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Abstract  

 
We report on first-principles density functional theory (DFT) calculations of interactions 

between extrinsic defects and intrinsic structural defects in silicene.  Specifically, we 

investigate the stability, structural, magnetic and electronic properties of a monolayer 

silicene containing vanadium (V), hydrogen (H) and oxygen (O) atoms.  Vanadium is a 

magnetic transition-metal and its incorporation in silicene lattice introduces magnetization. 

Thus, we have considered various configurations of vanadium either as interstitial or 

substitutional atoms, and their interactions with silicene vacancies.  Hydrogen and oxygen 

are ubiquitous elements which are inadvertently introduced during material synthesis. 

Therefore, for practical purposes, it is important to investigate how their presence impact on 

the host material which in this case, are silicene or silicene containing vanadium impurities.  

 

We show that a monovacancy introduces a magnetic moment of 2.02 μB in an otherwise 

non-magnetic monolayer silicene.  Nonetheless, the vacancy possesses a significant 

formation energy of 3.52 eV, which suggest that it may only be produced through external 

perturbation such as electron irradiation.  Also, we show that a divacancy is more stable than 

a single vacancy, but unlike a single vacancy, it has a zero magnetic moment.  Also, 

divacancies at different separation in silicene lattice have a similar formation energy 

irrespective of their separation.  Furthermore, when a silicene atom is substituted by a 

vanadium atom, the latter makes the monolayer silicene metallic while introducing a 

magnetic moment of 2.61 μB.  The presence of a vacancy at a different atomic separation 

from vanadium shows that the nearest-neighbour vanadium-vacancy defect complex, that is, 

vanadium in a divacancy has the highest stability, however, all the substitutional vanadium-

vacancy configurations are stable and both types of defects can co-exist in a monolayer 

silicene.  

 

Regarding small vanadium clusters consisting of a pair of vanadium at varying separations, 

we found that the relative stability of the V-V pair is sublattice dependent, which oscillates 

between ferromagnetic (FM) and antiferromagnetic (AFM) configuration as the 

substitutional lattice sites of the V-V pair varies.  When the V-V dimer are on a similar 

sublattice type, they prefer to couple together antiferromagnetically.  However, when they 

are on a different sublattice type, the V-V dimer prefer to be in ferromagnetic configuration.  
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Comparison between the binding energy of substitutional V-vacancy pair and V-V pair 

shows that vanadium clustering is more probable without the vacancy than with vacancy. 

Consideration of interstitial hole V-V pair, that is, V-V pair at the centre of silicene hexagons 

affirms that indeed, small V-V pair are stable without vacancies.  The presence of V atoms, 

however, induces finite magnetic moment in monolayer silicene, while annihilating the 

Dirac point and opening a narrow band gap of under 0.1 eV in the monolayer silicene 

electronic band structures.  

 

We found that the V atom attracts the O and H either in atomic or molecular form, and when 

adsorbed they impact on the magnetization of V-doped monolayer silicene by reducing or 

annihilating its magnetic moment.  Furthermore, a V-doped silicene having adsorbed atomic 

H and O behaves like a ferromagnetic semiconductor.  On the other hand, molecular H2 and 

O2 adsorbed on a V-doped silicene do not result in a ferromagnetic semiconductor, although 

the resulting structures are metallic with a finite magnetization.  We also found that the 

impact of H and O on the electronic and magnetic properties of V-doped silicene depends 

on their respective lattice locations, that is, whether these adsorbates are on the V atom or 

on the silicene atom near to the V dopant.    

 

 

 

 

Keywords: First-principles; density-functional theory (DFT); impurity dopants; silicene; 

defect; vanadium; dimers; formation energy; binding energy; electronic properties; 

magnetic properties; two-dimensional solid.  
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CHAPTER 1 

 

          Introduction  

 

1.1 Background to the research 

Scientific research on two-dimensional (2D) materials blossomed in 2004 when an atom-

thick two-dimensional honeycomb material was exfoliated from graphite by Novoselov et 

al. [1].  This material referred to as graphene, showed exotic physical and chemical 

properties such as long electron mean-free paths, great mechanical strength, ballistic 

transport, superior thermal conductivity, ultrahigh electron mobility, room-temperature 

quantum Hall Effect and remarkable flexibility, with potential applications in nanoscale 

electronics, spintronics, sensing, photonics, energy storage and biotechnology [2], to 

mention but a few.  Graphene's high mechanical and chemical stability, exceptional 

ballistic conductance [3], has led researchers to seek other two-dimensional materials that 

possess similar properties.  Silicon, belonging to the same group with carbon is worth to be 

investigated.  In recent times, 2D layer of silicon atoms, that is silicene, started to attract 

intensive research studies [4].  This is partly motivated by the role of bulk silicon crystal as 

a workhorse of semiconductor technology.  Researchers then opined that a 2D layer of 

silicon atoms, that is silicene, will represent a new material capable of further 

revolutionizing electronics technology.  Hence the ongoing interest in the material.  

 

In this thesis, our focus is silicene, a single atom-thick two-dimensional honeycomb 

material.  Silicene forms hexagonal lattice structures similar to graphene, however, while 

silicene exhibit a buckled shape, graphene exhibits a flat shape [5].  These two materials are 

also known to possess similar electronic properties, such as linear electronic dispersion 

around the Dirac points, charge carriers that behaves like massless electrons, and quantum 

spin Hall effect.  Silicene has an unstable mixture of sp2 and sp3 hybridization, and it is this 

unstable dual hybridization that leads silicene not to be easily exfoliated from silicon bulk 

crystal [5].  Also, comparable to graphene, silicene possess a stronger spin-orbit coupling, 

and a tuneable electronic structure.  These characteristics makes silicene an important two-

dimensional material with potential applications in nanotechnology.  Indeed, there are 

ongoing efforts devoted to investigations of silicene for quantum anomalous Hall effect, 
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valleytronics, spintronics, superconductivity, field and tunneling-field effect transistor, 

thermoelectricity, chemical sensing, hydrogen storage, and electrode material for lithium 

battery [6]. 

 

One of the ways to tune or modify the intrinsic properties of a material is through the 

incorporation of a defect into its structure.  Defects have impact on the physical properties 

and applications of materials, and this may include properties such as mechanical, electrical, 

optical and magnetic properties.  A material system may possess intrinsic or extrinsic 

defects, or both.  Extrinsic defects may include an externally introduced impurity atoms, 

while intrinsic defects may include point defects or their clusters.  Defects may also be 

classified into various categories that depends on dimensionality [7,8].  Points defects are 

categorized as zero-dimensional (0-D) defects.  This category encompasses vacancies, 

substitutional impurities, adatoms, and Stone-Wales (SW) defects.  One-dimensional (1-D) 

defects include line defect, grain boundaries, and edges [7,8].  The two-dimensional (2-D) 

defects include free surfaces, inter-crystalline boundaries and internal defects.  Three-

dimensional (3-D) defects include defects such as precipitates, dispersants, 3-D defect 

clusters and voids [7]. The aforementioned defects may be found in three-dimensional 

crystalline solids as well as two-dimensional materials, including silicene. The 

aforementioned defects may be found in three-dimensional crystalline solids as well as two-

dimensional materials, including silicene.  

 

In this work, we focus on point defects, including vacancies, substitutional impurities, and 

adatoms, as well as the clusters formed by the agglomeration of these defects.  Figure 1.1 

illustrates examples of these defects.  With respect to a 2D material in particular, a vacancy 

represents an empty space created by a missing atom of the material.  This type of point 

defect is mostly observed at high temperatures where atoms often and unpredictably shift 

their locations, creating vacant lattice sites in the process [7].  There are various methods 

responsible for creating vacancies, such as ion irradiation and so on.  A substitutional 

impurity may be described as a foreign atom that has replaced one or more host atoms, while 

an adatom may be described as a foreign atom that is placed on the surface of the host such 

as silicene sheet. An adatom may become physisorbed when the bond between the adatom 

and the surface of the host is weak, or it may become chemisorbed when a strong bond 

exists between the adatom and the surface of the host such as silicene sheet [8,9].  In silicene, 

sigma (σ) bonds are the strong covalent bonds that form between sp2 orbitals in-plane, while 
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pi (π) bonds are the weak covalent bonds that form between pz orbitals out-of-plane.   This 

means, sigma bonds occur when two atomic orbitals connect in an end-to-end manner, while 

pi bonds arise when two atomic orbitals overlap in a sideways orientation.         

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Schematic illustration of various defect types, that is, substitutional atom (green sphere), a vacancy 

(white sphere), interstitial atom (red sphere) as well as dislocation (white line), as explained in the main text.  

Grey spheres are atoms of the host material. 

 

Point defects have the ability to alter the functionality of any material, including with 

silicene. Thus, the defects when present in silicene may alter its structural, electrical, and 

magnetic properties.  The effects of defects on 2-D silicene is the main focus of this work. 

In particular, this thesis focuses on the effects of single and double vacancies, interactions 

of single vacancies in silicene, substitutional vanadium atom in silicene, interaction of 

vanadium atom with vacancies, as well as small vanadium clusters in silicene.  We also 

considered the interactions of the aforementioned defects with oxygen and hydrogen when 

they all co-exist in silicene.  We characterize monolayer silicene containing these defects 

for their electronic and magnetic properties.    

 

The study employs density functional theory (DFT) approach to obtain the electronic 

structure and magnetic properties of silicene [10].  DFT calculates the ground-state 

properties of material systems based on its ground state electron density.  This theory asserts 

that the total energy of a material system can be determined from its electron density.  This 

assertion, received its practical meaning from Kohn and Sham [11], who considered a single-

particle wavefunction that has a ground-state density as the many-body material system, and 

that the total energy of such a system may be given by the addition of the kinetic energy of 

non-interacting electrons, the classical Coulomb repulsion between the electrons, the 

potential energy of the electrons in the field of nuclei, and the exchange and correlation 
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energy [10].  However, the successes and failures of density functional theory are discussed 

in sub-section 3.14 of Chapter 3.  

 

1.2 Knowledge gap and motivation of the research  

As stated in Section 1.1, introducing defects in a solid material is one way of altering its 

intrinsic properties.  To this end, defects can be intentionally introduced into a material, or 

inadvertently introduced in a material during synthesis.  The latter is particularly the case 

for environmental gases such as hydrogen and oxygen atoms.   

 

Silicene is a non-magnetic material in its pristine form.  However, introducing a 

paramagnetic atom in its lattice may alter its electronic and magnetic properties.  Also, 

intrinsic point defects, in particular, vacancies are routinely formed in a material.  Therefore, 

a comprehensive study of a dopant (that is, an externally introduced atom) in a material 

should include intrinsic point defects.  Furthermore, environmental gases such as H and O 

are ubiquitous and may contribute to changing the properties of a material when present.     

Therefore, in this work, we study the vanadium (V) atom inclusion in a monolayer (that is, 

single layer) silicene, and the interactions of the V dopant with vacancies, O and H atoms.  

In order to achieve this, we considered single and double vacancies, substitutional V dopant, 

and small V clusters in a monolayer silicene.  We considered defect complexes formed by 

these defects and their interactions with the O and H atoms.  Vanadium has been chosen in 

this work since it has a finite magnetic moment, and thus it is expected to induce 

magnetization in the silicene lattice.  It should be emphasized that, in principle, other 

transition metals (TMs) with magnetic moments, such as nickel, iron and other 3d and 4d 

transition metals, exist However, V has been chosen as a representative paramagnetic metal 

to facilitate the study of metal dopant-induced magnetization in silicene.  Furthermore, we 

note that there are previous studies on transition metal inclusion in silicene [12], however, 

the interactions of these metal dopants with intrinsic defects and the role of O and H have 

not been explored.  Hence, the motivation for this study. 

 

1.3 Aim and objectives  

The primary goal of this research work is to study the possibility of monolayer vanadium-

embedded silicene as a potential material for spintronic device applications.   In order to 

achieve this, we investigate, using computational approach, the energetics, structural, 
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electronic, and magnetic properties of silicene containing vanadium and intrinsic defects, 

including hydrogen and oxygen external impurity atoms.  We have employed DFT 

calculations as our computational approach.  The objectives of this research are broadly 

divided into two parts:  

 

1. To investigate the stability, structural, magnetic, and electronic properties of a monolayer 

silicene containing: 

   (a) vacancy and vacancy complexes. 

   (b) vanadium and vanadium clusters.  

   (c) vacancy-vanadium defect complexes.  

2. To determine the effects of atomic and molecular oxygen and hydrogen, that is, O, O2, H, 

and H2 on the properties of silicene atoms containing the defects stated in 1(a-c).  As 

indicated in section 1.2, these gases have been chosen since they are ubiquitous 

environmental gases present in experimental synthesis processes. 

 

1.4. Outline of the thesis  

The thesis outline is as follows: Chapter 2 deals with the physics of two-dimensional silicene 

material.  In this Chapter, basic structural and electronic properties of silicene and graphene 

are discussed.  Also, recent theoretical and experimental developments in silicene research 

are reviewed.   

 

The theoretical method of DFT and its implementation are discussed in Chapter 3, in 

particular, the nitty-gritties of DFT and its numerical implementation in the Quantum 

Espresso (QE) code.  This Chapter includes the discussions of the computational methods 

used for obtaining various defects parameters.   

In Chapter 4, calculated properties of pristine silicene are presented, including the 

optimization of the input parameters.   

Chapter 5 presents vacancies formation and interaction in silicene.  The effects of vanadium 

dopant, vacancy-vanadium defect complexes, and the small vanadium clusters in silicene 

are discussed in Chapter 6.   

Chapter 7 discusses the effects of adsorption of atomic and molecular hydrogen and oxygen 

in vanadium-doped silicene.   

Chapter 8 presents conclusions and recommendations for further research. 
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CHAPTER 2 

 

Physics of 2-D silicene 

 

2.1 Structure and comparison with graphene 

Silicene is a one-atom thick allotrope of silicon, while graphene is a one-atom thick allotrope 

of carbon.  Silicon and carbon belong to the same elemental group in the periodic table, that 

is group IV, which suggests that these two-dimensional materials may have similar 

electronic properties, however, with some differences mostly due to their nature of bonding.  

Structurally, both graphene and silicene have a hexagonal honeycomb lattice, as shown in 

figures 2.1(a) and 2.1(c), respectively.  However, while graphene has a flat arrangement of 

carbon atoms, silicene has a buckled arrangement of silicon atoms with a relative 

displacement of h between the upper and lower sublattice.  In some notation, the lower atoms 

(relative to the atoms at h) are called ‘valley’ atoms.  The unit cell of each honeycomb 

structure (that is, silicene and graphene) contains two atoms as a basis set, one from each 

sublattice.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: (a) Top view, (b) Side view of graphene, (c) Top view, and (d) Side view of silicene.  The blue and 

yellow spheres represent the graphene and silicene atoms, respectively [13]. 

 

Table 2.1 shows the comparison of the lattice constant, bond length, bond angle, and 

buckling length of silicene and graphene. 
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Table 2.1: Structural parameters of silicene and graphene: Lattice constant, bond length, bond angle, and 

buckling length.  All values were taken from Ref. [4].  

System          Lattice constant (Å)          Bond length (Å)          Bond Angle (°)          Buckling length (Å)  

Silicene          3.88                          2.27      116.90           0.41 

Graphene        2.46                         1.42      120.00           0.00 

 

From table 2.1, the lattice constant of silicene is larger than that of graphene by 1.42 Å.  The 

bond length of silicene is also larger than that of graphene by 0.85 Å.  The larger bond length 

in silicene is caused by the existence of sp3 nature of bonding between silicene atoms, which 

results in the buckling of the material system [4].  The buckling character is stabilized by 

the overlapping of orbitals.  Table 2.1 also shows that the bond angle between the nearest 

neighbour silicene atoms is 116.90°, while the bond angle in graphene is 120° [4].  These 

bond angles are indication of a sp2 hybridization in the case of graphene and a mixture of 

sp2 and sp3 hybridization which supports the buckling nature of silicene.  Finally, the ‘valley’ 

sublattice atom in silicene is displaced by about 0.41 Å from the top atom [14].  Graphene 

shows zero buckling length due to its flat arrangement of carbon atoms [15]. 

 

2.2 Electronic bands and energy gap 

The electrical characteristics of graphene and silicene are comparable.  Figure 2.2 (a) and 

(b) shows the theoretical band structures of graphene and silicene, respectively.  From the 

figure, these two material systems possess Dirac points at the K points of the Brillouin zone.  

The Dirac point is the intersection of the valence and the conduction bands at the Fermi level 

[16].  Around the Dirac point, the charge carriers of graphene and silicene behave like 

massless electrons, and the bands of these systems cross each other linearly at the Fermi 

level, as shown in the figure [17].  This feature results in these material systems possessing 

a property of high electrical conductivity [18]. 
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Figure 2.2: A comparison of the electronic band structure of (a) graphene, (b) silicene. Orbital colours: 1st sp2 

orbital (red), 2nd sp2 orbital (green), 3rd sp2 orbital (blue), unhybridized pz orbital (pink), π* orbital (cyan), σ* 

orbitals (yellow and dark magenta).  The zero energy is the Fermi level [4]. 

 

In graphene, this property is a result of the electrons in the unhybridized pz orbital only, 

because the electrons of the hybridized s, px and py orbitals are deeply embedded in the 

valence band, and as such, makes no significant contribution to the electrical conductivity 

of graphene.  This feature, renders graphene to be a semi-metal with a zero-band gap.  

However, in silicene, the electrical conductivity is mainly from the electrons of the pz orbital.  

This means that the electrons due to the hybridization of the s, px, and py orbitals, with the 

pz orbital, make a little contribution to the electrical conductivity of silicene.  This feature, 

also renders silicene to be a semi-metal, though, with a tuneable band gap [4,6]. 

 

2.3 Potential applications of silicene 

The potential applications of silicene are comparable to graphene's. For instance, graphene-

based transistors may be regarded to be an established application, since this has been 

demonstrated.  Also, silicene may be said to have an edge over graphene, because of its 

compatibility with the existing silicon nanotechnology [16].  Moreover, silicene possess a 

stronger spin-orbit coupling compared to graphene, which may establish the quantum spin 

Hall effect of silicene.  Furthermore, silicene has a tuneable band gap which is a suitable 

feature in the realization of field-effect transistors.  It also has a potential to be used as a 

material in spintronics and valleytronics.  Silicene has been shown to be applicable as a 

material for chemical sensor, thermoelectric, and energy storage device [6].  Figure 2.3 

shows the potential applications of silicene and its derivatives [19].      
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Figure 2.3: Potential applications of silicene and its derivatives [19]. 
 

2.4 Review of recent developments in silicene 

2.4.1 Theoretical  

The first theoretical studies on silicene sheet may be attributed to Takeda and Shiraishi 

[6,16,20], who predicted in 1994 that silicene has a buckled structure with a band structure 

featuring a Dirac cone, as shown in figure 2.2 (b).  In 2007, another significant theoretical 

study on silicene sheet was conducted by Guzmán-Verri and Lew Yan Voon, who used both 

group theory and tight-binding model to show that silicene may be categorised as a semi-

conductor with a zero-band gap [6,16,21,22].  In 2009, Cahangirov and his colleagues, 

theoretically showed that silicene is a stable, buckled material, that has a Dirac cone at the 

symmetric point K of the reciprocal lattice, and that, at this point of the Fermi level, the 

charge carriers behave as massless electrons [6,23].  The same results were independently 

obtained in the same year by Lebègue and Eriksson, when they were conducting silicene 

band structure calculations [17].  Furthermore, theoretical studies by Liu et al. [24] showed 

silicene to have a stronger spin-orbit coupling compared to graphene, and this feature, may 

lead to the realization of other phenomenon such as quantum valley Hall effect (QVHE), 

quantum spin Hall effect (QSHE) and quantum anomalous Hall effect (QAHE).  These 

predicted quantum states serve as strong motivators among the experimentalists to explore 

the possibility of fabricating the silicene sheet.   
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2.4.2 Experimental 

The theoretical studies on silicene charted a path for the experimentalists to begin to look 

into synthesizing silicene sheets.  However, these efforts appeared to be difficult to realize, 

because silicon has no allotrope like graphite from which graphene may be mechanically 

stripped.  Other methods such as chemical reduction method, which is used for the 

realization of graphene from graphene oxide, fails because silicon oxide is a hard insulator 

for silicene [6].  To date, it appears that the appropriate method for fabricating silicene sheets 

is through epitaxial growth on metal substrates.  Other methods that are used to fabricate 

other two-dimensional materials failed when it came to silicene until 2012 [6].  However, 

on Ag (001) and Ag (110) substrates, silicene nanoribbons were successfully created [6,25-

28].  Rachid Tchalala et al. also successfully grew silicene nanoribbons on Au (110) 

substrate later on [6,29].  Vogt et al. placed silicene on Ag (111) substrate and grew it 

successfully in 2012 [30].  Also in 2012, other experimentalists obtained Vogt et al. findings 

independently, by successfully synthesizing silicene on Ag (111) substrate [6,31-34]. 

 

Silicene was also successfully grown epitaxially on several substrates such as on metallic 

zirconium diboride [6,35], metallic zirconium carbide (111) [6,36], and iridium (111) [6,37].  

As most experimentalists chose to epitaxially grow silicene on metallic surfaces, Chiappe et 

al., chose to grow silicene epitaxially on a semi-conducting MoS2 substrate, and this effort 

shows to preserve the properties of silicene [6,38].  The preceding assertions show that the 

epitaxial growth appears to be the main way in which silicene may be synthesized on 

substrates.  Thus, together with employing different experimental techniques such as 

scanning tunnelling microscopy (STM), scanning electron microscopy (SEM), low-energy 

electron diffraction (LEED) and surface x-ray diffraction (SXRD), shows to be capable in 

assisting to determine the structure of silicene.   

 

Our review of recent theoretical and experimental studies on silicene shows that there have 

been efforts to modify the intrinsic electronic and magnetic properties of silicene using 

structural and chemical modification approaches [39,40], including introducing defects into 

its structure such as point defects, of transition-metals and other non-metallic inclusions [41-

46].  However, none of these studies probed the effect of environmental gases such as atomic 

and molecular hydrogen and oxygen gases. This is rather surprising since in the synthesis of 

impurity-doped silicene, these gases may be inadvertently introduced. The present study fills 
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this gap by considering the properties of metal-doped silicene having hydrogen and oxygen 

as co-adsorbates. We have used Vanadium-doped silicene as our model system. 

 

Finally, we wish to state that there are fewer research studies on silicene compare to its 

graphene counterpart. This is partly because silicene deposition on a metal surface requires 

atomically clean conditions often obtained under ultra-high vacuum system. Silicene studies 

is thus an expensive process and time-consuming [39]. 
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CHAPTER 3 

 

Theoretical Methods and Implementation 

 

3.1   Introduction 

The knowledge about the properties of material systems is achieved through the 

determination of their quantum-mechanical total energy.  It is the ground-state energy of the 

many-body system, and the subsequent minimisation of this energy that provides knowledge 

and understanding about the properties of these material systems.   Several methods are 

being used to calculate this quantum-mechanical total energy of the many-body systems.  

However, since the exact total energy of these systems is not easily attained due to many-

body interactions, lots of simplifications and approximations are being assumed in these 

methods to calculate this energy.  In this thesis, a description of only two methods is given, 

among many others.  These methods are the Born-Oppenheimer (BO) approximation and 

the Density Functional Theory (DFT). 

 

3.2 Born-Oppenheimer approximation 

The Born-Oppenheimer (BO) approximation involves the separation of the electronic and 

nuclear motions of molecules.  It is based on the realization that since the nuclear motion is 

slow, then the fast-moving electrons have sufficient time to relax to a ground-state of the 

Hamiltonian of equation (3.1) given below.  In other words, the electronic wavefunction 

becomes solvable by assuming that the nuclear degree of freedom is almost fixed compared 

to the electronic degree of freedom.  The fixation of a range of these nuclear degrees of 

freedom results in the potential energy curve that actually traces the nuclei movement. 

 

The time-independent, nonrelativistic Schrödinger equation for a many-body system is 

given by [47]: 

      EH ˆ                       (3.1) 

where Ĥ  is the Hamiltonian operator and   a set of solutions, or eigenstates of the 

Hamiltonian.  The Hamiltonian operator is defined as the sum of the kinetic energy T̂ and 

potential energy V̂ respectively.  That is [47]: 
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            VTH ˆˆˆ                                    (3.2) 

The BO approximation simplifies the Schrödinger equation (SE) on the assumption that 

since the atomic nuclei is much more massive than the atomic electrons, then the nuclei 

should be perceived as being stationary relative to the fast-moving electrons.  This approach 

renders the SE to be tractable for it is now expressed into separate nuclear and electronic 

Schrödinger equations [48]. 

 

The Hamiltonian of equation (3.2) is the total energy of the electronic-nuclei system and 

may be expressed (in atomic units) as follows [49,50]: 

                         )(ˆ)(ˆ),(ˆ)(ˆ)(ˆˆ rVRVRrVrTRTH eeNNeNeN           (3.3) 

where 
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V̂ , is the operator for the potential energy due to nuclear-nuclear repulsion, 

and 





ji ij

ee
r

V
1ˆ  , is the operator for the potential energy due to electron-electron repulsion, 

 

where A and B are the nuclei, i and j are the electrons, and i ˃ j prevents double counting in 

electron-electron interaction ( eeV̂ ), otherwise, a factor ½ must be placed in front of the 

double sum for i = j terms to prevent this double counting.  The assumption that the nuclei 

are much more massive than the electrons, allows the fixing of the nuclear co-ordinates R 

so that in the electron wavefunction ),( Rre the co-ordinates R are just parametric.  

Moreover, this assumption also allows the disappearance of the term )(ˆ RTN from equation 

(3.3).  Thus equation (3.3) can be given as: 

 )(ˆ)(ˆ),(ˆ)(ˆˆ rVRVRrVrTH eeNNeNeel                                 (3.4) 
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where elĤ  is the electronic Hamiltonian.  This reduces the Schrödinger (with fixed nuclei) 

to: 

    ),(),(ˆ RrERrH elel                        (3.5) 

where elE is the electronic eigenvalue. 

 

The disappearance of the term )(ˆ RVNN  in equation (3.4) is allowed since it is just a constant 

that shifts the eigenvalue for R parametric.  Hence equation (3.4) may be written as: 

)(ˆ),(ˆ)(ˆˆ rVRrVrTH eeeNee             (3.6) 

where eĤ  is the electronic Hamiltonian without )(ˆ RVNN .  Thus, equation (3.5) is reduced 

to: 

    ),(),(ˆ RrERrH eee                        (3.7) 

Equation (3.7) is referred to as the electronic  Schrödinger equation, and eE is the adiabatic 

electronic potential energy surface for a given set of nuclear co-ordinates.  This means that 

varying the nuclear co-ordinates will result in a new electronic wavefunction ),( Rre that 

requires to be solved so that another adiabatic electronic potential energy surface may be 

obtained.  Considering a total wavefunction ),( RrT that might be extended to include 

electronic wavefunction and a set of pre-selected nuclear wavefunctions may lead to a 

nuclear Schrödinger equation.  That is: 

                                                       )(),(),( RRrRr NeT                                  (3.8) 

 

3.3 Density functional theory 

Density Functional Theory (DFT) solves the Schrödinger equation of many-body systems 

by considering the electron density of the material system, which is a function of only three 

degrees of freedom.  The electron density )(rn at a particular position r in space of the 

system is related to the wavefunction of the system by the magnitude of the square of the 

wavefunction )(r .  That is [36]: 

           



N

1i

2

i rrn )()(                                  (3.9) 

where )(ri  is the single-electron wavefunction. 
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The relationship between the electron density and the energy of the system is contained in 

the Hohenberg-Kohn (HK) theorems.  The neglect of the correlation of the electrons of the 

many-body system showed variations compared to experimental results.  This anomaly 

caused Kohn-Sham to recast the intractable complex many-body system into a 

computationally solvable system consisting of single fictitious non-interacting electrons that 

are moving in an effective potential via the exchange-correlation functional.  This exchange-

correlation functional is approximate, however, it provides a thorough explanation of the 

many characteristics of the material systems.      

 

3.4 Hohenberg-Kohn theorems 

The statement of the first theorem of Hohenberg-Kohn is given as follows [51], 

 

Theorem 1:  

The external potential )(rVext , and hence the total energy   rnE , is uniquely determined 

by the ground-state electron density  rn0 .  

 

The statement and proof of the second theorem of Hohenberg-Kohn is given, as follows 

[51], 

 

Theorem 2: 

The ground-state electron density obeys the variational principle:  The electron density that 

minimises the total energy is the exact ground-state electron density.  

 

The Hohenberg-Kohn total energy functional is given by: 

              NNexteeHK EdrrnrVrnErnTrnE         (3.10) 

where eeE is the electron-electron interaction energy, and NNE  is the nuclear-nuclear 

interaction energy. 

 

Equation (3.10) may be written as: 

                      NNextHKHK EdrrnrVrnFrnE        (3.11) 

where   rnFHK  is the universal functional.   
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A universal functional is a functional that treats all electrons the same regardless of the 

external potential.  In this case, since the kinetic energy and the energy that involves 

electron-electron interaction are expressed as functional of density only, then the universal 

functional   rnFHK  is given by: 

              rnErnTrnF eeHK                        (3.12) 

Considering a system with the ground-state density  rn1

0  generated by the external potential 

 rV 1

ext .  The Hohenberg-Kohn total energy functional may be expressed as the expectation 

value of the Hamiltonian with wavefunction 
1

0 .  That is: 

  1

0

11

0

1

0HK

1

0 HnEE  ˆ                    (3.13) 

Considering again, a system with a different ground-state density  rn2

0 generated by another 

external potential  rV 2

ext  with a corresponding wavefunction 
2

0 .  According to variational 

principle, the energy of the system considered second must be lower than the energy of the 

system considered first.  That is: 

2

0

2

0

22

0

1

0

11

0

1

0 EHHE   ˆˆ                                      (3.14) 

Equation (3.14) asserts that the energy obtained by equation (3.11) for the correct ground-

state density will be lower than the energy obtained by any other density.  

 

The proof of Hohenberg-Kohn Theorem 2 was also shown by Levy and Lieb [51].  However, 

the proof of this theorem is based on densities that are N-representable.  These are ground-

state densities derived from wavefunctions N of N electrons generated by unrestricted 

external potential  rVext .  This is also based on the minimisation of the total energy, 

however, with respect to a class of wavefunctions   that have the same density  rn .  Thus, 

a unique lowest energy for that density is given by [51]: 

                                      NNexteeLL EdrrnrVVTminrnE 
ˆ                 (3.15) 

where   rnELL is the Levy-Lieb energy,   rnVee
ˆ  is the electron-electron interaction, and 

NNE  is the nuclear-nuclear interaction. 

 

Equation (3.15) may also be written as [51]: 

                       NNextLLLL EdrrnrVrnFrnE                  (3.16) 
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where   rnFLL  is the Levy-Lieb functional given by [51]: 

                                                    eeLL VTminrnF  ˆ         (3.17) 

which is a functional that gives the lowest kinetic and interaction energy that can be reached 

with all possible quantum states having a given density.  Thus, the second theorem of 

Hohenberg-Kohn may also be stated as follows:  The ground state energy of the system is 

obtained via minimization of the energy functional with respect to the electron density.  

 

3.5 Kohn-Sham equations 

From the  Hohenberg-Kohn total energy functional   rnEHK  of many-body system, given 

by equation (3.10), Kohn-Sham expressed this energy equation for non-interacting electrons 

as follows [51]: 

                 rnEEdrrnrVrnErnTrnE XCNNextHsKS      (3.18) 

where   rnTs  is the kinetic energy for a non-interacting electron system,   rnEH is the 

Hartree or Coulomb energy,   rnEXC is the exchange-correlation energy, which involves 

the effects of the exchange and correlation of electrons. 

  

The kinetic energy   rnTs  is given by [51]: 

          


 
N

1i

i

2

i2
1

s drrrrnT         (3.19) 

The Hartree energy   rnEH  as a functional of electron density is given by [51]: 

      
 




rdrdrnE

rr

rnrn

2
1

H
            (3.20) 

Comparison of the Hohenberg-Kohn and Kohn-Sham total energy functionals given by 

equations (3.10) and (3.18), defines the exchange-correlation energy   rnEXC as [51]: 

              rnErnErnTrnTrnE HeesXC        (3.21) 

where   rnT  and   rnEee  are the real kinetic and electron-electron interaction energies 

for many-body systems, while   rnTs  and   rnEH  are the kinetic and electron-electron 

energies for independent-body systems. 

 

Introducing the normalisation constraint on the electron density, given by the Lagrange 

multiplier μ  so that the number of electrons N is conserved, that is,   Ndrrn  



18 
 

results in [51]: 

 
     0NdrrnμrnE

rn
KS  


            (3.22) 

Equation (3.22) may be simplified to:  

 
 

μ
rδn

rnδEKS                                    (3.23) 

Putting equation (3.18) into equation (3.22) gives: 

  
 

  μrV
rδn

rnδT
eff

s                        (3.24) 

Equating equations (3.23) and (3.24) leads to:  

 
 

  
 

 rV
rδn

rnδT

rδn

rnδE
eff

sKS                 (3.25) 

where the effective potential  rVeff  is given by: 

   
 

 rVrd
rr

rn
rVrV XCexteff 




                        (3.26) 

and the exchange-correlation potential  rVXC is given by: 

 
  

 rn

rnE
rV XC

XC



                     (3.27) 

The writing of equation (3.25) explicitly in terms of electron density of equation (3.9) leads 

to single-electron wavefunctions i that minimise the Kohn-Sham energy functional and 

satisfy a set of N non-linear integro-differential equations.  In other words, these single-

electron wavefunctions i are obtained from the self-consistent solutions of the Kohn-Sham 

equations that are given by [48]: 

     rεrrV
2

1
iiieff

2

i  







                   (3.28) 

where iε is the Kohn-Sham eigenvalue, and i is the single-electron wavefunction of 

electronic state i . 

 

The Kohn-Sham theory is an exact method that determines the ground-state energy of a real 

many-body system provided that the exchange-correlation energy functional   rnEXC  was 

known exactly.  However, since this energy functional is unknown, approximations to the 

exchange-correlation functional are needed to numerically solve the Kohn-Sham equations. 

The simplest exchange-correlation functional is the local density approximation (LDA). 
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Several more accurate exchange-correlation functionals have been developed over the years 

in an effort to accurately describe the properties of a wide range of materials. These include 

generalised-gradient approximation (GGA), the meta-GGA as well as the hybrid exchange 

functionals. A complete review of these can be found in Ref. [52].  Nevertheless, we give a 

brief overview of fundamentals of these functionals in the next section. 

 

3.6 Exchange-correlation potential  

The exchange-correlation energy   rnEXC as defined by equation (3.21) is a contribution 

from the exchange and correlation parts.  That is: 

CXXC EEE          (3.29) 

The exchange energy is a result of the Pauli exclusion principle.  This principle forces the 

anti-symmetricity of wavefunctions so that electrons of the same spin do not occupy the 

same quantum state.  Moreover, since electrons are charged particles, exert a repulsive 

interaction on each other.  However, this spatial separation of the electrons results in the 

decrease of the total energy of the electron gas. The correlation energy is a result of the 

movement of the electrons in space.  This means that the movement of a particular electron 

in space cannot be separated from the movement of all other neighbouring electrons.  In 

other words, the movement of one particular electron is correlated to the movement of all 

other electrons in the midst. The exact value of this exchange-correlation energy functional 

is not known exactly, however, it may be approximated by assuming that the functional is 

local and is taken from a uniform electron gas. This assumption is derived from the fact that 

since the electron density of a real system varies smoothly in space, it may be equivalent to 

the uniform electron gas. This approximation is referred to as the local density 

approximation (LDA) which means that the exchange-correlation energy functional of an 

electron at a point r in space is approximated by the exchange-correlation energy functional 

of an electron in a uniform electron gas, which has the same density as the electron at a point 

r in space. That is [51]: 

 drrnrnεrnE unif

XC

LDA

XC )()]([)]([        (3.30) 

where 
unif

XCε is the exchange-correlation energy per electron in a uniform electron gas, and is 

dependent on density only.  Generally, equation (3.30) may be referred to as the local spin 

density approximation (LSDA) when expressed in terms of spin densities.  That is [51]: 

                 
  drrnrn,rnεrn,rnE unif

XC

LSDA

XC )()]()([)]()([       (3.31) 
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where )(rn
and )(rn

are spin-up and spin-down densities, respectively. 

 

The local spin density approximation exhibited success in describing the properties of many 

material systems, however, it came short when material systems showed rapid density spatial 

variance around atoms.  As a result, it was improved by making the functional to be 

dependent on both the density and the magnitude of the gradient of the density.  This 

functional is referred to as the generalised gradient approximation (GGA).  It is given by 

[51]: 

                
  drrnrn,rn ,rn,rnεrn,rnE GGA

XC

GGA

XC )(])()()()([)]()([      (3.32) 

where )(rn and )(rn are the magnitudes of the gradient of the spin-up and spin-down 

densities.  

 

The generalised gradient approximation showed some strides in describing the properties of 

material systems, however, the exchange potential lacked correct qualitative behaviour [53].  

These inaccuracies, in both local density approximation and generalised gradient 

approximation, inspires a search for accurate functionals, hence there exist several flavours 

of these functionals for both local density approximation and generalised gradient 

approximation. 

 

An improvement on GGA resulted in meta-GGA functionals.  This functional involves 

higher order of the density derivatives.  The information about the system is gathered from 

)(rn , )(rn , )(rn2 .  This means, the Laplacian of the density has the same physical 

description of the system as the kinetic energy density τ of the Kohn-Sham orbitals given 

by [47]: 

2

i

i2
1 rrτ  )()(                 (3.33) 

In other words, these functionals may use )(rτ in place of )(rn2 .  An example of a meta-

GGA functional is a parameter-free functional referred to as Tao-Perdew-Staroverov-

Scuseria (TPSS). 

 

Another variation of the exchange-correlation function is the hybrid functional 

approximation [54].  This approximation is a combination of the orbital-dependent Hartree-
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Fock energy and the DFT energies.  That is, the hybrid functional can be given by a 

combination such as [55]: 

         )( DF

XC

HF

X2
1half

XC EEE          (3.34) 

where HF

XE is the Hartree-Fock exact exchange energy and 
DF

XCE is the exchange-correlation 

energy of the Density Functional Theory.  The Hartree-Fock exact exchange energy in terms 

of the orbitals is given by [54]: 

                          
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           (3.35) 

The most outstanding characteristic about the hybrid functionals is that they are non-local.  

That is, their evaluation is not at one specific spatial place.  The most common and widely 

used hybrid functional is the B3LYP [54].  It is a combination of several energies that include 

the exchange-correlation of the local density approximation, Hartree-Fock exchange, Becke 

exchange, Lee-Yang-Parr (LYP) correlation, and Vosko-Wilk-Nusair (VWN) correlation.  

That is, this hybrid functional is expressed as follows [54]:  

   
VWN

C

LYP

C

Becke

X

HF

X

LDA

XC

B3LYP

XC EccEbEaEEaE )(1)(1        (3.36) 

where a, b, and c are universal parameters. However, the B3LYP hybrid functional has a 

wide usage in the field of chemistry since it lacks accuracy for extended systems.  Hence, 

the mostly used parameter-free hybrid functionals for material systems are Perdew-Wang 

91 (PW91) and Perdew-Burke-Ernzerhof (PBE) functionals since they accurately 

approximate the exchange-correlation potential energy [47].  The PBE functional is a non-

empirical functional with reasonable accuracy over a wide range of systems, while it is 

typically not the most accurate GGA functional for a given system, it is also not too far off 

either.  The popularity of hybrid functionals emanates from their better approximation of the 

gap energy of many systems compared to both local density approximation and generalised-

gradient approximation [54]. 

 

3.7 Treating the van der Waals (vdW) interaction 

The van der Waals force may be defined as a weak force that exists in both finite and infinite 

material systems.  It has a potential to influence the physical and chemical properties of these 

systems.  It originates from the correlation of the electrons that are long-ranged, and have 

induced polarisation in the entities of the material system.  However, other type of forces 

also exists between the entities of the material system, this may include forces such as the 

Keesom force, which is a force between two permanent dipoles; the Debye force, which is 
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a force between a permanent dipole and an induced dipole; and the London force, which is 

a force between two induced dipoles [56].  

 

Density functional theory, as a technique that has successfully modelled the electronic 

structure of many material systems, fails to describe the effects of the van der Waals forces 

in these systems.  This means, both the local density approximation and the generalised 

gradient approximation of the standard density functional theory treats weak interactions 

poorly [57].  This shortcoming, which may lead to inaccurate results of properties of material 

systems, may be overcome by developing approximate forms of the exchange-correlation 

energy that regards the effects of van der Waals forces.  

 

Several functions have been developed to account for the effects of the van der Waals forces 

that are found between weak electron regions of the material systems.  Popular vdW forces 

often employed to account for dispersion in DFT calculations include DFT-D, TS-vdW, 

Becke-Johnson, RPA and vdW-DF.  The last one is called van der Waals density functional 

theory.  The mathematical formulation of the aforementioned vdW functionals are described 

extensively in Ref. [56,58].  In this work, we have used the vdW-DF where necessary.  In 

this method, the dispersion interactions are obtained directly from the electron density, not 

from predetermined input parameters [58].  Thus, the vdW-DF approach does not rely on 

empirical, semi-empirical, and special assumptions [56].  Another formulation of vdW-DF 

is known as vdW-DF2.  The latter improves the description of binding in weak vdW systems. 

In this thesis, the vdW-DF method was used in the calculations involving the absorption of 

vanadium dimers on silicene sheet.  

 

3.8 The planewave approach to solving density functional theory 

3.8.1 Bloch’s theorem 

Bloch’s theorem describes the periodicity of the crystal lattice.  It informs that the 

probability of finding an electron is the same everywhere on the crystal lattice.  In other 

words, it informs about the form of the electronic wavefunction when subjected to a periodic 

potential of the crystal lattice, which in turn, helps in the categorisation of material systems.  

The statement of the theorem is as follows [59]: 

 

The eigenstates   of the one-electron Hamiltonian is given by:  
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                     (3.37) 

where  

        rURrU                     (3.38) 

for all R in the Bravais lattice. 

 

3.8.2 Planewave basis set 

A basis set is a set of functions that are linearly combined to create atomic orbitals around 

atoms.  A planewave may be defined as waves whose wavefronts are parallel planes far 

away from the source [60].  Planewave basis set approach is one of the methods, among 

many others, that are used to solve Kohn-Sham (KS) equations.  Solving KS equations using 

planewave approach is preferred due to the following reasons [55]:  

 

 It is used with ease for extended systems with periodic boundary conditions. 

 It uses complete, mutually orthogonal, and unbiased basis functions to any atom. 

 It uses one criterion for a smooth and monotonic convergence. 

 It allows integrals, derivatives, and other mathematical operations to be computed 

with ease in the reciprocal space. 

 It is independent of atomic positions, and treats all regions of space equally. 

 

However, the planewave basis set method also exhibits the following disadvantages against 

other approaches [55]: 

 

 It requires a large number of planewaves to achieve accuracy. 

 Its calculations are inclusive of empty space. 

 

The planewave basis set is able to describe valence charge density when used with   

pseudopotentials.  This is so because the core electrons produce very large electronic 

wavefunctions and density gradients around the nuclei that are difficult for the planewave 

basis set to describe [55]. 

 

Many extended material systems such as crystal structures and surfaces are periodic in 

nature.  That is, these systems are comprised of infinite repeated unit cells.  Hence, according 
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to Bloch’s theorem, the charge density is periodic, thus making the calculation of the 

electronic wavefunction in a single unit cell to be sufficient.  This electronic wavefunction 

)(rnk , can be expressed as a product of a planewave and a periodic cell.  That is: 

rik

nknk erur  )()(                    (3.39) 

where the first factor on the right-hand side of equation (3.39) is the periodic part with a 

periodicity of the lattice given by:  

)()( Rruru nknk                     (3.40) 

where 𝑅 is a lattice vector.  The second factor is the planewave part (phase factor) with a 

wavevector 𝑘 that reside in the reciprocal lattice.  This wavevector k specifies all possible 

states in the Brillouin zone. 

 

The electronic wavefunctions at each 𝑘 point can be expanded in terms of a discrete 

planewave basis set to a maximum of a reciprocal lattice vector 𝐺.  That is [55]: 


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


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)()()(
G

rRki

nknk eGcr                   (3.41) 

where nkc is the coefficient of the planewaves.  The determination of these coefficients 

describes the electronic wavefunction.  However, only coefficients with kinetic energies that 

are smaller than some particular cut-off energy cutE  are required.  In other words, planewaves 

with energies higher than cutE will have zero coefficients, and be rejected.  This means that 

only planewaves with energies that satisfy the following condition will not be truncated [55]: 

cut

2

2
1 EGk                      (3.42) 

A systematic increase in cutE lead to a converged total energy of the system, which helps in 

avoiding an error in these computations [48].  

 

When the periodic part of equation (3.39) is Fourier transformed, the wavefunctions have 

contributions associated to the reciprocal lattice vectors G, and the phase factor is 

incorporated into the definition of basis functions, which become dependent on the particular 

point in the Brillouin zone, then equation (3.41) may be written as,  

(r)(G)c(r) k

G

0G

nknk  




         (3.43) 

where (r)k

G are the basis functions. 



25 
 

However, for practical calculation of Kohn-Sham equations in an atomic basis, we define 

equation (3.28) as the single particle Hamiltonian, that is 

   rεrH iiis           (3.44) 

Putting equation (3.43) into equation (3.44), and multiplying the left of equation (3.44) by 

the complex conjugate of the basis functions, that is (r)k

G


 , and integrating over the region 

r, then equation (3.44) may be treated as an eigenvalue problem of the form, 

     0)  nkmis cSε(H         (3.45) 

where sH are the elements of the Kohn-Sham Hamiltonian matrix, and mS are elements of 

the overlap matrix.  For purposes of integration in the irreducible wedge of the Brillouin 

zone, equation (3.45) is solved at each k-point.  The Kohn-Sham orbitals may be represented 

by other several basis sets, such as the Linear Combination of Atomic Orbitals, Gaussians 

Type Orbitals and Slater Type Orbitals, however, in this thesis, planewave basis sets were 

used based on the advantages and disadvantages stated in this subsection. 

    

3.8.3 k-point sampling in the Brillouin zone 

The electronic wavefunctions of periodic material systems are allowed at certain sets of k-

points.  These sets of k-points are in the Brillouin zone (BZ) of the reciprocal lattice, and are 

dependent on the boundary conditions of the bulk solid.  The density of these k-points is also 

dependent on the volume of the solid [48].  The Bloch’s Theorem, which confirms the 

translational symmetry in periodic material systems, transforms the calculation of an infinite 

number of electronic wavefunctions to one of calculating a finite number of electronic 

wavefunctions at an infinite number of k-points in a single unit cell.   

 

Considering the infinite number of calculations that needs to be done at different k-points in 

the Brillouin zone, makes this advancement to be of little value.  However, the electronic 

wavefunctions that are at the k-points that are very close to each other appear alike [48].  The 

calculations of the properties of material systems, such as electronic energy bands, density 

of states, and projected density of states, takes the integration of all filled electronic 

wavefunctions in the Brillouin zone.  However, this is not necessary, since it is possible to 

represent the electronic wavefunctions in the Brillouin zone with the wavefunctions at a 

single k-point.  This means that these integrals may be replaced by a finite sample of k-points 

in the Brillouin zone, referred to as special points.  In other words, the integration in the 
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Brillouin zone may be represented by a discrete sum over the chosen kptN k-points mesh, 

and is given by [61]:  

 
  

BZ k

kjN
1

kjF2π

Ω
fdrεEΘ

kpt
3

C                 (3.46) 

where CΩ  is the cell volume,  kjF εEΘ   is a filling factor that denotes the occupation of 

the state, kjf  are occupation numbers which are either one or zero, FE is the Fermi level, ε

is the eigenvalue, and k is the wavevector. 

 

Monkhorst and Pack method, together with the Cohen and Chadi method [62], are some of 

the methods that are used to generate these fewest possible k points that give accurate 

approximation to the full integration of the k-points in the Brillouin zone.  These k-points, 

when sufficiently sampled, may lead to an accurate approximation of the total energy of the 

material system.  The uniform distribution of the sampled k-points in the Brillouin zone is 

asserted by a relation given by [63]: 

33j22j11jj bxbxbxk                     (3.47) 

where 1b , 2b and 3b  are the reciprocal lattice vectors, while ijx  is given by [63]: 
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
                     (3.48) 

where i  is the reciprocal lattice vector length, and jn  is the number of special points. 

 

As much as the converged results of the material system may be obtained by varying the 

density of the sampled k-points [62].  However, material systems such as semiconductors 

and insulators, need very few k-points sampling.  Moreover, the computational cost is 

minimal, as this increases linearly with the number of k-points [62].   

 

3.9   The pseudopotential method 

The electronic wavefunctions may be expanded by planewave basis set according to Bloch’s 

theorem [48].  However, the planewave basis set is not necessarily sufficient to expand the 

wavefunctions, because the expansion of the core electrons wavefunctions and the rapid 

oscillations of the valence electrons wavefunctions due to the strong ionic potential into the 

core electron space, requires lots of planewaves.  The introduction of pseudopotential (PS) 
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approximation appears to overcome this challenge by using very few planewaves to expand 

the electronic wavefunctions. 

 

The pseudopotential approximation involves the freezing of the core electrons and the 

nuclei.  The freezing of the core electrons has no effect on the atom when placed in any 

environment, since these are chemically inert.  The removal of the core electrons and the 

strong ionic potential is substituted by a weak pseudopotential that acts on pseudo-

wavefunction instead of all electron wavefunctions.  Within some core cut-off radius rc, the 

pseudopotential approximation generates pseudo-wavefunction that have no radial nodes, 

and the pseudopotential that does not diverge at zero.  However, outside the core cut-off 

radius rc, the real electron wavefunctions, the pseudo-wavefunction, and the pseudopotential 

are the same.  A pseudopotential with a larger core cut-off radius rc, thus converging rapidly, 

is referred to as soft.  This means, this is a pseudopotential that uses very few planewaves.  

 

A pseudopotential is referred to as transferable provided that it may be used reliably 

regardless of the environment it is exposed to.  Figure 3.1 shows the schematic illustration 

of the real potential and real wavefunction, and the corresponding pseudopotential and 

pseudo-wavefunction. 

 

 

Figure 3.1: Depiction of real potential and real wavefunction, and the corresponding pseudopotential and 

pseudo-wavefunction [64]. 

 

The general form of the non-local (NL) pseudopotential is given by [48]: 

        
m

NL mVmV


                     (3.49) 
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where m are spherical harmonics and V  is the pseudopotential for angular momentum  . 

 

Equation (3.49) describes the decomposition of electron wavefunction into spherical 

harmonics, such that each of the spherical harmonics is multiplied by the necessary 

pseudopotential.  Moreover, a local pseudopotential is, by definition [48], a potential that 

uses the same potential for all the angular momentum of the wavefunction.  The existence 

of local and non-local pseudopotentials leads to different types of pseudopotentials such as 

norm conserving and ultrasoft pseudopotential (USPP).  These different types of 

pseudopotentials are a result of the comparison of the unreal electron density with the real 

electron density, within and outside the core cut-off radius rc.  

 

3.9.1 Norm-conserving pseudopotential 

Generating a pseudopotential that is both soft and transferable is no small feat [55].  This is 

so because a pseudopotential improvement on transferability requires the core cut-off radius 

rc to be small, while an improvement on softness property requires that the core cut-off 

radius rc to be large [61].  In order to achieve these properties, resulted in the following 

criteria for the construction of the norm-conserving pseudopotential [48]:  

 

 The eigenvalues of the pseudo-wavefunction must be equal to those of the all-

electron (AE) wavefunction. 

 The radial pseudo-wavefunction must possess no nodes.  Also, the core cut-off radius 

rc must never be smaller than the outermost node of the all-electron wavefunction. 

 The pseudopotential must satisfy the norm conservation condition.  This means that 

inside the core cut-off radius rc, both the all-electron and pseudo-wavefunctions must 

have the same norm to ensure equal generation of electron densities by both the all-

electron and pseudo-wavefunctions outside the core cut-off radius rc.  That is [55]: 

          
c cr
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r

0
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AE

2
PS drrdrr )()(                      (3.50) 

Equation (3.50) may also be written as: 

0jR,iR,R.jiR,          (3.51) 

 where iR,  and iR, are all-electron wavefunction and pseudo-wavefunction of   

  atom R, respectively. 



29 
 

 Both the normalised radial pseudo-wavefunction and the normalised all-electron 

wavefunction must be equal outside the core cut-off radius rc.  

 

When the full pseudopotential operator, PSV̂ , is applied to any wavefunction it acts as a 

non-local operator, and gives [61]: 




 PrVVV PS

nl,

PS

loc

PS ˆ)(ˆ         (3.52) 

where )(rV PS

loc  is the local pseudopotential of one specific angular momentum  , the second 

term on the right side of equation (3.52) is defined as the non-local component of the 

pseudopotential, and P̂ is the projector on to some angular momentum and radial state of 

the wavefunction.  The non-local pseudopotential )(rV PS

nl,  is given as the difference between 

the original angular momentum depended pseudopotential and the local pseudopotential.  

That is: 

       )()()( rVrVrV PS

loc

PSPS

nl,                      (3.53) 

The norm-conserving pseudopotential may be transferable to other environments.  However, 

these are not as soft as desirable due to the required small core cut-off radius cr [61]. 

 

3.9.2 Ultrasoft pseudopotential (USPP) 

Many planewaves are required to accurately represent the wavefunction of the valence 

electrons that are localised within the core area, unfortunately, this requires ample 

computational time.  Besides, the hardness of the norm conserving pseudopotentials due to 

a short core cut-off radius, resulted in the generation of Vanderbilt ultrasoft pseudopotentials 

[61].  This type of pseudopotentials involves the relaxation of the norm conserving 

constraint.  That is, more complexity is put in the core by adding a smooth auxiliary function 

to the planewaves around each atom to represent the rapidly varying region of the density, 

thus permitting a larger core cut-off radius cr .  This approach results in the re-expression of 

an eigenvalue problem that is having a non-zero difference ijR,Q  in norms compared to 

equation (3.51).  That is: 

ijR,jR,iR,R.jiR, Q                     (3.54) 

According to equation (3.54), the electron density within the core cut-off radius cr is different 

for both the all-electron and pseudo-wavefunction.  However, outside the core cut-off radius 
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cr , the all-electron wavefunction and pseudo-wavefunction are the same.  Integration of this 

electron density and the usage of the orthonormality condition gives [55]: 

          ijji δS  ˆ                     (3.55) 

where Ŝ is a Hermitian operator, and is given by [55]: 

 
ijR,

jR,ijR,iR, PQP1S ˆˆˆ                    (3.56) 

where iR,P̂ are the projectors that are zero outside the core cut-off radius cr , while within the 

core cut-off radius cr , these projectors are forming dual basis with the reference pseudo-

wavefunctions [55].  Figure 3.2 shows the relationship between the all-electron valence 

wavefunction and the pseudo-wavefunction of the Vanderbilt ultrasoft pseudopotential 

method [61].  

 

 

Figure 3.2: The relationship between the all-electron wavefunction (solid line) and the ultrasoft pseudo-

wavefunction (dotted line) [65].   

 

The criteria for constructing ultrasoft pseudopotentials is given as follows [55]: 

 

 Outside the core cut-off radius cr , the pseudo-wavefunctions and the all-electron 

wavefunctions must be the same, while inside the core cut-off radius cr , the pseudo-

eigenvalues and the all-electron eigenvalues must be equal.  

 At each reference energy, correct scattering properties must be effected. 

 The all-electron valence charge density must be equal to the modified valence charge 

density. 
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The advantage in adhering to these criteria result in the reduction of the number of 

planewaves used in effecting calculations.  This is so because the Vanderbilt ultrasoft 

pseudopotential scheme uses only a small portion of the full valence wavefunctions to 

represent the planewaves [55], as indicated in figure 3.4.  All calculations in this thesis used 

the ultrasoft pseudopotentials of the Vanderbilt type.     

 

3.10 The supercell method 

The task of modelling infinite material systems may be daunting, because these systems 

possess an infinite number of electrons.  In order to simplify this daunting task, the supercell 

method is adopted to study the properties of these material systems.  In this method, systems 

such as isolated atoms, point defects, voids, and dislocations are enclosed in a box, that is 

periodically extended in all spatial directions.  However, each box, which represents a 

supercell, must be large enough so that the contents of each supercell do not interact with 

each other, otherwise this would result in the spurious interaction of the system with its 

periodic images.  This interaction may occur in the following three ways; firstly, 

electronically, due to the overlapping of the system’s wavefunctions; secondly, elastically, 

due to the atomic optimization around the system; and thirdly, due to Coulombic interactions 

between charged systems [66].  This means, from a region of a material system with an 

infinite number of electrons, a supercell was constructed, and periodic boundary conditions 

were applied to it, so that Bloch’s theorem produces a supercell with a finite number of 

electrons.  As a result of this method, properties of large material systems are being modelled 

and studied.  However, the supercell method has some disadvantages.  This includes, among 

others, that the artificial periodicity of the supercell may result in artificial interaction of the 

contents of the supercell.  Secondly, the density used by the supercell method is finite and 

very lowly distributed, which may be construed as a misrepresentation of a true aperiodic 

physical material system.  Lastly, this method shows to require a serious examination of the 

effects such as finite-size and periodicity [67]. 

 

3.11 Formation and binding energy of a defect 

Defects have great potential in altering the properties of material systems.  Hence, the 

calculation of defect formation and binding energies assists in determining preferred defect 

structures and the stability of given defect configurations in material systems, respectively.  

In this thesis, these energies were calculated using the supercell method within the density 



32 
 

functional theory technique.  The defect formation energy may be calculated as follows 

[10,68-70]: 

  corrFiiprisdefectf EqEμnEEE             (3.57) 

where defectE  is the total energy of supercell containing the defect; prisE  is the total energy 

of pristine supercell, that is, without defect; in  is the number of atoms of chemical species 

i , that are either added ( in  > 0) or subtracted ( in  < 0) from the supercell during defect 

creation, i  is the chemical potential of the species i , q is the charge of the defect, which 

are electrons that are either added ( q  < 0) or subtracted ( q  > 0) from the defected supercell, 

FE is the Fermi energy, and corrE  is the correction term, that represents effects such as 

electrostatic interactions that result because of the usage of the supercell technique.  The last 

two terms, that is, FqE  and corrE , on the right-hand side of equation (3.57) are only relevant 

if the defect formation energy of charged systems are being considered, otherwise they are 

set to zero. A negative formation energy means that the material system is 

thermodynamically stable, while a positive formation energy means that the material system 

is unstable.  

 

Also, binding energy may be defined as the difference between the energy of the system 

with defects and the sum of the components of the energy of isolated defects.  That is [71]: 

                                                  



isoli

idefectb EEE                        (3.58) 

Here, defectE  is the total energy of a defect complex.  The second term 
isoli

iE sums the total 

energy of isolated defects forming the defect complex whose energy is calculated by the first 

term on the right-hand side of equation (3.58).  A negative binding energy suggests that the 

defect system is stable compared to the sum of the individual components of the isolated 

defects.   

 

3.12 Magnetization energy 

Magnetism may be defined as a phenomenon caused by the motion of electrons in an atom. 

The presence of a defect may introduce magnetization in an otherwise non-magnetic 

material.  Also, a particular magnetization direction of the atoms may be preferred as the 

ground-state when a defect is present in the material.  In collinear formalism, a 
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magnetization direction may be ferromagnetic (FM) or anti-ferromagnetic (AFM).  In the 

former, the electrons spins are oriented in the same direction, while in the latter the electron 

orientations are in antiparallel direction.  Both cases are shown in figure 3.3 (a) and (b), 

respectively: 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Schematic representation of magnetic orientation in an electron system.  In the figure, (a) the 

ferromagnetic (FM) spin orientation, (b) antiferromagnetic (AFM) spin orientation.  The blue sphere is the 

electron, while the red arrow shows the spin orientation. 

 

The energy difference between the FM and AFM ordering state is referred to as the magnetic 

stabilisation energy, and it is given by [72,73]: 

AFMFM EEΔE                      (3.59) 

where FME  represent ferromagnetic energy, AFME  represent anti-ferromagnetic energy.  

Positive ΔE  means ferromagnetic ground state is preferred, and negative ΔE  means anti-

ferromagnetic ground state is preferred. 

 

The parallel alignment of magnetic moments in ferromagnetic material systems is a result 

of a quantum mechanical effect referred to as exchange interaction [74].  This means, 

neighbouring magnetic moments influences one another to adopt a particular magnetic 

ordering state.  In the case of ferromagnetism, the parallel alignment of magnetic moments 

is a result of Pauli’s exclusion principle, which prohibits the occupation of the same orbital 

by electrons with the same spin.  Hence, the two electrons with parallel spins, of the 

neighbouring magnetic moments, are compelled to move further apart due to Coulomb’s 

repulsive interaction.  Moreover, ferromagnetism takes place in systems that have nonzero 

total magnetic moment due to partially filled orbitals.  That is, Hund’s rule plays a role in 

increasing the total magnetic moment of ferromagnetic systems, for it allows the pairing of 

electron spins after the filling of one electron spin to each orbital.   

(a) 

(b) 
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As state above, antiferromagnetic behaviour in material systems may be perceived as the 

antiparallel alignment of spins of electrons of neighbouring magnetic moments of atoms.  In 

other words, in this magnetic ordering, the magnetic moments are arranged in an alternating 

pattern with opposing spins.  No magnetic field may result in antiferromagnetic material 

systems, for the magnetic moments cancel each other out, thus giving a zero total magnetic 

moment for the system.  The antiferromagnetic property may disappear above the Néel 

temperature in these material systems due to thermal perturbations, and exist again below 

these temperatures.  In the case of antiferromagnetism, the antiparallel alignment of 

magnetic moments respect Pauli’s exclusion principle, which allows the occupation of the 

same orbital by electrons with different spins.  Hence, the two electrons with antiparallel 

spins, of the neighbouring magnetic moments, are compelled to move closer together, thus 

enhancing Coulomb’s interaction. 

 

3.13 The quantum-ESPRESSO (QE) package 

Quantum-ESPRESSO (QE) [75,76] is a high-performance code for first-principles 

electronic structure calculations.  It implements planewave formalism to solve the density 

functional theory.  Also, the code uses norm-conserving, ultrasoft, and projector-augmented 

waves (PAW) pseudopotentials as inputs to describe the interactions between the nuclei and 

the electrons.  The QE code has the capability of executing the following computations, 

among many others [76]: 

 

 Ground-state energies and single-electron Kohn-Sham orbitals of isolated and 

periodic systems. 

 Complete structural optimization of atomic co-ordinates and unit cells using 

Hellmann-Feynman forces and stresses. 

 Ground-state energies of magnetic or spin-polarised systems. 

 

Quantum-ESPRESSO consists of several modules which performs various functions.  

Examples are [76]: 

 

 Plane-Wave Self-Consistent Field (PWscf)- which calculates ground-state energy, 

Kohn-Sham orbitals, structural optimisation, etc. 
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 Post Processing (PostProc)- which calculates various quantities that helps in results 

analysis, such as density of states (DOS) and projected density of states (PDOS) 

 

The code uses the XCrySDen (X Window Crystalline Structures and Densities) [77] 

program to visualise crystal structures with input data files from PWscf.  

 

3.13.1 Band structure 

Solids are composed of electrons interacting with nuclei.  The nature of interacting electrons 

and nuclei gives materials its properties, such as metallic, semiconducting or insulating.  

Hence, an understanding of this behaviour by electrons will assist in the comprehension of 

properties of any material system.  A way to understand the properties of material systems 

is by the construction of its band structure (BS).  In other words, the arrangement of electrons 

in energy levels in a material system can be expressed as energy bands which determines its 

properties.  The band structure of materials is formed by the allowance and non-allowance 

of the energy of the quantum mechanical wavefunction of an electron that is in a periodic 

lattice of the material system.  That is, the band is the range of energies that the wavefunction 

of an electron is allowed to possess, while the energy gap or band gap is the range of energies 

that the electron wavefunction is not allowed to possess [78].  The band gap is actually the 

result of the Bragg reflection of the electron wavefunction in a material system after failing 

to satisfy the Bragg condition [78]:  

          2GG2k                      (3.60) 

where k and G are the wavevector and lattice vector in reciprocal space, respectively. 

     

The reciprocal lattice may be defined as the set of wavevectors that yield plane waves with 

the same wavelength corresponding to the periodicity of the direct lattice.  Material systems 

have both direct and reciprocal lattices.  The relationship between these two lattices is 

defined by the following equations [78]:  
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where 1a , 2a  and 3a  are the primitive vectors of the direct lattice, and 1b , 2b and 3b  are the 

primitive vectors of the reciprocal lattice. 

 

This indicates that the primitive direct and reciprocal lattice vectors have the property that 

[78]: 

ijji 2δab                      (3.64) 

where 1δij  if ji  and 0δij  if ji  

 

Any two direct lattice points are connected by the following set of vectors [78]: 

332211 auauauT                     (3.65) 

where 1u , 2u and 3u  are integers.  Similarly, any two reciprocal lattice points can be mapped 

by the following relationship [78]: 

             332211 bvbvbvG                        (3.66) 

where 1v , 2v and 3v are integers. 

 

The real space primitive translation vectors of the hexagonal lattice such as silicene are given 

by [78]: 
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ˆ                       (3.69) 

and the reciprocal space primitive translation vectors are given by [78]: 
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while the volume of its primitive direct cell is given by [78]: 
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2

3
V 2                     (3.73) 
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The band structure plots are accomplished through reciprocal lattice vectors and high 

symmetry points in the Brillouin zone (BZ).  Brillouin zone is the primitive unit cell of the 

reciprocal lattice.  It is a region in reciprocal space that is closer to the reference lattice point 

than any other reciprocal lattice point.  The Brillouin zone of a material system is shown in 

figure 3.4.  The Brillouin zone is the Wigner-Seitz cell of the direct lattice.  It is also 

constructed by drawing lines that connect a particular lattice point of the reciprocal lattice, 

which is considered as a centre point to all nearby lattice points.  The Bragg planes are then 

drawn at the midpoint and normal to these lines that are from the central point.  All the k 

vectors that terminate at the Bragg planes satisfy the Bragg condition of equation (3.60).  

The first Bragg reflections and the first energy gap are occurring at the boundary aπk 

in one-dimension, where a is the primitive axis of the direct lattice. 

 

 

                                           Figure 3.4: Energy bands of a material system [79]. 

 

The higher Brillouin zones, such as the nth Brillouin zone, are constructed from the original 

central lattice point of the first Brillouin zone to the crossing of the (n – 1) Bragg plane at 

the boundary anπk  ,where n is an integer.  Thus, the band structure may be viewed as 

a map showing the allowance and non-allowance of the quantum mechanical wavefunctions 

of electrons in a periodic lattice of a particular material system following certain high 

symmetry paths within the Brillouin zone.  These paths are joined by high symmetry points. 

Hence, within the Brillouin zone of the hexagonal reciprocal lattice such as silicene, the high 

symmetry points are labelled as follows [80]:  

 

Г – Centre of the Brillouin zone. 

A – Centre of a hexagonal face. 

H – Corner point. 

K – Middle of an edge joining two rectangular faces. 

L – Middle of an edge joining a hexagonal and a rectangular face. 
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M – Centre of a rectangular face.  

 

These are shown in figure 3.5. 

 

 

Figure 3.5: High symmetry points of the hexagonal reciprocal lattice such as silicene [80]. 

 

Examples of coordinates of high symmetry points of hexagonal reciprocal lattice, expressed 

in Cartesian co-ordinates are [81]:  
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Thus, details of the reciprocal lattice vectors and high symmetry points are necessary to plot 

the band structure of a material system.  This plot shows a relationship between the energy 

of an electron wavefunction and the wavevector.  As examples, the band structures of 

graphene and silicene were shown in Figure 2.2 of Chapter 2, respectively.  Thus, it can be 

construed that the properties of material systems are contained in the band structure and are 

described by the Brillouin zone.  In the QE code, calculations of the BANDS are performed 

as follows: 

 

 Self-consistent field (SCF) calculation where the executable “pw.x” is used.  

 Bands calculation performed using the “pw.x”. 

 Plotting of bands using the “bands.x” executable. 
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3.13.2 Density of states and projected density of states  

The electronic density of states (DOS) of a material system may be described as the number 

of different states that electrons may occupy at a particular energy level.  In other words, 

this is the number of electron states per unit volume per unit energy.  A high density of states 

at a particular energy level means a high number of states available for occupation by 

electrons at that particular energy level.  On the other hand, this implies that, zero density of 

states means that no states are available for occupation by electrons.  Moreover, it is 

observed that, in a symmetrical density of states, where the number of spin ups and downs 

is the same, implies zero total magnetic moment, thus the material system possesses no 

magnetism.  However, in the case of an asymmetrical density of states, where the number 

of spin ups and downs are not the same, implies non-zero total magnetic moment, thus the 

material system possesses magnetism.  This shows that, the density of states helps in 

determining the properties of material systems, such as metallicity, semi-conduction, and 

insulation.  

 

Density of states are determined through the integration of the electronic density in the 

reciprocal space [47].  However, it is observed that these calculations require a large number 

of k points, and the energy is measured relative to Fermi energy instead of absolute energy 

during the plotting of graphs, that is, fEE  .  In the QE code, calculations of the DOS are 

performed as follows: 

 

 Self-consistent field (SCF) calculation where the executable “pw.x” is used.  

 Non-self-consistent field (NSCF) calculation performed using the “pw.x” 

 Plotting of density of states using the “dos.x” executable. 

 

Projected density of states (PDOS) may be described as the relative contribution of a 

particular atom or orbital to the total density of states.  That is, it is the projection of the 

density of states of particular orbitals of particular atoms.  Projected density of states also 

helps in further understanding of properties of material systems, such as hybridization of 

orbitals of atoms in a material system, and its magnetization.  In the QE code, the PDOS 

calculations is performed as follows: 

 

 Self-consistent field (SCF) calculation with the “pw.x” executable. 
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 Non-self-consistent field (NSCF) calculation with the “pw.x” executable  

 Plotting of projected density of states with the “projwfc.x” executable.  

 

3.13.3 Description of density functional theory calculations 

The computational procedure in calculating the total energy of a material system is shown 

in the flow chart of figure 3.6.  The procedure starts by guessing an initial electronic charge 

density  rn0  that will give the Hartree potential and exchange-correlation potential.  These 

potentials enable the solving of the Kohn-Sham equations with the initial electronic charge 

density  rn0  so that the single-electron wavefunctions may be obtained.  These single-

electron wavefunctions will generate a new electronic charge density  rn .  The new 

electronic charge density  rn  is compared to the initial electronic charge density  rn0 .  

When the two electronic charge densities are the same, this would mean that the ground-

state electron density has been found, and as such, the ground-state total energy of the 

material system can be calculated.  However, when the two electronic charge densities are 

different, the procedure is re-started with another guess of the electronic charge density until 

these two electronic charge densities are self-consistent.  In this thesis, density functional 

theory was used that solved the Kohn-Sham equations through the plane-wave 

pseudopotential approach, as implemented in the Quantum Espresso code. 
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                         Figure 3.6: A flow chart of the iteration scheme [82].  

 

3.14 Successes and failures of density functional theory 

Density functional theory has successfully made significant strides in a variety of fields, 

such as in catalytic processes, transportation of electrons, conversion of solar energy, and 

designing of drugs for medicinal purposes [83].  The successes and failures of density 

functional theory are based on the exchange-correlation functional.  That is, if this functional 

was exactly known, then the quantum mechanics of any system would be perfectly 

described.  However, since this functional is approximated in order to find the ground-state 

total energy of systems, renders the application of this theory to systems to have limitations. 

 

The density functional theory calculates bond lengths of molecular systems to less than 2% 

accuracy compared to experimental data, while the vibrational frequencies of these systems 

are overestimated by less than 5% [48].  The simplest exchange-correlation functional, the 

local density approximation, overbinds molecules by about 1eV/bond, which is too large an 

error for applications.  An improved version of local density approximation, that depends 

on the gradient of the density, the generalised gradient approximation, overbinds molecules 
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by about 0.3eV/bond.  The third standard approximation, the hybrid functionals, that mixes 

the exact exchange energy with generalised gradient approximation, improves this 

overbinding in molecules by another factor of 2.  Using hybrid functionals, the density 

functional theory estimates the ionisation and affinity energies to around 0.2 eV compared 

to experimental data [54].  

 

The density functional theory underestimates the band gaps of semiconductors and 

insulators, however, hybrid functionals give better estimates compared to experimental data.  

Since generalised gradient approximation largely reduces overbinding, hence, it is 

recommended for absorption energy calculations [48].  Density functional theory fails to 

perfectly treat systems with strong electron-electron correlation.  Moreover, the density 

functional theory also fails to treat weak interacting systems of materials, because the effect 

of van der Waals forces are not catered for in the exchange-correlation functionals [83]. 
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CHAPTER 4 

Pristine silicene: structural and electronic properties 

 

The fundamental structural, electronic and magnetic properties of pristine silicene are 

determined here.  However, prior to that we present convergence studies wherein we 

determined calculation parameters such as the kinetic energy of the wave function, energy 

and charge density cut-offs.  The convergence studies are performed with a 2-atom unit cell 

of silicene.  The Vanderbilt ultrasoft pseudopotentials (USPP) [84] have been used to 

describe the nuclei of silicon, while the generalised gradient approximation (GGA) of the 

type given by Perdew, Burke and Ernzerhof (PBE) [51,85] is used for the exchange-

correlation potential.  The choice for this parameter-free functional is based on the accuracy 

that it gives in producing both structural and electronic properties for a wide range of 

systems [86].  In the present work, the USPP [84] used for silicon was taken from the original 

quantum-ESPRESSO pseudopotentials library [76] and is named “Si.pbe-n-van.UPF”.  All 

the atomic systems were geometrically relaxed using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) method [87-90], with the total energy convergence threshold of 1 meV, 

while the Brillouin zone (BZ) was sampled using the Monkhorst-Pack (MP) grid k-points.  

The Marzari-Vanderbilt-Devita-Payne cold smearing method [91] was used as a smearing 

scheme.  For most of the post-processing calculations involving non-self-consistent field 

calculations such as the density of states (DOS) and the projected density of states (PDOS), 

MP grid of higher density (that is, relative to the converged values) was used.  Also, the 

tetrahedron method was used for the BZ integration [92].  We have used a smearing width 

of 0.03 eV throughout, for the DOS and PDOS.  Furthermore, the XCrySDen (X Window 

Crystalline Structures and Densities) software [77] was used for the visualization of 

geometrical structures of all the atomic systems. 

 

4.1 Convergence studies 

The purpose of convergence studies in DFT calculations is to determine the appropriate 

value of parameters which shall enable the accuracy and quick convergence of our 

calculations. Such parameters include k-point grid, energy, charge density cut-off and 

smearing.  The convergence studies were conducted using a 2-atoms silicene unit cell with 

theoretical lattice constant of 3.86 Å [20].  This configuration was used to obtain the 
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convergence of the kinetic energy cut-off (Ecut) and the k-point grid (nk).  Figure 4.1 (a) 

shows the result of convergence test for Ecut.  This figure shows that the energy does not 

change by more than 1 meV beyond 50 Ry (680 eV) kinetic energy cut-off.  Also, figure 4.1 

(b) shows the convergence test for k-points grid.  The nk selected for the plot was 18×18×1. 

  

  

Figure 4.1: (a) Convergence test for kinetic energy cut-off, (b) Convergence test for k-points grid.  The 

connecting lines are guide to the eye.     

 

4.2 Basic structural parameters of pristine silicene 

Figure 4.1 (c) shows the calculation of the lattice parameters of silicene using the obtained 

converged Ecut and nk, which are 50 Ry and 18×18×1, respectively.  In this figure, it is 

observed that the equilibrium lattice constant of 3.88 Å gives the minimum energy, which 

is 0.52% greater than the value of 3.86 Å obtained in theoretical studies by Takeda and 

Shiraishi [20].  The difference in the values may be attributed to the difference in 

calculation parameters used such as the pseudopotential, exchange-correlation potential 

energy and plane waves kinetic energy cut-off.  Ref. [20] used the norm-conserving 

pseudopotential of Hamann, Schluter and Chiang [93], and of Bachelet, Hamann and 

Schluter [94], while we used Vanderbilt ultrasoft pseudopotential.  Also, Ref. [20] used 

local density approximation with a functional form given by Ceperley and Alder [95], but 

parametrized by Perdew and Zunger [96] as the exchange-correlation potential energy, 

while we used generalized gradient approximation given by Perdew, Burke and Ernzerhof 

as the exchange-correlation potential energy.  Furthermore, Ref. [20] used planes waves 

with a kinetic energy cut-off of 12.25 Ry, while we used 50 Ry as the plane wave kinetic 

energy cut-off.  Table 4.1 shows the comparison of our calculated structural parameters 

with other values obtained in the literature. 
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Figure 4.1(c): Calculated lattice parameter of silicene obtained using the converged Ecut = 50 Ry and k-grid 

points of 18x18x1. 

 

 

Table 4.1: Calculated parameters of pristine silicene: lattice parameter a, bond length between adjacent silicene 

atoms dSi-Si, bond angle between three adjacent silicene atoms <SiSiSi>, buckling length, h.  

Pristine silicene             a (Å)                   dSi-Si (Å)                   < SiSiSi> (°)               h (Å)               Method      

Theory (this work)          3.88           2.30           117                     0.45                 GGA 

Theory (others)            3.88a              2.27a       117a                        0.41a                GGA 

                  3.87b            2.28b                   120b                        0.44b                GGA 

             3.87c            2.28c                             116c                       0.46c                GGA     

Experiment             2.30d                         

aReference [4] 
bReference [97] 
cReference [98]  
dReference [99] 

 

We found a good agreement between the experimental, our calculated values and other 

theoretical studies.   

 

4.3 Electronic properties of pristine silicene 

The electronic properties of pristine silicene are shown in Figures 4.2.  Specifically, figure 

4.2 (a) shows the calculated band structure of pristine silicene.  
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Figure 4.2: (a) Band structure of pristine silicene, (b) Density of states of pristine silicene, and (c) Projected 

density of states showing the s and p orbital of silicene atom.  Fermi level is set at zero as shown by the black 

dashed line.  

 

A prominent feature in this band structure is the presence of the valence and conduction 

bands that crosses one another quadratically at the Dirac point, which is the point of 

intersection of the K high symmetry point and the Fermi level  FE .  The crossing of π and 

π* bands at this point in Figure 4.2 (a) indicates the absence of the band gap, thus rendering 

pristine silicene semi-metallic, mainly due to the contribution of the pz electrons [97,98]. 

 

Figure 4.2 (b) shows pristine silicene to have zero density of states (DOS) at the Dirac point.  

It is also at this point that the electrons behave like massless Dirac-Fermions, thus giving 

pristine silicene to have a unique electron conductivity.  Moreover, this figure also shows 

that the density of spin up states are the same as the density of spin down states.  This suggest 

that partially filled orbitals are absent in silicene, hence the observed zero total magnetic 

moments, that is, a non-magnetic material.  Also, figure 4.2 (c) is the spin-polarized 

projected density of states (PDOS) of silicene.  As expected, the similarity in the spin-up 

and spin-down DOS confirms non-magnetism in silicene.  Furthermore, figure 4.2(c) shows 

that the hybridization of silicene orbitals leans towards sp2 rather than sp3, thus giving sp2/sp3 

mixed hybridization which results from buckling.  Buckling makes the overlapping area of 

the pz orbitals to be less [4].   

 

4.4 Pristine silicene supercell 

In the supercell approach, we repeated the primitive unit cell seven times along the x and y 

direction in order to minimize defect-image interaction.  The size of the supercell used in 

this study therefore may be written as 7a × 7a where a is the calculated silicene lattice 
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parameter of 3.88 Å.  This supercell consists of 98 silicon atoms. Figure 4.3 (a) and (b) 

shows the top view and the side view of the supercell.  This supercell is large enough to 

ensure that the interactions between periodic replicas of defects are minimized.  This is based 

on the knowledge that, for neutral defects, the interaction between the periodic replicas 

decreases fairly quickly with increasing supercell size.  

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.3: (a) Top view (b) Side view of relaxed spin-polarised configuration of pristine silicene.  The blue 

spheres represent the silicene atoms. 

                                                                                         

To summarize, our calculations of the electronic and magnetic properties of pristine silicene 

are in excellent agreement with findings in the literature [4,16,98,100].   

 

 

 

 

 

 

 

 

 

a 

b 



48 
 

CHAPTER 5 

 

Native defects in silicene 

 

In the following, we determine the structural, electronic and magnetic properties of silicene 

containing:  

• Single and double vacancies. 

• Vacancy-vacancy complex. 

For all the defect calculations, we have used the supercell of size 7a x 7a where a is the 

optimized lattice parameter of silicene unit cell as described in the previous chapter. 

 

5.1 Single vacancy  

5.1.1 Energetics and structural properties 

A single vacancy silicene was considered and its electronic and magnetic properties were 

obtained as illustrated in figure 5.1. 

 

 

 

 

 

 

Figure 5.1: (a) Top view (b) Side view of relaxed spin polarised configuration of silicene with a single 

vacancy.  The blue spheres represent the silicene atoms.  Silicon atoms numbered ‘1’, ‘2’, and ‘3’ are those 

carrying the dangling bonds, and are regarded as Si1, Si2 and Si3, as explained in the main text. 

 

A vacancy is created by removing one silicene atom from the pristine 98-atoms silicene 

structure shown in Figure 4.3.  A vacancy introduces three dangling bonds to the silicene 

lattice and these are indicated by numbers ‘1’, ‘2’, and ‘3’ in figure 5.1.  We determine the 

formation energy of single vacancy as well as its structural parameters which are 

summarized in table 5.1.      

 

The formation energy, fE , needed to create a vacancy in a system may be defined as [101-

103]: 

a 

1 

2 

3 b 
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                 (5.1) 

where a positive formation energy means that the system is less stable, while a negative 

formation energy means that the system is more stable.  The first term on the right-hand side 

of equation (5.1) represents the total energy of relaxed silicene with a single vacancy, the 

second term represents the total energy of relaxed pristine silicene, N is the total number of 

atoms in relaxed pristine silicene supercell, and n is the number of vacancies in a relaxed 

silicene supercell.  In the case of a single vacancy n = 1.  

 

Table 5.1: Calculated parameters of a single vacancy in silicene: Formation energy Ef, the shortest bond lengths 

between the nearest neighbour silicene atoms around the vacancy (dSi-Si) and induced total magnetic moments 

per unit cell (μm).  The calculated distance d is with reference to figure 5.1(a) where the silicon atoms numbered 

‘1’, ‘2’, and ‘3’ are those carrying the dangling bonds, and are regarded as Si1, Si2 and Si3, as explained in 

the main text. 

Single Vacancy              Ef (eV)                    dSi1-Si2(Å)           dSi1-Si3(Å)             dSi2-Si3(Å)             μm/cell(μB)         

Theory (this work )         3.52                         3.55             3.50                      3.50                     2.02  

Theory (others)               2.47 – 4.30a,b,c,d,e  2.74b               2.74b                     2.74b                   2.33d  

aReference [104]. 
bReference [105]. 
cReference [106]. 
dReference [102]. 
eReference [107]. 

 

For a single vacancy, the calculated formation energy is 3.52 eV, which falls within the 

range 2.47 to 4.30 eV as reported in previous studies [102,104-107].  However, the positive 

value of formation energy means that vacancy is not readily or easily formed via 

thermodynamic equilibrium techniques and may require external perturbation to create, such 

as ion or electron bombardment [108].  Figure 5.1 shows the relaxed vacancy structure.  In 

describing the relaxed structure, we focus on the three nearest atoms to the vacancy, tagged 

‘1’, ‘2’, and ‘3’ in the figure.  These are the nearest-neighbour silicene atoms with dangling 

bonds around the single vacancy, and are referred to as Si1, Si2, and Si3.  Upon relaxation, 

the atoms around the single vacancy are displaced slightly towards the centre of the single 

vacancy such that the bond length between atoms Si1 and Si2 is 3.55 Å, while the bond 

lengths between atoms Si1 and Si3, and that between atoms Si2 and Si3 are the same with a 

smaller value of 3.50 Å each.  This means, the bond lengths between these atoms have 

decreased compared to that of unrelaxed structure which is 3.87 Å.  
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5.1.2 Magnetic and electronic properties 

Table 5.1 also shows the total magnetic moment obtained for silicene with a single vacancy 

to be 2.02 μB per unit cell, which is very close to the value obtained by other theoretical 

studies [90], of 2.33 μB.  The magnetic moment of Si3 atom is 0.14 μB, while those of Si2 

and Si1 atoms are 0.13 μB each. Thus, the remaining atoms surrounding the vacancy 

contribute a total magnetic moment of 1.61 μB.  In figure 5.2, we show the magnetization 

(𝑀𝑠) plot obtained for a silicene containing a vacancy.  The figure has been obtained using 

the formula: 

𝑀𝑠 = 𝜌↑ − 𝜌↓           (5.2) 

where 𝜌↑ and 𝜌↓ are density of spin-up and spin-down electrons, respectively.  It is evident 

from the figure that the majority of the magnetization reside on the silicene atoms nearest to 

the vacancy centre (that is, atoms marked as 1, 2, 3) and the magnetization decreases farther 

away from the vacancy.  It should be recalled that the silicene atoms 1, 2, 3 carry dangling 

bonds and thus unfilled orbitals which are responsible for the induced magnetization.  Thus, 

they carry more magnetic moments.   

 

 

 

 

 

 

Figure 5.2: Magnetization density in silicene containing a single vacancy atom in silicene.  Atoms marked as 

‘1’,’2’ and ‘3’are the nearest-neighbour atom to the vacancy.  Red and blue colours, respectively, correspond 

to the spin up and spin down densities, with isovalue of 4×10-4 electron/Å3. 

 

The inducement of magnetic moment on silicene sheet by a single vacancy is a result of the 

localised σ and π dangling states [102].  Also, the introduction of a single vacancy on silicene 

sheet destroys the Dirac point at the K high symmetry point, as shown in the band structure, 

that is, figure 5.3(a).  The destruction of the linearly crossing π and π' bands at the K high 

symmetry point induces a band gap, thus rendering this material system to acquire 

semiconductor characteristics.  In other words, the π and π' bands, and σ and σ' bands of the 

pristine silicene hybridizes with the vacancy orbitals, thus resulting in a number of bands in 

both the valence and conduction bands [106].   

 

3

3 

1 
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Figure 5.3: (a) Band structure of single vacancy, (b) Projected density of states of silicene atom.  The red dot 

line is the band for pristine silicene, while the purple line represents the bands for single vacancy configuration.  

The Fermi level is set at zero as shown by the black dashed line. 
 

Figure 5.3(b) is orbital-resolved DOS otherwise known as projected density of states.  This 

figure shows the hybridization of s and p orbitals of the nearest silicene atom to the single 

vacancy at the Fermi level.  This figure further shows that the inducement of magnetization 

is a contribution from all the orbital states.  

 

In summary, we conclude that a silicene monolayer with a vacancy may be obtained via 

external perturbation.  Such a defective silicene structure is semiconducting and has finite 

magnetic moment, thus making it a low-dimensional magnetic material. 

 

5.2 Double vacancy  

5.2.1 Energetics and structural properties 

This sub-section explores the structural configuration and stability of a double vacancy as 

indicated in figure 5.4. The parameters of this structure are shown in table 5.2, while the 

magnetic and electronic properties are shown in figure 5.5. 
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Figure 5.4: Top view of (a) Pre-relaxed and (b) relaxed spin polarised configuration of silicene with a double 

vacancy.  The blue spheres represent the silicene atoms. 

 

A simple divacancy is created by removing two silicene atoms from the pristine 98-atoms 

silicene system (Figure 4.3).  The relaxed divacancy has no dangling bonds, as shown in 

figure 5.4 (b).  Equation 5.1 with n = 2 was used to determine the formation energy of this 

defect.  For the divacancy, the first term on the right hand of equation 5.1 corresponds to the 

total energy of relaxed double vacancy in silicene, the second term represent the total energy 

of relaxed pristine silicene supercell, and N is the total number of atoms in relaxed pristine 

silicene supercell.  Since binding energy serves the purpose of giving insight into the 

stability of a structure by quantifying the energy needed to overcome all interactions holding 

the structure together, we calculate the binding energy of double vacancy as [71]: 

                                              𝐸𝑏 = 𝐸𝐷 − 𝐸𝑝𝑟 − 2𝐸𝑉                       (5.3) 

where the first term on the right hand side of equation (5.3) represents the total energy of 

relaxed double vacancy in silicene, the second term represent the total energy of relaxed 

pristine silicene supercell, and the last term represent the total energy of relaxed silicene 

with single vacancy. 

 

Table 5.2: Calculated parameters of a double vacancy in silicene: formation energy Ef, binding energy Eb, the 

shortest bond length between the nearest neighbour silicene atoms around the double vacancy (dSi-Si), induced 

total magnetic moments per unit cell(μm).  

Double vacancy                      Ef (eV)                         Eb (eV)                  dSi-Si (Å)                     μm/cell(μB)         

Theory (this work)                   2.13                             -2.79                      2.37                       0.00  

Theory (others)                        3.70a,b,c , 1.61d                               2.32e         0.00e  

aReference [104]. 
bReference [106]. 
cReference [105]. 
dReference [107]. 
eReference [109]. 

 

The formation energy for a double vacancy is calculated to be 2.13 eV which is in agreement 

with the previous theoretical values, of 1.61-3.70 eV [103-106].  However, similar to the 

a b 
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case of a single vacancy, the positive value of formation energy means that in order to create 

the double vacancy, an external perturbation is needed such as electron irradiation of 

appropriate energy.  Figure 5.4 (b) shows that the relaxed silicene configuration after the 

creation of a divacancy.  Notably, an octagon and a pentagon is created along with the 

silicene’s hexagonal ring and there are no dangling bonds in the silicene lattice.  This type 

of defect is referred to as 5-8-5 defect.  The average bond length in the 5-side pentagon is 

2.35 Å, while for the 8-side octagon is 2.45, the average Si-Si bond length is 2.30 Å.  These 

values are to be compared with 2.30 Å which is the optimized Si-Si bond length in pristine 

silicene.  Finally, we observe that it is easier to create a double vacancy (Table 5.2) than a 

single vacancy (Table 5.1) judging from the lower formation energy of the former, that is, 

2.13 eV as against 3.52 eV of the latter.  This is because a pre-existing vacancy creates a 

weak bonding in the silicene lattice thus enabling easier formation of another vacancy, that 

is, double vacancy.  Thus, a double vacancy is more easily formed than a single vacancy. 

 

5.2.2 Magnetic and electronic properties 

A double vacancy retains the zero magnetization found in pristine silicene which agrees well 

with the value acquired in Ref. [109].  It should be recalled that in contrast, a   single vacancy 

introduces a finite magnetization in silicene.  The absence of magnetization in double 

vacancy is due to absence of dangling bonds (that is, unlike single vacancy).  In other words, 

the Si atoms making up the core 5-8-5 defect structure all have saturated bonds.  From the 

band structure, one can see that the introduction of a double vacancy on silicene sheet 

destroys the Dirac point at the high-symmetry K-point as shown in figure 5.5 (a).  This, 

results in the emergence of several bands in both the valence and conduction bands.  But, 

the nearly flat band comes close to the Fermi level at the K high symmetry point.  The 

disappearance of the Dirac point implies a band gap of ~0.13 eV, which confers 

semiconductor characteristics to the silicene monolayer.   
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Figure 5.5: (a) Band structure of double vacancy, (b) projected density of states of silicene atom.  The red dot 

line is the band for pristine silicene, while the purple line represents the bands for double vacancy 

configuration.  The Fermi level is set at zero as shown by the black dashed line. 

 

Figure 5.5 (b) shows the non-hybridization of s and px+py orbitals with the pz orbital of the 

nearest silicene atom to the double vacancy at and near the Fermi level.  This figure further 

shows that the double vacancy induces no magnetisation in silicene.  In general, a double 

vacancy renders silicene to be less stable (compared to pristine silicene), semi-conducting, 

and non-magnetic material system.   

 

5.3 Vacancy-vacancy interaction 

We further extend our study of the double vacancy in silicene to the interactions between 

two vacancies separated at varying atomic distances.  Due to the bipartite nature of the 

silicene lattice, divacancies are not at the same sub-lattice type when they are separated.  In 

figure 5.6, we show a typical 98-atom supercell we used to study the divacancy.  The 

numbering on the Si atom indicates the Si atoms that will be removed to create the 

divacancy.  Creating the divacancy proceeds by removing Si atoms designated as 0 and 1, 0 

and 2, and so on.  The divacancy configuration wherein 0 and 1 atoms are removed will be 

termed v0-v1. When atoms 0 and 2 are removed, then we have v0-v2, until v0-vn where n = 

8.  For each divacancy configuration, we obtain the formation energy, binding energy, 

magnetization, and electronic properties.  The formation energy, 𝐸𝑓
𝑣−𝑣 is calculated using 

equation (5.1). 
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Figure 5.6: Top view of relaxed spin polarised configuration of pristine silicene with numbered atoms that are 

removed in turn.  The blue spheres represent the silicene atoms. 

  

5.3.1 Energetics and structural properties 

The formation energies of eight different vacancy-vacancy (v-v) interactions are shown in 

figure 5.7.  It should be recalled that v0-v1 vacancy-vacancy complex of figure 5.6 is the 

double vacancy defect presented in Section 5.2 above together with its structural, electronic 

and magnetic properties.  

 

 

 

 

 

 

 

 

 

Figure 5.7: Formation energy as a function of vacancy-vacancy interaction.  Data points represents the 

calculated formation energy, while the connecting line is a guide to the eye. 

 

Figure 5.7 shows that the formation energies of these configurations are all positive.  This 

suggest that external perturbation process is needed to induce v-v divacancy.  The formation 

energy is the same when there are ≤ 3 atoms in between the divacancy, beyond which, the 

formation energy increases dramatically.  The v-v defect on a similar sublattice have similar 

formation energy. 
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5.3.2 Magnetic and electronic properties 

The magnetic moment and magnetization density plots of these configurations are shown in 

figures 5.8 and 5.9, respectively.  Figure 5.8 shows that when the v-v separation is ≤ 3 atoms, 

the total magnetic moment of these configurations equals zero.  At v0-v4, that is, when there 

are four atoms between the vacancy pair, the total magnetic moment increases slightly, to 

0.1 μB.  In general, when the v-v defects are on a different sublattice type, they have zero 

total magnetic moment as has been shown by v0-v1, v0-v3, v0-v5 and v0-v7 vacancy pair 

configurations.  Also, when the vacancy pair are on a similar sublattice such as in v0-v4, v0-

v6 and v0-v8 configurations, silicene has finite total magnetic moments, however, the total 

magnetic moments decrease with increasing v-v separation. The variation in the magnetic 

moments due to varying distance between the vacancies can be explained by different 

interactions between the electrons of silicene as the separation between the vacancies 

changes. It is further observed that these finite total magnetic moments are negative, 

meaning that per unit cell there are more electrons with spin-down orientation than with 

spin-up orientation.  

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Magnetic moment as a function of vacancy-vacancy interaction.  The connecting line is guide to 

the eye. 

   

Figures 5.9 (a), (b) and (c) respectively, shows the magnetization density plots for the v0-

v1, v0-v2 and v0-v3 configurations, that is, zero magnetization.  Similarly, (d), (e), (f), (g) 

and (h) show the magnetization density plots of configurations v0-v4, v0-v5, v0-v6, v0-v7 

and v0-v8, respectively.  It appears from the plots that when the vacancies are on the same 

sublattice type such as in v0-v4, v0-v6 and v0-v8, the magnetization on the Si atoms is more 

delocalized compared to the more localized magnetization in the v0-v5 and v0-v7 
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configurations, where the magnetization is more localized and around the vacancy, the 

variation in magnetic densities is due to electronic spin alignment. 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Magnetization density in silicene for vacancy-vacancy interaction of (a) v0-v1, (b) v0-v2, (c) v0-

v3, (d) v0-v4, (e) v0-v5, (f) v0-v6, (g) v0-v7, (h) v0-v8. Red and blue colours, respectively, correspond to the 

spin up and spin down densities, with isovalues of 10-7 electron/Å3 for (a), (b), and (c); 10-6 electron/Å3 for (e); 

10-5 electron/Å3 for (d), (f), (g), and (h).  

 

The band structures of eight different vacancy-vacancy (v-v) separations are shown in figure 

5.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a): v0-v1 (b): v0-v2 (c): v0-v3 

(e): v0-v5 (f): v0-v6 

(g): v0-v7 (h): v0-v8 

(d): v0-v4 
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Figure 5.10: Band structures of vacancy-vacancy interaction of (a) v0-v1, (b) v0-v2, (c) v0-v3, (d) v0-v4, (e) 

v0-v5, (f) v0-v6, (g) v0-v7, (h) v0-v8.  The red dot line is the band for pristine silicene, while the purple line 

represents the bands for vacancy-vacancy configurations.  The Fermi level is set at zero as shown by the black 

dashed line.  

 

 

Figures 5.10 (a)-(c) shows the electronic band structures of silicene containing divacancy 

configurations v0-vn (n = 1,2,3) respectively.  Clearly, these divacancy configurations 

introduce two separate bands which run across the Brillouin zone.  The Dirac point 

disappears and thus a band gap is created, that is, a semiconducting property is introduced 

into the silicene lattice due to the presence of the specific divacancy configurations, of v0-

vn (n = 1,2,3).  The origin of the two bands is the splitting of the p bands, that is, the valence 

bands.  It should be recalled that we have shown in figure 4.2 (section 4.3) that the dominant 

band in silicene density of states is the p bands.  Furthermore, in figures 5.10 (d)-(h), the 

band structures show that the introduction of divacancy configurations v0-vn (n = 4, 5, 6, 7, 
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8) leads to the persistence of the two new bands, but which now cross the Fermi level, and 

thus introducing metallicity into the silicene lattice.  We may thus conclude that vacancy 

engineering of silicene structure may result in a material with a variety of properties such as 

non-magnetic or semiconducting property as well as magnetic or metallic property, 

depending on the spatial distribution or location of the vacancies. 
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CHAPTER 6 
 

Vanadium doped silicene 

 

Here, we introduce vanadium (V) atom into the silicene lattice.  We investigate the 

energetics of insertion, that is, the formation and binding energy as well as electronic and 

magnetic properties of silicene containing V atoms.  We remark that Vanadium is a BCC 

transition metal as its ground-state with a bulk crystal magnetic moment of 3.00 𝜇𝐵 

[110,111] and atomic radius of 2.62 Å [112].  However, we also study V defect complexes 

consisting of substitutional V and vacancy combinations as well as small V atom clusters in 

the form of vanadium dimers at different separation from each other. 

 

6.1 Single substitutional vanadium  

6.1.1 Energetics and structural properties  

Figure 6.1 shows the ground state vanadium atom substituted in a silicene sheet.  This 

structural configuration was achieved by removing one atom of silicene and replacing it with 

a vanadium atom and the structure was relaxed.  

 

 

 

                              

 

 

Figure 6.1: (a) Top view (b) side view of relaxed spin polarised configuration of vanadium-doped silicene.  

The blue spheres represent the silicene atoms, while the red sphere represent the vanadium atom. 

 

The binding energy 𝐸𝑏
𝑣𝑎𝑐−𝑉 of a single substitutional V to the silicene surface may be defined 

as [101]: 

      𝐸𝑏
𝑣𝑎𝑐−𝑉 = 𝐸𝑣𝑎𝑐−𝑉 − 𝐸𝑣𝑎𝑐 − 𝐸𝑉             (6.1)    

where 𝐸𝑣𝑎𝑐−𝑉 represents the energy of substitutional vanadium atom in relaxed silicene 

supercell, 𝐸𝑣𝑎𝑐 represents the total energy of relaxed silicene with single vacancy, and 𝐸𝑉  

represents the total energy of isolated vanadium atom.  Equation 6.1 was used to determine 

the binding energy of this system, and its magnitude and structural parameters are 

a 

b 
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summarized in table 6.1.  Also, the formation energy, 𝐸𝑓(𝑉𝑠), of substitutional vanadium 

may be defined as:   

𝐸𝑓(𝑉𝑠) = 𝐸𝑉−𝑆𝑖 + 𝜇𝑠𝑖 − 𝐸𝑝𝑟 − 𝜇𝑉         (6.2) 

where 𝐸𝑉−𝑆𝑖 represents the total energy of relaxed vanadium-doped silicene, 𝜇𝑠𝑖 represents 

the chemical potential of silicene atom, 𝐸𝑝𝑟 represents the total energy of relaxed pristine 

silicene, 𝜇𝑉 represents the chemical potential of vanadium atom. 

 

Table 6.1: Calculated parameters of vanadium-doped silicene: binding energy Eb, formation energy Ef, the 

shortest bond length between the nearest neighbour silicene atom and substitutional vanadium atom dSi-V, 

induced magnetic moment on substitutional vanadium atom μm-V, induced total magnetic moment per unit cell 

μm.   

Vanadium-doped silicene       Eb (eV)          Ef (eV)          dSi-V (Å)          μm-V (μB)          μm/cell (μB)                   

Theory (this work)                    -6.08  1.37               2.43   1.30              2.61             

Theory (others)                      -5.40a                        2.39a   1.00a              1.60a   

aReference [12].  

 

Table 6.1 shows a binding energy of a single substitutional vanadium atom to silicene with 

a large value of ~ -6 eV.  This implies that this substitutional V is strongly binded in silicene. 

Our calculated values of 𝐸𝑏
𝑣𝑎𝑐−𝑉 is fairly in agreement with a previous theoretical value of -

5.40 eV [12].  The difference in theoretical values of binding energies may be attributed to 

differences in computational parameters, such as pseudopotential, periodic supercell size 

and plane-wave cut-off.  The table also shows that the relaxed V-Si distance, that is, the 

relaxed distance of V to each of the nearest-neighbour (NN) Si atom is ~ 2.43 Å.  This 

distance is to be compared with 2.30 Å for Si-Si length in pristine silicene.  Since the radius 

of vanadium atom is larger than the radius of silicene atom, the surrounding silicene atoms 

experience a strained environment in the form of outward push of the NN silicene atoms, 

hence the larger V-Si separation compared to the Si-Si separation. 

 

6.1.2 Magnetic and electronic properties 

We found the magnetic moment of V when substituted in silicene as 1.30 μB, however, the 

whole supercell has a total magnetic moment of 2.61 μB.  This suggests the rest of the silicene 

atoms contributes 1.31 μB to the supercell magnetization.  This is in qualitative agreement 

to Ref. [12] where 1.00 μB is obtained as the magnetic moment on the vanadium atom and 

1.60 μB as the total magnetic moment on the silicene supercell containing the vanadium 

atom.  The difference in the values of the magnetic moment may be due to the difference in 
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the supercell size where in our calculations, we have used 98 atom supercell (1.02 atomic 

%) whereas in Ref. [12], a smaller supercell cell size of 72 atoms (1.39 atomic %) was used.  

It appears therefore, vanadium induced magnetization in silicene may be concentration 

dependent.  Figure 6.2 shows the magnetization density plot for the substitutional V 

supercell.  This figure shows that the bulk of magnetization density is on vanadium atom.  

As seen from the figure, the vanadium atom and the nearest-neighbour silicene atoms are in 

opposite spins direction.  Away from the vanadium atom, the silicene atoms are coupled in 

opposite spins direction relative to the nearest neighbour silicene atoms.  The magnetization 

density on the vanadium atom also shows the shape of the d orbital of the vanadium atom.  

This confirms the origin of the magnetization to be of the d orbital of the vanadium atom.  

 

 

 

 

 

 
 

 
 

Figure 6.2: Magnetization density in vanadium-doped silicene. Red and blue colours, respectively, correspond 

to the spin up and spin down densities at the isovalue of 10-3 electron/Å3. 

 

Furthermore, substituting a silicene atom with a single vanadium atom in a pristine silicene 

result in the destruction of the Dirac point, as shown in the band structure plot, that is, figure 

6.3 (a).  This results in the emergence of several bands in both the valence and conduction 

bands.  Figure 6.3 (a) also shows bands that are crossing the Fermi level, which consequently 

renders the material system to acquire a metallic character.  
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Figure 6.3: (a) Band structure of substitutional vanadium in silicene, (b) Projected density of states of silicene 

atom in vanadium-doped silicene, (c) Projected density of states of vanadium atom in vanadium-doped 

silicene.  The red dot line is the band for pristine silicene, while the purple line represents the bands for 

substitutional vanadium configuration.  Fermi level is set to zero as shown by the black dashed line.   

 

Figure 6.3 (b) shows the plot of s and p orbitals of the nearest silicene atom to the vanadium 

atom.  Figure 6.3 (c) also show the d orbital of the vanadium atom.  It can be seen from the 

two plots that there is overlapping of the orbitals within the energy range shown in the plot. 

The overlapping of the orbital is evidence of hybridization between the silicene and 

vanadium electron states which results in bonding between the two atoms and hence the 

stability of vanadium at the substitutional site. 

 

6.2 Vacancy-vanadium interaction 

Here, we consider the interaction between a single vacancy (v0) and a single substitutional 

vanadium (Vsn) atom.  The vacancy (v0)-vanadium (Vsn) configuration is such that a 

vanadium atom is placed at a varying atom distance from a single vacancy.  Thus, using 
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figure 6.4 as an illustration, a typical v0-Vsn configuration will consist of a vacancy and a 

substitutional vanadium atom at position ‘3’ in the figure, that is, v0-Vs3.  Another 

configuration such as v0-Vs5 will consist of a single vacancy and a vanadium atom at the 

lattice site ‘5’.  Thus, we can determine how the sublattice type position of the V atom affects 

the electronic and magnetic properties of the silicene structure.  Eight different v0-Vsn 

configurations have been considered.  Below, we present the binding energy, electronic and 

magnetic properties of the configurations. 

 

 

 

 

 

 
 

 
 

 

 
 

 

 
 

Figure 6.4: Top view of pre-relaxed spin polarised configuration of vanadium atoms placed at positions 1 to 8 

in turns interacting with a vacancy at position 0 in silicene.  The blue spheres represent the silicene atoms, 

while the red sphere represent the vanadium atom. 

 

6.2.1 Energetics and structural properties 

The binding energy of v-V combinations has been obtained using [71,101]: 

             𝐸𝑏
𝑣−𝑉 = 𝐸𝑣−𝑉 +  𝐸𝑝𝑟 − 𝐸𝑣 − 𝐸𝑉−𝑆𝑖                        (6.3) 

where  𝐸𝑣−𝑉 , represents the total energy of relaxed vacancy-vanadium interaction in 

silicene, 𝐸𝑝𝑟 symbolize the total energy of relaxed pristine silicene, 𝐸𝑣 represent the total 

energy of relaxed silicene with a single vacancy, 𝐸𝑉−𝑆𝑖 represents the total energy of relaxed 

vanadium-doped silicene.  

 

As stated earlier, a total of eight v0-Vsn interactions were investigated.  Figure 6.5 (a) shows 

the binding energy between the silicon atom and the substitutional vanadium.  This figure 

shows a very strong binding energy of 𝐸𝑏
𝑣−𝑉 = -2.79 eV when a single V atom is captured 

by a double vacancy, that is, v0-Vs1 configuration, as shown in Figure 6.5 (b). 
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Figure 6.5: (a) Pre-relaxed (b) relaxed structure of silicene containing nearest-neighbour vacancy-vanadium 

defect complex, v0-Vs1.  The blue spheres represent the silicene atoms, while the red sphere represent the 

vanadium atom. 

 

Of all the v0-Vsn (n = 1, 2, 3, … ,8) configurations investigated, the v0-Vs1 may be 

considered as the most stable as illustrated in Figure 6.6.  The 𝐸𝑏
𝑣−𝑉 for the v0-Vs1 when 

compared to that of single substitutional vanadium Vs of -6.08 eV, suggest V atom is less 

stable in a double vacancy (that is, v0-Vs1).  This may be due to less bonding (compared to 

Vs) between the nearest-neighbour silicene atoms and the V atom (due to larger hole created 

by the double vacancies) in the v0-Vs1.  The difference in the binding energy between the 

Vs and v0-Vs1 may be due to induced bond strain in the silicene lattice containing the defect.  

The nearest-neighbour silicon-vanadium distance in the v0-Vs1 is about 2.64 Å which is 

longer than 2.30 Å for the Si-Si bond in pristine defect-free silicene and 2.43 Å for the Vs 

atom.  Thus, the Si bond with the V atom in the v0-Vs1 is more strained (relative to the Si-

Si bond in pure silicene) compared to that of the Vs atom.  Thus, the v0-Vs1 has lower 

binding energy compared to Vs atom. 

 

 

 

 

 

 

 

 

 

Figure 6.6: Binding energy as a function of vacancy-vanadium interaction in silicene.  The connecting line is 

guide to the eye.     

 

6.2.2 Magnetic and electronic properties 

Figure 6.7 show the total magnetization in the supercell and the induced magnetization on 

the V atoms as the separation between the vacancy and V atom increases.  From the figure, 

b a 
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it is clear that the V-induced magnetization in silicene is the highest, that is 2.69 μB, when 

both the V atom and vacancy are nearest-neighbours.  When this value of magnetic moment 

is compared to that of supercell containing a single vacancy, that is 2.02 μB, it may be 

inferred that V atom induces higher magnetization in silicene.  Also, beyond the nearest-

neighbour v-V, that is, when the vacancy (v) and the V atom are separated by one silicene 

atom, the cell magnetization falls rapidly and then rise again when the v-V are separated by 

more than two atoms.  The increasing magnetization as the v-V increases is such that the 

total magnetization on the silicene supercell approaches that of single vacancy or single 

substitutional V atom.  This is intuitive in the sense that as the separation increases, the 

interaction between the v and V atom decreases and thus, the induced magnetization in 

silicene is determined by either of the two defects.  The total magnetization approaches that 

of either of the two defects in the limit of much larger supercell size or infinite separation of 

the two defects.  The magnetization density plots of Figure 6.8 illustrate this observation. 

 

 

 

 

 

   

 

 

 

 

 

Figure 6.7: Total magnetic moment in the supercell and on V atom as a function of vacancy-vanadium 

separation in silicene.  The connecting line is guide to the eye.  

 

 

 

        

 

 

 

 

 

 

 

(a): v0-Vs1 (b): v0-Vs2 (c): v0-Vs3 

(d): v0-Vs4 (e): v0-Vs5 (f): v0-Vs6 
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Figure 6.8: Magnetization density in silicene for vacancy-vanadium interaction of (a) v0-Vs1, (b) v0-Vs2, (c) 

v0-Vs3, (d) v0-Vs4, (e) v0-Vs5, (f) v0-Vs6, (g) v0-Vs7, (h) v0-Vs8. Red and blue colours, respectively, 

correspond to the spin up and spin down densities, with isovalues of 10-4 electron/Å3 for (a); and 10-3 

electron/Å3 for (b), (c), (d), (e), (f), (g), and (h).  

 

Figure 6.9 shows the band structures of v0-Vsn vacancy-vanadium complex.  Clearly, in 

Figure 6.9 (a) the presence of the two defect types annihilates the Dirac point of the silicene 

lattice such that a tiny 0.06 eV gap appears which separates the valence and the conduction 

bands.  Below the Fermi level, there appears several bands which originates from the d-

bands of vanadium atom, thus rendering v0-Vs1 configuration to possess semiconducting 

characteristics.  However, all other v0-Vsn vacancy-vanadium complex, shows metallic 

behaviour from (b) to (h) of Figure 6.9.  

 

 

 
 
 

 

 

 

 

 

 

 

 

 

(g): v0-Vs7 (h): v0-Vs8 
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Figure 6.9: Band structures of vacancy-vanadium interaction of (a) v0-Vs1, (b) v0-Vs2, (c) v0-Vs3, (d) v0-

Vs4, (e) v0-Vs5, (f) v0-Vs6, (g) v0-Vs7, (h) v0-Vs8.  The red dot line is the band for pristine silicene 

while, the purple line represents the bands for vacancy-vanadium configurations.  Fermi level is set to zero as 

shown by the black dashed line.  
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6.3   Small vanadium clusters   

The previous section dealt with the small defect cluster consisting of a vacancy and 

substitutional vanadium atom at varying separations.  Here, we examine a small vanadium 

cluster, that is, a dimer consisting of two vanadium atoms located at the high symmetric 

lattice points of the silicene lattice.  In each of the dimer configurations, the atoms are either 

coupled in ferromagnetic (FM), antiferromagnetic (AFM) or non-magnetic (NM) 

orientations.  In general, we have investigated three different types of vanadium dimers 

while exploiting the symmetric points of the silicene lattice.  Below is the description of the 

dimer configurations: 

 

(a)  Two vanadium atoms separated by at least 2 Å around the hexagon of the silicene 

lattice.  The hexagon has been chosen since it offers the largest space for the dimer. 

A total of eight (8) configurations have been examined.  These are named as (i) tri-

u; (ii) tri-b; (iii) bridge-u; (iv) bridge-b; (v) hollow-uu; (vi) hollow-ud; (vii) top-hor; 

and (viii) top-vert.  The description of each of the configurations are shown in table 

6.2. 

 

(b) Two vanadium atoms arranged in such a way that each of the V atom occupies the 

substitutional site (s) but are separated by intermediate silicene atoms.  These 

configurations are named V2s-nSi, that is two vanadium atoms at substitutional sites 

separated by n (n = 0, 1, … ,7) silicene atoms. 

 

(c) Two vanadium atoms occupying the interstitial hole sites (h), but their separation 

varies.  We have named these configurations V2h-nh, where n = 0, 1, … ,4 is the 

number of interstitial hole sites separating the vanadium atoms. 

 

6.3.1 Vanadium dimer on silicene 

6.3.1.1 Energetics and structural properties 

Figure 6.10 shows the binding energy of each of the vanadium dimers on silicene as 

described in table 6.2.  
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Figure 6.10 Binding energy as functions of structural configuration using generalised gradient approximation 

and the van der Waals correction.   The connecting line is guide to the eye. 

 

Table 6.2: Description of V dimer on silicene configurations, that is, two vanadium atoms separated by at least 

2 Å around the hexagon of the silicene lattice. 

Configuration 

number  

Configuration  Reference figure Description 

1 tri-u 6.11 (a) 

 

Each of the atom at the 

edge of the two triangles 

formed by silicene 

hexagon such that each of 

the V atom are at a height 

of   2.70 Å. 

2 tri-b 6.12 (a) 

 

Similar to tri-u but the   

two V atoms are at the 

same plane as the silicene 

layer. 

 

 

 

3 bridge-u 6.13 (a) 

 

The two V atoms are 

located close to two 

bridge sites which are 

directly opposite to each 

other.   However, in this 

pre-relaxed configuration, 

each of the V atoms are at 

a height of 2.47 Å. 

4 bridge-b 6.14 (a) 

 

 

Similar to bridge-u, 

however, the two V atoms 

are at the same plane as 

the silicene layer.  
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5 hollow-uu 6.15 (a) 

 

The V dimer are located at 

the hole position above 

the silicene layer but 

separated by 2.00 Å with 

the closer V atom at a 

height of 2.60 Å above the 

silicene layer. 

6 hollow-ud 6.16 (a) 

 

 

 

Similar to hollow-uu but 

the V atoms are such that 

one is above the plane and 

the other below at a height 

of 1.00 Å and -1.00 Å 

respectively. 

7 top-hor 6.17 (a) 

 

Each of the V atoms are 

located at the top site of 

two nearest-neighbour 

silicene atoms such that 

the V atoms are at height 

of 2.47 Å above the top 

site in a horizontal 

orientation. 

8 top-vert 6.18 (a) 

 

The V dimer is located at 

the top site on the silicene 

atom in vertical 

orientation with the V 

dimer separated by 2.00 

Å.  The nearest V atom to 

the silicene layer is at a 

height of 2.45 Å directly 

above the silicene atom.  

   

The binding energy 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 is calculated as:       

    𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 = 𝐸𝑆𝑖−𝑑𝑖𝑚 − 𝐸𝑆𝑖 − 𝐸𝑑𝑖𝑚            (6.4) 

where 𝐸𝑆𝑖−𝑑𝑖𝑚 symbolizes the total energy of the relaxed silicene and vanadium dimer 

complex, the second term 𝐸𝑆𝑖 symbolize the total energy of relaxed pristine silicene sheet, 

and the last term 𝐸𝑑𝑖𝑚 is the total energy of a relaxed isolated vanadium dimer.  The 𝐸𝑑𝑖𝑚 is 

obtained by putting the exact dimer configuration in a cubical box of dimension 28.35 Å.  In 

equation (6.4) above, a negative value of 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 suggests that a dimer is more stable when 

binded on the silicene lattice than as isolated dimer.  Also, the more negative the 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚, 

the larger the binding and thus the greater the stability of the configuration.  Furthermore, 

the binding energy has been obtained using the total energy values obtained from the 

standard GGA and GGA+vdW correction.  It should be noted that the values of 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 

given by the GGA+vdW are larger than that of the standard GGA as shown in figure 6.10.   
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However, both functionals give negative binding energies of 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 for all the dimer 

configurations on silicene except for the hollow-ud, that is, where the orientation of V atoms 

is such that one is above the plane while the other is below.  The strongest binding is of V 

dimer of bridge configuration, that is, bridge-u/bridge-b with 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚= -3.38 eV as given 

by the GGA.  The GGA+vdW functional gives the tri-u/tri-b and top-hor as the most stable 

with 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚= -2.72 eV.  However, this binding energy value is similar to 𝐸𝑏

𝑆𝑖−𝑑𝑖𝑚= -2.70 

eV obtained for the bridge-u/bridge-b configurations.  It is safe therefore to state that of all 

the dimer configurations considered as shown in figure 6.10, the bridge configuration is the 

most stable.  The similarity in the stability of the bridge and tri-u/tri-b configurations is not 

entirely surprising.  This is because at equilibrium (that is, the final relaxed), the 

configurations of the two structures are similar as shown in figure 6.11 (b), 6.12 (b), 6.13 

(b), and 6.14 (b), respectively.  However, for future consideration, such as the analysis of 

the electronic structures, we shall focus on the bridge configuration as obtained from the 

GGA since it has the largest 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚.  Moreover, for the structures calculated with the 

GGA+vdW, the same bridge configuration has similar 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 as the tri-u/tri-b 

configurations, that is, the latter only bind stronger to the silicene surface by 0.02 eV (cf. 

figure 6.10).  Nevertheless, the fact that all the structures have negative 𝐸𝑏
𝑆𝑖−𝑑𝑖𝑚 except the 

hollow-ud configuration, suggest that they and their corresponding dimer configuration are 

feasible.  The V-V atom separation at equilibrium is about 1.24 Å, and in the case of bridge-

u configuration, each of the V atoms are approximately at a height 2.65 Å above the silicene 

surface.  For the bridge-b configuration, the V atoms are below the plane of the silicene as 

shown in figure 6.14 (b).   

 

 

 

 

 

 

 

 

 

Figure 6.11 (a) Pre-relaxed tri-u configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    

 

 

 

a b 
c 
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Figure 6.12 (a) Pre-relaxed tri-b configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    

 

 

 

 

          

          

 

 

 

Figure 6.13 (a) Pre-relaxed bridge-u configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    

 

     

 

 

 

 
 

 

 
 

 

Figure 6.14 (a) Pre-relaxed bridge-b configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    
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Figure 6.15 (a) Pre-relaxed hollow-uu configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.16 (a) Pre-relaxed hollow-ud configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    

 

 

 

 

 

 

 
 

 

Figure 6.17 (a) Pre-relaxed top-hor configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    
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Figure 6.18 (a) Pre-relaxed top-vert configuration as described in table 6.2; (b) relaxed structure of the same 

configuration based on the GGA functional; (c) relaxed structure based on the vdW functional.  The blue 

sphere is the silicene atom, while the red sphere is the vanadium atom.    

 

6.3.1.2 Magnetic and electronic properties 

To obtain a better understanding of the bridge configuration, that is, bridge-u, we have 

plotted the corresponding band structure and the projected density of states of silicene and 

vanadium atoms with the generalised gradient approximation in figure 6.19. 

 

 

 

 

a c b 



76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Bridge-u configuration with GGA functional (a) Band structure, (b) Projected density of states of 

Si atom, and (c) Projected density of states of V atom.  The red dot line is the band for pristine silicene, while 

the purple line represents the bands for Bridge-u.  Fermi level is set to zero as shown by the black dashed line. 

 

It is easily seen from the band structure that the presence of vanadium dimer opens a band 

gap in the silicene monolayer.  The projected density of states for silicon and vanadium 

atoms shows that the band gap opening is due to the hybridization of pz and dzy orbitals of 

silicene and vanadium atoms, respectively.  

 

The total magnetic moments in all the vanadium dimer configurations, including the bridge-

u is zero.  Figure 6.20 shows the exchange energy ∆𝐸, that is, the difference in energy 

between the FM and the AFM configurations, for all the configurations.  From the figure, 

two configurations should be particularly noted, that is tri-u and top-vert, the structures of 

which are described in table 6.2, and are illustrated in figures 6.11 and 6.18, respectively.  

Both have negative binding energy of -3.22 eV and -2.97 eV, but also an exchange energy 

of -2.45 meV and -2.41 meV, respectively.  This suggests that the ferromagnetic (FM) 

configuration of vanadium dimer is relatively more stable than the antiferromagnetic (AFM) 

configuration.  
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Figure 6.20: Exchange energy as a function of structural configuration with GGA functional.  The connecting 

line is guide to the eye. 

 

6.3.2 Substitutional vanadium dimer in silicene 

6.3.2.1 Energetics and structural properties 

Here we consider the vanadium dimer that is placed at substitutional positions on the silicene 

lattice.  As explained earlier, each of the dimer is separated by n number of Si atoms as the 

separation between the dimer increases.  The binding energy of these configurations is 

obtained from [71]:  

𝐸𝑏 = [𝐸𝑉−𝑉 +  𝐸𝑝𝑟] − 2𝐸𝑉                        (6.5) 

where 𝐸𝑉−𝑉  represents the total energy of the relaxed substitutional vanadium dimer in 

silicene, 𝐸𝑝𝑟 is the total energy of relaxed pristine silicene, 𝐸𝑉 represents the total energy of 

a single vanadium atom at the substitutional site.  Table 6.3 shows the difference in energy 

(ΔE ) between the FM and the AFM configurations of V-V pair as their separation increases, 

calculated binding energy 𝐸𝑏, as well as the total magnetic moment of the supercell 

containing the V-V pair μm.  It should be emphasized that for each of the V-V pair, the AFM 

and FM configurations are considered.  From the table, the V2s-0Si configuration wherein 

the V atoms are the nearest-neighbour substitutional sites, has the most negative binding 

energy of -6.43 eV which implies highest stability.  Figure 6.21 shows the pre-relaxed and 

relaxed structure of the most stable substitutional V-V pair in silicene, that is, V2s-0Si.  The 

relaxed configuration is such that the atoms shift from their respective initial lattice sites and 

sit atop each other in a vertical orientation.  In this configuration, the V-V distance between 

the atoms is ~1.27 Å. 
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Figure 6.21: (a) pre-relaxed (b) relaxed structure of the most stable substitutional V-V pair, that is, V2s-0Si.  

The blue sphere represents the silicene atom while the red sphere is the vanadium atom. 

  

Furthermore, in all the other configurations, the V-V pair are binded by ≤ ~ 0.1 eV.  Notably, 

when the V-V atoms pair are separated by more than one Si atom, the binding energy 

becomes positive with a very low binding energy.  The V-V atoms thus prefers to exist as 

individual V atoms on their respective substitutional sites when they are separated by more 

than one Si atom along the zig-zag direction. 

 

Table 6.3: Calculated parameters of substitutional vanadium-vanadium interaction at varying distances of 

separation in silicene; n-d/s is the number n of Si separating the V-V pair, the latter is either in the different 

(d) or same (s) sublattice.  Emin is the minimum energy configuration between the ferromagnetic (FM) and the 

antiferromagnetic (AFM) configuration of the V-V pair, ΔE is the energy difference between the FM and the 

AFM configuration of the V-V pair, Eb is the binding energy of the corresponding minimum energy 

configuration.  When ΔE is positive, the AFM is the more stable configuration whereas when it is negative the 

FM is the more stable.  Induced magnetic moment per unit cell is μm in Bohr magneton. 

n-d/s     V-V configuration        Emin            ΔE = EFM – EAFM (meV) Eb(eV)        µm/cell (μB) 

0-d     V2s-0Si               AFM           0.17                 -6.43        -0.00  

1-s     V2s-1Si               AFM           158.80   -0.03         0.01 

2-d     V2s-2Si               FM     -77.81                  0.01         2.84 

3-s     V2s-3Si               AFM      45.37                  0.11         0.00 

4-d     V2s-4Si               FM     -40.83                           0.00         3.27 

5-s     V2s-5Si               AFM      27.71     0.02        -0.01 

6-d     V2s-6Si               FM     -54.27     0.01         3.75 

7-s     V2s-7Si               AFM      26.05     0.02        -0.01 

 

6.3.2.2 Magnetic and electronic properties 

Table 6.3 also show the energy difference, or the exchange energy ∆𝐸 between the AFM 

and the FM configurations of the V-V pair as they are separated in silicene layer as well as 

the corresponding total magnetization.  What is clear from the table and figure 6.22 is the 

flipping of the stable magnetic states as the positions or the sublattice site of the V atom 

changes.  Specifically, when the V-V dimer are on a similar sublattice type, they prefer to 

couple together antiferromagnetically.  However, when they are on a different sublattice 

type, V-V prefer to be in FM configuration.  This is more aptly shown in the plot of exchange 

energy versus V-V separation which shows flipping or zigzag feature, as shown in figure 

6.22. 

a 
b 
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Figure 6.22: Plot of exchange energy of V-V pair configuration as the separation between the pair and the 

number of atom separating the pair increases. 

 

From the table, the configuration denoted as V2s-1Si has the highest positive exchange 

energy ∆𝐸, while V2s-2Si has the most negative ∆𝐸.  In other words, the former is the most 

stable AFM V-V configuration, while the latter is the most stable FM V-V substitutional 

pair.  The small value of ∆𝐸 between the FM and AFM suggests that either of the two 

magnetic configuration is stable for this particular V-V pair.  Table 6.3 also show the value 

of the magnetic moment per supercell.  The magnetic moments for the FM configurations 

varies between ~3 μB and 4 μB.  These spin moments are contributed by the embedded V 

atoms. 

 

It should be recalled that the AFM V2s-0Si is the most stable V-V substitutional pair 

configuration with a binding energy of ~6.4 eV.  Therefore, this configuration has been 

selected to gain an insight into the electronic interactions between the V-V pair.  

 

 

 

 

   

 

 

 

 

 

 

Figure 6.23: Band structure of V2s-0Si configuration.  The red dot line is the band for pristine silicene while 

the purple line represents the bands for the V-V-embedded silicene.  Fermi level is set to zero as shown by the 

black dashed line. 
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Figure 6.23 shows the band structure of this configuration.  The most significant change to 

the electronic bands is the annihilation of the Dirac point such that a small band gap of ~0.08 

eV is created at K point.  Nevertheless, the bands still cross the Fermi level along the Γ-K 

direction which makes the system metallic.  The significant modification of the bands due 

to presence of V-V suggests strong electronic interaction between the V atom and the Si 

atoms of silicene layer.  

 

6.3.3 Interstitial hole vanadium dimer in silicene 

6.3.3.1 Energetics and structural properties 

The preceding section considered the interaction of V-V atom pairs at substitutional 

positions in monolayer silicene.  This section focuses on the interaction of V-V pair at 

interstitial hole positions in a monolayer silicene.  Similar to the case of substitutional V-V, 

the V-V pair are relaxed when they are coupled in FM or AFM magnetic orientations.  Non-

magnetic coupling of the V atoms was also considered.  The binding energy of these 

configurations is obtained using [71]:  

𝐸𝑏 = [𝐸𝑉−𝑉 +  𝐸𝑝𝑟] − 2𝜇𝑉                       (6.6) 

where 𝐸𝑉−𝑉  represents the total energy of the relaxed interstitial hole vanadium dimer in 

silicene, 𝐸𝑝𝑟 represent the total energy of relaxed pristine silicene, μV represents the 

chemical potential for the vanadium atom. 

 

Table 6.4 shows the difference in energy ΔE, between the FM and the AFM configurations 

of the interstitial V-V pair as their separation increases, the calculated binding energy Eb, as 

well as the total magnetic moment of the supercell containing the V-V pair.  From the table, 

it is seen that the interstitial hole V-V are most strongly binded when both are nearest 

neighbours, that is, at the centre of two adjacent hexagonal holes, with a Eb = ~-0.5 eV.  

When the V atoms are separated farther apart, the Eb reduces drastically to less than 0.01 

eV.  We may deduce therefore that two- or three-dimensional clustering of V atoms may 

occur at the interstitial holes, but only when the atoms are closest together.  Figure 6.24(b) 

shows the relaxed structure for the most stable configuration.  Each of the atom relaxes to a 

height of 1.25Å above the silicene plane.  Unlike the nearest-neighbour substitutional V-V 

where the V atoms are perturbed from their substitutional sites, the V atoms are located 

within the silicene hexagon, but are elevated to the aforementioned height. 
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Figure 6.24: (a) Pre-relaxed (b) relaxed structure of interstitial hole V-V pair.  The blue sphere represents the 

silicene atom while the red sphere is the vanadium atom. 

 

Table 6.4: Calculated parameters of interstitial hole vanadium-vanadium interaction at varying distances of 

separation in silicene, Emin is the minimum energy configuration between the ferromagnetic (FM) and the 

antiferromagnetic (AFM) configuration of the V-V pair, ΔE is the energy difference between the FM and the 

FM configuration of the V-V pair, Eb is the binding energy of the corresponding minimum energy 

configuration.  When ΔE is positive, the AFM is the more stable configuration whereas when it is negative the 

FM is the more stable.  Induced magnetic moment per unit cell is μm in Bohr magneton. 

V-V configuration               Emin                 ΔE = EFM – EAFM (meV)            Eb(eV)        µm/cell (μB) 

V2h-0h      AFM              343.70              -0.52         0.00  

V2h-1h      AFM              23.64               0.00         0.00 

V2h-2h      FM             -1.52               0.01         9.52 

V2h-3h      FM             -3.94               0.01         9.52 

V2h-4h      AFM              23.65               0.00         0.01 

 

6.3.3.2 Magnetic and electronic properties 

Table 6.4 also show the energy difference or the exchange energy ∆𝐸 between the AFM and 

the FM configurations of the V-V pair as they are separated in silicene layer.  This is also 

illustrated in figure 6.25.  The figure shows drastic change to the ∆𝐸 as the atoms separates.  

Beyond the nearest-neighbour interstitial hole V-V configuration, the ∆𝐸 reduces 

drastically.  Configuration V2h-0h has the highest positive exchange energy of ~0.34 eV, 

which implies that the antiferromagnetic orientation of the V-V pair is stable against the FM. 

In general, in all the configurations considered, the AFM V-V pair presents a more positive 

absolute ΔE compared to the FM.  The table also shows total magnetization per unit cell for 

each of the configurations.  From the table, the FM V-V orientations, have total 

magnetization per unit cell of 9.52 μB, that is, V2h-2h and V2h-3h, which is about twice the 

value of magnetization per a single V atom in interstitial hole site, that is, -4.68 μB.  Thus, 

magnetic moments are contributed by the embedded V-V atom pair. 

a b 
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Figure 6.25: Plot of exchange energy of V-V pair configuration as the separation between the V-V pair in 

interstitial hole increases. Configuration V2h-0h is where the V-V are closest and there is no separating Si 

hexagon between them.  In V2h-4h, the V-V pair is separated by four hexagons formed by Si atoms. 

 

Figure 6.26 shows the band structure for the most stable interstitial V-V pair, that is, V2h-

0h.  

 

 

 

  

 

 

 

 

 

 

 

Figure 6.26: Band structure of V2h-0h configuration.  The red dot line is the band for pristine silicene while 

the purple line represents the bands for the V-V-embedded silicene.  Fermi level is set to zero as shown by the 

black dashed line. 
 

Here, the Dirac point is preserved, that is, at K point, renders this system to acquire metallic 

characteristics.  The figure also shows few additional bands that have been introduced by 

the embedded V atoms.  For completeness, we have shown the band structures for the 

relatively stable FM configurations in Figure 6.27, that is, V2h-2h and V2h-3h.  Here, the 

Dirac point is preserved but with a small opening.  Also, the point is shifted such that a band 

crosses the Fermi level thus making the system metallic.  
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Figure 6.27: Band structures of FM (a) V2h-2h (b)V2h-3h.  The red dot line is the band for pristine silicene, 

while the purple line represents the bands for V-V-embedded silicene.  The Fermi level is set at zero as shown 

by the black dashed line. 
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CHAPTER 7 

Vanadium-doped silicene: Effect of oxygen and hydrogen 

impurities 
 

This section deals with the effects of oxygen and hydrogen impurities on vanadium-doped 

silicene.  Oxygen(O) and hydrogen(H) are ubiquitous gases that are introduced into a 

material sample during synthesis protocols and thus, their effect cannot be neglected.  

Therefore, we have considered a model system consisting of vanadium in substitutional site 

with O and H at nearby lattice position.  With regards to the latter, eight different 

configurations of silicene containing V-O and V-H defect impurity complexes have been 

considered.  These configurations are described in table 7.1 while the corresponding atomic 

structures are shown in figures 7.1–7.8.  We performed spin-polarized (sp) and non-spin 

polarized (nsp) structural relaxation in order to obtain the V-doped silicene containing V-O 

and V-H impurity defect complexes. 

 

Table 7.1: Naming convention and description of vanadium-doped silicene containing H and O impurity atoms.  

Serial Configuration Description Illustration 

1 Si-VO2 Substitutional  V atom with O2 molecule attached 

to the V atom. 

Fig. 7.1 (a) 

2 SiO2-V Substitutional V atom with O2 molecule attached 

to the nearest-neighbour Si atom to the V atom. 

Fig. 7.2 (a) 

3 SiO-V Substitutional V atom with O atom attached to the 

nearest-neighbour Si atom to the V atom.  

Fig. 7.3 (a) 

4 Si-VO Substitutional V atom with O atom attached to the 

V atom.  

Fig. 7.4 (a) 

5 Si-VH2 Substitutional V atom with H2 molecule attached 

to  the  V atom. 

Fig. 7.5 (a) 

6 SiH2-V Substitutional V atom with H2 molecule attached 

to  the nearest-neighbour Si atom to the V atom. 

Fig. 7.6 (a) 

7 Si-VH Substitutional V atom with H atom attached to the 

V atom. 

Fig. 7.7 (a) 

8 SiH-V Substitutional V atom with H atom attached to  the 

nearest-neighbour Si atom to the V atom. 

Fig. 7.8 (a) 
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Figure 7.1 (a) Pre-relaxed Si-VO2 configuration; (b) relaxed spin-polarized (sp) Si-VO2 configuration; (c) 

relaxed non-spin polarized (nsp) Si-VO2 configuration. Blue sphere is the silicene atom, the red sphere is the 

vanadium atom, and the black spheres is the oxygen molecule.    

 

 

 

 

 

 

 

Figure 7.2 (a) Pre-relaxed SiO2-V configuration; (b) relaxed sp SiO2-V configuration; (c) relaxed nsp SiO2-V 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the black spheres is 

the oxygen molecule.    

 

 

 

 

 

 

 

Figure 7.3 (a) Pre-relaxed SiO-V configuration; (b) relaxed sp SiO-V configuration; (c) relaxed nsp SiO-V 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the black sphere is 

the oxygen atom.  

 

 

 

 

 

 

Figure 7.4 (a) Pre-relaxed Si-VO configuration; (b) relaxed sp Si-VO configuration; (c) relaxed nsp Si-VO 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the black sphere is 

the oxygen atom.  
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Figure 7.5 (a) Pre-relaxed Si-VH2 configuration; (b) relaxed sp Si-VH2 configuration; (c) relaxed nsp Si-VH2 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the yellow spheres is 

the hydrogen molecule. 

 

 

 

 

 

 

Figure 7.6 (a) Pre-relaxed SiH2-V configuration; (b) relaxed sp SiH2-V configuration; (c) relaxed nsp SiH2-V 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the yellow spheres is 

the hydrogen molecule. 

 

 

 

    

 

 

Figure 7.7 (a) Pre-relaxed Si-VH configuration; (b) relaxed sp Si-VH configuration; (c) relaxed nsp Si-VH 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the yellow sphere is 

the hydrogen atom.  

 

 

 

 

                     

                 

               

Figure 7.8 (a) Pre-relaxed SiH-V configuration; (b) relaxed sp SiH-V configuration; (c) relaxed nsp SiH-V 

configuration. Blue sphere is the silicene atom, the red sphere is the vanadium atom, and the yellow sphere is 

the hydrogen atom.  
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7.1 Energetics and structural properties 

Vanadium-doped silicene monolayer containing O and H defects were relaxed with and 

without spin-polarization.  As described in table 7.1, the initial configuration of O-adsorbed 

V-doped silicene consist of O atom or molecule attached atop the nearest-neighbour silicene 

atom to the V atom, as shown in figures 7.2(a) and 7.3(a).  The initial O-O bond length is 

1.25 Å.  Upon relaxation, the O atom drifts away from the initial top site position on the 

silicene atom and attaches itself directly to the V atom.  Interestingly, when the initial 

configuration of the O atom is such that it is located on the V atom, the O remains in position.  

Therefore, one may conclude that the V atom attracts the O atom in a stable V-O or V-O2 

orientation.  These are illustrated in figures 7.1(b), 7.2(b), 7.3(b) and 7.4 (b) for Si-VO2, 

SiO2-V, SiO-V, and Si-VO, respectively.  It should be noted the relaxed spin-polarized (sp) 

and non-spin polarized (nsp) are similar except for the SiO2-V where the O2 molecule 

appears to have dissociated for the nsp SiO2-V (figure 7.2 (c)) compared to the sp structure 

(figure 7.2(b)).  The O-O bond length in the former is now 3.02 Å compared to the non-

dissociated structures (figures 7.1(b-c) and 7.2(b)).  Also, the relaxed V-O bond length is 

1.73 Å (figure 7.2(b)) as compared to 1.60 Å in figure 7.2 (c).  Furthermore, figures 7.3 (b-

c) and 7.4 (b-c) show the relaxed configurations for the O atom on V-doped silicene.  There 

is no difference between the relaxed sp (figures 7.3(b) and 7.4(b)) and relaxed nsp (figures 

7.3(c) and 7.4(c)) configurations.  The relaxed V-O bond length is 1.77 Å for both sp and 

nsp SiO-V (figure 7.3(b) and 7.3(c)).   

 

The initial configurations of H-adsorbed V-doped silicene are similar to those of V-doped 

silicene with adsorbed O, as shown in figures 7.5(a), 7.6(a), 7.7(a) and 7.8(a).  The respective 

relaxed configurations are such that the H atom or molecule attach itself to the V atom, away 

from the top site position on the nearest-neighbour Si atom to the substitutional V atom.  

Also, these are clearly shown for Si-VH2, SiH2-V, Si-VH, SiH-V in figures 7.5(b-c), 7.6(b-c), 

7.7(b-c) and 7.8(b-c), respectively.  One may conclude therefore that substitutional V atom 

attracts H and O to itself in stable V-H, V-H2, V-O and V-O2 configurations.  However, the 

relaxed configurations of certain V-O and V-H defect complexes deserve further 

consideration.  As an example, for the Si-VH2, that is, the relaxed H2 molecule is oriented so 

that it lies parallel to the silicene surface but directly on top of the V atom.  It should be 

emphasized that the initial orientation (before relaxation) is such that the H2 molecule lies 

vertically on the vanadium atom.  This is shown in figure 7.5 (a) for the initial configuration 
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and figure 7.5 (b) for the final relaxed configuration.  However, even when the H2 molecule 

initial orientation is vertical on the nearest-neighbour silicene atom to the V atom, the final 

relaxed configuration is such that the H2 molecule lies on top of the V atom but in horizontal 

orientation and parallel to the silicene surface.  One may conclude therefore that the V atom 

attracts H2 molecule in a stable V-H2 configuration wherein the H2 molecule lies in parallel 

orientation to the surface atop the V atom.  Also, deserving of mentioning is the O2 molecule.  

The relaxed configurations clearly show that the molecule attaches itself to V atom as V-O 

defect complex, and not as V-O2 complex, if the initial configuration is such that the O2 

molecule sits atop the nearest-neighbour silicene atom, that is SiO2-V, as illustrated in figure 

7.2 (a).  However, if the initial configuration is such that the O2 molecule is located atop the 

V atom, that is Si-VO2, the O2 attaches itself to the V atom as a molecule in a vertical 

orientation as shown in figure 7.1 (b).   

We have also calculated the formation energy (𝐸𝑓) of the defect complex as: 

𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 = 𝐸𝑆𝑖−𝑉−𝑎𝑑 + 𝜇𝑆𝑖 − [𝐸𝑆𝑖 + 𝜇𝑉 + 𝜇𝑎𝑑]        (7.1) 

where 𝐸𝑆𝑖−𝑉−𝑎𝑑 is the total energy of a defect complex made up of vanadium atom and 

adsorbate (ad) (ad = O, O2, H or H2) in  the silicene layer, while 𝐸𝑆𝑖 is the total energy of 

pristine or adsorbate-free silicene layer.  Also, 𝜇𝑆𝑖, 𝜇𝑉 and 𝜇𝑎𝑑, respectively, are the 

chemical potentials for the silicon atom (of silicene), vanadium atom and the adsorbate (O, 

O2, H or H2).  The formation energy gives an indication of ease of formation of a particular 

defect structure it has been computed for.  Based on the convention adopted for the equation 

above, the more negative its value, the more readily a particular defect is able to be formed 

when it is compared to other defect configurations.   

 

Table 7.2 show the computed 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 for all the defect configurations as described in table 

7.1 and shown in figures 7.1–7.8.  The table contains the formation energy obtained with 

and without the spin-polarization.  It is clear from the table that when the spin-polarized and 

spin-unpolarized 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 of the same structure are compared, the latter is more negative 

or less probable than the former.  This suggest that, of all the configurations of V-substituted 

silicene with adsorbate, that is S𝑖 − 𝑉 − 𝑎𝑑, the spin-polarized structures are the most likely 

to be found in silicene.  Therefore, we focus on the spin-polarized Si –V– ad defect 

complexes.  Here, the configuration SiO2-V, that is, where the O2 attaches directly to the 

silicon atom (Figure 7.2 (a)), has the least formation energy of -0.64 eV.  However, this is 

similar to the 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 = -0.66 eV obtained for the Si-VH, that is, the configuration where 
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the H atom attaches directly to the V atom (Figure 7.7 (a)).  It should be noted however, that 

the 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 for Si-VH2 is +0.96 eV, which makes it unstable or its formation highly 

unlikely.  Similarly, the configuration Si-VO2, where the O2 molecule binds directly to the 

V atom (Figure 7.1 (a)),  has 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 =  −0.72 eV which also is similar formation energy 

compared to Si-VH and SO2-V.  Worthy of comparison is the 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 = -5.48 eV for Si-

VO, that is, atomic O attached to the V atom (Figure 7.4 (a)).  It appears therefore that 

molecular O, that is O2, are more easily formed in V-substituted silicene layer.  In the case 

of hydrogen atom however, 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑  = -1.15 eV  and +1.03 eV for SiH-V and SiH2-V, 

respectively.  When this is compared with the 𝐸𝑓
𝑆𝑖−𝑉−𝑎𝑑 for Si-VH (-0.66 eV) and Si-VH2 

(+0.96 eV), it means H atom is more easily formed in V-substituted silicene layer. 

 
Table 7.2: Calculated parameters of spin and non-spin polarised vanadium-doped silicene with adsorbed 

adsorbate (ad) of O2, O, H2, or H: adsorption energy, Eads; formation energy, Ef; the shortest bond length 

between the adatom and the silicene atom, dad-Si; the shortest bond length between the adatom and the vanadium 

atom, dad-V; and total magnetic moment per unit cell, μm. 

   spin (sp)                      non-spin (nsp)  
                __________________________________________      ___________________________________ 

  Eads (eV)    Ef (eV)    dad-Si (Å)    dad-V (Å)     μm (μB)       Eads (eV)     Ef (eV)     dad-Si (Å)      dad-V (Å)                

_______________________________________________________________________________________ 

Si-VO2    -2.09          -0.72       3.37            1.69            -0.02      -3.80          -3.84         3.37    1.69 

SiO2-V  -2.00          -0.64       2.99            1.73  0.82      -9.32          -9.36         1.67    1.60 

SiO-V  -7.18          -5.82       1.74            1.77            -1.07      -9.07          -9.11         1.74             1.77 

Si-VO  -6.85          -5.48       3.34            1.59   0.64      -8.97          -9.00         3.34             1.59 

Si-VH2  -0.41           0.96       2.62            1.91              0.00      -0.59          -0.63         2.49    1.80 

SiH2-V  -0.33           1.03       2.60            1.92   1.36      -0.55          -0.59         2.49    1.82 

Si-VH  -2.02          -0.66       3.47            1.67             0.00      -3.62          -3.65         3.47        1.67 

SiH-V  -2.52          -1.15       1.66            1.81   2.03      -3.80          -3.84         1.73             1.74 

 

The adsorption energy of an adsorbate, that is O; O2; H or H2, to the silicene containing 

substitutional V is calculated using the formula: 

                    𝐸𝑎𝑑𝑠
𝑆𝑖−𝑉−𝑎𝑑 = 𝐸𝑠𝑖−𝑉−𝑎𝑑 − [𝐸𝑆𝑖−𝑉 + 𝐸𝑎𝑑]         (7.2) 

where 𝐸𝑠𝑖−𝑉−𝑎𝑑 is the total energy of a defect complex made up of vanadium atom and 

adsorbate (ad) (ad = O, O2, H or H2) in  the silicene layer.  Also, 𝐸𝑆𝑖−𝑉 is the final relaxed 

energy of silicene containing substitutional V atom, while 𝐸𝑎𝑑 is the energy of isolated 

adsorbate, that is, O; O2; H or H2.  A negative 𝐸𝑎𝑑𝑠 indicate that the defect complex 

consisting of an adsorbate on V-substituted silicene (Si-V) is more stable than the individual 

defect components making up the defect complex, that is, V-substituted silicene and the 
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adsorbate.  Also, the more negative the 𝐸𝑎𝑑𝑠, the more stable it is relative to similar defect 

complexes.  Furthermore, Table 7.2 reveals that the adsorption energy of non-spin polarized 

systems of Si-V-ad (ad = adsorbate of O, O2, H or H2) is more negative (higher stability) 

than the spin-polarized counterparts.  This observation may be explained as due to the fact 

the adsorbate interact with the V orbitals states (that is, the source of induced magnetization 

in V-doped silicene) in such a way that the unpaired V orbital electrons are paired with 

adsorbate electrons.  The pairing with electrons, of previously unpaired V orbitals leads to 

zero magnetization, that is, stable non-spin polarized system.  

 

The adsorption energy for the relaxed SiO2-V and Si-VO2 of -2.00 eV and -2.09 eV, 

respectively, shows that both final configurations of O2 molecule on V-doped silicene are 

feasible.  However, a single O atom attaches itself to the V atom with a much greater energy 

of adsorption of ~-7.0 eV as shown in Table 7.2.  Therefore, the O atom adsorbs more 

strongly to the V atom when the latter is in substitutional position, while the O2 molecule is 

less adsorbed as aforementioned.  Similar conclusion can be reached for the H atom.  Here, 

the H atom adsorbs to the V atom with Eads of ~-2.02 eV and -2.52 eV, which is order of 

magnitude higher than ~0.3–0.4 eV for the H2 molecule on V-doped silicene. 

 

Table 7.3: Calculated parameters of spin-polarised silicene monolayer without vanadium atom but containing 

adsorbate of O, O2, H or H2; adsorption energy, Eads and induced magnetic moment per unit cell, μm. The 

adsorbates pSi-X (X = Si-O, Si-O2, Si-H and Si-H2) are X molecules on a pristine silicene monolayer. These 

are different from SiO-V, SiO2-V, SiH-V and SiH2-V in Table 7.2 which are molecules adsorbed on V-doped 

silicene layer. 

              Configuration         Eads (eV)   μm/cell (μB) 

 pSi-O         -6.03   0.00 

 pSi-O2              -0.37   1.64 

 pSi-H         -2.05   0.62 

 pSi-H2              -0.00   0.00 

 

It is important to compare the adsorption of the O, O2, H or H2 adsorbates with and without 

the presence of substitutional vanadium.  In Table 7.3, we show the adsorption energies of 

spin-polarised silicene monolayers without substitutional vanadium atom but with O, O2, H 

or H2 adsorbate.  We have denoted these configurations without V atom as pSi-O, pSi-O2, 

pSi-H, and pSi-H2, where the ‘pSi-O’ for example indicates pristine (p) silicene (Si) with 

adsorbed O atop the Si atom.  The same notation meaning applies to the other three 

configurations.  A comparison of the energy of adsorption of the aforementioned four 

pristine structures with similar structures but with substitutional V, reveals that the presence 

of V atom enhances the adsorption of the O, O2, H or H2 adsorbates.  As an illustration, the 
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Eads of the pSi-O, of ~-6.0 eV is less than that of SiO-V and Si-VO, which has Eads = ~-7.2 

eV and ~-6.9 eV (table 7.2), respectively.  It should be remembered that in the structure SiO-

V, the O atom is attached to the silicene atom next to the V substitutional atom (figure 7.3 

(a)), whereas in the case of Si-VO, the O atom is directly attached to the substitutional V 

atom (figure 7.4 (a)).  Similar enhancement of adsorption due to the presence of V atom is 

observed for the pSi-O2 configuration.  In this case, its Eads of -0.37 eV is significantly less 

than that of ~-2.0 eV obtained for Si-VO2 and SiO2-V (table 7.2).  The same trend continues 

with pSi-H2 configuration, the adsorption energy of which should be compared with that of 

Si-VH2 and SiH2-V.  In the same vein, the Eads of pSi-H should be compared to those of Si-

VH and SiH-V, which also show that the presence of V atom enhances the adsorption of the 

H atom.  To summarize, we can say that substitutional V atom enhances the adsorption of 

O, O2, H or H2 adsorbates on silicene, as demonstrated when tables 7.2 and 7.3 are compared 

for the aforementioned structures.  The enhanced H adsorption properties of V-doped 

silicene could be significant in possible application of the material as hydrogen storage 

medium.  

 

7.2 Magnetic and electronic properties 

Here, we consider the effect of adsorbates O, O2, H and H2 on the electronic properties and 

magnetization in vanadium-doped silicene layer.  We focus on the relaxed structures shown 

in figures 7.1 (b) to 7.8 (b).  The values of magnetic moments for the spin-polarized systems 

are also given in table 7.2.  We recall that both O and H atoms as well as their molecular 

forms, that is O2 and H2 respectively, are adsorbed on silicene via the V atom or on the 

nearest-neighbour (NN) silicene atom to V atom.  We consider firstly the O and O2.  The 

effect of their adsorption on silicene is such that when the O2 molecule is adsorbed on the V 

atom, it annihilates the magnetization in the V-doped silicene.  It would be recalled that the 

magnetization on the latter is ~2.61 μB.  However, if the O2 is adsorbed on the nearest-

neighbour silicene atom to the substitutional V atom, the magnetization in the system is 

retained at 0.82 μB.  

 

The behaviour of O atom is different in the sense that whether it is located on the V atom or 

on the NN silicene atom, it retains the magnetization in the V-doped silicene system, 

although to a smaller value of 0.64 μB in the case of O atom adsorbed directly on the V atom 

(figure 7.4 (a)).  In the case of H and H2 adsorption, we learnt from table 7.2 that both species 
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when adsorbed on V atom results in zero magnetization.  On the contrary, their adsorption 

on the NN silicene atom to V atom retains the magnetization in V-doped silicene.  In actual 

fact, in the case of H adsorption, that is, SiH-V (figure 7.8(a)), the magnetization of 2.03 μB 

obtained for this system approaches ~2.61 μB for the H-free V-doped silicene layer.  

 

To summarize, H2 and O2 molecules when adsorbed on V atom in V-doped silicene 

annihilates the latter’s magnetization.  On the other hand, when they are adsorbed on the NN 

silicene atom to the V atom, they retain the magnetization in the V-doped silicene layer.  

Also, when the adsorbates of H2, H, O2 and O are adsorbed on the NN silicene atom, the 

magnetization in the V-doped silicene is retained as can be seen for SiH2-V, SiH-V, SiO2-V, 

and SiO-V configurations.  It should be emphasized, however, that the Si-VH2 has a positive 

formation energy of 0.96 eV, which makes its formation highly unlikely in V-doped silicene. 

 

Here, we outline the electrical properties of V-doped silicene layer containing the adsorbates 

of O, O2, H and H2.  Also, we compare the aforementioned with the V-doped system without 

the adsorbate.  We recall that the V-doped silicene containing O2 and O are named Si-VO2, 

SiO2-V, Si-VO and SiO-V, while the V-doped silicene containing H2 and H are named Si-

VH2, SiH2-V, Si-VH, SiH-V, as stated in Table 7.1.  Figure 7.9 shows the band structure of 

vanadium-doped silicene layer. 

 

 

 

 

 

 

 

 

                    

Figure 7.9: Band structure of substitutional vanadium in silicene.  The red dot line is the band for pristine 

silicene, while the purple line represents the bands for substitutional vanadium in silicene.  The Fermi level is 

set at zero as shown by the black dashed line. 
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Figure 7.10: Band structures of V-doped silicene with O2 adsorbates (a) Si-VO2 and (b) SiO2-V.  The red dot 

line is the band for pristine silicene, while the purple line represents the bands for Si-VO2 and SiO2-V, 

respectively.  The Fermi level is set at zero as shown by the black dashed line. 

 

        

Figure 7.11: Band structures of V-doped silicene with O adsorbates (c) SiO-V and (d) Si-VO.  The red dot line 

is the band for pristine silicene, while the purple line represents the bands for SiO-V and Si-VO, respectively. 

The Fermi level is set at zero as shown by the black dashed line.  
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Figure 7.12: Band structures of V-doped silicene with H2 adsorbates (a) Si-VH2 and (b) SiH2-V. The red dot 

line is the band for pristine silicene, while the purple line represents the bands for Si-VH2 and SiH2-V, 

respectively.  The Fermi level is set at zero as shown by the black dashed line.   

 

         

Figure 7.13: Band structures of V-doped silicene with H adsorbates (c) SiH-V and (d) Si-VH.  The red dot line 

is the band for pristine silicene, while the purple line represents the bands for SiH-V and Si-VH, respectively.  

The Fermi level is set at zero as shown by the black dashed line. 

 

Figures 7.10–7.11 and 7.12–7.13 shows the band structures of V-doped monolayer silicene 

with dopants of O2 and O as well as H2 and H, respectively.  As explained in table 7.1, the 

relevant structures have been denoted as Si-VO2, SiO2-V, SiO-V, and Si-VO, the band 

structures of which are shown in figures 7.10–7.11, and Si-VH2, SiH2-V, SiH-V and Si-VH 

(figures 7.12–7.13).  If figure 7.9 for adsorbate-free V-doped silicene is compared with V-

doped silicene with hydrogen and oxygen adsorbates, one notices the lifting of degeneracy 

of the bands at the Γ-point and this applies to all the adsorbate-doped systems.  Another 

observation is the complete annihilation of the Dirac point K in all the adsorbate systems.  

The lifting of bands degeneracy results in the creation of a band gap in the systems SiO-V 

(figure 7.11(c)), SiH-V (figure 7.13(c)) and Si-VH (figure 7.13(d)), which turn these systems 
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into a non-metallic material, whereas for the other systems such as Si-VO2 (figure 7.10(a)), 

Si-VH2 (figure 7.12(a)), SiH2-V (figure 7.12(b)) and Si-VO (figure 7.11(d)), the crossing of 

the Fermi level by the bands results in these systems to retain metallicity.  In the case of 

SiO2-V (figure 7.10(b)), one of the split bands slightly touches the Fermi level, thus making 

it a metallic material.  Where the band gap appears due to the V and adsorbate inclusion, its 

creation is due to the splitting of the p bands, in particular around the Dirac point.  The 

identical p bands crossing the Fermi energy level results in metallic silicene.  We can thus 

summarize as follows:  Substitutional vanadium atom inclusion in monolayer silicene makes 

it metallic with a finite magnetization. However, the adsorption of environmental gases such 

as H2, H, O2, and O may make the material non-metallic.  

 

             Table 7.4:  Summary of the magnetization and material type for V-doped silicene containing  

              hydrogen and oxygen gases. 

Serial Samples  Magnetization (μB) Final conductivity of the 

material 

 

1 SiH2-V  1.36 metallic  

2 Si-VH  0.00 non-

metallic/semiconducting  

 

3 SiH-V  2.03 non-

metallic/semiconducting  

 

4 Si-VH2  0.00 metallic  

5 SiO2-V  0.82 metallic  

6 SiO-V -1.07 non-

metallic/semiconducting 

 

7 Si-VO  0.64 metallic  

8 Si-VO2 -0.02 metallic  

     

1 V-doped 

silicene  

 1.00 metallic  

2 Pristine 

monolayer  

silicene  

 0.00 non-

metallic/semiconducting 

 

 

In table 7.4, we seek to combine two important properties of modified silicene samples:  

Magnetization and band gap.  The green dot structures, that is, SiH-V and SiO-V, have near 

finite magnetization and semiconducting property.  Thus, they may be likened to 

ferromagnetic semiconductors.  It should be noted that in both cases, the H and O atoms are 

on the nearest-neighbour silicene atom next to substitutional vanadium atom.  However, 

molecular H and O on silicene atom nearest to the V atom, that is SiH2-V and SiO2-V, does 

not result in ferromagnetic semiconductor.  They are metallic instead, with finite 
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magnetization.  Other metallic structures with finite magnetization are as indicated in table 

7.4. 
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CHAPTER 8 

 

Conclusion and Recommendation 

 

8.1 Summary and conclusions  

Our model systems consist of vanadium atoms embedded in a monolayer silicene, where the 

latter may or may not contain a pre-existing structural defects such as self-vacancies.  The 

structures are then relaxed to obtain the ground-state or minimum energy configurations.  

We have considered intrinsic defects such as a single and double vacancies and defect 

complexes consisting of vacancies complexes, vacancy-vanadium complexes, vanadium 

clusters, in a monolayer silicene.  We also considered the interactions of these defects with 

hydrogen and oxygen atoms.  To determine the stability of the defect structures, we 

calculated the formation energy and the binding energy.  To acquire knowledge about the 

electronic interactions underpinning a stable defect configuration, we calculated the 

electronic structures such as the band structure and the projected DOS (PDOS).  We also 

obtained the magnetic properties of the defects such as the spin moments and the exchange 

energy.  The major results of the thesis are summarized in the following. 

 

We obtained a vacancy formation energy of 3.52 eV for silicene, which is consistent with 

values of between 2.47 eV and 4.30 eV as obtained in other theoretical studies.  We have 

found no experimental value in literature for the vacancy formation energy in silicene.  In 

our convention, the positive value of formation energy means that vacancy is not easily 

produced in silicene and may need external perturbation such as electron bombardment to 

be produced.  Also, the total magnetic moment obtained for silicene with a single vacancy 

is 2.02 μB per unit cell, which is comparable to 2.33 μB obtained in other studies.  Thus, 

silicene vacancy induces magnetization in its structure, thus making it a low-dimensional 

magnetic material.  Also, from the band structure, we found that the introduction of a single 

vacancy on silicene sheet annihilates the Dirac point, thus rendering this material system to 

acquire semiconductor characteristics.  Regarding a double vacancy or divacancy which in 

this case means empty lattice sites created by missing two nearest-neighbour silicene atoms, 

we obtained a formation energy of 2.13 eV which is surprisingly similar to that of a single 

vacancy.  In addition, we calculated the binding energy of this double vacancy as -2.79 eV.  
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A negative value in our convention means that the defect complex is more stable relative to 

the individual defects forming the complex.  Thus, this negative value suggests that a 

missing two nearest-neighbour silicene atoms, that is, divacancy, is more stable than a single 

vacancy.  Furthermore, the total magnetic moment obtained for a double vacancy silicene is 

0.00 μB per unit cell which makes it non-magnetic.  Similar to the case of a single vacancy, 

a double vacancy annihilates the silicene’s Dirac point.  It should be mentioned that two 

vacancies at different separation, that is, double vacancies in the silicene lattice have a 

similar formation energy irrespective of their separation. 

 

A single vanadium atom occupying a substitutional or interstitial site in silicene is the 

simplest external impurity defect.  We found the vanadium atom to bind to silicene 

substitutional site with a large binding energy of -6.08 eV and a formation energy of 1.37 

eV.  The positive value of formation energy suggest that the inclusion of vanadium is an 

endothermic process requiring external energy.  Also, when inserted in the silicene atomic 

site, it induces a total magnetic moment of 2.61 μB per unit cell. The spin moment on the 

vanadium atom however is 1.30 μB.  Since the experimental protocol of vanadium injection 

into silicene lattice involves energetic process which is able to create vacancy defects, it is 

intuitive to consider defects complexes consisting of substitutional vanadium and vacancy.  

Therefore, we studied a simple vacancy-vanadium defect complex.  The vacancy-vanadium 

configuration is such that a vanadium atom is placed at a varying atom distance from a single 

vacancy.  A total of eight interactions were investigated.  We find a very strong binding 

when vanadium has a vacancy as its nearest-neighbour (NN).  This defect configuration is 

equivalent to a vanadium atom in a divacancy.  The configuration has a binding energy of ~ 

-2.8 eV.  This is to be compared with the binding energy of ~-6.1eV obtained for a single 

substitutional vanadium, suggesting that vanadium atom is more stable in single vacancy.  

This may be due to more or stronger bonding between the three NN Si atoms and vanadium 

atom in the case of vanadium in a single substitutional site in silicene.  Furthermore, the 

binding of vanadium decreases rapidly when the vacancy is more than one atomic distance 

away from it, that is, the binding decreases to between ~-0.5 eV and -0.1 eV for all vacancy-

vanadium separations.  Most importantly, at all of the vacancy-vanadium separations, the 

corresponding configurations are stable which indicates that vacancy-substitutional 

vanadium complexes are stable in silicene.  Focusing on the most stable vanadium in a 

divacancy, the total magnetic moment per unit cell of 2.69 μB is similar to that of a single 

substitutional vanadium, that is 2.61 μB.  However, the induced magnetism on the vanadium 
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is enhanced to 2.32 μB, which is about 1.0 μB larger than magnetic moment of a single 

substitutional vanadium.  

 

We also considered vanadium defect complexes consisting of vanadium atoms only and 

vacancy-vanadium combinations such that the vanadium atoms are either at the 

substitutional or interstitial hole sites.  The main idea is to investigate the possibility of 

clustering of vanadium atoms as inclusions in silicene, and whether vacancy defect enhances 

the clustering.  In general, we have investigated three different types of vanadium dimer 

while exploiting the symmetric points of the silicene lattice.  In the first case involving 

vanadium pairs at varying separation along the zig-zag path in the silicene lattice, we have 

found that when the V-V dimer are on a similar sublattice type, they prefer to couple together 

antiferromagnetically.  However, when they are on a different sublattice type, the V-V pair 

prefer to be in ferromagnetic configuration.  Therefore, the relative stability of the V-V pair 

is sublattice dependent which oscillates between FM and AFM configuration as the 

substitutional lattice sites of the V-V pair changes.  Also, where the V-V pair are at the 

nearest-neighbour substitutional sites, they have the highest binding energy of -6.43 eV, 

which is the highest stability obtained for all the pair considered, whereas all the other V-V 

pairs have a binding energy that is ≤ ~±0.1 eV.  The binding energy of -6.43 eV is higher 

than -2.80 eV obtained for the nearest-neighbour vacancy-vanadium defect complex.  This 

may suggest that vanadium clustering is more probable without the vacancy than with 

vacancy.  Furthermore, the magnetic moments for the FM configurations vary between ~3 

μB and 4 μB as the separation of the V-V pair increases. 

 

Aside from the substitutional V-V pair, we also considered interstitial hole V-V pair wherein 

the vanadium atoms are coupled in FM or AFM configurations, and are located at the centre 

of silicene hexagons while their separating distances vary.  We determined that the 

interstitial hole V-V pair are most strongly binded when both are nearest-neighbours with a 

Eb = ~-0.5 eV.  When the V atoms were separated farther apart, the Eb reduced drastically, 

to less than 0.01 eV.  Therefore, similar to the case of substitutional V-V pair and vacancy-

vanadium pair, the nearest-neighbour V-V defect pairs are most stable.  We have also 

considered various interstitial V-V pairs wherein we exploited high-symmetry points in 

silicene structure.  We have found that interstitial V-V pairs are stable in cases with 

significantly high binding energy of about -3.0 eV, which is still less than -6.43 eV.  Based 

on the aforementioned, we are able to make the following deductions: Firstly, V-V pair at 



100 
 

the nearest substitutional sites has the highest binding energy compared to V-V pair at any 

other sites in silicene lattice.  Secondly, in general, V-V atom pair are stable when at the 

nearest-neighbour sites and the stability decrease as their separation decreases.  This 

suggests that V atom clustering is feasible in a silicene monolayer.  Thirdly, V atoms induces 

finite magnetic moment in the silicene lattice although their presence annihilates the Dirac 

point while opening a small band gap, often less than 0.1 eV in the silicene electronic band 

structures.  

 

Since hydrogen and oxygen are ubiquitous atoms which are often introduced during the 

synthesis protocol, we have also considered their impacts on the properties of vanadium in 

silicene monolayer.  We found that the V atom attracts the O and H either in atomic or 

molecular form.  The adsorption may be to the V atom or to the nearest-neighbour silicene 

atom to the V atom inclusion.  However, when adsorbed they impact on the magnetization 

of V-doped silicene.  As an example, when the O2 molecule is adsorbed on the V atom in a 

substitutional V-doped silicene, the magnetic moment per unit cell is annihilated compared 

to the oxygen-free V-doped silicene, which has a total magnetic moment of ~2.61 μB.  In a 

case where the O2 molecule is adsorbed on the nearest-neighbour silicene atom to the 

substitutional V atom, the magnetization in the system reduces to 0.82 μB.  Thus, we may 

conclude that the presence of molecular H2 and O2 reduces or annihilates the magnetization 

in an otherwise magnetic V-doped monolayer silicene.  Furthermore, it is observed that for 

a V-doped silicene wherein the adsorbed atomic H and O atoms is located on the nearest-

neighbour silicene atom to substitutional V atom, the H- and O-containing V-doped silicene 

behaves like a ferromagnetic semiconductor.  On the other hand, molecular H2 and O2 on 

the silicene atom nearest to the V atom, do not result in a ferromagnetic semiconductor, 

however, the resulting structures are metallic with finite magnetizations.  Thus, one may 

conclude that the impact of H and O on the electronic and magnetic properties of V-doped 

silicene depends on their respective lattice locations, that is, whether on the V atom or on 

the silicene atom near to the V dopant.  However, a comprehensive calculation of 

substitutional V and molecular H2 and O2 or atomic O and H which exploit the bipartite 

lattice structure of silicene would be needed to affirm this conclusion.  
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8.2 Recommendations for future work 

Silicene’s bipartite structure makes it an excellent atomic lattice where site-dependent 

interactions between point defects could be studied.  This may open the possibilities for 

future research work involving multiple vacancies on silicene of different arrangement and 

their interactions with external impurities atoms, including metals and non-metals.  We have 

shown in this work that such defects may induce magnetic properties in a hitherto non-

magnetic silicene.  But various defect configurations are also possible, which may involve 

interactions between silicene’s intrinsic defects and dopant atoms.  It is suggested that a 

more detailed defect configurations involving three-dimensional dopant atoms anchoring on 

silicene sheet and their interactions with environmental atoms such as hydrogen and oxygen, 

will serve to reveal a more interesting electronic and magnetic properties of silicene.  Also, 

our work only focuses on a monolayer silicene whereas multilayer silicene, that is, 2 or 3 

layers are also possibilities- the stability, structure, electronic and magnetic properties of 

which can be investigated in future studies.  In general, monolayer and multilayer silicene 

can be further studied to explore the interactions of substitutional and interstitial atoms of 

various geometries. Finally, a further extension of the present study may involve charged 

defect configurations. 
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