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Summary

The notion of a fuzzy metric space due to George and Veeramani has many

advantages in analysis since many notions and results from classical metric space

theory can be extended and generalized to the setting of fuzzy metric spaces, for

instance: the notion of completeness, completion of spaces as well as extension of

maps. The layout of the dissertation is as follows:

Chapter 1 provide the necessary background in the context of metric spaces, while

chapter 2 presents some concepts and results from classical metric spaces in the

setting of fuzzy metric spaces. In chapter 3 we continue with the study of fuzzy

metric spaces, among others we show that: the product of two complete fuzzy metric

spaces is also a complete fuzzy metric space.

Our main contribution is in chapter 4. We introduce the concept of a standard

fuzzy pseudo metric space and present some results on fuzzy metric identification.

Furthermore, we discuss some properties of t−nonexpansive maps.

Keywords: Metric space, Cauchy sequence, Compactness, Precompactness,

Completeness, Continuity, Uniform Continuity, Isometry, Uniform Convergence,

Separable, Nested, Closed sets, Diameter, Pseudo metric space, Fuzzy metric space,

Standard fuzzy metric space, Fuzzy pseudo metric space, Metric identification, Fuzzy

metric identification, Nonexpansive map, t−nonexpansive map, t−uniformly

continuous map, t−isometry map, Quotient map, Quotient topology, Quotient space,

Natural map, Topological Space.
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Symbols

∀ For all

∈ Element of

∃ There exists

⊂ Proper subset of

⊆ Subset of

R Set of real numbers

Q Set of rational numbers

N Set of positive integers {1, 2, 3, ...}

N0 = {0, 1, 2, ...}

Rn n-Dimensional Euclidean space

I {x ∈ R : −1 ≤ x ≤ 1}

∪ Union

∩ Intersection

⇔ If and only if

Sup Supremum

Inf Infimum

∅ Empty set

f−1 Inverse of function f

∴ Therefore

Ac Complement of the set A

Ā Closure of the set A

[a, b] Closed interval

(a, b) Open interval

B(x, r, t) Open ball with center x and radius r, 0 < r < 1, t > 0

B[x, r, t] Closed ball with center x and radius r, 0 < r < 1, t > 0

(X,M, ∗) Fuzzy metric space
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Chapter 1

Introduction.

The aim of this chapter is to provide the background information and results that will

be useful throughout the dissertation. We provide definitions, propositions, remarks

and theorems (mostly without proof) and examples in the context of metric spaces.

Some of the results in this chapter will be extended and generalized in the subsequent

chapters. Most of the work presented in this chapter is well known and can be found

in the literature, see [10],[22],[31],[32],[42] and [49].

1.1 Convergence and completeness in metric spaces.

Definition 1.1.1 A metric space (X, d) is a set X together with a function

d : X ×X → R such that for all x, y and z in X the following conditions hold:

M1. d(x, y) ≥ 0

M2. d(x, y) = 0 if and only if x = y

M3. d(x, y) = d(y, x) Symmetric Property

M4. d(x, z) ≤ d(x, y) + d(y, z) Triangle inequality.

If all these conditions hold but for M2 we only have d(x, x) = 0, then d is a pseudo

metric. We then call (X, d) a pseudo metric space.
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The following example shows the space (X, d) that satisfies the condition of a metric

space.

Example 1.1.1 Let X = Rn, define a function d∞ : Rn × Rn → R by

d∞(x, y) = max
1≤i≤n

|xi − yi|.

The function d∞ is usually called the max metric on Rn. Thus (X, d∞) is a metric

space.

The next example provides a space (X, d) which is not a metric space.

Example 1.1.2 Let X = R. Define the function d : X ×X → R by (x− y)2. Then

(X, d) is not a metric space.

Definition 1.1.2 Let (X, d) be a metric space and r a real number with r > 0. The

open ball in (X, d) of radius r centered at x ∈ X is defined by

B(x, r) = {y ∈ X : d(x, y) < r}.

Proposition 1.1.1 Let B(x, r1) and B(x, r2) be open balls with the same center

x ∈ X, where r1, r2 > 0. Then,

B(x, r1) ⊆ B(x, r2)

or

B(x, r2) ⊆ B(x, r1).

Definition 1.1.3 Let (X, d) be a metric space, {xn} be a sequence in X and x ∈ X.

The sequence {xn} converges to a point x in X if for each ε > 0 there is a positive

integer N such that d(xn, x) < ε whenever n ≥ N.

Definition 1.1.4 Let (X, d) be a metric space and A a subset of X. A point x ∈ X

is called a limit point of A if each open ball with the center x contains at least one

point of A different from x, that is, {B(x, r) − {x}} ∩ A 6= ∅. The set of all limit

points of A is denoted by A′ and is called the derived set of A.

3



Remark 1.1.1 If a sequence {xn} in a metric space (X, d) has a limit x we say that

the sequence {xn} is convergent and we shall write

xn → x

or

lim
n
d(xn, x) = 0.

If a sequence {xn} in a metric space (X, d) does not converge, it is said to diverge.

We provide an example of a convergent sequence in a metric space.

Example 1.1.3 Let X = R and define a function d : X ×X → [0,∞) by

d(x, y) = |x− y|,

for all x, y ∈ R. The function d so defined is called the usual metric on R. Let the

sequence {xn} in R be defined by

{ 1

n
: n ∈ N}.

Then

lim
n
d(xn, x) = 0,

where x = 0.

Definition 1.1.5 Let (X, d) be a metric space. A neighborhood of the point x0 ∈

X is any open ball in (X, d) with the center x0.

Definition 1.1.6 Let (X, d) be a metric space. If A ⊂ X and x ∈ X, then x is a

cluster point of A if every neighborhood of x contains a point of A different from

x.

Example 1.1.4 Let X = R be equipped with the usual metric d and define the

sequence {xn} in X by

{ 1

n
: n ∈ N}.

Then 0 is a cluster point of {xn}.
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Remark 1.1.2 If x is a limit of the sequence {xn}, n ∈ N in a metric space (X, d)

then x is a cluster point. But the converse is not true.

Example 1.1.5 Let the sequence {xn} in R with the usual metric d be defined by

{(−1)n : n ∈ N}.

Then -1 and 1 are the cluster points of {xn}. But the sequence {xn} does not

converge. Note that the sequence {(−1)n} does not have a limit point in (X, d).

Definition 1.1.7 A sequence {xn} of points in a metric space (X, d) is called a

Cauchy sequence if for each ε > 0 there exists a positive integer N such that

d(xn, xm) < ε whenever n,m ≥ N.

Remark 1.1.3 As a matter of notation, if the sequence {xn} in a metric space

(X, d) is Cauchy, then we shall write

lim
n,m

d(xn, xm) = 0.

Definition 1.1.8 A metric space (X, d) is complete if every Cauchy sequence in

(X, d) converges.

We provide an example of metric space (X, d) which is complete.

Example 1.1.6 The metric space of Example 1.1.3 is complete.

Proposition 1.1.2 A convergent sequence {xn} in a metric space is a Cauchy

sequence.

An example of Cauchy sequence in a metric space (X, d) is given below:

Example 1.1.7 Let X = R be equipped with the usual metric d and define the

sequence {xn} in X by

{1− 1

2n
: n ∈ N}.

5



If m ≥ n then

d(xn, xm) =
1

2n
− 1

2m
.

It follows that

lim
n,m

d(xn, xm) = 0,

hence the sequence {1− 1
2n : n ∈ N} is a Cauchy sequence.

We provide an example of a sequence in a metric space (X, d) which is not a Cauchy

sequence.

Example 1.1.8 Let X = R be equipped with the usual metric d. Define the sequence

{xn} by

xn = 1 +
1

2
+ ...+

1

n

for n ∈ N. If m > n, then

d(xm, xn) =
1

n+ 1
+ ...+

1

m
.

It can be shown that the sequence is not Cauchy. Since (X, d) is a complete metric

space we conclude that {xn} is not a convergent sequence.

Observe that not every Cauchy sequence in a metric space converges. This is

illustrated by an example below:

Example 1.1.9 Let X = (0, 1) be equipped with the usual metric d. Then the

sequence {1
2
, 1

3
, 1

4
, ...} in X is Cauchy but does not converge to a point in X. This

shows that a metric space (X, d) is not complete.

Definition 1.1.9 Let (X1, d1) and (X2, d2) be metric spaces and let x = (x1, x2) and

y = (y1, y2) be arbitrary points in the product X = X1 ×X2. Define

d(x, y) = max{d1(x1, y1), d2(x2, y2)}.

Then d(x, y) = max{d1(x1, y1), d2(x2, y2)} is a metric on X and (X, d) called the

product of the metric spaces (X1, d1) and (X2, d2).
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Proposition 1.1.3 Let (Xn, dn), n = 1, 2, ... be metric spaces. Then

X = Π∞n=1Xn

with the metric d defined by

d(x, y) =
∞∑
n=1

2−ndn(xn, yn),

where x = {xn} and y = {yn} are in X, is a complete metric space if and only if

each (Xn, dn), n = 1, 2, ... is complete.

Definition 1.1.10 A subset A of a metric space (X, d) is said to be open if given

any point x ∈ A, there exists r > 0 such that B(x, r) ⊆ A.

Definition 1.1.11 If A is a subset of X, we define the complement of A (relative

to X) denoted by Ac as the set of elements that are in X but not in A. Thus

X − A = {x ∈ X : x /∈ A}.

Definition 1.1.12 Let A be a subset of a metric space (X, d). Then A is said to be

closed if it contains each of its limits points, that is A′ ⊆ A.

Closed subsets can be characterized in terms of open subsets as follows: A subset A

of a metric space (X, d) is closed if and only if its complement Ac is open.

The next example discusses the properties of closed subsets in R with the usual

metric.

Example 1.1.10 The subset [a, b] of R equipped with the usual metric is closed since

its complement

R− [a, b] = (−∞, a) ∪ (b,∞),

the union of two open infinite intervals is open. Similarly [a,∞) is closed, because

its complement (−∞, a) is open.

Proposition 1.1.4 In any metric space (X, d) each open ball is an open set.
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Proposition 1.1.5 In any metric space (X, d) each closed ball is a closed set.

Definition 1.1.13 Let A be a subset of a metric space (X, d). The set A ∪ A′ is

called the closure of A and is denoted by Ā.

Definition 1.1.14 Let (X, d) be a metric space and let A be a nonempty subset of

X. We say that A is bounded if there exists N > 0 such that

d(x, y) ≤ N, for all x, y ∈ A.

If A is bounded, we define the diameter of A as

dia(A) = sup{d(x, y) : x, y ∈ A}.

If A is unbounded, we write

dia(A) =∞.

If A = ∅ we write dia(A) = 0.

Definition 1.1.15 A subset A of a metric space (X, d) is said to be

(i). Rare (or nowhere dense) in X if its closure Ā has no interior points.

(ii). Meager (or of first category) in X if A is the union of countable many sets

each of which is rare in X.

(iii). Non-meager (or of second category) in X if A is not a meager in X.

The next result characterizes completeness in metric spaces.

Theorem 1.1.1 Baire Category Theorem (Complete metric space). Let (X, d)

be a complete metric space. Then no nonempty open subset of X is of first category,

that is, the union of a countable collection of nowhere dense subsets.

Definition 1.1.16 Let (X, d) and (Y, ρ) be two metric spaces. A mapping

f : (X, d)→ (Y, ρ)

8



is an isometry if

ρ(f(x), f(y)) = d(x, y)

for all x, y ∈ X. The metric space (X, d) is said to be isometric to the metric space

(Y, ρ) when there exists some isometry from (X, d) into (Y, ρ).

Definition 1.1.17 Let (X, d) be a metric space. A metric space (X̃, d̃) is said to be

a completion of the metric space (X, d) if (X̃, d̃) is complete and (X, d) is isometric

to a dense subset of (X̃, d̃).

Example 1.1.11 The set R of real numbers with the usual metric is the completion

of the set Q of rational numbers, since R is complete and Q is a dense subset of R.

Theorem 1.1.2 Every metric space (X, d) has a completion and any two

completions of (X, d) are isometric to each other.

Remark 1.1.4 In other words, up to isometry, there exists a unique completion of

any metric space. In what follows we shall call such a completion, the completion.

Definition 1.1.18 A topological space is a pair (X, τ) consisting of a set X and

a collection τ of subsets of X called open sets, satisfying the following conditions:

(i). The union of a family of open sets is open.

(ii). The intersection of a finite family of closed sets is closed.

(iii). X and ∅ are open sets.

Definition 1.1.19 Let (X, d) be a metric space and A1, A2, ... be a sequence of sets.

Then A1, A2, ... is said to be nested if

A1 ⊃ A2 ⊃ A3 ⊃ ...

Theorem 1.1.3 Every nested sequence of nonempty closed sets with metric diameter

zero has nonempty intersection.
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1.2 Continuity and uniform continuity in metric

spaces.

Definition 1.2.1 Let (X, d) be a metric space and A ⊆ X. Let Ĝ be a collection

of open sets in X with the property that A ⊆ ∪{G : G ∈ Ĝ} equivalently, for each

x ∈ A, there is a G ∈ Ĝ such that x ∈ G. Then Ĝ is called an open cover or an

open covering of A. A finite sub-collection of Ĝ which is itself a cover is called a

finite sub-cover or a finite sub-covering of A.

Definition 1.2.2 A metric space (X, d) is said to be compact if every open

covering Ĝ of X has a finite sub-covering, that is, there is a finite sub-collection

{G1, G2, G3, ..., Gn} ⊆ Ĝ such that

X = ∪ni=1Gi.

Remark 1.2.1 In a compact metric space (X, d) any sequence of closed sets will have

a nonempty intersection provided each finite collection of these sets has nonempty

intersection.

Proposition 1.2.1 Every compact subset A of a metric space X is bounded.

One of the most important properties of a closed and bounded interval in R when

equipped with the usual metric is given in the next theorem.

Theorem 1.2.1 Heine Borel Theorem. Let A = [a, b] be a closed and bounded

interval, and let Ĝ = {Gi : i ∈ I} be a set of open intervals which covers A, that is,

A ⊂ ∪iGi. Then Ĝ contains a finite subset, say {Gi1 , ..., Gim} which also covers A,

that is,

A ⊂ Gi1 ∪Gi2 ∪ ... ∪Gim .

We provide an example which does not satisfy the properties of Heine Borel Theorem.
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Example 1.2.1 Let X be the set of real numbers with the usual metric. Consider

the closed infinite interval A = [0,∞). A is closed but not compact. It is covered by

the set of open sets

Ĝ = {Gn : n ∈ N}

where

Gn = [0, n),

but no finite open subset of sets covers [0,∞).

Every closed and bounded interval on the real line R with the usual metric is compact;

this follows from the Heine Borel theorem. In particular, we provide the following

example:

Example 1.2.2 Let X be the set of real numbers with the usual metric. Then the

closed interval [0, 1] is compact by the Heine Borel Theorem, since [0, 1] is bounded.

Next, we provide an example of a metric space which is not compact.

Example 1.2.3 Let N0 = {0, 1, 2, ...} and define d : N0 × N0 → [0,∞) by

d(x, y) =

 0 if x = y

1 if x 6= y

The function d is called discrete metric. Therefore the space (N0, d) is not a

compact metric space, since the sets

G = {Gn}∞n=1, Gn = {x ∈ N0 : 0 ≤ x ≤ n},

cover N0 but no finite collection of such sets can cover N0. However (N0, d) is a

bounded metric space.

Proposition 1.2.2 Let A be closed subset of a compact metric space (X, d). Then

A is also compact.

11



Definition 1.2.3 X is countable infinite(denumerable) iff X ' N,

X is finite iff there exists n ∈ N, X ' n,

X is countable iff X is finite or denumerable.

Example 1.2.4 The set Z of integers is countably infinite.

Definition 1.2.4 A topological space (X, τ) is called first countable space iff it

has a countable neighborhood base at each point.

Definition 1.2.5 Let X be a topological space with topology τ. A collection B of

subsets of X is called a base of τ if:

(i). Each member of B is open in X,

(ii). Each open subset of X is the union of some collection of sets belonging to B.

Definition 1.2.6 A topological space is said to be second countable or is said to

satisfy the second axiom of countability if the topology on the space can be generated

by countable base.

Example 1.2.5 Let X be the set of real numbers with the usual metric. The

collection {(x, y) : x, y ∈ Q} of all open intervals with rational endpoints form

countable base for the open sets of R.

Theorem 1.2.2 Every metric space satisfies the first condition of countability.

Definition 1.2.7 Let (X, d) be a metric space. If there is a countable dense subset

in (X, d) then, (X, d) is said to be separable.

We now provide an example of a metric space which is not separable.

Example 1.2.6 Let X denote the infinite set and d be discrete metric. Then the

metric space (X, d) is not separable.
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Example 1.2.7 The metric space of Example 1.1.9 is separable.

Theorem 1.2.3 Every separable metric space satisfies the second condition of

countability.

Proposition 1.2.3 Let (X, d) be a metric space and A ⊆ X. If X is separable then

A with the induced metric is separable, too.

Definition 1.2.8 A space X is a T2- space(Hausdorff space) iff whenever x and

y are distinct points of X, there are disjoint open sets U and V in X with x ∈ U and

y ∈ V.

Proposition 1.2.4 Every metric space is a Hausdorff space.

Remark 1.2.2 Let (X, d) be a metric space. Then the collection τd = {A ⊂ X : x ∈

A if and only if there exists r > 0 such that B(x, r) ⊂ A} is a topology called the

metric topology induced by d.

Definition 1.2.9 Let (X, d) and (Y, ρ) be metric spaces. The function

f : (X, d)→ (Y, ρ)

is said to be continuous at the point x0 ∈ X if for each ε > 0 there exists a δ > 0

such that

ρ(f(x), f(x0)) < ε

whenever

d(x, x0) < δ.

We shall say that f : (X, d)→ (Y, ρ) is continuous if it is continuous at every x ∈ X.

The next example provides and example of a continuous function between metric

spaces.

13



Example 1.2.8 Let X = R2 be equipped with the metric d defined by

d(x, y) = d((x1, x2), (y1, y2))

=
√

(x1 − y1)2 + (x2 − y2)2

for all x = (x1, x2), y = (y1, y2) ∈ X and Y = R be equipped with the usual metric ρ.

The function f : (X, d)→ (Y, ρ) defined by

f(x, y) = x+ y

for each x, y ∈ R2 is continuous.

In fact, we provide the following characterization of continuity in metric spaces:

Theorem 1.2.4 Let (X, d) and (Y, ρ) be metric spaces. Then the following

statements are equivalent:

(i). f : (X, d)→ (Y, ρ) is continuous

(ii). For a sequence {xn} and a point x in (X, d),

lim
n
ρ(f(xn), f(x)) = 0

whenever

lim
n
d(xn, x) = 0.

An example of a discontinuous function is given below:

Example 1.2.9 Let f : (R, d)→ (R, ρ) where f(x) = x for each x ∈ R given, let d

be the Euclidean metric for R and let ρ be the discrete metric for the set R. Then f

is not a continuous function. To see this, take a sequence { 1
n

: n ∈ N}. Then

lim
n
d(xn, 0) = 0

but

lim
n
ρ(f(xn), f(0)) = 1.

14



Definition 1.2.10 Let {fn} be a sequence of functions from (X, d) into the metric

space (Y, ρ). Then {fn} is said to converge uniformly to a function

f : (X, d)→ (Y, ρ)

if for every ε > 0 there exists N ∈ N such that for all n ≥ N, and for all x ∈

X, ρ(fn(x), f(x)) < ε.

Definition 1.2.11 Let (X, d) and (Y, ρ) be two metric spaces. The function

f : (X, d) → (Y, ρ) is uniformly continuous on X if and only if for every

ε > 0 there exists a δ > 0 such that if x1 ∈ X, x2 ∈ X and d(x1, x2) < δ, then,

ρ(f(x1), f(x2)) < ε.

We provide an example of a uniformly continuous function.

Example 1.2.10 Let X = [0, 1] be equipped with the usual metric d and Y = R

be equipped with the usual metric ρ. Consider the function f : [0, 1] → R given by

f(x) = 2x+ 1 for x ∈ [0, 1]. Clearly f is uniformly continuous on [0, 1].

Next we provide an example of a function which is not uniformly continuous.

Example 1.2.11 Let X = R, Y = R be equipped with the usual metrics and

f : R→ R given by f(x) = x2. Then f is not uniformly continuous.

Theorem 1.2.5 Uniform limit theorem. Let fn : (X, τ)→ (Y, ρ) be a sequence

of continuous function from a topological space (X, τ) to a metric space (Y, ρ). If the

sequence {fn} converges uniformly to f : (X, τ)→ (Y, ρ) then f is continuous.
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Chapter 2

Fundamental properties of fuzzy

metric spaces.

The concept of fuzzy sets and fuzzy logic was introduced by Professor Lofti A Zadeh

in 1965. The success of research in fuzzy sets and fuzzy logic has been demonstrated

in a variety of fields, such as artificial intelligence, computer science, control

engineering, computer applications, robotics and many more. In the dissertation

we adopt the notion of fuzzy metric space due to George and Veeramani [14] which

is a modification of the notion of fuzzy metric space as studied by Kramosil and

Michalek [29]. The notion of fuzzy metric space by George and Veeramani has many

advantages in analysis as many notions and results from classical metric spaces can

be extended and generalized to the setting of fuzzy metric spaces, for instance: the

notion of completeness, completion of spaces as well as extension of maps.

This chapter is based on the work due by A George and P Veeramani [14]. We

shall recall the definition of a fuzzy metric space which was modified from [29] to

obtain the Hausdorff topology on a fuzzy metric space. We note that just like in

the classical metric space case (see chapter 1), every fuzzy metric space induces a

topological space. In this chapter we expand on the paper [14] by means of providing

detailed examples, propositions, remarks and proofs of some results.
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2.1 Basic notions on fuzzy metric spaces.

We start this section with the following well known definition:

Definition 2.1.1 A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous

triangular norm if for all a, b, c, e ∈ [0, 1] the following conditions hold:

2.1.1.1 a ∗ b = b ∗ a (commutativity)

2.1.1.2 a ∗ 1 = a

2.1.1.3 (a ∗ b) ∗ c = a ∗ (b ∗ c) (associativity)

2.1.1.4 a ∗ b ≤ c ∗ e, whenever a ≤ c and b ≤ e.

In the sequel we shall refer to triangular norm as a t−norm.

We provide examples of continuous t−norms.

Example 2.1.1 Define a ∗ b = ab, for all a, b ∈ [0, 1]. Note that ab is the usual

multiplication in [0, 1] for all a, b ∈ [0, 1]. It follows that ∗ is a continuous t−norm.

Example 2.1.2 Define a ∗ b = min(a, b), for all a, b ∈ [0, 1]. Then ∗ is a

continuous t−norm.

More examples on continuous t−norms can be found in [47].

Remark 2.1.1 Given an arbitrary set X, a fuzzy set M on X is a function from

X to the unit interval [0, 1]. Let [0, 1]X = {f : X → [0, 1]}. Thus M ∈ [0, 1]X .

Definition 2.1.2 The 3-tuple (X,M, ∗) is said to be a fuzzy metric space, where

X is an arbitrary set, ∗ is continuous t−norm and M is a fuzzy set on X×X×[0,∞)

satisfying the following conditions:

17



2.1.2.1 ∀x, y ∈ X, M(x, y, 0) = 0

2.1.2.2 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) = 1 if and only if x = y

2.1.2.3 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) = M(y, x, t)

2.1.2.4 ∀x, y, z ∈ X, and ∀s, t > 0, M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s)

2.1.2.5 ∀x, y ∈ X, M(x, y, •) : [0,∞)→ [0, 1] is continuous.

Remark 2.1.2 2.1.2.5 means that for each x, y ∈ X there is a function

Mxy : [0,∞)→ I, t→M(x, y, t).

Remark 2.1.3 M(x, y, t) can be thought of as the degree of nearness between x and

y with respect to t ≥ 0. If we use the notation

d(x, y) = the distance between x and y, and

P (S = α) if and only if the probability that S = α, or

P (S ≥ α) probability that S ≥ α, then

M(x, y, t) = α if and only if P (d(x, y) ≤ t) = α.

Then, in the case where ∗ = ∧, 2.1.2.4 reads:

If the probability that d(x, y) ≤ t is greater than α and the probability that d(y, z) ≤ s

is greater that α then the probability that d(x, z) ≤ s+ t is also greater than α. This

is because

a ∧ b ≥ α⇒ a ≥ α and b ≥ α.

In other words,

P (d(x, y) ≤ t) ≥ α and P (d(y, z) ≤ s) ≥ α implies that P (x, z, t+ s) ≥ α.

Or

M(x, y, t) ≥ α ∧M(y, z, s) ≥ α⇒M(x, z, t+ s) ≥ α.

We identify x = y if and only if

(∀t > 0,M(x, y, t) = 1),

and

limt→∞M(x, y, t) = 0.
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The following definition is a modification of Definition 2.1.2. This modification is

necessary since the topology induced by the fuzzy metric in Definition 2.1.2 is not

Hausdorff.

Definition 2.1.3 The 3-tuple (X,M, ∗) is said to be a fuzzy metric space where

X is an arbitrary set, ∗ is a continuous t−norm and M is a fuzzy set on

X ×X × (0,∞) satisfying the following conditions:

2.1.3.1 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) > 0

2.1.3.2 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) = 1 if and only if x = y

2.1.3.3 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) = M(y, x, t)

2.1.3.4 ∀x, y, z ∈ X, and ∀s, t > 0, M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s)

2.1.3.5 ∀x, y,∈ X, M(x, y, •) : (0,∞)→ [0, 1] is continuous.

In the sequel the fuzzy set M as in Definition 2.1.3 will be referred to as a fuzzy

metric. It shall be shown that the topology induced by the fuzzy metric space

(X,M, ∗) is Hausdorff.

Lemma 2.1.1 M(x, y, •) is nondecreasing for all x, y in X.

Proof: Suppose that M(x, y, t) > M(x, y, s) for some 0 < t < s. Then

M(x, y, t) ∗M(y, y, s− t) ≤M(x, y, s)

< M(x, y, t).

By (2.1.3.2) in Definition 2.1.3 we have M(y, y, s− t) = 1. Thus

M(x, y, t) < M(x, y, s)

< M(x, y, t)

a contradiction.

We recall the following useful remarks.
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Remark 2.1.4 (i). Let (X,M, ∗) be a fuzzy metric space and let x, y ∈ X, t > 0,

0 < r < 1. Then if M(x, y, t) > 1− r we can find t0 with 0 < t0 < t, such that

M(x, y, t0) > 1− r.

(ii). For any r1 > r2, we can find an r3 such that r1 ∗ r3 ≥ r2 and for any r4 we can

find an r5 such that r5 ∗ r5 ≥ r4, (r1, r2, r3, r4, r5 ∈ (0, 1)).

Next we provide an example of a fuzzy metric space.

Example 2.1.3 Let X = R. Define a ∗ b = ab for all a, b ∈ [0, 1] and

M(x, y, t) =

[
exp

(
|x− y|
t

)]−1

for all x, y ∈ X and t ∈ (0,∞). Then (X,M, ∗) is a fuzzy metric space. We shall

show that M is a fuzzy metric.

Proof: 1. ∀t > 0. Assume that x = y. Then this implies that |x− y| = 0. Hence[
exp

(
|x− y|
t

)]−1

= 1.

Therefore

M(x, y, t) = 1.

Conversely,

assume that M(x, y, t) = 1. Therefore[
exp

(
|x− y|
t

)]−1

= 1

implies that

e
|x−y|

t = e0.

Hence
|x− y|
t

= 0,

it follows that |x− y| = 0. Thus x = y. Therefore M(x, y, t) = 1 if and only if x = y.
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2. To prove M(x, y, t) = M(y, x, t) we know that

|x− y| = |y − x|

for all x, y ∈ R. It follows that for all x, y ∈ X and for all t > 0,

M(x, y, t) = M(y, x, t).

3. To prove M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t+ s), we know that for all x, y, z ∈ X

and for all t, s > 0,

|x− z| ≤
(
t+ s

t

)
|x− y|+

(
t+ s

s

)
|y − z|.

That is
|x− y|
t+ s

≤ |x− y|
t

+
|y − z|
s

.

Thus

e
|x−z|
t+S ≤ e

|x−y|
t e

|y−z|
s ,

since ex is an increasing function for x > 0. Therefore[
exp

(
|x− z|
t+ s

)]−1

≥
[
exp

(
|x− y|
t

)]−1

∗
[
exp

(
|y − z|
s

)]−1

.

Thus

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s).

4. Take a sequence {tn} ∈ (0,∞) such that the sequence {tn} converges to t ∈ (0,∞)

where (0,∞) is equipped with the usual metric. That is,

lim
n
|tn − t| = 0.

Without the loss of generality, fix x, y ∈ X. Since the function ex is continuous on

R we have e
|x−y|

tn converges to e
|x−y|

t as tn converges to t, with respect to the usual

metric. Therefore

M(x, y, •) : (0,∞)→ [0, 1]

is continuous. Hence (X,M, ∗) is a fuzzy metric space.
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Remark 2.1.5 Note that in Example 2.1.3 we can replace R by any non empty set

X and the usual metric on R by any metric d. Also, note that, Example 2.1.3 is a

fuzzy metric space with the t−norm defined by a ∗ b = min(a, b) for all a, b ∈ [0, 1].

The next example shows that every metric space induces a fuzzy metric space.

Example 2.1.4 Let (X, d) be a metric space. Define a ∗ b = ab for all a, b ∈ [0, 1]

and

M(x, y, t) =
ktn

ktn +md(x, y)
, k,m, n ∈ N.

Then (X,M, ∗) is a fuzzy metric space.

Remark 2.1.6 Note that Example 2.1.4 holds even with the continuous t−norm

a ∗ b = min(a, b). In particular, taking

k = m = n = 1,

we get

M(x, y, t) =
t

t+ d(x, y)
.

We shall call this fuzzy metric induced by a metric d the standard fuzzy metric.

In what follows Md denotes a standard fuzzy metric induced by the metric d.

Example 2.1.5 Let X = N. Define a ∗ b = ab and for all t > 0, let

M(x, y, t) =

 x
y

if x ≤ y

y
x

if y ≤ x.

We shall show that M is a fuzzy metric.

Proof: 1. ∀t > 0. Assume that x = y. Then x
y

= y
x

= 1. Hence M(x, y, t) = 1.

Conversely,

assume that M(x, y, t) = 1. Then x
y

= 1, and therefore x = y. Similarly if y
x

= 1 then

it follows that y = x. Thus M(x, y, t) = 1 if and only if x = y.

2. For all x, y ∈ X and for all t > 0, clearly, M(x, y, t) = M(y, x, t).
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3. To prove that M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s). We consider the following

cases:

(i). x = y = z.

Then

M(x, y, t) = 1

M(y, z, s) = 1

M(x, z, t+ s) = 1.

Now

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) = 1.

It follows that

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

holds.

(ii). x 6= y = z.

Without loss of generality, we may assume that x < y and y = z. Then

M(x, y, t) =
x

y
.

Also, we have M(y, z, t) = 1 and M(x, z, t+ s) = x
z
. Now

x

y
∗ 1 =

x

y

and
x

y
=
x

z
.

Therefore

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

holds.

(iii). x = y 6= z.

Without loss of generality, we may assume that x = y and y < z. Then M(x, y, t) = 1.

Also, we have

M(y, z, t) =
y

z
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and

M(x, z, t+ s) =
x

z
.

Now

1 ∗ y
z

=
y

z

and
y

z
=
x

z
.

Therefore

M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

holds.

(iv). x 6= y 6= z.

Without loss of generality, we may assume that x < y < z. Then

M(x, y, t) =
x

y

M(y, z, s) =
y

z

M(x, z, t+ s) =
x

z
.

Now z > y implies that z2 > y2.

So
1

z2
<

1

y2
.

Thus
xy

z2
<
xy

y2
.

Therefore
x

z
∗ y
z
<
x

y
.

Hence M(x, z, t) ∗M(z, y, t) < M(x, y, t+ s).

4. Note that M(x, y, t) is independent of t (that is, M(x, y, t) is a constant in terms of

t). For any s, t > 0, we have M(x, y, t) = M(x, y, s). Thus M(x, y, •) is continuous.

Therefore (X,M, ∗) is a fuzzy metric space.
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Remark 2.1.7 The fuzzy metric in the above example (Example 2.1.5) is

independent of t. Such a fuzzy metric is referred to as a stationary fuzzy metric.

Remark 2.1.8 It is interesting to note that there exists no metric d on X satisfying

M(x, y, t) = t
t+d(x,y)

, where M(x, y, t) is as defined in Example 2.1.5. We show that

M is not a fuzzy metric on X with the t−norm defined by a ∗ b = min(a, b).

We start by showing that there is no metric d on X satisfying M(x, y, t) = t
t+d(x,y)

,

where M is defined by

M(x, y, t) =

 x
y

if x ≤ y

y
x

if y ≤ x.

Proof: Suppose that there is a metric d on X that induces M(x, y, t). Then, ∀t > 0

M(x, y, t) =
t

t+ d(x, y)

(t+ d(x, y))M(x, y, t) = t

d(x, y) =
t(1−M(x, y, t))

M(x, y, t)
.

1. ∀t > 0. Assume that x = y. Then this implies that M(x, y, t) = 1. Therefore

d(x, y) =
t(1− 1)

1

= 0.

Conversely,

assume that d(x, y) = 0, then

t(1−M(x, y, t))

M(x, y, t)
= 0

t− tM(x, y, t) = 0

−tM(x, y, t) = −t

M(x, y, t) = 1.

This implies that x = y.
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2. To prove that d(x, y) = d(y, x). We note that M(x, y, t) = M(y, x, t) since M is a

fuzzy metric on X. Then

d(x, y) =
t(1−M(x, y, t))

M(x, y, t)

=
t(1−M(x, y, t))

M(x, y, t)

= d(y, x).

3. We now show that the triangle inequality does not hold: Let t = 2, x = 1, y = 2

and z = 3. Then

d(x, y) =
t(1−M(x, y, t))

M(x, y, t)

=
2(1− 1

2
)

1
2

= 2.

d(y, z) =
2(1− 2

3
)

2
3

= 1.

d(x, z) =
2(1− 1

3
)

1
3

= 4.

Therefore

d(x, z) > d(x, y) + d(y, z).

Thus (X, d) is not a metric space.

We now prove that M is not a fuzzy metric with the continuous t−norm defined by

a ∗ b = min(a, b).

Proof: 1. ∀t > 0. Assume that x = y. Then d(x, y) = 0. Hence

t

t+ d(x, y)
= 1.

Therefore

M(x, y, t) = 1.
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Conversely,

assume that M(x, y, t) = 1.

Therefore
t

t+ d(x, y)
= 1

t+ d(x, y) = t

d(x, y) = 0.

Thus x = y.

2. To show M(x, y, t) = M(y, x, t) we know that d(x, y) = d(y, x) that is,

M(x, y, t) =
t

t+ d(x, y)

=
t

t+ d(y, x)

= M(y, x, t).

Thus

M(x, y, t) = M(y, x, t).

3. To show that the inequality M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) does not holds,

choose t = 2, x = 1, y = 2 and z = 3. Then we obtain;

M(x, y, t) ∗M(y, z, s) =
2

3
∗ 2

3

= min(
2

3
∗ 2

3
)

=
2

3
.

M(x, z, t+ s) =
2

4
.

Therefore

M(x, z, t+ s) < M(x, y, t) ∗M(y, z, s).

Thus M is not a fuzzy metric.
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We conclude this section with the following remark.

Remark 2.1.9 Note that from the discussion above, we conclude that the class of

metric spaces is a proper subclass of the class of fuzzy metric spaces.

2.2 Topology and fuzzy metric spaces.

We continue to present some concepts and results from classical metric spaces theory

discussed in chapter 1 in the context of fuzzy metric spaces.

Definition 2.2.1 Let (X,M, ∗) be a fuzzy metric space. We define the open ball

B(x, r, t) with center x ∈ X and radius r, 0 < r < 1, t > 0, as

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}.

An extension of Proposition 1.1.1 to fuzzy metric setting is given below:

Proposition 2.2.1 Let B(x, r1, t) and B(x, r2, t) be open balls with the same center

x ∈ X and t > 0 with radius 0 < r1 < 1 and 0 < r2 < 1, respectively. Then we either

have

B(x, r1, t) ⊆ B(x, r2, t)

or

B(x, r2, t) ⊆ B(x, r1, t).

Proof: Let x ∈ X and t > 0. Consider the open balls B(x, r1, t) and B(x, r2, t), with

0 < r1 < 1,

0 < r2 < 1.

If r1 = r2, then the proposition holds. Next, we assume that r1 6= r2. We may

assume, without loss of generality, that 0 < r1 < r2 < 1. Then 1− r2 < 1− r1. Now,

let a ∈ B(x, r1, t). It follows that

M(a, x, t) > 1− r1
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> 1− r2.

Hence a ∈ B(x, r2, t). This shows that B(x, r1, t) ⊆ B(x, r2, t). By assuming that

0 < r2 < r1 < 1, we can similarly show B(x, r2, t) ⊆ B(x, r1, t).

Definition 2.2.2 A subset A of a fuzzy metric space (X,M, ∗) is said to be open

if given any point a ∈ A, there exists 0 < r < 1, and t > 0, such that B(a, r, t) ⊆ A.

The next theorem provides a generalization of Proposition 1.1.4 to the setting of

fuzzy metric spaces.

Theorem 2.2.1 Every open ball in a fuzzy metric space (X,M, ∗) is an open set.

Proof: Consider an open ball B(x, r, t). Now y ∈ B(x, r, t) implies that

M(x, y, t) > 1− r.

Since M(x, y, t) > 1− r, by Remark 2.1.4 we can find a t0, 0 < t0 < t, such that

M(x, y, t0) > 1− r.

Let r0 = M(x, y, t0) > 1− r. Since r0 > 1− r, we can find an s, 0 < s < 1, such that

r0 > 1− s > 1− r.

Now for a given r0 and s such that r0 > 1− s we can find r1, 0 < r1 < 1, such that

r0 ∗ r1 ≥ 1− s.

Now consider the ball B(y, 1− r1, t− t0). We claim

B(y, 1− r1, t− t0) ⊂ B(x, r, t).

Now z ∈ B(y, 1− r1, t− t0) implies that M(y, z, t− t0) > r1. Therefore

M(x, z, t) ≥M(x, y, t0) ∗M(y, z, t− t0)
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≥ r0 ∗ r1

≥ 1− s

> 1− r.

Therefore

z ∈ B(x, r, t)

and hence

B(y, 1− r1, t− t0) ⊂ B(x, r, t).

Proposition 2.2.2 Let (X,M, ∗) be a fuzzy metric space. Define τM = {A ⊂ X :

x ∈ A if and only if there exists t > 0, and r, 0 < r < 1, such that B(x, r, t) ⊂ A}.

Then τM is a topology on X.

Proof: (i). Clearly ∅ and X belong to τM .

(ii). Let A1, A2, A3, ..., Ai ∈ τM , and put

U = ∪i∈IAi.

We shall show that U ∈ τM . If a ∈ U, then

a ∈ ∪i∈IAi

which implies that a ∈ Ai for some i ∈ I. Since Ai ∈ τM , there exists 0 < r < 1, t > 0,

such that B(a, r, t) ⊂ Ai. Hence

B(a, r, t) ⊂ Ai ⊂ ∪i∈IAi = U.

This shows that U ∈ τM .

(iii). Let A1, A2, A3, ..., An ∈ τM , and U = ∩ni=IAi. We shall show that U ∈ τM . Let

a ∈ U. Then a ∈ Ai for all i ∈ I. Hence for each i ∈ I, there exists 0 < ri < 1, ti > 0

such that B(a, ri, ti) ⊂ Ai. Let

r = min{ri, i ∈ I}

and

t = max{ti, i ∈ I}.
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Thus r ≤ ri for all i ∈ I, 1− r ≥ 1− ri for all i ∈ I. Also, t > 0. So, B(a, r, t) ⊆ Ai

for all i ∈ I. Therefore

B(a, r, t) ⊂ ∩i∈IAi = U.

This shows that U ∈ τM .

The next theorem generalizes Proposition 1.2.4.

Theorem 2.2.2 Every fuzzy metric space is Hausdorff.

Proof: Let (X,M, ∗) be the given fuzzy metric space. Let x, y be two distinct points

of X. Then 0 < M(x, y, t) < 1. Let M(x, y, t) = r, for some r, 0 < r < 1. For each

r0, r < r0 < 1, we can find an r1 such that r1 ∗ r1 ≥ r0. Now consider the open balls

B(x, 1− r1,
t
2
) and B(y, 1− r1,

t
2
). Clearly

B(x, 1− r1,
t

2
) ∩B(y, 1− r1,

t

2
) = ∅.

For if there exists

z ∈ B(x, 1− r1,
t

2
) ∩B(y, 1− r1,

t

2
).

Then

r = M(x, y, t)

≥M(x, z,
t

2
) ∗M(z, y,

t

2
)

r1 ∗ r1 ≥ r0

> r.

which is a contradiction. Therefore (X,M, ∗) is Hausdorff.

Proposition 2.2.3 Let (X, d) be a metric space and Md(x, y, t) = t
t+d(x,y)

be the

corresponding standard fuzzy metric on X. Then the topology τd induced by the metric

d and the topology τMd
induced by the fuzzy metric Md are the same. That is,

τd = τMd
.
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Proof: Suppose that A ∈ τd. Then there exists ε > 0 such that B(x, ε) ⊂ A, for every

x ∈ A. For a fixed t > 0, we obtain that

Md(x, y, t) =
t

t+ d(x, y)

>
t

t+ ε
.

Let

1− r =
t

t+ ε
.

Then

Md(x, y, t) > 1− r.

It follows that, B(x, r, t) ⊂ A. Hence A ∈ τMd
. This shows that τd ⊆ τMd

.

Conversely,

suppose that A ∈ τMd
. Then there exists 0 < r < 1 and t > 0 such that B(x, r, t) ⊂ A

for every x ∈ A. We obtain that

M(x, y, t) =
t

t+ d(x, y)

> 1− ε

t > (1− ε)t+ (1− ε)d(x, y)

d(x, y) <
εt

1− ε
.

Let r = εt
1−ε where 0 < ε < 1. Then d(x, y) < r, and therefore B(x, ε) ⊂ A. Hence

A ∈ τd. This implies that τMd
⊆ τd. Therefore τd = τMd

.

Definition 2.2.3 Let (X,M, ∗) be a fuzzy metric space. A subset A of X is said to

be F−bounded if there exists t > 0 and 0 < r < 1 such that

M(x, y, t) > 1− r

for all x, y ∈ A.
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Remark 2.2.1 Let (X,M, ∗) be a fuzzy metric space induced by a metric d on X.

Then A ⊆ X is F−bounded if an only if it is bounded. This is what R Lowen would

call a good extension of the notion of boundedness.

Remark 2.2.2 Let (X, d) be a metric space. Define d̃(x, y) = min{1, d(x, y)} for all

x, y ∈ X. Then d̃ is a bounded metric on X, also τd = τd̃. Now let Md̃ be the standard

fuzzy metric on X induced by d̃. It follows from Remark 2.2.1 that (X,Md̃, ∗) is

F−bounded. Hence, we observe that for every metric space (X, d) not necessarily

bounded, there exists an F−bounded fuzzy metric space (X,M, ∗) such that τd = τM .

An extension of Proposition 1.2.1 to the context of fuzzy setting is given below:

Theorem 2.2.3 Every compact subset A of a fuzzy metric space X is F−bounded.

Proof: Given A a compact subset of X. Fix t > 0 and 0 < r < 1. Consider an open

cover {B(x, r, t) : x ∈ A} of A. Since A is compact, there exists x1, x2, x3, ..., xn ∈ A

such that

A ⊆ ∪B(xi, r, t).

Let x, y ∈ A. Then x ∈ B(xi, r, t) and y ∈ B(xj, r, t) for some i, j. Therefore

M(x, xi, t) > 1− r

and

M(y, xj, t) > 1− r.

Now, let

α = min{M(xi, xj, t) : 1 ≤ i, j ≤ n}.

Then α > 0. Now

M(x, y, 3t) ≥M(x, xi, t) ∗M(xi, xj, t) ∗M(xj, y, t)

≥ (1− r) ∗ (1− r) ∗ α.
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Taking t′ = 3t and (1− r) ∗ (1− r) ∗ α > 1− s, 0 < s < 1, we have

M(x, y, t′) > 1− s

for all x, y ∈ A. Hence A is F−bounded.

Remark 2.2.3 In a fuzzy metric space every compact subset is closed and bounded.

Theorem 2.2.4 Let (X,M, ∗) be a fuzzy metric space and τM be the topology induced

by the fuzzy metric. Then for a sequence {xn} in X, the sequence {xn} converges to

x if and only if M(xn, x, t) converges to 1 as n tends to ∞.

Proof: Fix t > 0. Suppose that the sequence {xn} converges to x. Then for

0 < r < 1,

there exists n0 ∈ N such that xn ∈ B(x, r, t) for all n ≥ n0. It follows that

M(xn, x, t) > 1− r

and hence

1−M(xn, x, t) < r.

Therefore

M(xn, x, t)

converges to 1 as n tends to ∞.

Conversely,

if for each t > 0,M(xn, x, t) converges to 1 as n tends to ∞ then for 0 < r < 1, there

exists n0 ∈ N such that

1−M(xn, x, t) < r

for all n ≥ n0. It follows that

M(xn, x, t) > 1− r

for all n ≥ n0. Thus

xn ∈ B(x, r, t)

for all n ≥ n0, and hence the sequence {xn} converges to x.
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Remark 2.2.4 Let (X, d) be a metric space and {xn} be a sequence in X. Then

lim
n
d(xn, x) = 0

if and only if

lim
n
Md(xn, x, t) = 1

for all t > 0 and x ∈ X.

Definition 2.2.4 A sequence {xn} in a fuzzy metric space (X,M, ∗) is a Cauchy

sequence if for each ε > 0, t > 0 there exists n0 ∈ N such that

M(xn, xm, t) > 1− ε

for all n,m ≥ n0.

Remark 2.2.5 Let (X, d) be a metric space and {xn} be a sequence in X. Then {xn}

is a Cauchy sequence in (X, d) if and only if it is Cauchy sequence in (X,Md, ∗).

Definition 2.2.5 A sequence {xn} in X is convergent to x ∈ X if

lim
n
M(xn, x, t) = 1

for each t > 0.

Definition 2.2.6 A fuzzy metric space in which every Cauchy sequence is convergent

is called a complete fuzzy metric space.

Theorem 2.2.5 Let (X,M, ∗) be a fuzzy metric space and τ be the topology induced

by the fuzzy metric. Then for a sequence {xn} in X, xn converges to x if and only if

M(xn, x, t) converges to 1 as n converges to ∞.

Proof: Fix t > 0. Suppose that xn converges to x. Then for 0 < r < 1, there exists

n0 ∈ N such that xn ∈ B(x, r, t) for all n ≥ n0. It follows that M(xn, x, t) > 1 − r

and hence 1 −M(xn, x, t) < r. Therefore M(xn, x, t) converges to 1 as n converges

to ∞.
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Conversely,

if for each t > 0,M(xn, x, t) converges to 1 as n converges to ∞ then for 0 < r < 1,

there exists n0 ∈ N such that 1 − M(xn, x, t) < r for all n ≥ n0. It follows that

M(xn, x, t) > 1− r for all n ≥ n0. Thus xn ∈ B(x, r, t) for all n ≥ n0, and hence xn

converges to x.

Definition 2.2.7 Let (X,M, ∗) be a fuzzy metric space. Then we define a closed

ball with the center x ∈ X and the radius r, 0 < r < 1, t > 0, as

B[x, r, t] = {y ∈ X : M(x, y, t) ≥ 1− r}.

The following lemma extends Proposition 1.1.5 to the fuzzy setting.

Lemma 2.2.1 Every closed ball in a fuzzy metric space (X,M, ∗) is a closed set.

Proof: Let y ∈ B[x, r, t]. Since X is first countable, there exits a sequence {yn} in

B[x, r, t] such that the sequence {yn} converges to y. Therefore M(yn, y, t) converges

to 1 for all t. For a given ε > 0,

M(x, y, t+ ε) ≥M(x, yn, t) ∗M(yn, y, ε).

Hence

M(x, y, t+ ε) ≥ lim
n
M(x, yn, t) ∗ lim

n
M(yn, y, ε)

≥ (1− r) ∗ 1

= 1− r.

(If M(x, yn, t) is bounded, the sequence {yn} has a subsequence, which we again

denote by {yn} for which limnM(x, yn, t) exists.) In particular for n ∈ N, take

ε = 1
n
. Then

M(x, y, t+
1

n
) ≥ 1− r.

Hence

M(x, y, t) = lim
n
M(x, y, t+

1

n
)
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≥ 1− r.

Thus y ∈ B[x, r, t]. Therefore B[x, r, t] is a closed set.

We conclude this section with the Baire category theorem (Theorem 1.1.1) to the

setting of fuzzy metric spaces.

Theorem 2.2.6 Let (X,M, ∗) be a complete fuzzy metric space. Then the

intersection of a countable number of dense open sets is dense.

Proof: Let X be the given complete fuzzy metric space. Let B0 be a nonempty open

set. Let D1, D2, D3, ... be dense open sets in X. Since D1 is dense in X,B0∩D1 6= ∅.

Let

x1 ∈ B0 ∩D1.

Since B0 ∩D1 is open, there exists 0 < r1 < 1, t > 0, such that

B(x1, r1, t1) ⊂ B0 ∩D1.

Choose r′1 < r1 and t′ = min{t1, 1} such that

B(x1, r
′
1, t
′
1) ⊂ B0 ∩D1.

Let

B1 = B(x1, r
′
1, t
′
1).

Since D2 is dense in X,B1 ∩D2 6= ∅. Let x2 ∈ B1 ∩D2. Since B1 ∩D2 is open, there

exists 0 < r2 <
1
2

and t2 > 0 such that

B(x2, r2, t2) ⊂ B1 ∩D2.

Choose r′2 < r2 and t′2 = min{t2, 1
2
} such that

B[x2, r
′
2, t
′
2] ⊂ B1 ∩D2.

Let B2 = B(x2, r
′
2, t
′
2). Similarly proceeding by induction we can find an

xn ∈ Bn−1 ∩Dn.
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Since Bn−1 ∩Dn is open, there exists 0 < rn <
1
n

and tn > 0 such that

B(xn, rn, tn) ⊂ Bn−1 ∩Dn.

Choose r′n < rn, t
′
n = min{tn, 1

n
} such that

B[xn, r
′
n, t
′
n] ⊂ Bn−1 ∩Dn.

Let Bn = B(xn, r
′
n, t
′
n). Now we claim that {xn} is a Cauchy sequence. For a given

t > 0, ε > 0 choose n0 such that 1
n0
< t and 1

n0
< ε. Then for n ≥ n0,m ≥ n.

M(xn, xm, t) ≥M(xn, xm,
1

n
)

≥ 1− (
1

n
)

≥ 1− ε.

Therefore {xn} is a Cauchy sequence. Since X is complete, the sequence {xn}

converges to x in X. But

xk ∈ B[xn, r
′
n, t
′
n]

for all k ≥ n and by the previous result B[xn, r
′
n, t
′
n] is a closed set. Hence

x ∈ B[xn, r
′
n, t
′
n] ⊂ Bn−1 ∩Dn

for all n. Therefore

B0 ∩ (∩∞n−1Dn) 6= ∅.

Hence ∩∞n−1Dn is dense in X.
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Chapter 3

Further properties on fuzzy metric

spaces.

The work presented in this chapter is based on the paper [13]. It is well known that

the finite product of metric spaces is metrizable (see Definition 1.1.9 in chapter 1).

We present an analogue result in the context of fuzzy metric spaces. Among others

we show that a product of two complete fuzzy metric spaces is also a complete fuzzy

metric space and subspace of a separable fuzzy metric space is also separable.

3.1 Complete fuzzy metric spaces.

The following two propositions were mentioned as a remark in [13] without proof:

Proposition 3.1.1 Let (X1,M1, ∗) and (X2,M2, ∗) be fuzzy metric spaces. For

(x1, x2), (y1, y2) ∈ X1 ×X2, t > 0. Let

M((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗M2(x2, y2, t).

Then M is a fuzzy metric on X1 ×X2.

Proof: 1. Since M1(x1, y1, t) > 0 and M2(x2, y2, t) > 0 this implies that

M1(x1, y1, t) ∗M2(x2, y2, t) > 0.
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Therefore

M((x1, x2), (y1, y2), t) > 0.

2. Suppose that for all t > 0, (x1, x2, t) = (y1, y2, t). This implies that x1 = y1 and

x2 = y2, for all t > 0. Hence

M1(x1, y1, t) = 1

and

M2(x2, y2, t) = 1.

It follows that

M(x, y, t) = 1,

where x = (x1, x2) and y = (y1, y2).

Conversely,

suppose that M(x, y, t) = 1, where x = (x1, x2) and y = (y1, y2). This implies that

M1(x1, y1, t) ∗M2(x2, y2, t) = 1.

Since

0 < M1(x1, y1, t) ≤ 1

and

0 < M2(x2, y2, t) ≤ 1,

it follows that

M1(x1, y1, t) = 1

and

M2(x2, y2, t) = 1.

Thus x1 = y1 and x2 = y2. Therefore x = y.

3. To prove that M(x, y, t) = M(y, x, t). We observe that

M1(x1, y1, t) = M1(y1, x1, t)

and

M2(x2, y2, t) = M2(y2, x2, t).

40



It follows that for all (x1, x2), (y1, y2) ∈ X1 ×X2 and t > 0,

M((x1, x2), (y1, y2), t) = M((y1, y2), (x1, x2), t).

4. Since (X1,M1, ∗) and (X2,M2, ∗) are fuzzy metric spaces we have that

M1(x1, z1, t+ s) ≥M1(x1, y1, t) ∗M1(y1, z1, s)

and

M2(x2, z2, t+ s) ≥M2(x2, y2, t) ∗M2(y2, z2, s),

for all

(x1, x2), (y1, y2), (z1, z2) ∈ X1 ×X2

and s, t > 0. Therefore

M((x1, x2), (z1, z2), t+ s) = M1(x1, z1, t+ s) ∗M2(x2, z2, t+ s)

M((x1, x2), (z1, z2), t+ s) ≥M1(x1, y1, t) ∗M1(y1, z1, s) ∗M2(x2, y2, t) ∗M2(y2, z2, s)

≥M1(x1, y1, t) ∗M2(x2, y2, t) ∗M1(y1, z1, s) ∗M2(y2, z2, s)

≥M((x1, x2), (y1, y2), t) ∗M((y1, y2), (z1, z2), s).

5. Note that M1(x1, y1, t) and M2(x2, y2, t) are continuous with respect to t and ∗ is

continuous. It follows that

M((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗M2(x2, y2, t),

is also continuous.

The next proposition presents Proposition 1.1.3 to the fuzzy metric space setting.

Proposition 3.1.2 Let (X1,M1, ∗) and (X2,M2, ∗) be fuzzy metric spaces. We

define

M((x1, x2), (y1, y2), t) = M1(x1, y1, t) ∗M2(x2, y2, t).

Then M is a complete fuzzy metric on X1 × X2 if and only if (X1,M1, ∗) and

(X2,M2, ∗) are complete.
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Proof: Suppose that (X1,M1, ∗) and (X2,M2, ∗) are complete fuzzy metric spaces.

Let {an} be a Cauchy sequence in X1 ×X2. Note that

an = (xn1 , x
n
2 )

and

am = (xm1 , x
m
2 ).

Also, M(an, am, t) converges to 1. This implies that

M((xn1 , x
n
2 ), (xm1 , x

m
2 ), t)

converges to 1 for each t > 0. It follows that

M1(xn1 , x
m
1 , t) ∗M2(xn2 , x

m
2 , t)

converges to 1 for each t > 0. Thus M1(xn1 , x
m
1 , t) converges to 1 and also M2(xn2 , x

m
2 , t)

converges to 1. Therefore {xn1} is a Cauchy sequence in (X1,M1, ∗) and {xn2} is a

Cauchy sequence in (X2,M2, ∗). Since (X1,M1, ∗) and (X2,M2, ∗) are complete fuzzy

metric spaces, there exists x1 ∈ X1 and x2 ∈ X2 such that M1(xn1 , x1, t) converges to

1 and M2(xn2 , x2, t) converges to 1 for each t > 0. Let a = (x1, x2). Then a ∈ X1×X2.

It follows that M(an, a, t) converges to 1 for each t > 0. This shows that (X,M, ∗) is

complete.

Conversely,

suppose that (X,M, ∗) is complete. We shall show that (X,M1, ∗) and (X,M2, ∗)

are complete. Let {xn1} and {xn2} be Cauchy sequences in (X,M1, ∗) and (X,M2, ∗)

respectively. Thus M1(xn1 , x
m
1 , t) converges to 1 and M2(xn2 , x

m
2 , t) converges to 1 for

each t > 0. It follows that

M(xn1 , x
m
2 , t) = M1(xn1 , x

m
1 , t) ∗M2(xn2 , x

m
2 , t)

converges to 1. Let xn = (xn1 , x
m
2 ) in X1 × X2 for n ≥ 1. Then {xn} is a Cauchy

sequence in X. Since (X,M, ∗) is complete, there exists x ∈ X1 ×X2 = X such that

M(xn1 , x, t) converges to 1. Since x ∈ X1 × X2, we may put x = (x1, x2), x1 ∈ X1

and x2 ∈ X2. Clearly, M1(xn1 , x1, t) converges to 1 and M2(xn2 , x2, t) converges to 1.

Hence (X,M1, ∗) and (X,M2, ∗) are complete. This completes the proof.
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Definition 3.1.1 Let (X,M, ∗) be a fuzzy metric space. A collection of sets {Fn}n∈I
is said to have fuzzy diameter zero if for each pair r, t > 0, 0 < r < 1, there exists

n ∈ I such that

M(x, y, t) > 1− r

for all x, y ∈ Fn.

Remark 3.1.1 A nonempty subset F of a fuzzy metric space X has fuzzy diameter

zero if and only if F is a singleton set, where F = Fn for all n ≥ 1.

We now generalize Theorem 1.1.3:

Theorem 3.1.1 A necessary and sufficient condition that a fuzzy metric space (X,M, ∗)

be complete is that every nested sequence of nonempty closed sets {Fn}∞n=1 with fuzzy

diameter zero has nonempty intersection.

Proof: First suppose that the given condition is satisfied. We claim that (X,M, ∗) is

complete. Let {xn} be a Cauchy sequence in X. Take

An = {xn, xn+1, xn+2, ...}

and

Fn = Ān,

then we claim that {Fn} has fuzzy diameter zero. For given s, t > 0, 0 < s < 1, we

can find an r ∈ (0, 1), such that

(1− r) ∗ (1− r) ∗ (1− r) > (1− s).

Since {xn} is a Cauchy sequence, for r, t > 0, 0 < r < 1, there exists n0 ∈ N such

that

M(xn, xm,
t

3
) > 1− r

for all m,n ≥ n0. Therefore

M(x, y,
t

3
) > 1− r
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for all x, y ∈ An0 . Let x, y ∈ Fn0 . Then there exists sequences {x′n} and {y′n} in

An0 such that x′n converges to x and y′n converges to y. Hence x′n ∈ B(x, r, t
3
) and

y′n ∈ B(y, r, t
3
) for sufficiently large n. Now

M(x, y, t) ≥M(x, x′n,
t

3
) ∗M(x′n, y

′
n,
t

3
) ∗M(y′n, y,

t

3
)

> (1− r) ∗ (1− r) ∗ (1− r)

> 1− s.

Therefore

M(x, y, t) > 1− s

for all x, y ∈ Fn0 . Thus {Fn} has fuzzy diameter zero. Hence by hypothesis ∩∞n=1Fn

is nonempty. Take

x ∈ ∩∞n=1Fn.

Then for r, t > 0, 0 < r < 1, there exits n1 such that

M(xm, x, t) > 1− r

for all n ≥ n1. Therefore, for each t > 0,M(xn, x, t) converges to 1 as n tends to ∞.

Hence {xn} converges x. Therefore (X,M, ∗) is a complete fuzzy metric space.

Conversely,

suppose that (X,M, ∗) is fuzzy complete and {Fn}∞n=1 is a nested sequence of nonempty

closed sets with fuzzy diameter zero. Let xn ∈ Fn, n = 1, 2, 3, .... Since {Fn} has a

diameter zero, for r, t > 0, 0 < r < 1, there exists n0 ∈ N such that

M(x, y, t) > 1− r

for all x, y ∈ Fn0 . Therefore

M(xn, xm,
t

3
) > 1− r

for all n,m ≥ n0. Since

xn ∈ Fn ⊂ Fn0
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and

xm ∈ Fm ⊂ Fn0 ,

{xn} is a Cauchy Sequence. But (X,M, ∗) is a complete fuzzy metric space and hence

{xn} converges to x for some x ∈ X. Now for each fixed n, xk ∈ Fn for all k ≥ n.

Therefore

x ∈ F̄n = Fn

for every n, and hence x ∈ ∩∞n=1Fn. This completes our proof.

Remark 3.1.2 The element x ∈ ∩∞n=1Fn is unique. For if there are two elements

x, y ∈ ∩∞n=1Fn,

since {Fn}∞n=1 has fuzzy diameter zero, for each fixed

t > 0,M(x, y, t) > 1− 1

n
,

for each n. This implies

M(x, y, t) = 1

and hence

x = y.

3.2 Separability and uniform convergence in fuzzy

metric spaces.

In this section we start by providing an extension of Theorem 1.2.3 to the context

of fuzzy metric spaces.

Theorem 3.2.1 Every separable fuzzy metric space is second countable.

Proof: Let (X,M, ∗) be the given separable fuzzy metric space. Let A = {an : n ∈ N},

be a countable dense subset of X. Consider

B = {B(aj,
1

k
,

1

k
) : j, k ∈ N}.
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Then B is countable. We claim that B is a base for the family of all open sets in X.

Let G be an arbitrary open set in X. Let x ∈ G, then there exists r, t > 0, 0 < r < 1,

such that

B(x, r, t) ⊂ G.

Since r ∈ (0, 1), we can find an s ∈ (0, 1) such that

(1− s) ∗ (1− s) > (1− r).

Choose m ∈ N such that
1

m
< min(s,

t

2
).

Since A is dense in X, there exists aj ∈ A such that

aj ∈ B(x,
1

m
,

1

m
).

Now if y ∈ B(aj,
1
m
, 1
m

) then,

M(x, y, t) ≥M(x, aj,
t

2
) ∗M(y, aj,

t

2
)

≥M(x, aj,
1

m
) ∗M(y, aj,

1

m
)

≥ (1− 1

m
) ∗ (1− 1

m
)

≥ (1− s) ∗ (1− s)

> 1− r.

Thus y ∈ B(x, r, t) and hence B is a basis. Hence the result.

The next proposition generalizes Proposition 1.2.3.

Proposition 3.2.1 A subspace of a separable fuzzy metric space is separable.

Proof: Let X be the given fuzzy metric space and Y be a subspace of X. Let

A = {xn, n ∈ N}
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be a countable dense subset of X. For arbitrary but fixed n, k ∈ N, if there are points

x ∈ X such that

M(xn, x,
1

k
) > 1− 1

k
,

choose one of them and denote it by xnk
. Let

B = {xnk
, n, k ∈ N},

then B is countable. Now we claim that Y ⊂ B̄. Let y ∈ Y. Given r, t > 0, 0 < r < 1,

we can find a k ∈ N such that

(1− 1

k
) ∗ (1− 1

k
) > 1− r.

Since A is dense in X, there exists an m ∈ N such that

M(xm, y,
1

k
) > 1− 1

k
.

But by definition of B, there exists xmk
∈ A such that

M(xmk
, xm,

1

k
) > 1− 1

k
.

Now

M(xmk
, y, t) ≥M(xmk

, xm,
t

2
) ∗M(xm, y,

t

2
)

≥M(xmk
, xm,

1

k
) ∗M(xm, y,

1

k
)

≥ (1− 1

k
) ∗ (1− 1

k
)

= 1− r.

Thus y ∈ B̄ and hence Y is separable.

Definition 3.2.1 Let X be any nonempty set and (Y,M, ∗) be a fuzzy metric space.

Then a sequence {fn} of functions from X to Y is said to converge uniformly to

a function f from X to Y if given r, t > 0, 0 < r < 1, there exists n0 ∈ N such that

M(fn(x), f(x), t) > 1− r

for all n ≥ n0 and for all x ∈ X.
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We conclude this section with the uniform limit theorem (Theorem 1.2.5) in the

context of fuzzy metric spaces.

Theorem 3.2.2 Let fn : X → Y be a sequence of continuous functions from a

topological space X to a fuzzy metric space Y. If {fn} converges uniformly to f then

f is continuous.

Proof: Let X be the given topological space and (Y,M, ∗) be the given fuzzy metric

space. For any open set V in Y, let x0 ∈ f−1(V ) and let y0 = f(x0). Since V is open,

we can find r, t > 0, 0 < r < 1, such that

B(y0, r, t) ⊂ V.

Since r ∈ (0, 1), we can find an s ∈ (0, 1), such that

(1− s) ∗ (1− s) ∗ (1− s) > 1− r.

Since {fn} converges to f, given s, t > 0, s ∈ (0, 1), there exists n0 ∈ N such that

M(fn(x), f(x),
t

3
) > 1− s

for all n ≥ n0. Since, for all n ∈ N, fn is continuous we can find a neighborhood U

of x0, for a fixed n ≥ n0, such that

fn(U) ⊂ B(fn(x0), s,
t

3
).

Hence

M(fn(x), fn(x0),
t

3
) > 1− s

for all x in U. Now

M(f(x), f(x0), t) ≥M(f(x), fn(x),
t

3
) ∗M(fn(x), fn(x0),

t

3
) ∗M(fn(x0), f(x0),

t

3
)

≥ (1− s) ∗ (1− s) ∗ (1− s)

≥ 1− r.

Thus,

f(x) ∈ B(f(x0), r, t) ⊂ V

for all x in U. Hence f(U) ⊂ V and hence f is continuous.
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Chapter 4

Some properties on fuzzy pseudo

metric spaces.

This chapter introduces the notion of a stationary fuzzy pseudo metric space. In the

classical case it is well known that for every pseudo metric space there is a metric

identification. We shall extend this to the fuzzy metric case by showing that for

every stationary fuzzy pseudo metric space there exists a stationary fuzzy metric

identification. We shall also discuss some properties of uniformly continuous maps

and extension of t−nonexpansive maps in the context of fuzzy metric spaces. Note

that most of the results presented in this chapter are our own contributions.

4.1 Fuzzy pseudo metric spaces and some proper-

ties.

In this section we present fundamental results of fuzzy pseudo metric space. We

begin with:

Definition 4.1.1 A 3-tuple (X,M, ∗) is said to be a fuzzy pseudo metric space

if X is an arbitrary set, ∗ is a continuous t−norm and M is a fuzzy set on
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X ×X × (0,∞) satisfying the following conditions:

4.1.1.1 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) > 0

4.1.1.2 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) = 1 if x = y

4.1.1.3 ∀x, y ∈ X, and ∀t > 0, M(x, y, t) = M(y, x, t)

4.1.1.4 ∀x, y, z ∈ X, and ∀s, t > 0, M(x, y, t+ s) ≥M(x, z, t) ∗M(z, y, s)

4.1.1.5 ∀x, y ∈ X, M(x, y, •) : (0,∞)→ [0, 1] is continuous.

Remark 4.1.1 Clearly every fuzzy metric space is a fuzzy pseudo metric space.

Example 4.1.1 Consider N with the usual metric d. For any Cauchy sequence {xn}

in N. Let

x = lim
n
xn.

It follows that x ∈ N. Now let X = {xn : xn is a Cauchy sequence in N}. Let a∗b = ab

for all a, b ∈ [0, 1] and

M(x, y, t) =


x
y

if x ≤ y

y
x

if y ≤ x

1 if xn = yn, for all n ≥ 1, n ∈ N.

We shall show that M is a fuzzy pseudo metric on X. Note that the outline of the

proof is similar to that of Example 2.1.5.

Proof: 1. ∀t > 0. Let xn, yn ∈ X. If xn = yn, for all n ≥ 1, then

M(xn, yn, t) = 1.

2. For all xn, yn ∈ X and for all t > 0, clearly M(xn, yn, t) = M(yn, xn, t).

3. To prove that

M(xn, yn, t) ∗M(yn, zn, s) ≤M(xn, zn, t+ s),

for all xn, yn, zn ∈ X and for all t, s > 0.
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We consider the following cases:

(i). xn = yn = zn. Let

x = lim
n
xn, y = lim

n
yn and z = lim

n
zn.

M(xn, yn, t) = 1

M(yn, zn, s) = 1

M(xn, zn, t+ s) = 1.

Now

M(xn, yn, t) ∗M(yn, zn, s) = M(xn, zn, t+ s) = 1.

It follows that

M(xn, yn, t) ∗M(yn, zn, s) ≤M(xn, zn, t+ s)

holds.

(ii). xn 6= yn = zn. Let

x = lim
n
xn, y = lim

n
yn and z = lim

n
zn.

Without the loss of generality, we may assume that x < y and y = z. Then,

M(xn, yn, t) =
x

y

and

M(yn, zn, t) = 1.

Also, we have M(xn, zn, t+ s) = x
z
. Now x

y
∗ 1 = x

y
and x

y
= x

z
. Thus

M(xn, yn, t) ∗M(yn, zn, s) < M(xn, zn, t+ s).

Therefore

M(xn, yn, t) ∗M(yn, zn, s) ≤M(xn, zn, t+ s)

holds.

(iii). xn = yn 6= zn. Let

x = lim
n
xn, y = lim

n
yn and z = lim

n
zn.
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Without the loss of generality, we may assume that x = y and y < z. Then,

M(xn, yn, t) = 1.

Also, we have

M(yn, zn, t) =
y

z

and

M(xn, zn, t+ s) =
x

z
.

Now

1 ∗ y
z

=
y

z

and
y

z
=
x

z
.

Thus

M(xn, yn, t) ∗M(yn, zn, s) < M(xn, zn, t+ s).

Therefore

M(xn, yn, t) ∗M(yn, zn, s) ≤M(xn, zn, t+ s)

holds.

(iv). xn 6= yn 6= zn. Let

x = lim
n
xn, y = lim

n
yn and z = lim

n
zn.

Without the loss of generality, we may assume that x < y < z. Then,

M(xn, yn, t) =
x

y

M(yn, zn, s) =
y

z

M(xn, zn, t+ s) =
x

z
.

Now

z > y

implies that

z2 > y2
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so
1

z2
<

1

y2
.

Thus
xy

z2
<
xy

y2
.

Therefore
x

z
∗ y
z
<
x

y
.

Hence

M(xn, zn, t) ∗M(zn, yn, s) < M(xn, yn, t+ s).

So that

M(xn, yn, t) ∗M(yn, zn, s) ≤M(xn, zn, t+ s)

holds.

4. Note that M(xn, yn, t) is independent of t. So for any s, t > 0 we have

M(xn, yn, t) = M(xn, yn, s).

Thus M(xn, yn, •) is continuous. Therefore (X,M, ∗) is a fuzzy pseudo metric space.

Remark 4.1.2 The topology τM induced by the fuzzy pseudo metric in Example 4.1.1

is discrete.

In the next example we provide a stationary fuzzy pseudo metric space whose

topology is not discrete.

Example 4.1.2 Let X = R and a ∗ b = ab for all a, b ∈ [0, 1]. Fix t > 0. Define

M(x, y, t) =
t

t+ |x− y|
.

Then (X,M, ∗) is a stationary fuzzy pseudo metric space on X and the topology τM

induced by M is the usual topology on X.

Remark 4.1.3 The fuzzy pseudo metrics in Example 4.1.1 and Example 4.1.2 are

independent of t, such fuzzy pseudo metrics will be referred to as stationary fuzzy

pseudo metrics.
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Remark 4.1.4 It is important to note that the notion of fuzzy pseudo metric space

also depends on the t−norm. For instance: the fuzzy pseudo metric M of Example

4.1.1 is not a fuzzy pseudo metric with the continuous t−norm a ∗ b = min(a, b) for

all a, b ∈ [0, 1].

Remark 4.1.5 Observe that not every fuzzy pseudo metric space is a fuzzy metric

space. Note that Example 4.1.1 provides a fuzzy pseudo metric space which is not a

fuzzy metric space. We provide another example:

Example 4.1.3 Consider R with the usual metric. Let X = {{xn} : {xn} is

convergent in R}. Define a ∗ b = ab, for all, a, b ∈ [0, 1], and

M(xn, yn, t) =
[
e
|lim(xn−yn)|

t

]−1

.

Clearly (X,M, ∗) is fuzzy pseudo metric space but not fuzzy metric space. To see this,

let {xn} = 1
n

and {yn} = 3
n
. Then xn 6= yn, for all, xn, yn ∈ X, but M(xn, yn, t) = 1.

Remark 4.1.6 Every pseudo metric induces a fuzzy pseudo metric. However, as we

have observed by Remark 2.1.8 that not every fuzzy pseudo metric is induced by a

pseudo metric.

We recall:

Definition 4.1.2 ([6], page 215). A relation R in a set A, that is a subset R of

A× A, is termed an equivalence relation if satisfies the following condition:

(i). For every a ∈ A, (a, a) ∈ R (reflexive).

(ii). If (a, b) ∈ R then (b, a) ∈ R (symmetric).

(iii). If (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R (transitive).

Theorem 4.1.1 Let (X,M, ∗) be a fuzzy pseudo metric spaces. The set

RM = {(x, y) ∈ X ×X : M(x, y, t) = 1}
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is an equivalence relation on X.

Proof: (a, a) ∈ RM , since M(a, a, t) = 1 for all a ∈ X.

(a, b) ∈ RM implies that (b, a) ∈ RM as M(a, b, t) = M(b, a, t) for all a, b ∈ X and

t > 0.

Suppose that (a, b) ∈ RM and (b, c) ∈ RM .

Then

M(a, b,
t

2
) = 1

and

M(b, c,
t

2
) = 1

for all t > 0. Now for all t > 0,

M(a, c, t) ≥M(a, b,
t

2
) ∗M(b, c,

t

2
)

≥ 1 ∗ 1

= 1.

Since 0 ≤M(x, y, t) ≤ 1, for all x, y ∈ X, t > 0, we conclude that,

M(a, c, t) = 1.

Thus (a, c) ∈ RM .

Proposition 4.1.1 Let (X, d) be a pseudo metric space and

Rd = {(x, y) ∈ X ×X : d(x, y) = 0}.

Then

(i). Rd is an equivalence relation.

(ii). Rd = RMd
.

Proof: (i). Clear.
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(ii). Suppose that (x, y) ∈ Rd. Then d(x, y) = 0, this implies that x = y. Therefore

Md(x, y, t) = 1.

Thus (x, y) ∈ RMd
. Hence Rd ⊆ RMd

.

Conversely,

suppose that (x, y) ∈ RMd
, per definition of RMd

,Md(x, y, t) = 1. This implies that

x = y. Therefore d(x, y) = 0. Hence (x, y) ∈ Rd. Thus RMd
⊆ Rd. We conclude that

Rd = RMd
.

4.2 Fuzzy pseudo metric spaces and uniformities.

Definition 4.2.1 ([54], page 238). If X is any set, we denote 4 the diagonal

= {(x, x) : x ∈ X in X ×X}.

Definition 4.2.2 ([54], page 238). Let X be a set and A ⊂ X × X,B ⊂ X × X.

We define the set B ◦ A ⊂ X ×X as follows: (x, y) ∈ B ◦ A if there is z ∈ X such

that (x, z) ∈ A and (z, y) ∈ B.

Remark 4.2.1 If A1 = ... = An = A, we write An ◦ ... ◦ A1 = An.

Definition 4.2.3 ([11], page 217). For any E ⊂ X ×X, we write E−1 = {(x, y) :

(y, x) ∈ E}. A set E ⊂ X ×X is symmetric if E = E−1.

We can easily prove the following:

Proposition 4.2.1 Let A,B,C ⊂ X ×X. Then the following properties hold:

(i). C ◦ (B ◦ A) = (C ◦B) ◦ A

(ii). A ◦ 4 = 4 ◦ A = A

(iii). (A ◦B)−1 = B−1 ◦ A−1
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(iv). If A ⊂ B, then A−1 ⊂ B−1 and An ⊂ Bn

(v). (An)−1 = (A−1)n, n ∈ N

(vi). If A is symmetric then An is also symmetric.

Definition 4.2.4 ([54], page 238). A uniformity on a set X is a collection D

(X), or just D, of subsets of X ×X, called surroundings or entourages, which

satisfy the following:

(i). D ∈ D implies that 4 ⊂ D

(ii). D1, D2 ∈ D implies that D1 ∩D2 ∈ D

(iii). D ∈ D implies that E ◦ E ⊂ D for some E ∈ D

(iv). D ∈ D implies that E−1 ⊂ D for some E ∈ D

(v). D ∈ D ⊂ E implies that E ∈ D.

We shall call the pair (X,D) the uniform space.

Definition 4.2.5 A base for the uniformity D is any sub-collection ξ of D from

which D can be recovered by applying condition (v) of Definition 4.2.4

We now provide the following example.

Example 4.2.1 The usual uniformity D on R is the uniformity having for a base

the collection of sets Dε, ε > 0, where Dρ
ε = {(x, y) : |x− y| < ε}.

In general every pseudo metric space (X, d) generates a uniform space (X,D), whose

base is the collection Dε, ε > 0, Dd
ε = {d(x, y) < ε}.

Note that if ε runs through Q then the collection of sets Dε forms a countable base.

Definition 4.2.6 Let (X,D) be a uniform space. For x ∈ X, and D ∈ D denote

D[x] = {y ∈ X : (x, y) ∈ D}. Now for A ⊆ X, say A is open if for each a ∈ A there

exists D ∈ D such that D[a] ⊆ A. Then the collection of all open subsets of a uniform
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space (X,D) is a topology which we denote by τD. Note that τD = {A ⊆ X : a ∈ A,

there exists D ∈ D such that D[a] ⊆ A}.

Definition 4.2.7 Let (X, d) be a pseudo metric space and (X,Dd) be a

corresponding uniform space. Then τd = τDd
. In particular, let R be equipped with

the usual pseudo metric d. Then τDd
is the usual topology on R. Also see Example

4.2.1.

Remark 4.2.2 We shall say that a uniform space (X,∞) is pseudo metrizable

if the exists a pseudo metric d on X such that τd = τD.

We recall the following:

Theorem 4.2.1 ([54], page 257). Let (X,D) be a uniform space. (X,D) is pseudo

metrizable if and only if D has a countable base.

Definition 4.2.8 A fuzzy pseudo metric space (X,M, ∗) is uniformizable if there

exists a uniform space (X,D) such that τD = τM .

Proposition 4.2.2 [17]. A T1 topological space (X, τ) is metrizable if and only if it

admits a compatible uniformity with a countable base.

Theorem 4.2.2 Let (X,M, ∗) be a fuzzy pseudo metric space. Then, (X, τM) is a

pseudo metrizable topological space.

Proof: For each n ∈ N define

Un = {(x, y) ∈ X ×X : M(x, y,
1

n
) > 1− (

1

n
)}.

We shall prove that {Un : n ∈ N} is a base for a uniformity UM on X whose induced

topology coincides with τM . We first note that for each n ∈ N,

{(x, x) : x ∈ X} ⊆ Un, Un+1 ⊆ Un
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and Un = U−1
n . On the other hand, for each n ∈ N, there is, by the continuity of ∗,

and m ∈ N such that m > 2n and

(1− (
1

m
)) ∗ (1− (

1

m
)) > 1− (

1

n
).

Then, Um ◦ Um ⊆ Un. Indeed, let (x, y) ∈ Um and (y, z) ∈ Um. Since M(x, y, •) is

nondecreasing, M(x, z, ( 1
n
)) ≥M(x, z, 2

m
). So

M(x, z,
1

n
) ≥M(x, y,

1

m
) ∗M(y, z,

1

m
)

≥ (1− (
1

m
)) ∗ (1− (

1

m
))

> 1− (
1

n
).

Therefore (x, z) ∈ Un. Thus {Un : n ∈ N} is a base for a uniformity UM on X. Since

for each x ∈ X and each

n ∈ N, Un(x) = {y ∈ X : M(x, y,
1

n
) > 1− 1

n
}

= B(x,
1

n
,

1

n
),

clearly UM has a countable base hence by Theorem 4.2.1 (X, τM) is pseudo metrizable.

By Proposition 4.2.1 (X, τM) is a pseudo metrizable topological space.

4.3 Fuzzy metric identification.

Definition 4.3.1 ([54], page 59). If X is a topological space, Y is a set and

f : X → Y is an onto mapping, then the collection τf of subsets of Y defined by

τf = {F ⊂ Y : f−1(F ) is open in X} is a topology on Y called the quotient

topology induced on Y, by f. When Y is given some such quotient topology, it is

called a quotient space of X and the inducing map f is called a quotient map.

Definition 4.3.2 ([54], page 61). Let X be a topological space. A decomposition D

of X is a collection of disjoint subsets of X whose union is X. If a decomposition D

is endowed with the topology in which F ⊂ D is open if and only if ∪{F |F ∈ F} is

open in X, then D is referred to as a decomposition space of X.
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Definition 4.3.3 Let (X,M, ∗) and (Y,N,∇) be fuzzy pseudo metric spaces. A

function f : (X,M, ∗)→ (Y,N,∇) is a t−isometry if and only if

M(x, y, t) = N(f(x), f(y), t)

for each x, y ∈ X and t > 0.

Theorem 4.3.1 If (X, d) is a pseudo metric space. Then the function

f : (X, d)→ (X, d)

is an isometry if and only if f : (X,Md, ∗)→ (X,Md, ∗) is a t−isometry.

Proof: Suppose that f is an isometry from (X,Md, ∗) to (X,Md, ∗). Then

Md(x, y, t) = Md(f(x), f(y), t)

for all x, y ∈ X and for all t > 0. Now from

d(x, y) =
t(1−M(x, y, t))

M(x, y, t)
,

we get

d(f(x), f(y)) =
t(1−M(f(x), f(y), t))

M(f(x), f(y), t)

=
t(1−M(x, y, t))

M(x, y, t)

= d(x, y).

This implies that d(x, y) = d(f(x), f(y)) for all x, y ∈ X. Therefore f is an isometry

from (X, d) to (X, d).

Conversely,

suppose that f is an isometry from (X, d) to (X, d). Then this implies that

d(x, y) = d(f(x), f(y))

for all x, y ∈ X. It follows that

Md(f(x), f(y), t) =
t

t+ d(f(x), f(y))
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=
t

t+ d(x, y)

= Md(x, y, t).

Thus

Md(x, y, t) = Md(f(x), f(y), t)

for all x, y ∈ X and for all t > 0. Therefore f is an isometry from (X,Md, ∗) to

(X,Md, ∗).

Proposition 4.3.1 Let (X,M, ∗) be a stationary fuzzy pseudo metric space and f

be a natural map X onto the quotient set X|RM
. Then the fuzzy set M̄ on

X|RM
×X|RM

× (0,∞)

defined by

M̄(f(x), f(y), t) = M(x, y, t)

is a stationary fuzzy metric on the quotient set.

Proof: Suppose that f(x) = f(u) and f(y) = f(v). We need to show that

M̄(f(x), f(y), t) = M(x, y, t) = M(u, v, t) = M̄(f(u), f(v), t).

Note that

M(x, y,
t

3
) ≥M(x, u,

t

3
) ∗M(u, v,

t

3
) ∗M(v, y,

t

3
).

In fact

M(x, y, t) ≥M(x, u, t) ∗M(u, v, t) ∗M(v, y, t).

Since M is stationary fuzzy pseudo metric.

M(x, y, t) ≥ 1 ∗M(u, v, t) ∗ 1

M(x, y, t) ≥M(u, v, t)

and

M(u, v, t) ≥M(u, x, t) ∗M(x, y, t) ∗M(y, v, t)
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M(u, v, t) ≥ 1 ∗M(x, y, t) ∗ 1

M(u, v, t) ≥M(x, y, t).

Therefore

M(u, v, t) = M(x, y, t).

Since M is a stationary fuzzy pseudo metric. It follows that

M̄(f(u), f(v), t) = M̄(f(x), f(y), t).

Hence M̄ is a stationary fuzzy pseudo metric. Suppose that (x, y, t) /∈ RM , then

M(x, y, t) > 0, (0 < M(x, y, t) < 1)

implies that

0 < M̄(f(x), f(y), t) < 1.

It follows that M̄ is a fuzzy metric.

Definition 4.3.4 Let (X,M, ∗) be a stationary fuzzy pseudo metric space, we shall

refer to the fuzzy metric space (X|RM
, M̄ , ∗) as the fuzzy metric identification.

Theorem 4.3.2 Let (X|RM
, M̄ , ∗) be a fuzzy pseudo metric identification of the

stationary fuzzy pseudo metric space (X,M, ∗). Then the topology for the quotient

space X|RM
is the topology generated by the fuzzy metric M̄.

Proof: Consider x ∈ X, 0 < r < 1, and BM(x, r, t) for t > 0. Let f be a natural map.

To show that

f(BM(x, r, t)) = BM̄(f(x), r, t).

Let a ∈ f(BM(x, r, t)). Then a ∈ f(b), b ∈ BM(x, r, t). Now

M(b, x, t) = M̄(f(b), f(x), t)

and

M̄(f(b), f(x), t) = M(b, x, t)
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> 1− r.

This implies that

f(b) ∈ BM̄(f(x), r, t).

Therefore

a ∈ BM̄(f(x), r, t).

Thus

f(BM(x, r, t)) ⊆ BM̄(f(x), r, t).

Similarly we can show that

BM̄(f(x), r, t) ⊆ f(BM(x, r, t)).

Therefore

f(BM(x, r, t)) = BM̄(f(x), r, t),

also

f−1(BM̄(f(x), r, t)) = f−1f(BM(x, r, t))

= BM(x, r, t).

Hence the collection of all M̄ open balls is a base for the quotient topology.

Remark 4.3.1 If (X, d) is a pseudo metric space then the sequence {xn} in (X, d) is

Cauchy if and only if it is Cauchy in (X,Md, ∗). Also, a pseudo metric space (X, d)

is complete if and only if (X,Md, ∗) is complete.

Let (X, d) be a pseudo metric space we shall denote its metric identification by

(X|Rd
, d̄).

Proposition 4.3.2 Let (X,M, ∗) be a complete standard fuzzy pseudo metric space.

Then the stationary fuzzy metric identification (X|RM
, M̄ , ∗) is complete.

Proof: Suppose (X,M, ∗) is complete. Let {xn} be a Cauchy sequence in (X|RM
, M̄ , ∗),

then there exists a sequence {an} in X such that xn = f(an), n ≥ 1. Then {an} is
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also a Cauchy sequence in X with respect to M. Since (X,M, ∗) is complete, there

exists a point x ∈ X such that

M(an, x, t)→ 1

as n tends to ∞. It follows that

M̄(f(an), f(x), t)

converges to 1 as n tends to ∞ by continuity of f. Note that f(an) = xn. Hence

M̄(xn, f(x), t)

converges to 1 as n tends to ∞. This shows that (X|RM
, M̄ , ∗) is complete. This

completes our proof.

Similarly we can proof the following:

Proposition 4.3.3 Let (X, d) be a complete pseudo metric space. Then (X|Rd
, d̄)

is complete.

Proposition 4.3.4 Let (X, d) be a pseudo metric space, (X|Rd
, d̄) be the metric

identification of (X, d). For the spaces (X,Md, ∗), (X|Rd
,Md̄, ∗) and (X|RMd

, M̄d, ∗)

we have τd̄ = τM̄d
= τMd̄

.

Proof: By Proposition 4.1.1 we have observed that Rd = RMd
hence

X|RMd
= X|Rd

.

By Proposition 2.2.3 we have observed that

τd = τMd
.

Similarly we have

Rd̄ = RMd̄
,

hence

X|Rd̄
= X|RMd̄
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and

τd̄ = τMd̄
.

Finally we have

τd̄ = τM̄d
.

Hence

τd̄ = τM̄d
= τMd̄

.

4.4 Uniformly continuous maps and extension of

t−nonexpansive maps.

Definition 4.4.1 Let (X,M, ∗) be a fuzzy pseudo metric space and

f : (X,M, ∗) → (X,M, ∗) be a function. Then f is t−uniformly continuous if

for each 0 < σ < 1 there exists 0 < ε < 1 such that M(x, y, t) > 1 − σ implies that

M(f(x), f(y), t) > 1− ε, for each x, y ∈ X and t > 0.

Definition 4.4.2 Let (X,M, ∗) and (X,N, ∗) be fuzzy pseudo metric spaces, we say

that (X,M, ∗) is equivalent to (X,N, ∗) if and only if for a sequence {xn} and a

point x in X we have

lim
n
M(xn, x, t) = 1

if and only if

lim
n
N(xn, x, t) = 1.

Remark 4.4.1 Recall that for the metric spaces (X, d) and (Y, ρ), we say that d is

equivalent to ρ if and only if for a sequence {xn} and a point x in (X, d) we have

lim
n
d(xn, x) = 0

if and only if

lim
n
ρ(xn, x) = 0.

Clearly we see that d and ρ are equivalent if and only if the standard fuzzy metric

space (X,Md, ∗) is equivalent to the standard fuzzy metric space (Y,Mρ, ∗).
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Theorem 4.4.1 Let f : (X,M, ∗)→ (X,M, ∗) be a continuous function on a

stationary fuzzy pseudo metric space. Then there exists a fuzzy pseudo metric space

(X, M̃, ∗) such that,

1. M̃(x, y, t) is equivalent to M(x, y, t).

2. f : (X, M̃, ∗)→ (X,M, ∗) is uniformly continuous.

Proof: For all x, y in X and t > 0, define

M̃(x, y, t) = M(x, y, t) ∧M(f(x), f(y), t).

1. (i). Since 0 < M(x, y, t) ≤ 1 and 0 < M(f(x), f(y), t) ≤ 1 it follows that

0 < M̃(x, y, t) ≤ 1.

(ii). Clearly M̃(x, y, t) = M̃(y, x, t).

(iii). Since M(x, y, t) = 1 and M(f(x), f(y), t) = 1 when x = y. It follows that

M̃(x, y, t) = 1.

(iv). For all s, t > 0, x, y and z ∈ X. We know that

M(x, y, t+ s) ≥M(x, z, t) ∗M(z, y, s)

and

M(f(x), f(y), t+ s) ≥M(f(x), f(z), t) ∗M(f(z), f(y), s).

So,

M̃(x, y, t) = M(x, y, t) ∧M(f(x), f(y), t)

implies that

M̃(x, y, t+ s) = M(x, y, t) ∧M(f(x), f(y), t+ s)

M̃(x, y, t+ s) ≥M(x, z, t) ∗M(z, y, s) ∧M(f(x), f(y), t) ∗M(f(z), f(y), s)

≥M(x, z, t) ∗M(f(x), f(z), t) ∧M(z, y, s) ∗M(f(z), f(y), s)

≥ M̃(x, z, t) ∗ M̃(z, y, s).
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Take a sequence {xn} and a point x in X, suppose that for all t > 0. M(xn, x, t)

converges to 1. Then by continuity of f,M(f(xn), f(x), t) converges to 1. So,

M(xn, x, t) ∧M(f(xn), f(x), t)

converges to 1. It follows that M̃(xn, x, t) converges to 1.

Conversely,

suppose that M̃(xn, x, t) converges to 1 this means that

M(xn, x, t) ∧M(f(xn), f(x), t)

converges to 1. Therefore M(xn, x, t) converges to 1. Thus M̃(xn, x, t) and M(xn, x, t)

are equivalent.

2. Observe that

M(f(x), f(y), t) ≥ M̃(x, y, t).

Now given 0 < σ < 1, t > 0, such that

M̃(x, y, t) ≥ 1− σ

let ε = σ. Then

M(f(x), f(y), t) > 1− ε.

Therefore

f : (X,M, ∗)→ (X,M, ∗)

is uniformly continuous.

Definition 4.4.3 Let (X,M, ∗) be a fuzzy metric. We say that a function is

t−nonexpansive if

1

M(x, y, t)
− 1 ≤ 1

M(f(x), f(y), t)
− 1

for all x, y ∈ X and for all t > 0.

Remark 4.4.2 Observe that f is t−nonexpansive if and only if

M(f(x), f(y), t) ≥M(x, y, t).
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Remark 4.4.3 Every t−nonexpansive function f : (X,M, ∗)→ (X,M, ∗) is t−uniformly

continuous and therefore continuous but not conversely.

Definition 4.4.4 Let (X,M, ∗) be a fuzzy metric space. We say that (X,M, ∗) has

the property E if for a function f : (X,M, ∗)→ (X,M, ∗) and the pair of sequences

{xi : i ∈ I}

and

{f(xi) : i ∈ I}

in X such that

M(f(xi), f(xj), t) ≥M(xi, xj, t).

Then

∩i∈IB̄(xi, ri, t) 6= ∅

implies that

∩i∈IB̄(f(xi), ri, t) 6= ∅,

where

B̄(x, r, t) = {y ∈ X : M(x, y, t) ≥ 1− r},

for 0 < r < 1, t > 0.

Definition 4.4.5 Let S be a subset of fuzzy metric space (X,M, ∗) and f : S → X

be a function. We shall say that F : X → X is an extension of f, if F |S = f.

Remark 4.4.4 Of interest are the extensions which preserve special properties.

Definition 4.4.6 Let (X,M, ∗) be a fuzzy metric space. We shall say that (X,M, ∗)

has the t−nonexpansive extension property if every t−nonexpansive function

defined on a subset S of (X,M, ∗) admits an extension F : X → X which is

t−nonexpansive.
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Theorem 4.4.2 Let (X,M, ∗) be a fuzzy metric space and S ⊂ X. Then (X,M, ∗)

has the t−nonexpansive extension property if and only if (X,M, ∗) has property E.

Proof: Assume that (X,M, ∗) has the t−nonexpansive extension property. Consider

a map g : X → X and a pair of sequences {xi : i ∈ I} and {g(xi) : i ∈ I} such that

M(g(xi), g(xj), t) ≥M(xi, xj, t)

and

∩i∈IB̄(xi, ri, t) 6= ∅

hold. Let S = {xi : i ∈ I} and define f = g on S. Since x ∈ ∩i∈IB̄(xi, ri, t) 6= ∅,

then f is t−nonexpansive and therefore admits an extension F : X → X which is

t−nonexpansive. In particular, F is defined on x, and therefore there exists y ∈ F (X)

such that

y ∈ ∩i∈IB̄(F (xi), ri, t).

This shows that

∩i∈IB̄(F (xi), ri, t) 6= ∅

and so

∩i∈IB̄(f(xi), ri, t) 6= ∅.

Conversely, let S ⊂ X and f : S → X be a t−nonexpansive function. For each

x ∈ X − S, we can extend f to S ∪ {x}. Consider, the collections of closed balls

{B̄(ω,M(x, ω, t), t) : ω ∈ S}

and

{B̄(f(ω),M(x, ω, t), t) : ω ∈ S}.

Then

∩ω∈S{B̄(ω,M(x, ω, t), t) : ω ∈ S} 6= ∅

Hence, there exists

y ∈ ∩ω∈S{B̄(f(ω),M(x, ω, t), t) : ω ∈ S}.
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Let f(x) = y. Note that this extension is also t−nonexpansive. Now let ζ be the

collection of all t−nonexpansive extensions of f to subsets of X that contain S. For

f1 and f2 in ζ we shall say that f1 ≤ f2 provided that D(f1) ⊆ D(f2). Note that

every totally ordered subfamily of ζ has a maximal element F and that F belongs to

ζ. It follows that F is the required extension of F.
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