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Abstract

In the present research, analysis of a mathematical model of cholera which includes vaccinated

individuals was performed. It is proved that if control reproduction number RC < 1, a suitable

Lyapunov function is used to establish the global stability of the disease free equilibrium, which

means that the disease will die out over time. Global stability analysis shows that when RC < 1,

there exists at least one endemic equilibrium. If RC > 1, there exists a unique endemic equilibrium

which is globally asymptotically stable. Sensitivity analysis of parameters indicates that the

ingestion rate β of Vibrio cholerae by humans due to contact with contaminated sources greatly

influences RC followed by rate of natural loss of Vibrio cholerae, µB . An extension of the model

to include possible optimal control strategies targeting to reduce β such as hygiene and improved

sanitation are considered. Numerical simulations indicate that the number of infected individuals

reduces when controls are in place to reduce ingestion of cholera pathogens, which shows that

control measures are effective.

KEY TERMS

Cholera Modelling; SEIR Model; Disease Free Equilibrium; Control Reproduction Number; Global

Stability; Local Stability; Lyapunov Function; Optimal Control; Pontryagin’s Maximum Principle;

Hamiltonian Function
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Chapter 1

Introduction

1.1 Cholera

Cholera is an infectious diarrhoeal disease caused by a bacterium called Vibrio cholerae. The germs

live in water mostly along the coastal regions. Although there are hundreds of strains/serogroups

of cholera pathogens, only serogroups 01 and 0139 are known to cause epidemics [41]. It is

estimated that globally there are 1.3 to 4.0 million cholera cases and 20,000 to 145,000 cholera

deaths per year [74]. During 2022, WHO reported 472 697 cases and 2349 deaths from 44

countries [2]. The current cholera pandemic (seventh) has impacted over 120 countries, mostly in

less developed regions. Millions of cases are never reported [74].

A renowned British Scientist, John Snow (1813-1858), has been widely acknowledged as the father

of modern epidemiology due to his systematic approach in seeking answers to disease issues in

London. After qualifying as a medical doctor at the University of London in 1844, Snow was

admitted into the Royal College of Physicians in 1850 [95]. With determination to understand the

epidemic of 1854, he carefully mapped cholera cases in London and identified contaminated water

from a public well pump as the source of the disease [26]. Following his recommendations, the

pump was removed and cholera cases dropped immediately. Snow successfully dismissed the "bad

air" (miasma) theory as the cause of cholera. Snow recognized that disease treatment requires

looking at individual patients within the larger community and the environment they live in [16].
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This approach helps in understanding infectious diseases to this day. Snow’s efforts to understand

cholera are summarized below [24]:

1831: An epidemic strikes London. Therapeutic approaches then were not effective against cholera.

Before disappearing in 1832, 50,000 Britons had died.

1848: Another epidemic strikes. Two successive cholera deaths from the same residence were

reported.

1849: Snow is convinced cholera was spread through contaminated water.

1853: Snow had collected enough data that linked cholera to specific water supplies.

1.1.1 Vibrio Cholerae

The organism causing cholera was unknown until Pacini (1812-1883) and Koch (1843-1910) [45]

came up with its description as highlighted below:

1884: Filippo Pacini, a germ theory believer, took interest in cholera. After examining different

cholera victims, he discovered a bacterium in the intestines and called it vibrio.

1884: Robert Koch, who had earned worldwide fame for discovering tuberculosis bacillus in 1881,

came up with the name vibrio cholerae as the germ that was responsible for cholera spread.

Over time, works of Snow, Pacini and Koch convinced other physicians that "miasma"

theory, which refers to bad air in the environment, was not relevant to cholera spread [111].

1.1.2 Cholera Outbreaks and Pandemics

In the last two centuries, cholera pandemics have hit mankind seven times, with the first recorded

one originating from India in 1817 [88]. The strains responsible for the first four pandemics

are unknown, but the fifth and the sixth ones are associated with Vibrio Cholerae OI classical

biotype. There has been no clear criteria for distinguishing one pandemic period from the other

and different researchers have given different descriptions for different pandemics [88]. Table 1.1

displays a brief schedule of cholera outbreaks and pandemics upto the current one which is said

to have started in 1961.
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Table 1.1: Cholera Outbreaks and Pandemics [58]

Pandemic Period Approximate Deaths
First 1817-1824 200,000
Second 1829-1837 450,000
Third 1846-1860 2 Million
Fourth 1863-1875 1 Million
Fifth 1881-1896 900,000
Sixth 1899-1929 1.5 Million
Seventh 1961-1975 100,0000

1.1.3 Cholera Spread

Cholera primarily spreads through consumption of contaminated water or food. Contaminated

water sources, inadequate sanitation and poor hygiene contribute to transmission [68]. Additionally,

person-to-person transmission can occur in crowded or unsanitary living conditions. The bacterium

thrives in aquatic environments, especially in regions with warm temperatures [68]. Factors such

as floods, heavy rains or natural disasters can lead to contamination of water sources, escalating

the risk of cholera outbreaks.

Cholera can be transmitted through consumption of raw or undercooked seafoods, particularly

in areas where it is endemic [87]. Shellfish, in particular, can harbour the bacteria, posing a

risk to individuals who consume them. Inadequate sanitation infrastructure and poor hygiene

practices significantly contribute to the spread of cholera. Lack of access to clean water, improper

waste disposal and insufficient sanitation facilities create environments conducive to bacterial

growth and transmission [87]. Over the years, three cholera waves have spread widely to different

parts of the world. These waves have caused untold suffering especially in developing countries

where levels of hygiene and sanitaty conditions are relatively low. Figure 1.1 shows the different

directions of the waves as per the seventh pandemic phylogenetic tree.

Cholera can be introduced to new regions through international travels [22]. Infected individuals

or contaminated goods can carry the bacterium across borders, leading to outbreaks in areas

that may not have previously experienced cholera. High population density areas, especially in

urban slums or refugee camps with limited access to clean water and sanitation facilities create

conditions conducive to rapid cholera transmission. Proximity facilitates person-to-person spread.

Cholera often exhibits seasonal patterns, with increased prevalence during the warmer months [31].
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Figure 1.1: Transmission events inferred for the seventh-pandemic phylogenetic tree, drawn on a
global map [75].

This can be linked to proliferation of the bacterium in water sources and changes in human

behaviour, such as increased outdoor activities. Addressing the spread of cholera involves

implementing comprehensive preventive measures. This includes improving access to clean water,

promoting proper sanitation and hygiene practices, providing oral cholera vaccination in endemic

areas and enhancing surveillance in conjunction with early response systems. Timely identification

and treatment of cholera cases are critical. Public health interventions, such as health education,

water purification efforts and infrastructure improvements play vital roles in reducing the incidence

and impact of cholera.

1.2 Recent Cholera Outbreaks

Cholera was a major global problem in the 19th century with large-scale epidemics in both Asia,

Europe and Africa [104]. Although advances in medicine have reduced the impact of this scourge

in developed countries, some regions have experienced serious cholera outbreaks in the recent

past as highlighted in Table 1.2

The devasting effects of cholera epidemics, especially in developing countries, cannot be overem-

phasized. According to the World Health Organization (WHO), Africa continues to experience

an exponential rise in cholera cases amid a global surge in the disease [90]. Scientific studies have
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Table 1.2: Recent Outbreaks [81]

Years Some of the Affected Regions Approximate Deaths
1990s Asia, Peru, DRC 30,000
2000s Iraq, India, DRC 5,000
2010s Nigeria, Haiti, Yemen 14,000
2020s Niger 120

shown that Sub-Saharan Africa accounted for 60% of the global cholera burden estimates for

the period 2008-2012 [3]. Between January 2022 and July 2023, a cumulative number of 217186,

cases were reported to WHO Regional Office for Africa (AFRO), including 4002 deaths with CFR

of 1.8% [80]. Outside Africa, Yemen accounted for 84% and 93% of global cholera cases in 2017

and 2019 respectively [47].

1.3 Cholera Background in Kenya

The first cholera cases were documented in Kenya in 1836, mostly along the coast where 20, 000

people died in Zanzibar alone [112]. The towns of Lamu, Malindi and Kilwa were almost completely

depopulated [112]. There were no reported cases of cholera in Africa between 1870 and 1971 [112].

Since 1971, however, Kenya has experienced intermittent outbreaks which were more regular from

1974 as sketchily indicated in Table 1.3 [18,112].

Table 1.3: Cholera cases in Kenya:1974 − 2009

PERIOD CASES DEATHS COMMENTS
1974− 1989 Average fatality of 3.57%
1997− 1999 33, 400 10% of all cholera cases reported in Africa
2000− 2006 1, 157
By 2007 (cumulative to May 2007) 625 35 Fatality rate of 5.6%
By 2008 (cumulative to April) 1, 243 67 Fatality rate of 5.39%
2009 11, 769 274 Fatality rate of 2.33%

Table 1.3 shows that during the 3 years between 1997 and 1999, Kenya had 10% of all cases

reported in Africa. From 2007-2009, reported cases increased significantly. Although fatality rates

appear to have gone down from 5.6% to 2.3% during the same period, the economic constraints

this trend puts on the government cannot be ignored. Kenya loses approximately US$ 270m

annually due to poor sanitation [21]. One of the major causes of cholera in developing countries
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like Kenya is poor sanitation and unhygienic living conditions [65]. Any ideas, proposals or

recommendations that can minimize the impact of diseases like cholera in Kenya could be welcome.

A researcher coming up with factual contributions could be helpful to society.

The outbreak under this study started around November 2014. Since that time, local newspapers

highlighted fatalities arising from cholera from time to time. Hardly a day passed without a report

on those who succumbed in different counties. The Daily Nation of 19th May 2015 highlighted a

schedule of known cholera deaths as at that date, as tabulated below:

Table 1.4: Reported cholera incidents between November 2014 and 19th May 2015

COUNTY CASES DEATHS Cumulative Fatality Rate (CMR) COMMENTS
Nakuru 167 14 8.4 Active
Nairobi 239 12 5.0 Active
Migori 915 12 1.3 Controlled
Homa Bay 377 5 1.3 Controlled
Mombasa 81 5 6.2 Active
Muranga 471 3 0.6 Active
Bomet 272 2 0.7 Controlled
Baringo 8 0 0 Active
Kiambu 52 0 0 Active
Kirinyaga 150 0 0 Active
Total 2732 53 1.94 The average CMR is

1.94%

As seen from Table 1.4 above, cholera continued to cause more deaths in Kenya despite various

interventions by the government. Within a period of about 6 months, 53 known deaths or a fatality

rate of 1.94% had been recorded. Such an apparently low average CMR could be misleading on

the impact of the disease. This does not openly reflect the emotional costs that accompany an

epidemic of this nature. CMRs of 8.4% in active counties like Nakuru, 5% in Nairobi and 6.2%

in Mombasa are a cause for concern. One could not tell what might have happened in the last

3 counties which had not reported any deaths by the time this study was undertaken. In fact,

fatalities were reported from some counties after 1st June 2015.

1.3.1 History of cholera modelling

The use of epidemic dynamics is an important approach to the method of studying the spread

of infectious diseases [9, 40]. This approach is based on specific analysis of population growth,
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spread of infectious diseases and related social factors [9]. Dynamic models for infectious diseases

are mostly based on their compartmentalized structures which were firstly given by Kermack

(1898-1976) and McKendrick (1876-1943) in 1927 but have been developed by many other

bio-mathematicians since 1932 [9, 55].

In 2012, Hailegiorgis and Crooks demonstrated how cholera is spread in refugee camps [37].

Using the SEIR (Susceptible-Exposed-Infected-Recovered) model, they analysed how pollutants

spread through floods passing the pathogen from infected to exposed individuals [37]. They

concluded that through contaminated water sources, infected agents spread cholera bacteria

radially throughout the system [37].

Following the above conclusion, Crooks and Hailegiorgis studied cholera dynamics in the same

refugee camp in 2014. Their results were similar to their conclusion in 2012 [25]. Both findings

highlighted the possibility of using agent-based models in the study of cholera dynamics [25].

From a Kenyan perspective so far, some researchers appear to have modelled cholera dynamics in

closed populations in refugee camps. Models used did not emphasize government interventions in

the fight against cholera spread [6, 25,27,36,53,61,78].

By using mathematical models, researchers understand transmission dynamics of infectious

diseases [109]. In the process, control programs are evaluated with a view to reducing both

morbidity and mortality rates [109]. Compartmental models have been accepted as the most

basic technique of modelling diseases [40]. In this method, the population is divided into different

distinct groups [40].

There has been a growing concern over the effects of climatic changes and environmental dete-

rioration [82]. Consequently, heightened interest in understanding how diseases’ dynamics are

subject to weather patterns is noticeable [82].

Water source contamination, rainfall and flooding have been associated with cholera outbreaks

globally [96]. On the other hand, cholera dynamics cannot be delinked from interaction between

the pathogen, humans and the environment [76,107]. As a result, there exists two inescapable

transmission pathways [76,107]: human-to-human and environment-to-human. This is because

cholera is caused by the bacterium Vibrio cholerae, is primarily spread through the ingestion

of contaminated water or food. While human-to-human transmission can occur, it is relatively

rare compared to other modes of transmission. This is because cholera bacteria must reach the
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intestines to cause infection, and direct contact between individuals typically does not facilitate

this [69]. The predominant mode of transmission is through the fecal-oral route, where bacteria

from the feaces of an infected person contaminate water or food. This contaminated source is

then ingested by another person, leading to infection. Therefore, the focus in cholera research

and public health interventions is on improving water, sanitation, and hygiene (WASH) practices

to prevent the contamination and spread of Vibrio cholerae. Given the low frequency of human-

to-human retransmission, it is reasonable for research to prioritize other aspects of transmission

dynamics [83]. Addressing environmental factors and ensuring safe water supplies are more

impactful in controlling outbreaks and preventing the spread of the disease [99]. By focusing

on these areas, research can more effectively contribute to reducing the incidence and impact of

cholera. Therefore, human-to-human retransmission although important, is not frequent, thus it

will be ignored in this research.

Studies have shown that the infection rate of cholera is a function of social and environmental

factors [21]. It has also been noted that local environmental parameters are intensively associated

with cholera dynamics [1]. It has been proved that Vibrio cholerae bacteria has a great capacity

for environmental survival since it can live in water for many years [32]. Environmental factors in

Kenya are significantly associated with increased cholera risks [96]. Other factors such as open

defecation, lack of access to improved water sources and high levels of poverty are important

contributors to cholera outbreaks. On average, 12% of Kenya’s population practices open

defecation and this figure is as high as 95% in some areas [23].

Complex cholera dynamics could be understood from different mathematical models which have

addressed the problem [82]. Mathematical models of disease dynamics are central to a better

understanding of responses to environmental forcing of disease dynamics [82]. When there is

a cholera epidemic, there is a significant period of time during which some individuals may

have been infected but are not yet infectious themselves [9, 72]. During this latent period, such

individuals, who are referred to as asymptomatic, can transmit the disease [15]. Thus, unlike the

SIR model, the SEIR model addresses the possibility of asymptomatic individuals transmitting

cholera [25].

It has been shown that while symptomatic individuals may shed 109/ml of V. cholerae into the

environment through faeces, those asymptomatic may only shed up to 105/ml per stool [25].
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Since infective doses of environmental V. cholerae are suspected to be in the range 102 -106

cells, it is evident that depending on hyperinfectivity levels of the shed pathogen, asymptomatic

individuals contribute significantly to the spread of cholera [42,51]. This is consistent with Haran’s

observation that an individual who feels perfectly healthy can be excreting amounts of pathogen

large enough to transmit cholera [40].

The rest of this dissertation is organized as follows: Chapter 2 presents mathematical preliminaries,

such as definition of theorems and basics used in the study. Chapter 3 analyses the basic model

for cholera transmission dynamics and its mathematical analysis. Chapter 4 presents numerical

solution to the system of equations describing the formulated cholera model. Chapter 5 presents

an extended model to show improved sanitation’s effect on reducing spread of the disease. Chapter

6 presents concluding remarks and recommendations.
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Chapter 2

Literature Review

This chapter presents mathematical basics and literature review of well-known results and studies.

2.1 Mathematical Preliminaries and Definitions

Definition 2.1.1. Lyapunov function is a non-negative function that decreases in time along the

orbits of a dynamical system. It helps study the stability of equilibrium points [63].

Definition 2.1.2. We say that a non-singular n × n matrix A is Volterra-Lyapunov stable if

there exists a positive diagonal n× n matrix M such that MA+ATMT < 0.

Laws, principles, theorems/lemmas and equations

Definition 2.1.3. Mass action law states that when substances A and B react with each other,

the reaction rate is proportional to the concentration of A, denoted by [A], and the concentration

of B.

Theorem 2.1. [LaSalle’s Invariance Principle] Suppose there is a neighbourhood D of O and

continuously differentiable (time-independent) positive definite function V : D → R whose orbital

derivative V̇ is negative semi-definite. Let I be the union of all complete orbits contained in

{x ∈ D | V̇ (x) = 0}. Then there is a neighbourhood U of O such that for every x0 ∈ U, ω (x0) ⊆ I

[63].
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Theorem 2.2. [Pontryagin’s Principle] Necessary conditions that (x∗, u∗) be an optimal solution

for the optimal control problem are the existence of a non-zero k dimensional vector λ and an

n-dimensional vector function P (t) such that for t ∈ [t0, t1] :

˙P (t) = −P (t)f (t, x∗, u∗)

and

P (t)f(t, x, u) = H(t, x, u) = max
u∈U
{H(t, x, u)}.

Theorem 2.3. [Next generation matrix method] In compartmental models for infectious disease

transmission, individuals are categorized into several compartments: some are called disease com-

partments if the individuals therein are infected while others are called non-disease compartments.

Suppose that there are n > 0 disease compartments and m > 0 non-disease compartments. Then

a general compartmental disease transmission model can be written as

X ′ = F(x, y)− V(x, y), y′ = g(x, y),

with g = (g1, . . . , gm)
T . Here 1 denotes differentiation with respect to time ;x = (x1, . . . , xn)

T ∈

Rn and y = (y1, . . . , ym)
T ∈ Rm represent populations in disease compartments and non-disease

compartments respectively; F = (F1, . . . , Fn)
T and V = (V1, . . . , Vn)

T , where Fi represents the

rate of new infections in the ith disease compartment and Vi represents the transition terms, for

example, death and recovery in the ith disease compartment. Assume that Fi(0, y) = 0, Vi(0, y) =

0, Fi(x, y) ≥ 0, Vi(x, y) ≤ 0 whenever xi = 0, and
∑n

1=1 Vi(x, y) ≥ 0 for all x, y ≥ 0, i = 1, . . . , n.

Also assume that the disease-free system y′ = g(0, y) has a unique equilibrium y = y0 > 0 that is

locally asymptotically stable within the disease-free space. Define two n× n matrices

F =

[
∂Fi
∂xj

(0, y0)

]
, V =

[
∂Vi
∂xj

(0, y0)

]
.

Assume that F ≥ 0 and V −1 ≥ 0, which are biologically reasonable. Then the next generation

matrix is K = FV −1 and the basic reproduction number R0 can be defined as the spectral radius

of K, that is,
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R0 = ρ
(
FV −1

)
.

Lemma 2.1.4. Let D =

 d11 d22

d33 d44

 be a 2× 2 matrix. Then D is Volterra-Lyapunov stable

if and only if d11 < 0, d22 < 0 and det(D) > 0. This indicates that all the equations are feasible

in endemic equilibrium.

2.2 Mathematical Modelling

Mathematical modelling of infectious diseases is the use of mathematical language to describe

the process of transmission dynamics of a disease [102]. It is a tool that explores mathematical

traceability of the transmission of a disease and helps in understanding spread dynamics of an

epidemic [102]. Mathematical modelling in epidemiology, therefore, helps in understanding the

underlying mechanisms that influence the spread of a disease and in the process, suggests control

strategies [5].

2.2.1 History

Mathematical modelling in epidemiology is reported to have originated from Daniel Bernoulli

when he solved a model for smallpox in 1760 [7]. Hamer analysed a discrete time model in

1906 and Ross developed differential equation models for Malaria in 1911 [31]. Soon afterwards,

Ross won the second Nobel Peace Prize in medicine [13]. Kermack and McKendrick extended

Ross models in 1926 and came up with the epidemic threshold results [13]. In essence, modern

differential equation models of epidemics were introduced by Kermack and McKendrick but later

expanded by Anderson and May [29]. In epidemiological terms, the threshold principle states

that “if the average number of secondary infections caused by an average infective <1, a disease

will die out but if this average >1, the disease will persist” [5]. Many researchers have referred to

the average number of secondary infections as the basic reproduction number (R0) [52]. This is

the most fundamental quantity used by epidemiologists [52]. Kermack and McKendrick have said

that a single infective in an otherwise susceptible population will start an epidemic if the density

12



of susceptible exceeds a certain threshold [7]. Kermack and McKendrick have described R0 as

the number of secondary cases generated from a single infective introduced into a susceptible

population [7].

2.2.2 Mathematical Modelling of Cholera Epidemics

Different mathematical models have been proposed to investigate the complex epidemic and

endemic behaviour of cholera [46]. In reality, mathematical models have been used to allow better

understanding of cholera epidemiology retrospectively and to predict the impact of interventions

in the future [35]. Thus, mathematical models have been used to synthesize knowledge of cholera

into a quantitative framework [49].

Mathematical models play a great role in development of epidemiological theories [10]. They help

to synthesize the current empirical knowledge about a disease, to infer cause-effect relationships

and to suggest experimental designs to test alternative hypotheses [10]. Major studies of cholera

begun in London when Dr. John Snow stopped a major cholera epidemic by closing a suspect

water pump and in the process confirmed that cholera is a water-borne disease [100].

Several mathematical models of cholera transmission dynamics have been formulated and studied in

response to Zimbabwe and Haiti epidemics, although only a small number of cholera transmission

models have been developed [7, 100]. Notable among epidemiological studies is the Codeco

model [21]. The model is popular for being the first to explicitly incorporate the environmental

component to model a cholera epidemic [100]. The model, however, does not incorporate any

control strategy [100]. In reality, once there is an epidemic, public enlightenment follows and

control is inevitable [21]. This discovery paved way for further studies on cholera [21].

A basic and most fundamental control strategy for cholera is water treatment [84]. Capasso and

Pareri-Fontana, to describe the dynamics of the 1973 epidemic of cholera in Italy, developed the

first model [21]. This model was published in 1979, a period when mathematical modelling was in

its infancy [84]. The model consisted of two coupled differential Equations (2.2.1) - (2.2.2) which

describe dynamics of infected individuals in the community and dynamics of free-living bacteria

population [10].
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dx1

dt = −a11x1 + a12x2.

dx1

dt = g(x1)− a22x2.
(2.2.1)

The two state variables in this model include x1 which describes concentration of the pathogen

in an aquatic environment and x2, the population of infected people [84]. In this model, all the

constraints aij are constants [84]. The function of g(x) accounts for the incidence of cholera

infection [84]. Codeco thereafter developed a model with an additional equation for the susceptible

individuals in the population [21]. He considered the population of susceptible individuals in a

three compartmental model given by Eq. (2.2.2):-

dS
dt = n (H − S)− aλ(B)S

dI
dt = aλ (B)S − rI,
dB
dt = eI − (mb− nb)B,

(2.2.2)

where λ (B) = B
K+B .

In this model, S, I, B and H represent the susceptible population, infected individuals, concentration

of the pathogen (V. cholerae) in the aquatic environment and the total population respectively [21].

n represents the human natural mortality rate
(
day−1

)
[84]. λ (B)is the probability of contact

with V. cholerae and a is the rate of contact with untreated water [84].

Codeco was the first to build a cholera model that explicitly incorporates the environmental

component, that is, the V.cholerae concentration in the water supply denoted by B, into a

regular Susceptible-Infectious-Recovered (SIR) system to form a combined environment-to-human

epidemiological model [21]. This model enables a careful study of the complex interaction between

human host and environmental pathogen towards a better understanding of cholera transmission

mechanisms and as such, it has motivated development of several other cholera models [100].

Building on Codeco’s work, Hartley, Morris and Smith developed a more general model which

took into account the different infective states of V.cholerae. The model consists of five equations

which describe dynamics of a susceptible, infectious and removed human population and dynamics

of hyper-infective and lower infective states [43]. The model incorporated the hyperinfective (HI)

and non-hyperinfective (LI) states in transmission dynamics of the cholera pathogen [43]. This
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model is indicated in Eq. (2.2.3):-

dS
dt = bN − βLS BL

KL+BL
− βHS BH

kH+BH
− bS,

dI
dt = βLS

BL
kL+BL

+ βHS
BH

kH+BH
− (γ + b) I,

dR
dt = γI − bR,
dBH
dt = ξI − χBH ,
dBL
dt = χBH − δLBL.

(2.2.3)

In this model BH and BL are concentrations of HI and LI per ml, I represents infectious

individuals and S the susceptible population. βL and βH are the rates of ingestion of LI and HI

V. cholerae respectively. In this model, the basic reproductive number was calculated and noted

to be 18.2 when βH v βL.

Mukandavire, Liao, Wang, Gaff, Smith and Morris built on the Codeco model by incorporating

the human-to-human factor. They estimated the basic reproduction number (R0) for the 2008 to

2009 cholera outbreaks in Zimbabwe [73]. They presented a model fitted to the Zimbabwean data

that provides insights into the nature of the epidemic in Zimbabwe and, on a broader scale, to

control of cholera at a global level [100]. More specifically, they used Zimbabwean data to derive

estimates of the basic reproductive number (R0) of cholera on a regional basis [113]. The model

is represented by the system in Eq. (2.2.4) below:-

dS
dt = µN − βeS B

k+B − βhSI − µS,
dI
dt = βeS

B
k+B + βhSI − (γ + µ) I,

dR
dt = γI − µR,
dB
dt = ξI − δB.

(2.2.4)

Ashleigh, Tien, Eisenberg, David, J., Junling and David, N. built a SIR compartmental transmis-

sion model that characterized the population as susceptible to infection, infected and infectious to

others. Recovered or otherwise were removed from risk to further infection [103]. They assumed

that cholera could be transmitted through either contaminated water or close contact with

infectives but that water borne transmission was a far more important method of transmission.

They added a water compartment to the model [100].
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2.3 Epidemiological Models

A model is an object or a concept that is used to represent something else in a form we can

comprehend [14]. A mathematical model is an explicit mathematical description of the simplified

dynamics of a system [7]. Thus, a model is often an approximation of conceptual experiments

which would otherwise be difficult or impossible to do [7]. Basic mathematical models of infectious

diseases’ transmission describe transitions of individuals between susceptible, infectious and

recovered states

Models on behaviour of infectious diseases in large populations often consider each individual

as being in a particular state [19]. These states are often referred to as compartments and

the corresponding models are called compartmental models [19]. This has made the use of

compartmental models handy because of the need to use models based on continuous variables [66].

A compartmental model, therefore, provides a framework for the study of a dynamical system

such as disease dynamics in a large population [71]. A compartmental model may also be defined

as a mathematical representation of a body created to study a mixer of objects in a dynamical

system [19].

Most mathematical models on cholera make use of compartmental models which describe the

basic features of disease transmission [49]. Mathematical models of interest in cholera modelling

make use of basic concepts in Ordinary Differential Equations (ODEs) [10]. These concepts make

understanding of fundamental mechanisms of disease transmission easy to follow for effective

prevention and interventional strategies against outbreaks [101]. Consequently, the progress of an

epidemic through the population is highly tractable to mathematical modelling [54]. In particular,

the first attempt to model and hence predict or explain spread patterns dates back over 100 years

although it was the work of Kermack and McKendrick that established the basic foundations of

the subject [54], [39], [55]. These early models, and many subsequent revisions and improvements

operated on the principle that individuals can be classified by their epidemiological status i.e.

susceptible to the infection, infected and therefore infectious and recovered and are therefore no

longer infectious [100].

16



2.3.1 The SIS model

The simplest compartment model often assumes a person can be in any one of the two states, i.e.

either susceptible (S) or infectious (I) [33]. These two state possibilities define the SIS model [33].

In this model, an individual never enters “recovered” state, but alternates between infected and

susceptible as indicated in Figure 2.1 [33].

S I
βSI

γI

µS µI

µ∗

Figure 2.1: Diagram of SIS compartment model showing the transmission rate, β, the death rate,
µ, the birth rate µ∗ and the recovery rate γ.

In SIS model, individuals move from the Susceptible state (S) to the Infectious state (I) by

interacting with infectious individuals [33]. The model assumes no immunity against a given

disease [106]. The rate of infection depends on the contact between Susceptible and Infected

(SI), while recovery is also at a constant rate proportional to the number of infected (b). The

corresponding equations for the model are:-

dS
dt = bI − aSI,
dI
dt = aSI − bI,

(2.3.1)

where a and b are the infection and recovery rates respectively [52].

2.3.2 The SIR model

In this model, an individual occupies any of the three compartments, that is, Susceptible, Infective

or Recovered [102]. Other mathematical models such as Susceptible, Infectious, Recovered and

Susceptible (SIRS) and Susceptible, Exposed, Infectious and Recovered (SEIR), are modifications

of the SIR model [113], [52]. For instance, sometimes this model may include a class of exposed
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individuals, E, that is, those who are infected but are not infectious, and that becomes the SEIR

model [33]. On the other hand, an extension of the SIR model is the SIRS model, which is a

model used to describe endemic infection [33]. The SIR model is one of the earliest mathematical

models that were developed by Kermack and McKendrick in 1927 [52]. Besides, the SIR model

is one of the simplest and most fundamental of all epidemiological models [33]. It is based on

calculating the proportion of population in each of the three classes, that is, susceptible, infected

and recovered, and determining the rates of transition between these classes [33]. The SIR model

is used in epidemiology to compute the number of susceptible, infected and recovered individuals

in a population during a time-period (t) under certain conditions [29]. It mainly describes diseases

which confer immunity against reinfection [106]. The diagram of SIR model is shown in Figure

2.2.

S I

βSI
N

γR

R
νI

Figure 2.2: Diagram of the SIR model [102].

The SIR model is represented by the following system of differential equations [29];

dS
dt = −βSIN + γR,

dI
dt = βSI

N − νI,
dR
dt = νI − γR.

Mathematical modelling provides a unique approach to gain basic knowledge in transmission

dynamics [100]. The model formulation process clarifies assumptions, variables and parameters [50].

Mathematical models provide results such as thresholds, basic reproduction numbers, contact

numbers and replacement numbers [50].

Mathematical modelling of disease transmission often uses a trade-off between simple models,

which omit most details and are designed only to highlight general qualitative behaviour, and

detailed models, usually designed for specific reasons for short-term and long-term prediction [35].

Detailed models are generally difficult or impossible to solve analytically and hence their usefulness
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for theoretical purposes is limited, although their strategic value may be high [106]. Consequently,

many researchers use simple models since they constitute the building blocks for other models

which include structures that are more detailed [106].

To effectively stop the spread of infectious diseases among the population, many governments

have resorted to immunization and vaccinations [102]. When a large number of the population

has been vaccinated and are therefore immune to such diseases, there is a likelihood that very

low number is susceptible to infection [50]. This is known as herd immunity, which can be used

to describe the proportion of those who may be described as free from being infected among

individuals in a population [100]. Therefore, a population is said to have herd immunity from a

disease if enough people are immune such that the disease would not spread if it were suddenly

introduced anywhere in the population [52]. The theory of herd immunity claims that diseases

are passed from person-to-person and it is difficult to maintain a chain of infection when a large

number of the population is immune [50]. This can be calculated as herd immunity threshold,

Ht [110]. Thus, herd immunity threshold is the percentage of the population that needs to be

immune to control transmission of a disease [52].

It can be seen that

Ht =
R0 − 1

R0
, (2.3.2)

where R0 is the basic reproduction number [52]. The basic reproduction number (R0) referred

to earlier is the central concept of mathematical epidemiology [19]. R0 gives average number

of secondary infections that result from the introduction of a single infective individual into an

entirely susceptible population [19], [29], [113]. R0 tells us how easy or difficult it is to eradicate

an infection in a population [17]. If R0 > 1, this means that a disease either has invaded the

population or is persistent in that population [19].

Mathematical models play a great role in development of epidemiological theories [10]. Models of

disease transmission provide guidance in making logistical and interventional policy decisions

during epidemics [113]. Different models have been formulated to address disease spread in

different locations [113]. Some models are said to be simple models while others have been

described as too complex [113].
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2.4 Cholera Treatment and Vaccinations

Cholera treatment entails a wide range of approaches. For instance, rehydration therapy, which is

the cornerstone of cholera treatment, involves replacing fluids and electrolytes lost through severe

diarrhoea and vomiting [57]. Oral rehydration solutions (ORS) are commonly used, providing a

balanced mix of salts, sugars and water to restore hydration and electrolyte balance. In severe

cases where dehydration is profound, intravenous fluids may be administered to rapidly replenish

what is lost [64]. Swift and appropriate fluid replacement can significantly reduce the levels of

mortality associated with cholera.

Antibiotics can help shorten the duration and reduce severity of cholera symptoms [67]. Commonly

used antibiotics include doxycycline, azithromycin and ciprofloxacin. Antibiotics are particularly

important in reducing the duration of shedding of Vibrio cholerae bacteria, thereby decreasing

the risk of further transmission [108]. Zinc supplements may be beneficial, especially in children,

as they help reduce severity and duration of diarrhoea [108].

International Public Health authorities in collaboration with the Center for Disease Control

and Prevention (CDC) and the World Health Organization (WHO) have come up with the

Global Task Force on Cholera Control (GTFCC) objectively to reduce cholera deaths by 90%

before 2030 [20]. Effective combating of cholera outbreaks involves harnessing the power of oral

cholera vaccines [70]. Dukoral, Shanchol and Euvichol are among WHO-prequalified options

which exemplify the success of preventive measures [70]. Administered orally, these vaccines

bestow immunity against Vibrio cholerae, presenting a crucial front-line defence. Strategic

and widespread vaccination campaigns constitute a proactive stance against cholera. Targeting

high-risk areas and populations especially those dwelling in crowded or unsanitary conditions

creates a formidable barrier which curb the potential spread [93] of cholera. Recommendation of

pre-exposure and post-exposure prophylaxis with oral cholera vaccines is a dynamic strategy in

response to outbreaks. Swift action provides short-term protection, bolstering a collective defence

against the disease. Elevating the standards of water and sanitation infrastructure is pivotal

for a sustained defence against cholera transmission [30]. Access to clean water and improved

sanitation facilities form a backbone of preventive measures within the environment. Empowering

communities with the knowledge of proper hygiene practices is fundamental. This grassroot
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approach minimizes the risk of contamination, fostering a culture of health-conscious behaviours

that actively contribute to cholera prevention.
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Chapter 3

MATHEMATICAL ANALYSIS OF

THE MODEL

3.1 Model formulation

After evaluating different epidemic models, it was considered that for the purposes of this research,

the most suitable model was a modification of SIR. That modification included addition of

vaccinated compartment and splitting of the infectious compartment to cover both infectious

asymptomatic and symptomatic compartments. In the model, it is assumed that intervention by

vaccination takes place. Human population is subdivided into six categories, namely, Susceptible

(S), Vaccinated (V ), Infectious but asymptomatic (Ia), Infectious with symptoms (Is), Treated

(T ) and Recovered (R). An open population is assumed with a total population N at time t

represented in these categories as:

N = S + Ia + Is + V + T +R. (3.1.1)

Susceptible individuals, S, are increased by recruitment at rate Λ and by those waned but

vaccinated at rate ωV . However, susceptible individuals are also reduced by vaccination at rate ρ,
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asymptomatic infectious at rate fλ, symptomatic infectious at rate (1− f)λ and natural deaths

at rate µS. Similarly, population of vaccinated individuals, V , is increased by vaccination at rate

ρS, reduced by those waned but vaccinated at rate ω and by natural deaths at rate µ. Population

of asymptomatic-infectious individuals, Ia, is generated by progression of susceptible individuals’

movement to asymptomatic-infectious state after contact with pathogen at rate fλS. Population

of asymptomatic-infectious individuals is diminished by those recovering at rate θa and natural

deaths at rate µ.

Likewise, population of symptomatic individuals is generated by progression of susceptible

individuals to symptomatic-infectious state after contact with pathogen at rate λ(1− f)S. It is

reduced by recovery of symptomatic-infectious individuals at rate θs, by treated individuals at

rate τ and by natural deaths at rate µ. Population of treated individuals is generated at rate

τIs, reduced at natural death rate at which humans die, µ and by those recovering at rate θt.

Unlike Is and Ia, treated individuals do not contribute to infections. Population of recovered

individuals, R, is generated at rates θaIa, θsIs and θtT and reduces at death rate µ. Vibrio

cholerae concentration, B, is generated within the environment following shedding of the pathogen

by infectious individuals with or without cholera symptoms. This concentration is also increased

by infectious asymptomatic at rate ϕa and by infectious symptomatic individuals at rate ϕs. At

the same time, pathogen population is decreased by natural loss of V. cholerae in the environment

at rate µB .
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Figure 3.1: Model flow chart where the population is divided into Susceptible, Vaccinated,
Infectious Asymptomatic, Infectious Symptomatic, Treated, Recovered and Vibrio Cholerae
population. The flow chart is summarized in Equations (3.1.2)-(3.1.8).

The following Ordinary Differential Equations are derived to describe cholera dynamics as depicted

in Figure 3.1:

dS

dt
= Λ + ωV − (ρ+ µ+ λ)S (3.1.2)

dV

dt
= ρS − (ω + µ+ σ)V (3.1.3)

dIs
dt

= σξV + (1− f)λS − (θs + τ + µ)Is (3.1.4)

dIa
dt

= (1− ξ)σV + fλS − (θa + µ)Ia (3.1.5)

dT

dt
= τIs − (µ+ θt)T (3.1.6)

dR

dt
= θtT + θaIa + θsIs − µR (3.1.7)

dB

dt
= ϕaIa + ϕsIs − µBB (3.1.8)
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where λ = β B
KB+B . The total population N at time t is represented as

N = S + Is + Ia + V + T +R. (3.1.9)

It is assumed that all parameters are positive and their corresponding initial conditions are

N(0) = N0, S(0) = S0 > 0, V (0) = V0 ≥ 0,

Is(0) = Is0 ≥ 0, Ia(0) = Ia0 ≥ 0,

T (0) = T0 ≥ 0, R(0) = R0 ≥ 0, B(0) = B0 > 0.

(3.1.10)

Table 3.1 presents model parameters.

Table 3.1: Parameter Descriptions

Parameter Description
Λ Recruitment Rate
f Progressive rate of susceptible individuals movement to asymptomatic-infectious state
λ Contact rate
KB Concentration of V. cholerae that yields 50% chance of infection
σ Efficacy of vaccine dose
θa Recovery rate of asymptomatic-infectious individuals
θt Recovery rate of treated individuals
ω Waning rate of vaccine
ρ Vaccination rate
ξ Fraction of vaccinated individuals who become symptomatic-infectious individuals
θs Recovery rate of symptomatic-infectious individuals
τ Treatment rate for symptomatic-infectious individuals
µB Rate of natural loss of Vibrio cholerae
ϕa Contribution of asymptomatic-infectious individuals to the Vibrio cholerae concentration
ϕs Contribution of symptomatic-infectious individuals to the Vibrio cholerae concentration
β Ingestion rate of Vibrio cholerae by humans due to contact with contaminated sources
µ Natural death rate of humans

3.2 Well-posedness of the system

Theorem 3.1. The model described by the system represented by Equations (3.1.2)-(3.1.8) has

a unique solution X which is positive and bounded if k in Eq. (3.2.1) is given by Eq. (3.2.9)

whenever the initial conditions X(0) = (S0, V0, Is0 , Ia0 , T0, R0, B0) are non-negative.

Proof. Let X1 = (S, V, Is, Ia, T,R) , X2 = B
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k : Ω7 → R7
+

X → X
′
.

(3.2.1)

Let Ω =

{
X = (S, V, Is, Ia, T,R,B) ∈ R7

+ : S + V + Is + Ia + T +R ≤ N : B ≤ (ϕa+ϕb)N
µB

}

k1(X) =
dS

dt
= Λ + ωV − (ρ+ µ+ λ)S (3.2.2)

k2(X) =
dV

dt
= ρS − (ω + µ+ σ)V (3.2.3)

k3(X) =
dIs
dt

= σξV + (1− f)λS − (θs + τ + µ)Is (3.2.4)

k4(X) =
dIa
dt

= (1− ξ)σV + fλS − (θa + µ)Ia (3.2.5)

k5(X) =
dT

dt
= τIs − (µ+ θt)T (3.2.6)

k6(X) =
dR

dt
= θtT + θaIa + θsIs − µR (3.2.7)

k7(X) =
dB

dt
= ϕaIa + ϕsIs − µBB. (3.2.8)

Thus, Equations (3.2.2)-(3.2.8) can be written as

X
′

= k(X);X(0) = (S0, V0, Is0 , Ia0 , T0, R0, B0) ∈ Ω. (3.2.9)

The system of Equations (3.1.2)-(3.1.8) is supplemented by the initial conditions in Eq. (3.2.9) with

initial conditions can be expressed as: dX
dt = k(X), X(0) = X0, where X = (S, V, Is, Ia, T,R,B)

is a vector in R7 and f(X) =

(
k1(X),k2(X),k3(X),k4(X),k5(X),k6(X),k7(X)

)T
is a vector

field in R7 such that k1(X)− k7(X) are defined by Equations (3.2.2)-(3.2.8) respectively.

It is easy, using the standard dynamical system in Theorem 2.1.3 [97, p. 102] to see that f is

differentiable, hence, locally Lipschitz, thus there exists a unique local solution of Equations

(3.1.2)-(3.1.8). If X(0) = (S0, V0, Is0 , Ia0 , T0, R0, B0) ≥ 0, from Equations (3.1.2)-(3.1.8), we have

S
′
(t) = Λ + ωV ≥ 0, whenever S = 0, V

′
= ρS ≥ 0, whenever V = 0, I

′

s = σξV + (1− f)λS ≥ 0,

whenever Is = 0, I
′

a = (1− ξ)σV + fλS ≥ 0, whenever Ia = 0, T
′

= τIs ≥ 0, whenever T = 0,
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R
′

= θtT + θaIa + θsIs ≥ 0, whenever R = 0 and B
′

= ϕaIa + ϕsIs ≥ 0, whenever B = 0.

Using Proposition B.7 of [94], the solution of the system of Equations (3.1.2)-(3.1.8) is non-negative

for all t > 0.

We can now verify that the dissipation condition is as follows:

kF (X).X = (k1,k2,k3,k4,k5,k6,k7).(S, V, Is, Ia, T,R,B)

= k1S + k2V + k3Is + k4Ia + k5T + k6R+ k7B

= (Λ + ωV −m1S)S + (ρS −m2V )V

+ (σξV + (1− f)λS −m3Is) Is

+ ((1− ξ)σV + fλS −m4Ia) Ia

+ (τIs −m5T )T + (θtT + θaIa + θsIs − µR)R+ (ϕaIa + ϕsIs − µBB)B

= (m1 +m2 +m3 +m4 +m5)(S2 + V 2 + I2
s + I2

a + T 2 +R2 +B2) + ΛS + ωV S

+ρSV + δξV Is + (1− f)λSIs + (1− ξ)σV Ia

+fλSIa + τIsT + θtTR+ ϕaIaB + ϕsIsB

≤ a|X|2 + q

(3.2.10)

where a = (m1 +m2 +m3 +m4 +m5) and q = aN2 representing constants whose magnitudes

are positive and m1 = ρ+ µ+ λ,m2 = ω + µ+ σ,m3 = θs + τ + µ,m4 = θa + µ and m5 = µ+ θt.

Therefore, X(t) of the system of Equations (3.1.2)-(3.1.7) is well defined in time. Hence, S(t) ≤

N,V (t) ≤ N, Is(t) ≤ N, Ia(t) ≤ N,T (t) ≤ N,R(t) ≤ N,B(t) ≤ B;∀t ≥ 0. Thus, X is bounded.

3.3 Disease Free Equilibrium

The system of Equations (3.1.2)-(3.1.8) has a disease free equilibrium. At Disease Free Equilibrium

(DFE), we have points

dS

dt
=
dV

dt
=
dIs
dt

=
dIa
dt

=
dT

dt
=
dR

dt
=
dB

dt
= 0. (3.3.1)

From Eq. (3.1.3),
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S0 =
m2V0

ρ
. (3.3.2)

Eq. (3.3.2) is put into Eq. (3.1.2) with the left hand side equal to 0 to obtain

Λ + ωV0 −m1
m2V0

ρ
= 0, (3.3.3)

from where V0 =

(
Λρ

m1m2 − ωρ

)
for m1m2 ≥ ωρ, (3.3.4)

and S0 =
m2Λ

m1m2 − ωρ
. (3.3.5)

Substitute Eq. (3.3.5) and Eq. (3.3.4) into Eq. (3.1.4) to obtain

Is0 =
(f − 1)λΛm2

m3(ωρ−m1m2)
. (3.3.6)

Subsequently, Eq. (3.1.5) is used to obtain

Ia0 =
fλΛm2

m4(m1m2 − ωρ)
. (3.3.7)

Using algebraic manipulations, S0 and V0 values are substituted into Eq. (3.1.4) to obtain

σξm3ρIs0
(1− f)λm2

+
(1− f)λm3Is0

(1− f)λ
−m3Is0 = 0. (3.3.8a)

Eq. (3.3.8a) is then simplified to get

σξm3ρIs0
(1− f)λm2

= 0, (3.3.8b)

but
σξm3ρ

(1− f)λm2
6= 0, =⇒ Is0 = 0. (3.3.8c)
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At the same time,

(1− ξ)σm4ρIa0
fλm2

+
fλm4µIa0

fλµ
−m4Is0 = 0 (3.3.9a)

(1− ξ)σm4ρIa0
fm2

= 0 (3.3.9b)

but
(1− ξ)σm4ρ

fm2
6= 0, =⇒ Ia0 = 0. (3.3.9c)

Since Is0 = Ia0 = 0 (see Eq. (3.3.8c) and Eq. (3.3.9c)) and substituting this into Equations

(3.1.6)-(3.1.8) gives T0 = R0 = B0 = 0.

Therefore, X0 = (S0, V0, Is0 , Ia0 , T0, R0, B0) =
((

m2Λ
m1m2−ωρ

)
,
(

Λρ
m1m2−ωρ

)
, 0, 0, 0, 0, 0

)
is the

DFE point where m1 = (ρ + µ + λ),m2 = (ω + µ + σ),m3 = (θs + τ + µ),m4 = (θa + µ) and

m5 = (µ+ θt).

3.3.1 The Control Reproduction Number

R0 is the average number of secondary infections produced by a single infected individual in a

completely susceptible population, where there are no interventions in place [105]. RC is the

average number of secondary infections produced by a single infected individual in a population

where control measures are implemented [44]. The next generation matrix method described

in [4, 105] is used to rewrite the main system in the following form:

ẋi = F(x, y)− VΓi(x, y)

ẏj = g(x, y)
(3.3.10)

with

x = (Is, Ia, T, B)>

y = (S, V,R)>.

Let F = ∇F|(S∗,V ∗,0) and Γ = ∇VΓ|(S∗,V ∗,0) be the Jacobian matrices of maps F and VΓ

evaluated at the DFE.
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F =



(1− f)λS

fλS

0

0


,VΓ = VΓ

− − VΓ
+ =



m3Is − σξV

m4Ia − (1− ξ)σV

m5T − τIs

µBB − ϕsIs − ϕaIa


.

Vector F represents the rate of new infections in compartment i, vector VΓ
+ represents the rate

of new infections in compartment i by other means and vector VΓ
− is the rate of transfer of

individuals out of compartment i. Jacobian matrices for F and VΓ at disease free equilibrium are

given by matrices F and VΓ respectively and are defined as follows:

F =
∂F
∂X

and

VΓ =
∂VΓ

∂X
.

Therefore, there is F and its corresponding value at DFE, where S0 =
(

m2Λ
m1m2−ωρ

)
,

V0 =
(

Λρ
m1m2−ωρ

)
and B0 = 0 is given by

F =



0 0 0 B0S0β(f−1)
(B0+KB)2 −

S0β(f−1)
B0+KB

0 0 0 S0βf
B0+KB

− B0S0βf
B0+K2

B

0 0 0 0

0 0 0 0


=


0 0 βm2Λ(f−1)

KB(ωρ−m1m2)

0 0 βfm2Λ
KB(m1m2−ωρ)

0 0 0

 ,

VΓ =



m3 0 0 0

0 m4 0 0

−τ 0 m5 0

−ϕs −ϕa 0 µB


,

and the inverse of VΓ gives
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V−1
Γ =



1
m3

0 0 0

0 1
m4

0 0

τ
m3m5

0 1
m5

0

ϕs
m3µB

ϕa
m4µB

0 1
µB


,

where m1 = (ρ+ µ+ λ),m2 = (ω + µ+ σ),m3 = (θs + τ + µ),m4 = (θa + µ) and m5 = (µ+ θt).

The next generation matrix of the system of the model is given by FV−1
Γ . The control reproduction

number is given by the spectral radius of FV−1
Γ , meaning FV−1

Γ = RC or the largest eigenvalues

of FV−1
Γ . Thus,

RC = Λβm2(m4ϕs+fm3ϕa−fm4ϕs)
KBm3m4µB(m1m2−ωρ) ,

= βm2Λ(m4ϕs(1−f)+fm3ϕa)
KBm3m4µB(m1m2−ωρ) ,

= 1
KBµB(m1m2−ωρ)

(
βm2Λϕs(1−f)

m3
+ fϕa

m4

)
.

(3.3.11)

3.3.2 Stability Analysis

Local stability analysis of DFE

Theorem 3.2. The DFE, X0 =
(

m2Λ
m1m2−ωρ ,

Λρ
m1m2−ωρ , 0, 0, 0, 0, 0

)
for the system of Equations

(3.1.2)-(3.1.8), X0 is locally asymptotically stable if RC < 1 and unstable if RC > 1 where RC is

defined by Eq. (3.3.11).

Proof. See proof of Theorem 2.1 in [105].

Global stability analysis of DFE

Theorem 3.3. If RC ≤ 1, then the DFE of the system of Equations (3.1.2)-(3.1.8) is globally

asymptotically stable in Ω = {X = (S, V, Is, Ia, T,R,B) ∈ R7 : S + V + Is + Ia + T +R ≤ N and

B ≤ (ϕa+ϕb)N
µB

} and is unstable if RC > 1.

Proof. The matrix-theoretic method as described in Theorem 2.1 in [92] is used. Let x =

(Is, Ia, T, B)T and y = (S, V,R). F , VΓ, F and V are considered as defined in Section 3.3.1. If

the disease compartments for the system are given by
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dx

dt
= F(x, y)− V(x, y)

and dynamics of infected compartments is given by

dx

dt
= (F − VΓ)x− f(x, y),

then f(x, y) is obtained as follows;

f(x, y) = (F − VΓ)x−F(x, y) + V(x, y)

=



BSβ(f−1)
B+KB

− Bβm2Λ(f−1)
KB(m1m2−ωρ)

Bβfm2Λ
KB(m1m2−ωρ) −

BSβf
B+KB

0

0


,

(3.3.12)

while

V −1
Γ F =



0 0 0 βm2Λ(f−1)
KBm3(ωρ−m1m2)

0 0 0 βfm2Λ
KBm4(m1m2−ωρ)

0 0 0 βm2Λτ(f−1)
KBm3m5(ωρ−m1m2)

0 0 0 βfm2Λϕa
KBm4µB(m1m2−ωρ) −

βm2Λϕs(f−1)
KBm3µB(m1m2−ωρ)


.

F ≥ 0, V −1
Γ ≥ 0, f(x, y) ≥ 0 and f(x,

(
(ω+µ)Λ
µ(ρ+ω+µ) ,

ρΛ
µ(ρ+ω+µ) , 0, 0

)
) = 0 in Ω. It is also clear that

V −1
Γ F is reducible. The Lyapunov function can be constructed based on Theorem 2.1 and 2.2 as

stated by [92]. Eigenvectors of V −1F corresponding to the eigenvalue of RC by {v1, v2, v3, v4}

can now be denoted.

Then

(v1, v1, v1)V −1F = RC (v1, v2, v3, v4)
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or

(v1, v2, v3, v4)V −1F =

(
0 0 0

βfm2Λ
(
v2
m4

+
v4ϕa
m4µB

)
KB(m1m2−ωρ) −

βm2Λ(f−1)
(
v1
m3

+
τv3
m3m5

+
v4ϕs
m3µB

)
KB(m1m2−ωρ)

)
(3.3.13)

and

RC (v1, v2, v3, v4) =
βm2Λ (m4ϕs(1− f) + fm3ϕa)

KBm3m4µB(m1m2 − ωρ)
(v1, v2, v3, v4) . (3.3.14)

Using Equations (3.3.13) and (3.3.14) to derive a possible solution as v1 = 0, v2 = 0, v3 = 0, and

to allow workability, let v4 = ψ, where ψ is a random parameter and is given by

βfm2Λψϕa
KBm4µB(m1m2 − ωρ)

+
βm2Λ

(
ψϕs
m3µB

)
(1− f)

KB(m1m2 − ωρ)
=
βm2Λψ (m4ϕs + fm3ϕa − fm4ϕs)

KBm3m4µB(m1m2 − ωρ)
.

(3.3.15)

Use Eq. (3.3.15) to obtain

ψ =
m4µBψ(1− f)

m4ϕs + fm3ϕa − fm4ϕs −m3m5ϕa −m4m5ϕs(1− f)
. (3.3.16)

Therefore, ΠT = (0, 0, 0, v4). Thus, by Theorem 2.1 of [92], Q = ΠTV −1x is the Lyapunov

function of the model given by

Q = ΠTV −1
Γ x

= Is

(
τ

m3m5
+

m4τϕs(1− f)

m3(m4ϕs + fm3ϕa − fm4ϕs −m3m5ϕa −m4m5ϕs(1− f))

)
+

T

m5
+

Bm4τ(1− f)

m4ϕs(1− f)(1−m5) +m3ϕa(f −m5)

+
Ia

m4ϕs

[
τϕa(1− f)

(1− f)(1−m5) +m3ϕa(f −m5)

]
.

Q can be differentiated at DFE to get yields 0 since Is0 = 0 = Ia0 = T0 = 0 (see Equations

(3.3.9c)-(3.3.9b))
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Q|′DFE = (RC − 1) ΠTx−ΠTV −1
Γ f(x, y) = 0. (3.3.17)

This implies that x = 0 and f(x, y) = 0 or y = (S, V,R)> =
((

m2Λ
m1m2−ωρ

)
,
(

Λρ
m1m2−ωρ

)
, 0
)>

.

Therefore,
((

m2Λ
m1m2−ωρ

)
,
(

Λρ
m1m2−ωρ

)
0, 0, 0, 0, 0

)
is the only invariant set in Ω where Q′ = 0.

Thus, by LaSalle’s invariance principle [8], the DFE,
((

m2Λ
m1m2−ωρ

)
,
(

Λρ
m1m2−ωρ

)
0, 0, 0, 0, 0

)
is

globally asymptotically stable in Ω and RC ≤ 1.

LaSalle’s invariance principle [11] is used to show that global stability of DFE is as follows; if

Q = 0, then

(
βτ(1− f)KM

KBm3m5(m1m2 − ωρ)DM

)(
B(Bm2Λ +KBm2Λ−KBSm1m2 +KBSωρ)

B +KB

)
= (RC − 1) ΠTx,

(3.3.18)

where KM = m4ϕs(1− f) +m3ϕa
(
(f −m5)(1−m5)−m2

5)
)
and

DM = m4ϕs(1 − f)(1 −m5) + m3ϕa(f −m5). Since (1 − f) > 0; (1 −m5) > 0; =⇒ DM > 0

and KM ≥ 0.

Since RC < 1, then

(
βτ(1− f)KM

KBm3m5(m1m2 − ωρ)DM

)(
B(Bm2Λ +KBm2Λ−KBSm1m2 +KBSωρ)

B +KB

)
≤ 0, (3.3.19)

but
(

βτ(1−f)KM
KBm3m5(m1m2−ωρ)DM

)
> 0 (substitution of parameter values), which implies that

(
B(Bm2Λ +KBm2Λ−KBSm1m2 +KBSωρ)

B +KB

)
≤ 0

B

B +KB

[
Bm2Λ +KBm2Λ

B +KB
− KBSm1m2 +KBSωρ

B +KB

]
≤ 0

=⇒ Λm2 ≤
KBS

B +KB
(m1m2 − ωρ) ≤ S(m1m2 − ωρ).

(3.3.20)

Since m2, µ,KB , ω, ρ > 0, then its feasible that B = 0. Thus, {(Λ, 0, 0, 0, 0)} is the only invariant
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set in Ω which satisfies Q′ = 0 when R0 < 1. Therefore, by LaSalle’s invariance principle, the

DFE is globally asymptotically in Ω when RC < 1 [63].

If RC = 1, then the RHS of Eq. (3.3.18) is zero, thus there is equality in Eq. (3.3.20). Therefore,

{(Λ, 0, 0, 0, 0)} is the only invariant set in Ω which satisfies Q′ = 0 when RC = 1. Thus, by

LaSalle’s invariance principle, the DFE is globally asymptotically in Ω when RC = 1 [63].

It can be shown that when RC > 1 and Q′ > 0, then Ω is in the neighborhood of X0 where X0

is the DFE, making X0 unstable. For RC > 1, the first term of Eq. (3.3.17) becomes positive

and second term zero when S = V = N and B = 0, which proves that Q′ > 0. Therefore, by

continuity, Q′ remains positive in a small neighbourhood of X0. This indicates that the system

is globally asymptotically stable at X0, which rules out the existence of backward bifurcation

when RC ≥ 1. Freedman et al. [34] argument of uniform persistence result based on the proof of

proposition 3.3 of [59] whenever RC > 1 indicates instability of X0 implying that the system is

uniformly persistent. A uniform persistence and positive invariance of the compact set Ω implies

the existence of at least one positive equilibrium.

3.3.3 Endemic Equilibrium

Let S∗, V ∗, I∗s , I∗a , T ∗, R∗ and B∗ be endemic equilibrium of the system defined in Equations

(3.1.2)-(3.1.8). Eq. (3.1.2) and Eq. (3.1.3) are used to obtain

S∗ =
m2ρΛ

m1m2 − ωρ
(3.3.21)

and

V ∗ =
ρΛ

m1m2 − ωρ
. (3.3.22)

Eq. (3.3.11) is used to define
(
m1m2 − ωρ

)
as

(m1m2 − ωρ) =
βm2Λ (m4ϕs(1− f) + fm3ϕa)

RCKBm3m4µB
. (3.3.23)

Eq. (3.3.23) is used to re-write Eq. (3.3.21) and Eq. (3.3.22) as
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S∗ =
RCKBm3m4µB

β(m4ϕs(1− f) + fm3ϕa)
. (3.3.24)

V ∗ =
ρRCKBm3m4µB

βm2(m4ϕs(1− f) + fm3ϕa)
. (3.3.25)

Eq. (3.3.24) and Eq. (3.3.25) are used to obtain I∗s , I∗a , T ∗, R∗ and B∗ as follows;

I∗s =
KBRCm4µB(B∗βm2 +KBρσξ −B∗βfm2 +B∗ρσξ)

(βm2(B∗ +KB)(m4ϕs + fm3ϕa − fm4ϕs)
, (3.3.26)

I∗a =
KBRCm3m4µB(ρσ(ξ − 1)−B∗f)

(m4ϕs(f − 1)− fm3ϕa)(B∗ +KB)βm2
, (3.3.27)

T ∗ =
KBRCm4µBτ(B∗βm2 +KBρσξ −B∗βfm2 +B∗ρσξ)

βm2m5(B∗ +KB)(m4ϕs + fm3ϕa − fm4ϕs)
, (3.3.28)

R∗ =

KBRCm4µB(B∗βm2m5θs +B∗fm3m5θa +B∗βm2τθt +m3m5ρσθa

−m3m5ρσθaξ −B∗βfm2m5θs −B∗βfm2τθt
+B∗m5ρσθsξ +B∗ρστθtξ

+KBm5ρσθsξ +KBρστθtξ)

βm2m5µ(B∗ +KB)(m4ϕs + fm3ϕa − fm4ϕs)
,

(3.3.29)

and

B∗ =
(KBRCm4µB(m3ρσϕa + βm2ϕs + fm3ϕa − βfm2ϕs + ρσϕsξ +KBρσϕsξ −m3ρσϕaξ))

(βm2µKB)(m4ϕs + fm3ϕa − fm4ϕs))
.

(3.3.30)

Global Stability of endemic equilibrium

Lemma 3.3.4. When RC > 1, there exists a unique endemic equilibrium X∗ given by B∗ =

−b±
√
b2−4ac

2a , where a = 2
(
m2πGπrπ

2
n +m2m4πD

)
, b = 2m3µBπr (RC − 1) (βm2 +m1m2 − ωρ)

and c = −KB (RC − 1)m4µBπLπnπr (m1m2 − ωρ). When RC ≤ 1, there is no endemic equilib-

rium.

Proof. Eq. (3.1.4) and Eq. (3.1.5) are used to obtain

0 =
ϕa

(
B∗S∗βf
B∗+KB

− S∗ρσ(ξ−1)
m2

)
m4

−B∗µB −
ϕs

(
B∗S∗β(f−1)
B∗+KB

− S∗ρσξ
m2

)
m3

. (3.3.31)
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Eq. (3.3.31) and Eq. (3.3.11) are used to get

S∗ =
B∗µB

ϕs(πQ−R0πD)
πr(πL−R0πn) −

ϕa
(
πB
m2

+
R0πG

πL−R0πn

)
m4

(3.3.32)

where

πm = m1m2 − ωρ ,πc = m4ϕs(f − 1) − fm3ϕa πn = m3m4µBπm, πL = βm2µπc, πA = ρσξ,

πH = m2πn, πB = ρσ(ξ − 1), πG = βfπn, πZ = βπH , πQ = πLπA, πD = (πZ + f − πnπA),

πr = m2m3.

Simplify Eq. (3.3.32) based on B∗ to obtain

0 = aB∗2 + bB∗ + c, (3.3.33)

where

a = 2(m2πGπrπ
2
n − πBπrπn +m2m4πD) (3.3.34a)

b = 2m4µBπr(R0 − 1)(βm2 +m1m2 − ωρ) (3.3.34b)

c = −KB(R0 − 1)m4µBπLπnπr(m1m2 + ωρ). (3.3.34c)

Eq. (3.3.33) suggests that there are two endemic equilibria as

B∗1 = −b+
√
b2−4ac

2a B∗2 = −b−
√
b2−4ac

2a . (3.3.35)

Eq. (3.3.35) indicates that the following cases are feasible;

1. When RC > 1, then

a > 0, c < 0 and b > 0 if

(
2m4µBπr(RC − 1)(βm2 +m1m2 − ωρ)

)2

> 4

(
2(m2πGπrπ

2
n − πBπrπn +m2m4πD)

)(
−KB(R0 − 1)m4µBπLπnπr(m1m2 + ωρ)

)
,

=⇒ b2 − 4ac > b2.
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Suppose

(
2m4µBπr(RC − 1)(βm2 +m1m2 − ωρ)

)2

< 4

(
2(m2πGπrπ

2
n − πBπrπn +m2m4πD)

)(
−KB(R0 − 1)m4µBπLπnπr(m1m2 + ωρ)

)
,

=⇒ b < 0 and b2 − 4ac > b2.

If

(
2m4µBπr(RC − 1)(βm2 +m1m2 − ωρ)

)2

= 4

(
2(m2πGπrπ

2
n − πBπrπn +m2m4πD)

)(
−KB(R0 − 1)m4µBπLπnπr(m1m2 + ωρ)

)
,

=⇒ b = 0 and b2 − 4ac = −4ac < 0.

2. When RC = 1:

a > 0, c = 0 and b > 0, thus b2 − 4ac = b2. There are no real roots.

3. When RC < 1:

a > 0, c > 0, and b > 0, hence b2 − 4ac < 0. There are no real roots.

Table 3.2 summarizes the analytical solution of Eq. (3.3.33) based on RC .

Table 3.2: Analytical solution of Eq. (3.3.33).

RC c 4ac b b2 − 4ac −b +
√
b2 − 4ac −b−

√
b2 − 4ac Comment

> 1 < 0 < 0
= 0 −4ac > 0 > 0 < 0 1 EE
< 0 > b2 > 0 < 0 1 EE
> 0 > b2 > 0 < 0 1 EE

= 1 = 0 = 0 > 0 = b2 = 0 < 0 no EE

< 1 > 0
∈
(
0, b2

) > 0 ∈
(
0, b2

)
< 0 < 0 1 EE

∈
(
b2,∞

)
> 0 < 0 complex complex no EE

Table 3.2 shows that when RC < 1, there is no endemic equilibrium, but if RC > 1, a unique

endemic equilibrium is obtained when

B∗ = B∗1 =
−b+

√
b2 − 4ac

2a
.
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Theorem 3.4. If RC > 1, the unique equilibrium is globally asymptotically stable in Ω.

Proof. Proof of Volterra-Lyapunov is based on stable matrices according to [60]. The Lyapunov

function is defined as follows;

L = φ1(S−S∗)2+φ2(V−V ∗)2+φ3(Is−I∗s )2+φ4(Ia−I∗a)2+φ5(T−T ∗)2+φ6(R−R∗)2+φ7(B−B∗)2

(3.3.36)

where φi : ∀i = 1, . . . , 7 are positive constants. Differentiate L along the trajectories of the system

to obtain

L = 2φ1(S − S∗)
(

Λ + ωV − (m1 + ( βB
KB+B ))S

)
+2φ2(V − V ∗) (ρS −m2V )

+2φ3(Is − I∗s )
(
σξV + (1− f)( βB

KB+B )S −m3Is

)
+2φ4(Ia − I∗a)

(
(1− ξ)σV + f( βB

KB+B )S −m4Ia

)
+2φ5(T − T ∗) (τIs −m5T )

+2φ6(R−R∗) (θtT + θaIa + θsIs − µR)

+2φ7(B −B∗) (ϕaIa + ϕsIs − µBB) .

(3.3.37)
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Use Eq. (3.3.37) to compute Eq. (3.3.38) as follows;

L
′

= −2φ1(S − S∗)2
(
m1 + ( βB

KB+B )
)

+ 2φ1(S − S∗)(V − V ∗)ω

−2φ1(S − S∗)(B −B∗)
(

β
(B+KB) −

Bβ
(B+KB)2

)
S

+2φ2(V − V ∗)(S − S∗)ρ− 2φ2(V − V ∗)2m2

+2φ3(Is − I∗s )(S − S∗)(1− f) βB
KB+B + 2φ3(Is − I∗s )(V − V ∗)σξ − 2φ3(Is − I∗s )2m3

+2φ3(Is − I∗s )(B −B∗)(1− f)S
(

β
(B+KB) −

Bβ
(B+KB)2

)
+2φ4(Ia − I∗a)(S − S∗)f βB

KB+B + 2φ4(Ia − I∗a)(V − V ∗)(1− ξ)σ − 2φ4(Ia − I∗a)2m4

+2φ4(Ia − I∗a)(B −B∗)fS
(

β
(B+KB) −

Bβ
(B+KB)2

)
+2φ5(T − T ∗)(Is − I∗s )τ − 2φ5(T − T ∗)2m5 + 2φ6(R−R∗)(Is − I∗s )θs

+2φ6(R−R∗)(Ia − I∗a)θa + 2φ6(R−R∗)(T − T ∗)2θt − 2φ6(R−R∗)2µ

+2φ7(B −B∗)(Is − I∗s )ϕs + 2φ7(B −B∗)(Ia − I∗a)ϕa − 2φ7(B −B∗)2µB

= Ψ(ΦΓ + ΓTΦT )ΨT ,

(3.3.38)

where Ψ = (S−S∗, V−V ∗, Is−I∗s , Ia−I∗a , T−T ∗, R−R∗, B−B∗, Φ = diag (φ1, φ2, φ3, φ4, φ5, φ6, φ7)

and

Γ =



−
(
m1 + ( βB

KB+B )
)

ω 0 0 0 0
(

β
(B+KB) −

Bβ
(B+KB)2

)
S

ρ −m2 0 0 0 0 0

(1− f) βB
KB+B σξ −m3 0 0 0 (1− f)S

(
β

(B+KB) −
Bβ

(B+KB)2

)
f βB
KB+B (1− ξ)σ 0 −m4 0 0 fS

(
β

(B+KB) −
Bβ

(B+KB)2

)
0 0 τ 0 −m5 0 0

0 0 θs θa θt −µ 0

0 0 ϕs ϕa 0 0 −µB



.

(3.3.39)

det(Γ) =
−m5µ (Σ1 + Σ2 + Σ3 + Σ4 − Σ5 + Σ6 + Σ7 + Σ8 + Σ9 − Σ10 + Σ11 + Σ12)

(B +KB)3
(3.3.40)
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where

Σ1 = B3 (η1 + η2 − η3) , Σ2 = K3
Bη2 −K3

Bη3 − 2BKBSβ
2m2m4ϕs,

Σ3 = BK2
Bη1 + 2B2KBη1 + 3BK2

Bη2, Σ4 = 3B2KBη2 − 3BK2
Bη3 − 3B2KBη3,

Σ5 = K2
BSη4 +K2

BSη12 −K2
BSη11, Σ6 = K2

BSη9 −K2
BSη10 −BKBSη4,

Σ7 = BKBSη12 −BKBSη11 − 2BKBSβ
2fm2m3ϕa, Σ9 = K2

BSη5 −K2
BSη8

Σ8 = 2BKBSβ
2fm2m4ϕs −K2

BSη6 +K2
BSη7, Σ10 = BKBSη6 +BKBSη7,

Σ11 = BKBSη5 −BKBSη8, Σ12 = BKBSη9 −BKBSη10

and

η1 = βm2m3m4µB , η2 = m1m2m3m4µB , η3 = m3m4µBωρ, η4 = βm1m2m4ϕs,

η5 = βfm3ωρϕa, η6 = βfm1m2m3ϕa, η7 = βfm1m2m4ϕs, η8 = βfm4ωρϕs,

η9 = βm3ρσϕaξ, η10 = βm4ρσϕsξ, η11 = βm3ρσϕa, η12 = βm4ωρϕs.

From Eq. (3.1.3), Eq. (3.1.4), Eq. (3.1.5) and Eq. (3.1.8) and considering the equilibrium

(S∗.V ∗, I∗s , I
∗
a , T

∗, R∗, B∗), it is noted that

ρS∗ −m2V
∗ = 0 =⇒ V ∗ =

ρS∗

m2
(3.3.41)

σξV ∗ + (1− f)

(
βB

KB +B

)
S∗ −m3I

∗
s = 0 (3.3.42)

(1− ξ)σV ∗ + f

(
βB

KB +B

)
S∗ −m4I

∗
a = 0 (3.3.43)

ϕaI
∗
a + ϕsI

∗
s − µBB∗ = 0. (3.3.44)

Substitution of Eq. (3.3.41) into Eq. (3.3.42) and Eq. (3.3.43) gives

I∗s = σξρS∗

m2m3
+ (1−f)βB∗S∗

(KB+B∗)m3

I∗a = σ(1−ξ)ρS∗
m2m4

+ fβB∗S∗

(KB+B∗)m4
.

(3.3.45)

Suppose B ≥ 0 and B = 0, then we have
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I∗s = σξρS∗

m2m3

I∗a = σ(1−ξ)ρS∗
m2m4

.
(3.3.46)

Substitution of Eq. (3.3.46) into Eq. (3.3.44) and considering B = 0 gives

ϕs
σξρS∗

m2m3
+ ϕa

σ(1−ξ)ρS∗
m2m4

= 0. (3.3.47)

Eq. (3.3.47) is not feasible, since σρS∗

m2m4

[
ξϕs + (1 − ξ)ϕa

]
6= 0, hence B > 0 =⇒ det(Γ) > 0.

Therefore, Φ(−Γ) + [Φ(−Γ)]T > 0, which implies that matrix Γ is Volterra-Lyapunov stable and

Φ is a constant matrix. Thus, when RC > 1, the endemic equilibrium of the system is globally

asymptotically stable in Ω.
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Chapter 4

Numerical Simulation

4.1 Sensitivity analysis of parameters

We use parameter values in Table 4.1 to perform a sensitivity analysis of parameters in control

reproduction number RC (Eq. (3.3.11)). Strength of the model is the incorporation of an

improved environment to reduce the spread of cholera in Kenya.

4.1.1 Estimation of parameter values

Referring to the study area, Kenya, whose data is used in this research, the constant population

is considered to be N = 1000. Assumed life expectancy is 67 years for the Kenyan population.

The baseline parameter values are considered based on different sources outlined in Table 4.1.

The ingestion rate of cholera pathogen β due to contact with contaminated sources is assumed

from Hailemariam et al. [38] as 0.95. Cholera has no incubation period, hence the exposure

compartment was not considered. A simulation of the model dynamics presented in Figure 4.1

and Figure 4.2 for assumed 52 weeks (1 year) shows a resemblance with other state-of-the-art

methods.
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Table 4.1: Parameter Values Baseline and Sources whose descriptions are in Table 3.1.

Parameter Values baseline Values range Source
Λ 31.309 51.27− 31.31 per 1000 people [56]
f 0.79 - Calculated
KB 106 105 − 106 [98]
σ 28% 8→ 75%) [86]
θa 0.1 0− 1 [91]
ω 33% 0− 60% [85]
ρ 1 per 14 days 1− 2 per 14 days [28]
ξ 0.15 0.1− 0.4 [77]
θs 0.1 0− 0.3 [91]
τ 0.20619 0− 0.4 [21, 89]
θt 0.725444 - Calculated
µB 0.033 per days - days [79]
ϕa 103 1− 105 cells per day [76]
ϕs 108 107 − 109 [76]
ϕt 105 107 − 109 [76]
β 1 1− 109 [38]
µ 9.1× 10−(6) 5.732− 20.21 per 1000 people [56]

4.1.2 Elasticity indices

Elasticity index ζ of parameter νi is given by νi∂RC
RC∂νi . ζ is a measure of the relative change in RC

to relative change in νi. νi with the largest absolute magnitude having higher influence on RC

and affects transmission dynamics of cholera as indicated in Theorem 3.2 and Theorem 3.4. Table

4.2 shows elasticity indices of parameters computed based on the baseline given in Table 4.1 with

assumed N=1000. The table shows the indices arranged in descending order based on magnitude.

The table shows that ingestion rate of Vibrio cholerae β has the largest magnitude, thus affecting

cholera dynamics, followed by the rate of natural loss of Vibrio cholerae.

4.2 Numerical simulations for model analysis

Numerical simulations are presented to illustrate analysis of the model. Equations (3.1.2)-3.1.8

are presented in two cases based on baseline values in Table 4.1 when RC > 1 (Figure 4.1) and

when RC < 1 (Figure 4.2).
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Table 4.2: Elasticity indices of parameters in RC

Parameter Elasticity Index
β 1.0000
µB 0.8931
ρ -0.8612
τ -0.6611
θa 0.0011
ϕs 0.00085
ϕa 0.00061

(a) S(t) and V (t) (b) Is(t), Ia(t), and T

(c) R(t) (d) B(t)

Figure 4.1: Simulation of the population of individuals in each compartment S(t), V (t), Is(t), Ia(t),
T (t), R(t) and B(t) based on parameter values in Table 4.1 with initial conditions: S0 = 1000,
V0 = Is0 = Ia0 = T0 = R0 = 0, B0 = 105 and N = 1000. β = 0.95 resulting in approximated
equilibrium values of S∗ = 289, V ∗ = 26, I∗s = I∗a ' 2, T ∗ = 1, B∗ = 1.9× 108. and RC = 1.5665.

Figure 4.1 considers higher ingestion rate β = 0.95 and yields RC = 1.5665 with trajectories

reaching unique endemic equilibrium values of S∗ = 289, V ∗ = 26, I∗s ' I∗a = 2, T ∗ = 2 and
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B∗ = 1.9× 108.

(a) S(t) and V (t) (b) Is(t), Ia(t), and T

(c) R(t) (d) B(t)

Figure 4.2: Simulation of the population of individuals in each compartment S(t), V (t), Is(t), Ia(t),
T (t), R(t) and B(t) based on parameter values in Table 4.1 with initial conditions: S0 = 1000,
V0 = Is0 = Ia0 = T0 = R0 = 0, B0 = 105 and N = 1000. β = 0.19 resulting in approximated
equilibrium values of S∗ ' 425, V ∗ = 49, I∗s = I∗a = T ∗ = B∗ = 0 and RC = 0.3133.

Figure 4.2 considers the assumed effect of reduced sanitation (a case of global stability for DFE)

β = 0.19 and yields RC = 0.3133 < 1 with trajectories reaching unique endemic equilibrium

values of S∗ ' 425, V ∗ = 49 and I∗s = I∗a = T ∗ = B∗ = 0. In both cases (Figure 4.1 and Figure

4.2), trajectories approach equilibrium, an indication of stability of DFE in most cases of state

variables.
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Chapter 5

Optimal control to cholera model

Optimal control of cholera epidemic modelling is a critical approach to mitigating and managing

the spread of the disease. Cholera is characterized by severe diarrhoea and can lead to dehydration

and, in extreme cases, death. Developing strategies to control cholera is essential for public health

officials, epidemiologists and policymakers. Unlike many other diseases, control of a cholera

epidemic relies on reducing the ingestion rate of Vibrio cholerae pathogen by the population.

Reduction in ingestion rate can be achieved by improving sanitation and hygiene. Thus, optimal

control is achieved by extending the model Equations (3.1.2)-(3.1.8) to include the effect of

improved sanitation to reduce ingestion rate of V. cholerae pathogen.

5.1 Introduction of controls

Table 4.2 shows that ingestion rate of Vibrio cholerae by humans is due to contact with contami-

nated sources. β has the highest elasticity index followed by the rate of natural loss of Vibrio

cholerae. Therefore, the control considers sanitation and hygiene factors since they will reduce

ingestion rate of Vibrio cholerae pathogen and its population within the environment. Thus

a reduction of β and increase of µB are the main infection reduction strategies. While WHO

specifies that the major treatment of cholera is oral or intravenous hydration, this study focuses

on improvement in hygiene and sanitation.
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Hygiene Let h ∈ [0, 1] (where h is an arbitrary letter used to indicate the control due to

hygiene) be time-dependent and Lebesgue measurable control representing an improvement in

hygienic efforts that reduce the chance of V. cholerae pathogen spread. Improved hygiene includes

washing hands with soap after using the toilet and not sharing plates during meals. The set of

admissible hygiene control is:

H = h(t) : [0, T ] −→ [0, 1] and is Lebesgue measurable.

Sanitation Let ϑ ∈ [0, 1] (where ϑ is an arbitrary letter used to indicate the control due to

sanitation) be time-dependent and Lebesgue measurable control that represents sanitation efforts

that reduce the chance of virus ingestion. Improved sanitation efforts include improved hygiene

and provision of safe water for domestic and industrial use.

The admissible set of sanitation control is:

Q = q(t) : [0, T ] −→ [0, 1] and is Lebesgue measurable.

For simplicity, control u = (ϑ, h) denotes control and the set of admissible controls U = Q×H.

5.2 The extended mathematical model

Improvement in hygiene reduces ingestion and spread of the pathogen and is given by hβ. Thus,

the portion practising improved hygiene is h βBS
KB+B . Improved sanitation reduces the portion of

the pathogen ingested by those susceptible leading to reduced infection. Thus, qB represents

pathogen loss due to sanitation.
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dS

dt
= Λ + ωV −

(
ρ+ µ+ (1− h)

βB

KB +B

)
S (5.2.1)

dV

dt
= ρS − (ω + µ+ σ)V (5.2.2)

dIs
dt

= σξV + (1− f)(1− h)
βB

KB +B
S − (θs + τ + µ)Is (5.2.3)

dIa
dt

= (1− ξ)σV + f(1− h)
βB

KB +B
S − (θa + µ)Ia (5.2.4)

dT

dt
= τIs − (µ+ θt)T (5.2.5)

dR

dt
= θtT + θaIa + θsIs − µR (5.2.6)

dB

dt
= ϕaIa + ϕsIs − (µB + q)B (5.2.7)

with initial conditions

S(0) = S0V (0) = V0, Is(0) = Is0, Ia(0) = Ia0, T (0) = T0, R(0) = R0, B(0) = B0. (5.2.8)

Intervention needs to minimize the number of new cases and also minimize the cost of implementing

controls. The cost may include improving sanitation, such as repairs of leaking systems and

provision of hand-wash facilities with soap at the toilets in case of informal settlements. Thus,

the control u = (q, h) is considered optimal if it minimizes the objective function:

J =

∫ T

0

(
A1

[
(1− h)

βB

KB +B
S

]
+A2q

2 +A3h
3

)
dt (5.2.9)

where A1 is the unit cost of new infection per individual, A2 = A3 is the unit cost of implementing

the controls per time unit. A1, A2 and A3 are the balancing of coefficients that transforms the

integrand into cost per time unit and (1− h) βB
KB+BS represents the cost of new cases. Thus, the

optimal control problem is stated as follows:

min
u∈U

J(u) (5.2.10)

subject to Equations (5.2.1) - (5.2.8).
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5.3 Existence of optimal control

Theorem 5.1. There exists an optimal control u∗ and the corresponding solution (S∗, V ∗, I∗s , I
∗
a , T

∗, R∗, B∗)

to the initial value problem given by Equations (5.2.1)-(5.2.7) that minimizes the objective function

given by Eq. (5.2.9) on U.

Proof. The initial value problem reflected in Equations (5.2.1)-(5.2.7) can be written as

X
′

= f(t,X, u),

with X(0) = X0.

Results of Theorem 4.1 in [12] is used to establish existence of optimal control based on the

following conditions;

1. There exist C1 and C2 such that

a |f(t,X, u)| ≤ C1(1 +X) and

b |f(t,X1, u)| − |f(t,X2, u)| ≤ C1|X1 −X2| ,

∀t ≥ 0, X1, X2 ∈
{(

S, V, Is, Ia, R, T,B ∈ R7
+

∣∣∣∣S + V + Is + Ia + T +R = N,

B ≤ (ϕa+ϕb)N
µB

∣∣∣∣}

and u ∈ U , where U =

{
u = (q, h) : 0 ≤ q, h ≤ 1

}
.

2. The set of controls and corresponding state variables is non-empty.

3. The control set U is convex and closed, f(t,X, u) = α1(t,X) + β1(t,X)u and L is convex

on U , where L = A1

[
(1 − h) βB

KB+BS

]
+ A2q(t)

2 + A3h(t)3 which is the integrand in Eq.

(5.2.9).

4. There exists C3 > 0, C4 > 1 and C5 ≥ 0 such that

L(t,X, u) ≥ C3|u|C4 − C5. (5.3.1)
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Since f is C1, conditions 1(a) and 1(b) are implied by suitable bounds on partial derivatives of

f and on f(t, 0, 0). Since f is continuous and bounded on a finite time interval, Theorem 9.2.1

of [62] guarantees the existence of at least one local solution. The set U = {(q, h) : q ∈ [0, 1] and

h ∈ [0, 1] is closed. By definition, the set Q = {q : q ∈ [0, 1] is Lebesgue measurable} and convex

if q1, q2 ∈ Q and γ1 ∈ [0, 1] implying that
[
1− γ1)q1 + γ1q2 ∈ Q

]
(1− γ1)q1 + γ1q − 2 ≥ 0 since γ1, q1, q2 ∈ [0, 1],

and

(1− γ1)q1 + γ1q2 ≤ (1− γ1) + γ1 since q1, q2 ≤ 1.

Therefore, (1 − γ1)q1 + γ1q2 lying in Q implies that Q is convex. Similarly, Q is convex since

according to [48] the Cartesian of convex sets is convex, thus U = Q × H is a convex set.

The function f is linear in each control variable q and h, hence can be written as f(t,X, u) =

α1(t,X) + β1(t,X)u. L is convex on U since it is quadratic in u and the constants A3 and A5

are positive. Therefore,

L = A1

[
(1− h) βB

KB+BS

]
+A2q

2 +A3h
2

≤ A2q
2 +A3h

2 +A1

[
(1− h) βB

KB+BS

]
since q ≥ 0, h ≥ 0.

(5.3.2)

It is taken into consideration that

A1

[
βB

KB+BS

]
≤ A1

[
(1− h) βB

KB+BS

]
since q ≤ 1 and h ≤ 1

≤ A1

[
(1− h) βB

KB+BS

]
since βB

KB+B ≤
B
KB

.

≤ A1

[
β(ϕa+ϕs)N

2

KBµB

]
since S ≤ N and B ≤ (ϕa+ϕs)N

µB
.

(5.3.3)

Both sides of inequality are non-negative, thus,

A1

[
(1− h)

βB

KB +B
S

]
≥ −A1

[
βB

KB +B
S

]
. (5.3.4)

Substitute Eq. (5.3.4) into Eq. (5.3.2) to have

L ≤ A2q(t)
2 +A3h(t)2 −A1

[
β(ϕa+ϕs)N

2

KBµB

]
≥ C3|u|C4 − C5

(5.3.5)
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where C3 = minA2, A3, calC4 = 2 and C5 = A1

[
β(ϕa+ϕs)N

2

KBµB

]
.

5.4 Characterization of controls

Pontryagin’s Maximum principle stated in Theorem 5.1 of [12] is used to find the best possible

control for the system. Then define the Hamiltonian H as follows;

H(X,u, p) = f(t,X, u) + L(t,X, u)

= p1f1 + p2f2 + p3f3 + p4f4 + p5f5 + p6f6 + p7f7 + L

= p1

[
Λ + ωV − (m1 + (1− h) βB

KB+B )S

]
+p2

[
ρS −m2V

]
+p3

[
σξV + (1− f)(1− h) βB

KB+BS −m3Is

]
+p4

[
(1− ξ)σV + f(1− h) βB

KB+BS −m4Ia

]
+p5

[
τIs −m5T

]
+p6

[
θtT + θaIa + θsIs − µR

]
+p7

[
ϕaIa + ϕsIs − (µB + q)B

]
+A1

[
(1− h) βB

KB+BS

]
+A2q

2 +A3h
2

(5.4.1)

where p = (p1, p2, p3, p4, p5, p6, p7) and p1, p2, p3, p4, p5, p6, p7 are adjoint variables for the state

variable S, V, Is, Ia, T,R and B.

Theorem 5.2. Given an optimal solution (X∗, u∗) of the control problem Eq. (5.2.10), there

exists p1, p2, p3, p4, p5, p6 and p7, a solution set to the adjoint system
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ṗ1 = −∂H∂S = p1m1 − (1− h) βB
KB+B

[
p2ρ+ p3(1− f) + p4f +A1

]
ṗ2 = −∂H∂V = −p1ω + p2m2 − p3σξ − p4(1− ξ)σ

ṗ3 = − ∂H
∂Is

= p3m3 − p5τ − p6θs − p7ϕs

ṗ4 = − ∂H
∂Ia

= p4m4 − p6θa − p7ϕa

ṗ5 = −∂H∂T = p5m5 − p6θt

ṗ6 = −∂H∂R = p6µ

ṗ7 = −∂H∂B = −
(

(1− h)
[

β
(B+KB) −

Bβ
(B+KB)2

]
S
)[
p1 + p3(1− f) + p4f +A1

]
+ p7(µB + q),

(5.4.2)

with transversality condition

p1(T ) = 0, p2(T ) = 0, p2(T ) = 0, p4(T ) = 0, p5(T ) = 0, p6(T ) = 0, p7(T ) = 0,

such that u∗ = minu∈U H(X, p, u), t ∈ [0, T ]. Furthermore, controls can be characterized as

q∗ = min
(

1,max
(

0, p7B2A2

))
and

h∗ = min

(
1,max

(
0, 1

2A3

[
βBS
KB+B (p3 + p4 +A1 − p1)

]))
.

Proof. The optimal control is derived from the optimality condition ∂H
∂u

∣∣∣∣
u∗

= 0.

∂H
∂q

∣∣∣∣
q∗

= −p7B + 2A2q
∗

=⇒ q∗ = p7B
2A2

(5.4.3)

and

∂H
∂h

∣∣∣∣
q∗

= βBS
KB+B (p3 + p4 +A1 − p1) + 2A3h

∗

=⇒ h∗ = 1
2A3

[
βBS
KB+B (p3 + p4 +A1 − p1)

]
.

(5.4.4)
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Consider the properties of the control space as

q∗ =


0, if p7B2A2

≥ 0,

p7B
2A2

if 0 < p7B
2A2

< 1,

1 if p7B2A2
≥ 1.

(5.4.5)

Thus, q∗ can be characterized as

q∗ = min

(
1,max

(
0,
p7B

2A2

))
.

Similarly, h∗ can be characterized as

h∗ = min

(
1,max

(
0,

1

2A3

[
βBS

KB +B
(p3 + p4 +A1 − p1)

]))
.

It is also noted from Eq. (5.4.3) and Eq. (5.4.4) respectively that

∂2H
∂q2

∣∣∣∣
q∗

= 2A2 > 0 and

∂2H
∂h2

∣∣∣∣
h∗

= 2A3 > 0. Since A2 and A3 are positive constants introduced in Eq. (5.2.9), this

indicates that u∗ = (q∗, h∗) minimises the Hamiltonian function H(X, p, u).

5.5 Numerical simulation for optimal control

The optimal problem (Eq. (5.2.10)) was solved numerically based on parameter values in Table

4.1. Numerical solutions were compared with optimal control and without any intervention. The

compartments are plotted side by side in the presence and absence of control measures q ∈ [0, 1]

and h ∈ [0, 1] with S0 = 1000, V0 = Is0 = Ia0 = T0 = R0 = 0, B0 = 0.7 and N = 1000.
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(a) S(t) (b) V (t)

(c) Is(t) (d) Ia

(e) T (t) (f) R(t)

Figure 5.1: Simulation of the population of individuals in each compartment in the absence
and presence of optimal control S(t), Sc(t), V (t), Vc(t), Is(t), Isc(t), Ia(t), Iac(t), T (t), Tc(t),
R(t), Rc(t), B(t) and Bc(t) based on parameter values in Table 4.1.
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Figure 5.2: Simulation of the pathogen population in the absence and presence of optimal control
B(t) and Bc(t) based on parameter values in Table 4.1.

A comparison of trajectories in the presence and absence of optimal control reveals that, as

depicted in Figure 5.1a, susceptible individuals increase in the presence of optimal control.

Similarly, vaccinated individuals’ trajectory increases in the presence of optimal control (see

Figure 5.1b). Figure 5.1c shows that population of infectious symptomatic individuals reduces in

the presence of optimal control, an indication of effectiveness of control in reducing infections.

Similarly, population of infectious asymptomatic reduces in the presence of optimal control (see

Figure 5.1d). Lastly, population of treated individuals reduces in the presence of optimal control

(see Figure 5.1e) and population of recovered individuals also reduces as indicated in Figure 5.1f.

The pathogen population in the presence of optimal control also reduces (see Figure 5.2).
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Chapter 6

Concluding remarks

Cholera is a historically feared diarrheal disease that affects different regions of the world, imposing

serious economic constraints, especially in developing countries. Consequently, cholera cases have

been reported worldwide and are a burden to humanity. As a result, countries have made efforts

to prevent and respond to cholera outbreaks. Still, many concerns remain about the growing

number of vulnerable people living in unsanitary conditions. Cholera is a waterborne disease and,

more generally, an environmentally mediated human disease. As a result, cholera dynamics are

controlled by human behaviour and other societal factors such as water, sanitary systems and

environmental conditions. Such factors make it possible to model the disease.

Cholera epidemics have ravaged humanity since the 19th century. An epidemic occurs when

the number of reported infection cases is more than expected. Cholera is a scourge in Third

World countries and remains a serious threat to public health and safety. Thus, it is paramount

to continue researching and developing epidemiological models to control cholera epidemics

effectively.

In the present research, the SIR model has been extended to include vaccinated individuals in

place of those exposed. This is in line with curbing the cholera outbreak spread. A stability

analysis of the model based on RC for disease-free and endemic equilibrium showed RC ≤ 1

and RC ≥ 1 respectively. This implies that the epidemic could be eradicated when RC ≤ 1

or spread in the population when RC ≥ 1. Sensitivity analysis of parameters in RC indicated
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that ingestion rate β greatly influences RC . This means that the optimal control points should

be based on reducing ingestion rate of cholera pathogens. A reduction of ingestion rate of the

pathogen reduces RC to 0.3133 down from RC = 1.5665. This indicated that an extension of

control based on these facts would be promising.

The model has also been extended to include possible optimal control strategies such as hygiene

and improved sanitation. Graphical simulations indicated that the number of infected individuals

reduces when controls are in place to reduce ingestion of cholera pathogens. Such an observation

implies that optimal control was effective. For future work, there is need to consider a model

where different cholera strains are studied.
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