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Abstract 
In an area experiencing semi-arid conditions, such as the Mooi River catchment, it is 

crucial to ascertain the evapotranspiration rate accurately. Evaluating evapotranspiration is 

beneficial in areas where the water demand surpasses its availability. This is particularly true in 

semi-arid and arid areas where the lack of water is increasingly impacting economic well-being 

and obstructing sustainable development. Developed by the Food and Agriculture Organization 

of the United Nations (FAO) in 1998, the crop coefficient approach estimates actual 

evapotranspiration (ETc) of crops using the equation ETc = ETo ∗ Kc, where ETo is reference 

evapotranspiration, and Kc is the crop coefficient. However, this approach, assuming uniform crop 

conditions, does not account for spatial variations in crop growth conditions, leading to limitations 

in reflecting the actual water use of crops. Using satellite remote sensing and vegetation indices, 

such as the Normalised Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation 

Index (SAVI), can overcome these limitations by accounting for the spatial and temporal variability 

in crop conditions and growth. NDVI was found to have a superior correlation with the FAO 

tabulated crop coefficients compared to SAVI. It was therefore chosen to compute the new Kc 

values to be used in the ETc crop coefficient equation as it accurately reflects real-time crop growth 

conditions and environmental impacts. The findings of this study underscore significant 

discrepancies in the spatial variation of ETc across the Mooi River catchment, revealing notable 

variation in evapotranspiration, particularly the lower rates in the southwest during the growing 

season. The study evidenced temporal variations between ETc values calculated from FAO 

tabulated Kc and those derived from NDVI-adjusted Kc throughout different maize cultivation 

phases of the year, emphasising, in particular, the need for precise assessment methods during 

the initial maize growth stages. Time-series analysis revealed that the average ETc in the Mooi 

River catchment begins at a low level, marking its minimum at 1.614 mm during the maize's initial 

growth stage. It then undergoes a steady ascent, reaching a peak of 8.83 mm at 85 days after 

planting before gradually decreasing to 2.89 mm as it approaches harvest. The significant ETc 

variations revealed in the maize growth cycle emphasise the need to consider several factors in 

agricultural assessments, such as climate, soil, and human activities. The developed maps and 

models offer critical tools for stakeholders, promoting efficient water use and sustainability in 
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semi-arid areas, thereby increasing food security. The research also highlights the potential of 

this approach for different crops and regions, underscoring its significance for water allocation 

management and yield evaluations, particularly in arid zones. The insights gained, necessary for 

understanding drought impacts and water-related crop stresses, pave the path for sustainable 

water management and increased food security across similar agricultural settings. 

Abstract (in Afrikaans) 

In 'n area met semi-droë toestande soos die Mooirivier-opvanggebied, is die akkurate 

bepaling van die tempo van evapotranspirasie van kardinale belang. Evaluering van 

evapotranspirasie is voordelig in gebiede waar die wateraanvraag die beskikbaarheid oorskry. Dit 

is veral belangrik in semi-droë en droë areas waar waterskaarste die ekonomie beïnvloed en 

volhoubare ontwikkeling belemmer. Die Voedsel- en Landbou-organisasie van die Verenigde 

Nasies (FAO) het die gewaskoëffisiëntbenadering in 1998 ontwikkel om werklike 

evapotranspirasie (ETc) van gewasse te skat met die vergelyking ETc = ETo ∗ Kc, waar ETo 

verwysings evapotranspirasie is, en Kc die gewaskoëffisiënt. Hierdie benadering neem egter nie 

ruimtelike variasies in gewasgroeitoestande in ag nie, wat die vermoë daarvan beperk om 

werklike watergebruik te weerspieël. Om hierdie beperkings te oorkom, kan satelliet-

afstandwaarneming en plantegroei-indekse soos die Genormaliseerde verskil plantegroei-indeks 

(NDVI) en die Grondaangepaste plantegroei-indeks (SAVI) gebruik word om ruimtelike en tydelike 

variasies in gewastoestande en groei in ag te neem. NDVI is bevind om 'n beter korrelasie te hê 

met die FAO se getabuleerde gewaskoëffisiënte in vergelyking met SAVI. Dit is dus gekies om 

die nuwe Kc-waardes te bereken wat gebruik sou word in die ETc gewaskoëffisiëntvergelyking, 

aangesien dit werklike tyd gewasgroeiomstandighede en omgewingsimpakte akkuraat 

weerspieël. Die bevindings van hierdie studie beklemtoon beduidende teenstrydighede in die 

ruimtelike variasie van ETc oor die Mooirivier-opvanggebied, en toon opmerklike variasie in 

evapotranspirasie aan, veral laer tellings in die suidweste gedurende die groeiseisoen. Die studie 

het tydelike variasies tussen ETc waardes wat bereken is vanaf FAO getabuleerde Kc en dié wat 

afgelei is van NDVI-aangepaste Kc deurheen verskillende tye van die jaar, getoon, en beklemtoon 

veral die behoefte aan presiese assesseringsmetodes gedurende die aanvanklike groei stadiums. 

Tydreeksanalise het aan die lig gebring dat die gemiddelde ETc in die Mooirivier-opvanggebied 

begin by 'n lae vlak, met sy minimum op 1.614 mm gedurende die aanvanklike groeifase van 

mielies. Dit ondergaan dan 'n gestadige styging, en bereik 'n piek by 8.83 mm 85 dae na plant 

tyd, voor dit geleidelik afneem tot 2.89 mm soos dit nader aan oes tyd kom. Die studie se 

beduidende ETc-variasies wat in die mieliegroeisiklus aan die lig gebring is, beklemtoon die 
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noodsaaklikheid om verskeie faktore, soos klimaat, grond en menslike aktiwiteite, in landbou-

evaluasies in ag te neem. Die ontwikkelde kaarte en modelle bied kritieke hulpmiddels vir 

belanghebbendes, wat doeltreffende watergebruik en volhoubaarheid in semi-droë gebiede 

bevorder, en sodoende voedselsekerheid verhoog. Die navorsing beklemtoon ook die potensiaal 

van hierdie benadering vir verskillende gewasse en streke, en beklemtoon die belangrikheid 

daarvan vir watertoewysingsbestuur en opbrengs-evaluasies, veral in droë sones. Die insigte wat 

verkry is, wat nodig is om droogte-impakte en waterverwante gewasstremmings te verstaan, baan 

die pad vir volhoubare waterbestuur en verhoogde voedselsekuriteit oor soortgelyke landbou-

omgewings. 

Abstract (in Zulu) 

Endaweni enezimo ezinogwadule, njengendawo egcina amanzi e-Mooi River, kubalulekile 

ukuqinisekisa izinga lokuphefumula kokuhwamuka kwamanzi ngokunembile. Ukuhlola 

ukuhwamuka kokuphefumula kunenzuzo ezindaweni lapho isidingo samanzi sidlula ukutholakala 

kwawo. Lokhu kuyiqiniso ikakhulukazi ezindaweni ezingelona ugwadule ngokugcwele nalezo 

eziwugwadule lapho ukuntuleka kwamanzi kuba nomthelela omkhulu empilweni yezomnotho futhi 

kuvimbe intuthuko esimeme. Ukwakhiwa kwayo yiNhlangano Yezokudla Nezolimo yeNhlangano 

Yezizwe Ezihlangene (i-FAO) ngo-1998, indlela yokusebenza kahle yezitshalo ilinganisela 

kuyizinga lokuphefumula kokuhwamuka (LK) kwezitshalo kusetshenziswa ngokulinganayo  LK = 

NKo ∗ Kc, lapho NKo kuyireferensi yokuphefumula kokuhwamuka, futhi i-Kc iesebenza kahle 

yezitshalo . Kodwa-ke, le ndlela, kucatshangelwa izimo ezifanayo zezitshalo, ayibali ukwehluka 

kwezindawo ezimweni zokukhula kwezitshalo, okuholela emikhawulweni ekuboniseni 

ukusetshenziswa kwamanzi kwangempela kwezitshalo. Ukusebenzisa inzwa eyinkomba 

neyirimothi yesathelayithi nezimila, njenge i-Normalized Difference Vegetation Index (NDVI) 

kanye ne-Soil Adjusted Vegetation Index (SAVI), kunganqoba le mikhawulo ngokubala 

ukuhlukahluka kwendawo kanye nesikhashana ezimeni zezitshalo nokukhula. I-NDVI itholwe 

inokuhlobana okuphakeme okuphathelene nokusebenza kahle kusivuno esifakwe kuthebula ye-

FAO uma kuqhathaniswa ne-SAVI. Ngakho-ke kwakhethwa ukubala amanani amasha e-Kc 

azosetshenziswa ku-ETc crop coefficient equation njengoba ibonisa ngokunembile izimo 

zokukhula kwezitshalo zesikhathi sangempela nomthelela wemvelo. Okutholwe kulolu cwaningo 

kugcizelela umehluko omkhulu ekuhlukeni kwendawo NKc ngaphesheya kwendawo egcina 

amanzi e-Mooi River, okuveza ukuhluka okuphawulekayo kokuphefumulela kokuhwamuka, 

ikakhulukazi amazinga aphansi eningizimu-ntshonalanga ngesikhathi sokukhula. Ucwaningo 

lwafakazela ukwehluka kwesikhashana phakathi kwamanani NKc abalwe ku-FAO yethebula i-Kc 
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kanye nalawo atholakala ku-NDVI elungiswe i-Kc kuzo zonke izigaba zokutshala ummbila 

ezihlukene zonyaka, okugcizelela ikakhulukazi isidingo sezindlela zokuhlola ezinembayo 

phakathi nezigaba zokuqala zokukhula kommbila. Ukuhlaziywa kochungechunge lwesikhathi 

kwaveza  ukuthi isilinganiso so -NKc endaweni egcina amanzi e-Mooi River siqala ezingeni 

eliphansi, siphawula ubuncane baso ku-1.614 mm ngesikhathi sokukhula kommbila. Ibe 

seyikhuphuka kancane, ifike ku-8.83 mm ezinsukwini ezingama-85 ngemuva kokutshala 

ngaphambi kokwehla kancane kancane ibe ngama-2.89 mm njengoba sekusondele ukuvuna. 

Ukwehluka okubalulekile ko-NKc okuvezwe emjikelezweni wokukhula kommbila kugcizelela 

isidingo sokucabangela izici ezimbalwa, njengesimo sezulu, inhlabathi, kanye nemisebenzi 

yabantu, ekuhloleni kwezolimo. Amabalazwe athuthukisiwe namamodeli ahlinzeka ngamathuluzi 

abalulekile kubabambiqhaza, ekhuthaza ukusetshenziswa kwamanzi ngendlela efanele kanye 

nokusimama ezindaweni ezisagwadule, ngaleyo ndlela kwandise ukuvikeleka kokudla. 

Ucwaningo luphinde luveze amandla ale ndlela ezitshalweni nasezifundeni ezahlukene, 

lugcizelela ukubaluleka kwayo ekulawuleni ukwabiwa kwamanzi kanye nokuhlolwa kwesivuno, 

ikakhulukazi ezindaweni ezomile. Ukuqonda okuzuziwe, okudingekayo ukuze kuqondwe 

imithelela yesomiso kanye nengcindezi yezitshalo ehlobene namanzi, kuhlahla indlela 

yokulawulwa kwamanzi okusimeme kanye nokwanda kokuvikeleka kokudla kuzo zonke izimo 

zezolimo ezifanayo. 
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Chapter 1: Introduction 
1.1. Background 

Evapotranspiration (ET) is a critical component of the water cycle, representing the 

amount of water lost to the atmosphere as a result of evaporation from soil and plant surfaces as 

well as transpiration from plant stomata (Jarmain & Klaasse, 2012; Ramoelo et al., 2014; 

Jovanovic et al., 2015; Zhang et al., 2016). Two-thirds of the world's rainfall is returned to the 

atmosphere as evapotranspiration (Jato-Espino et al., 2017). Thereby, after precipitation, 

evapotranspiration is the parameter of the terrestrial hydrological cycle that is most significant 

(Shoko et al., 2015). Because it directly impacts crop productivity and water usage efficiency, 

correct prediction of ET is crucial for effective water management in agricultural systems. Correct 

ET estimation can also help assess the regional water supply and guide policy 

decisions regarding water management and allocation (Suyker & Verma, 2009; Wu et al., 2021; 

Liu et al., 2022). Rainfed agriculture is an essential part of food production in many world regions. 

It supports millions of people's livelihoods and contributes to global food security (Wani et al., 

2009). However, rainfed agriculture depends heavily on precipitation which can vary considerably 

across space and time, affecting crop yields and food production (Rockstrom et al., 2010). 

Understanding crop water requirements in rainfed and irrigated systems is critical for managing 

and allocating water. ET estimation is particularly challenging because of the complicated 

connections between environmental elements and plant physiology, unpredictability in water 

supply, and soil moisture conditions (Allen et al., 1998; Cha et al., 2020). Most of South Africa's 

territory is classified as semi-arid, with an average annual rainfall of 495 millimetres compared to 

yearly global rainfall averages of 814mm per year and an average annual evaporation rate of 

1800mm. South Africa is therefore considered a water-scarce country (WWF-SA, 2016). The Mooi 

River catchment falls within the semi-arid region of South Africa, receiving an average of 600 mm 

per year, 200 mm below the global rainfall average (Lynch et al., 2001; Schulze, 1997). Therefore, 

understanding crop water requirements in this region can play a pivotal role. 

Ground-based techniques and instruments for measuring ET, like weighing lysimeters, 

evaporation pans, soil moisture balances, atmometers, the Bowen Ratio Energy Balance System 

(BREBS), and Eddy Covariance devices, have historically been used. Still, they can be costly, 

time-consuming, and spatially constrained as they are considered point-based measurements 

preventing ET from being estimated over large spatial extents and, as a result, from measuring 

the spatial variability of ET, for example, on a regional scale (Unlu, 2010; Gibson et al., 2013). 

Because of its extensive coverage, regular revisits, and affordability, satellite remote sensing has 
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become a popular method for ET estimation, making it an attractive option for ET estimation in 

remote and economically disadvantaged regions. As they represent the physiological status of 

vegetation and its reaction to environmental elements, vegetation indices (VIs) produced from 

satellite remote sensing data have demonstrated particular promise in assisting with the 

calculation of ET (Gibson et al., 2013). 

The Food and Agriculture Organization (FAO) developed the crop coefficient method for 

ETc estimation in 1998. This method only requires meteorological information from the user 

without needing any equipment or complex computation (Allen et al. 1998). This is a widely used 

approach for estimating crop ETc, likely because of its simplicity. The method works by multiplying 

reference evapotranspiration (ETo) (calculated from meteorological data) by a crop coefficient (Kc) 

(retrieved from a manual developed by the FAO). Still, it has limitations, particularly in its reliance 

on crop coefficients that do not always reflect the actual water use of crops in varying 

environmental conditions, for example, assuming that crop conditions in a field are spatially 

uniform. Satellite remote sensing and associated vegetation indices (for example, NDVI and 

SAVI) offer a solution for this limitation by accounting for variability in crop coefficients resulting 

from the natural variability of crop conditions and growth, spatially and temporally. 

This study aims to estimate maize crop evapotranspiration variability across space and 

time in the Mooi River catchment by integrating the FAO's crop coefficient approach with satellite 

imagery. Either the Normalized Difference Vegetation Index (NDVI) or the Soil-Adjusted 

Vegetation Index (SAVI) will be used, based on which demonstrates the strongest linear 

relationship with the FAO's tabulated crop coefficients. The chosen vegetation index will be used 

to adjust the crop coefficient values found in the FAO manual using its corresponding regression 

model. This regression model will then generate new (adjusted) crop coefficient values that mirror 

the natural variability of the crop conditions in the study area. By doing so, it will be possible to 

estimate the actual evapotranspiration (ETc) values more accurately compared to using the 

generic crop coefficient values from the FAO manual. 

The study area comprises 2808 fields growing various crops, including maize, soybeans, 

sunflowers, and lucerne, each planted at different points during the 2021-2022 growing season. 

During a site visit to the study area, 193 maize fields were identified and marked by recording the 

GPS coordinates of each field's centre. An objective of this study is to detect all remaining maize 

fields among the total of 2808 in the Mooi River catchment that were not spotted during the site 

visit—a species distribution model (SDM) known as MAXENT was used to accomplish this. 
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Of the 193 identified fields, 28 shared similar planting dates (between November 10 to 

November 15, 2021), while the planting dates of the remaining 165 fields are unknown. Given 

that plant growth stages significantly impact evapotranspiration rates, plants sown at different 

times will display different evapotranspiration rates at a given moment. As a result, only the fields 

with planting dates aligned with those of the 28 confirmed fields from the site visit, were selected 

for estimating actual evapotranspiration in this study. The Leaf Area Index (LAI) was used as a 

proxy for the planting dates, helping to pinpoint fields that were likely planted at the same time as 

the known group of 28 fields. 

1.2. Aim of the study 
This study aims to determine how maize crops' actual evapotranspiration (ETc) varies 

over space and time within the Mooi River catchment using satellite multispectral vegetation 

indices and the crop coefficient approach. 

 

1.3. Objectives of the study 
1. To identify all maize fields in the study area using satellite imagery and a species 

distribution model (SDM) based on a ground-truthed sample of maize fields identified 

during a site visit. 

2. To identify and categorise maize fields in the study area based on their planting dates 

during the 2021/2022 growing season, facilitating a comparative analysis of ET across 

different fields. 

3. To determine and analyse the duration of each growth stage in maize during the 

growing season, ensuring that satellite imagery and associated index data are 

assigned to the appropriate crop coefficient values. 

4. To determine the reference evapotranspiration (ETo) for each maize field within the 

study area, providing a baseline for evaluating actual ET and water needs. 

5. To calculate the mean NDVI and SAVI values for each field in the study area. 

6. To adjust the tabulated crop coefficient (Kc) values using a simple linear regression 

model based on the satellite vegetation index values and the existing tabulated crop 

coefficient (Kc) to derive new (Kc) values for each of the fields in the study area. 

7. To calculate the actual ET (ETc) for each maize field within the study area, aiming to 

provide precise water use data for effective agricultural water management. 

8. To generate spatial and temporal maps of ETc, offering a visual representation of ET 

variations across the study area, aiding in decision-making for crop and water 

management. 
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1.4. Problem statement 
The problem this dissertation addresses is the limitation of the FAO56 crop coefficient 

method in accounting for the spatial and temporal variability of evapotranspiration (ET) estimation. 

The FAO56 method simplifies ET estimation but assumes uniform crop conditions, often not 

reflecting actual water use in varied environmental settings. This dissertation proposes the 

integration of satellite remote sensing, particularly using vegetation indices like NDVI and SAVI, 

to enhance the FAO56 method. Satellite imagery can capture spatial and temporal variations in 

plant growth and vigour, significantly affecting ET. This approach aims to refine ET estimation for 

maize crops in the Mooi River catchment, yielding more accurate ETc values by adjusting the 

FAO's crop coefficients to reflect natural variability in crop conditions. 

1.5      Dissertation structure 
Chapter 1 sets the foundation for the research, introducing the importance of 

evapotranspiration (ET) in agriculture and water management. It explores traditional ground-

based ET measurement methods, their limitations, and the emerging potential of satellite remote 

sensing for ET estimation, specifically focusing on maize crops in South Africa's Mooi River 

catchment. Chapter 2 comprehensively reviews local and international literature to define 

evapotranspiration and its influencing factors. This chapter also delves into the concepts of 

reference evapotranspiration (ETo) and crop coefficient (Kc), and how they relate to actual 

evapotranspiration (ETc). It then discusses satellite-based remote sensing models used for ET 

estimation and provides an overview of related studies both within South Africa and 

internationally. Chapter 3 provides a detailed geographical description of the study area, along 

with essential background information, and outlines the structure and various phases of the 

research methodology. Chapter 4 details the results obtained after implementing the 

methodology, encompassing phases from maxent modelling to calculating actual ET and creating 

spatiotemporal maps. Chapter 5 delves into a thorough discussion of the research findings, 

highlighting significant insights. Finally, Chapter 6 concludes the dissertation, emphasising the 

importance of the research findings and offering recommendations for future studies in this field. 
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Chapter 2: Literature Review 

This chapter sets out to define the term ‘evapotranspiration’ (ET), as well as those factors 

that regulate ET. It is followed by an explanation of reference evapotranspiration (Eto) and crop 

coefficient (Kc) and how these concepts relate to actual evapotranspiration (ETc). The chapter 

continues with a discourse on satellite-based remote sensing models for estimating 

evapotranspiration. Lastly, an overview of international and South African remote sensing studies 

on evapotranspiration is provided. 

2.1.  Evapotranspiration 
Evapotranspiration (ET), also known as actual ET or consumptive use, is a process 

whereby water is lost through a combination of transpiration from plant leaves and evaporation 

from soil surfaces (Fig. 2.1) (Jarmain & Klaasse, 2012; Ramoelo et al., 2014; Jovanovic et al., 

2015). On crop fields, transpiration often plays the most significant role in evapotranspiration 

(Sello, 2019). Still, according to the FAO (1998), during the planting season, nearly 100% of ET 

comes from evaporation, while at full crop cover, more than 90% of ET comes from transpiration. 

Evaporation from the soil is mainly influenced by the amount of solar radiation reaching the soil 

surface. This amount decreases as the crop canopy develops over the growing season, creating 

more shade over the soil, and once the crops are fully developed covering the ground, 

transpiration becomes the main component of ET (Allen et al., 1998; Sello, 2019). The 

evapotranspiration rate is expressed in millimetres (mm) per unit time. The rate represents the 

amount of water lost from a cropped surface in units of water depth. The time unit can be an hour, 

day, decade, month, entire growing period, or calendar year (Allen et al., 1998). 

 

 

 

 

 

 

 

 

 

Figure 2.1: Depiction of the evapotranspiration process (Irmak, 2017). 
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2.2.  Factors regulating evapotranspiration 
ET varies depending on the heterogeneity of the landscape and topography, 

meteorological parameters, crop characteristics, soil characteristics and environmental factors 

(Fig. 2.2) (Jovanovic et al., 2015). Therefore, ET can vary significantly over time and space. The 

main meteorological factors that influence the rate of ET are solar radiation, humidity, air 

temperature and wind speed (Allen et al., 1998; Jovanovic et al., 2015). In addition, the physical 

characteristics of crops play an essential role in evapotranspiration processes, as pointed out by 

Allen et al. (1998). Therefore, when assessing ET in crop fields, characteristics including crop 

type, leaf shape, crop height, leaf albedo and growth stage should be considered (Allen et al., 

1998; Brown, 2000). 

A plant's stage of development, density and size influence ET to some extent (Allen et al., 

1998; Dye, 2013). Large plants and regions with thick plant canopies tend to increase the ET rate 

as opposed to smaller crop types in areas with limited plant canopies that typically decrease 

evapotranspiration (Brown, 2000; Sello, 2019). Differences in crop height, transpiration, reflection, 

crop roughness, crop rooting characteristics and ground cover result in variations in 

evapotranspiration levels for different crops under the same environmental conditions (Brown, 

2000; Courault et al., 2003; Sello, 2019). In addition, environmental factors such as low soil 

fertility, inappropriate soil salinity, lack of soil nutrients, compact soil surfaces, substandard soil 

management, and the presence of pests and diseases may affect evapotranspiration (Allen et al., 

1998). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Factors regulating the rate of evapotranspiration (Allen et al., 1998). 
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2.3.  Meteorological factors 
2.3.1. Solar radiation and air temperature 

Evapotranspiration is an energy-dependent process, and the energy related to 

meteorological and environmental factors regulates the rate at which it occurs (Huang & Fry, 

2000). According to Liou & Kar (2014), ambient air temperature is determined by the amount of 

heat that reaches the Earth’s surface and by the amount of solar radiation absorbed by the 

atmosphere. The ET rate of crops is influenced by sensible heat, where the air moves over crops 

and controls evapotranspiration (Allen et al., 1998; Liou & Kar, 2014). Conversely, where air 

temperature is lower and solar radiation less, for example, in cloudy, cool weather, moisture 

reduction by evapotranspiration is less compared to warm sunny weather (Allen et al., 1998). 

Solar radiation regulates ET by influencing the temperature of plants through the amount of 

radiation absorbed. The more the plant temperature increases, the higher the rate of ET will be 

(Kim & Beard, 1988; Beard et al., 1992; Huang & Fry, 2000). 

2.3.2. Relative humidity 

Decreases in ambient relative humidity result in increased ET rates as the transpiration 

rate depends on the vapour pressure gradient between the plant’s stomatal cavity and the 

atmosphere (Huang & Fry, 2000). In contrast to humid regions, arid and semi-arid areas can 

experience relative humidity of 10% or less during summer months coupled with high 

temperatures, which results in water use rates far more significant than those observed in humid 

regions (Beard et al., 1992). 

2.3.3. Wind speed 

 Wind speed influences the convective heat fluxes between the atmosphere and the soil 

surface and the airflow over the soil surface (Cascone et al., 2019). When vaporising water, the 

air above the evaporating surface becomes saturated with water vapour. If this air is not 

continuously replaced with drier air, the driving force for water vapour removal and the 

evapotranspiration rate decreases (Allen et al., 1998). Wind can also increase the rate of ET by 

disturbing the leaf boundary layer through several mechanisms, including leaf collisions, which at 

higher wind speeds cause abrasions that induce higher rates of water loss through the plant 

cuticle. It has been found that plants constantly exposed to higher wind speeds tend to develop 

smaller stomata and have much lower osmotic potentials than those not frequently exposed to 

wind (Grace & Russel, 1977; Huang & Fry, 2000). 
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2.3.4. Soil characteristics 

The soil factors that affect ET include soil temperature, saturated and unsaturated flow 

characteristics, and moisture content (Carow, 1985; Wang et al., 2012; Cascone et al., 2019). All 

species experience greater ET rates with increasing soil temperatures, and some studies (for 

example, Barbieri et al., 2012; Hussain et al., 2019) have demonstrated that ET is directly 

correlated with the amount of available soil water. Additionally, because cooler temperatures are 

typically associated with higher moisture content soils, soil moisture content can also alter ET. 

This is generally seen in the early phases of the growing season in locations with summer rainfall, 

especially in spring (Carow, 1985; Wang et al., 2012). 

2.4. Importance of measuring evapotranspiration 
The spatiotemporal distribution of water availability is controlled by terrestrial 

evapotranspiration. It is the centre of the Earth system's water, carbon, and energy cycles (Liu et 

al., 2020). According to most estimates, evapotranspiration absorbs over 50% of the sun's energy 

and transmits over 60% (up to 70% in arid locations) of the rainfall into the atmosphere (Yao et 

al., 2013). ETc rates also control groundwater recharge and feedback to continental precipitation 

patterns (Liu et al., 2022). Therefore, understanding hydrological fluctuations requires precise and 

ongoing estimations of the spatiotemporal distribution of ET. Estimating evapotranspiration can 

provide insight into regional water management in a changing climate, including drought 

monitoring and agricultural water consumption efficiency (Wu et al., 2021; Liu et al., 2022). 

In agriculture, evapotranspiration is an essential aspect of measuring crop water use and 

an important factor affecting crop productivity (Suyker & Verma, 2009). An accurate estimation of 

evapotranspiration from crops is crucial in irrigation management and crop yield assessments, 

particularly in arid regions. For example, in maize-soybean systems, much research has been 

conducted on the impact of water-related stress on crop development and yield (Denmead & 

Shaw, 1960; Musick & Dusek, 1980; Suyker & Verma, 2009). In addition, when rainfed agriculture 

occurs in semiarid regions where annual precipitation is often below potential evapotranspiration 

demands, continuously measuring ET throughout the growing season can assist in forecasting 

the potential impact of droughts on crop yields during the growing season (Stewart & Peterson, 

2014). Low rainfall during the growing season can cause deficits in the amount of soil moisture 

available for ET from rainfall, thereby causing actual evapotranspiration (ETc) to be less than 

potential ET during some years, which can result in lower-than-expected yields at harvest time 

(Stewart & Peterson, 2014). In some areas, fallow periods (when no crops are grown on fields) 

accumulate soil moisture to offset the difference between growing season precipitation and 
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potential ET. Conservation tillage or no-till can significantly increase the amount of soil moisture 

available before the start of the growing season and hence offset a deficit in the amount of soil 

moisture available for ET during the growing season (Stewart et al., 2010; Peterson et al., 2012). 

Hassan-Esfahani et al. (2014) point out that evapotranspiration measurements are essential in 

determining agriculture's current and future water needs. This is particularly relevant for South 

Africa, as a water-scarce country, since it requires better estimations of crop water use to assess 

and improve water conservation strategies and to optimise decision-making in the allocation of 

water resources in the context of agriculture. Since ET reflects crop water requirements under 

different environmental and meteorological conditions, measuring ET in the Mooi River catchment 

of South Africa can provide valuable insights regarding regional water demand and that of varying 

maize cultivars under various conditions. 

2.4.1. Water-use efficiency 

Water Use Efficiency (WUE) is a critical component of water conservation initiatives and 

is typically measured as the ratio of harvested biomass to accumulated ET. The effectiveness of 

various crops and cultivars under various environmental conditions in dryland and irrigated 

settings, as well as the impact of specific crop management strategies on WUE and ET, are all 

evaluated along with irrigation management practices (Djaman et al., 2018; Hussain et al., 2019). 

For example, Zeri et al. (2013) note that WUE is an essential indicator of bioenergy crop 

performance as it depends on how effectively crops utilise available soil moisture to produce 

biomass. Consequently, estimating ET is crucial for sustainable agriculture, especially with 

remote sensing techniques that enable doing so across large spatial extents and at a low cost. It 

was discovered by Barbieri et al. (2012) that narrow rows consistently increased crop ET during 

the early stages of crop growth but that the initial increases in ET were diluted during the season 

and ultimately negligible in terms of WUE. This is another example of how ET estimation can be 

used to assess WUE. 

2.4.2. Irrigation management 

Improving irrigation water management for crop production is becoming important in many 

areas of the world as water supplies shrink and the competition with ever-expanding urban areas 

continue to increase (Ko & Piccinni, 2008). Most consumptive use of irrigation water is transported 

to the atmosphere as evapotranspiration. Consequently, measuring ET is vital in irrigation 

management, particularly in locations where total freshwater supplies are low. A study by Ko & 

Piccinni (2008) on maize yield responses under different crop evapotranspiration-based irrigation 

management strategies found that over three years, the maize yield was highest at 100% ET-
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based irrigation compared to 75% and 50%, respectively and concluded that ET-based irrigation 

is one of the most efficient water delivery schemes, resulting in greater WUE and grain yield with 

less water input. 

2.5. Estimation of evapotranspiration 
2.5.1. Conventional methods for ET estimation 

Traditional methods for estimating ET, such as weighing lysimeters, evaporation pans, 

soil moisture balances, atmometers, the Bowen Ratio Energy Balance System (BREBS), and 

Eddy Covariance, have been extensively used to study ET (Gibson et al., 2013). The industry 

standard for measuring ET has for many years been the lysimeter because of its high degree of 

accuracy and for being the most direct method. Different types of lysimeters exist and generally 

work by extracting a soil core (monolith) from the ground and placing it into a container which 

contains a scale. The crop is cultivated inside the monolith in the container, and any weight loss 

of the monolith is attributed to soil evaporation, transpiration, as well as drainage loss by recording 

water that seeps out the bottom of the container, thereby computing the total ET (Evett et al., 

2009; Unlu, 2010). However, these units are rare and not frequently used outside of research 

since they are expensive and immobile (Jensen et al., 1990). According to Unlu (2010), the Bowen 

ratio-energy balance (BREB) micrometeorological approach has frequently been employed to 

calculate ET as an alternative to the lysimeter due to its simplicity, robustness, and low cost. This 

method estimates latent heat flux from a surface using measurements of air temperature and 

humidity gradients, net radiation, and soil heat flux (Todd et al., 2000). Eddy covariance is similar 

to the BREB method in that it is also a micrometeorological approach. However, Eddy covariance 

is a more direct method as it directly measures turbulent fluxes, and heat or gas exchange 

between the underlying surface and the atmosphere in situ, thereby calculating 

evapotranspiration from these parameters (Launiainen et al., 2005). 

All of these conventional techniques are point-based measurements, meaning they 

prevent ET from being estimated over large spatial extents and, as a result, from measuring ET's 

spatial variability, for example, on a regional scale (Unlu, 2010). Additionally, most of them are 

too expensive and impractical for many farmers to use, which prevents ET measurements from 

being done in most farming practices despite their crucial role in water conservation and 

understanding crop water requirements under various environmental conditions (Unlu, 2010). 

However, with advances in satellite technology and data acquisition, satellite-based remote 

sensing methods of measuring ET are growing in popularity. They can, therefore, overcome the 
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shortcomings of these conventional, point-based methods, particularly their lack of accounting for 

spatiotemporal variability (Gibson et al., 2013). 

2.5.2. Satellite-based Remote Sensing methods for estimation of evapotranspiration 

Using satellite-based remote sensing (RS) to calculate ET has become popular in recent 

decades. This can be attributed to its high cost-effectiveness, comprehensive and high-frequency 

coverage, and sufficient accuracy (Zhang et al., 2016). Gibson et al. (2013) point out that remote 

sensing technology holds great promise by allowing specific water resource situations to be 

monitored long-term. Estimation of ET using RS started in the 1970s and has evolved into many 

approaches (Fig. 2.3), each with its advantages and limitations. Therefore, no consensus exists 

on the most accurate model (Zhang et al., 2016). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Important publications that have influenced the course of remote sensing-based ET estimation 

(adopted from Zhang et al., 2016). 

 

The major RS approaches (see Table 2.1) include Surface Energy Balance Methods 

(single- and dual-source models) such as the Surface Energy Balance over Land (SEBAL), 

Surface Energy Balance System (SEBS), and Mapping Evapotranspiration at high Resolution 

with Internalized Calibration (METOIC) as well as empirical methods that involve the use of 

statistically-derived relationships between ET and vegetation indices such as normalised 

difference vegetation index (NDVI) or the enhanced vegetation index (EVI) (also called VI-ETo 
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method), physically-based methods including the Penman-Monteith and Priestly-Taylor methods, 

Ts-VI Space methods, and the Water Balance method (Courault et al., 2005; Nagler et al., 2005; 

Liou & Kar, 2014; Zhang et al., 2016; Majozi et al., 2017). 

The FAO56 crop coefficient method, is a practical and widely accepted method for 

estimating ETc (where Etc is obtained as a product between reference evapotranspiration (ETo) 

and a crop coefficient (Kc). Although considered a conventional method in its basic form, there 

have been advances in remote sensing technologies in an attempt to increase its accuracy by 

accounting for spatial and temporal variability in crop and field conditions; thus, making this 

method suitable to use over large spatial extents. Since its integration with remote sensing 

technology and specifically vegetation indices, this method has also been referred to as the VI-

ETo method (Mateos et al., 2013). The VI-ETo approach is simpler compared to energy balance 

methods since it needs fewer measurements, and although it ignores ET reduction due to stomata 

closure caused by soil moisture vapour deficit (detected by energy-balance methods), it assumes 

that stomata closure has a relatively small effect on ET reduction compared to the effect that the 

size of the crop has. It also considers the reduction of growth - an indirect but important effect of 

crop water stress according to Mateos et al. (2013). Gonzalez-Dugo et al. (2009) evaluated 

several models based on the energy balance and the VI-ETo method using a limited dataset of 

eddy covariance measurements of ET made over maize and soybean crops in Iowa (United 

States of America). That study showed that estimates of the two selected energy-balance models 

were satisfactory and that the estimates from the VI-ETo method were as good as those obtained 

with the energy-balance models. 

2.6. Crop Coefficient (Kc) 
The crop coefficient (Kc) incorporates those factors that distinguish the crop that is being 

studied from a standard reference surface i.e., the Eto surface. These coefficient values are often 

obtained from the Food and Agricultural Organization (FAO) of the United Nations (UN) Irrigation 

and Drainage Paper No. 56, where they are tabulated for the practical purpose of crop water 

management by farmers and engineers (Kamble et al., 2013). Kc is the quantitative form of the 

growth of a crop over time, and it is also called a crop growth curve (Mokhtari et al., 2018). 

2.6.1. Factors Affecting Crop Coefficient 

The factors that influence the crop coefficient include the crop type, soil, climate, and stage 

of crop growth (Allen et al., 1998). Therefore, different types of crops at different growth stages 

and in different environmental conditions have different crop coefficients (Fig. 2.4). Differences in 
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albedo, crop heights, aerodynamic properties, and leaf and stomata properties are factors that 

vary between different types of crops and therefore affect Kc between different types of crops. In 

terms of climate, the same factors that reference evapotranspiration are determined by affecting 

the crop coefficient, including humidity and wind speed. For example, as Allen et al. (1998) 

explain, the aerodynamic properties of maize are greatly different from that of Alfalfa reference 

grass and, therefore, the crop coefficient for maize increases as wind speed increases and as 

relative humidity decreases in a given area. Finally, the crop growth stage influences the crop 

coefficient since the ground cover, crop height, and leaf area all change throughout the different 

growth stages. The stages can be distinguished between initial, crop development, mid-season, 

and late season (Fig. 2.4) (Irmak, 2017). 

Figure 2.4: The four different growth stages of maize crops (Irmak, 2017). 
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Table 2.1: Summary of main RS methods, including their advantages and limitations (adopted from Zhang et al., 2016). 
Model Advantages Assumptions/Limitations E Partition Minimum Forcing 

Data Reqs. 

Open-source SEB Simple, low requirement for 
metrological data 

Only available for clear-sky; requires parameterization of 
excessive resistance and local calibration; susceptible to 
Ts and Ta errors; requires scaling of instantaneous to daily 
values 

No partition Rn, Ts, Ta 

One-source spatial 
variability SEB 

Simple, low requirement for 
metrological data 
 

Only available for clear-sky; requires parameterization of 
excessive resistance and local calibration; susceptible to 
Ts and Ta errors; requires scaling of instantaneous to daily 
values 

No partition Rn, Ts, Ta 

Two-source SEB Simple, low requirement for 
metrological data 
 

Only available for clear-sky; high sensitivity to surface 
temperature errors; requires scaling of instantaneous to 
daily values 

Soil and vegetation components Rn, Ts, Ta 

Two-source time 
differencing SEB 

Low requirement for 
meteorological forcing; 
reduced sensitivity to absolute 
Ts − Ta differences; does not 
need local calibration 

Only available for clear-sky; high sensitivity to surface 
temperature errors; requires scaling of instantaneous to 
daily values 

Soil and vegetation components Rn, Ts 

Ts-VI methods Low sensitivity to Ts errors; low 
metrological data requirement 
 

Only available for clear-sky; relationships derived from Ts-
VI space is oversimplified; requires scaling of 
instantaneous to daily values 

Soil and vegetation components Rn, Ts, VI 

PM models Process-based, physically 
sound, temporally continuous 
coverage, flexible time step, 
no or low requirements for 
surface temperature 

High meteorological forcing requirements; simplified or 
semi-empirical estimate of canopy conductance 

Soil, vegetation, and/or open water 
components 

Rn/radiations, Ta, 
VPD or air vapor 
pressure, and 
LAI/VI 
 

PT models Simple; moderate requirement 
for meteorological forcing 

Many simplifications of physical processes; requires 
ground heat flux as an input or assumes that it is 
negligible; applied on a monthly time scale 

Soil and vegetation components Rn, Ta, albedo, 
water vapor 
pressure; P, θ, 
and snow water 
equivalent needed 
for GLEAM 

MEP model Low requirement for 
meteorological forcing 

Requires continuous land surface temperature to produce 
continuous E record 

Soil and vegetation components Rn, Ts, qs 

Water 
balance methods 

Simple and easy to be applied Cannot directly derive gridded E values; has coarse 
spatiotemporal resolution; sensitive to precipitation data 
error 

No partition P, Runoff, and 
ΔSW 

Other water-carbon 
linkage 
methods 

Considering the linkage 
between carbon and water 
fluxes 

Can have high requirements for forcing data and be 
impacted by data gaps and errors but differ in different 
models; empirical carbon–water relationships may be used 

Usually partition into soil and 
vegetation components 

Varies among 
different models. 

Empirical models Simple, easy to apply Requires calibration; degraded capability outside of 
calibration area; over-simplification of physical processes; 
subject to weather condition if land surface temperature is 
required 

Usually do not partition E Varies for different 
models 
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2.6.2. Plant physiology factors 

Evapotranspiration can vary greatly among crop cultivars within a species as water 

absorption, translocation, and transpiration are affected by many plant-morphological and 

physiological factors (Shearman, 1986). Shoot and root characteristics of plants are among the 

characteristics that affect the variability in ET between species and cultivars, along with 

differences in canopy configuration and growth habit, stomatal density and regulation, and leaf 

rolling or folding characteristics (Huang & Fry, 2000). According to Beard (1973), rooting 

characteristics are a significant factor in water absorption and hence have a significant impact on 

ET as well as water use efficiency. For example, root length density at deep soil depths has been 

highly correlated with water uptake (Huang & Fry, 2000). Deep plant rooting enhances water 

uptake from deeper soil profiles where soil moisture is available, and plants with greater root 

length density in deep soil layers are more capable of maintaining water uptake and stomatal 

conductance when soil moisture decreases compared to those with lower root length density 

(Carrow, 1996; Qian et al. 1997). Furthermore, the height of different plant species and cultivars 

also has an effect on ET. For example, taller than average cultivars of maize are exposed more 

to turbulent airflow compared to shorter cultivars and may, therefore, have higher ET rates (Huang 

& Fry, 2000.). Plant density (number of individuals per unit of ground area) is another factor that 

influences ET. Evapotranspiration can increase at lower plant densities when a relatively open 

canopy allows for more movement of air around plants, thereby increasing water loss from 

advective forces (Milani, 2019). Air that is directly above bare ground in lower plant density 

situations tends to be warmer than that above dense canopies. Therefore, the warmer air flowing 

around the plants also contributes to higher ET (Milani, 2019). 

2.7.  Single and dual crop coefficients 
The Kc can follow either a single or dual approach. The single approach integrates the 

relationship between ETc and ETo into a single Kc which represents averaged evaporation and 

transpiration values from a typical cropped surface for typical frequencies of wetting (Eq. 2.1): 

𝐾𝑐 =
𝐸𝑇𝑐
𝐸𝑇𝑜

 

Equation 2.1: The single crop coefficient approach. 
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whereas, in the dual approach, crop transpiration and soil evaporation are considered 

separately in two individual factors (Eq. 2.2), namely the basal crop coefficient (Kcb) and the soil 

evaporation coefficient (Ke) (Allen et al., 1998; Ding et al., 2015; Pocas et al., 2020). 

(𝐾𝑐𝑏	 + 	𝐾𝑒) =
𝐸𝑇𝑐
𝐸𝑇𝑜 

Equation 2.2: The dual crop coefficient approach. 

 

The single Kc approach was introduced in FAO-24 (1977) long before the dual approach, 

where standard Kc values are listed (including in FAO-56,1998), is used to construct a standard 

Kc curve for standard and optimal agronomic conditions. The dual crop coefficient approach was 

introduced in 1998 in the FAO-56 document in order to account for variations in Kc caused by 

wetting events. Compared to the single Kc approach, the dual Kc approach can offer more precise 

estimates of daily ETc since the soil evaporation component is calculated separately. This is 

especially true for days following rainfall or irrigation events since wetting events can cause 

increased soil evaporation, thereby causing the actual Kc values to deviate from the single, 

averaged Kc curve (Hunsaker et al., 2005). However, as pointed out by Mateos et al. (2013), the 

application of the dual coefficient approach is limited by the lack of knowledge of the dates of 

irrigation and/or rainfall events. When dealing with large areas this is particularly problematic, 

making the dual approach not viable in such cases. The single crop coefficient approach is 

therefore more practical in these cases as it assumes typical wetting conditions. Furthermore, 

even if dates of wetting events are available from weather stations for example, when dealing with 

large areas, the high spatial variability of rainfall in some areas such as the South African Highveld 

can introduce unnecessary errors in the estimation of Kcb values and curves for areas and fields 

that are located far from weather stations (Landman et al., 2001; Cook et al., 2004; Reason et al., 

2005; Rouault, 2014). Therefore, the lack of data in terms of wetting events and the location of 

the study area being on the Highveld of South Africa, contributed to the decision of using the 

single crop coefficient approach for this study. 

For both the single and dual approach, Kc and Kcb values are tabularized in FAO-56 as 

well as FAO-24 for a large diversity of crops (Allen et al., 1998; Doorenbos & Pruit, 1977). The 

single crop coefficient values which will be used in this study are listed for three main stages of 

crop growth namely initial (Kcini), mid (Kcmid), and end (Kcend) (Allen et al., 1998). The tabulated 

values for Kcmid and Kcend represent those for a sub-humid climate with an average daytime 

minimum relative humidity (RHmin) of approx. 45% and with calm to moderate wind speeds 
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averaging 2m/s. For more humid or arid conditions, or for more or less windy conditions, the 

Kc coefficients for the mid-season and end of season stage should be adjusted (Allen et al., 1998). 

2.8. Crop coefficient curve and satellite vegetation indices 
Using only the generalized crop coefficient values from the FAO Drainage Paper No.56 to 

calculate ET can contribute to estimates that deviate considerably from actual crop 

evapotranspiration (Hunsaker et al., 2003; Kamble et al., 2013). This is because the Kc curve is 

designed to reflect ETc for optimum and standard conditions, but when crop growth and water use 

deviate from the ‘’standard’’ conditions due to environmental factors such as crop stress from 

pests and disease, drought, nutrient deficiency, or variations in crop density for example, then 

conventional Kc curves and values become increasingly inaccurate as these environmental 

factors tend to vary considerably over space and time (Hunsaker et al., 2003). Hunsaker et al. 

(2003) point out that even under standard agronomic and weather conditions with minimal crop 

variability, applying tabulated crop coefficients will require some adjustment to account for local 

conditions. Remote sensing techniques offer a means of overcoming many of the shortcomings 

of conventional crop coefficient estimation, especially for variations in water use caused by these 

spatial and temporal variations in environmental factors. This is because satellite RS reflects the 

actual conditions that are present in the field as influenced by actual crop development patterns, 

local atmospheric conditions, and actual spatial variability of conditions in the field. It is widely 

accepted that remote sensing data is imperative for estimating spatio-temporal information on 

ETc, and therefore, RS techniques have become a popular approach for estimating crop 

coefficients and evapotranspiration (Immerzeel et al., 2006; Al Zayed, 2016; El-Shirbeny et al., 

2015; Ayyad et al., 2019). It has been found in several studies that similarities exist between the 

crop coefficient curve and that of satellite-derived vegetation indices such as the normalized 

difference vegetation index (NDVI) or the soil-adjusted vegetation index (SAVI) (Courault et al., 

2005; Hunsaker et al., 2003; Hunsaker et al., 2005; Folhes et al., 2009; Farg et al., 2012; Kamble 

et al., 2013; Pereira et al., 2015; Zhang et al., 2016; Reyes-Gonzalez et al. 2018; Cha et al., 

2020). Linear regression models are typically used to estimate a relationship between the 

tabulated Kc values and the satellite reflectance values of crops to establish a new crop coefficient 

curve. Estimation of ETc from remote sensing started in the 1970’s, and multispectral vegetation 

indices as near real-time surrogates specifically for crop coefficients was proposed in 1980 by 

Jackson et al. (1980) who demonstrated the close relationship between the seasonal pattern of a 

VI for wheat and that of the wheat crop coefficient. Bausch & Neale (1987) and Neale et al. (1989) 

established the VI-based Kc approach by deriving Kc curves for maize in Colorado based on 
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several VI’s (Hunsaker et al., 2003). Over the years, scholars developed and improved RS 

techniques that are replicable and useful for ETc and Kc estimates. These improvements created 

less need for ground-based measurements and provided ETc and Kc estimates at high spatio-

temporal resolutions that can help decision-makers in agricultural management (Ayyad et al., 

2019). 

2.9. Crop growth stages 
The FAO-56 document by Allen et al. (1998) provides average lengths of plant growth 

stages but explains that these typical growth stage lengths are only intended for use under 

standard crop densities and optimum farming and water management practices. Therefore, 

adjustment of these growth stage lengths according to local conditions is required so that the Kc(b) 

curves more adequately reflect crop water use under local conditions (Hunsaker et al., 2005). 

During the growing season, Kc generally increases from a minimum value at emergence until a 

maximum Kc is reached when the canopy cover is fully developed, generally during mid-season. 

The Kc curve tends to decline during the plant senescence phase after full cover has been reached 

until harvest time, depending on crop growth characteristics and management practices on the 

fields (Allen et al., 1998; Kamble & Irmak, 2008). This crop coefficient curve and seasonal 

distribution can be observed for most agricultural crops as Kc values depend primarily on the 

characteristics of canopies, such as light absorption capacity and canopy roughness, which 

change during the different crop growth stages (Kamble et al., 2013). Justice & Townsend (2002) 

explain that the ratio of transpiration to evapotranspiration increases as the canopy cover 

develops until most of the ET comes from transpiration, and soil evaporation contributes the least 

amount. 

2.9.1. Initial stage 

The initial phase lasts from the date of planting until there is roughly 10% ground cover. 

The crop, the crop cultivar, the planting date, and the climate all have a significant impact on how 

long the initial period lasts. When roughly 10% of the ground surface is covered by green 

vegetation, the initial period is complete. During the initial period, the leaf area is small, and 

evapotranspiration is predominately in the form of soil evaporation. As a result, when the soil is 

moist from irrigation and rainfall, the Kc during the initial phase (Kcini) is high, and when the soil 

surface is dry, the Kc is low (Allen et al., 1998). 
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2.9.2. Crop development stage 

The crop development stage runs from 10% ground cover to effective full cover. The start 

of flowering is when many crops experience effective full cover. Effective cover for row crops, 

such as maize, can be described as the point at which some leaves of plants in adjacent rows 

start to entwine so that soil shading becomes nearly complete or the point at which plants achieve 

nearly full size if no entwining takes place. A way to estimate the occurrence of effective full cover 

is when the Leaf Area Index (LAI) reaches three. LAI is defined as the average total area of leaves 

per unit area of ground surface (can be determined in remote sensing). Soil evaporation 

continuously decreases as the crop matures and progressively covers more and more of the 

ground, and plant transpiration gradually becomes the main process. The Kc value reflects the 

quantity of ground cover and plant development during the crop development stage. Depending 

on the crop, the frequency of wetting, and whether the crop requires more water at full ground 

cover than the reference crop, the Kc values will vary under different conditions (Allen et al., 1998). 

2.9.3. Mid-season stage 

Between effective full cover and the beginning of maturity is the mid-season stage. When 

the crop's evapotranspiration decreases in comparison to the reference ETo, it frequently signals 

the beginning of maturity by the ageing, yellowing, or senescence of leaves, leaf drop, or browning 

of fruit. For maize specifically, the mid-season stage is the longest period in its growth cycles. 

Midway through the season, the Kc reaches its maximum value. For the majority of growing and 

cultural situations, the value of Kc (Kc mid) is mostly consistent. Differences in crop height and 

resistance between the agricultural crop and the grass reference surface, as well as weather 

conditions, would be the main causes of the Kc mid deviating from the reference value (Allen et al., 

1998). 

2.9.4. Late season stage 

The late season stage runs between the start of maturity and harvest or full senescence. 

At the end of this stage, the calculation for Kc and ETc comes to an end (Allen et al., 1998). 

2.10. Reference evapotranspiration (Eto) and the Penman-Monteith method 
Reference ET plays an important part in the Earth’s water and energy cycles during crop 

growth as pointed out by Liu et al. (2016). Understanding the factors that determine reference ET 

and spatiotemporal variations of ET is paramount in terms of guiding water-saving irrigation, 

regulating agricultural production, evaluating climate aridity, understanding vegetation water 

consumption, and the balance of water supply and demand (Liu et al., 2016). 
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 According to Allen et al. (1998), reference evapotranspiration is the evapotranspiration 

rate from a well-watered hypothetical surface, usually, a grass reference crop such as Alfalfa that 

is about 20 inches tall with adequate soil moisture, free of disease, and absent of any physiological 

or environmental stresses is (Irmak, 2017). Since reference ET is only influenced by 

meteorological conditions, it represents the evaporative power of the atmosphere at a specific 

location and time of the year regardless of crop type, soil moisture or management practices that 

are present. In other words, Eto represents the greatest evapotranspiration rate conceivable under 

given physical and meteorological parameters (Sello, 2019). By relating actual ET to a specific 

surface provides a reference to which ET from other surfaces, crop types and growth stages can 

be related (Allen et al., 1998; Brown, 2000). Eto is a climatic parameter estimated based on 

meteorological data, including solar radiation, air temperature, wind speed, and humidity from 

local weather stations (Reyes-Gonzalez, 2018). The FAO Penman-Monteith equation is the 

recommended standard for calculating Eto from meteorological data as this method closely 

approximates Alfalfa Eto (Allen et al., 1998; Cai et al., 2007; Djaman et al., 2018). The equation 

is written as: 

𝐸𝑇𝑟 =
0.408∆(𝑅𝑛 − 𝐺) + 	𝛾(900/(𝑇 + 273))𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)  

Equation 2.3:	The Penman-Monteith equation for calculating reference evapotranspiration. 

 

where Rn is the net radiation at the crop surface (MJ m-2 day-1), G the soil heat flux density (MJ m-

2 day-1), T the air temperature at 2 m height (°C), u2 the wind speed at 2 m height (m s-1), es the 

vapor pressure of the air at saturation (kPa), ea the actual vapor pressure (kPa), ∆ the slope of the 

vapor pressure curve (kPa °C-1) and 𝛾 is the psychrometric constant (kPa °C-1) (Cai et al., 2007). 

2.11. Optical remote sensing vegetation Indices 
The energy reflected by the surface of biomass is calculated using remotely sensed 

reflectance data from satellite sensors as the difference between the incident energy and the 

energy directly absorbed by the leaf or canopy as well as the energy transmitted through the 

biomass surface to the ground or other underlying biomass (Jensen, 2000). The electromagnetic 

spectrum's visible, near-infrared (NIR), and mid-infrared bands (400–2500 nm) are the bands 

typically used for monitoring of vegetation biophysical characteristics. The proportionate amount 

of energy reflected by the biomass varies depending on the wavelength and area of the 

electromagnetic spectrum. Low values in the visible bands and high values in the NIR are typical 

characteristics of the leaf spectral reflectance pattern (Fig. 5) (Jensen, 2000; Pocas et al., 2020). 
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With principal absorption bands for chlorophyll occurring at 0.43–0.45 m and 0.65–0.66 m, the 

leaf pigments in the palisade mesophyll are responsible for a strong absorption of incident energy 

in the visible spectrum, leading to low reflectance values in this spectral range. In contrast, the 

spongy mesophyll layer of the leaves, which is made up of many cells and intercellular air spaces 

where the oxygen and carbon dioxide exchanges associated with photosynthesis and respiration 

occur, is what causes NIR energy to be reflected (Jensen, 2000; Pocas et al., 2020). 

Owing to the fact that different agricultural species exhibit different morphological and 

physiological characteristics, the leaves of different agricultural crop species have different 

spectral response patterns (Fig. 2.5). Additionally, spectral response patterns can vary throughout 

the length of a plant in response to senescence or other stress factors that affect the 

characteristics of the leaf, such as nutrition or water deficiencies (Carter, 1993). Generally, healthy 

green vegetation has high reflectance in the NIR range. As the vegetation canopy grows, more 

NIR energy is reflected, and less red radiant energy is absorbed for photosynthetic activities. As 

a result of reduced absorption by pigments and water, changes in the reflectance patterns, 

particularly increased reflectance at visible and infrared wavelengths, may be associated with 

crop stress. Furthermore, variations in the NIR reflectance pattern of healthy vegetation may be 

connected to the senescence, late phases of plant growth, or yellowing, of the leaves (Carter, 

1993). 

 
Figure 2.5: Typical leaf reflectance profiles for various types of agricultural crops (Hosgood et al., 1993). 
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A vegetation index is needed to make sense of these reflectance values and profiles and 

does so by quantifying vegetation biophysical parameters by combining a number of spectral 

bands in order to represent biomass and/or plant vigour for each pixel in a remote sensing image 

(Zhang & Kovacs, 2012; Liu et al., 2016). This is primarily achieved by deriving the 

electromagnetic wave reflectance information from canopies and leaves using passive sensors 

(Xue & Su, 2017; Pocas et al., 2020). Many different VI’s have been developed for different 

applications including environmental monitoring, biodiversity conservation, agriculture, and 

forestry (Xue & Su, 2017). In agriculture alone, many VI’s have been developed to collect remotely 

sensed information about different aspects and types of plants and in different types of contexts. 

Examples include ‘basic’ vegetation indices such as the Difference Vegetation Index (DVI), the 

Ratio Vegetation Index (RVI), and the Normalized Difference Vegetation Index (NDVI); vegetation 

indices considering atmospheric effects include the Atmospherically Resistant Vegetation Index 

(ARVI), and the Atmospherically Effect Resistant Vegetation Index (AIVI); as well as adjusted-soil 

vegetation indices such the Soil-Adjusted Vegetation Index (SAVI), the Modified Soil-Adjusted 

Vegetation Index (MSAVI), and the Optimized Soil-Adjusted Vegetation Index (OSAVI) (Xue & 

Su, 2017; Sishodia et al., 2020). 

NDVI, which is one of two vegetation indices selected for this study, is calculated from 

multispectral information as the normalized ratio between the red and near-infrared bands. It has 

been used extensively for vegetation monitoring and is one of the most widely used indices for 

detecting variation in crop biomass, crop yield assessment and drought detection worldwide 

(Justice and Townsend, 2002; Kamble et al., 2013; Sishodia et al., 2020). Generally, higher 

values of NDVI indicate a higher degree of photosynthesis. 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)
(𝑁𝐼𝑅 + 𝑅𝐸𝐷)	

Equation 2.4: The equation for calculating Normalized Difference Vegetation Index 

where:  

 NIR = The reflectance of near-infrared radiation  

 Red = The reflectance of visible red radiation 

 

This study will include another popularly used Vegetation Index (VI), namely the Soil-

Adjusted Vegetation Index (SAVI), to be compared to the Normalized Difference Vegetation Index 

(NDVI). The aim is to determine which of the two VIs has the strongest linear relationship with the 
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Food and Agriculture Organization's (FAO) tabulated crop coefficients. Thereby, the most robust 

parameter of the two can be identified for calculating actual crop evapotranspiration. The Soil-

Adjusted Vegetation Index (SAVI) was designed to correct NDVI for the influence of soil 

reflectance/brightness because of differences in soil colour, soil moisture, and soil variability 

where vegetative cover is low by using a soil-reflectance correction factor (L) (Xue & Su, 2017). 

𝑆𝐴𝑉𝐼 =
(𝑅NIR–𝑅red)(1 + 𝐿)
𝑅NIR+ 𝑅red+ 𝐿

	

  

Equation 2.5: The standard equation for calculating Soil-Adjusted Vegetation Index. 

where:  

 NIR = The reflectance of near infrared radiation  

 Red = The reflectance of visible red radiation 

 L = The soil correction factor (related to the amount of green vegetation cover) 

  

The range of L is from 0 to 1 and varies according to the amount of vegetative cover that is 

present. When the degree of vegetation cover is high, L is close to 0. Conversely, when vegetation 

cover is sparse, L is closer to 1 in order to correct soil reflectance (Xue & Su, 2017; Sishodia et 

al., 2020). 

2.12. International and South African Remote Sensing studies of 
evapotranspiration 
2.12.1. International studies 

Specific examples of where the above-mentioned methods/models of RS-based 

estimation of ET have been implemented in different areas of the world include that of Reyes-

Gonzalez et al. (2018) in Comarca Lagunera, Mexico where the Crop Coefficient method (Etc = 

Eto x Kc) was used to estimate ET for five irrigated silage corn fields in four different growing 

seasons using a satellite remote sensing-based vegetation index to calculate Kc values based on 

a relationship between NDVI and tabulated Kc values. Eto was calculated from meteorological 

data from a weather station using the Penman-Monteith method (Reyes-Gonzalez et al., 2018). 

Folhes et al. (2009) conducted a study in a semi-arid region in the northeast of Brazil where grain 

as well as tropical fruits are grown during two months of the growing season. In this study, the ET 

was estimated with the Mapping Evapotranspiration at High Resolution and with Internalized 
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Calibration (METOIC) model using Landsat imagery. This model uses the residual of the energy 

balance equation to estimate ET for each pixel in the image. A micrometeorological tower in the 

crop field measuring ET (eddy correlation flux measurements) was used to validate the ET values 

estimated by the METOIC model (Folhes et al., 2009). An example of a study where the SEBAL 

model (a widely used RS-based model to estimate ET) was used includes that of Cha et al. (2020) 

in the Kai-Kong River Basin in North-western China, where wheat, corn, cotton, chilli, and pear is 

grown. Landsat images were incorporated into the Surface Energy Balance over Land (SEBAL) 

model to calculate daily ET values, which were then used to calculate seasonal ET estimates 

using the trapezoidal and sinusoidal methods (Cha et al., 2020). The Disaggregated Atmosphere 

Land Exchange Inverse (ALEXI/DisALEXI) surface-energy balance model is often used in 

operational ET estimation applications. One such example is OPENET (https://openetdata.org/). 

OPENET is an operational ET portal that uses open-source data from multiple satellites and 

weather stations to provide ET estimates across the western United States. The platform provides 

free access to farmers, landowners, and water managers and uses both the Atmosphere-Land-

Exchange Inverse (ALEXI) and DisALEXI models. These models are surface-energy balance 

models that work by considering time differences related to morning land surface temperature 

derived from geostationary satellites to surface moisture availability and latent heat flux (Knipper 

et al., 2019). Another example where (ALEXI/DisALEXI) was implemented was part of the Grape 

Remote-Sensing Atmospheric Profile and Evapotranspiration experiment (GRAPEX), where 

evapotranspiration rates were monitored over two vineyards in central California in the United 

States (Knipper et al., 2019). 

2.12.2. South African studies 

Many RS-based ET studies have been done in South Africa of which several focused on 

using energy balance models including Surface Energy Balance Algorithm over Land (SEBAL) 

and Surface Energy Balance System (SEBS) (Gibson et al., 2013). Limited focus however has 

been placed on ET estimation of grain crops such as maize; even less so involving statistically 

derived relationships between ET and vegetation indices such as the Normalized Difference 

Vegetation Index (NDVI) in combination with the crop coefficient approach as explained by Allen 

et al. (1998). 

According to Gibson et al. (2013), SEBAL is the most widely applied model in South Africa. 

However, this model is protected by intellectual property law and is not available for unaffiliated 

researchers to use. The Surface Energy Balance System (SEBS) model on the other hand which 

has been used in numerous studies in SA, is an open-source model (Gibson et al., 2013). Various 

https://openetdata.org/
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types of applications for ET estimation using remote sensing techniques have been carried out in 

South Africa and at different spatial scales from field scale to catchment scale and regional scale 

(Kongo & Jewitt, 2006; Klaasse et al., 2008; Gibson et al., 2009; Gibson et al., 2011; Klaasse et 

al., 2011; Jarmain et al., 2011a; Jarmain et al., 2011b; Hellegers et al., 2011; Jarmain & Klaasse, 

2012; Ramoelo et al., 2014). Some examples of South African studies include Kongo & Jewitt 

(2006) who were the first to estimate ET using remote sensing data in South Africa at a catchment 

scale. This study involved a catchment’s response to rainwater harvesting (Gibson et al., 2013). 

Another study was by Gibson et al. (2009) who used the SEBS model to calculate annual ET for 

a quaternary catchment in the Western Cape province to assess the compliance of water users 

to water use legislation. Furthermore, SEBAL modelling was used to calculate ET by Hellegers et 

al. (2011) to assess water use competition in the transboundary Inkomati catchment shared 

between South Africa, Swaziland, and Mozambique. At a provincial scale, Jarmain & Meijninger 

(2012), using SEBAL, assessed the impact of invasive alien plant species and the clearing thereof 

on ET, and the availability of water resources in the Western Cape and KwaZulu-Natal provinces 

(Fig. 2.6). 
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Figure 2.6: Provincial map of South Africa. 

 

In terms of ET studies of crops, ET and water-use efficiency were calculated for table and 

wine grape vineyards in the Western Cape by incorporating high-resolution Landsat imagery into 

the SEBAL model by Klaasse et al. (2008). This research was extended to include deciduous 

fruit-producing areas of the Western Cape and incorporated into an operational product called 

Fruitlook (Jarmain & Klaasse, 2012). This approach has also been used to measure water-use 

efficiency in sugarcane and some grain crops, where the data was disseminated on operational 

websites for users to view on SugarcaneLook and GrainLook (Jarmain et al., 2013). No similar 

ET studies were found to be conducted in the North-West province of South Africa on maize 

crops. 

2.13. Literature review summary and concluding remarks 
The literature review delves into different facets of evapotranspiration (ET), a key 

component of the hydrological cycle characterised by water loss from plant leaves and soil. This 
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process is influenced by a range of factors, including meteorological conditions such as solar 

radiation and air temperature, alongside soil characteristics and crop properties. These factors 

lead to temporal and spatial variations in ET rates, posing precise measurement and estimation 

challenges. This aspect is particularly critical in agricultural contexts, where accurate ET data is 

necessary.  

Traditional methods for estimating ET, such as lysimeters and Eddy Covariance systems, 

offer accuracy but are limited by high costs and their point-based nature, restricting their use over 

large areas. As an alternative, satellite-based remote sensing techniques have emerged as 

popular because of their affordability, extensive coverage, and reasonable accuracy. These 

methods include Surface Energy Balance algorithms and vegetation indices (NDVI and SAVI), 

providing enhanced large-scale agricultural and environmental monitoring solutions. Additionally, 

integrating remote sensing technologies with the FAO56 crop coefficient method shows promise 

for improving ET estimation by considering spatial and temporal variations in plant growth and 

vigour. 

The review concludes by highlighting the crucial role of ET in water resource management, 

particularly in agriculture, where it significantly impacts irrigation, crop yield, and water-use 

efficiency. Advanced remote sensing technologies, combined with traditional methods, offer 

improved ET estimation accuracy, necessary for sustainable agriculture and effective water 

management. While remote sensing models like SEBAL and SEBS have been widely used in 

South Africa, there remains a gap in utilising these methods for grain crops like maize, indicating 

an area for future research and development.
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Chapter 3: Study area and methodology 
3.1. Study area 

The Mooi River catchment (Fig. 3.1) is located on the Highveld of South Africa, covering 

an area of 3,294 km2. It forms part of the primary Vaal River basin and stretches from 16 km north 

of Potchefstroom towards Derby in the north and eastwards towards the Witwatersrand of the 

Gauteng province. 

Figure 3.1:Location of the Mooi River catchment (adopted from Hauptfleisch, 2019). 
 

3.1.1. Environmental setting and land use 

 The Mooi River catchment has a temperate climate with mild to warm summers. It 

experiences summer rainfall (Austral - October to March) with an average of 600 mm per year 

(Lynch et al., 2001; Schulze, 1997). Rainfall over the catchment has high spatial and temporal 

variability, with high-intensity convective storms during the summer months that frequently cause 

severe hail and flash flooding (Dyson, 2009). Land use of the catchment consists mainly of grazing 

areas, cultivated croplands, and urban areas. Main agricultural activities include rainfed 

agriculture of grain crops, particularly maize, as well as livestock farming and irrigated crop 

farming. 
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3.2. Methodology 
The methods for this study are arranged in seven phases. Firstly, the identification of 

maize fields in addition to those collected during the site visit using MAXENT modelling. Secondly, 

the identification of maize fields with planting dates that are similar to those collected during the 

site visit using the Leaf Area Index (LAI). Thirdly, the reference evapotranspiration (ETo) phase, 

during which the ETo values for the isolated fields and the various satellite overpass dates were 

obtained from WAPOR. Fourthly, the growth stage classification where the growth stage lengths 

were calculated using growing degree days (GDDs) so that it could be determined which satellite 

overpass dates fall inside which growth stage, and thus which vegetation index values will be 

assigned to which tabulated Kc values. The fifth stage consisted of adjusting the tabulated crop 

coefficient values taken from the FAO-56 document to account for local relative humidity and wind 

speed conditions before they could be used in the regression analysis. The sixth stage involved 

the development of a linear regression model to find the relationship between the two vegetation 

indices (i.e., NDVI and SAVI) and the tabulated Kc values extracted and adjusted in phase 5. 

Lastly, phase seven calculated actual evapotranspiration (ETc) for each field and produced the 

spatial and temporal maps for ETc. 

The Mooi River catchment contains 2808 cultivated areas/fields according to a shapefile 

obtained from the Department of Agriculture, Forestry, and Fisheries (DAFF). Several crops, 

including maize, soybeans, sunflowers, and lucerne, are grown on the 2808 fields and were 

planted at various times during the 2021–2022 growing season. During a site visit to the research 

area, a sample of 193 maize fields were identified by taking the GPS coordinates of each field's 

centre. Of these 193 fields, 28 had similar planting dates (from 10 November to 15 November 

2021), while the remaining 165 were unknown. All other maize fields in the study area, besides 

those visually identified during the site visit, were identified by maximum entropy modelling in 

MAXENT. Furthermore, Leaf Area Index (LAI) was used to detect maize fields with similar growth 

patterns as the sample of 28 with known planting dates and were therefore considered to have 

been planted at a similar time. 

Evapotranspiration rates of maize crops are strongly influenced by the various growth 

stages that the plant goes through from planting to harvest (Allen et al., 1998). Based on the 

sample that was taken during the site visit, this study concentrated on fields that had similar 

planting dates to focus on fields with aligned growth stages, thus making them spatially and 

temporally comparable in terms of ETc when applying the FAO’s Crop Coefficient Approach for 

calculating actual evapotranspiration. 
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This study will use the Crop Coefficient Approach to calculate evapotranspiration (ET). In 

this approach, the crop evapotranspiration (ETc) is calculated by multiplying the reference crop 

evapotranspiration (ETo), by a crop coefficient (Kc): 

ETc = Kc x ETo 
Equation 3.1: The crop coefficient method for calculating evapotranspiration. 

where: 

ETc = crop evapotranspiration 

Kc = crop coefficient 

ETo = reference crop evapotranspiration 

Reyes-Gonzalez et al. (2018) explain that a useful method to estimate ETc for crops is to 

multiply reference evapotranspiration (ETo) by a crop coefficient (Kc). The FAO has recommended 

the Crop Coefficient approach (Allen et al., 1998). It has been used in numerous studies in 

combination with an empirical method to calculate Kc based on a statistically derived relationship 

(e.g., linear regression) between crop coefficients and Normalized Difference Vegetation Index 

(NDVI) values derived from satellite imagery along with other similar vegetation indices. Studies 

include that of Hunsaker et al. (2003); Hunsaker et al. (2005); Farg et al. (2012); Kamble et al. 

(2013); and Reyes-Gonzalez et al. (2018). Therefore, This study will incorporate the methodology 

by using Sentinel-2 imagery to estimate NDVI, Kc and ETc values, whereas ETo will be obtained 

from the FAO WAPOR website. Figure 3.2 is a workflow of the ETc estimation methodology using 

satellite remote sensing-based vegetation index that will be used in this study, derived from 

Reyes-Gonzalez (2018). The following section will describe the various stages of the methodology 

for this study.
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Figure 3.2: Flow diagram for project methodology.
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3.3. Download and pre-processing of satellite imagery 
Sentinel-2 satellite imagery tiles were downloaded in L1C (not atmospherically corrected) 

from Copernicus hub for all satellite overpasses between 15 November 2021 and 01 September 

2022 with equal or lower than 30% cloud cover. The study area is spatially spread over four 

different Sentinel-2 tiles; therefore, the tiles for each date were merged before they could be 

clipped to the study area. Each merged image was then visually inspected for cloud cover over 

the study area, and those that had cloud cover over the fields in the study area were removed 

from the time series (the tiles are much larger than the study area; therefore, 30% cloud cover 

was selected with the possibility that the cloud cover will fall outside of the study area). The 

imagery was then pre-processed for atmospheric correction in the Sen2Cor package of R 

(programming language) and thereby converted to L2A format (Ranghetti, 2019). 

3.4. NDVI and SAVI calculations 
Vegetation index calculations were achieved by applying the mathematical equations for 

the Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI) to 

the downloaded imagery (Eq. 3.2 and 3.3). This process was conducted using the raster 

calculator in QGIS for each pixel in the downloaded imagery. 

The vegetation index values for all the pixels within each identified maize field were 

computed to a mean value using the Zonal Statistics tool in QGIS. This was done to ensure that 

each field could represent an average Actual ETc value in the study's final results, eliminating the 

presence of intra-field ETc variability.  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)
(𝑁𝐼𝑅 + 𝑅𝐸𝐷)	

Equation 3.2: The equation for calculating Normalized Difference Vegetation Index 

where: 

 NIR = The reflectance of near-infrared radiation  

 Red = The reflectance of visible red radiation 

 

𝑆𝐴𝑉𝐼 =
(𝑅NIR–𝑅red)(1 + 𝐿)
𝑅NIR+ 𝑅red+ 𝐿

	

  

Equation 3.3: The standard equation for calculating Soil-Adjusted Vegetation Index. 

where:  
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 NIR = The reflectance of near infrared radiation  

 Red = The reflectance of visible red radiation 

 L = The soil correction factor (related to the amount of green vegetation cover) 

 

3.5. First phase: Identification of maize fields using MAXENT modelling. 
Maximum Entropy (MAXENT) modelling was used to identify which fields in the study area 

had maize grown on them during the 2021-2022 growing season, in addition to those that were 

physically identified during a site visit to the area. Recent advances in remote sensing and 

geographic information system technology have made it possible to develop modelling tools such 

as species distribution models (SDMs), of which MAXENT is one example (Beck, 2013; Merow 

et al., 2013). Many studies in ecology, biogeography, and evolution use species distribution 

modelling. While there are alternative techniques, such as Grap, Bioclim, and Domain, for 

modelling species distributions, MAXENT is one of the crop science field's most extensively used 

strategies and has been utilised by agricultural enterprises for modelling crop plant distributions 

(Philips et al., 2006; Peng et al., 2019). MAXENT is a multivariate approach that assesses the 

likelihood of the occurrence of field crops (as well as numerous other types of fauna and flora 

species) using historical or projected climate data at different scales. It frequently relies on general 

circulation models (GCMs) to forecast future climate conditions under certain change 

assumptions, such as rising carbon dioxide levels (Elith & Leathwick, 2009; Beck, 2013; Arajo et 

al., 2019). Utilising remotely sensed temporal series data, like vegetation indices, as the 

independent variable to simulate the distributions of crop varieties in any given area is a 

considerably more modern application of MAXENT's capability (Beck, 2013; Maguranyanga & 

Murwira, 2015). 

Based on the presence records (point locations of verified maize fields) and environmental 

correlates (characteristics of the NDVI data) that have been fed into the model during the 

simulation, MAXENT uses the principle of maximum entropy to determine the likelihood of the 

occurrence of a specific spatial phenomenon (in this case, maize crops) (Philips et al., 2006). The 

model's eventual output is produced by calculating the contribution of each environmental 

variable. MAXENT has the benefit that it employs presence-only data, not relying on or requiring 

data of confirmed absences from specific locations, unlike some other SDMs that require absence 

data (alongside presence data) to predict species distribution (Li & Guo, 2011; Tchamba, 2018). 

MAXENT produces robust results with sparse, irregularly sampled data and minor location errors 
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(Elith et al., 2006). These features specifically justified the decision to use MAXENT for this study 

compared to other SDMs. 

3.5.1. Maxent data pre-processing 

Before using MAXENT, data pre-processing and geographic information system (GIS) 

processing were necessary to convert the data to a format compatible with the software and to 

make sure the model outputs would be as accurate as possible based on the input data. The 

environmental layers are one of the two input datasets that MAXENT needs. The model will be 

trained using the second type of data, which is the training data or presence data/points. 

3.5.2. Environmental layers 

Two more pre-processing procedures were needed before the downloaded Sentinel-2 

satellite imagery could be used as environmental layer inputs in MAXENT. Firstly, to remove 

"noise" from the images originating from the areas in between the fields, such as roads, buildings, 

water bodies, grazing areas, trees, and other types of vegetation, the 11 images had first to be 

clipped to the field boundaries contained in the shapefile obtained from DAFF. These non-maize 

features would have a negative impact on the MAXENT model performance which can lead to 

inaccuracies.  

Secondly, the 11 images had to be assessed for collinearity to remove those with high 

collinearity. Satellite imagery can be highly correlated, and it is essential to remove correlated 

variables before fitting a species distribution model to avoid overfitting the model with redundant 

variables. There are several ways to detect collinearity. The variance inflation factor (VIF), which 

measures how strongly the rest of the predictor variables can explain each predictor, is often used 

(Pradhan, 2016; Naimi & Araujo, 2016). To avoid overfitting, the collinear variables in this study 

were identified and excluded using the VIF (vifstep) approach in ‘R’ (Pradhan, 2016; Naimi & 

Araujo, 2016). The VIF stepwise technique calculates VIF measures, with values larger than a 

threshold of 10 indicating a strong correlation between variables, hence removing them owing to 

collinearity issues. The VIF values were recalculated as a stepwise process until all values were 

below the threshold. The VIF was applied and after accounting for variable multi-collinearity, 

seven NDVI images were left to train the models. Table 3.1 shows the NDVI images that were 

eliminated because they had a VIF score of greater than 10. 
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Table 3.1: VIF scores of all NDVI images with those highlighted in yellow being removed due to their VIF 

score being above 10. 

Variables (image date) VIF 

12/30 1.999743 

01/24 3.120391 

02/13 2.923224 

04/14 1.958753 

05/04 3.757581 

05/24 5.510512 

05/29 38.238597 

06/03 28.205871 

06/08 28.984916 

06/13 31.802195 

06/18 2.477306 

 

3.5.3. Training data/presence points 

The training data consists of the coordinates of the maize fields, which have been 

physically validated during a field trip to the study area. Through spatial thinning, the original 

number of location points in this presence data was decreased from 193 to 86 (Fig. 3.3) to obtain 

a more equal and less cluttered spatial distribution of training datal. The programming language 

"R" was used to perform spatial thinning over several equal distances including 1 km and 2 km. 

It frequently occurs that training data is collected only from geographical areas that are 

easily accessible (i.e., near major roads or towns), or as in the case with this study, from areas 

where it was possible to contact and visit farmers in the study area. This leads to geographic 

clusters of presence data (Hijmans et al., 2000; Boria et al., 2014). Such sampling biases 

artificially enhance the spatial autocorrelation among presence points in the study area. In such 

a case, the model may become overfit to environmental biases that correlate to these factors in 

geographic space. When a model fits calibration data too closely, overfitting occurs, which 

reduces the model's capacity to predict independent evaluation data and thereby affects model 

quality by inflating model accuracy (Veloz, 2009; Kramer-Schadt et al., 2013; Boria et al., 2014). 

A flawed model can result in omission errors (false negatives, where a species is falsely believed 
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to be absent) or commission errors (false positives, where a species is mistakenly thought to be 

present) (Rondinini et al., 2006). According to a study by Yackulic et al. (2013), 87% of MAXENT 

models were built on data that were probably subject to sample selection bias. A common 

technique to deal with sampling bias in presence records due to uneven sampling is the process 

of spatial thinning (as implemented in this study) (Kramer-Schadt et al., 2013; Boria et al., 2014). 

Spatial thinning reduces the number of sampling points to lessen the effects of sampling bias 

while keeping the most relevant data. This is achieved by placing an equal distance (selected by 

the user) between each presence point (Aiello-Lammens et al., 2015). Kramer-Schadt et al. 

(2013) recommend that spatial thinning of presence data should be implemented in situations 

with a strong sampling bias towards some regions (as in the case with this study). 

Figure 3.3: Map indicating all the training points (193) before applying spatial thinning. 

 

The 193 training data points were processed in the ‘spThin’ package of ‘R’ using several 

different distance parameter values, including 1km and 2km, respectively, to determine how the 

MAXENT model performance will be affected by the number of training points provided. An equal 
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distance of 1 km was found to provide the best model performance. A similar distance of greater 

than 1km resulted in too few training points, therefore reducing the model performance. (Fig. 3.4). 

Figure 3.4: Map indicating the training points' spatial distribution (86) after applying spatial thinning. 

 

3.5.4. Model settings and evaluation of model performance  

K-fold cross-validation of the MAXENT algorithm was run with ten replicates to use all the 

data efficiently and to ensure a more realistic average output (Tchamba, 2018). This also helps 

to evaluate uncertainty in the model. For model convergence, the number of maximum iterations 

was set to 5,000 to provide the models adequate time for the intersection of input information to 

build up the models (a high number of iterations gives the models sufficient time to process the 

data because of avoiding over- or under-prediction of the species distribution). The number of 

background points for each analysis was set to 10,000 (default setting) to represent pseudo-

absence locations, which the model uses to define probability distribution and estimates. 

Overall validation of the model was evaluated using the threshold-independent area under 

the curve (AUC) of the receiver-operating characteristic (ROC), which is a plot of sensitivity 
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against specificity. This is a standard way of evaluating the performance of a model where the 

AUC graph (Fig. 3.5) shows the probability that a randomly chosen presence-only is ranked higher 

than a randomly selected or background location (Tchamba, 2018). AUC values range between 

0 and 1, with larger values indicating a better model performance. The red curve accounts for the 

mean value, while the blue area represents plus or minus one standard deviation from the mean 

value. An AUC lower or equal than 0.5, therefore, indicates that the model predicted outcomes 

no better than random chance, whereas an AUC ≥ 0.7 indicate strong predictive power, and an 

AUC = 1.0 indicate a perfectly fitted model (Fielding & Bell, 1997; Casthilo, 2015; Maguranyanga, 

2015; Peng et al., 2019; Tchamba, 2018; Dai et al., 2022). For the model run where spatial 

thinning of 1 km equal distance was used, the AUC was 0.743 compared to 0.711 using 2 km 

equal distance (Fig. 3.5). The model results using the 1km equal distance set of training points 

were therefore used for subsequent analysis and for identifying the rest of the maize fields in the 

study area. 

It is generally understood that AUC < 0.7 indicates low accuracy of the model, and AUC 

> 0.9 indicates that the prediction results are ‘’excellent’’. Therefore, the probability of occurrence 

results can be adopted when AUC is 0.7–0.9 (Hosmer & Lemeshow, 2000; Dai et al., 2020). The 

jack-knife test, a built-in function of MAXENT, was used to calculate the test, training, and AUC 

gain that results from each variable in the model when it is present or absent from the model and 

when all other variables are present. These tests evaluate the variable contributions in the model 

explaining the distribution of maize in the study area (Philips et al., 2006; Maguranyanga, 2015). 

According to the test, the NDVI images for the satellite overpass dates of 13 February 2022 and 

30 December 2021 had the most significant contributions in predicting the probability of 

occurrence for maize in the study areas, whereas 05 April 2022 and 01 January 2022 had among 

the lowest contributions (Fig. 3.6). 
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Figure 3.5: The difference in results of the AUC between using 1km (top) and 2km (bottom) equal distance 

spatial thinning. 
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Figure 3.6: The Jackknife test results from the MAXENT model highlighting the significance of variables 

used in training the maize distribution. 

 

3.5.5. Threshold selection and reclassification 

MAXENT outputs include a variety of thresholds that can be used to produce a binary 

map, where areas and features that exceed a given threshold are deemed suitable. In contrast, 

those that fall below the threshold are deemed unsuitable (Casthilo, 2015). As in the 2019 study 

by Peng et al., the "Maximum training sensitivity plus specificity" criterion was chosen for this 

study. A separate output is produced by each of the model's ten replicates, which results in a 

different threshold for maximum training sensitivity and specificity. The mean was taken from the 

ten different thresholds (0.52) and was used to classify the output map from MAXENT into a binary 

map where all pixels below 0.52 were not considered maize and those ≥ 0.52 were considered 

maize. 

Since the MAXENT output used to produce the binary map is in raster format, the analysis 

above was performed at pixel level rather than field level. As a result, it was discovered that some 

fields only included a very small number of pixels with values below 0.52, while others were almost 

entirely occupied by these pixels. As a result, only those fields with at least 70% overlap with a 

minimum of 0.52 pixels were isolated and considered actual maize fields, with the remaining fields 

being rejected. The cause of this phenomenon is likely because of natural variation in the fields, 

which may be brought on by irregular spatial and temporal distribution of soil types, rainfall, and 

insect occurrence. 
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3.6. Second phase: Identification of fields with similar planting dates 
During the second phase of the study, Leaf Area Index (LAI), a biophysical parameter of 

plants that can be remotely sensed, was used to find maize fields in the study area that had similar 

planting dates to those that were sampled during the site visit to the study area. 

The different growth stages that the plant goes through during its life cycle significantly 

impact the evapotranspiration rates of maize crops. The size and shape of its leaves, as well as 

the percentage of the ground that a plant covers as it progresses through its several growth 

stages, from emergence to full senescence, determine the rate of evapotranspiration that takes 

place (Allen et al., 1998; Barbieri et al., 2012; Farg et al., 2012). This study focused on fields with 

similar planting dates to those sampled during the site visit. This ensured that their actual 

evapotranspiration (ETc) values were comparable. Analysing fields planted during the same 

period of time reduces variability and makes the comparisons more accurate and insightful. 

Comparing fields planted at different times would add unnecessary variability and complexity. 

The Leaf Area Index (LAI) is one of several methods for observing the growth pattern of 

plants. The leaf area index is a biophysical parameter of plants that measures the one-sided green 

leaf area per unit ground area and is considered an indicator of canopy density and biomass (Fig. 

3.7) (Wang et al., 2017). 

 

 

 

 

 

 

 

 

 

Figure 3.7: Leaf Area Index (Wang et al., 2017). 
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LAI tends to increase from emergence and peak at full effective cover, which is usually 

during the tasselling stage of maize, and then decrease again because of leaf loss in the later 

stage of the plant’s life cycle (Allen et al., 1998; Lu et al., 2020). According to Wang et al. (2017) 

and Luo et al., (2020), LAI is one of the most widely used vegetation parameters for remote-

sensing phenology extraction. 

Only 28 of the 193 verified maize fields in the study area had planting dates recorded 

because only two local farmers could be reached to get this information. The 28 recorded planting 

dates were at most 5 days apart. Using LAI, it was possible to identify all the fields with planting 

dates that were similar (within 5 days) to the 28 fields sampled from the study area during a site 

visit. This was achieved by using the LAI range of values for those 28 fields from each satellite 

overpass date to identify fields outside the sample for which the LAI values fell within the same 

range. Additionally, after repeating this process for each LAI image, the resulting output layers 

were spatially intersected to find the overlapped fields. The remaining fields in this output were 

considered to have similar planting dates. 

3.6.1.  Leaf Area Index (LAI) image creation. 

It was decided that only the first three cloudless Sentinel-2 images (12/30, 01/24, and 

02/13) of the growing season would be used as the 4th image (04/14) may show signs of 

senescence. The biophysical processor plugin of the ESA SNAP software was used to produce 

LAI images at 10m spatial resolution from the L2A Sentinel-2 images. The identified maize fields 

produced by the MAXENT model in phase one were then used to clip the LAI images. 

3.6.2.  Finding the LAI range and isolating fields with similar planting dates. 

  The pixel values from all 28 fields with known planting dates were extracted to find the 

range for each of the satellite images (note that the analysis was done on pixel level for all the 28 

fields together and not on field level for each individual field as an average or median). It was 

found that the ranges for each image were very large because of natural variation occurring on 

the fields, leading to extreme outliers. Many of the outliers were found to be around the edges of 

fields as those crops tend to be more exposed and affected by weather elements, as well as dust 

when they are next to gravel roads and encroachment of surrounding weeds and pests compared 

to those that are located further away from the boundaries of the fields. To reduce the outliers 

resulting from this phenomenon, all the fields were equally reduced in size by using a negative 

buffer of 20 m, thereby disregarding the edges of the fields. To further reduce outliers occurring 

closer to the centre of the fields, the upper and lower 25% of the datasets were removed by only 

using the interquartile range (IQR) from each satellite image. 
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The LAI analysis was carried out at the pixel level, similar to the Threshold Selection and 

Reclassification section of the first phase of the methodology; therefore, certain fields that had 

less than 70% of their area covered by pixels in the IQR were also removed. The procedure was 

performed for the four images, followed by a spatial intersection of the four outputs. The fields 

that overlapped were considered to have had the same growth pattern and, hence, similar 

planting dates. Only these remaining fields with similar planting dates became the subject of 

further analysis for determining the spatial and temporal variation of evapotranspiration over the 

Mooi River catchment. 

3.7. Third phase: Reference Evapotranspiration (ETo) 
For this phase, a 9km (per cell) grid was placed over the study area to divide the area into 

different ETo ‘zones’. This allowed for fields spaced closely together to be grouped into ETo zones. 

Daily ETo values for each satellite overpass date were obtained from The Food and Agriculture 

Organization of the United Nations’ (FAO) WaPOR (database) -portal to monitor Water 

Productivity through Open access of remotely sensed derived data. This was done for each cell 

and can be viewed in Appendix A. The ETo values corresponding to each grid cell were assigned 

to those fields located within the respective grid cell. 

3.8. Fourth phase: Growth stage classification 
To calculate new crop coefficients, two linear regression models were developed in the 

fifth phase of the project (after this phase) using the tabulated crop coefficient (Kc) values from 

the FAO document on evapotranspiration (Allen et al., 1998) and two vegetation indices (NDVI 

and SAVI) for the fields in the study area. The satellite images used in the study and their 

associated vegetation index values had to be aligned with the FAO tabulated Kc values related to 

the different maize growth phases (i.e., initial, development, mid, and late) (see Appendix B) of 

maize growth to generate these regression models. The lengths of these different growth stages 

determined which satellite overpass dates (and their VI values) fell inside which growth stage and 

which vegetation index values were assigned to which tabulated Kc values. 

 As a result, the fourth phase of the study dealt with classifying the growth stage lengths. 

Generic lengths for different maize growth stages are provided by the FAO literature (Doorenbos 

& Pruitt, 1992; Smith, 1977; Allen et al., 1996 cited in Annandale et al., 1999), but according to 

Allen et al., 1998 and Hunsaker et al., 2005, these lengths should be adjusted per local conditions 

for Kc curves/values to reflect crop water use behaviour more adequately.  
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To adjust these generic growth stage lengths to reflect local conditions better, the Growing 

Degree Days (GDD) method was used to calculate each stage's length. The well-known GDD 

technique uses temperature data to identify crop development phases (Wang, 1960; McMaster & 

Wilhelm, 1997, cited in Pandzi et al., 2020). The following formula calculates it: 

𝐺𝐷𝐷 = !"#$%!"&'
(

− 𝑇base 

Equation 3.4: The formula for calculating Growing Degree Days. 

where:  

 Tmin = daily minimum temperature 

 Tmax = daily maximum temperature 

 Tbase = base temperature for a specific crop 

 

 For maize, Tbase = 10 °C. When calculating GDD for maize, an extra restriction states that 

if either Tmin or Tmax, or both, are below 10 °C, the value of 10 °C is substituted in their place. 

Additionally, 30 °C is used in place of Tmax if it is higher than 30 °C (McMaster & Wilhelm, 1997). 

According to McMaster & Wilhelm (1997), the growth rate of maize does not change below and 

above 10 °C and 30 °C, respectively. 

 The GDD system, also known as heat units, has roots that go back more than 250 years 

due to the long-standing recognition of air temperature as a crucial factor in crop development 

(Moeletsi, 2017). Temperature, and more specifically sums of daily temperatures, directly impact 

how long it takes a plant to reach a given growth stage. The amount by which the mean daily 

temperature exceeds a specific base temperature is typically used to define heat units. Cooler 

temperatures tend to inhibit growth, while warmer ones hasten maturity. Growing degree days 

(GDD), an indicator based on air temperature, were therefore created to identify the phenological 

characteristics of crops. A maize plant must accumulate a particular number of GDDs to reach 

each growth phase, regardless of how many calendar days it takes for the GDDs to collect. 

Maize closely follows the accumulation of average daily temperatures throughout its 

lifetime (Moeletsi, 2017; Djaman et al., 2018; Pandzi et al., 2020; Pereira et al., 2021). It makes 

agronomic sense to define crop development period in terms of heat units rather than days since 

climatic conditions might lead a crop to mature early in certain regions while delaying maturation 

in others. Even while it might not always take the same number of days to achieve maturity or 
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another growth stage, the crop will always need the same number of heat units. GDD has 

frequently been used to estimate the lengths of maize’s growth stages, even though many several 

factors (such as cultivar, environmental pressures, and soil qualities) can affect how long a plant 

takes to reach a particular stage of development (Moeletsi, 2017; Pandzi et al., 2020). To calculate 

the accumulated GDD, daily GDDs are added together starting at zero. The crop is projected to 

start the next phase of its development when a certain number of accumulated GDD is attained 

(Pandzi et al., 2020). 

The daily air temperature data to calculate the cumulative growing degree days was 

obtained from the South African Weather Service (SAWS) for the Zuurbekom Automatic Weather 

Station (AWS) located to the east of the Mooi River catchment (Fig. 3.8). This is the closest AWS 

to the study area with daily air temperature data that could be obtained from SAWS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Location of the Zuurbekom automatic weather station relative to the Mooi River Catchment. 

 

Maize growth stages are often classified into smaller sub-stages by agronomists and seed 

companies, as seen in Figure 3.9 (i.e. V0 to R6). However, the classification system provided by 

the FAO literature (Doorenbos & Pruitt, 1977; Smith, 1992; Allen et al., 1996 cited in Annandale 
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et al., 1999) (Table 3.2) was used in this study since it has been used widely in many different 

evapotranspiration studies that use the crop coefficient method. 

Figure 3.9: Commonly used growth stage classification used by agronomists and seed companies in South 

Africa (Farmer’s Weekly, 2017). 

 

Table 3.2: Broader growth stages for maize provided by the FAO (1996) cited in Annandale et al., 1999). 

 
Crop 

 
Maize 

1 

Maize 2 
(cv. PNR 
6552) 

Maize 3 
(cv. 
PNR 
6479, 

Ermelo) 

Maize 3 
(cv. PNR 

6479, 
Kroonstad) 

Maize (cv. 
PNR 473, 
Setlagole) 

 
Period 
(days) 

Initial stage 20 20 20 20 20 
Development stage 50 50 50 50 50 
Mid-season stage 40 40 40 40 40 
Late-season stage 40 40 40 40 40 
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To estimate how many GDDs are required to complete each growth stage provided by the 

FAO literature, a South African study by Haarhoff (2020) conducted near Ottosdal, Northwest 

Province, approx. 100 km southeast of the Mooi River catchment was used (Fig. 3.10) in 

conjunction with an article published in Farmer’s Weekly (2017). In these sources, maize growth 

stages are classified into smaller sub-stages (Fig. 3.9 and 3.10), unlike those provided by the 

FAO. Using these sub-stages (i.e., V0 to R6) as a guideline, it was determined in which of the 

broader FAO stages these sub-stages belonged, and thereby estimated how many GDDs were 

required for each of the FAO stages (i.e., initial, development stage, mid-season, and late-season 

stage) by using the graph in Haarhoff (2020) as a guideline. Note that both articles use Days After 

Emergence (DAE) compared to Days After Planting (DAP) used in this study. As a result, ten 

days were added to the DAE to account for the time it takes for the maize to emerge. 

 
Figure 3.10: South African study near the Mooi River catchment providing the amount of GDDs it (Farmer’s 

Weekly, 2017). 

 

3.9. Fifth phase: Adjustment of tabulated crop coefficient values for local relative 
humidity and wind speed 

The FAO-56 document, from which the tabulated crop coefficient (Kc) values for this study 

were taken, states that in climates where RHmin deviates from 45% or where u2 is greater or less 

than 2.0 m/s, the Kcmid (mid-season) values should be adjusted to account for local daily minimum 

relative humidity and daily wind speed conditions during the growth stage (Allen et al., 1998). 

Equation 3.5 considers the relationship between crop height and the relative impact of weather 

on the Kc (Pereira et al., 2015; Djaman et al., 2018). Table 4.2 displays the tabulated Kc values 

for maize from the FAO-56 publication. 
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𝐾𝑐	𝑆𝑡𝑎𝑔𝑒 = 𝐾𝑐𝑆𝑡𝑎𝑔𝑒 + [0.04(𝑢2 − 2) − 0.004(𝑅𝐻𝑚𝑖𝑛 − 45) ] K
ℎ
3N

).+

 

Equation 3.5: The formula for adjusting Kcmid according to local weather conditions and crop height. 

where:  

 KcStage = standard value according to FAO-56 document 

 u2 = value for daily wind speed at 2m (m/s) 

 RHmin = the value for daily minimum relative humidity during the growth stage (%) 

 

 The daily wind speed data that was received from SAWS was measured at 10 m height 

and, therefore, had to be converted to the standard height of 2 m before it could be used in the 

adjustment formula in Eq. 3.6. The graph in Figure 3.11 and the accompanying equation was 

used to do the conversion. 

  

 

 

 

 

 

 

 

 

 

 
Figure 3.11: Graph showing the conversion factor to convert wind speed measured at a certain height 

above ground level to wind speed at the standard height (2 m) (Allen et al., 1998). 
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𝑢2 = 𝑢𝑧
4.87

(67.8𝑧 − 5.42)
 

Equation 3.6: The formula for converting wind speed measured at a certain height to wind speed at 2 m. 

where: 

u2 = wind speed at 2 m above ground surface (m s-1) 
uz = measured wind speed at z m above ground surface (m s-1) 
z = height of measurement above ground surface (m) 

The Kc values for the development stage (after the initial stage) were calculated by linear 

interpolation between the initial stage Kc (0.3) and the mid-season stage Kc (1.14). The Kc values 

between the mid-season stage Kc (1.14) and the late-season/end Kc (0.35) were also calculated 

by linear interpolation. 

3.10. Sixth phase: Regression analysis for NDVI, SAVI and tabulated Kc values 
The sixth phase aimed to determine the relationship between the Normalized Difference 

Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI), and the tabulated crop 

coefficient values. For this purpose, simple linear regression was used, with the vegetation indices 

(NDVI and SAVI) extracted from satellite imagery as independent variables and the tabulated Kc 

values functioning as the dependent variable (Table 3.3). The vegetation index with the strongest 

relationship, identified by the highest correlation coefficient with the tabulated Kc values, was 

selected, and the corresponding linear regression model was applied to generate the new Kc 

values. These newly derived Kc values played a crucial role in subsequent calculations as they 

were used to compute actual evapotranspiration (ETc) by multiplying them with the Reference 

Evapotranspiration (ETo) in phase 7 of the study. 
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Table 3.3: The acquisition dates, day after planting (DAP), growth stage, and satellite used for providing 

the NDVI and SAVI data used in the regression model. 

Acquisition Dates DAP Growth Stage Satellite 

2021/11/30 20 Initial Sentinel-2 

2021/12/10 30 Development Sentinel-2 

2021/12/25 45 Development Sentinel-2 

2021/12/30 50 Development Sentinel-2 

2022/01/24 75 Development Sentinel-2 

2022/02/03 85 Mid-season Sentinel-2 

2022/02/13 95 Mid-season Sentinel-2 

2022/02/28 110 Mid-season Sentinel-2 

2022/03/26 136 Late-season Landsat-7 

 

3.11. Seventh phase: Calculation of actual evapotranspiration (ETc) for each field and 
production of spatial and temporal maps 
 The seventh phase of the study involved the calculation of actual evapotranspiration for 

each field, identified as maize, within the Mooi River catchment. This was accomplished by 

multiplying the calculated crop coefficient value (new Kc) - derived from the NDVI-tabulated Kc 

regression model, determined in phase six - by the corresponding reference evapotranspiration 

(ETo) value for each field, which was determined in phase three. Following this, actual 

evapotranspiration (ETc) maps were produced using QGIS. These maps demonstrate the spatial 

and temporal variation of ETc across the Mooi River catchment. 
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Chapter 4: Results 
The results for each phase, as indicated in Chapter 3, are presented in this chapter. The 

initial phase utilised maximum entropy (MAXENT) modelling to pinpoint maize fields during the 

2021-2022 growing season, while the second phase employed the Leaf Area Index (LAI) to 

identify fields with similar planting dates. In the third phase, the daily reference evapotranspiration 

values (ETo) were obtained from the Food and Agriculture Organization of the United Nations 

(FAO) WaPOR database and assigned to corresponding grid cells. The fourth phase entailed 

classifying maize growth stage lengths using the Growing Degree Days (GDD) method. In the 

fifth phase, the FAO-56 documented Kcmid value was adjusted to reflect local humidity and wind 

speed conditions. The sixth phase developed regression models exploring the differences in the 

relationship between SAVI and NDVI and the tabulated Kc values. Lastly, the seventh phase 

entailed the computation of actual evapotranspiration for each maize field, ultimately producing 

spatiotemporal ETc maps. 

4.1. First phase 
In the first phase, maximum entropy (MAXENT) modelling was used to identify all the fields 

in the study area that had maize grown on them during the 2021-2022 growing season based on 

NDVI satellite imagery and a ground-truthed sample of maize fields identified during a site visit 

(Fig 4.1). 

Even though MAXENT conducts internal evaluations of model performance and accuracy, 

an external evaluation was carried out to ensure that the model correctly recognises fields of 

planted maize. This was accomplished by using the 107 validated maize field points that were 

removed by the spatial thinning analysis (where only 86 of the 193 points were kept for training 

data in the model) as testing points and overlaying them with the fields layer produced in the 

Threshold Selection and Reclassification section of the first phase of the methodology. Only 19 

of the 107 testing points did not spatially match a maize field, indicating that the maize field map 

produced by the MAXENT modelling was 82% accurate. 
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Figure 4.1: Map indicating the 88 testing points spatially matching the fields identified as maize by the 

MAXENT model, and the 19 that did not (the areas where no fields appear underneath testing points). 

 

4.2. Second phase 
In the study's second phase, the Leaf Area Index (LAI) was employed to identify maize 

fields within the study area that shared similar planting dates with the fields sampled during the 

site visit to the study area. Of the 945 maize fields identified by the MAXENT model, 87 were 

found to have similar planting dates (between 10 and 15 November 2021) (Fig. 4.2). As a result, 

only these 87 fields were considered for analysis in the subsequent phases of the study.
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Figure 4.2: Maize fields with similar planting dates. 

 

4.3. Third phase  
Daily reference evapotranspiration values (ETo) were obtained for each of the satellite 

overpass dates from The Food and Agriculture Organization of the United Nations (FAO) WaPOR 

database and assigned to each of the fields’ corresponding grid cells so that fields that are spaced 

closely together share the same ETo value (Fig 4.3). The table indicating the ETo values for each 

respective grid cell and field can be viewed in Appendix A. 
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Figure 4.3: ETo zones represented by the 9 km grid cells over the maize fields in the study area and the 

IDs of each of the cells. 

 

4.4. Fourth phase 
During the fourth phase of the study, maize growth stage lengths were classified and 

adjusted to local conditions, following the recommendations of Allen et al. (1998) and Hunsaker 

et al. (2005). To do this, the study utilised the Growing Degree Days (GDD) method (Wang, 1960; 

Cross & Zuber, 1972; McMaster & Wilhelm, 1997, cited in Pandzi et al., 2020) to calculate the 

duration (length) of each growth stage. To estimate how many GDDs are required to complete 

each growth stage provided by the FAO literature, the South African study by Haarhoff (2020) 

conducted approximately 100 km southeast of the Mooi River catchment was used in conjunction 

with an article published in Farmer’s Weekly (Anon, 2017). This allowed for a more accurate 

estimation of the GDDs required for each stage. Appendix B presents the classification of growth 

stages based on the GDDs calculated from the temperature data provided by SAWS. As per 

Haarhoff's study (2020), it took 280 GDDs to complete the initial stage, 860 GDDs for the 

development stage, 1260 GDDs for the mid-season stage, and 1400 to conclude the late-season 
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stage (refer to Appendix B). These values were applied to establish the cut-off dates for each 

stage using the GDD formula, thereby tailoring the growth stage lengths to local conditions as 

advised by Allen et al. (1998). 

The growth stage lengths and dates were identified in Table 4.1. after all deductions and GDD 

calculations were completed: 

Table 4.1: Final growth stage lengths for the Mooi River Catchment after all calculations. 

 Initial stage 
Development 

stage 
Mid-season 

stage 
Late-season 

stage 

Start date 2021/11/11 2021/12/09 2022/02/04 2022/03/14 

End date 2021/12/08 2022/02/03 2022/03/13 2022/03/30 

Total duration 
(days) 

28 57 38 27 

 

4.5. Fifth phase 
In the fifth phase of the study, the tabulated Kcmid (mid-season) value (1.20) taken from 

the FAO-56 document (Allen et al., 1998) was adjusted to account for local humidity and wind 

speed, which varied from standard conditions. An equation (Eq. 3.5) linking crop height and 

weather impact on Kc was employed for the adjustment. Wind speed data, initially recorded at 

10m height, was adapted to the standard 2m height for the adjustment formula. The adjusted Kcmid 

value can be seen in Table 4.2. 

Kc values for the development stage were determined by linear interpolation between initial 

(Kc 0.3) and mid-season stage values (Kc 1.14). Likewise, Kc values between mid-season (Kc 1.14) 

and late-season (Kc 0.35) were derived using linear interpolation (Fig. 4.4). 

Table 4.2: Tabulated Kc values for maize extracted from FAO-56 (Allen et al., 1998) and the adjusted Kcmid 

using Eq.3. 5 and 3. 6. 

 
Initial Stage Mid-season Stage 

Late-season Stage 
(end) 

Kc 0.3 1.20 

1.14 (adjusted) 
0.35 
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Figure 4.4: Graph showing the tabulated Kc curve after Kcmid was adjusted. 

 

4.6. Sixth phase 
The sixth phase of the study involved the development of two regression models: one 

involving NDVI and tabulated Kc values and the other involving SAVI and tabulated Kc values. 

The aim was to ascertain which vegetation indices have a stronger relationship with the tabulated 

Kc values. 

The resultant regression analysis showed marked differences in the relationship dynamics 

between each index and the tabulated crop coefficient (Kc) values. A notably robust correlation 

was detected for NDVI, indicated by a coefficient of determination (R2) of 0.90 (Fig. 4.5). This 

model exhibited an exceptional predictive relationship between NDVI and Kc values, with 90% of 

the variation in Kc values being accounted for by changes in NDVI. The relationship was 

statistically significant, as evidenced by a p-value below the pre-determined significance level of 

0.05 (p < .00001), underscoring the improbability of such a relationship emerging by chance. 
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Figure 4.5: Linear relationship between NDVI and tabulated Kc for all satellite imagery indicated in Table 

3. 3. 

 

Conversely, the relationship for SAVI was weaker, indicated by a notably lower R2 of 0.68 

(Fig. 4.6). Even though the relationship was also statistically significant (p < .00001), it accounted 

for a somewhat lower proportion of the variance in Kc values. This implies that, although SAVI 

predicts Kc values, it does so with less precision than NDVI. 
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Figure 4.6: Linear relationship between SAVI and tabulated Kc for all satellite imagery indicated in Table 3. 

3. 

 

Because of these analyses, the Kc values extracted from NDVI (Fig 4.7) were identified as 

more reliable because of their stronger correlation with tabulated Kc. This led to the selection of 

NDVI for the computation of the final ETc values within this study. Accordingly, spatial and 

temporal ETc maps were produced utilising these final ETc values, illustrating the spatial and 

temporal variability of actual evapotranspiration across maize fields within the Mooi River 

catchment. This provided essential insights into the variability of water usage across these fields. 
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Figure 4.7: Graph showing the calculated Kc (new Kc values) curve from the NDVI-tabulated Kc regression 

model. 

 

Figure 4.8 presents the average NDVI values for the 87 isolated maize fields throughout 

various growth stages of the growing season. From December to early January (DAP 0-50), NDVI 

readings were typically low, fluctuating between 0.1 and 0.2. As the crop matures, the NDVI 

values rise, peaking at 0.6 to 0.9 in the mid-season, then plateauing from mid-February to mid-

March (DAP 85-110). Toward the end of the season, the NDVI levels had decreased to 0.2-0.4 

by the beginning of April (DAP 135). Other researchers have observed similar seasonal NDVI 

curves for maize (Kamble et al., 2013; de Souza et al., 2015; Toureiro et al., 2017). All NDVI 

curves developed by these researchers showed low values at early stages, followed by an 

increase at mid-season stages, and a decline at late stages. 
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Figure 4.8: Seasonal evolution of NDVI at the 87 isolated maize fields within the Mooi River catchment. 

 

4.7. Seventh phase 
In the seventh phase of the study, the task of computing the actual evapotranspiration 

(Fig. 4.9 and 4.10) for each maize field of the Mooi River catchment was undertaken along with 

the production of the spatiotemporal ETc maps. This calculation was enabled by a multi-step 

process in which a new crop coefficient value (Kc) was derived using the NDVI-tabulated Kc 

regression model determined in the preceding sixth phase. The newly calculated Kc was then 

paired and multiplied by the associated reference evapotranspiration (ETc) value for each field.  

0,00
0,05
0,10
0,15
0,20
0,25
0,30
0,35
0,40
0,45
0,50
0,55
0,60
0,65
0,70
0,75
0,80
0,85
0,90

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

N
DV

I

DAYS AFTER PLANTING (DAP)

Seasonal Evolution of NDVI



Chapter 4    76 
____________________________________________________________________________________ 
 

 

Figure 4.9: Line graph showing seasonal evolution of actual evapotranspiration (ETc) at the 87 isolated 

maize fields within the Mooi River catchment. 
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Figure 4.10: Box and whisker plot showing seasonal evolution of actual evapotranspiration (ETc) at the 87 

isolated maize fields within the Mooi River catchment. 

 

Following this computational procedure, maps of the actual evapotranspiration (ETc) were 

generated using QGIS (Fig 4.11- 4.19). The ETc data for each time slice (DAP) was classified into 

four classes using the natural breaks (Jenks) method, resulting in a distinct map for each time 

slice. The Natural Breaks (Jenks) method was chosen because it is suitable for datasets 

characterized by uneven distributions and noticeable clusters. It was observed by viewing each 

dataset (time slice) as a histogram. The intent behind employing the Natural Breaks (Jenks) 

method for the ETc maps was to accentuate the intra-variability present in the spatial distribution 

of actual evapotranspiration for each specific time slice during the growing season. The decision 

to use four classes in the classification was strategic; while increasing the number of classes 

could reduce data generalisation—a desirable trait—it could also hinder map clarity, heightening 

the potential for reading inaccuracies. Thereby, four classes were deemed optimal to effectively 

depict spatial variability without compromising map legibility. 
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Figure 4.11-4.19: Maps indicating the spatial distribution of ETc at 20-136 days after planting in the Mooi 

River catchment. 
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Chapter 5: Discussion 
The study successfully used the Maximum Entropy (MAXENT) model to identify remaining 

maize fields among the 2808 total fields in the Mooi River catchment that were not noted during 

an initial visit. With external evaluation, the MAXENT model demonstrated an 82% accuracy in 

identifying maize fields, thus showcasing its potential for crop identification within complex 

agricultural landscapes in future research. 

 

5.1.  LAI analysis 
  Following the MAXENT modelling, the study employed the LAI analysis, which identified 

87 out of the 945 maize fields in the Mooi River Catchment as having been planted between the 

10th and 15th of November. It is essential to note that these 945 fields belong to various farmers 

within the catchment. The fields selected for analysis significantly influence the spatiotemporal 

variability of ETc in the catchment, as incorporating different fields would naturally yield different 

results. Comparing fields with varying planting times would be a flawed approach because the 

planting dates would differ and be at different growth phases. Growth phases directly influence 

evapotranspiration rates as they relate to factors like plant size and other traits impacting water 

usage. If the study's primary aim were to quantify the cumulative water usage (among other 

things) for each field during the growing season, then including all maize fields in the catchment 

would be logical. However, to effectively capture and map the spatial and temporal inter and intra-

variability of ETc throughout the growing season, it becomes imperative to focus on fields with 

similar planting dates to ensure comparability. A significant concentration of fields with aligned 

planting dates was observed in the southwest corner of the study area, contrasting with a more 

dispersed distribution elsewhere in the catchment. The clustered planting dates in the southwest 

can be attributed to the ownership of many of those fields by a single farmer, from whom planting 

dates were also sourced. This clustering poses an analytical challenge: the region may have 

distinct soil or climatic conditions or particular farming practices that could skew results. Such a 

skew might introduce a bias, which can be considered a shortcoming in the study. Unfortunately, 

acquiring planting dates from all farmers in the catchment was not feasible. 

5.2.  Reference evapotranspiration 
To ascertain the reference evapotranspiration values for the fields, the study area was 

divided using a grid consisting of 9km by 9km cells. Given the close proximity of many fields, there 

were minimal variations in their reference evapotranspiration values. Fields close to each other 

were consolidated within a single grid, all sharing the same evapotranspiration value. On the other 
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hand, more isolated fields were typically situated within their unique grid cells. The grid layout 

influenced the derived Etc values and, in turn, affected the spatiotemporal patterns seen across 

the catchment. Within a grid cell, reference evapotranspiration values remained uniform but 

differed across separate cells. This grid configuration and its dimensions inherently shaped the 

resolution of the evapotranspiration dataset and, hence, the spatiotemporal variability seen in the 

data. 

5.3. Corresponding trends in parameters 
The study identified a substantial correlation among the trends of actual 

evapotranspiration (ETc), averaged season evolution of NDVI, tabulated crop coefficient, and 

calculated crop coefficient curves (Fig. 5.1 and 5.2). The correlation between these parameters 

during the growing season is primarily influenced by intertwined factors that shape each of these 

parameters. This is most prominently observed in phase seven's results, where ETc, NDVI, 

calculated Kc, and tabulated Kc predominantly display an aligned trajectory, peaking around 80-

110 days after planting (DAP). ETc, however, deviates from the correlation slightly during this 

phase by descending sharply after peaking shortly after DAP 80. Such patterns underscore the 

potential of vegetation indices, particularly NDVI, in serving as reliable indicators for gauging 

actual ETc.  

 
Figure 5.1: Line graphs showing a similar trend in ETc calculated from the NDVI-tabulated Kc regression 

model and the seasonal evolution of averaged NDVI within the Mooi River catchment. 
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The alignment results from the mutual influences of the crop's aerodynamic properties, 

stomatal behaviour, canopy structure, and root characteristics that collectively steer water uptake, 

evaporation, and transpiration mechanisms, thereby dictating both ETc rates and the crop 

coefficient. NDVI values, which resemble the crop's green biomass volume and photosynthetic 

vigour, also display variations throughout the growing season, mirroring these influences. In the 

early stages of the growing season, the low amounts of green biomass yield lower NDVI values. 

However, as the crop matures and intensifies its near-infrared light reflection, NDVI readings 

surge, culminating during the peak of the crop's developmental phase. Transitioning into the 

senescence stage, crops experience diminished chlorophyll levels, leading to reduced red light 

absorption and near-infrared light reflection, prompting a decrease in NDVI values. The 

foundation of such patterns can be attributed to several determinants, encompassing crop type, 

climate, soil characteristics, and the crop's growth trajectory.  

 

In addition, drawing a distinction between Kc calculated and Kc tabulated is imperative. 

While tabulated Kc values stem from well-irrigated reference crops like alfalfa, calculated Kc 

readings rely on the actual crop growth scenarios, bridging the gap between tabulated Kc and the 

tangible crop growth conditions, ensuring a refined ETc estimation (Reyes-Gonzalez et al., 2018). 

Figure 5.2: Line graphs showing a similar trend between calculated Kc and tabulated Kc during the growing 

season. 
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In essence, the correlation in the trends of crop coefficient, ETc, and NDVI throughout 

maize's growing phase in this study is not incidental. These parameters are intrinsically 

interconnected and moulded by consistent factors with regard to the crop's physical attributes, 

ambient conditions, and developmental phases. Understanding these interrelationships allows for 

more accurate prediction and interpretation of these vital agricultural parameters. 

5.3.1. ETc (calculated Kc) vs ETc (tabulated Kc) 

Figure 5.3 illustrates the discrepancies between actual evapotranspiration (ETc) calculated 

using two distinct methods: the conventional method, which employs tabulated crop coefficients 

multiplied by reference evapotranspiration (ETo), and an alternative approach using crop 

coefficients derived from the Normalized Difference Vegetation Index (NDVI) in this study. The 

NDVI-based method accounts for both spatial and temporal variability in crop coefficients, thereby 

reflecting the natural fluctuations in crop conditions within the Mooi River catchment area. 

Figure 5.3: Line graphs showing differences in ETc calculated from the NDVI-tabulated Kc regression 

model, ETc calculated from tabulated crop coefficient values.  
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In Figure 5.3, it is evident that approximately 20 to 40 days after planting, ETc values 

calculated with NDVI-based crop coefficients indicate higher levels of ETc compared to those 

derived using conventional tabulated crop coefficients. From around 40 to 95 days after planting, 

the ETc values using NDVI-based coefficients drop to levels lower than those obtained through 

traditional methods. Beyond approximately 95 days after planting until the end of the season, the 

two ETc curves closely align. 

The most significant divergence between ETc calculated using tabulated coefficients and 

ETc calculated using NDVI-based coefficients occurs during the initial to developmental stages of 

maize growth. Conversely, the mid to late-season stages exhibit almost identical ETc levels 

between the two methods. This suggests that employing crop coefficients calculated from a 

vegetation index like NDVI is most critical during the initial to developmental phases of the maize’s 

growth cycle, particularly for rainfed maize. 

5.4. Growth stage lengths 
The growth stage-length analysis utilised the growing degree days (GDD) formula in 

conjunction with literature-based insights to discern the duration of each maize field’s four growth 

stages for that year based on temperature data from a nearby weather station. This was 

instrumental in assigning the correct satellite imagery and corresponding vegetation index data 

with the tabulated crop coefficient values for each growth stage, aiding the linear regression 

analysis. For the initial growth stage, the analysis indicated a span of 28 days. Given this, the sole 

available cloud-free satellite image for this phase was dated 2021/11/30. Being early in the 

season, the associated NDVI values were on the lower spectrum, reflective of maize in very early 

stages of growth with small leaves. Correspondingly, these initial 28 days exhibited minimal ETc 

values (Fig. 4.9). The development stage was discerned to last 57 days. As a result, four distinct 

cloud-free satellite images from 2021/12/10 to 2022/01/24 were assigned for ETc computations 

within this period. The associated NDVI values, particularly towards the latter part of this phase, 

presented a gradual linear increment (see Fig. 4.8). This upward trend in NDVI was paralleled by 

a consistent increase in ETc values during this segment of the season (Fig. 4.9). The mid-season 

stage spanned 38 days, corresponding with three cloud-free images from 2022/02/03 to 

2022/02/28. This segment displayed the peak of NDVI values for the season (see Fig. 4.8). There 

was also a pronounced plateau in the NDVI data for about thirty days, from DAP 80 to DAP 110. 

However, the correlation between this phase's NDVI and Etc values wasn't as consistent as in 

other stages. While both NDVI and ETc values peaked during this time, the latter witnessed a 

rapid descent soon after its peak. The concluding late-season stage endured for 27 days. This 
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period was characterised by a sharp decrease in ETc values, consistent with the declining NDVI 

values captured in the sole accessible cloud-free image dated 2022/03/26. As maize transitioned 

to its senescence phase, a pronounced drop in greenness would have been observed, leading to 

lowered NDVI values. Given that there is no growth during this phase, water consumption notably 

diminished, as illustrated in Figure 4.9. 

 

5.5. Regression analysis 
  Utilising a simple linear regression model, it was found that NDVI values, derived from 

satellite imagery, had a significantly stronger correlation with the FAO's tabulated crop coefficient 

values compared to the SAVI values. This revealed a strong correlation with NDVI (R²=0.90), 

compared to SAVI's R² of 0.68, corroborating previous studies and validating NDVI's effectiveness 

as a reliable tool for improving crop coefficients utilised in evapotranspiration estimations. For 

example, Reyes-Gonzalez et al. (2018) discovered an average R² of 0.97 for NDVI, Kamble et al. 

(2013) reported an R² of 0.90, and Hay et al. (2015) found an R² of 0.97. In contrast to other 

studies, this research found that the Soil-Adjusted Vegetation Index (SAVI) had a relatively lower 

correlation (R²=0.68) with the tabulated crop coefficient (Kc). For example, in a study by Gontia & 

Tiwari (2010), a linear relationship between wheat crop coefficients and SAVI resulted in an R² of 

0.90, with NDVI exhibiting an R² of 0.80. 

Similarly, Parmar & Gontia (2016) reported an R² of 0.96 for SAVI in their assessment of 

groundnut crop coefficients, significantly higher than the R² of 0.74 observed for NDVI. As a result, 

SAVI has a weaker linear relationship with maize crop coefficients compared to wheat and 

groundnut. At the same time, NDVI demonstrates a stronger correlation with maize crop 

coefficients. This suggests that spectral characteristics of wheat and groundnut crops may 

influence the relationship between vegetation indices and crop coefficients differently. 

Additionally, factors such as the volume of satellite imagery, the spatial resolution of the imagery, 

and environmental parameters like climate and soil conditions may also contribute to these 

disparities in correlation. 

As a result, the NDVI-tabulated Kc regression model was selected, leading to the 

generation of newly adjusted crop coefficients. The use of satellite-derived NDVI in the crop 

coefficient approach for estimating actual evapotranspiration enabled the adjustment of the FAO's 

standard crop coefficient values to more accurately represent the varying crop conditions in the 

maize fields, factoring in the inherent spatiotemporal variations in crop growth and conditions. 

Upon multiplying these adjusted values with a reference evapotranspiration value, an estimation 
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of the actual evapotranspiration of maize crops was achieved, effectively considering the spatial 

and temporal variations of crop water use in the study area. The computation of the actual 

evapotranspiration of each maize field led to the creation of spatiotemporal ETc maps. These 

maps offer valuable insights into the spatial and temporal variations of ET within the Mooi River 

catchment, facilitating crop yield assessments and predicting potential drought impacts on crop 

productivity, particularly in semi-arid regions like the Mooi River catchment where annual 

precipitation can fall below evapotranspiration demands. 

 

5.5.1.  Limitation of the regression analysis 

The study observed a distinct shortage of cloud-free satellite images during the initial and 

late-season growth stages. This limitation led to a reduced volume of NDVI and SAVI data 

available for the linear regression during these periods compared to the more abundant data 

during the development and mid-season stages. A primary reason for this difference in data 

availability is the duration of each growth stage. Longer growth phases, such as the development 

stage, which spanned 57 days and the mid-season stage, which lasted 38 days, provide more 

opportunities to capture cloud-free images because of the extended duration. In contrast, the 

initial growth phase, lasting only 28 days, and the late-season stage, spanning 27 days, had fewer 

chances to obtain clear images. Another factor contributing to this data disparity was the 

pervasive cloud cover throughout the 2022 growth season, which limited the number of suitable 

images for the study. A linear regression model's accuracy depends heavily on the volume and 

quality of its input data. Consequently, this study's regression model might exhibit biases 

stemming from the limited data available. Even though the NDVI-tabulated Kc model, derived from 

this regression, was solely used to calculate evapotranspiration (ET) using the training NDVI data 

and was not extrapolated to new datasets, the limitation is relevant. 

 

Motulsky & Christopoulos (2004) explain that fewer data points could expand confidence 

intervals for estimated coefficients. This expansion introduces more uncertainty, complicating 

determining genuine relationships in a dataset. With a limited dataset, validating essential 

regression assumptions, such as linearity and homoscedasticity, becomes harder, as noted by 

James et al. (2013). Such a limitation may introduce biases or misinterpretations. Additionally, a 

sparse dataset could weaken the model's statistical power, potentially missing significant 

patterns. Overfitting, or the model's tendency to capture random variations rather than genuine 

trends, is another concern with limited data, as pointed out by Kuhn & Johnson (2013). 
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The quality and volume of input data play a crucial role in shaping regression outcomes. 

For ET calculations, the resulting estimates could be less accurate if the NDVI values fail to 

accurately represent the ground conditions during crucial growth stages. While the mid-season 

and development stages likely yield more accurate estimates due to their richer data sets, the 

lack of data during the initial and late-season stages due to cloud cover is a shortcoming in the 

study. 

 

5.6. Spatiotemporal variability of maize ETc in the Mooi River catchment 
 In Figures 4.9 and 4.10, the depiction of actual evapotranspiration provides a more 

comprehensive representation of the inter-variability of ETc throughout the maize's growth cycle, 

spanning from 20 days after planting (DAP) to 136 DAP. This chronological portrayal reveals how 

Etc fluctuates temporarily over distinct time intervals. In contrast, Figures 4.11 through 4.19 offer 

a deeper insight into the intra-variability of ETc, highlighting the spatial variability within each 

specific day or time slice post-planting. To accurately showcase these spatial distinctions, the ETc 

scale for each map is adjusted according to the data range for that specific day, ensuring that the 

nuances of actual evapotranspiration within every individual time slice are captured and 

understood. 

It can be observed that the actual evapotranspiration (ETc) commences at a relatively low 

point in the early phases of maize crop development, registering its lowest value of 1.614 mm. As 

the maize progresses through its growth stages, the ETc gradually rises until it peaks at 8.83 mm 

at 85 days after planting (DAP). As the maize then transitions into its senescence phases, the ETc 

begins a gradual descent until it reaches 2.89 mm just prior to the commencement of the maize 

harvest. This pattern indicated minimal water use during the early stages, a surge during the mid-

growth phases, and a reduction in the late stages as harvesting approached. This trend in ETc is 

consistent with other studies, including Ko & Piccinni, 2008; Gontia & Tiwari, 2010; Johnson & 

Trout, 2015; Reyes-Gonzalez et al., 2015, and Reyes-Gonzalez et al., 2018. 

 

From a spatial perspective, it can be observed in Figures 4.11 to 4.19 that specific fields 

consistently maintain either a lower or higher level of ETc than other fields. However, it is also 

worth noting that some fields do not conform to a predictable pattern in certain instances, thereby 

exhibiting a more complex ETc behaviour. The spatial ETc maps depict significant variation in 

evapotranspiration across the Mooi River catchment, with lower ETc rates particularly evident in 

the southwest compared to the east of the study area throughout the growing season. This 



Chapter 5    91 
____________________________________________________________________________________ 
 

 

variation highlights the catchment's diversity and the complex interaction of factors influencing 

ETc rates. Climate conditions vary within the catchment, including temperature, humidity, wind 

speed, and solar radiation, potentially impacting evaporation and transpiration rates. Soil 

properties, such as texture, structure, and water-holding capacity, also significantly influence ETc 

rates. Environmental factors, including vegetation cover and topography, contribute to these 

disparities. 

Adding to the understanding of this variability is the study of Van Loggerenberg (2016), 

which highlights the high spatial and temporal variability of rainfall across the Mooi River 

catchment. This high variability can lead to varying soil moisture conditions, thereby affecting ETc 

rates. Moreover, the diversity in land use, vegetation cover, and farming practices can further 

intensify the spatial variability of actual evapotranspiration. In essence, the spatial variations in 

ETc rates within the Mooi River catchment, as expressed in the ETc maps, underscore the intricate 

interplay of multiple factors, including climate, soil, vegetation, topography, and human activities 

present in the catchment.
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Chapter 6: Conclusion 
6.1. Summary 

The study set out to determine how the evapotranspiration of maize crops varies over 

space and time within the Mooi River catchment using satellite multispectral vegetation indices 

and the crop coefficient approach. The first and second research objectives have drawn 

conclusions about the effectiveness of using a species distribution model (SDM)—specifically, the 

Maximum Entropy (MAXENT) model in this study. This model proved to be a robust and valuable 

tool in identifying maize crops through NDVI, demonstrating an accuracy of 82%. In this instance, 

945 maize fields were discerned among 2808 cultivated fields. Moreover, the study concluded 

that the LAI vegetation index effectively monitors plant growth patterns and extracts maize crop 

phenology from remote sensing images. It was employed to isolate 87 fields from the 945 

identified by the MAXENT model. These fields were specifically chosen as they were planted 

between November 10th and 15th, ensuring uniformity in planting dates for the analysed maize 

fields. This was crucial for accurate assessments of actual evapotranspiration’s spatiotemporal 

variability. 

The third objective of the study was to determine the lengths of maize growth stages in 

the Mooi River catchment, employing the growing degree days (GDD) formula. This enabled 

categorising the total growth period of satellite imagery into four distinct maize growth stages. By 

doing so, the appropriate FAO (tabulated) crop coefficient value could be aligned to each satellite 

image, allowing for precise linear regression analysis and enabling the accurate correlation of 

NDVI values with corresponding crop coefficient values. Following this, objectives four and five 

were completed by extracting reference evapotranspiration (ETo) values from the FAO's WaPOR 

database using a 9km-per-cell grid over the study area to create different ETo 'zones', grouping 

proximate fields, whereafter NDVI and SAVI values were averaged for each of the 87 fields from 

the respective satellite image pixels within each of the field’s boundaries. 

The final three objectives involved adjusting the FAO’s tabulated crop coefficients using a 

linear regression model derived from the relationship between these tabulated crop coefficient 

values and the NDVI values extracted from satellite imagery. These objectives also included 

calculating the actual evapotranspiration values (ETc) and creating spatiotemporal maps of ETc. 

The regression analysis revealed that NDVI had a remarkably stronger relationship with 

tabulated Kc compared to SAVI, with an R2 of 0.90 compared to an R2 of 0.68 with SAVI. 
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Consequently, the NDVI-tabulated Kc regression model was selected for actual 

evapotranspiration calculations. 

It was ultimately found that the average ETc across the Mooi River catchment starts at a 

low, registering its minimum at 1.614 mm during the initial growth phase of maize. It experiences 

a gradual increase, peaking at 8.83 mm at 85 days after planting (DAP) and subsequently 

descends to 2.89 mm nearing harvest. This trend in ETc aligns consistently with findings from 

other studies, including those by Ko & Piccinni (2008), Gontia & Tiwari (2010), Johnson & Trout 

(2015), and Reyes-Gonzalez et al. (2015, 2018). Spatial examination revealed considerable ET 

discrepancies across the Mooi River catchment, delineating the intricate interplays of diverse 

climatic, environmental, and soil conditions affecting ETc levels during the growth cycle. Figures 

4.11 to 4.19 depict these disparities, illustrating how specific fields sustain divergent ETc levels, 

with some presenting unpredictable patterns and displaying intricate ETc behaviours. The 

catchment's variability is further emphasized by lower ETc rates in the southwest, contrasting with 

those in the east, throughout the growing season. The multifaceted influences of climate, soil 

properties, vegetation cover, and topography all significantly contribute to the variations observed 

in evapotranspiration within the catchment. 

 

6.2. Importance of study findings and recommendations for future studies 
The findings of this study are of significant importance as they reveal noticeable 

discrepancies at certain times of the year between ETc calculated from tabulated Kc and ETc 

derived from adjusted (new) Kc values by a vegetation index like NDVI. These discrepancies are 

crucial as NDVI more accurately reflects the real-time crop growth conditions and incorporates 

various environmental and climatic variables impacting crop growth. The most marked divergence 

between the ETc calculated using tabulated coefficients and NDVI-based coefficients is observed 

during the initial to developmental stages of maize growth, underlining the need for more accurate 

assessment methods during these phases. This difference implies that to achieve the most 

precise and reliable ETc estimates, particularly during the early growth phases of rainfed maize, 

it is necessary to utilise crop coefficients calculated from a vegetation index like NDVI, ensuring 

the estimates are more reflective of the actual field conditions and environmental variables. 

Interestingly, both methodologies display almost identical ETc levels in the mid to late-season 

stages. 
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The in-depth spatiotemporal variability study in the Mooi River catchment has revealed 

the significant variations in ETc throughout the maize growth cycle, reinforcing the imperative to 

incorporate diverse factors, including climate, soil, and human activities, in understanding and 

measuring agricultural parameters. The maps and models that resulted from this study can serve 

as essential resources for farmers, water managers, and policymakers, facilitating optimized 

water use and sustainable management of scarce water resources in semi-arid regions, thereby 

increasing food security. 

 

In addressing future avenues of research, extending this methodology to different crop 

species and varied regions is imperative to substantiate its extensive applicability in managing 

agricultural water use and understanding how different types of agricultural landscapes affect 

evapotranspiration. An accurate estimation of crop evapotranspiration is fundamental not only for 

irrigation management in irrigated areas but also for crop yield assessments in rainfed regions, 

particularly pertinent in arid regions. It has profound implications on maize-soybean systems and 

other crop variants, offering insights into water-related stress impacts on crop development and 

yields. In addition, continuous measurement of ETc throughout the growing seasons in semiarid 

regions is necessary in predicting potential drought impacts on crop yields. These enhanced 

methodologies and insights are not merely beneficial for the Mooi River region but extend to 

similar agricultural contexts, paving the way for sustainable water resource management and 

enhanced food security.
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Appendix A 
Appendix A shows corresponding ETo values of each grid cell and satellite overpass date. 
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Appendix B 
Appendix B shows growth stage lengths and their associated cumulative growing degree days 

(CGGD) as deducted from literature compared to those calculated from temperature data 

obtained from the Zuurbekom weather station. 

Date DAP  
(days after 
planting) 

Literature 
CGGD 

(cumulative GDD 

from Haarhoff, 
2020) 

Literature Growth 
Stage (deducted from 

Haarhoff, 2020) GDD) 

Mooi River 
Catchment CGGD 

(calculated from 
Zuurbekom AWS temp. 

data) 

Mooi River 
Catchment 

Growth Stage 
(calculated from GDD) 

2021/11/11 1 14,1 Initial stage 11,15 Initial stage 

2021/11/12 2 26,15 Initial stage 23,4 Initial stage 

2021/11/13 3 35,3 Initial stage 33,45 Initial stage 

2021/11/14 4 44,45 Initial stage 44,65 Initial stage 

2021/11/15 5 53,6 Initial stage 57,25 Initial stage 

2021/11/16 6 62,75 Initial stage 69,85 Initial stage 

2021/11/17 7 71,9 Initial stage 83,65 Initial stage 

2021/11/18 8 81,05 Initial Stage 96,4 Initial stage 

2021/11/19 9 90,2 Initial stage 107,6 Initial stage 

2021/11/20 10 99,35 Initial stage 118,1 Initial stage 

2021/11/21 11 108,5 Initial stage 125,55 Initial stage 

2021/11/22 12 117,65 Initial stage 135,05 Initial stage 

2021/11/23 13 126,8 Initial stage 143,55 Initial stage 

2021/11/24 14 135,95 Initial stage 152 Initial stage 

2021/11/25 15 145,1 Initial stage 158,55 Initial stage 

2021/11/26 16 154,25 Initial stage 164,35 Initial stage 

2021/11/27 17 163,4 Initial stage 168,35 Initial stage 

2021/11/28 18 172,55 Initial stage 177,3 Initial stage 

2021/11/29 19 181,7 Initial stage 187,35 Initial stage 

2021/11/30 20 190,85 Initial stage 199,55 Initial stage 

2021/12/01 21 200 Initial stage 211,6 Initial stage 

2021/12/02 22 210 Initial stage 221,2 Initial stage 

2021/12/03 23 220 Initial stage 233,85 Initial stage 

2021/12/04 24 230 Initial stage 244,3 Initial stage 

2021/12/05 25 240 Initial stage 250,85 Initial stage 

2021/12/06 26 250 Initial stage 261,65 Initial stage 

2021/12/07 27 260 Initial stage 272,95 Initial stage 

2021/12/08 28 270 Initial stage 282,65 Initial stage 

2021/12/09 29 280 Initial stage 293,55 Development stage 

2021/12/10 30 290 Development stage 305,55 Development stage 
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2021/12/11 31 300 Development stage 317,95 Development stage 

2021/12/12 32 310 Development stage 327 Development stage 

2021/12/13 33 320 Development stage 332,65 Development stage 

2021/12/14 34 330 Development stage 342,85 Development stage 

2021/12/15 35 340 Development stage 353,5 Development stage 

2021/12/16 36 350 Development stage 362,3 Development stage 

2021/12/17 37 360 Development stage 369,1 Development stage 

2021/12/18 38 370 Development stage 373,2 Development stage 

2021/12/19 39 380 Development stage 377 Development stage 

2021/12/20 40 390 Development stage 384,2 Development stage 

2021/12/21 41 400 Development stage 393,25 Development stage 

2021/12/22 42 420 Development stage 402,6 Development stage 

2021/12/23 43 440 Development stage 411,2 Development stage 

2021/12/24 44 460 Development stage 420,4 Development stage 

2021/12/25 45 480 Development stage 429,65 Development stage 

2021/12/26 46 500 Development stage 440,15 Development stage 

2021/12/27 47 520 Development stage 448,35 Development stage 

2021/12/28 48 540 Development stage 456,95 Development stage 

2021/12/29 49 560 Development stage 466,75 Development stage 

2021/12/30 50 580 Development stage 479,05 Development stage 

2021/12/31 51 600 Development stage 492,2 Development stage 

2022/01/01 52 610 Development stage 503,35 Development stage 

2022/01/02 53 620 Development stage 515,1 Development stage 

2022/01/03 54 630 Development stage 526,75 Development stage 

2022/01/04 55 640 Development stage 537,6 Development stage 

2022/01/05 56 650 Development stage 548,7 Development stage 

2022/01/06 57 660 Development stage 557,95 Development stage 

2022/01/07 58 670 Development stage 569,6 Development stage 

2022/01/08 59 680 Development stage 580,4 Development stage 

2022/01/09 60 690 Development stage 590,2 Development stage 

2022/01/10 61 700 Development stage 600,65 Development stage 

2022/01/11 62 710 Development stage 611,65 Development stage 

2022/01/12 63 720 Development stage 623,5 Development stage 

2022/01/13 64 730 Development stage 634,2 Development stage 

2022/01/14 65 740 Development stage 645,35 Development stage 

2022/01/15 66 750 Development stage 656,85 Development stage 

2022/01/16 67 760 Development stage 667,3 Development stage 

2022/01/17 68 770 Development stage 678,75 Development stage 

2022/01/18 69 780 Development stage 690,15 Development stage 

2022/01/19 70 790 Development stage 700,8 Development stage 
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2022/01/20 71 800 Development stage 711,25 Development stage 

2022/01/21 72 810 Development stage 721 Development stage 

2022/01/22 73 820 Development stage 729,25 Development stage 

2022/01/23 74 830 Development stage 736,65 Development stage 

2022/01/24 75 840 Development stage 745,8 Development stage 

2022/01/25 76 850 Development stage 757,5 Development stage 

2022/01/26 77 860 Development stage 769,35 Development stage 

2022/01/27 78 870 Mid-Season stage 780,9 Development stage 

2022/01/28 79 880 Mid-Season stage 792,1 Development stage 

2022/01/29 80 890 Mid-Season stage 801,05 Development stage 

2022/01/30 81 900 Mid-Season stage 810,1 Development stage 

2022/01/31 82 920 Mid-Season stage 821,05 Development stage 

2022/02/01 83 940 Mid-Season stage 832 Development stage 

2022/02/02 84 960 Mid-Season stage 843,35 Development stage 

2022/02/03 85 980 Mid-Season stage 856,25 Development stage 

2022/02/04 86 1000 Mid-Season stage 868,55 Mid-Season stage 

2022/02/05 87 1020 Mid-Season stage 877,65 Mid-Season stage 

2022/02/06 88 1040 Mid-Season stage 887,7 Mid-Season stage 

2022/02/07 89 1060 Mid-Season stage 897,8 Mid-Season stage 

2022/02/08 90 1080 Mid-Season stage 907,8 Mid-Season stage 

2022/02/09 91 1100 Mid-Season stage 918,6 Mid-Season stage 

2022/02/10 92 1105 Mid-Season stage 930,1 Mid-Season stage 

2022/02/11 93 1110 Mid-Season stage 942,05 Mid-Season stage 

2022/02/12 94 1115 Mid-Season stage 952,35 Mid-Season stage 

2022/02/13 95 1120 Mid-Season stage 963,35 Mid-Season stage 

2022/02/14 96 1125 Mid-Season stage 975,05 Mid-Season stage 

2022/02/15 97 1130 Mid-Season stage 986,25 Mid-Season stage 

2022/02/16 98 1135 Mid-Season stage 998,35 Mid-Season stage 

2022/02/17 99 1140 Mid-Season stage 1008,85 Mid-Season stage 

2022/02/18 100 1145 Mid-Season stage 1018,5 Mid-Season stage 

2022/02/19 101 1150 Mid-Season stage 1029,15 Mid-Season stage 

2022/02/20 102 1160 Mid-Season stage 1040,3 Mid-Season stage 

2022/02/21 103 1170 Mid-Season stage 1051,7 Mid-Season stage 

2022/02/22 104 1180 Mid-Season stage 1062,8 Mid-Season stage 

2022/02/23 105 1190 Mid-Season stage 1074,45 Mid-Season stage 

2022/02/24 106 1200 Mid-Season stage 1085,05 Mid-Season stage 

2022/02/25 107 1210 Mid-Season stage 1096,25 Mid-Season stage 

2022/02/26 108 1220 Mid-Season stage 1106,5 Mid-Season stage 

2022/02/27 109 1230 Mid-Season stage 1118,35 Mid-Season stage 

2022/02/28 110 1240 Mid-Season stage 1129,35 Mid-Season stage 
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2022/03/01 111 1250 Mid-Season stage 1139,85 Mid-Season stage 

2022/03/02 112 1255 Mid-Season stage 1149,55 Mid-Season stage 

2022/03/03 113 1260 Mid-Season stage 1160,6 Mid-Season stage 

2022/03/04 114 1265 Late-season stage 1172,25 Mid-Season stage 

2022/03/05 115 1270 Late-season stage 1181,75 Mid-Season stage 

2022/03/06 116 1275 Late-season stage 1191,55 Mid-Season stage 

2022/03/07 117 1280 Late-season stage 1202,6 Mid-Season stage 

2022/03/08 118 1285 Late-season stage 1212,5 Mid-Season stage 

2022/03/09 119 1290 Late-season stage 1218,7 Mid-Season stage 

2022/03/10 120 1295 Late-season stage 1229,4 Mid-Season stage 

2022/03/11 121 1300 Late-season stage 1240,85 Mid-Season stage 

2022/03/12 122 1310 Late-season stage 1251,7 Mid-Season stage 

2022/03/13 123 1320 Late-season stage 1262,4 Mid-Season stage 

2022/03/14 124 1330 Late-season stage 1272,45 Late-season stage 

2022/03/15 125 1340 Late-season stage 1281,7 Late-season stage 

2022/03/16 126 1350 Late-season stage 1289,7 Late-season stage 

2022/03/17 127 1360 Late-season stage 1296,1 Late-season stage 

2022/03/18 128 1370 Late-season stage 1304,2 Late-season stage 

2022/03/19 129 1380 Late-season stage 1313,6 Late-season stage 

2022/03/20 130 1390 Late-season stage 1322,95 Late-season stage 

2022/03/21 131 1400 Late-season stage 1327,9 Late-season stage 

2022/03/22 132  Late-season stage 1335,15 Late-season stage 

2022/03/23 133  Late-season stage 1343,75 Late-season stage 

2022/03/24 134  Late-season stage 1352 Late-season stage 

2022/03/25 135  Late-season stage 1361,2 Late-season stage 

2022/03/26 136  Late-season stage 1369,55 Late-season stage 

2022/03/27 137  Late-season stage 1377,7 Late-season stage 

2022/03/28 138  Late-season stage 1385,85 Late-season stage 

2022/03/29 139  Late-season stage 1394,2 Late-season stage 

2022/03/30 140  Late-season stage 1403 Late-season stage 

  

 

 

 


