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Abstract 

Introduction Stunting affects one-fifth of children globally with diarrhea accounting for an estimated 13.5% 
of stunting. Identifying risk factors for its precursor, linear growth faltering (LGF), is critical to designing interventions. 
Moreover, developing new predictive models for LGF using more recent data offers opportunity to enhance model 
accuracy, interpretability and capture new insights. We employed machine learning (ML) to derive and validate a pre-
dictive model for LGF among children enrolled with diarrhea in the Vaccine Impact on Diarrhea in Africa (VIDA) study 
and the Enterics for Global Heath (EFGH) ― Shigella study in rural western Kenya.

Methods We used 7 diverse ML algorithms to retrospectively build prognostic models for the prediction of LGF 
(≥ 0.5 decrease in height/length for age z-score [HAZ]) among children 6–35 months. We used de-identified data 
from the VIDA study (n = 1,106) combined with synthetic data (n = 8,894) in model development, which entailed 
split-sampling and K-fold cross-validation with over-sampling technique, and data from EFGH-Shigella study (n = 655) 
for temporal validation. Potential predictors (n = 65) included demographic, household-level characteristics, illness 
history, anthropometric and clinical data were identified using boruta feature selection with an explanatory model 
analysis used to enhance interpretability.

Results The prevalence of LGF in the development and temporal validation cohorts was 187 (16.9%) and 147 (22.4%), 
respectively. Feature selection identified the following 6 variables used in model development, ranked by importance: 
age (16.6%), temperature (6.0%), respiratory rate (4.1%), SAM (3.4%), rotavirus vaccination (3.3%), and skin turgor 
(2.1%). While all models showed good prediction capability, the gradient boosting model achieved the best perfor-
mance (area under the curve % [95% Confidence Interval]: 83.5 [81.6–85.4] and 65.6 [60.8–70.4]) on the development 
and temporal validation datasets, respectively.

Conclusion Our findings accentuate the enduring relevance of established predictors of LGF whilst demonstrating 
the practical utility of ML algorithms for rapid identification of at-risk children.
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Introduction
Diarrhea, a global public health problem with greatest 
burden in low- and middle-income countries (LMICs) 
[1], is a leading etiology of malnutrition among children 
in LMICs, in part due to anorexia, decreased absorp-
tive function, mucosal damage, catabolism and nutrient 
exhaustion [1, 2]. It has been reported that the cumula-
tive burden of diarrhea days directly correlates with the 
degree of nutritional failure among children during early 
childhood and that catch-up growth does not appear to 
make up for the deficit [3]. Linear growth faltering (LGF), 
a precursor to stunting (height-for-age z-score [HAZ] 
<−2), is one form of malnutrition that results from pro-
tracted nutritional deprivation [4]. Stunting affects one-
fifth of children globally and one-third of children in 
LMICs [5]. Globally, 13.5% of stunting cases are attrib-
uted to diarrhea [6]. Additionally, a vicious cycle of diar-
rhea and malnutrition can occur as malnutrition weakens 
the body’s defense against future diarrheal episodes 
resulting in more frequent and longer diarrheal illnesses. 
While LGF is a precursor to stunting, it also indepen-
dently affects child development and health outcomes, 
such as cognitive delays, increased susceptibility to infec-
tions, and the risk of relapse into wasting after recovery 
[7, 8]. Furthermore, the effects of stunting can be severe 
and protracted, with reduced cognitive development, 
persistent poor health, and elevated risk of mortality [9]. 
Long term complications can include an increased risk 
of cardiovascular disease, type 2 diabetes, and obesity in 
adulthood [10, 11].

The timely and accurate identification of children at 
increased risk of LGF is crucial for early nutritional and 
healthcare interventions as well as efficient allocation of 
public health resources, efforts that could help to avert 
the associated negative outcomes. Data-driven predic-
tive models could be leveraged to this end and a number 
of research efforts exist in the prediction of LGF among 
children with diarrhea [12, 13]. These studies utilized 
clinical and sociodemographic data from the Global 
Enteric Multicenter Study (GEMS), conducted between 
2007 and 2011, to develop predictive models. The models 
lacked explainable methodologies to improve interpret-
ability and demonstrated moderate discrimination, with 
areas under the ROC curve (AUC) of 67.0% for Branders 
et al. [12] and 75.0% for Ahmed et al. [13], respectively. 
While the existing models provide a valuable starting 
point, shifts in the study population over time may affect 
the predictive performance of these models [14, 15]. 
Moreover, development of new models using more recent 
and pertinent data offers the opportunity to improve 
model accuracy, enhance interpretability of models and 
capture new perspectives and insights into this public 
health problem. We used machine learning (ML), which 

has been adopted in public health and clinical practice to 
rapidly develop data-driven clinical prediction models, 
to develop and temporally validate predictive models for 
LGF among children aged < 5 years with diarrhea in rural 
Western Kenya.

Methods
Data sources
This retrospective study used data collected from the 
Kenyan site (in Siaya County) of two related diarrheal 
studies: The Vaccine Impact on Diarrhea in Africa 
(VIDA) study [16] for model development and evalua-
tion; and the Enteric for Global Health (EFGH) Shigella 
surveillance study [17, 18] for temporal validation.

Development cohort
VIDA was designed to assess the population-based inci-
dence, etiologies, and adverse clinical consequences of 
diarrhea following rotavirus vaccine introduction in 
children aged 0–59 months residing in censused popula-
tions in 3 African countries. Moderate-to-severe diarrhea 
(MSD) cases, defined as children in 3 age strata (0–11, 
12–23, and 24–59 months) presenting with diarrhea 
(defined as ≥ 3 looser-than-normal stools within 24 h) 
that began within the past 7 days after ≥ 7 diarrhea-free 
days and had ≥ 1 of the following: sunken eyes, poor skin 
turgor, dysentery, intravenous rehydration, or required 
hospitalization, were enrolled from sentinel health cent-
ers (SHCs) serving the health and demographic surveil-
lance systems population at each site. The aim was to 
enroll 8–9 MSD cases in each age stratum per fortnight. 
1–3 diarrhea-free controls matched by age, gender and 
geographical location were enrolled within 14 days of 
case enrolment. Follow-ups were conducted between 49 
and 91 days after enrolment. We utilized data collected 
from cases enrolled at the VIDA Kenya site over a 36 
months period from May 2015 and July 2018 restricting 
to children aged 6–35 months to make the development 
and temporal validation cohorts comparable. The study 
design, clinical and epidemiological methods for VIDA 
have been described elsewhere [16, 19].

In addition to the VIDA data (n = 1,106), we generated 
a synthetic dataset (n = 8,894) based on the VIDA data 
using the synthpop package [20] to increase the sample 
size and to enable the algorithms to generate more stable 
and reliable predictions that are less sensitive to noise in 
the data. The variables of the synthetic dataset were com-
pared to the original training dataset with the synthetic 
dataset demonstrating high similarity to the original 
dataset (Fig S1). The combined dataset (N = 10,000) was 
used for training and internal validation with a split-sam-
pling conducted in the ratio 3:1 to partition the develop-
ment data into training and test sets [21].



Page 3 of 14Ogwel et al. BMC Medical Informatics and Decision Making          (2024) 24:368  

Temporal validation cohort
The EFGH study set out to establish incidence and conse-
quences of Shigella medically attended diarrhea (MAD) 
within 7 country sites in Africa, Asia, and Latin Amer-
ica using cross-sectional and longitudinal study designs. 
MAD cases defined as children aged 6–35 months pre-
senting with diarrhea (defined as ≥ 3 looser-than-normal 
stools within 24 h) that began within the past 7 days after 
≥ 2 diarrhea-free days were enrolled from SHCs in the 
study catchment area [17]. Additional eligibility criteria 
included: residing within the pre-defined study catch-
ment area; primary caregiver and child plan to remain 
at their current residence for at least the next 4 months; 
legal guardian consenting to child’s participation in the 
study as well willingness to be followed-up for 3 months 
post-enrolment; child is not being referred to a non-
EFGH facility at the time of screening; and site enroll-
ment cap has not been met. Follow-ups were conducted 
at week-4 (24–67 days) and month-3 (84–127 days). 
Our study utilized data from children enrolled in Kenya 
between 01 August, 2022 and 31 July, 2023 to temporally 
validate the champion model.

Information on demographic, socio-demographic, epi-
demiological and clinical characteristics were collected at 
enrollment by study personnel in both studies [18].

Target variable
Consistent with previous studies [12, 13], we defined the 
target variable, LGF, as decrease of 0.5 HAZ or more (Δ 
HAZ ≥ − 0.5) within 49–91 days of enrollment in VIDA, 
or within 84–127 days in EFGH. We also computed 
change in HAZ per month of follow-up and categorized a 
negative change as LGF in our sensitivity analysis, similar 
to the definition used by Nasrin et al. [22]. We excluded 
children with implausible HAZ values (HAZ > 6 or < − 6 
and change in (Δ) HAZ > 3; or length values that were 
> 1.5 cm lower at follow-up than at enrollment.

Predictive variables and feature selection
A total of 68 potential candidate predictors collected at 
enrollment during both studies were considered, includ-
ing demographic, household-level characteristics, illness 
history, anthropometric and clinical characteristics col-
lected at enrolment. Missingness patterns were assessed 
among the features and the missing data points imputed 
using the Multiple Imputation by Chained Equations 
(MICE) package [23]. Furthermore, we conducted fea-
ture selection to reduce dimensionality, optimize perfor-
mance, reduce computational complexity and enhance 
model interpretability. The feature selection was imple-
mented using the Boruta package [24] an all relevant 
feature selection wrapper around the random forest 

algorithm that selects relevant features by comparing 
original attributes’ importance (contribution of each vari-
able to the model’s predictive accuracy) with importance 
achievable at random using their permuted copies. Fea-
tures that were either confirmed or tentative from the 
feature selection process were then used in model devel-
opment. Moreover, among the confirmed and tentative 
features, we excluded variables that were not collected in 
both studies (breastfeeding).

Statistical analysis
We compared patient characteristics of children with 
LGF versus those without. Proportions were reported 
for categorical variables and either chi-square or Fisher`s 
exact test were performed as appropriate. Wilcoxon rank 
sum tests were used to compare continuous variables as 
appropriate. We also compared the prevalence of LGF 
between the 2 studies.

Model development and internal validation
To derive the LGF prediction model, we utilized 7 ML 
algorithms including: Random Forest (RF), Gradient 
Boosting (GBM), Naive Bayes (NB), Logistic regression 
(LR), Support vector machine (SVM), K-nearest neigh-
bors (KNN) and Artificial Neural Networks (ANN). 
The predictive models were developed in the training 
dataset using 10-fold cross-validation [25], a valuable 
step in model development helping to obviate under-
fitting or overfitting of the model and ensure robust 
and well-performing models. Due to the moderate class 
imbalance in our target variable (LGF), we employed 
sub-sampling techniques (over-sampling) within the 
resampling procedure to mitigate the negative impact 
of class disparity on model fitting [26]. We then con-
ducted internal validation of the models on the test 
data evaluating performance using the following met-
rics: sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV) and F1-score. 
Receiver operating characteristic (ROC) curves were 
constructed and the area under the curve (AUC) and 
the precision-recall area under the curve (PRAUC) for 
each model were computed using the precrec package 
[27]. The ROC AUC is a threshold-independent metric 
that summarizes a model’s overall performance in dis-
criminating between two classes. It represents the area 
under the ROC curve, which plots the true positive rate 
(sensitivity) against the false positive rate (1-specific-
ity) at various classification thresholds. The PRAUC is a 
threshold-independent metric, particularly well-suited 
for imbalanced datasets. It summarizes model perfor-
mance by capturing the area under the precision-recall 
curve, which illustrates the tradeoff between preci-
sion (the proportion of true positives among predicted 
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positives) and recall (the proportion of true positives 
among all actual positives) across various thresholds. 
We determined the champion model as the model 
with the best AUC. We also assessed calibration in the 
developed models using Brier scores (the mean squared 
error between the actual outcome and the estimated 
probabilities), Spiegelhalter’s z-test (a formal measure-
ment that serves as a proxy for calibration calculated 
from the decomposition of Brier score) and its accom-
panying p-value [28]. We used Platt scaling approach, 
in which model estimates are transformed by passing 
the estimates through a trained sigmoid function, to 
calibrate the champion model [28]. To enhance model 
interpretability, trust and fairness, we conducted 
explanatory model analysis (EMA) for the top two 
models using a model agnostic procedure to estimate 
SHapley Additive exPlanations (SHAPs) attributions, 
showing the magnitude and direction of association, 
drawing on the DALEX package [29].

Temporal Validation and Business Value Evaluation
We further conducted temporal validation on the 
champion model to assess the robustness and gen-
eralizability of the model’s performance over time 
[30]. To evaluate the business value of the predictive 
model, modelplotr package [31] was used to build valu-
able evaluation plots (cumulative gains, cumulative lift, 
response and cumulative response plots). Descriptive 
analysis, predictive modelling for LGF and plotting 
were all performed in R version 4.2.2 [32].

Results
A total of 1,554 and 706 children were enrolled in the 
development and temporal validation cohorts, respec-
tively. Among children aged 6–35 months enrolled, 1,106 
(71.2%) and 655 (92.7%) had HAZ data that were plau-
sible, respectively. Among those that had plausible HAZ 
data, 187 (16.9%) and 147 (22.4%) had LGF in the devel-
opment and temporal validation cohorts, respectively 
(Fig. 1).

The median [interquartile range] ΔHAZ between 
enrollment and follow-up was − 0.21 [−0.42- −0.01] 
and − 0.24 [−0.48- −0.02] in the development and tem-
poral validation cohorts, respectively. In the sensitivity 
analysis using the cut-off of negative change in HAZ, the 
prevalence of LGF was 1,051 (28.7%). Additionally, the 
constructed synthetic dataset had 8,527 observations and 
it closely replicated the propensity score distribution of 
the original development data (VIDA) as evidenced by 
the comprehensive descriptive analysis that compared 
each variable (Table S1).

The characteristics of VIDA participants at enrolment 
stratified by LGF status are shown in Table  1. Children 
who had LGF were younger than those who did not 
(Median age in months [IQR]: 11 [8–14] vs. 17 [11–24], 
p < 0.001). Furthermore, compared with those who did 
not have LGF, those with LGF had a higher respiratory 
rate (Median [IQR]: 38.5 [34.0–42.5] vs. 36.0[31.5–
39.5], p < 0.001), a higher temperature (Median [IQR]: 
37.1 [36.6–37.8] vs. 36.8 [36.4–37.5], p < 0.001) and 
more severe disease (Median Vesikari score [IQR]: 11 
[9–12] vs. 10 [8–12], p < 0.001). Additionally, caretaker 

Fig. 1 Flowchart of development and temporal validation studies conducted in Siaya County, Kenya. VIDA- Vaccine Impact on Diarrhea in Africa 
Study. EFGH-Enterics for Global Health Shigella Surveillance study. MSD-Moderate-to-Severe Diarrhea; MAD-Medically Attended Diarrhea
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Table 1 Characteristics of children aged < 5 years seeking care for moderate-to-severe diarrhea in Kenya stratified by Linear Growth 
faltering Status, 2015–2018

Linear Growth Faltering

Characteristics Yes (n = 187) No (n = 919) p-value*

n (%) n (%)

Demograhic
Median age [IQR] 11 [8–14] 17 [11–24] < 0.001
Age Category

 0–11 months 104 (55.6) 259 (28.2) < 0.001
 12–23 months 74 (39.6) 428 (46.6)

 24–59 months 9 (4.8) 232 (25.2)

Gender: Female 83 (44.4) 428 (46.6) 0.584

Household Details
Caretaker education ( > = Secondary ) 78 (41.7) 305 (33.2) 0.026
<= 2 children under 5 yrs 167 (89.3) 839 (91.2) 0.387

<= 4 people sleeping 77 (41.2) 400 (43.6) 0.546

<= 3 Total Assets 158 (84.5) 812 (88.4) 0.142

Refined/Electric Primary Fuel  Sourceβ 5 (2.7) 39 (4.3) 0.313

Animal ownership 176 (94.1) 836 (91.0) 0.159

Improved water

 Safely managed 83 (44.3) 431 (46.9) 0.15

 Basic 14 (7.5) 112 (12.2)

 Limited 28 (15.0) 125 (13.6)

 unimproved/Surface water 62 (33.2) 251 (27.3)

Improved Sanitation

 Safely Managed and Basic 20 (10.7) 106 (11.5) 0.392

 Limited 72 (38.5) 306 (33.3)

 Unimproved/Open Defecation 95 (50.8) 507 (55.2)

Clinical characteristics
Reported by caretaker
Breastfeeding before diarrhea onset

 None 25 (13.4) 248 (37.9) < 0.001
 Exclusive 3 (1.6) 8 (0.9)

 Partial 159 (85.0) 563 (61.2)

Median diarrhea days [IQR] 3 [2–3] 3 [2–4] 0.7196

Stool Type

 Simple watery 113 (60.4) 532 (57.9) 0.41

 Rice watery 5 (2.7) 12 (1.3)

 Sticky/Mucoid 65 (34.8) 347 (37.8)

 Bloody 4 (2.1) 28 (3.1)

Stool Count

 3 27 (14.4) 165 (18.0) 0.489

 4–5 101 (54.0) 506 (55.0)

 6–10 55 (29.4) 228 (24.8)

 > 10 4 (2.1) 20 (2.2)

Blood in stool 15 (8.0) 108 (11.8) 0.138

Vomiting 127(67.9) 531 (57.8) 0.01
Very Thirsty 156 (83.9) 752 (82.2) 0.582

Drinks poorly 47 (25.1) 232 (25.3) 0.962

Unable to drink 2 (1.1) 27 (2.9) 0.145

Belly Pain 109 (61.2) 508 (57.9) 0.404
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Table 1 (continued)

Linear Growth Faltering

Characteristics Yes (n = 187) No (n = 919) p-value*

n (%) n (%)

Fever 142 (75.9) 709 (77.2) 0.720

Restless 151 (80.8) 710 (77.3) 0.295

Lethargy 123 (65.8) 600 (65.3) 0.898

unconscious 7 (3.7) 32 (3.5) 0.864

Rectal straining 55 (29.4) 211 (23.1) 0.066

Rectal prolapse 2 (1.1) 15 (1.6) 0.565

Cough 103 (55.1) 482 (52.5) 0.511

Difficulty breathing 32 (17.1) 124 (13.5) 0.197

Convulsion 3 (1.6) 17 (1.9) 0.818

Currently
Very Thirsty 145 (78.4) 653 (71.7) 0.062

Drinks poorly 40 (21.5) 188 (20.5) 0.747

Sunken Eyes 171 (91.4) 792 (86.3) 0.054

Wrinkled skin 56 (30.6) 211 (23.0) 0.029
Restless 134 (71.7) 557 (60.6) 0.004
Lethargy/unconscious 23 (12.3) 151 (16.4) 0.157

Dry mouth 142 (75.9) 658 (71.7) 0.235

Fast breathing 24 (12.8) 100 (10.9) 0.44

Home ORS use 21 (11.2) 86 (9.4) 0.43

Home Zinc use 8 (4.3) 34 (3.7) 0.706

Assessed by Clinician
Temperature [IQR] 37.1 [36.6–37.9] 36.8 [36.4–37.5] < 0.001
Measured Fever (≥ 37.5oC) 99 (52.9) 342 (37.2) < 0.001
Median Respiratory rate [IQR] 38.5 [34.0–42.5] 36.0 [31.5–39.5] < 0.001
Chest indrawing 4 (2.1) 9 (1.0) 0.180

Sunken eyes 177 (94.7) 848 (92.3) 0.255

Dry mouth 183 (97.9) 903 (98.3) 0.71

Skin turgor (slow/very slow) 78 (41.7) 391 (42.6) 0.833

Mental Status

 Normal 73 (39.0) 380 (41.4) 0.052

 Restless/Irritable 108 (57.8) 530 (57.7)

 Lethargic/Unconscious 6 (3.2) 9 (0.9)

Rectal prolapse 0 (0) 3 (0.3) 0.434

Bipedal edema 2 (1.1) 5 (0.5) 0.337

Abnormal hair 9 (4.8) 43 (4.7) 0.937

Under Nutrition 21 (11.2) 109 (11.9) 0.807

Flaky Skin 2 (1.1) 5 (0.5) 0.409

Severe Acute Malnutrition (SAM) 24 (12.8) 78 (8.5) 0.061

Wasting 13 (7.0) 39 (4.2) 0.111

Admission 27 (14.4) 87 (9.5) 0.043
Diarrhea Duration (≥ 7 days) 70 (37.4) 327 (35.6) 0.631

any_antibiotic 78 (41.7) 402 (43.7) 0.609

Rotavirus vaccination doses

 0 2 (1.1) 19 (2.4) 0.385

 1 8 (4.6) 25 (3.1)

 2 166 (94.3) 764 (94.5)

ORS at facility 186 (99.5) 914 (99.9) 0.311
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education, vomiting, wrinkled skin, restless, admission, 
and intravenous rehydration were significantly associated 
with LGF (Table 1).

From the feature selection analysis, the confirmed 
variables in order of importance were age (16.6%), tem-
perature (6.0%), and respiratory rate (4.1%) SAM (3.4%), 
rotavirus vaccination (3.3%), and skin turgor (2.1%) were 
tentative features (Fig. 2).

In addition to age, respiratory rate, and temperature, 
the following features were selected: confirmed (stunt-
ing at baseline [5.2%], vomit [4.0%], Vesikari score (3.7%) 
and sunken eyes [3.6%]) and tentative (bacterial infection 
diagnosis [2.5%]) in the sensitivity analysis using a cut-off 
of negative change in HAZ (Figure S2).

Model performance
We evaluated seven ML algorithms in the prediction of 
LGF. From the developed models, sensitivity was highest 
in the RF model (80.7%), followed by the ANN (79.5%), 
SVM (77.3%), NB (76.5%), GBM (75.6%), LR (75.4%) 
and lowest in the KNN model (72.4%). The specificity 
ranged from 58.2 to 71.8%. Specifically, the specificity of 
the GBM model was the highest (71.8%), followed by RF 
(70.1%), LR (61.9%), NB and SVM (61.6%), KNN (61.4%) 
and lowest.

in the ANN model (58.2%). The PPV ranged between 
27.4 − 34.9% while the NPV ranged between 92.3 
− 94.8%. The AUC of the models ranged from 73.4 to 
83.5% with the GBM model having the highest AUC 
(83.5%, 95% Confidence Interval [95% CI]: 81.6–85.4) 
(Table 2).

The GBM model was chosen as the champion model. 
The receiver operating characteristic (ROC) curves for 
LGF prediction models are shown in Figure S3. Moreo-
ver, in the sensitivity analysis using only the VIDA data 
in development, the model performance ranged between 
63.0 and 82.6%, 55.9–78.6%, 27.3–33.7%, 91.0–94.2%, 
40.3–44.3%, 68.0–75.5%, and 90.6–94.4% for sensitiv-
ity, specificity, PPV, NPV, F1-score, AUC and PRAUC, 
respectively (Table  3). All models showed a decline in 
predictive performance during sensitivity analysis except 
for the SVM model, which had a marginal increase.

In the sensitivity analysis using the second definition 
of LGF (negative change in HAZ), the model perfor-
mance ranged between 45.8 and 73.1%, 53.2–76.6%, 
79.0–90.5%, 28.6–48.5%, 58.3–80.9%, 58.0–82.4%, 
and 29.0–62.6% for sensitivity, specificity, PPV, NPV, 
F1-score, AUC and PRAUC, respectively (Table S2). In 
this scenario, all models exhibited a drop in predictive 
performance except for the SVM model, which had a 

Table 1 (continued)

Linear Growth Faltering

Characteristics Yes (n = 187) No (n = 919) p-value*

n (%) n (%)

Zinc at facility 183 (97.9) 887 (96.9) 0.494

IV rehydration 31 (16.6) 92 (10.1) 0.01
Dehydration

 None 8 (4.3) 35 (3.8) 0.747

 Some 126 (67.4) 645 (70.2)

 Severe 53 (28.3) 239 (26.0)

Vesikari Score

 Mild 13 (7.0) 71 (7.7) 0.088

 Moderate 75 (40.1) 442 (48.1)

 Severe 99 (52.9) 406 (44.2)

Median Vesikari score [IQR] 11 [9–12] 10 [8–12] 0.0003
Diagnosis
Dysentery 10 (5.4) 58 (6.4) 0.605

Malaria 85 (45.5) 361 (39.5) 0.131

Pneumonia 12 (6.4) 37 (4.1) 0.152

Bacterial Infection 14 (7.5) 93 (10.2) 0.258

Malnutrition 15 (8.0) 68 (7.4) 0.784
* P-value computed using either chi-square or Fisher`s exact test were performed as appropriate for categorical variables and Wilcoxon rank sum tests were used to 
compare continuous variables
β-  Includes electricity, propane, butane, natural gas; SAM defined as WHZ <−3 or MUAC < 115 millimeters, or the presence of bilateral pitting edema; ORS-Oral 
rehydration solution
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marginal increase and the RF model which registered 
same performance as in the primary analysis.

Overall the Brier scores were relatively high and 
ranged between 0.19 and 2.50 (Table  4).The Spiegel-
halter’s p-value showed that all the models were not 
properly calibrated (p < 0.05). The performance of the 
calibrated GBM model was largely similar to its uncali-
brated form with the model having an AUC of 83.7%.

Explanatory model analysis
The EMA results for the top 2 models in the primary 
analysis were similar though the degree of importance 
varied across models with no SAM, no skin turgor, no 
rotavirus vaccine, age, elevated temperature and res-
piratory rate being predictive of LGF (Fig. 3). Similarly, 
in the sensitivity analysis using the second definition of 
LGF, the direction of association was similar between 

Fig. 2 Feature selection for linear growth faltering among children aged < 5 years presenting with moderate to severe diarrhea in rural western 
Kenya, 2015-2018. Green, yellow, red and blue boxplots represent the Z scores of confirmed, tentative, rejected and shadow features, respectively. 
Confirmed and tentative features: Age; temperature; respiratory rate; severe acute malnutrition (SAM); rotavirus vaccination; breastfeeding; skin turgor 

Table 2 Model performance of linear growth faltering  predictionβ models using combined data (original and synthetic data)

95% CI 95% Confidence Interval, PPV Positive Predictive Value, NPV Negative Predictive Value, AUC  Area under the Curve, PRAUC  Precision Recall Area under the Curve
* RF-Random Forest; GBM-Gradient Boosting; NB- Naïve Bayes; LR-Logistic Regression; SVM- Support vector machine; KNN-K-nearest neighbors; ANN-Artificial Neural 
Networks
β−  Linear growth faltering defined as Δ HAZ ≥ − 0.5

Algorithm* Sensitivity %  
[95% CI]

Specificity %  
[95% CI]

PPV % [95% CI] NPV % [95% CI] F1-Score [95% CI] AUC % [95% CI] PRAUC % [95% CI]

RF 80.7 [76.5–84.4] 70.1 [68.1–72.1] 34.9 [31.9–38.0] 94.8 [93.6–95.9] 48.7 [16.8–59.7] 82.8 [80.8–84.8] 96.0 [93.8–96.2]

GBM 75.6 [71.2–79.7] 71.8 [69.8–73.7] 34.7 [31.6–37.9] 93.7 [92.4–94.8] 47.6 [13.9–74.5] 83.5 [81.6–85.4] 96.2 [94.9–96.5]

NB 76.1 [71.7–80.1] 61.6 [59.5–63.7] 28.2 [25.6–31.0] 92.8 [91.4–94.1] 40.2 [12.0–42.4] 75.6 [73.3–77.9] 94.0 [92.1–95.0]

LR 75.4 [70.9–79.4] 61.9 [59.7–64.0] 28.2 [25.5–30.9] 92.7 [91.2–94.0] 38.2 [3.1–64.2] 73.7 [71.3–76.1] 93.0 [91.1–94.0]

SVM 77.3 [73.0–81.2] 61.6 [59.5–63.7] 28.6 [25.9–31.3] 93.2 [91.7–94.5] 41.7 [9.3–56.8] 73.4 [71.0–75.8] 93.0 [91.6–94.1]

KNN 72.4 [69.7–75.0] 61.4 [59.3–63.5] 27.6 [25.0–30.3] 92.3 [90.8–93.6] 40.2 [6.7–67.0] 74.8 [72.3–77.2] 93.0 [90.8–93.6]

ANN 79.5 [75.3–83.3] 58.2 [56.1–60.4] 27.4 [24.9–30.0] 93.5 [92.0–94.7] 40.8 [9.8–58.5] 73.6 [71.3–76.0] 93.0 [90.9–94.1]
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the two models although the magnitude of impor-
tance varied. In addition to age, respiratory rate and 
temperature, the following factors were also identified 
to be predictive of LGF: severity of disease, no vomit-
ing, stunting at baseline, bacterial infection and lack of 
sunken eyes (Fig. 3).

Business value evaluation of Champion Model
From the business value evaluation of our champion 
model (GBM), the cumulative gains plot shows that the 
model is able to select ~ 60% of the target class (LGF) if 
we select the top-20% cases based on our model. Addi-
tionally, from the cumulative lift plot, our champion 
model is able to identify ~ 3 times higher number of 
the target class compared to a random selection if we 
pick the top-20% observations based on model prob-
ability. Lastly, from the cumulative response plot, 48% 
of observations in the top-20% cases based on model 
probability belong to the target class (Fig. 4).

Temporal validation
We observed a decline in model performance on the tem-
poral validation dataset with the AUC dropping by ~ 18%. 
Additionally, all metrics dropped in temporal validation 
with the GBM model achieving 53.7%, 67.7%, 32.5%, 
83.5%, 40.5%, 65.6% and 86.4% for sensitivity, specific-
ity, PPV, NPV, F1-score, AUC and PRAUC, respectively 
(Fig. 5).

Discussion
The study findings illuminate a comprehensive explora-
tion into the prediction of LGF among pediatric patients 
presenting with diarrhea, employing a robust ML frame-
work. The study involved the development and temporal 
validation of predictive models using diverse cohorts, 
revealing distinct prevalence rates and influencing fac-
tors associated with LGF. Key features linked to this out-
come, such as age, rotavirus vaccination, respiratory rate, 
temperature and SAM, were identified through extensive 
feature selection and their impact on risk prediction was 
estimated using SHAP attribution. The ML algorithms 
exhibited varying performance with GBM model emerg-
ing as the champion model, demonstrating promising 
business value. However, the temporal validation uncov-
ered a notable decline in model performance, emphasiz-
ing the dynamic nature of health data and the need for 
ongoing model evaluation and adaptation.

Despite the impact of rotavirus vaccine introduc-
tion on the epidemiology of diarrhea and pathogen 
landscape, we identified similar predictors, in addition 
to rotavirus vaccination, to previous modelling efforts 
[12, 13] that used data collected pre-vaccine intro-
duction─ age,, respiratory rate, temperature, absence 
SAM and stunting at baseline. This finding underscores 
the enduring importance of these risk factors and the 
need for comprehensive, sustained, and adaptable 

Table 3 Model performance of linear growth faltering prediction β models using original training data only

95% CI 95% Confidence Interval, PPV Positive Predictive Value, NPV Negative Predictive Value, AUC  Area under the Curve, PRAUC  Precision Recall Area under the Curve
* RF Random Forest; GBM-Gradient Boosting; NB- Naïve Bayes; LR-Logistic Regression; SVM- Support vector machine; KNN-K-nearest neighbors; ANN-Artificial Neural 
Networks
β−  Linear growth faltering defined as Δ HAZ ≥ − 0.5

Algorithm* Sensitivity %  
[95% CI]

Specificity %  
[95% CI]

PPV % [95% CI] NPV % [95% CI] F1-Score [95% CI] AUC % [95% CI] PRAUC % [95% CI]

RF 52.2 [36.9–67.1] 78.6 [72.7–83.7] 32.9 [22.3–44.9] 89.1 [84.0–93.0] 40.3 [10.9–51.4] 70.3 [61.8–78.7] 90.6 [88.4–90.8]

GBM 80.4 [66.1–90.6] 63.3 [56.7–69.6] 30.6 [22.5–39.6] 94.2 [89.2–97.3] 44.3 [12.9–55.8] 75.5 [68.2–82.8] 93.6 [92.3–93.9]

NB 63.0 [47.5–76.8] 75.1 [69.0–80.6] 33.7 [23.9–44.7] 91.0 [86.0–94.7] 43.9 [5.6–60.3] 73.6 [66.1–81.2] 93.0 [91.1–94.0]

LR 73.9 [58.9–85.7] 63.3 [56.7–69.6] 28.8 [20.8–37.9] 92.4 [87.0–96.0] 41.5 [7.8–52.1] 73.8 [67.0–80.5] 93.9 [92.0–94.9]

SVM 71.7 [56.5–84.0] 65.9 [59.4–72.1] 29.7 [21.4–39.1] 92.1 [86.8–95.7] 42.0 [7.2–51.9] 75.2 [68.9–81.5] 94.4 [93.0–95.5]

KNN 82.6 [68.6–92.2] 56.8 [50.1–63.3] 27.7 [20.4–36.0] 94.2 [88.9–97.5] 41.5 [12.2–51.8] 73.1 [66.3–79.9] 93.6 [91.4–94.2]

ANN 82.6 [68.6–92.2] 55.9 [49.2–62.4] 27.3 [20.1–35.5] 94.1 [88.7–97.4] 41.1 [12.0–57.9] 68.0 [60.5–75.6] 91.4 [89.3–92.5]

Table 4 Calibration results of linear growth faltering prediction 
models

* RF-Random Forest; GBM-Gradient Boosting; NB- Naïve Bayes; LR-Logistic 
Regression; SVM- Support vector machine; KNN-K-nearest neighbors; ANN-
Artificial Neural Networks

Algorithm* Brier Score Spiegelhalter 
Z-score

Spiegelhalter 
p-value

RF 0.19 16.83 < 0.0001

GBM 2.50 208.10 < 0.0001

NB 2.18 101.02 < 0.0001

LR 2.16 85.02 < 0.0001

SVM 2.16 85.88 < 0.0001

KNN 2.21 109.88 < 0.0001

ANN 2.17 84.07 < 0.0001
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public health strategies to combat LGF. Furthermore, 
we observed that rotavirus vaccination was inversely 
associated with LGF a finding that is consistent with 
those of Loli and Carcamo who studied the impact of 
vaccination on HAZ in Peruvian children aged 6–60 
months [33]. This finding could be due to rotavirus 
vaccination substantially reducing the incidence and 
severity of rotavirus infections, curbing the immedi-
ate impact of diarrheal diseases on nutrient absorption 
and consequently diarrhea-mediated growth faltering 
[33]. Bolstering rotavirus vaccination is a possible strat-
egy that could be leveraged by policy makers and pub-
lic health experts to reduce stunting in such settings. 
Moreover, from a modelling perspective, this finding 
on predictors generates confidence in the relevance and 
stability of these variables in different contexts and epi-
demiological periods, enhancing model transferability 
and generalizability.

These variables have been documented as risk factors 
for LGF in previous studies. Specifically, age is a signifi-
cant determinant of LGF among pediatric populations 
following a diarrheal episode [12, 13, 34]. Infants and 
very young children face heightened vulnerability to 
nutritional and health challenges due to their ongoing 
physiological maturation, which is exacerbated during 
diarrheal illness leading to pronounced impacts on nutri-
ent absorption and utilization cumulatively contribut-
ing to a heightened prevalence of LGF among younger 
children. Stunting has been shown to be irreversible to a 
large extent after reaching 24 months of age [35]. There-
fore, the timely identification of at-risk children (infants 
and toddlers) facilitates the implementation of effec-
tive preventive strategies during this critical window 
of opportunity in early childhood. Contrary to existing 
evidence [36, 37], we observed children without SAM 
to be at increased risk of LGF. Despite majority of fac-
tors predisposing children to SAM and stunting being 

Fig. 3 SHAP attributions for the Top 2 linear growth faltering models. *Scenario 1- Predicting linear growth faltering using a cut-off of Δ HAZ ≥ − 0.5. 
* age=9: 9 months; Rotavirus_vacc =2:2 doses of rotavirus vaccine; cur_wrinkledskin=0: normal skin; SAM=0: No severe acute malnutrition (SAM). 
*Scenario 2- Predicting linear growth faltering using change in haz/month (negative change in linear growth is deemed growth faltering). *age=9: 9 
months; vesikari_cat=3: Severe disease based on Vesikari score; vomit=1: Vomitting; Stunting_base=0: No stunting at baseline; bacterial_infec=0: No 
bacterial infection; sunken_eyes =1: sunken eyes



Page 11 of 14Ogwel et al. BMC Medical Informatics and Decision Making          (2024) 24:368  

similar, we observed a discordant relationship between 
the two and this may require further investigation to gain 
insights into this finding. Elevated baseline temperature 
and respiratory rate signal are markers of disease severity, 
and particularly those affecting the gastrointestinal tract, 
may lead to nutritional deficiencies and hinder linear 
growth [12, 13]. Additionally, elevated respiratory rate 
and temperature may indicate increased energy expendi-
ture, potentially due to the body’s efforts to combat infec-
tions or inflammation. This increased energy demand can 
divert resources away from growth-related processes, 
impacting linear growth.

Tree-based ensembles showed good predictive per-
formance with the GBM model narrowly outperforming 
the RF model in the prediction of LGF. Our champion 
model outperformed existing models by Brander et  al. 
(AUC = 67.0%) [12] and (AUC = 75.0%) Ahmed et  al. 
[13]. The improvement in model performance could be 
attributed to the robust modelling approach employed. 
Moreover, the predictive prowess of tree-based ensem-
bles may have also contributed to this improvement. This 
strong discriminatory ability of the champion model has 

significant public health implications as it reinforces the 
feasibility and efficacy of ML algorithms in timely iden-
tification of children, at increased risk of LGF, for early 
nutritional and healthcare interventions. The model can 
enhance the efficiency of resource allocation by facilitat-
ing targeted screening as well as providing healthcare 
providers with a valuable tool for informed decision-
making, enabling tailored interventions based on individ-
ual children risk profiles. The champion model could be 
implemented as web-based application using platforms 
like R-shiny or Plumber [38, 39], or integrated directly 
into electronic health record systems [40] to ensure 
alignment with clinical workflows. Deploying the model 
through these straightforward and adaptable methods 
would enable quick adoption in clinical settings, sup-
porting clinicians in promptly identifying at-risk patients 
and enhancing clinical decision-making. However, the 
decline in model performance during temporal valida-
tion while consistent with findings from Ahmed et  al. 
[13] raises important considerations. Spectral differences 
in the severity of diarrhea among children in the devel-
opment and validation cohorts, coupled with potential 

Fig. 4 Business value plots for the Gradient Boosting (GBM) Model for linear growth faltering
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shifts in the study population over time, highlight chal-
lenges in maintaining consistent predictive accuracy. This 
finding highlights the need for monitoring and periodic 
retraining of the model in order to maintain its predictive 
performance.

Our primary analysis that used combined data (VIDA 
and synthetic data) in model development had better 
performance than the sensitivity analysis that only used 
VIDA data. This result emphasizes the importance of 
synthetic data in addressing challenges associated with 
imbalanced, limited, or privacy-sensitive real-world 
datasets, providing a means to augment and diversify 
the data pool [41, 42]. This approach overcomes issues 
of data scarcity, facilitates more comprehensive model 
training, and enhances generalization. It contributes 
to overcoming biases, ensuring model fairness, and 
accommodating the complexity of risk factors influenc-
ing a health outcome. Ultimately, the strategic use of 
synthetic data strengthens the reliability, generalizabil-
ity, and ethical integrity of predictive models, offering a 
pathway for more effective and personalized healthcare 
interventions. However, synthetic data may advance 
bias propagation since any biases in the primary data 
will be reflected in the generated data and this may 
perpetuate and even exacerbate healthcare dispari-
ties if they exist [43]. In addition to the quality of syn-
thetic data being largely dependent on the underlying 

primary data, synthetic datasets may fail to encompass 
the complete range of variations and intricacies found 
in real-world data. Furthermore, in the second sensi-
tivity analysis using a cutoff of any negative change in 
HAZ, we observed a substantial decline in model per-
formance compared to using a cutoff of a decrease of 
0.5 HAZ or more. These results imply that using a spe-
cific cutoff criteria for defining LGF can significantly 
impact the performance of the predictive model. Differ-
ent cutoff criteria may be more appropriate in different 
contexts, and the choice should be informed by clinical 
expertise and relevance considering the specific con-
text of the healthcare setting, study population (vary-
ing age categories), and the clinical significance of HAZ 
changes. It also underscores the dynamic nature of 
model performance, necessitating ongoing evaluation 
and adaptation to maintain optimal cutoff criteria.

Our study, while commendable, has limitations, nota-
bly the exclusion of pathogen data during model devel-
opment to maintain practical applicability, despite its 
influence on LGF. Future research should address this 
gap, as well as focus on the acceptability and impact of 
ML models on clinical practice and patient outcomes. 
The cost-effectiveness of deploying these models is also 
crucial for practical implementation in diverse health-
care settings. Exploring these facets will contribute sig-
nificantly to enhancing understanding and ensuring the 
effective use of ML models in healthcare.

Fig. 5 Performance of champion model in development (2015-2018) and temporal validation (2022-2023) datasets. PPV- Positive Predictive Value; 
NPV- Negative Predictive Value; AUC- Area under the Curve; PRAUC- Precision Recall Area under the Curve
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Conclusion
The study’s findings emphasize the enduring relevance 
of established predictors of LGF. Addressing multifac-
eted challenges in pediatric LGF requires sustained 
efforts with adaptive interventions for these risk factors. 
The study demonstrates the practical use of ML algo-
rithms for rapid identification of at-risk children for early 
nutritional and healthcare interventions. The model can 
enhance the efficiency of resource allocation by facilitat-
ing targeted screening as well as providing healthcare 
providers with a valuable tool for informed decision-
making, enabling tailored interventions based on indi-
vidual children risk profiles. However, a decline in model 
performance during temporal validation highlights the 
dynamic nature of health data, necessitating continuous 
evaluation and adaptation. Additionally, the study shows 
the viability of integrating synthetic data to enhance 
model robustness, providing a pathway for more compre-
hensive and ethical predictive modeling in healthcare.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911- 024- 02779-7.

Supplementary Material 1.

Acknowledgements
We appreciate the contributions and efforts of KEMRI-CGHR staff involved 
in the data collection, data management, and laboratory testing of samples 
in the two studies. We also wish to thank the study participants and the 
ministry of health staff for supporting both studies. Moreover, we would like 
to acknowledge the use of artificial intelligence (AI) technology for grammar 
checking and proofreading of this manuscript.

Authors’ contributions
BO, VHM, KDT, PBP and RO conceived the study and contributed to study 
design and implementation. BO, VHM and KDT analyzed and interpreted the 
data. BO drafted the manuscript and all authors critically reviewed the manu-
script for intellectual content and approved the final manuscript. All authors 
read and approved the final manuscript.

Funding
This work was supported by the Bill & Melinda Gates Foundation (grant INV-
045988). The funders did not play any role in the study and interpretation of 
its outcome.

Data availability
The data used for the modelling in this study belongs to KEMRI and restric-
tions apply to the availability of these data.

Declarations

Ethics approval and consent to participate
The VIDA protocol was approved by the Institutional Review Board of the Uni-
versity of Maryland School of Medicine, Baltimore, MD, USA (UMB Protocol #: 
HM-HP-00062472) and the Kenya Medical Research Institute (KEMRI) Scientific 
and Ethical Review Unit (SERU) (SERU#2996). The EFGH protocol was approved 
by the KEMRI SERU (SERU#4362). Written informed consent was sought from 
caregivers in both studies before initiation of study procedures. Additionally, 
ethical approval for undertaking the current study was sought from the health 
research ethics committee of the University of South Africa, College of Agricul-
tural Sciences (2023/CAES_HREC/2192).

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Kenya Medical Research Institute- Center for Global Health Research 
(KEMRI-CGHR), P.O Box 1578-40100, Kisumu, Kenya. 2 Department of Informa-
tion Systems, University of South Africa, Pretoria, South Africa. 3 Department 
of Medicine, Center for Vaccine Development and Global Health, University 
of Maryland School of Medicine, Baltimore, MD, USA. 4 Department of Global 
Health, University of Washington, Seattle, USA. 

Received: 8 March 2024   Accepted: 22 November 2024

References
 1. World Health Organization. Diarrhoeal disease. 2017. https:// www. who. 

int/ news- room/ fact- sheets/ detail/ diarr hoeal- disea se. Accessed 19 Febru-
ary 2022.

 2. Ferdous F, Das SK, Ahmed S, et al. Severity of Diarrhea and Malnutrition 
among under five-year-old children in Rural Bangladesh. Am J Trop Med 
Hyg. 2013;89:223–8.

 3. Checkley W, Buckley G, Gilman RH, et al. Multi-country analysis of the 
effects of diarrhoea on childhood stunting. Int J Epidemiol. 2008;37:816.

 4. Lenters L, Wazny K, Bhutta ZA. Management of Severe and Moderate 
Acute Malnutrition in Children. In: Black RE, Laxminarayan R, Temmerman 
M, Walker N, eds. Reproductive, Maternal, Newborn, and Child Health: 
Disease Control Priorities, Third Edition (Volume 2). Washington (DC): 
The International Bank for Reconstruction and Development / The World 
Bank, 2016. http:// www. ncbi. nlm. nih. gov/ books/ NBK36 1900/. Accessed 
27 November 2020.

 5. WHO, UNICEF, World Bank., Levels and trends in child malnutrition: 
UNICEF/WHO/World Bank Group joint child malnutrition estimates: key 
findings of the 2023 edition. 2023. https:// www. who. int/ publi catio ns/i/ 
item/ 97892 40073 791. Accessed 3 November 2024.

 6. Danaei G, Andrews KG, Sudfeld CR, et al. Risk factors for Childhood Stunt-
ing in 137 developing countries: a comparative risk Assessment Analysis 
at Global, Regional, and country levels. PLoS Med. 2016;13:e1002164.

 7. Stobaugh HC, Rogers BL, Rosenberg IH, et al. Children with poor Linear 
Growth are at risk for repeated relapse to Wasting after Recovery from 
Moderate Acute Malnutrition. J Nutr. 2018;148:974–9.

 8. Mertens A, Benjamin-Chung J, Colford JM, et al. Causes and conse-
quences of child growth faltering in low-resource settings. Nature. 
2023;621:568–76.

 9. Wierzba TF, Muhib F. Exploring the broader consequences of diarrhoeal 
diseases on child health. Lancet Global Health. 2018;6:e230–1.

 10. Guerrant RL, DeBoer MD, Moore SR, Scharf RJ, Lima AAM. The impover-
ished gut–a triple burden of diarrhoea, stunting and chronic disease. Nat 
Rev Gastroenterol Hepatol. 2013;10:220–9.

 11. ROTA Council. The broader impact of early childhood diarrhea. 2019. 
https:// preve ntrot avirus. org/ wp- conte nt/ uploa ds/ 2019/ 05/ ROTA- Brief6- 
Lasti ngImp act- SP-1- 3. pdf. Accessed 1 November 2022.

 12. Brander RL, Pavlinac PB, Walson JL, et al. Determinants of linear growth 
faltering among children with moderate-to-severe diarrhea in the global 
enteric Multicenter Study. BMC Med. 2019;17:214.

 13. Ahmed SM, Brintz BJ, Pavlinac PB, et al. Derivation and external validation 
of clinical prediction rules identifying children at risk of linear growth 
faltering. Elife. 2023;12:e78491.

 14. Rahmani K, Thapa R, Tsou P, et al. Assessing the effects of data drift on the 
performance of machine learning models used in clinical sepsis predic-
tion. Int J Med Informatics. 2023;173:104930.

 15. Sahiner B, Chen W, Samala RK, Petrick N. Data drift in medical 
machine learning: implications and potential remedies. Br J Radiol. 
2023;96(1150):20220878.

 16. Powell H, Liang Y, Neuzil KM, et al. A description of the statistical methods 
for the Vaccine Impact on Diarrhea in Africa (VIDA) Study. Clin Infect Dis. 
2023;76:S5–11.

https://doi.org/10.1186/s12911-024-02779-7
https://doi.org/10.1186/s12911-024-02779-7
https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease
https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease
http://www.ncbi.nlm.nih.gov/books/NBK361900/
https://www.who.int/publications/i/item/9789240073791
https://www.who.int/publications/i/item/9789240073791
https://preventrotavirus.org/wp-content/uploads/2019/05/ROTA-Brief6-LastingImpact-SP-1-3.pdf
https://preventrotavirus.org/wp-content/uploads/2019/05/ROTA-Brief6-LastingImpact-SP-1-3.pdf


Page 14 of 14Ogwel et al. BMC Medical Informatics and Decision Making          (2024) 24:368 

 17. Atlas HE, Conteh B, Islam MT, et al. Diarrhea Case Surveillance in the 
Enterics for Global Health Shigella Surveillance Study: epidemiologic 
methods. Open Forum Infect Dis. 2024;11:S6–16.

 18. Feutz E, Biswas PK, Ndeketa L, et al. Data Management in Multicountry 
Consortium studies: the Enterics for Global Health (EFGH) Shigella Sur-
veillance Study Example. Open Forum Infect Dis. 2024;11:S48–57.

 19. Nasrin D, Liang Y, Powell H, et al. Moderate-to-severe diarrhea and stunt-
ing among children younger than 5 years: findings from the Vaccine 
Impact on Diarrhea in Africa (VIDA) Study. Clin Infect Dis. 2023;76:S41–8.

 20. Nowok B, Raab GM, Dibben C. synthpop: Bespoke Creation of Syn-
thetic Data in R. J Stat Soft. 2016; 74. http:// www. jstat soft. org/ v74/ i11/. 
Accessed 23 September 2023.

 21. Joseph VR. Optimal ratio for data splitting. Statistical Analysis and Data 
Mining: The ASA Data Science Journal. 2022;15:531–8.

 22. Nasrin D, Blackwelder WC, Sommerfelt H, et al. Pathogens Associated 
with Linear Growth Faltering in Children with Diarrhea and Impact of 
Antibiotic Treatment: The Global Enteric Multicenter Study. J Infect Dis. 
2021;224:S848–55.

 23. van Buuren S, Groothuis-Oudshoorn K, Vink G et al. Package ‘mice’. 2021. 
https:// cran.r- proje ct. org/ web/ packa ges/ mice/ mice. pdf. Accessed 31 
May 2021.

 24. Kursa MB, Rudnicki WR. Package ‘Boruta’. 2020. https:// cran.r- proje ct. org/ 
web/ packa ges/ Boruta/ Boruta. pdf. Accessed 31 May 2021.

 25. Refaeilzadeh P, Tang L, Liu H. Cross-Validation. In: LIU L, ÖZSU 
MT,Encyclopedia of Database Systems. Boston, Springer MA. US, 2009: 
532–538. https:// doi. org/ 10. 1007/ 978-0- 387- 39940-9_ 565. Accessed 17 
October 2023.

 26. Bach M, Werner A, Żywiec J, Pluskiewicz W. The study of under- and 
over-sampling methods’ utility in analysis of highly imbalanced data on 
osteoporosis. Inf Sci. 2017;384:174–90.

 27. Saito T, Rehmsmeier M. precrec: Calculate Accurate Precision-Recall and 
ROC (Receiver Operator Characteristics) Curves. 2023; https:// CRAN.R- 
proje ct. org/ packa ge= precr ec. Accessed 10 February 2023.

 28. Huang Y, Li W, Macheret F, Gabriel RA, Ohno-Machado L. A tutorial on 
calibration measurements and calibration models for clinical prediction 
models. J Am Med Inform Assoc. 2020;27:621–33.

 29. Biecek P, Maksymiuk S, Baniecki H, DALEX. : moDel Agnostic Language for 
Exploration and eXplanation. 2023; https:// CRAN.R- proje ct. org/ packa ge= 
DALEX. Accessed 10 February 2023.

 30. Cowley LE, Farewell DM, Maguire S, Kemp AM. Methodological standards 
for the development and evaluation of clinical prediction rules: a review 
of the literature. Diagn Prognostic Res. 2019;3:16.

 31. Nagelkerke J. modelplotr: Plots to evaluate the business value of predic-
tive models. 2020; https:// cran.r- proje ct. org/ web/ packa ges/ model plotr/ 
vigne ttes/ model plotr. html. Accessed 19 November 2022.

 32. R Core Team. R: The R Project for Statistical Computing. 2021. https:// 
www.r- proje ct. org/. Accessed 3 December 2021.

 33. Loli S, Carcamo CP. Rotavirus vaccination and stunting: Secondary Data 
Analysis from the Peruvian Demographic and Health Survey. Vaccine. 
2020;38:8010–5.

 34. Benjamin-Chung J, Mertens A, Colford JM, et al. Early-childhood 
linear growth faltering in low- and middle-income countries. Nature. 
2023;621:550–7.

 35. Victora CG, de Onis M, Hallal PC, Blössner M, Shrimpton R. Worldwide tim-
ing of growth faltering: revisiting implications for interventions. Pediatrics. 
2010;125:e473–480.

 36. Ngari MM, Iversen PO, Thitiri J, et al. Linear growth following complicated 
severe malnutrition: 1-year follow-up cohort of Kenyan children. Arch Dis 
Child. 2019;104:229–35.

 37. Garenne M, Myatt M, Khara T, Dolan C, Briend A. Concurrent wasting and 
stunting among under-five children in Niakhar, Senegal. Matern Child 
Nutr. 2018;15:e12736.

 38. Eddington HS, Trickey AW, Shah V, Harris AHS. Tutorial: implementing and 
visualizing machine learning (ML) clinical prediction models into web-
accessible calculators using Shiny R. Ann Transl Med. 2022;10:1414.

 39. Murphree DH, Quest DJ, Allen RM, Ngufor C, Storlie CB. Deploying Predic-
tive Models In A Healthcare Environment - An Open Source Approach. 
In: 2018 40th Annual International Conference of the IEEE Engineering 
in Medicine and Biology Society (EMBC). 2018: 6112–6116. https:// ieeex 
plore. ieee. org/ docum ent/ 85136 89. Accessed 6 October 2023.

 40. Khalilia M, Choi M, Henderson A, Iyengar S, Braunstein M, Sun J. Clinical 
Predictive Modeling Development and Deployment through FHIR Web 
Services. AMIA Annu Symp Proc. 2015;2015:717–26.

 41. Giuffrè M, Shung DL. Harnessing the power of synthetic data in health-
care: innovation, application, and privacy. Npj Digit Med. 2023;6:1–8.

 42. Gonzales A, Guruswamy G, Smith SR. Synthetic data in health care: a nar-
rative review. PLOS Digit Health. 2023;2:e0000082.

 43. Marwala T, Fournier-Tombs E, Stinckwich S. The use of synthetic data to 
train AI models: opportunities and risks for sustainable development. 
ArXiv abs/2309.00652. 2023: n. pag.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.jstatsoft.org/v74/i11/
https://cran.r-project.org/web/packages/mice/mice.pdf
https://cran.r-project.org/web/packages/Boruta/Boruta.pdf
https://cran.r-project.org/web/packages/Boruta/Boruta.pdf
https://doi.org/10.1007/978-0-387-39940-9_565
https://CRAN.R-project.org/package=precrec
https://CRAN.R-project.org/package=precrec
https://CRAN.R-project.org/package=DALEX
https://CRAN.R-project.org/package=DALEX
https://cran.r-project.org/web/packages/modelplotr/vignettes/modelplotr.html
https://cran.r-project.org/web/packages/modelplotr/vignettes/modelplotr.html
https://www.r-project.org/
https://www.r-project.org/
https://ieeexplore.ieee.org/document/8513689
https://ieeexplore.ieee.org/document/8513689

	Predictive modelling of linear growth faltering among pediatric patients with Diarrhea in Rural Western Kenya: an explainable machine learning approach
	Abstract 
	Introduction 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data sources
	Development cohort
	Temporal validation cohort
	Target variable
	Predictive variables and feature selection
	Statistical analysis
	Model development and internal validation
	Temporal Validation and Business Value Evaluation

	Results
	Model performance
	Explanatory model analysis
	Business value evaluation of Champion Model
	Temporal validation

	Discussion
	Conclusion
	Acknowledgements
	References


