
=

∫

Ω0

| ̂δ(X)(u)|2dP

=
∫

Ω0

lim
n→∞

|µ̂n(u)|2dP

≤ lim inf
n→∞

∫

Ω0

|µ̂n(u)|2dP

= lim inf
n→∞

E
(
|µ̂n(u)|2

)
.

Let us show that the limit limn→∞E (|µ̂n(u)|2) exists. By Fubini’s theorem, we have that

E
(
|µ̂n(u)|2

)
=

(
n

2

)2 ∫ 1

0

∫ 1

0
E
(
1|X|≤1/n(s)1|X|≤1/n(t)

)
eiuse−iutdsdt
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=
(
n

2

)2 ∫ 1

0

∫ 1

0
P (|X(s)| ≤ 1/n, |X(t)| ≤ 1/n) eiuse−iutdsdt

=
(
n

2

)2 ∫

0≤s≤t≤1
P (|X(s)| ≤ 1/n, |X(t)| ≤ 1/n) eiuse−iutdsdt

+
(
n

2

)2 ∫

0≤t≤s≤1
P (|X(s)| ≤ 1/n, |X(t)| ≤ 1/n) eiuse−iutdsdt.

Then

E
(
|µ̂n(u)|2

)
=
(
n

2

)2

(A+ Ā)

where

A =
∫

0≤s≤t≤1
P (|X(s)| ≤ 1/n, |X(t)| ≤ 1/n) eiuse−iutdsdt.

Using relation (3.1), we have that

A =
∫

0≤s≤t≤1

∫ −1/n

−1/n

∫ −1/n

−1/n

e−x
2/2s

√
2πs

e−(y−x)2/2(t−s)
√

2π(t− s)
eiu(t−s)dxdydsdt.

Because

fn(s, t) =
∫ −1/n

−1/n

∫ −1/n

−1/n

e−x
2/2s

√
2πs

e−(y−x)2/2(t−s)
√

2π(t− s)
dxdy

≤
(

2

n

)2 1

2π
√
s(t− s)

,

we can now apply the dominated convergence theorem. We find that,

lim
n→∞

(
n

2

)2

A =
∫

0≤s≤t≤1

[
lim
n→∞

(
n

2

)2

fn(s, t)

]
eiu(t−s)dsdt. (6.7)

Now we have that

lim
n→∞

(
n

2

)2

fn(s, t) = lim
n→∞

1

λ(Bn)

∫

Bn

e−x
2/2s

√
2πs

e−(y−x)2/2(t−s)
√

2π(t− s)
dxdy

where λ is the Lebesgue measure and Bn is the square −1/n ≤ x, y ≤ 1/n. Since the

function

h(x, y) =
e−x

2/2s

√
2πs

e−(y−x)2/2(t−s)
√

2π(t− s)

is continuous at the origin, we find that

lim
n→∞

(
n

2

)2

fn(s, t) = lim
n→∞

1

λ(Bn)

∫

Bn

h(x, y)dxdy = h(0, 0) =
1

2π
√
s(t− s)

.

(We have used the fact that if g ∈ L1(Rn) and g is continuous at x, then x is a Lebesgue
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point of g, see for example, [42, p 138].) Then, relation (6.7) yields

lim
n→∞

(
n

2

)2

A =
∫

0≤s≤t≤1

1

2π
√
s(t− s)

eiu(t−s)dsdt

= (2π)−1
∫ 1

0

∫ 1

s

eiu(t−s)
√
s(t− s)

dsdt

= (2π)−1
∫ 1

0

1√
s

(∫ 1−s

0

eiuz√
z
dz

)
ds

= π−1
∫ 1

0

1√
s

(∫ √
1−s

0
eiuz

2

dz

)
ds

= π−1|u|−1/2
∫ 1

0

1√
s



∫ √

(1−s)|u|

0
eiz

2 sgn(u)dz


 ds.

Therefore, the limit limn→∞E (|µ̂n(u)|2) exists and is given by

lim
n→∞

E
(
|µ̂n(u)|2

)
= 2π−1|u|−1/2

∫ 1

0

1√
s



∫ √

(1−s)|u|

0
cos(z2)dz


 ds.

It is well-known (see, for example, [30]) that the Fresnel integral

C(x) =
∫ x

0
cos(z2)dz, (x ≥ 0)

is such that 0 ≤ C(x) ≤ C(
√
π/2) < 1. Therefore,

E| ̂δ(X)(u)|2 ≤ lim
n→∞E

(
|µ̂n(u)|2

)
≤ 4π−1|u|−1/2.

6.5 Some open problems

The following problems still require further investigations.

Problem 1 We have shown that, for every a ∈ [0, 1], the level set Za ∩ [0, 1] is a Salem

set with positive probability. It is not known whether this property holds simultaneously

for all a ∈ [0, 1].

Problem 2 Given a compact subset E ⊂ [0, 1], it is not known whether its Brownian

inverse image X−1(E) ∩ [0, 1] is a Salem set.

Problem 3 We have proven that the Dirac measure of Brownian motion δ(X) (restricted

to [0, 1]) is such that its Fourier transform satisfies E
(
| ̂δ(X)(u)|2

)
≤ C|u|−1/2, u 6= 0 and

C > 0. An improvement of this result should be to find the exact asymptotic decay of
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̂δ(X)(u) and to generalize the procedure to other stochastic processes, for example the

fractional Brownian motion and the Brownian bridge.
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Concluding remarks

In this thesis, we have been able to study, partially, the Fourier structure of level sets of

Brownian motion using the notion of local times.

We showed that, if δa(X) is the Dirac measure of Brownian motion at the level a, that is

the measure defined by the Brownian local time La at level a, and µ is its restriction to

the random interval [0, L−1
a (1)], then the Fourier transform of µ is such that, with positive

probability, for all 0 ≤ β < 1/2, the function u → |u|β| ̂δa(X)(u)|2, (u ∈ R), is bounded.

From this we deduced that each Brownian level set, reduced to a compact interval, is

with positive probability, a Salem set of dimension 1/2. The proofs are based on the fact

that the inverse local time process of Brownian motion has independent and stationary

increments. Using Levy’s original definition of local times, we showed that the restriction

µ of δ0(X) to the deterministic interval [0, 1] is such that its Fourier transform satisfies

E (|µ̂(u)|2) ≤ C|u|−1/2, u 6= 0 and C > 0. This result can be improved by estimating the

exact decay of this measure at infinity. The procedure may possibly be generalized to

study the Fourier structure of level sets of other stochastic processes.
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7(283–339), 1939.
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