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Abstract 

Background  The aim of this paper was to evaluate the distribution of HIV and TB in Ethiopia during four years (2015-
2018) at the district level, considering both spatial and temporal patterns.

Methods  Consolidated data on the count of TB case notifications and the number of patients with HIV for four 
years, 2015-2018, were provided by the Ethiopian Federal Ministry of Health. The data was analyzed using the Bayes-
ian hierarchical approach, employing joint spatiotemporal modelling. The integrated nested Laplace approximation 
available in the R-INLA package was used to fit six models, each with different priors, for the precision parameters 
of the random effects variances. The best-fitting model with the best predictive capacity was selected using the Devi-
ance Information Criterion and the negative sum of cross-validatory predictive log-likelihood.

Results  According to the findings of the selected model, about 53% of the variability in TB and HIV incidences 
in the study period was explained by the shared temporal component, disease-specific spatial effect of HIV, 
and space-time interaction effect. The shared temporal trend and disease-specific temporal trend of HIV risk showed 
a slight upward trend between 2015 and 2017, followed by a slight decrease in 2018. However, the disease-specific 
temporal trend of TB risk had almost constant trend with minimal variation over the study period. The distribution 
of the shared relative risks was similar to the distribution of disease-specific TB relative risk, whereas that of HIV had 
more districts as high-risk areas.

Conclusions  The study showed the spatial similarity in the distribution of HIV and TB case notifications in specific 
districts within various provinces. Moreover, the shared relative risks exhibit a temporal pattern and spatial distribution 
that closely resemble those of the relative risks specific to HIV illness. The existence of districts with shared relative risks 
implies the need for collaborative surveillance of HIV and TB, as well as integrated interventions to control the two 
diseases jointly.
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Background
Human immunodeficiency virus (HIV) and tuberculosis 
(TB) are epidemiologically associated  [1]. The observed 
co-dynamics indicate a direct relationship between the 
two diseases, both at the population level [2] and within 
the host  [3]. Despite being a disease that may be pre-
vented and treated, TB remains the primary cause of 
mortality for individuals living with HIV  [4]. The HIV 
pandemic has significantly influenced the rates of TB 
incidence as well  [5]. It is predicted that people living 
with HIV (PLHIV) have a twentyfold increased likeli-
hood of getting active TB in comparison to those who do 
not have HIV [6].

According to a study conducted in Ethiopia, there is 
a significant relationship between the occurrence of TB 
and the level of HIV infection  [7]. Following the WHO 
recommendation, the Ethiopian government has imple-
mented various strategies, for example expansion of the 
integrated service for TB and HIV to the health care 
facilities, to manage TB and HIV [8]. Despite the imple-
mented interventions, Ethiopia continues to be one of 
the 30 countries identified in the 2021 WHO Global TB 
Report as having a high prevalence of TB and HIV from 
2015 to 2020 [9].

TB and HIV are generally related diseases; therefore, 
their geographical patterns should hypothetically show 
standard features. Association between these patterns 
may serve as a second source of dependence to improve 
risk estimates of these diseases  [10]. The spatiotempo-
ral analysis enables us to investigate the continuation of 
a disease pattern throughout time simultaneously and 
can also help in identifying atypical disease patterns. The 
continuation could point to some potential factors that 
could impact prevalence of the disease, such as environ-
mental factors, which assist in the interpretation of spa-
tial patterns. Within the same spatiotemporal analysis, it 
is also possible to include space-time interaction terms 
to investigate the presence of localized clusters that may 
link to some environmental factors, strengthening the 
statistical inferences [11].

When conducting joint disease mapping research, each 
spatial unit is associated with at least two outcomes, 
such as the incidence of two diseases instead of only 
one. Since joint models use other additional response 
variables as an additional information source, this could 
improve risk estimates. Suppose there is a dependence 
between the two diseases. In that case, their dependence 
leads to sharing information between the two outcomes 
in the modeling process, which could improve risk esti-
mates  [10]. Various researchers in the disease mapping 
field have focused on applying the Bayesian joint spatial 
and spatiotemporal modeling of multiple diseases, see, 
e.g., [11–17]. Multiple studies conducted in Ethiopia have 

examined, separately at various levels, the spatial cluster-
ing and temporal trend of HIV and TB [18–23]. However, 
study to assess the joint spatiotemporal pattern of HIV 
and TB incidences and to identify locations with high-
risk somewhat lacking in the country. This paper aimed 
to assess the distribution of HIV and TB relative risk in 
Ethiopia during four years (2015–2018) at the district 
level, considering both spatial and temporal patterns. The 
modeling framework in the statistical analysis was for-
mulated via the Bayesian hierarchical modeling approach. 
The Bayesian hierarchical joint spatiotemporal modeling 
(BHJSTM) of two related diseases helps to strengthen 
inference as the modeling allows the borrowing of infor-
mation between diseases. The BHJSTM utilises the com-
bined power of data from several districts and years to 
generate smoothed estimates at the district level for each 
year. It also enables the investigation of geographical and 
temporal heterogeneity. In addition, it helps quantify the 
anticipated heterogeneity linked to potential risk factors 
and extract distinct patterns associated with each disease 
under investigation from the residual variations [11].

Methods
Study area
Ethiopia is situated in Africa’s northeastern region. The 
country’s administrative divisions, before 2021, were 
two city administrations, Addis Ababa and Dire Dawa; 
and nine regional states, including Tigray, Afar, Amhara, 
Oromia, Somali, Benishangul-Gumuz, Southern 
Nations, Nationalities, and Peoples’ (SNNP), Gambella, 
and Harari. Each regional state has additional divisions 
known as zones, which are further divided into districts 
(also known as “woreda") and districts into Kebeles. 
Figure  11 shows the spatial plot of Ethiopia’s zones and 
regions. The regional states are responsible for provid-
ing public services because of the transfer of authority to 
regional governments. The districts oversee service plan-
ning and execution, while the regional health bureaus 
oversee public health administration.

Source of study data
The dataset utilised in this study included the count of 
individuals diagnosed with HIV who registered at HIV 
health care facilities and the number of district-level 
TB case notifications of individuals who registered in 
Directly Observed Therapy, Short Course (DOTS). The 

1  This map was taken from the web site https://​en.m.​wikip​edia.​org/​wiki/​
File:​Map_​of_​zones_​of_​Ethio​pia.​svg. Note that the new regions South West 
Ethiopia Peoples’ Region, South Ethiopia Regional State, Central Ethiopia 
Regional State, and Sidama region are part of the Southern Nations, Nation-
alities, and Peoples’(SNNP).

https://en.m.wikipedia.org/wiki/File:Map_of_zones_of_Ethiopia.svg
https://en.m.wikipedia.org/wiki/File:Map_of_zones_of_Ethiopia.svg
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District Health Office reports the dataset quarterly or 
yearly to the Federal Ministry of Health (FMoH) via the 
Health Management Information System (HMIS)  [24, 
25]. The study dataset, therefore, were obtained from 
FMoH. In addition to this dataset, the FMoH also pro-
vided shape files for district mapping, which were created 
by Ethiopia’s Central Statistics Agency (CSA).

Bayesian hierarchical joint spatiotemporal modelling 
for TB and HIV
In this paper, we assessed the spatiotemporal variation 
of HIV and TB risks by jointly analysing data of the two 
diseases obtained from HMIS. We applied a Bayesian 
hierarchical model approach. The Bayesian hierarchical 
model estimates the posterior distributions of the param-
eters in the model by applying a hierarchical order using 

the Bayes method. In order to estimate the posterior dis-
tribution, the observed data via the likelihood function is 
joined with the prior distributions of model parameters 
by the Bayes theorem. The Bayesian hierarchical joint 
spatiotemporal modeling allows the splitting of risks of 
diseases into two spatiotemporal components: shared 
and disease-specific.

Let ydit be the d disease cases notifications for dis-
trict i in year t, i, i = 1, . . . ,M , t = 1, . . . ,T  , and d = 1 
and d = 2 represent HIV and TB diseases, respectively. 
We assume that each observed case notification ydit fol-
lows the Poisson distribution with mean µdit , and the 
mean is calculated as µdit = Edit × θdit , where θdit is 
the unknown relative risk of d disease and Edit is the 
expected number of d disease case notifications. There-
fore, ydit |Edit , θdit ∼ Poisson(µdit) . The expected case 

Fig. 1  Geographical maps showing Ethiopia’s various zones and provinces. The abbreviations E, N, S, W, C, and Sp respectively represent east, north, 
south, west, northwest, and special
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notifications Edit represents the number of case notifica-
tions for d disease that one would anticipate if district i’s 
population behaved like the general population.

Let Nd be the number of general population, then Nd 
defined as the average of the pooled district population esti-
mates for the study period, i.e., Nd =

∑M
i=1

∑T
t=1 ndit/T , 

where ndit is the estimated population of district i at time 
t is considered as the population at risk of d disease, with 
T = 4 for the current study. The crude rate for d disease was 
then calculated as θ̂dit = mdit/ndit , where mdit is the num-
ber of cases notifications of disease d in district i in year t. 
The expected cases notification Edit for d disease was esti-
mated for district i in year t as Edit = Nd × θ̂dit [26]. Then a 
joint spatiotemporal Poisson regression model for the rela-
tive risks θdit for the two diseases are defined in a logarith-
mic scale as

where αd is disease-specific intercepts, ωi and φt are 
shared spatial random effect, shared temporal random 
effect, νdi and γdt are disease-specific spatial and disease-
specific temporal random effects, and ψit is a common 
random interaction effect between space and time, δ is 
a spatial scaling parameter or weight and κ is a tempo-
ral scaling parameter or weight. The effects of the shared 
spatial random effect ωi and temporal random effect, 
φt , on the relative risks of HIV and TB are modulated 
via weights δ and κ , respectively [11, 27]. This weighting 
allows each disease to have its own risk gradients on ωi 
and φt . Unlike [16], the model in Expression (1) includes 
a random interaction effect between space and time. The 
disease-specific spatial and disease-specific temporal 
effects, νdi and γdt , in the above model allow for depar-
tures from any ωi and φt , that is, the diseases HIV and 
TB may have different spatial pattern or temporal trend. 
Whereas the common space-time interaction random 
effect, ψit provides additional flexibility towards identify-
ing varying patterns.

Computation and models comparison
Let νd = (νd1, . . . , νdN ) and γ d = (γd1, . . . , γdT ) are vec-
tors of disease-specific spatial random effects and dis-
ease-specific temporal random effects, respectively, and 
ωd = (ωd1, . . . ,ωdN ) and φd = (φd1, . . . ,φdT ) are vec-
tors of shared spatial random effects and shared temporal 
random effects.

The classical Bayesian inference approach uses the 
Markov Chain Monte Carlo (MCMC) technique  [28]. 
Since the MCMC technique requires a significant 
amount of time for analysis, the models in Expression 
(1) were fitted numerically by applying the integrated 

(1)
{

η1it = log(µ1it ) = α1 + ωiδ + φtκ + ν1i + γ1t + ψit ,

η2it = log(µ2it ) = α2 +
ωi
δ
+

φt
κ
+ ν2i + γ2t + ψit

nested Laplace approximation (INLA) method  [29]. In 
order to apply a Bayesian method, the stochastic com-
ponents of the model need prior distributions. We 
assumed spatially correlated prior distributions for the 
shared random effects and disease-specific random 
effects  [11]. Specifically, we modeled them using an 
intrinsic Conditional Autoregressive (iCAR) structure. 
Using an element of vector νd , νdi , iCAR defined as

where vector νd(−1) represents the set of disease-spe-
cific random effects excluding νdi for disease d, τνd is an 
unknown precision parameter, △i represents the neigh-
bours of the ith district according to the definition of a 
symmetric binary weights matrix W; Ni is the number of 
neighbouring districts of the ith district and its value also 
is equal to the sum of the ith row of the W matrix [30].

The iCAR model for elements of ωd can easily be 
written following the above definition. In matrix form 
these can also be defined as

Note that for shared and disease-specific temporal 
effects, we have used a temporal adjacency structure 
Q [31]. Assume there is yearly fluctuations in elements 
of γ d and φd . Then to reflect this in the priors, in this 
paper, we have employed a first order random walk 
(RW1) to model γ d and φd . This modelling also involves 
the use of a weighted matrix Q to define the temporal 
neighborhood. Or, using γdt ∈ γ d , RW1 is defined as

where γ d(−t) denotes all elements of γ d except the γdt . 
We used improper flat prior for disease-specific inter-
cepts αd , d = 1, 2 . As in [16], δ ∼ log − Normal(0, 1/5.9) 
and κ ∼ log − Normal(0, 1/5.9) . The space-time ran-
dom interaction effect, ψit was specified by a Gaussian 
exchangeable prior ψit ∼ Normal(0, 1/τ 2ψ) where τψ is 
precision parameter of ψit.

We have considered six priors or hyper-priors 
for the hyper-parameters of random effects vari-
ances σ = (σ 2

ω, σ
2
φ , σ

2
νd
, σ 2

γd
, σ 2

ψ) precision parameters 
τ = (τω, τφ , τνd , τγd , τψ) used in various literature. 
Most of these priors are defined using the inverse 
gamma (IG) distribution [32]. The six priors are 

	(i)	 IG(1, 0.01), a specification used in [33];
	(ii)	 IG(0.001, 0.001), the default prior in the BUGS 

software [34].

νdi|νd(−i), τνd ,W ∼ Normal
j∈△i

νdj

Ni
,
τνd

Ni
,

νd ∼ iCAR(W, τνd I) and ωd ∼ iCAR(W, τωd
I), d = 1, 2.

γdt |γ d(−t) ∼



















Normal(γd(t−1) , σ
2
γd
) for t = 1,

Normal

�

γd(t−1)+γd(t+1)

2
,
σ 2
γd

2

�

for t = 2, . . . ,T − 1,

Normal(γd(t−1) , σ
2
γd
) for t = T ;
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	(iii)	 IG(0.5, 0.0005), a specification used in [11];
	(iv)	 IG(0.01, 0.01), a specification used in [16]; and
	(v)	 Ŵ(1, 0.0005) , the default specification used in inla 

function of R-INLA package [29];
	(vi)	 A half-Cauchy distribution with scale parameter 

equal to 25, a specification proposed by [35].

We used sensitivity analysis to determine the most 
appropriate prior for the study data.

To avoid the identifiability problem in the estimation 
of intercept, in the computation, we enforced a condition 
that both the sum of the spatial random effects and the 
sum of temporal random effects equal to zero [11, 26]. 
The Bayesian hierarchical joint spatiotemporal analyses 
were conducted using the function inla() that is avail-
able in the R-INLA package [36].

The Deviance Information Criterion (DIC) and condi-
tional predictive ordinates (CPO) were utilised to com-
pare the fitted models. The DIC measures the goodness 
of fit of a model, and the model with the smallest DIC 
value is selected as the model that provides the best fit 
for the data [37]. Whereas the CPO, which is defined as 
the cross-validated marginal posterior predictive den-
sity  [38], assesses the predictive capacity of fitted mod-
els to the data, where a model with higher CPO value 
suggests that it has a better predictive performance 

than other models. However, generally, the CPO value 
of an observation is close to zero, which was the case 
in the current study; therefore, the negative sum of 
cross-validatory predictive log-likelihood  [39], i.e., 
LS(CPO) = −

∑M
i=1

∑T
t=1 logCPOit where CPOit is the 

CPO of the ith district at year t, was also used to compare 
the fitted models for their predictive capacity. Therefore, 
a model with the lowest LS(CPO) value has the best pre-
dictive performance compared to other models.

Ethical consideration
The University of South Africa’s School of Science Ethics 
Committee granted permission for the study (ERC Ref-
erence Number: 2021/CSET/SOS/045). Furthermore, the 
Ethiopian FMoH granted authorization to use their data 
in the current study. Since we utilised district-level data 
that have been aggregated, we did not get informed con-
sent from the participants.

Results
Exploratory analysis
Temporal patterns in the number of case notifications 
for the two diseases are displayed in Fig. 2. Overall, the 
TB case notifications in Ethiopia slightly decreased from 
94,999 in 2015 to 94,713 in 2016 but increased to 96,300 
in 2017 and then decreased to 53,675 in 2018. However, 

Fig. 2  Temporal patterns in number of HIV and TB case notifications
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the number of HIV case notifications registered in HIV 
health care facilities increased from 623,944 in 2015 to 
915,015 in 2016 to 1,041,331 in 2017 and decreased to 
719,655 in 2018.

Figure  3, district profile plots, display the temporal 
trends of case notifications for each disease in all dis-
tricts. Meanwhile, most districts have shown a constant 
increase or stability in the number of reported HIV case 
notifications during the research period. In addition, 
there is a non-linear pattern seen for other districts in the 
country, as shown in (see Fig. 3a). However, the number 
of TB case notifications for quite a large number of dis-
tricts had a nonlinear pattern (see Fig. 3b). These suggest 
varying trends in the number of notifications for HIV and 
TB by district. Therefore, variations in temporal trends 
among districts can be attributed to disparities in the 
underlying causal factors and may vary over time.

The correlations among the district raw standardized 
incidence rates (SIRs) for the two diseases in 2015, 2016, 
2017, and 2018 were 0.415, 0.465, 0.372, and 0.487, respec-
tively. All the correlations are statistically highly signifi-
cant at a 1% significance level. Since the two diseases are 
related, our proposal of joint spatiotemporal modeling of 
HIV and TB or an objective of this study was valid.

The mean annual raw HIV SIRs had inconsistency in 
the trend; it was 1.454, 1.281, 1.473, and 1.431 in 2015, 
2016, 2017, and 2018, respectively. However, the raw TB 
SIRs had a slightly increasing annual trend; it was 1.229, 
1.253, 1.300, and 1.337 in 2015, 2016, 2017, and 2018, 

respectively. To determine the districts with high risks 
of HIV and TB, we have produced a sequence of maps 
for raw (unsmoothed) standardized incidence ratio (com-
puted as Observed / Expected) for each disease, and 
these are displayed in Fig. 4 for HIV and in Fig. 5 for TB. 
Although, it was observed that the majority of the dis-
tricts identified as high-risk for HIV between 2015 and 
2018 were also classified as high-risk for TB, maps of HIV 
(Fig. 4) and TB (Fig. 5) displayed varying spatiotemporal 
patterns. Both diseases seem to have at least one district 
of high risk in each region and in each city administra-
tion, except Harari region, which had a district of high 
risk for HIV only in 2018. As seen in Figs.  4 and 5, the 
progression of the risk during the four years 2015–2018 
in TB was significantly faster than that of HIV.

Sensitivity analysis
The DIC and LS(CPO) values for each of the six pri-
ors of random effects variances precision parameters 
τ = (τω, τφ , τνd , τγd , τψ) used for models fitted to the 
HIV and TB case notifications data are displayed Table 1. 
Compared to the DIC values of the other models, the 
IG(0.01, 0.01), a specification used in [16], had the small-
est value, 47695.36. This model also had the lowest 
LS(CPO) value, 6.97637, and the second lowest LS(CPO), 
6.98102, is for the model with the default prior specifica-
tion used in the inla function of R-INLA package [29], 
Ŵ(1, 0.0005) . Although the difference between these 
LS(CPO) values is very small, 0.00465, the difference 

Fig. 3  Districts profile plots for number of HIV (panel a) and TB (panel b) notifications
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between their respective DIC values, 7.32, is greater than 
five, hence, it is a substantial difference  [37]. Therefore, 
the model with the IG(0.01, 0.01) prior provided the best 
fit for the data and had the best predictive performance. 
Thus, in the sections that follow, we only present findings 
from model in Expression (1) with IG(0.01, 0.01) prior.

The estimated posterior means and the credible inter-
vals (CI) of disease-specific intercepts, derived from the 
selected prior, are summarised in Table  2. Additionally, 
the precision parameters of shared and disease-specific 
spatial and temporal random effects, as well as the inter-
action random effect of space and time, are presented 
in Table  2. The table also contains the proportion (per-
cent) variation in the model explained by each random 
effect. The findings from the chosen model indicate that 
approximately 53% of the variation in HIV and TB inci-
dences during the study period can be accounted for by 
the combined influence of the shared temporal compo-
nent, the disease-specific spatial effect of HIV, and the 
interaction effect of space and time.

The posterior means for the coefficients of shared spa-
tial patterns of the two diseases are distinct from one 
another, and the 95% credible intervals show that the 
weight of HIV is significantly higher than one. The latter 

suggests that HIV is more dependent on the shared spa-
tial patterns, hence its spatial pattern closely resembles 
the shared pattern. The results show that the shared tem-
poral random effect, HIV disease-specific spatial random 
effect, and the random interaction effect between space 
and time explain most of the variability in the respective 
order. The variations explained by HIV disease-specific 
spatial random effect and temporal random effect are 
higher than those of TB (Table 2).

Spatial analysis
The relative risk related to the combined spatial patterns 
for HIV and TB, calculated from the posterior means 
of total spatial effect, i.e., exp(ωi + νdi) , are displayed in 
Fig. 6. The two diseases show similar spatial patterns in 
the two city administrations and in some districts, such 
as at the Western and Eastern Tigray region, Kilbert 
Raisu (Zone 2) of the Afar region, Central and North 
Gondar zones in the Amhara region, Asosa zone in the 
Benishangul-Gomuz region, Anuak zone in the Gambela 
region, Borena zone in the Oromiya region, Sitti zone in 
the Somali region including boarder areas in Liben and 
Shabelle zones in the Somali region.

Fig. 4  Standardized incidence ratio for HIV
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There were districts identified as high-risk areas within 
the two city administrations, within all zones of the Afar 
region; within Awi, east Gojjam, north Gondar, north 
and south Wollo, and north Shewa zones in the Amhara 
region; within Asosa and Kemashi zones in the Benis-
hangul-Gumuz region; within Anuak, Mezhenger and 
Nuer zones in the Gambella region; within the Harari 
region, Arsi, east Hararge, Horo Guduru Wollega, Illuba-
bor, Jimma, north Shewa and west Shewa zones in the 
Oromiya region; within Bench Maji, Gamo Gofa, Gurage, 
Hadiya, Keffa, Sidama and Wolayta zones in the SNNP 
region; within Nogob and Shebele zones in the Somali 
region; and central and east Tigray zones in the Tigray 
region.

The TB high-risk districts most of them were overlap 
with the HIV high-risk districts, but in some regions, 
they were different. The districts that are at a high risk 

of TB were in the two city administrations, in all zones 
of the Afar region; in east Gojjam, south Wollo, north 
Gondar and north Shewa zones in the Amhara region; in 
Kemashi and Metekel zones in the Benishangul-Gumuz 
region; in Anuak zone in the Gambella region, the Harari 
region, Arsi, Bale, east Wellega, Finfine zuria, Ilu Aba 
Bora, Jimma and north Shewa, west Hararge, and west 
Shewa zones in the Oromiya region; Bench Maji, Gamo 
Gofa, Gurage, Keffa, Sidama, south Omo and Wolayta 
zones in the SNNP region; in Afder, Gode and Shinle 
zones in the Somali region, and central, northwest and 
south Tigray zones in the Tigray region.

Figure  7 shows the relative risks for the shared spa-
tial effect ( exp(ωi) ) and disease-specific spatial effects 
( exp(νdi) ) patterns. In the three maps, there were com-
mon districts of high risk within each region and the two 
city administrations. On the other hand, when compared 

Fig. 5  Standardized incidence ratio for TB

Table 1  Summary of DIC and LS(CPO) values of models included in sensitivity analysis

Type of prior

IG(1, 0.01) IG(0.001, 0.001) IG(0.5, 0.0005) IG(0.01, 0.01) IG(1, 0.0005) Half-Cauchy

DIC 47698.69 47698.94 47699.76 47695.36 47702.68 47699.81

LS(CPO) 6.98187 6.99771 6.99738 6.97637 6.98102 6.98175
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to TB disease-specific spatial patterns, the number of dis-
tricts with a high relative risk ( > 1.0 ) of HIV disease-spe-
cific spatial patterns is higher, followed by the number of 
districts with a high relative risk ( > 1.0 ) of shared spatial 
patterns. This may be because HIV is more dependent on 
the shared spatial term, which means that the shared pat-
tern explains most of the HIV disease-specific patterns. 
The presence of shared spatial variation or clustering 
depicted in Fig. 7a can be interpreted as a surrogate for 

covariates that exhibit spatial variation not included in 
the model but shared with both diseases [27].

Temporal analysis
The relative risks associated with the shared temporal 
random effect exp(φt) , disease-specific temporal random 
effects exp(γdt) , and the shared trend effect exp(φt + γdt) 
are depicted in Fig. 8. The shared temporal random effect 
suggests a slight increase in risk from 2015 to 2017, then 
a decrease in risk in 2018. The estimated values of risks 
are in the interval [0.808, 1.165]. HIV disease-specific 
temporal effect does not deviate from the shared tem-
poral pattern (its values range between 0.773 and 1.177). 
However, the specific temporal pattern for TB has a rela-
tive risk close to one for the study period (its value ranges 
between 0.947 and 1.102). The plots in Fig. 8 show that 
the shared temporal effect almost captures the increasing 
trend in HIV risk for the first three study years and then 
a decreasing trend in 2018, whereas the specific effect 
is negligible because the relative risk estimates are very 
close to one for all years.

Similar to the shared temporal random effect and HIV 
disease-specific temporal trend, the combined temporal 
trend for HIV showed an initial increase in risk over the 
first three years and then a decreasing trend for 2018 (its 
values range between 0.653 and 1.293), while the com-
bined temporal trend of TB was almost constant at 1 
over the study period (its values range between 0.990 and 
1.022). Based on the case notification data, the relative 
risk of HIV had an increasing trend between 2016 and 
2018, and this risk was generally higher compared to the 
relative risk of TB within the same period.

Table  2 also displays summary statistics of weights 
κd , d = 1, 2 for the shared temporal trend. The weight 
for HIV ( κ1 = 0.964 ) was higher than that of TB 
( κ2 = 0.582 ). Since the weight for HIV is very close to 

Table 2  Summary statistics for estimates of the precision 
parameters of random effects and coefficients for shared spatial 
and temporal effects

Estimates

Parameter Mean 95% CI Percentage 
of variation

Fixed effect

  α1 −1.529 (−1.591, −1.466)

  α2 −0.134 (−0.153, −0.114)

Precision parameter

  τω 1.133 (1.046, 1.212) 13.0

  τφ 1.776 (1.253, 2.631) 20.5

  τν1 1.550 (1.439, 1.749) 17.9

  τν2 0.976 (0.926, 1.017) 11.2

  τγ1 1.200 (1.060, 1.460) 13.8

  τγ2 0.807 (0.680, 1.032) 9.3

  τψ 1.239 (1.170, 1.505) 14.3

Coefficients for

Shared Spatial effect

  δHIV 3.300 (3.042, 3.556)

  δTB 0.847 (0.736, 0.936)

Shared Temporal effect

  κHIV 0.964 (0.199, 2.656)

  κTB 0.582 (0.060, 1.888)

Fig. 6  Posterior means of the total spatial effect of HIV (left panel) and TB (right panel)
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one, this suggests that this disease had a strong depend-
ence on the shared temporal pattern.

Joint spatiotemporal analysis
To identify districts with the most substantial space-
time interactions, we have produced a map highlight-
ing districts with posterior probabilities of exhibiting 
a relative risk greater than one (exceedance relative 
risk) for the smoothed joint spatiotemporal interac-
tion for each study period in Fig. 9. In the figure, if the 
posterior probability of a district is within the interval 
[0.81, 1.00], then it is counted as a high-risk area for a 
disease (HIV or TB) [40]. The number of districts per 
region with posterior probabilities within the interval 
[0.81, 1.00] varies between 0 and 21 in 2015 (0 districts 
in the Benishengul-Gumuz and Harari regions and 
21 districts in the Oromia region); between 0 and 14 
in 2016 (0 districts in the Afar, Benishengul-Gumuz, 
Gembella and Harari regions, and 14 districts in the 
Oromia region); between 0 and 16 in 2017 (0 districts 
in the two city administrations, Afar, Benishengul-
Gumuz, Gambella and Harari regions, and 16 districts 

in the Oromia region), and between 0 and 11 in 2018 
(0 districts in the two city administrations, Benishen-
gul-Gumuz, Gambella, and Harari regions, and 11 dis-
tricts in the Oromia region). The country had 58, 32, 
43, and 27 such districts in 2015, 2016, 2017, and 2018, 
respectively.

In 2015, relatively more districts with high 
risks were noticed in east and west Gojjam, south 
Gondar and south Wollo zones in the Amhara 
region, Bale, west Hararge, west Shoa and west Wol-
lega zones in the Oromiya region, Gurage zone in 
SNNP region, east and northwest Tigray zones in 
the Tigray region. Similarly, in 2016, such districts 
were observed in north and south Wollo zones in 
the Amhara region, north and west Shoa, east and 
west Wollega zones in the Oromiya region; in 2017, 
north and south Wollo, and north Shewa zones in 
the Amhara region, east Hararge and west Shoa 
zones in the Orpmiya region, and central and south 
Tigray zones in the Tigray region; whereas in 2018, 
in west Shoa zone in the Oromiya region and Gamo 
Goffa zone in the SNNP region.

Fig. 7  Relative risk of shared spatial patterns ( ωi ) and disease specific spatial patterns ( νdi)
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Discussion
Although WHO-coordinated initiatives have made pro-
gress, HIV and TB diseases still have alarming rates 
of illness and mortality [41]. In the current study, we 
assessed the joint spatiotemporal variation of HIV and 
TB risks at the district levels for four years, from 2015 
to 2018, in Ethiopia by jointly analyzing data on the two 
diseases obtained from HMIS. Using a Bayesian hierar-
chical model, we were able to characterize the spatial 
and temporal patterns that are shared and disease-
specific, as well as the space-time interaction effects 
of HIV and TB relative risks. It also enabled us to esti-
mate the relative risks of both shared and disease-spe-
cific risks, as well as the interaction of space and time 
effects, and to display these estimates over all the dis-
tricts in the country.

Results from the exploratory analysis showed that there 
had been an increase in HIV case notifications regis-
tered in HIV healthcare facilities between 2015 and 2017, 
but there was a sharp decrease from 2017 to 2018; this 
could be because about 25% of districts failed to submit 
the HIV case notifications to the national Health Man-
agement Information System in 2018. However, TB case 
notifications had inconsistencies in the annual trend. 
While the mean raw yearly TB SIRs showed a slightly 
increasing trend, the raw HIV SIRs showed an incon-
sistency in the yearly trend. The results also showed that 
most of the districts identified as high risk for HIV dur-
ing the study period were also classified as high risk for 
TB; however, each disease had spatiotemporal variation 
in the raw relative risk in the four-year study period, 
2015–2018. This finding agrees with the FDREMH 2018 
report  [42]. Except for the Harari region, which had 

Fig. 8  Relative risks of shared temporal effect exp(φt) (a), disease-specific temporal effects exp(γdt) (b, c) and total temporal effect exp(φt + γdt) (d)
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one district of high risk for HIV in 2018, both diseases 
had at least one district of high risk in each region and 
in each city administration. There were low reported TB 
and HIV case notifications in some districts, specifically 
in the Somali region. Despite the national guidelines 
recommendation to offer HIV testing to those patients 
with presumptive TB, there is lag in tracking its imple-
mentation in some parts of the country. Therefore, the 
government may need to implement intensified commu-
nity-based TB and HIV tests, routine contact investiga-
tions, and targeted population-focused interventions.

Overall, the geographic spread of HIV in proportion 
to TB was more extensive. These findings agree with the 
results of  [43], which indicate that HIV has surpassed 
TB to a large extent in Mauritania, Senegal, and Gambia. 
However, the results of the present investigation diverge 
from those of previous studies in Kenya [26, 44] and [43], 
which also revealed that TB seemed to be spreading more 
rapidly than HIV in Rwanda and Burundi. In most dis-
tricts, the spatial patterns observed in the unsmoothed 
maps of SIRs for both diseases remained consistent with 
the spatial patterns of smoothed relative risks. Neverthe-
less, there were cases where the concentration of high 
incidence districts became less apparent, for example, 

for HIV SIR’s districts in the northern part of Fanti Rasu 
zone (Zone 4) in the Afar region and districts in the south 
part of Itang zone in the Gambela region in 2015.

In this study, the shared temporal trend showed a mar-
ginal increase in risk from 2015 to 2017, followed by a 
modest decline in 2018. HIV disease-specific temporal 
pattern had a similar trend to the shared temporal trend. 
On the other hand, the temporal pattern of tuberculosis 
risk that was particular to the disease exhibited a level 
of consistency that was nearly constant throughout the 
study period. Like the shared and specific temporal trend 
of HIV, the combined temporal trend for HIV also had a 
rising risk for the first three years and then a decreasing 
trend for 2018, while the combined temporal trend of TB 
was almost constant at 1 over the study period. The case 
notifications data show that compared to the risk of TB, 
the temporal trend of the risk of HIV was lower in the 
year 2015. However, the risk of HIV trend exceeded that 
of TB over the period 2016 to 2018. These findings agree 
with the observations made by [44], where in their study, 
the researchers observed that the rate of HIV risk had a 
reduced magnitude compared to that of TB during the 
first two years, but in the last three years, the HIV risk 
surpassed the TB risk. Although HIV drives TB-related 

Fig. 9  Posterior probabilities of having an estimation of the common space-time interaction term relative risk exp(ψit) greater than 1, i.e. 
P(exp(ψit) > 1|y) for each study period
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infections, the lower or constant trend of TB in the coun-
try during the study period could be due to the govern-
ment’s effort that all eligible HIV-positive people in areas 
with a high prevalence of TB should receive TB preven-
tive medication before developing severe manifestations 
of the virus. Studies in Ethiopia [45, 46] demonstrate this. 
Other studies in Sub-Saharan Africa also observed simi-
lar temporal patterns in TB incidences [47, 48].

There were 174 (22%) districts with similarities in HIV 
spatial distribution and tuberculosis in the country from 
2015 to 2018. Of these districts, 59, 34, 29, 13, and 11 
were in the Oromia, SNNP, Amhara, Afar, and Somali 
regions. The least number of such districts was observed 
in the Harari region and the Dire Dawa city administra-
tion; each had one district. Addis Ababa city administra-
tion and the Gambella region had four districts, while the 
Benishangul-Gumuz and Tigray regions had nine such 
districts. The large number of districts with high risks of 
HIV and TB suggests that these districts have inadequate 
HIV and TB control. If no efficient interventions are 
developed and implemented, these districts may remain a 
source of HIV and TB spread. In contrast to the distribu-
tion of HIV, which had many districts classified as high-
risk areas, the distribution of the shared relative risks was 
comparable to the distribution of the disease-specific rel-
ative risk for tuberculosis. This similarity may be due to a 
greater dependence on the shared spatial component of 
HIV, meaning that the HIV spatial patterns are responsi-
ble for most of the shared components.

Recall that these two components also had similar 
temporal trends over the study period. Our results differ 
from those of  [44], whose findings show that there was 
only a slight difference between the disease-specific risk 
of HIV and the distribution of the shared risks. How-
ever, the distribution of tuberculosis showed a signifi-
cantly higher number of counties classified as high-risk 
locations. In addition, other studies in Uganda  [44] and 
China  [49] observed the regional clustering of tubercu-
losis and HIV. However, they applied a co-clustering 
approach. In the former, the results also show the com-
bined co-clustering of the two diseases. Studies in Brazil 
reported spatial clustering and temporal trends of HIV 
incidence [50]. Analyses of spatiotemporal trends of HIV 
incidence/prevalence in other countries have also dem-
onstrated that the spread of HIV infection varies in both 
space and time [51, 52].

The posterior probabilities of having an exceedance 
relative risk for the smoothed joint spatiotemporal inter-
action were computed for each district and mapped for 
each study period to identify districts having the most 
significant spatiotemporal interactions. The results show 
that interaction components are more prevalent in dis-
tricts with a relative risk higher than one, suggesting that 

other factors could play a role in these districts. However, 
the exceedance risk was consistent around the north and 
south Wollo zones in the Amhara region, north Shoa, 
west Shoa, and west Wollega in the Oromia region over 
most of the study years. Studies conducted in China [49] 
and Brazil  [53] also demonstrated a substantial cor-
relation between the joint risks of both diseases using 
bivariate maps for the joint distribution of HIV and TB. 
Furthermore, the findings from the study conducted in 
Brazil revealed that both diseases are spatially heteroge-
neous across the country.

Investigating relationships between diseases and geo-
graphic space over time is essential to elucidate the 
extent and severity of the infection and its impact on 
public health. Such assessment helps to identify prior-
ity areas that need control interventions. The effective-
ness of infectious disease control efforts is maximized 
when locations with high rates of reported cases are 
identified and thoroughly documented. Furthermore, to 
design highly efficient strategies aimed at decreasing the 
rates of tuberculosis and HIV transmission, conducting 
a thorough evaluation of the combined epidemiological 
patterns of incidences for both diseases, at least at the 
district level over time. Implementing efficient con-
trol measures in regions characterized by a significant 
likelihood of contracting HIV and TB leads to success-
ful containment of the pandemic  [54]. Furthermore, an 
extensive understanding of high-risk regions is crucial 
for the effective implementation of surveillance programs 
and the efficient allocation of resources [55].

Although statistical methods for spatiotemporal analy-
sis of several diseases are well developed, based on the 
authors’ knowledge, this is the first research on the joint 
spatiotemporal modeling of HIV and TB incidence noti-
fications data using a Bayesian hierarchical approach in 
Ethiopia. However, our findings might have been influ-
enced by the following limitations: 

(1)	 In the current paper, we used HIV and TB case 
notification data as a proxy to represent people liv-
ing with HIV and TB. These data are obtained from 
subgroups of people who seek medical treatment 
and care from local healthcare facilities. Therefore, 
they are indicative of the population residing in the 
vicinity of these facilities.

(2)	 Since we utilized district-level consolidated data in 
the study, the conclusions drawn cannot be extrap-
olated to smaller administrative units in the coun-
try, such as Kebele or household levels.

(3)	 It is essential to note that the data on HIV and TB 
case notifications obtained from the national HMIS 
may not provide an accurate depiction of the actual 
prevalence of these diseases in a specific district. 
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This discrepancy could be attributed to cases being 
underreported or not properly detected.

(4)	 The spatial variations or clustering of the two dis-
eases may be due to different factors not included 
in the model due to data limitations. However, as 
stated in the previous section, the shared spatial 
and temporal components can be interpreted as 
surrogates for covariates that exhibit spatial and 
temporal patterns not included in the model but 
shared with both diseases  [27]. At the same time, 
each disease-specific spatial and temporal compo-
nent represents those spatially varying and have 
temporal patterns of risk factors specific to the dis-
ease. However, conducting further research that 
considers additional covariates would be beneficial 
in exploring the underlying causes of district-level 
variations. This can be achieved using the joint 
Bayesian spatiotemporal generalized linear models 
to examine potential risk factors for TB and HIV 
infections.

Conclusion
This paper assessed the joint spatial clustering of HIV 
and tuberculosis incidence in Ethiopian districts and how 
they vary over four years, 2015–2018. The Bayesian hier-
archical joint spatiotemporal models with shared spatial 
and temporal random effects, disease-specific spatial and 
temporal random effects, and interaction between space 
and time random effect were applied for the analysis. The 
models allowed borrowing strength across both districts, 
years, and between diseases to produce smoothed dis-
trict-level HIV and TB incidence estimates separately for 
each disease and jointly.

The selected model enabled us to cluster districts that 
had a high probability of contracting HIV and TB. Over-
all, the study facilitated the identification of districts 
with a significant likelihood of contracting HIV and TB, 
making them a top target for control actions. Moreo-
ver, the results of this study could offer Ethiopian health 
policymakers significant insights for enhancing national, 
regional, zone, and district strategies in addressing area-
specific and comprehensive TB and HIV/AIDS collabo-
rative efforts, as well as in strengthening measures to 
prevent infection of HIV and TB.
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