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Abstract

In this thesis, we analyze a mathematical model for the spread of malaria that consists of

ten components. The human host population is divided into two main categories: semi-

immune, which included all individuals who were immune to malaria, and non-immune,

which included all individuals who were not. However, we further categorized semi-

immune people into vulnerable, exposed, infectious, and recovered; non-immune people

into vulnerable, exposed, and infectious; and the mosquito population into three classes:

susceptible, exposed, and infected. We compute an explicit formula for the reproduc-

tive number, which depends on the weight of transmission from non-immune people to

mosquitoes and from mosquitoes to non-immune humans, as well as the weight of trans-

mission from semi-immune humans to mosquitoes and from mosquitoes to semi-immune

humans. As a result, the square root of the sum of the squares of these weights for the

two contact kinds represents the reproductive number for the entire population. The DFE

point is GAS if R0 ≤ 1, indicating that malaria dies away, and stable if R0 > 1, indicating

that malaria persists in the population. The model outcome confirms that the disease-free

equilibrium is asymptotically stable when the reproductive number less than one and un-

stable when the reproductive number greater than one, and we discuss the possibility of

a control for malaria transmission throughout a definite sub-group such as non-immune,

semi-immune, or mosquitoes.

Keywords: Disease-free, non-immune, and semi-immune equilibria.
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Chapter 1

INTRODUCTION

1.1 Background of the study

A disease that is transmitted by a vector is said to be vector-born. A vector is any arthro-

pod, medium, or other agent that allows a pathogenic micro-organism to spread from one

infected person to another uninfected person [5,19]. You can have mechanical or biologi-

cal vectors. If an agent may infect new hosts directly without first going through a period

of multiplication or development in the vector, the vector is said to be a mechanical vec-

tor. If an agent multiplies within a vector prior to transmission, the vector is referred to

as a biological vector. To transfer the agent to vulnerable hosts, the vector merely carries

it by its body parts [14]and the pathogenic agents, which might be bacteria, viruses, or

protozoa [102]. The primary cause of sickness in developing nations in Asia and Africa,

which are typically found in tropical and subtropical areas, is vector-borne illness [14].

More than half of the world’s population is afflicted by vector-borne diseases due to their

significant morbidity and mortality rates. According to the table (1.1), each vector-borne

disease has a unique pathogen, a vector that serves as a medium of transmission, and a

geographic distribution [15]. Infectious agents and their vector organisms are sensitive

to variables like temperature, surface water, humidity, wind, soil moisture, and changes

in the distribution of forests. Some vector borne diseases are more prevalent in specific

2
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regions due to the vector’s capacity to adapt in the particular environment and climate

in [1, 66].

In the history of mankind, infectious disease has been significant. The expansion of

people and national economies has been impacted by the spread of infectious illnesses.

Numerous infectious illnesses, including tetanus, smallpox, and seasonal influenza, are

vaccine-preventable. Some illnesses, like HIV, do not have a vaccine to provide immu-

nity [3, 32, 100]and the agent of malaria multiplies in the vector before transmission, as

illustrated in Figure (1.1). Malaria is one of the biological vector-borne diseases that is

endemic in many regions of the world [6]. It is an old disease with significant social,

economic, and health consequences [1]. It is primarily found in tropical and subtropi-

cal nations. Despite the fact that the condition has been studied for hundreds of years,

it has been declared endemic in 109 countries [100]. There is no effective vaccine in

sight, and many of the older antimalarial medications are losing their efficacy due to the

parasite developing drug resistance. Malaria affects 300 − 500 million people annually,

and it is estimated that 1.5 − 3 million people die from it each year, with the majority of

these deaths occurring in children under the age of 5 [76]. Most of these deaths are non-

immune humans, according to a report [100]. The incidence of malaria in many urban

centres of the world is increasing, and almost all areas of high endemicity lie in develop-

ing countries where inadequate drainage creates large stagnant water reservoirs that are

ideal breeding sites for disease vectors like the Anopheles mosquito [16]. There are no

accurate statistics available because the majority of cases occur in rural areas, where a

large portion of the population does not have access to hospitals or health care in general

and it has the greatest global spread [13]. In India, Plasmodium vivax infections account

for about 60% of all infections [13, 16]. Although it rarely results in death or other grave

issues, it can nonetheless result in serious sickness. Fatigue, diarrhea, fever, and chills are

a few of the Plasmodium vivax symptoms that are frequently seen [5, 13]. The majority

of cases of this rarest kind of malaria are in Ghana, Liberia, Nigeria, and the tropical

West African region [9]. Because Plasmodium ovale can remain dormant in a patient’s

liver for a few months to 4 years following an infection with the malaria-causing insect, it

occasionally recurs. The patient is most likely to become ill once more if these parasites
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recur and invade RBCs [93]. Less than 1% infections of this particular strain of malaria

have been reported in the Indian subcontinent, which is a smaller number than that of the

other varieties [76]. Its impacts have been felt for a very long time in the tropical and

subtropical regions of South and Central America, South East Asia, and Africa [9,16,76].

Even though it is not fatal, it nevertheless has a wide range of distributions and is the third

most common disease [9, 76].

Table 1.1: Vector-born diseases, Associated vector and the Region of Prevalence

Disease Vector Geographical Distribution

Malaria Mosquito Tropics and Sub-tropics

Schistosomiasis Water snail Tropics and Sub-tropics

Lymphatic Filariasis Mosquito Tropics and Sub-tropics

African Trypanosomiasis Tsetse fly Tropical Africa

Drancunculiasis Crustacean (copepod) South Asia, Central-West Africa

Leishmaniasis Phlebotomine sandfly Asia, Southern Europe, Africa

Onchoerciasis Blackfly Africa, Latin America

Dengue Mosquito All Tropical Countries

Yellow Fever Mosquito Africa

The most dangerous parasite that contributes to the majority of malaria-related infections

and fatalities is known to be the plasmodium parasite [5, 22]. South America, Southeast

Asia, and Africa are all home to this particular strain of malaria. Fatigue, wooziness,

dizziness, abdominal discomfort, aching muscles, a hurting back, joint pain, vomiting,

nausea, fever, headache, anemia, and other neurological symptoms are also experienced

by the parasite-infected person [76]. Since it is the severest of all the four malaria types,

it becomes important that it be checked, diagnosed, and treated on time [62, 76]. This

infection also has an adverse effect on brain and the central nervous system. Many

times, changes in the levels of consciousness, paralysis, and convulsions can also oc-

cur. Of these, Plasmodium falciparum is the most common cause of infection in Africa
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and Southeast Asia and is responsible for 80 percent of all malaria cases and 90 percent of

deaths [62,76]. The tropics are where it is most prevalent and where it causes the most se-

rious illness. To complete its life cycle, the parasite needs a human and a female Anophe-

les mosquito as vectors [1]. Being bitten by an infected female Anopheles mosquito, a

biological vector for malaria, is the most typical way to contract the disease [96]. Addi-

tionally, sharing a needle with an infected person or receiving blood transfused with the

disease could spread it. Female Anopheles mosquito bites a person to draw blood and,

while doing so, injects sporozoites into the victim’s body [96]. This is how malaria in-

fections start. These injected sporozoites quickly make their way to the liver, where they

multiply within the liver cells and transform into merozoites. System, where they grow

and multiply sexually until the erythrocyte or red blood cell bursts, therefore boosting the

number of merozoites and allowing them to attack other red blood cells [93]. Thus, fever

and other clinical symptoms are brought on by the cycle’s repeat, in which merozoites

escape and attack brand-new RBCs. The host’s hemoglobin is forced into the parasite’s

food vacuole, where it is digested, serving as a source of amino acids, during the matu-

ration process of the red blood cell by the parasite, which inserts its lipids and proteins

into the RBC’s membrane [93]. Male micro-gametocytes and male macro-gametocytes

are the two types of gametocytes that are produced when some of the merozoites that

enter erythrocytes multiply. These newly generated gametes are then ingested by the

female Anopheles mosquito during her blood meal or blood sucking event. This sporo-

gonic stage, during which the parasite breeds sexually, is present in female Anopheles

mosquitoes [93]. When micro-gametes enter the macro-gamete stage, zygotes are cre-

ated in the mosquito’s stomach. These zygotes eventually evolve into elongated, motile

ookinetes, which pass through the mosquito’s midgut wall and turn into oocysts [44, 93].

The oocysts that are created in this way mature and produce thousands of sporozoites

inside of them before they ultimately burst and release sporozoites into the mosquito’s

body [44, 93]. These sporozoites subsequently move on to the salivary glands of the

mosquito, which, upon injection or during a blood feeding event, cause the human host

to contract malaria, as described in [93]. The main emphasis of this thesis is on the trans-

mission of infection from the bite of infected female Anopheles mosquitoes to humans.

Thus, gametocytes are important in the transfer of sporozoites from the mosquito to the
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human and malaria from the human to the mosquito. Symptoms of malaria infection in

humans include fever, headache, nausea, vomiting, jaundice, an enlarged liver, joint pain,

body weakness, dizziness, and a lack of appetite [62, 76]. Figure (1.1) summarizes the

complete life cycle of the mosquito, the transmission mechanism as a whole and shows

how the symptoms of this condition worsen if medication is not taken to stop the constant

destruction of blood cells, which may eventually result in death [44, 93].

A model is a rough approximation of the complicated world, and the construction of a

model depends on the processes that are being researched and are intended to be extrap-

olated. By choosing aspects that appear to be crucial to the subject being investigated in

disease development and dynamics, various known biological and clinical facts are inte-

grated in a reduced form in a mathematical model [11, 14]. Finding the most effective

ways to stop the spread of a disease or eradicate it requires understanding how infec-

tions spread in terms of the number of individuals affected. In order to eradicate the

diseases transmitted by vectors, numerous control initiatives were put into place world-

wide [25, 34]. Outside of Africa, the majority of these initiatives were successful. The

return of vector-borne diseases is caused by a variety of circumstances. Changes in pub-

lic health policies, insecticide and medication resistance, a shift away from prevention

initiatives in favour of emergency preparedness, demographic and societal changes, ge-

netic modifications of pathogens, and changes in public health policy are a few of these

factors [42,59]. These investigations can aid in fitting empirical observations to the ques-

tions being asked and can be used to apply theory to situations that are less unknown or

known enough to make predictions. The models have been rigorously analysed in order

to be accessible to a broad variety of researchers studying the epidemiology, transmission,

and other aspects of malaria [62]. This analysis will be helpful in identifying the various

between-host models in this field and understanding how they work.



The Objective of the study 7

Figure 1.1: Architectural aspects of the Life Cycle of mosquitoes

1.2 The Objective of the study

1.2.1 The general objective of the study

The main goal of this thesis is to develop a mathematical model of malaria transmission

in order to better comprehend it. This will be done by developing mathematical mod-

els of infectious diseases with and without vaccination inducements, developing various

mathematical models of malaria transmission by examining various dimensions (com-

partments) of infectious disease transmission with and without vaccination inducements,

developing mathematical models of malaria in five dimensions, and ultimately developing

mathematical models of malaria in ten dimensions (compartments).

1.2.2 The specific objective of the study

Reviewing the main factors considered in earlier research on mathematical modelling of

malaria transmission, comprehending how vaccination affects the spread of infectious

diseases, analysing the proposed models mathematically and biologically, presenting the

mathematical model of infectious disease transmission with and without vaccination, and

extending the mathematical model of infectious disease transmission to five-dimensional

mathematical models of malaria transmission, and ultimately developing mathematical

models of malaria transmission to ten dimensional mathematical models of malaria trans-
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mission are the specific objectives of the study.

1.3 The Significant of the study

The results of this study should improve society’s understanding of the dynamics of infec-

tious diseases, which will assist in decreasing the effects of infectious diseases in general

and malaria transmission in particular, which can be extremely complicated in the ab-

sence of immunization. Additionally, they will help society and government agencies

decide how to effectively distribute funds for the prevention and management of infec-

tious diseases, and they will help public health organizations and health care facilitators

comprehend the procedures and policies that will make it possible for infectious disease

prevention and management.

1.4 Preface

In this thesis, the mathematical model of malaria disease transmission is examined. We

examine the mosquito life cycle in chapter (1). We offer fundamental definitions, term

properties, theorems, and procedures in the chapter (2) because these are necessary to

prove the theorems and generate formulas throughout this thesis. In the chapter (3), we

plan to go over the key aspects of the mathematical modelling of malaria transmission

that have been previously studied. By doing this, we will gain sufficient understanding

of the mathematical model of the dynamics of infectious disease spread in general and

the mathematical model of the dynamics of malaria spread in particular. In chapter(4),

we present and investigate a mathematical model of the spread dynamics of infectious

disease by inducing vaccination and without inducing vaccination. In this chapter, we

present two models, one by inducing vaccination and the other without inducing vaccina-

tion, and finally, we analyse the two models. In chapter(5), we analyse the mathematical

modelling of malaria transmission in five compartments; in chapter (6), we extend our

scope of compartments from five to ten and analyse this mathematical model of malaria

transmission in ten compartments; and in chapter(7), we give the overall conclusion and

recommendation of the thesis.



Chapter 2

MATHEMATICAL PRELIMINARIES

This chapter includes definitions, properties of terms, theorems and methods that we used

to proof theorems, to formulate mathematical models and to analyse the mathematical

models through out this thesis.

2.1 Compound Matrices

Let A be any n by m matrix of real or complex numbers, and let ai1,...., jk be the minor

of A determined by the rows (i1, ...., ik) and the columns j1, ...., jk, 1 ≤ i1 ≤ i2 < ik <

ik ≤ n, 1 ≤ j1 ≤ j2 < jk < jk ≤ m. The kth multiplicative compound matrix of Ak

of A is the

 n

k


 n

k

 matrix whose entries, printed in a lexicographics order are ai1,...., jk

[36]. When A is a n by m matrix with columns a1, a2, ..., ak, Ak is the exterior product

a1
∧

a2
∧
...

∧
ak. For the case m = n, the additive compound matrices are described in

the following way. If A = ai j be an n by n matrix, its kth additive compound A[k] of A is n

k


 n

k

 matrix by A[k] = D(I+hA)(k)| = 0 where D is the differential with respect to h.

For any integer i = 1, 2, ...,

 n

k

, let (i) = (i1, ..., ik) be the ith member in the lexicographic

ordering of all K− tuples of integers of such that 1 ≤ i1 < i2 < ... < ik ≤ in. In the special

9
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case k = 1, k = n, we find A[1] = A, A[n] = Tr(A). For n = 3, the matrices A[k] are as

follows 

A[1] = A.

A[2] =


a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

 .
A[3] = a11 + a22 + a33.

2.2 Linear space and norm

A linear space: A linear space X over C is a group of members such that for every

x1, x2 ∈ X the sum x1 + x2 ∈ X is defined such that x1 + x2 = x2 + x1 and a member 0 ∈ X

exists such that 0 + x = x + 0 = x for all x ∈ X. Also, for any number a ∈ R and any

element x ∈ X the scalar multiplication is defined ax ∈ X such that 1x = x, for all x ∈ X,

a(bx) = (ab)x = b(ax), (2.1)

for all a, b ∈ R and all z ∈ X and (a + b)x = ax + bx, for all a, b ∈ R and all x ∈ X

in [106]. [25] A linear space X is a normed linear space if to each x ∈ X there matches

a non negative real number ||x|| is called the norm of x which assures the next equation

(2.2):

||x|| = 0⇐⇒ x = 0, ||x1 + x2|| ≤ ||x1|| + ||x2|| (2.2)

for all a ∈ R and all x ∈ X and ||ax|| = |a|||x|| for the norm on X in [106].

Norm on a linear space: A norm on a linear space X make a metric through the next

distance: dist(x1, x2) = |x1 − x2|, for all x1, x2 ∈ X. A normed linear space X able with a

metric is said to be a metric space [25]. A norm on Rn = {x = (x1, x2, ..., xn) : xi ∈ R} such

that |x| =
(∑n

i=1(xi)2
)1/2

is called Euclidean norm. Rn endowed with a distance function

ρ such that ρ(x, y) =
(∑n

i=1(xi − yi)2
)1/2

is called Euclidean n-space. Let X be a normed

linear space and x ∈ X. The open ball about x0 ∈ X with radius ρ > 0 is the set

Bρ (x0) := {x ∈ X : |x − x0| < ρ}. (2.3)

The point x0 is said to be the center of the ball. Let X be a metric space. O ⊂ X is said

to be an open set if for each x ∈ O there exist ρ > 0 such that x ∈ Bρ(x) ⊂ O. Let S ⊆ X
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be a given set. Two points x and y are said to be connected in S if there is a path between

x and y lying wholly in S . The whole set S is said to be connected if each pair of points

in S is related in S . In Rn, a set S is associated iff it cannot be enclosed in the union of

two disjoint open sets [97]. A topological space is compact if each open cover of X has

a finite sub-cover. If X is a finite dimensional normed space, then M ⊆ X is compact iff

M is closed and bounded [106]. A convex set is a set of members from a vector space

such that each the points on the straight line between any two points of the set are also

together with this in the set; that is, for any x, y ∈ A it follows that tx + (1 − t)y ∈ A for

any t ∈ [0, 1].

2.3 Autonomous dynamical system

An ODE of the form of (2.4), is called an autonomous differential equation all the terms

do not depond explicitly on time.
dx
dt
= f (x) : (2.4)

where, x = x(t) ∈ Rn, t ∈ R and f : Rn → Rn is a function which make sure existence

of solution to equation (2.4). Usually, supplementary information is needed to decide

properties of solutions to the system equation (2.4), and knowing the initial position x0 ∈

Rn is adequate to get its position in all equation [23]. Thus, we believe an IVP associating

with equation (2.4):
dx
dt
= f (x); x(t0) = x0 ∈ R

n (2.5)

Under a set of suitable hypothesis on the function f , the initial value problem (2.5) pos-

sesses a unique solution which is defined for all future instants of time. The solution is a

continuously differentiable mapping x(.; t0, x0) : R → Rn with derivative x
′

(t) = f (x(t))

and satisfies x(t0; t0, x0) = x0. The notation ′′.; t0, x′′0 is used to show the explicit depen-

dence of the solution on the initial value (t0, x0) in [23]. So, x(t; t0, x0) refers to the position

of a particle at time t starting from x0 at time t0. Basic properties of the solution mapping

are: Evolution of x depends on the elapsed time as a substitute of the initial and final time

separately. That is,

x(t; t0, x0) = x(t − t0; 0, x0) for t ≥ t0. (2.6)
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which means that the position of the particle at time t(≥ t0), initial from the point x0 at the

initial time t0, is exactly the same as the position of the particle at time t − t0 if it starts

from point x0 at the initial time zero. Because of this property we can always choose

the initial time for the IVP (2.5) to be the time instant zero, that is t0 = 0. Initial value

property. That is,

x(t0; t0, x0) = x0 for all x0 ∈ Rn, t0 ∈ R (2.7)

That is, we have the following equation (2.8)

x(t2; 0, x(t1; 0, x0)) = x(t1 + t2; 0, x0) (2.8)

and persistence of solutions with respect to initial values. This property usually referred

to as the continuous dependence on initial data, can be insured by some proper hypothesis

on the vector field function f in [23]. Therefore, for autonomous ODEs, we can always

focus on t0 = 0, and define the solution ϕ(t, x0) := x(t; 0, x0) and translate the above prop-

erties of solutions of the IVP (2.5) into corresponding properties of the mapping ϕ(., .)

in [23].

Dynamical system: Let X be a metric space. A dynamical system is a continuous map-

ping ϕ : τxX → X; τ ⊆ ℜ with the following properties: original value property

ϕ(0, x) = x for all x ∈ X; (2.9)

and group property that is we have the following equation (2.10)

ϕ(t2; 0, ϕ(t1; 0, x0)) = ϕ(t1 + t2; 0, x0) for all t1, t2 ∈ τand x0 ∈ X. (2.10)

Continuous dependence on the initial data is implied by the continuity of the mapping

ϕ. When is τ+ = {t ∈ τ : t ≥ 0}, then ϕ maps X to itself and forms a semi-group under

composition rather than a group; in this case, we call (2.10) a semi-group property [23].

Metric space: Let X be a metric space. A Semi-dynamical system is a continuous map-

ping ϕ : τ+xX → X with initial value property and semi-group property. When τ = Z,

the dynamical system is called a discrete dynamical (semi-dynamical) system, and when

τ = ℜ, the dynamical (semi-dynamical) system is called a continuous dynamical (semi-

dynamical) system. From possessions of solution (2.7)-(2.8) and a solution mapping of
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system (2.5) defines an autonomous dynamical system. The system (2.5) is said to be

constant if

lim
t→∞

xi(t) > 0; i = 1, 2, 3, ...., n (2.11)

for every trajectory with positive initial conditions. The system equation (2.5) is called

uniformly persistent if there is a positive number c such that

lim inft→∞xi(t) > 0; i = 1, 2, 3, ...., n (2.12)

for each trajectory with positive initial conditions.

2.4 Existence and Uniqueness of solutions

Consider the initial value problem prearranged in equation (2.5), and let O be an open set

in ℜn holding the origin. Let x0 ∈ O and let ϕ(t) be the solution to the IVP (2.5) on an

interval J ⊂ I. It is called the solution ϕ(t) can be continued on the right, if there is an

additional solution ϕ(t) to the original value problem (2.5) on interval J1, such that J ⊂ J1

and supJ belongs to the interior of J1, can be continued on the left, if there is another

solution ϕ(t) to original value problem (2.5) on interval J2, such that J ⊂ J2 and infJ

belongs to the interior of J2, and is continuous, if it can be continued on the right or on

the left, or both. A solution to the initial value problem (2.5) is called a maximal solution

if it is not continuous. The function f (x) is said to be locally Lipschitz on an open set O

if for each point z ∈ O, there exist a neighbourhood N such that f is Lipschitz on N. i.e,

there is KN ∈ R such that

| f (x) − f (y)| ≤ KN |x − y| for x, y ∈ N. (2.13)

The function f (x) is called globally Lipschitz or simply Lipschitz on O if equation (2.13)

holds with a constant K which is independent of z and N [92]. A continuously differ-

entiable function is always locally Lipschitz. In addition, if the domain O is convex,

then a continuously differentiable function is globally Lipschitz iff the partial derivatives
∂ fi
∂xi
, i. j = 1, 2, ..., d are globally bounded; f = ( f1, f2, ..., fd) and x = (x1, x2, ..., xd).
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Theorem 2.4.1. (Existence and uniqueness of a maximal solution)

Let O be an open subset ofℜn and assume that f is continuously differentiable on O. Then

for any t0 ∈ ℜ and any x0 ∈ O the original value problem equation (2.5) has a unique

maximal solution ϕ(.; t0, x0) defined on its maximal open interval Imax = Imax(t0, x0). The-

orem (2.4.2) which follows is the autonomous description of [23] for the global existence

of a solution based on the dissipativity condition presented in [23]

Theorem 2.4.2. Let f : ℜn → R⋉ is continuously differentiable, that is its partial deriva-

tives of first order are continuous functions, and there are two constants α, β with β > 0,

then f (x).x ≤ α|x|2 + β. Then, there exists a unique solution to equation (2.5) which is

defined globally in time [23].

2.5 Positive Solution

The presence of unique solutions in a physiologically dynamical system has to be non-

negative. Then the existence of a non-negative solution is confirmed in [91] that as: let f

in (2.5) has the belongings that solutions of x (t0) = x0 ≥ 0 are unique and, ∀i, fi(x) ≥ 0

whenever x ≥ 0 satisfies xi = 0. Then x(t) ≥ 0, ∀t ≥ t0 for which it is defined, gives

x (t0) ≥ 0.

2.6 Equilibrium Solutions

[92] A point x ∈ R⋉ is said to be an equilibrium point of equation (2.5) if f (x) = 0. [92]

The equilibrium solution x of the dynamical system (2.5) is said to be stable if for any

ϵ > 0 there exists δ = δ(ϵ) > 0 such that for x(0) ∈ Rn, ||x(0) − x|| ≤ δ involve the solution

x(t; x0) exists ∀t ≥ 0 and ||x(t; x0) − x|| ≤ ϵ for all t ≥ 0. The equilibrium solution x of

the dynamical system (2.5) is asymptotically stable if it is stable and there is a constant

δ0 > 0 such that if ||x(0) − x|| ≤ δ0, then

lim
t→∞
||x(t; x0) − x|| = 0. (2.14)

The equilibrium solution x of (2.5) is GAS if it is stable and

lim
t→∞
||x(t; x0) − x|| = 0. (2.15)
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for a given t0 and ∀x0 ∈ Ω. The equilibrium solution x of equation (2.5) is unstable if it is

not stable. An equilibrium point x is stable if the dynamical system can be forced to stay

behind in any neighbourhood of x by suitable initial condition. It is asymptotically stable

if, in addition, any initial solution near the stable state come close to it as t → ∞ [92].

2.7 Basic reproduction number

The basic reproductive number (R0),Originally created for the demo-graphics revision,

it was examined separately and it was separately studied for vector-born illness such as

malaria in [73]. For in-host dynamics, R0 provides the number of recently polluted cells

formed by one polluted cell during its life span, pretentious all other cells are vulnera-

ble. From this definition, it is directly clear that when R0 < 1, every polluted individual

produces, on average, less than one new polluted individual, and we thus expect that the

disease will be empty from the population, or the micro parasite will be empty from the

individual. If R0 > 1, the pathogen is able to attack the vulnerable population. This thresh-

old performance is the most significant and useful feature of the R0 idea. In a widespread

infection, we can decide which control actions, and at what size, would be most effective

in plummeting R0 < 1, providing important direction for community health initiatives.

The degree of R0 is also used to measure the risk of an epidemic in rising infectious dis-

ease. We note, though, that the sensible use of R0 has been, for the most part, limited to

very simple deterministic systems. For contrast with this meadow text in epidemiology,

we limit our notice to deterministic, unstructured micro parasite models. There are dis-

similar approaches to compute the reproductive number.

Next generation technique is one of the technique which has a loaded history in the liter-

ature addresses the origin of R0, or an a comparable threshold parameter, when more than

one class of infectives is concerned in [56] and [89]. In this technique, R0 is described by

means of the next-generation matrix approach explained in [26] and [105]. This approach

defines R0 as the figure of individuals polluted by a solitary polluted individual during his

or her entire infectious period, in a population that is completely vulnerable. The dissim-

ilarity is that the primary explanation approximates the total number of pollution within a

human group prearranged by one infective human belonging to this group, while the next
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one gives the signify figure of new infections per infective in any group per age group

anywhere a generation refers to the infection. For a full justification on the configuration

of the next generation operative when there are considerably many types see in [32]. Let

us suppose that there are n compartments of which m are polluted. We describe the vec-

tor x = xi, i = 1, 2, ..., n where xi denotes the number of persons in the ith section. Let

Vi (x) = V−i
(
x) − V+i (x

)
be the rate of form of new infections in section i and let Vi (x);

where Vi is the rate of transfer of individuals into section i by all other means and V−i is

the rate of transfer of individuals out of the ith compartment. The difference

Fi (x) − Vi (x) ; (2.16)

gives the rate of change of xi. Note that Fi should include only infections that are newly

arising, but does not contain terms which explain the transfer of infectious individuals

from one infected section to one more. Assuming that Vi and Fi meet the situation outlined

by [105] and [33], we can form the next generation matrix V−1F from matrices of partial

derivatives of Vi and Fi. Particularly,

V =
∂Vi (x0)
∂x j

and F =
∂Fi (x0)
∂x j

(2.17)

where i, j = 1, 2, ...,m and where x0 is the DFE point. The entries of V−1F give the

rate at which infected individuals in x j generate new infections in xi, times the standard

length of time an individual spends in a single stay to partition j. R0 is prearranged by

the ghostly rad by the spectral radius (ρ) of the matrix V−1F. As an example, let us

consider an susceptible-exposed-infectious-recovery model. Since we are alarmed with

the populations that broaden the infection we only need to model contaminated classes (I),

and the exposed classes(E). Let us define the model dynamics using the next equations :

dI
dt
= KE − γI − µI (2.18)

dE
dt
= βS I − µE − KE (2.19)

where, γ is the per capita revival rate, K is the rate at which a dormant individual becomes

infectious, β is the efficacy of infection of vulnerable individuals S , and µ is the per capita
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normal death rate. For this system

V =

 K + µ 0

−K µ + γ

 (2.20)

F =

 0 βλ

µ

0 0

 (2.21)

where λ is the birth rate of vulnerable and thus we have the next

R0,N =
Kλβ

(µ2 + γµ)(K + µ)
(2.22)

For the second example, we consider a model of malaria. Let us explain the rate of modify

of the contaminated mosquito (MI) and human (HI) populations by the next equations:

dMI

dt
= βHMS vHI − µM MI (2.23)

dH1

dt
= βMH MIS h − H1(σ + α + µH) (2.24)

Infected humans are formed by the infection of vulnerable humans (S h), by an infected

mosquito with effectiveness βMH. We suppose that they pass away with normal death rate

µH, die due to disease with rate S and recover from the infection with rate α. Infected

mosquitoes are formed when vulnerable mosquitoes (S v) bite infected humans. We sup-

pose that this procedure has efficacy βHM and suppose that infected mosquitoes can only

go away the infected section by dying in nature with rate µM. For this system we find that

F =

 0 βMH MS (0)

βHMHS (0) 0

 , (2.25)

V =

 α + σ + µH 0

0 µH

 . (2.26)

Since V is non-singular we can compute V−1. Thus, we have get the next equation

R0 =

√
βHM MS (0)βMHHS (0)
µM(α + σ + µH)

(2.27)

This description is still in normal use in epidemiology.
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2.8 LAS and GAS points

[105] An n by n matrix A is said to be an M-matrix iff all the diagonal entries are pos-

itive and each off-diagonal entry of A is non-positive. [105] Let X0 is a DFE of the next

equation (2.28)

x
′

= F(x, y) − V(x, y), y
′

= g(x, y); (2.28)

then the derivatives DF(X0) and DV(X0) are partitioned as

DF(X0) =

∣∣∣∣∣∣∣∣ F 0

0 0

∣∣∣∣∣∣∣∣ and DV(X0) =

∣∣∣∣∣∣∣∣ V 0

J3 J4

∣∣∣∣∣∣∣∣ (2.29)

where F and V are the m × m matrices clear by the next equation (2.30)

F =
[
∂Fi

∂x j
(X0)

]
and F =

[
∂Vi

∂x j
(X0)

]
(2.30)

with 1 ≤ i, j ≤ m. Further, F is non-negative, V is a non-singular M-matrix and J3, J4 are

matrices related with the transition conditions of the model, and every one eigenvalues of

J4 have positive real part. An equilibrium solution, X0, is LAS if the eigenvalues of the

matrix the Jacobian matrix Df(X0) have negative real parts and uneven if any eigenvalue

of D(X0) has a positive real part [105]. The eigenvalues of Df(X0) can be partitioned keen

on two sets analogous to the contaminated and uninfected sections. These two sets are

the eigenvalues of F −V and those of −J4. Again the eigenvalues of −J4 all have negative

real part, thus the steadiness of the DFE is gritty by the eigenvalues of F − V .

Theorem 2.8.1. [105] Think about the disease transmission model prearranged by equa-

tion (2.28). If X0 is a DFE of the model, then X0 is LAS if R0 < 1, but unstable if R0 > 1; R0

is given by the next equation (2.31)

R0 = ρ(FV−1). (2.31)

An equilibrium point x of (2.5) is called GAS point if every solutions with dissimilar

initial situation converge to it internationally in time. In epidemiology, it is significant to

know whether an infectious disease will persevere and wait at a positive level over time,

after endemic epidemic and whether this behaviour depends on the original size of the
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disease or not. This is addressed mathematically by the GAS of widespread equilibria. For

many disease models, the R0 gives a sharp threshold that totally decides their worldwide

dynamics; thus the subsequent property is affirmed [90]. Model equation (2.5) has the

pointed threshold property if R0 given by equation (2.31) such that the DFE P0 is GAS

for R0 ≤ 1, and there is a sole EE P∗ that is GAS in the interior of the feasible region for

R0 > 1. Biologically, the sharp threshold property shows that the disease will finally pass

away out if R0 ≤ 1, while the disease continues at a positive level if R0 > 1. Though,

the rigorous proofs of these global stability consequences are non-trivial for many disease

models. In exacting, the global stability of the global equilibrium normally becomes a

demanding mathematical problem due to the complexity and high dimension of disease

models. Lyapunov functions are used to show stability of systems of odes arising in

biology [90]. [106] A continuously differentiable function V : ℜn → ℜ+ is said to be

positive in a region U ofℜn that contains the origin if V(0) = 0 and V(x) > 0, for x ∈ U

and x , 0.

2.9 Lyapunov Function and LIP

[106] Let the system equation (2.5) describe a dynamical system on an open subset

Ω ⊂ ℜn and x ∈ Ω an equilibrium point. A positive specific function V ∈ C1(Ω,R) is

called a Lyapunov function of the system equation (2.5) for x on a region B ⊂ Ω of x

gives that V
′

(x) = 0 and V
′

(x) ≤ 0, ∀x ∈ B. where V
′

is the directional derivative of V in

the direction of the vector f .

Theorem 2.9.1. If there is a positive specific Lyapunov function V of the dynamical system

equation (2.5) on a neighbourhood B of an equilibrium point x, then x is stable. In adding,

if V
′

(x) < 0 ∈ B\x, then x is asymptotically steady and unsteady if V0(x) > 0, ∀x ∈ B\x.

GAS, is determined in conjunction with LIP. Before stating LIP, we initiate the description

of ω− limit set and invariant set under. Let ϕ (t; x0) be the autonomous dynamical system

produced by the solutions of (2.5) in [106]. [23] A set S ⊂ Rd is said to be the ω− limit

set of ϕ (t; x0) if for each x ∈ S , there is a strictly increasing sequence of times tn, then

ϕ (tn; x0)→ x as tn → ∞.



Lyapunov Function and LIP 20

It is common to write S = ω (x0). In a analogous way, it is distinct the omega limit of a

set A ⊂ O, and it is indicated as ω(A), as the set of points x ∈ O such that there are two

sequences

xn ⊂ A, tn → +∞ such that ϕ (tn; xn)→ x, as n→ +∞. (2.32)

[23] A set M ⊂ Rd is called positively invariant if for all x ∈ M we have ϕ(t; x) ∈ M,∀t ≥

0. [23] The positive invariance means that as long as a solution passes a point inside M it

will stay within M everlastingly.

Theorem 2.9.2. LaSalle’s Invariance Principle(LIP): In [23] Let K ⊂ X be a compact

and positively invariant set, V : K ⊂ ℜ → ℜd be continuously differentiable with V ≤ 0

on K, and let M be the largest invariant set in E = {x ∈ K : V = 0}. Then ϕ(t; x0)

approaches M as t → ∞ for every x0 ∈ K.

LIP requires V to be continuously differentiable but not essentially positive [23]. It is

appropriate to any equilibrium set, rather than just a lonely equilibrium point. But when

M is just a particular point, it gives extra information about the kind of stability of the

equilibrium point. Certainly, when M is just a single point, and we are able to discover

a Lyapunov function to make sure that this equilibrium is steady and also convergent as

a consequence of LaSalle’s principle, and therefore is asymptotically steady. It is often

hard to build a Lyapunov functions and no common technique is obtainable. For instance,

a common form of Lyapunov functions in the literature of mathematical biology is

D =
n∑

i=1

ci

(
xi − x∗i − x∗i ln

xi

x∗i

)
, (2.33)

originally from the first integral of a Lotka-Volterra system. When practical to disease

models, appropriate coefficients ci have to be strong-minded such that the derivative of D

along solutions of the model is non-positive, and such a and such a determination becomes

very difficult for models with high dimension [90]. The next three methods show how to

build Lyapunov functions for disease models and therefore set up the GAS of the DFE and

EE points. A matrix-theoretic method was introduced in [90] to decide global steadiness

of the DFE. Process of the method goes as follows. Consider (2.28) with F ,⊑, F and V

prearranged above, and set the next

f (x, y) := (F − V)x − F (x, y) +V(x, y). (2.34)
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From x
′

in (2.28) and (2.34), it can be written as follows in equation (2.35)

x
′

= (F − V)x − f (x, y). (2.35)

Note that f (0, y) = 0. Let ωT ≥ 0 be the left eigenvector of the non negative matrix V−1F

equivalent to the eigenvalue ρ(V−1F) = R0.

Theorem 2.9.3. Let F,V and f (x, y) be clear as in equation (2.34), in that order. If

f (x, y) ≥ 0 in Ω ⊂ ℜn, F ≥ 0,V−1 ≥ 0, and R0 ≤ 1, then the function Q = ωTV−1x is a

Lyapunov function for model equation (2.28) on Ω.

In applications to infectious disease models, the set Ω in Theorem (2.9.3) is usually se-

lected as a compact subset of ℜn
+ such that (0, y0) ∈ Ω and Ω is positively invariant with

admiration to equation (2.28). Hence, the Lyapunov function built in the Theorem (2.9.3)

can be used to show not only the worldwide steadiness of the DFE but also stable and

therefore set up the survival of an free equilibrium. The next consequence provides in

which hypothesis can be expediently checked for disease models.

F, V and f (x, y) be clear as above and let Ω ⊂ ℜn
+ be compact such that (0, y0) ∈ Ω

and Ω is positively invariant with respect to equation (2.28). Let that f (x, y) ≥ 0 with

f (x, y0) = 0 ∈ Ω, F ≥ 0, V−1 ≥ 0, and V−1F is irreducible. Let that the disease-free

system y0 = g(0, y) has a unique equilibrium y = y0 > 0 that is GAS inℜp
+. Then the next

results grasp for equation (2.28): If R0 < 1, then the DFE point P0 is GAS in Ω and if

R0 > 1, then P0 is unsteady and system equation (2.28) is regularly unrelenting and there

is at least one free equilibrium.

A graph-theoretical method was also introduced in [90] to decide worldwide steadiness of

the widespread equilibrium. The method was built up on a biased digraph; so, description

of some terms of a digraph is obtainable below. The method is clarified using the similar

notation as obtainable in [90]. We start by recalling some definitions and consequences

from graph theory as stated in [97]. A directed graph (digraph) is an prearranged pair of

sets G = (V, A), where V is a set of vertices and A is a set of ordered pairs of vertices

of V . The in-degree of a vertex i, denoted as d−(i), is the number of arcs in G whose

terminal vertex is i, and the out-degree d+(i) is the number of arcs whose initial vertex is

i. A subdigraph H of G is spanning if H and G have the same vertex sets. A digraph G is

weighted if each arc is assigned a positive weight. The weight w(H) of a subdigraph H is
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the manufactured goods of the weights on all its arcs. A tree is a sub-digraph T of G that is

a single connected part and in which the in-degree of one vertex, the root, is zero, but each

of the residual vertices has in-degree 1. A (directed) path P is a sub-digraph with separate

vertices labelled i1, i2, ..., im so that its arcs are of the form (ik, ik+1) for k = 1, 2, ...,m − 1.

A (directed) cycle C is the sub-digraph obtained from such a path P by adding the arc

(im, i1). If m = 1, the cycle consisting of a single vertex i1 and a single arc (i1, i1) is called

a loop. A unicyclic graph is a sub-digraph Q consisting of a collection of disjoint rooted

trees whose roots are the vertices of a directed cycle. The in-degree of each vertex of such

a graph equals 1. Given a biased digraph G with n vertices. Then, the nxn weight matrix

is clear by A = [ai j] with entry ai j > 0 equal to the weight of arc ( j, i) if it exists and 0

otherwise. We indicate such a weighted digraph by (G, A). A digraph G is powerfully

linked if for any pair of separate vertices i, j, there is a heading for path from i to j (and

also from j to i). A weighted digraph (G, A) is powerfully connected iff the weight matrix

A is irreducible. The Laplacian matrix L = [li j] of (G, A) is clear as next −ai j for i , j∑
k,i aik for i = j.

(2.36)

The following gives a graph-theoretic explanation of the cofactors of the diagonal entries

of L.

Theorem 2.9.4. Assume n ≥ 2 and let ci be the cofactor of li j in L. Then we have

ci =
∑
τ∈τi

w(τ), i = 1, 2, ..., n, (2.37)

where τi is the set of all spanning trees τ of (G, A) that are rooted at vertex i, and w(τ)

is the weight of T . If (G, A) is strongly connected, then ci > 0 for 1 ≤ i ≤ n. The next

identity is analogous to the one in [70], following directly from the tree cycle identity [70]

when the weighted digraph (G, A) has a certain structure, two new relations among the ci

can be recognized via combinatorial identities.

Theorem 2.9.5. Let ci be as given above. If ai j > 0 and d+( j) = 1 for some i, j, then we

have

ciai j =
∑
k=1

c ja jk (2.38)
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Theorem 2.9.6. If ai j > 0 and d−(i) = 1 for some i, j, then we have get (2.39)

ciai j =
∑
k=1

ckaki (2.39)

Theorem 2.9.7. Let U be an open set inℜm. Consider a DE system

z
′

k = fk(z1, z2, ..., zm), k = 1, 2, ...,m, (2.40)

with (z1, z2, ..., zm) ∈ U. Assume that the next assumptions are satisfied: There is functions

Di : U → R,Gi j : U → R and constants ai j ≥ 0 such that for every 1 ≤ i ≤ n,D
′

i ≤∑n
j=1 ai jGi j(z) for z in u. For A = [ai j], each directed cycle C of (G, A) has∑

(s,r)∈ϵ(c)

Grs ≤ 0 for z ∈ U, (2.41)

where E(C) denotes the arc set of the directed cycle C. Then, the function

D(z) =
∑
i=1

∑
i=1

ciDi(z), with constants ci ≥ 0 (2.42)

as given above, satisfies D
′

≤ 0; that is, D is a Lyapunov function for (2.40).

Theorem (2.9.7) can be used to show the construction of Lyapunov functions for not only

models that can be regarded as joined systems on networks but also models that do not

have an explicit network structure. In the applications to disease models, the Di are select

from functions usually used in population models. The calculation of Di follows from the

disease model and difficult limits for these derivatives are resolute. The functions Gi j and

constants ai j are selected so that assumptions (1) and (2) in Theorem (2.9.7) hold concur-

rently. A weighted digraph is constructed matching to the weight matrix A = [ai j] resolute

from assumption (1), depending on the choice of Di, i = 1, ..., n, and estimates of Different

numbers and/or types of functions Di can be used for a particular disease model, giving

dissimilar weighted digraphs. The function Gi j does not of requirement depend only on zi

and z j. With information of a state graph structure, the new combinatorial identities (The-

orems (2.9.5) can further be practical to derive clearly the coefficients ci in a constructed

Lyapunov function. For the proof of global stability of an equilibrium solution, a new

Bendixson criterion for (2.48) was introduced in [68], which is an additional room of the



Lyapunov Function and LIP 24

widespread Dulac situation in [68] and [69]. Before we talk about this method, we give

some definitions and properties of norm of a matrix from [85]. Let R denote the he field

of real of complex numbers and let |.| denote a norm on the vector spaceℜn, where n is a

positive integer. Denote by ↕(ℜn) the normed algebra of all linear functions fromℜn into

ℜn with the norm ||.|| on L(ℜn) defined by ||A|| = max{|Ax| : x ∈ ℜn, |x| ≤ 1}. Assume

that m is a positive integer and {pi : i = 1, ...,m} is a family of supplementary projections

on ↕(ℜn), i.e., Pi.Pi = Pi; Pi.P j = 0 if i , j, and
∑m

i=1 pi = 1. Also, it is assumed that

Pi , 0 for any i (hence, m ≤ n). For each i in {1, ..,m}, define the [0,∞] valued function

|.|i onℜn by the next equation (2.43)

|x|i = |pix| (2.43)

for each x inℜn, and define the [0,∞] valued function ||.|| on ↕(ℜn) by (2.44)

||A||i = sup{|Ax|i, x ∈ ℜn, 1 = |x|i > |x| j for i , j} (2.44)

for each A in ↕(ℜn). |.| is a seminorm onℜn for each i in {1, ...,m}. Also, if A is in ↕(ℜn)

and x is inℜn with 1 = |x|i ≥ |x| j, for j , i, then so

|x| = |
m∑

j=1

p jx| ≤ |pix| +
∑
j,i

|p jx| ≤ m; so (2.45)

|Ax|i = |piAx| ≤ ||piA|||x| ≤ m||piA|| (2.46)

Hence, ||A||i is finite and ||A||i ≤ m|piA|. Also, ||.|| is a seminorm on ↕(ℜn). Furthermore,

||A||i is the least number M such that the inequality ||Ax||i ≤ m|M|x|i is valid for all ℜn

such that |x|i ≥ |x| j for j , i. The inequality ||Ax||i ≤ ||A||i|x|i does not necessarily hold for

all x ∈ ℜn, and the inequality ||A.B||i ≤ |A|i||B||i also does not hold in general. However,

if PiA = APi, then these inequalities are valid. For each i ∈ {1, ...,m} and A inℜn, define

the Lozinskii measure µi(A) of a n by n matrix with respect to the norm |.|i as

µi(A) = lim
h→0+
|I + hA|i − lh. (2.47)

Lozinskii measures have been used for judgment of eigenvalues of matrices. They also

arise in the stability investigation of linear differential systems when certain vector norm

of solutions are used as Lyapunov functions [69]. Now, as presented in [69], we state the
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geometric approach using the new Bendixson criterion as follows. Let the map x→ f (x)

from an open subset D ⊂ ℜn to ℜn be such that each solution x(t) to the differential

equation

x0 = f (x) (2.48)

is uniquely resolute by its initial value x(0) = x0, and indicate this solution by x(t, x0).

We state under definitions as given in [69]. Let x be an equilibrium point of the system

equation (2.48). If x is globally steady with respect to D1, then x is necessarily the only

equilibrium in D1 and there exists a compact neighbourhood K of such that every compact

subset F ⊂ D1 satisfies x(t, F) ⊂ K for adequately large t. Such a K is called fascinating

in D1 for (2.48).

2.10 Bifurcation theory

Dynamics of differential equations system may alter, if at smallest amount one restriction

is allowable to vary. For example, equilibrium can become wobbly and furthermore a

periodic solution may come into sight or a new stable equilibrium may emerge. Such

a qualitative alter in performance is said to be bifurcation, and the value at which these

changes occur is called a bifurcation value. Bifurcation investigation is the mathematical

revise of changes in the solutions when altering the parameters.The parameter principles

where they happen are called bifurcation points. Usually, the classical outbreak models

have only one EE point when the R0 > 1, and the DFE point is forever steady when

R0 < 1 and unsteady when R0 > 1. So the bifurcation most important from a DFE

point to an EE point is onward; in this case, R0 is the bifurcation parameter and R0 = 1

is the bifurcation value. Though, below some situation in stricture space, for example,

when the result of delay for conduct is strong, an outbreak can happen, or a stable EE

point can exists even when the doorsill quantity, R0, of the model being deliberated is

less than unity; this occurrence is called backward bifurcation. When an epidemiological

model admits manifold non-trivial equilbrium, the model typically shows multifaceted

dynamical behavior such as backward bifurcation. In such circumstancess, the decrease

of the connected reproduction number under unity is inadequate for illness abolition in the

population. Thus, it is significant to recognize backward bifurcations and set up thresholds
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for the control of diseases. By analyzing the survival performance of the model in such

point’s one can get much about the systems properties. To recognize the next section a

concise foreword to bifurcation theory might be valued. For space protection reasons this

will not be obtainable here, instead we advocate interpretation the basic preface given

in [29]. By using bifurcation theory [25] shows that a widespread equilibrium point exists

for all R0 > 1 with a transcritical bifurcation at R0 = 1.



Chapter 3

LITERATURE REVIEW

In order to forecast the occurrence of infectious disease epidemics and to direct current

research for the eradication of malaria, epidemiologists frequently employ mathematical

models [4, 62]. In order to eradicate and regulate [62], it is thought that a combination of

many approaches, as opposed to a single style of modeling, may be more effective in the

long run. Recent years have seen a boom in activity as a result of international eradication

and control efforts, [62]. This has resulted in several studies and publications. Within

host models take into account the interaction of the parasite with the immune cells in a

specific host in order to analyze the infection phenomena inside the individual host. Pop-

ulation genetic models examine the evolution and spread of the parasite in a complicated

environment with varied levels of host immunity, host death, medication availability, and

mosquito abundance. In [87], the man who won the Nobel Prize for his work, was the

first to begin mathematical modeling of malaria. The association between the prevalence

of malaria in humans and the number of mosquitoes was explained by his extremely

straightforward model, which has since been substantially expanded. His model did not

consider the latency period of the parasite in mosquitoes and their survival during that

period. Starting from the basic model in [87] many transmission models of malaria have

been developed by considering regulation of the passage of the human host and mosquito

vector through these epidemiological compartments as a function of the host and parasite

specific factors, their interactions, and external environmental variables. Here, an effort

27
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has been made to expound on the development of these models by taking into account a

few exemplary mathematical models that take the complicated interactions between host,

vector, and parasite into account. The model in [87] is a highly significant improvement

with a focus on application in mosquito eradication. This is because the word hierarchy

of models is based on the undeniable fact that the mathematical model of malaria and the

beginning of the tree both used the word pathometry to mean the quantitative study of a

disease either in the individual or in the community.

In addition to models based on differential equations, other modeling approaches have

also been used. Few examples are, integrated models in [62], habitat-based models

in [82], climate change in [62], individual-based models in [62], spatial and genetic het-

erogeneity of host and parasite [62], acquired immunity [4,6,8], age-related model [4,62],

and the latent period of infection in mosquitoes and human [4, 62]. When it comes to hu-

mans, the burden of malaria varies with age and gender. The majority of malaria deaths in

African children happen before the age of 5. Older Africans are less likely to contract the

disease due to prolonged exposure and the capacity to build some immunity. The disease

load persists throughout adulthood outside of Africa, where there is no ongoing exposure.

The spread of malaria in a community is therefore known to be significantly influenced

by age and immunity, two interrelated elements. The significance of including immunity

in malaria models is discussed in [66]. Including immunity in malaria models is signifi-

cant for two reasons. The first problem is that unrealistic forecasts result from immunity

neglect. Immunity can be added to models to help them become more lifelike. Second,

modeling immunity, and specifically the impact of vaccinations, can aid in forecasting the

results of vaccination campaigns. Numerous epidemiological studies have concentrated

on this crucial issue by modeling immunity and the age structure of the human popula-

tion(See [4,6,8]). In this case, the illness spreads differently over time and within various

age groups depending on each group’s immunological capacity. By taking into account

the human population density in the infectious class as a function of age and time, age

structure was added to the straightforward Ross model, as noted by [4]. In this case, the

illness spreads differently over time and within various age groups. But the relationship

between age and immunity needs to be more precisely described because the reliance, as
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anticipated by this model, did not fit well with the actual trend in prevalence with age. By

taking into account a distinct immune class in people and by adding an Immunity function

to existing models, immunity can be included in a model in two different ways.

A distinct immune class has been included in some models in [79], whereas complex

immunity functions have been included in some models in [42]. Assuming that malaria

immunity is not permanent, in [31] first proposed a model including seven compartments

in humans. In this concept, a person may either recover from the infected class and

directly return to the susceptible class or become re-infected through a temporary im-

mune class. In addition, several mathematical studies have been performed to simulate

the effect of environmental variability in the abundance of mosquito populations, such

as random fluctuation in the form of color noise in infected mosquito dynamics of the

Ross model [88], periodic or noisy form of the force of infection [4, 6]. With the aim of

creating accurate and verified malaria modeling frameworks that are able to pinpoint the

critical connections between pathogen transmission mechanisms and climatic conditions,

numerous studies have also taken the impact of environmental changes into account in a

variety of ways, as noted by [83]. In a recent work, [83] devised a model to analyze the

dynamics of the mosquito population while taking the simultaneous impacts of temper-

ature and rainfall into account. There are three compartments in the model for humans

with a set latency duration, and there are three compartments for mosquitoes. Through

parameters relating to mosquitoes, several environmental elements are introduced in this

model. While mosquito mortality, biting, sporogonic cycle length, and the likelihood that

infected mosquitoes will survive the parasite’s incubation period are thought to be depen-

dent on temperature variation, the birth rate of adult mosquitoes is thought to be a function

of rainfall and temperature.

The main conclusion of this model is that variations in rainfall patterns substantially in-

fluence the endemicity, invasion, and extinction of malaria as well as the abundance of

vectors. The temperature, on the other hand, affects the pathogen life cycle and has a

bigger impact on the rate at which diseases spread when there is enough rainfall to sup-
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port vector development and survival. The strength of the relationship between the two

points to a close connection between malaria and poverty. Variations in social and eco-

nomic factors are generally regarded as being much more significant in malaria-endemic

areas than temperature variations [107]. [107] demonstrated through the use of mathe-

matics how local social and economic factors, as well as global warming, affect the R0

of malaria transmission. Three temperature zones have also been created for each of the

three economic circumstances in this model, which takes into account good, moderate,

and poor economic conditions among human communities. According to this model, a

variety of variables, including endemicity, resistance, endemicity, economic conditions,

and the sensitivity of mosquito growth to temperature, regulate disease transmission rates.

With three varied temperature zones and diverse socio economic frameworks, they result

in various reproduction numbers. In order to prevent disease transmission, these model-

ing results highlight the necessity of appropriate environmental management practices in

addition to an effective healthcare system.

The efficiency of malaria control through various types of intervention strategies can have

differential protection, with the former being more protective, according to a mosquito-

based model that illustrates how field study design can be approached. When a pathogen

enters a population of hosts, it divides the inhabitants into groups based on the amount

of parasites they contain and the type of infection they have. After the ground breaking

work of in [62], these compartments are denoted by the common notation S EIR. To put it

simply, they are as follows: the first group is made up of the portion of the host population

that is susceptible (S) to infection (I); next is the exposed (E) class, which is made up of

the portion of the population whose members are infected by the pathogen but are unable

to spread the infection to others during the time between the point of infection and the

start of the state of infectiousness, during which the members of the exposed (E) class

remain infected. The second category is contagious people, who spread infection to addi-

tional people by coming into contact with Susceptibles. The R class, on the other hand, is

made up of people who recover from the virus. Depending on the condition, there could

be differences in the compartment structure. For instance, the I class of people might

not recover at all and pass away; the R class could be made up of those who recover
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with temporary or permanent immunity, further splitting the epidemiological compart-

ments. These notations make it feasible to create eight types of compartmental models:

S I, S IS , S EI, S EIS , S IR, S IRS , S EIR, and S EIRS , to use [55] terminology.

For instance, in a S EIRS model, some of the susceptible population is exposed to in-

fection, and some of that population later develops the ability to spread infection. Some

members of the infectious class recover from the illness and join the R class with tempo-

rary immunity. When immunity is gone, they are once again vulnerable to pathogen attack

and move into the S class. Thus, both human and vector compartments have been used

in malaria modeling. Epidemiological compartments for a S EIRS model that distinguish

between various stages of infection and parasite densities in the host population. Different

stages of infection are crucial to the dynamics of transmission. The degree of infectious

agent that replicates inside a host may rise from small inoculums to a higher level, and

later decline and/or cease altogether as it goes through them. In many cases of infection,

the period from the site of infection to the development of symptoms of sickness and the

period from the point of infection to the beginning of the state of infectiousness are not

the same [4]. The appearance of symptoms is significant for case diagnosis and treat-

ment. The state of the clinical markers presence by + and absence indicated for diagnosis

of each compartment is designated by Sero-conversion and Cellular immunity [60,81,94].

Latency of infection in humans was introduced in [4] making an additional Exposed class

in humans in [74]. Researchers have modified the basic model in [88] to explain the effect

of the age structure of prevalence [4], migration, and visitation of people [94]. Several

models were also put forward following the model in [74] by incorporating additional

complexities of human immunity, parasite diversity, and resistance to explain enormous

quantities of epidemiological data collected in Africa and other areas of the world [12].

The main benefit of these early models was to offer an appropriate control strategy through

the transmission threshold criterion, which is based on the parasite’s ability to reproduce

and is known as the basic reproductive number. Although the term threshold was first

used by [88], [43] is where the term first appeared in relation to a parasite’s reproductive
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value. In every study on the population biology of a parasite, [74], the idea of the funda-

mental reproductive number has been extensively debated from the start. By estimating

R0, it is also possible to describe the fundamental outcomes of all these models. The

Exposed class was added to the mosquitoes according to in [74] after taking this latency

interval into account. Therefore, in this model, the mosquito population is divided into

three compartments(SEI), and the model studies the time evolution of the exposed class

and infected classes in mosquito. The R0 for this model is consequently scaled down

with increasing latency period. In a natural extension to the Ross, the Macdonald model

in [74], and Anderson and May considered in [4] the latency period of the parasite in

humans, and introduced the Exposed class in human population in their model [4]. Along

with the mosquito population, this split the host population into three sections. Thus, this

is a S EIS model for the human population, and it consists of four DEs that describe the

temporal evolution of the exposed and infected classes of both humans and mosquitoes.

Due to the addition of the human latency period, the fundamental R0 for this model is

further decreased. A comparison of the models used by [4], [74] and [88] to predict the

prevalence of infectious diseases. The models reveal that taking into account the latency

periods of parasites in humans and mosquitoes not only lowers the long-term prevalence

of both infected humans and infected mosquitoes, with the Anderson model having the

lowest prevalence and the Ross model having the highest prevalence ( [4] and [87], re-

spectively). It also lowers the rates of progression in these final infected populations.

These simple models can provide some insight into the impact of various intervention

types on the dynamics of disease transmission, even at their smallest level of complex-

ity. The percentage of the population that falls into the exposed and infected classes can

be controlled in part by the mosquito density, mosquito bite rate, and mosquito mortal-

ity rate. Ross developed the first deterministic DE model of malaria by compartmen-

talizing the human population into susceptible and infectious human groups, with the

infected class reverting to the susceptible class once more to produce the S IS structure.

The mosquito population likewise only has two compartments: susceptible and infec-

tious mosquitoes, but due to their short lifespan, they do not recover from infection and

hence adhere to the susceptible-infectious structure. Using two DEs, one for the human



33

and one for the mosquito, the time evolution of the population’s proportion in the classes

of infectious humans and mosquitoes is investigated. It is obvious that the human bit-

ing rate, the proportion of bites that result in human infection, the proportion of bites by

which one susceptible mosquito becomes infected, and the ratio of female mosquito num-

bers to bites that contribute to the increase of the R0 in this model are related to humans

and mosquitoes, and any change in them can have a big impact on malaria transmission.

The R0 can be decreased by raising mosquito mortality and decreasing mosquito biting

rates. The Ross model explains the fundamental characteristics of malaria transmission

and places the majority of the burden of transmission on mosquito-specific characteristics,

opening the door for mosquito-based malaria control programs. Knowing how changes in

these parameters affect transmission intensity, which is measured by the R0, is crucial for

any epidemiologist. It is obvious that the reliance on the biting rate suggests that having

the biting rate is more efficient given the expressions of the reproduction number in all

three models. Thus, lowering the biting rate through the use of bed nets or any other tech-

nique will be an efficient way to control the transmission. But not all parameters make

this evident. Due to the exponential function of the adult mosquito mortality rate present

in these models, for instance, the relative effect of lowering the adult mosquito mortality

rate in contrast to the biting rate is different. The R0 = 0 surface demonstrates that the

commencement of an epidemic occurs at higher parameter values in the [87] model than

in the [4] model.

These findings suggest that, under the model of [4] and [74], reducing the lifespan of adult

mosquitoes is more successful at reducing malaria cases than reducing the biting rate. As

was previously indicated, these model results gave justification for controlling malaria

transmission by mosquitoes using pesticides and insecticide-impregnated bed nets since

they alter mosquito density biting rate and mosquito mortality rate. Therefore, even at

this modest level of complexity, these models were successful in describing the elements

that affect the disease’s transmission, which were helpful in the control and eradication

of malaria in many nations. Environmental effect [97, 107] has been used in some of

the most recent publications on the mathematical modeling of malaria. [97, 107] offers

a compartmental model in which people behave in a way similar to the SEIRS pattern
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and mosquitoes behave similarly to the SEI pattern. In addition, the temperature now

affects some of the metrics relating to insects. There are two of these: the time it takes

for mosquito eggs to hatch into adults and the amount of time it takes for a mosquito to

swallow Plasmodium gametocytes before they mature into sporozoites and move to the

salivary glands.

[97,107] Use the model to study the effect global warming. Using the estimated increase

in temperature of 10 to 3.5 degree centigrade by the year 2100, they show that it is possi-

ble in some areas of the world for the R0 > 0 to increase above one; for areas to change

from a stable DFE point to one with low levels of endemicity and for other areas to change

from low levels of endemicity to high levels. They do, however, conclude by saying that

economic and social effect are still more important than temperature effect and a good

health care system with good malaria control techniques can overcome the negative ef-

fect of an increase in temperature. People go through various stages of the S EIR, and a

history of earlier infections is retained in the model from [97] derives. The mosquito pop-

ulation is subdivided into juveniles and adults in a submodel included in the study. They

incorporate into their model for malaria transmission the steady state value from this sub-

model for the adult mosquito population. In the mosquito population sub-model, they

introduce the dependency of the parameters on an environmental parameter and compute

the dependence of the R0, for the whole malaria model, on this environmental parameter.

The spread of the drug-resistant Plasmodium [66] parasite and the development of immu-

nity [66] have both been considered in more current models.

Discuss a model that incorporates a disease strain that is resistant to treatment. Start with

the Ross-Macdonald model and work your way up to more intricate models. As a result

of their findings, it can be seen that even in the most basic of their models, there is a

threshold below which drug resistance does not exist and above which it does. In their

investigation of a host-parasite evolution model of malaria, [66] found that the parasite

makes investments in its capacity to elude the host’s immune response while the host

makes gradual improvements to its immune system. While mosquitoes follow an SEI
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pattern similar to that described in [107] and humans follow a S EIRS -like pattern, [80]

describes only one immune class for humans. When in contact with an infected mosquito,

humans shift from the susceptible to the exposed class with a certain probability before

moving to the infectious class, just like in traditional S EIRS models. Infected individuals

can then recover with or without a boost in immunity, returning to the vulnerable class or

moving to the recovered class. A novel aspect of this model is that even though people

in the recovered class are thought to be immune in the sense that they do not experience

severe illness or develop clinical malaria, they still have low levels of Plasmodium in their

bloodstream and can transmit the infection to mosquitoes that are susceptible. These re-

habilitated people eventually join the susceptible group. When susceptible mosquitoes

come into contact with either infectious or recovered humans, they may become infected

and switch over to the exposed class. They then move on to the class with the infectious

disease. A density-dependent natural death rate causes both people and mosquitoes to

abandon the population. The model may now take changing human and mosquito popu-

lations into account. Constant population models do not take into consideration the fact

that mosquito population fluctuations are essential to the dynamics of malaria. The model

also takes into account disease-related human deaths because malaria mortality, particu-

larly in newborns, can be significant in locations with high transmission rates.

[79]Use a linear per capita mortality rate assumption to analyze this model. A R0 is

defined in these new variables when the system is transformed into dimensionless quan-

tities. They demonstrate that an EE point exists when R0 > 0 and that this EE is distinct

if there are no diseases that cause death. They demonstrate through linear analysis that

the DFE is LAS when the R0 < 0and the unique EE are both R0 > 0, and that both are

LAS when either is present. In order to prove their point that the EE is stable for R0 > 0,

they conclude by utilizing numerical simulations. Many of the topics covered in [6] be

revisited in [4] later evaluation. Additionally, [6] may assemble a variety of data sets for

parameter values, such as information on the latent period in humans and mosquitoes, the

rate of recovery for humans, the anticipated adult lifetime of mosquitoes, and data on the

frequency of malaria across human age distributions. In addition, [4] and [6] investigate

the impact of including age structure in the fundamental [88] to [74]. Finally, they address
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the implications of a vaccine and the decline in transmission rates on the age-prevalence

of malaria as they examine various control measures. Nedelman surveys examines mul-

tiple data sets to statistically approximate parameters including inoculation rates, rates of

recovery and loss of immunity in people, human-biting rates of mosquitoes, and infec-

tivity and susceptibility of humans and mosquitoes. [64] Also starts with the citeRos15

to [74] paradigm with an additional latent stage for the mosquitoes. The impact of pa-

rameter variability is then studied, and an infection-rate-dependent duration of immunity

is included.

[64] Investigates the effects of vaccines, contrasting those that work on asexual blood

stages and those that prevent transmission, to demonstrate that the asexual blood stage

vaccines are more effective. [64] Uses this model of immunity to study the effects of

vaccines. In the typical SIRS or SEIRS model, a good review of common epidemiolog-

ical models can be found in the constant parameter [25] of immunity decline. However,

ongoing reinfection is necessary for prolonged immunity against malaria; as a result, im-

munity is quickly lost in the absence of reinfection, whereas protection is long-lasting in

the presence of a high infection rate. By relating the rate of immunity loss to the rate of

immunization, it is possible to model this non-constant time of immunity. Unlike other

models, the [25] and [26] model takes into account continuous human immigration. Once

they have recovered, the contagious people join the class of recovered people. Due to this

in [25, 26] divided the human population into four classes: susceptible, exposed, infec-

tious, and immune, and divided the mosquito population into three classes: ”susceptible,

exposed, infectious, and immune.” The recovered humans have some immunity to the

disease and do not get clinically ill, but they still harbor low levels of parasites in their

blood stream and can transmit the infection to mosquitoes. After some time, they lose

their immunity and return to the susceptible class.

The first time, [25, 26] model described the mathematical model contained the specifica-

tion of a domain where the model is mathematically and epidemiologically well-posed

and defined the R0 and the DFE as LAS when the R0 < 0 and unstable when the R0 > 0.
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show the existence and stability of a DFE point, the existence of at least one EE point,

and the description of the existence and stability of the EE point(s) for all the R0 > 0.

Numerical simulations demonstrate that for higher values of the disease-induced death

rate, a subcritical bifurcation is conceivable at R0 = 1 and that the transcritical bifurcation

at R0 = 0 is supercritical in the absence of disease-induced death. Furthermore, the need

for a thorough examination of this modeling approach and the development of the models

used up to this point is highlighted by the current attention given to the significance of the

predictive power of mathematical models in understanding the transmission of infectious

diseases. The incorporation of acquired immunity in the model provided by [33] repre-

sented a significant advancement for the mathematical modeling of malaria. One class of

persons has no immunity to malaria, whereas the other has some immunity, according to

a model put forth by [33]. Some people recover with immunity as the non-immune class

gets sick. The immunological class has the ability to contract an infection but cannot

become clinically unwell or spread disease. The super-infection phenomenon, which is

typically connected with macro-parasites, was also incorporated into the model by [33].

As also stated in [4], which is cited.

[11] Also provides a description of Dietz’s super-infection paradigm. The temporary

nature of acquired immunity is another significant characteristic of malaria. Reviews of

the compartmental and continuous models of transient immunity in humans are provided

by [6]. In the review of the literature, we try to include some of the more significant

aspects of this epidemiology while still keeping it mathematically tractable. The archi-

tectural structure of the review of mathematical modeling of malaria is shown in Figure

(3.1), where the subscripts h and m stand for human and mosquito, respectively. Human

classes susceptible (S h), exposed (Eh), infectious (Ih) and recovery (Rh) are in the left

fold, while mosquito classes susceptible (S m), exposed (Em), and infectious (Im) are in the

right fold. Generally speaking, the human classes for malaria infection terminate with the

susceptible class left (S h), but the mosquito populations die from infection, so it can only

progress up to the infected class left (Im). Dotted arrows represent the effects of several

complicated components in various models or particular compartments (red), such as age,

immunity, environment, and socio economics. Red indicates the first time a new compart-
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Figure 3.1: Architectural Structure Of Mathematical Modeling Of Malaria

ment has been added. The subscript j = 1, 2, 3 denotes that the relevant compartment has

been further subdivided. Dotted arrows indicate the inclusion of complex components in

various models or a given compartment. With so many models available, it is not easy

to deduce the essential characteristics of the illness and gain a thorough understanding

of how the interactions between the vector, parasite, and host led to the formation of the

models.



Chapter 4

ANALYSIS OF MATHEMATICAL

MODEL OF INFECTIOUS DISEASE

Those who are prone to pollution and are in good health are susceptible. The person

has the option to withdraw from the tainted group. People who have the disease and

are infectious are said to be infectious. The affected individual has the ability to recover

from the disease and leave the contaminated group. People who have recovered from

an infection are immune since they have already been exposed to it. When someone

has recovered, they encounter resistance. Age, sex, social standing, and competitiveness

have little bearing on the likelihood of contracting the infection. There isn’t any inherited

resistance. The populace interacts with one another in equal measure and mixes regularly.

Normal birth and mortality rates are taken into account. All babies fall into the susceptible

category. Members of all three classes die at the same rate. In order to maintain a stable

population, it is assumed that the birth and death rates are equal. α, β, ρ, µ and γ are all

positive, making all the parameters positive.

39
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Table 4.1: State and parameter variable descriptions

Variables An explanation of the variables

S (t) Vulnerable population at time t

I(t) Infected population at the moment t

R(t) Recovered population at a time t

V(t) Vaccinated population at time t

β Infection rate per capita

γ Recovery rate

α The birth rate of the population

µ Rate of deaths per capita

ρ Proportion of those successively vaccinated

4.1 Analysis of the Model without Vaccination

4.1.1 Model Formulation

This model divides people in a population into at-risk, infectious, and well-again cate-

gories. On the other hand, in this concept, a person may change from the susceptible

group to the infective group when they come into contact with an infected person. For

instance, the contact for COVID-19 could be someone who is a few feet away from an in-

fected individual who has just coughed. Individuals who are infectious spread the disease

to others who are susceptible and remain in the infectious group for a while (the infectious

period) before entering the pool of people who have recovered. As a result, we arrive at

the system of first-order non-linear differential equations for our model as follows:

dS
dt
= αN −

βIS
N
− µS (4.1)

dI
dt
=

βIS
N
− γI − µI (4.2)

dR
dt
= γI − µR (4.3)

Since N constant, N = S (t) + I(t) + R(t). With the initial conditions S (0) ≥ 0, I(0) ≥ 0,

and R(0) ≥ 0, we get the expression dN
dt =

dS
dt +

dI
dt +

dR
dt = 0. For the sake of simplicity, let’s
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redefine the terms s = S
N , i =

I
N and r = R

N , which is the proportions. We arrived at(4.4)

from (4.1)and s = S
N .

ds
dt
=

d
dt

(S
N

)
=

1
N

dS
dt
−

S
N2

dN
dt

(4.4)

=
1
N

(
αN −

βIS
N
− µS

)
−

S
N2 .0 (4.5)

= α −
βIS
N2 − µ

S
N
= α − βis − µs. (4.6)

From equation (4.2) and i = I
N , we obtained the following equation (4.7)

ds
dt
=

d
dt

( I
N

)
=

1
N

dI
dt
−

I
N2

dN
dt

(4.7)

=
1
N

(
βIS
N
− γI − µI

)
−

I
N2 .0 (4.8)

=
βIS
N2 − γ

I
N
− µ

I
N
= βis − γi − µi. (4.9)

The following equation was derived from equations (4.3) and r = R
N

dr
dt
=

d
dt

( R
N

)
=

1
N

dR
dt
−

R
N2

dN
dt

(4.10)

=
1
N

(γI − µR) −
R
N2 .0 (4.11)

= γ
I
N
− µ

R
N
= γi − µr. (4.12)

The following system equation was created by substituting these new variables into equa-

tions (4.1), (4.2) and (4.3), which were derived from (4.13)- (4.15).

ds
dt
= α − βis − µs (4.13)

di
dt
= βis − γi − µi (4.14)

dr
dt
= γi − µr (4.15)

We arrived at the following equation using the overall population density:

s(t) + i(t) + r(t) = 1⇒ r(t) = 1 − s(t) − i(t). (4.16)

To analyze the model equation from (4.1)-(4.3), it is sufficient to take into account equa-

tions (4.13) and (4.14).
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Figure 4.1: Model of infectous disease with out inducing vaccination

4.1.2 Feasible solution

Theorem 4.1.1. The region where the system’s equations’ solutions have biological and

mathematical significance is indicated by the viable solution. The system of (4.1)-(4.3)

has a set of feasible solutions that is positively invariant, and it is given by the formula:

Ω = (S , I,R) ∈ R3
+ : S + I + R = N > 0. It will be demonstrated that the region is posi-

tively invariant using the system.

Proof. The total population is given by the equation N = S + I +R, which is derived from

the system of equations (4.1)-(4.3). As a result, when the DEs (4.1) and (4.3) are added,

the results become

dN
dt
=

dN
dt
+

dI
dt
+

dR
dt

(4.17)

= αN − µS − µI − µR (4.18)

= αN − µ(S + I + R) = αN − µN = 0. (4.19)

As a result, the differential equation dN
dt = 0 is of first order. Calculate this now by

integrating both sides of the equation. The outcomes are as follows: N(t) = N0e0t. Over

a lengthy period of time, the population approaches the size of N0 since at t = 0,N(0) =

N0.As a result, over a considerable amount of time, the total number of people approaches

N = N0 as t → ∞ means that N(t) approaches N0. It is implied that N = N0. As a result,

boundedness is Ω.

4.1.3 Positivity of Solutions

The positivity of the solutions is the non-negativity of the solutions of the system.
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Theorem 4.1.2. The solution set of the system of equations (4.1)-(4.3) is positive if the

initial data set is (S (0), I(0),R(0)) ≥ 0 in Ω.

Proof. The fact that all state variables are positive must be demonstrated. S(t), I(t), and

R(t) are state variables, and their values must be for all t ≥ 0. When considering equation

(4.1), we were able to determine the Positivity of S and arrive at the value S (t) ≥ S (0)e−µt.

Due to the fact that µ > 0 and S (0) ≥ 0. After that, all t must equal zero (S (t) > 0). The

result of Equation (4.2) is I(t) ≥ I(0)e−(γ+µ)t) ≥ 0. The fact that (γ + µ) > 0 and I(0) ≥ 0

means that I(t) ≥ 0, for all t ≥ 0. We obtain R(t) ≥ R(0)e−µt ≥ 0, followed by R(t) ≥ 0,

for all t ≥ 0, from (4.1)-(4.3). This means that every variable is positive (for all t ≥ 0).

We have therefore demonstrated the non-negative nature of all variables in the model

equations. As a result, the term positivity of solutions refers to the absence of negativity

in system solutions.

4.1.4 The Basic Reproduction Number (R0)

In terms of mathematics, the value of R0 relates to the peak and final size of an epidemic

and is a threshold for the stability of a disease-free equilibrium. The reproductive number

can shed light on a disease’s dynamics of transmission and help inform prevention tac-

tics. In our model, the key factor controlling the dynamics of disease is the reproductive

ratio. Consequently, we get the outcomes listed below. If R0 < 1, then each person who

contracts the disease will infect fewer than one person before recovering or passing away,

which means the epidemic will spread in the host population and eradication is feasible.

If R0 > 1, then each person who contracts the disease will infect more than one person,

which means the disease will peter out and eradication is not possible. As a result, S = N

and di
dt > 0, which are equal to βis − γi − µi > 0, are used to determine the system’s

fundamental reproduction number, which is βs > γ + µ. As a result, R0 =
βs
γ+µ

> 1 is ob-

tained from the equation βs
γ+µ

> γ+µ

γ+µ
= 1. As a result, R0 is referred to as the fundamental

reproduction number that dictates the model’s stability analysis. Another way to think of

reproduction numbers is as the number of secondary infections that result from original

infections.
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4.1.5 Disease free and endemic equilibrium points

By equating the rate of change to zero, which is expressed as ds
dt =

di
dt =

dr
dt = 0, the

equilibrium points of the system can be found. The EE and DFE points of the equation

system (4.1)-(4.3) are then discussed. In the model discussed above, there are two equi-

librium locations. E0 = (s = 1, i = 0) is the location of the DFE point. By resolving the

system equations, it is possible to determine the DFE point E0 = (1, 0) and the EE point

E1 = (s, i).

βsi − iγ − µi = 0 and µ − βsi − µs = 0. (4.20)

Then, we get s = γ+µ

β
and i = µ(β−γ−µ)

β(γ+µ) . Therefore, we obtained EE point

E1 =

(
γ + µ

β
,
µ(β − γ − µ)
β(γ + µ)

)
. (4.21)

The EE point can only be reached when β > γ + µ, which means that either R0 > 1 or the

infection rate must be higher than the mortality rate of infected people.

4.1.6 Locally stability analysis on DFE and EE points

If you place a system close to an equilibrium point, it will occasionally shift itself there

due to the equilibrium point’s local stability. The Eigenvalues of the Jacobian matrix that

were computed at equilibrium define the local stability of the equilibria. All Eigenvalues

of the Jacobian must have negative real parts in order for equilibrium to be LAS, which is

a necessary and sufficient condition.

Theorem 4.1.3. The DFE point E0 is LAS in the case of R0 < 1, while the EE point E1 is

LAS in the case of R0 > 1.

Proof. In order to ascertain the stability of the DFE point E0, we look at the Jacobian

matrix of the system assessed at the DFE point. Equation (4.22) provides the Jacobian

matrix at the DFE point.

J(s, i) =

 d
ds (α − βis − µs) d

di (α − βis − µs)
d
ds (βis − γi − µs) d

di (βis − γi − µs)

 (4.22)

=

 −βi − µ −βs

βi βs − µ − γ

 (4.23)



Analysis of the Model without Vaccination 45

Using (4.24), one may obtain the Jacobian matrix evaluated at the DFE point E0.

J(1, 0) =

 −µ −β

0 β − µ − γ

 (4.24)

If β−µ−γ < 0 and we obtain β

γ+µ
= R0 < 1, then the eigenvalues of(4.24) are λ1 = −µ < 0

and λ2 = β − µ − γ < 0. Due to the fact that both Eigenvalues are negative, the DFE point

E0 is then LAS. One of the most crucial issues with any infectious disease is its capacity to

spread throughout a population. A threshold parameter called R0 can be used to describe

this. The average number of infected individuals that the infected individual will produce

during its whole period of infective is less than one, if R0 < 1. The system is LAS in the

DFE point example. This demonstrates that the disease’s prevalence will decrease among

the populace. Additionally, a group is infected only when β > µ + γ.If β − µ − γ > 0 or
β

γ+µ
> 1, the DFE point is unstable. Given that R0 > 1, each infected person who comes

into contact with a susceptible person during the course of their whole infective period

will result in the infection of multiple people, which will allow the disease to spread to

the susceptible population and cause the DFE point to become unstable. It is given that

the Jacobian matrix evaluated at the EE point E1 looks

J (E1) =


β+(1−γ)µ+µ(1−µ))

γ+µ
−γ − µ

µ(β−µ−γ)
γ+µ

0

 (4.25)

The equivalent characteristic equation for the EE point E1 is∣∣∣∣∣∣∣∣
β+(1−γ)µ+µ(1−µ))

γ+µ
−γ − µ

µ(β−µ−γ)
γ+µ

0

∣∣∣∣∣∣∣∣ = 0 (4.26)

In other words, λ2 +
µβ

γ+µ
λ + µ(β − γ − µ) = 0. Be aware that both the positive coefficients

µβ

γ+µ
and µ(β − γ − µ) exist. And these are the Eigen values:

λ =
−βµ

2(µ + γ)
±

1
2

√(
βµ

(µ + γ)

)2

− 4µ(β − γ − µ)

=

(
−µR0

2

)
±

1
2

√
(µR0)2

− 4µ(β − γ − µ) (4.27)

Given that µ(β − γ) is positive, the quantity under the square root is either less than or

higher than µ2R2
0. If this is the case, the Eigen values are complicated by the negative real
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portion −µR0 and the beta-gamma-mu function. In the event that µ2R2
0 < 4µ(β−γ−µ), the

quantity beneath the square root must be smaller in absolute value than µ2R2
0, yet the real

part is still negative. In any case, we get the conclusion that the EE point is stable because

both Eigen values’ real components are negative. It demonstrates that the EE point is

stable since, in both scenarios, the susceptible and infected populations will live and the

trajectories will eventually approach the EE point. The linear stability of the equilibrium

points leads to the conclusion that the DFE and EE points cannot coexist. The DFE point

is stable if R0 < 1, while the EE point is stable if R0 > 1. As an illustration, let’s say that

after determining the linear stability of both points, it is determined that the reproduction

number is 1.5 > 0 and the Eigen values of the DFE point are λ1 = −0.5, λ2 = 0.5.

Consequently, it supports our finding that when R0 > 1, trajectories cannot approach the

DFE point, and the characteristic equation of the EE point is given by λ2+0.75λ+0.25 = 0.

Furthermore, the Eigen values are λ = −0.3750±0.3307i. Since both of the Eigen values’

real components are negative, the EE point is stable, supporting our theoretical finding

that the EE point is linearly stable when R0 > 1.

4.1.7 Global stability analysis on DFE and EE points

To determine the stability requirement for this equilibrium point, we now investigate the

characteristics of the EE points. Building a Lyapunov function demonstrates the world-

wide asymptotic stability of the DFE and EE points.

Theorem 4.1.4. In the event where R0 ≤ 1, the DFE point E0 and EE point E1 are both

GAS on Ω.

Proof. The following Lyapunov function is created in order to demonstrate the overall

stability of the DFE point: V : Ω→ R,V(s, i) = i(t). Consequently, V’s time derivative is

V(s, i) = i(t)βis − (γ + µ)i

= (γ + µ) i
(
βs
γ + µ

− 1
)

= i(t) (R0s − 1) .

Since s = 1 in the equilibrium of a free disease, V(s, i) ≤ 0 for R0 < 1. Additionally,

V(s, i) = 0 if i(t) = 0 or s(t) = 1 and R0 = 1. The biggest invariant set in the set
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L = {s, i ∈ Ω/V(s, i) = 0} is therefore reduced to the disease-free equilibrium point. The

LaSalle invariance principle states that the DFE point is GAS in Ω since we are in a com-

pact invariant collection. Unlike Lyapunov theorems, LaSalle’s principle does not require

the function V(x) to be positive and definite. If the biggest invariant set M, contained in

the set E of points where V disappears, is reduced to the equilibrium point, i.e., if M = x0,

LaSalle’s principle allows us to deduce that the equilibrium is attractive. But a shortcom-

ing of LaSalle;s principle, when relevant, is that it demonstrates just the attractiveness of

the equilibrium point. It is generally known that in a nonlinear scenario, attractiveness

does not imply stability. However, it is necessary to demonstrate Lyapunov stability when

the function V is not positive and definite. LaSalle’s principle is frequently misquoted

because of this. In order to determine asymptotic stability using LaSalle’s principle, some

additional conditions are required. Additional effort is required in order to derive stability

from LaSalle’s premise. LaSalle has achieved the most comprehensive results in the direc-

tion of his principle to verify asymptotic stability. For the global stability of the EE point

E1 we create the Lyapunov function L : Ω+ → R, where Ω+ = S , I ∈ Ω : S > 0, I > 0

given by the following equation (4.28)

L(S , I) = W1

(
S − S ∗ ln

( S
S ∗

))
+W2

(
I − I∗ ln

( I
I∗

))
(4.28)

where W1 and W2 are positive constants. Take the derivative of the above function

dL
dt
=

dL
dS

dS
dt
+

dL
dI

dI
dt

= W1

[
dS
dt
− S ∗

(
S ∗

S

) (
1

S ∗

)
dS
dt

]
+W2

[
dI
dt
− I∗

(
I∗

I

) (
1
I∗

)
dI
dt

]
= W1

[
dS
dt
−

(
S ∗

S

)
dS
dt

]
+W2

[
dI
dt
−

(
I∗

I

)
dI
dt

]
= W1

[(
S − S ∗

S

)
dS
dt

]
+W2

[(
I − I∗

I

)
dI
dt

]
= W1

[(
S − S ∗

S

)
(−βS I + µ − µS )

]
+W2

[(
I − I∗

I

)
(βS I − γI − µI)

]
.

Considering the endemic equilibrium point, we have −βS I = −µ+µS ∗ and βS I−γI = µI∗,
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then we have

dL
dt
= W1

[(
S − S ∗

S

)
(−µ + µS ∗ + µ − µS )

]
+W2

[(
I − I∗

I

)
(γI + µI∗ − γI − µI)

]
= W1

[(
S − S ∗

S

)
(µS ∗ − µS )

]
+W2

[(
I − I∗

I

)
(µI∗ − µI)

]
= W1

[(
S − S ∗

S

)
µ(S ∗ − S )

]
+W2

[(
I − I∗

I

)
µ(I∗ − I))

]
.

Thus, we get the following equation

dL
dt
= −W1

1
S

(S − S ∗)2µ −W2
1
I

(I − I∗)2µ ≤ 0

For W1 = W2 = 1, dL
dt = −(S − S ∗)2µ ≤ 0. Also, if S = S ∗ then dL

dt = 0. Hence, by LaSalle

variance principle, the EE point is GAS in the interior of Ω.

4.2 Analysis of the Model with vaccination

4.2.1 Model Formulation

Now, we describe our second model in which we have induced vaccination. This is useful

to compare spreading of disease in absence of vaccine with in vaccine, know the pace of

disease transmission without and with vaccine and the influence of vaccination on disease.

However, the suggested model is as follows:

dS
dt
= αN −

βIS
N
− µS − αρN (4.29)

dI
dt
=

βIS
N
− γI − µI (4.30)

dR
dt
= γI − µR (4.31)

dV
dt
= αρN − µV (4.32)

And N = S (t) + I(t) + R(t) + V(t) is constant. With the initial conditions S (0) ≥ 0, I(0) ≥

0,R(0) ≥ 0,V(0) ≥ 0 and we have dN
dt =

dS
dt +

dI
dt +

dR
dt +

dV
dt = 0. For simplicity, we can

consider the prevalence that is the proportions by redefining using, s = S
N , i =

I
N , r =

R
N
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Figure 4.2: Model of infectous disease with inducing vaccination

and v = V
N . From equation (4.29) and s = S

N we get

ds
dt
=

d
dt

(S
N

)
=

1
N

dS
dt
−

S
N2

dN
dt

(4.33)

=
1
N

(
αN −

βIS
N
− µS − αρN

)
−

S
N2 .0 (4.34)

= (1 − ρ)µ − βis − µs (4.35)

From equation (4.32) and v = V
N , we get

dv
dt
=

d
dt

(V
N

)
=

1
N

dV
dt
−

V
N2

dN
dt

(4.36)

=
1
N

(αρN − µV) −
V
N2 .0 (4.37)

= ρα − µv. (4.38)

then we get the following equation

ds
dt
= (1 − ρ)α − βis − µs (4.39)

di
dt
= βis − γi − µi (4.40)

dv
dt
= αρ − µv (4.41)

dr
dt
= γi − µr (4.42)
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By considering the total population density, we have

s(t) + i(t) + r(t) + v(t) = 1⇒ r(t) = 1 − s(t) − i(t) − v(t). (4.43)

Therefore it is enough to consider (4.39) and (4.41) to analysis from (4.29)-(4.32).

4.2.2 Feasible solution

The region where the system’s equations’ solutions have biological and mathematical

significance is indicated by the viable solution.

Theorem 4.2.1. The system of (4.29)-(4.32) has a set of viable solutions that is positively

invariant, as shown by the formula: Ω1 = {(S , I,R,V) ∈ R4
+ : S + I +R+V = N > 0}. The

region will be demonstrated to be positively invariant using the system of (4.29)-(4.32).

Proof. The total population is calculated using the system (4.29)-(4.32) as follows:

N = S + I + R + V. (4.44)

As a result, when the DE (4.29) and (4.32) are added, the results are

dN
dt
=

dS
dt
+

dI
dt
+

dR
dt
+

dV
dt

(4.45)

= αN − µ(S + I + R + V) (4.46)

= αN − µN = 0 (4.47)

Therefore, dN
dt = 0 consequently, N(t) = N0e0t if is a first order differential equation. Over

a lengthy period of time, the population approaches the size N0 since at t = 0,N(0) = N0.

As a result, over a considerable amount of time, the total number of people approaches

N = N0 as t → ∞ means that N(t) approaches to N0. It is implied that N = N0. As a

result, Ω1 is bound.

4.2.3 Positivity of Solutions

Theorem 4.2.2. If the initial data set is S (0) ≥ 0, I(0) ≥ 0,R(0) ≥ 0,V(0) ≥ 0 ∈ Ω1, then

the solution set of the system of (4.29)-(4.32) is positive ∀t ≥ 0.
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Proof. We can observe from the examination of the (4.1)-(4.3) above that S (t), I(t), and

R(t) are all solutions that are positive solutions, ∀t ≥ 0. Equation (4.32) yields dV
dt ≥ −µV ,

and when the two sides of this inequality are integrated, we get V(t) ≥ V(0)e−µt. Since

µ > 0 and V(0) > 0, V(t) > 0, and all t > 0. As a result, each and every state variable

is positive (∀t ≥ 0). We have thus demonstrated the non-negative nature of all state

variables. In light of this, S (t), I(t),R(t) and V(t) are all positive solutions ∀t ≥ 0.

4.2.4 Reproduction rate, EE points and DFE points

You may find the EE point E1v = (s, i, v) and the DFE point E01 = (s, i, v) by solving the

system of equations below.

(1 − ρ)α − βis − µs = 0 (4.48)

βis − γi − µi = 0 (4.49)

αρ − µv = 0 (4.50)

Next, we obtain the DFE point E01 = (1−ρ, 0, ρ) and the EE point E1v =
(
γ+µ

β
, µ(β(1−ρ)−γ−µ)

β(γ+µ) , ρ
)
.

We look to the Jacobian matrix of the system assessed at the point E01 to determine the

stability of the DFE point E01. At equilibrium, the Jacobean matrix is (s, i, v)

J(s, i, v) =


−βi − µ −βs 0

βi βs − γ − µ 0

0 0 −µ

 (4.51)

The Jacobean matrix evaluated at DFE point E01 is
−µ −βs 0

0 β(1 − ρ) − γ − µ 0

0 0 −µ

 (4.52)

At DFE point E01, the characteristic equation is∣∣∣∣∣∣∣∣∣∣∣∣∣
−µ − λ −βs 0

0 β(1 − ρ) − γ − µ − λ 0

0 0 −µ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.53)
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then λ1 = −µ = λ2 < 0 and λ3 = β(1 − ρ) − µ − γ. are the eigenvalues of (4.53). If

λ3 > 1, which indicates that β(1 − ρ) > µ + γ, then we have β(1−ρ)
γ+µ

> 1, leading to either

R0β(1 − ρ) > 1 or Rv > 1. As a result of all Eigenvalues being negative, the DFE point

E01 is no longer LAS and will start to oscillate. If λ3 < 1, which equals β(1 − ρ) < µ + γ,

is true, then β(1−ρ)
γ+µ

< 1 is obtained, leading to R0(1 − ρ) < 1 ⇒ Rv < 1. Due to the fact

that all of the Eigenvalues are negative, the DFE point point E01 is thus LAS. After the

introduction of vaccination in the model, the new reproduction number is Rv = R0(1 − ρ).

Only if Rv > 1 will the EE point be present.

4.2.5 Local and Global stability analysis

We shall now investigate the DFE and EE point’s linear stability. As an example, the re-

production number Rv = 0.45 < 1 indicates that the DFE point is steady. λ1 = −0.5, λ2 =

−0.5 and λ3 = −0.55 are the Eigenvalues that correlate to the DFE point. It is hence

linearly stable. So, it is clear that when vaccination is used in the S IR model, the infected

population, which was at 0.3470, drops to 0.1833 at the infection rate β = 1.5 as a result

of the effect of vaccination. The equivalent characteristic equation for the EE points, E1v

is ∣∣∣∣∣∣∣∣∣∣∣∣∣
−µβ(1−ρ)
γ+µ

− λ −(γ + µ) 0
µ(β(1−ρ)−µ−γ)

γ+µ
−λ 0

0 0 −µ − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.54)

Which is identical to (µ + λ)
(
λ2 +

µ(β(1−ρ)
γ+µ

λ + µ(β(1 − ρ) − γ + µ)
)
= 0. You should take

note of the fact that both the coefficients µβ(1−ρ)
γ+µ

and µ(β(1 − ρ) − γ − µ) are positive. The

following Eigenvalues are obtained by solving the equation above: λ1 and

λ2 = −
µβ(1 − ρ)
γ + µ

±

√
µ2β2(1 − ρ)2

(γ + µ)2 − 4µ(β(1 − ρ) − γ − µ) (4.55)

= −µRv ±

√
µ2R2

v − 4µ(γ + µ)(Rv − 1). (4.56)

Due to the fact that µ(β(1 − ρ) − γ − µ) is positive, the quantity under the square root

is either less than or higher than µ2R2
v . If this is the case, µ2R2

0 < 4µ(β − γ − µ), then

the Eigenvalues have a complex real part (µβ(1−ρ)
γ+µ

, which is negative), and this is why the
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Eigenvalues are negative. If not, the square root’s absolute value must be less than µ2R2
v ,

although the real part of the Eigenvalue would still be negative. In any case, since both of

the real components of the Eigenvalues are negative as well as λ1, we draw the conclusion

that the EE point is stable. It demonstrates that the EE point is LAS, which means that

in either scenario, both the susceptible and infected population would survive. It is also

evident that the vaccination parameter has helped to lower the infection rate. Building a

Lyapunov function allows one to demonstrate the GAS of the EE point and DFE point.

We build the Lyapunov function V : Ω → R,V(s, i, v) = +v(t)s(t) + i(t) to demonstrate

the DFE point’s overall stability. The time derivative of the Lyapunov function V is then

supplied.

V(s, i, v) = s(t) + i(t) + v(t) = (1 − ρ)µ − µs − (µ + γ)i.

= (µ + γ)
(
(1 − ρ)µ
γ + µ

−
µs
γ + µ

− i
)

(4.57)

= (µ + γ)
(
β(1 − ρ)µ
β(γ + µ)

−
βµs

β(γ + µ)
− i

)
(4.58)

= (µ + γ)
(
Rvµ

β
−

R0µs
β
− i

)
(4.59)

=

(
µ + γ

β

)
(Rvµ − R0µs − βi) (4.60)

Accordingly, if Rv < 1, then V(s, i, v) < 0, and the DFE point is GAS, at

(1 − ρ, 0, v),V(s, i, v) = 0. (4.61)

So, according to LIP, GAS is the DFE point. We create the Lyapunov function L : Ω+ →

R, where Ω+ = s, i, v ∈ Ω : S > 0, I > 0, v > 0 and is supplied by

L(s, i, v) = W1

(
s − s∗ ln

( s
s∗

))
+W2

(
i − i∗ ln

( i
i∗

))
+W3

(
v − v∗ ln

( v
v∗

))
where W1, W2 and W3 are positive constants to be chosen letters. Then

dL
dt
=

dL
ds

ds
dt
+

dL
di

di
dt
+

dL
dv

dv
dt

= W1

(
ds
dt
− s∗

(
s∗

s

) (
1
s

)
ds
dt

)
+W2

(
di
dt
− i∗

(
i∗

i

) (
1
i

)
di
dt

)
+W3

(
dv
dt
− v∗

(
v∗

v

) (
1
v

)
dv
dt

)
= W1

(
s − s∗

s
ds
dt

)
+W2

(
i − i∗

i
di
dt

)
+W3

(
v − v∗

v
dv
dt

)
= W1 (s − s∗)

(
(1 − ρ)µ

s
− βi − µ

)
+W2 (i − i∗) (βs − µ − γ) +W3 (v − v∗)

(
ρµ

v
− µ

)
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Considering the equilibrium point, we have get the following result

βi∗ = γ + µ and v∗ = ρ (4.62)

and putting the values equation (4.62) in the above equation, we obtain

dL
dt
= −µW1(1 − ρ)

(s − s∗)2

ss∗
+ β(W2 − w1)(i − i∗)(s − s∗) − w3µ(v − v∗)2

For W1 = W2 = W3 = 1 then dL
dt = −µ(1− ρ) (s−s∗)2

ss∗ −µ(v− v∗)2 ≤ 0 and if s = s∗ and v = v∗

then dL
dt = 0. Hence, by LIP, the EE point is GAS in the interior of Ω1.

4.3 Numerical Simulation and Discussion

In our simulation, with time measured in days, the susceptible individual (S) is repre-

sented by the color blue, the infected person (I) by the color green, and the recovered

individual (R) by the color red. We select the following parameter values: We used

µ = 0.5, β = 1.5, γ = 0.5, and the EE point is (0.6667, 0.1667) in fig. (4.3). The infection

rate (β = 1.5) in Figure (4.7) has the effect of decreasing the suscibtable population to a

lower level. We gradually raised the infection rate (β = 2) and observed a drop to a lower

level in the susceptible population. The EE point in Fig.(4.4) is at (0.5000, 0.2500). In

Figure (4.5), the EE point that corresponds to beta = 2.5 is (0.4000, 0.3000). In Figure

e(4.6), the EE point for the value of β = 3 is shown as (0.3333, 0.3333). The demographic

dynamics are depicted in the aforementioned figures. The presence of infection causes the

susceptible population to drop to half its previous level, and the infection causes a quick

increase in the infected population. The infected population steadily grows while the sus-

ceptible population gradually shrinks as the infection rate rises; at β = 3, the infected

population outnumbers the susceptible population. The contact rate has a significant im-

pact on the disease’s ability to spread throughout the community, as this graph also shows.

As would be assumed logically, if the observed contact rate is high, the rate of infection

with the disease will also be high without vaccination. We now choose the parameter val-

ues as µ = 0.5, β = 3, and γ = 0.5, and also add the parameter ρ = 0.67 as a vaccination

rate for the model triggered with vaccine. In the illustration in Fig. (4.6), the EE point

corresponding to β = 3 is (0.3333, 0.0017, 0.6700). According to Fig.(4.7), a vaccination
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would be effective then the number of infections to change from increasing to decreasing

after the final dosage of the vaccine was provided.

Figure 4.3: SIR model with β = 1.5 Figure 4.4: SIR model with β = 2

Figure 4.5: SIR model with β = 2.5 Figure 4.6: SIR model with β = 3
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Figure 4.7: SIRV model with β = 2.5

4.4 Conclusion

Due to vaccination, the susceptible population declines to a lesser extent. The graph above

shows that the initial effect of the vaccine is a considerable reduction in the peak number

of infections, which is further evidenced by the fact that the infected population decreases

significantly as a result of vaccination and the vaccinated population increases. The model

clearly demonstrated that contact rates with sick people within a community play a sig-

nificant role in how quickly a disease spreads. But the infected population quickly drops

to a very low level when we introduce immunization to the susceptible group. Then, the

disease exhibits the typical behavior of an endemic model in that it disappears below the

threshold and transitions to a singular EE above the threshold.

Therefore, if the disease spread across the community in the absence of a vaccine, it would

likewise do so once the vaccination campaign was over. The more serious the epidemic,

the more intensive the interventions must be to dramatically lower the number of illnesses

and fatalities. Unsurprisingly, if interventions are focused, the doses of vaccine required

for control are lower. As a result, we can draw the conclusion that an epidemic can be

prevented by vaccination and that the rate of infection and reproduction are crucial factors

in its occurrence. As the infection rate rises, the susceptible population steadily declines

as the infected population rises. The models we looked at indicated that the values of Rv

and R0 had a significant impact on the viability of controlling an epidemic or pandemic.

If R0 > 1, we anticipate that all paths in the domain will lead to the EE point based on
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the results for the SIR models. Additionally, the vulnerable and infected population is

also affected by the infection rate. As a result, we can draw the conclusion that the rate

of infection and the number of reproductions are crucial factors in the emergence of an

epidemic, which can be stopped by vaccination. As the infection rate rises, the susceptible

population steadily declines as the infected population rises but the infected population

quickly drops to a very low level when we introduce immunization to the susceptible

group. The disease then exhibits the typical behavior for an endemic model, dying out

below the threshold and moving to a singular EE over the threshold. Due to vaccination,

the susceptible population declines to a lesser extent. The graph above shows that the

peak number of infections has greatly decreased as a direct result of the vaccine, along

with a considerable decrease in the infected population owing to vaccination and an in-

crease in the population that has received the vaccine.

According to the concept, a population’s contact rates with sick people play a significant

role in how quickly a disease spreads. As a result, the disease would spread through-

out the community once the vaccination was administered, just as it would have done

in the absence of the vaccine. As a result, we can draw the conclusion that the rate of

infection and the number of reproductions are crucial factors in the emergence of an epi-

demic. This epidemic can be stopped by vaccination, and the models discussed above are

highly helpful in stopping epidemics in a particular population. To dramatically reduce

the number of infections and fatalities, interventions must be more extensive the more

serious the epidemic. It should come as no surprise that tailored interventions result in

decreased immunization requirements for control. In the study of infectious diseases, epi-

demic modeling is becoming a more vital tool. Three classes-susceptible, infected, and

recovered-are used to categorize the entire population in the SIR model. A state without

infection and an endemic state are the two equilibrium states of the model. Numerous

mathematical analyses and applications to particular diseases have been made of several

models for the spread of infectious diseases in populations.

In underdeveloped nations, there are numerous diseases that exist, including COVID-19,
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influenza, HINI, dengue, Ebola, and many others more specifically, the higher the value

of Rv or R0) and inform pupils on the SIR paradigm for preventing infectious diseases.

Promote the engagement of the health minister in the use of mathematical modeling to

combat infectious diseases.



Chapter 5

ANALYSIS OF MATHEMATICAL

MODEL OF MALARIA

TRANSMISSION IN FIVE

DIMENSIONS

5.1 Formulation of Mathematical Model

In this section of the thesis, we analyze the mathematical model of malaria transmission

in five compartments. Populations of people and mosquitoes are categorized into classi-

fications that include vulnerable, incubating, infectious, and immune individuals. Let S h

stands for susceptible humans, Ih for infectious humans, Rh for immune humans, S v for

susceptible mosquitoes, and Iv for infectious mosquitoes, with the entire human popula-

tion and the total mosquito population, respectively, provided by Nh(t) and Nv(t) at time

t. Due to their short life cycle, mosquitoes never recover from infection. The mosquito

population has barely recovered in this recovery class. In each of the five classifications,

there occurs a natural death. There is no vertical transmission of malaria, and all new-

borns are vulnerable to infections. In other words, neither from mosquito to mosquito nor

59
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from human to human transmission of malaria exists. Both people and mosquitoes have

varying populations overall. The human host that is recovering has a transient immune

system that can be compromised and is vulnerable to reinfection. The immunological

class is not a part of the model’s mosquito component. Regardless of their infection con-

dition, mosquitoes bite human hosts. We disregard the fact that an infected human host

is being bitten by an infected female mosquito. When disease-carrying mosquitoes bite

their human hosts, malaria is first spread. Let q be the average daily biting rate of a single

mosquito on humans, n be the percentage of bites that result in infection, and c be the like-

lihood that a mosquito will become infected. β represents the per capita rate of immunity

loss in human hosts, while ρ represents the rate of immunity acquisition in human hosts.

The per capita mortality rate of malaria-infected human hosts is γ, whereas the per capita

birth rates of humans and mosquitoes are λh and λv and the per capita mortality rates of

humans and mosquitoes are µh and µv, respectively. The terms qnIvS h
Nh

and qnIhS v
Nh

in the

model indicate the rate at which S h get infected by Iv and qnIhS v
Nh

indicates the rate at which

S v become infected by Ih, respectively. It is crucial to keep in mind that the amount of Nh

accessible per unit of Iv affects the pace at which S h is infected by Iv. Assume that the

µh, µv, q, n, λh, λv,β and ρ variables all have positive values. Using the schematic picture

(5.1) as a starting point, apply the assumptions, define the state variables, parameters, and

terms, and then design the human host-vector host differential equation as shown below to

represent the dynamics of malaria transmission in the mosquito and human populations.

dS h

dt
= λhNh + βRh − µhNh −

qnIvS h

Nh
(5.1)

dIh

dt
=

qnIvS h

Nh
− (ρ + γ + µh) Ih. (5.2)

dRh

dt
= ρIh − (µh + β) Rh (5.3)

dS v

dt
= λvNv − µvS v −

cqIhS v

Nh
(5.4)

dIv

dt
=

qcS vIh

Nh
− µvIv. (5.5)

with positive initial condition S h(0) = S 0h, Ih(0) = I0h,Rh(0) = R0h,

S v(0) = S 0v, Iv(0) = I0v.
(5.6)
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Figure 5.1: The schematic of the mathematical model in five compartment

(5.7) can be used to calculate the overall population sizes Nh and Nv:

Nh = S h + Ih + Rh and Nv = S v + Iv. (5.7)

Alternatively from the equation from (5.1)-(5.3), we have the following result.

dNh

dt
= λhNh + βRh − µhNh −

qnIvS h

Nh
+

qnIvS h

Nh
(5.8)

− (ρ + γ + µh) Ih + ρIh − (µh + β) Rh (5.9)

= (λh − µh)Nh − γIh. (5.10)

Now we have derived equation (5.11) from the equation (5.4)-(5.5).

dNv

dt
= λvNv − µvS v −

cqIhS v

Nh
+

qcS vIh

Nh
− µvIv (5.11)

= λvNv − µvS v − µvIv (5.12)

= λvNv − (S v + Iv)µv (5.13)

= (λv − µv)Nv (5.14)
dNv

dt
= (λv − µv) Nv. (5.15)

Given that dNh
dt = (λh − µh)Nh − γIh and dNv

dt = λv − µv)Nv, we have get
dNh
dt = (λh − µh) Nh − γIh.

dNv
dt = (λv − µv) Nv.

(5.16)
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5.2 The existence of the solution

Theorem 5.2.1. For each t > 0, the equations (5.1) to (5.5), and (5.6) in the feasible

domains have positive solutions that remain positive in equation (5.38).

Proof. The equations for normalized quantities are what we are interested in. In addition,

analyzing our model in terms of quantities’ proportions rather than population numbers is

simpler. This may be accomplished by simplifying the equations from equations (5.18)-

(5.30) and scaling the population as in

sh =
S h

Nh
, ih =

Ih

Nh
, rh =

Rh

Nh
, sv =

S v

Nv
, iv =

Iv

Nv
, ℓ =

Nv

Nh
. (5.17)

dsh

dt
=

d
dt

(
S h

Nh

)
=

1
Nh

dS h

dt
−

sh

Nh

dNh

dt
(5.18)

= λh − qnℓivsh + βrh − µhsh − sh (λh − γih − µh) (5.19)

= λh + βrh + ihγsh − (λh + qnℓih) sh (5.20)
dih

dt
=

d
dt

(
Ih

Nh

)
=

1
Nh

dIh

dt
−

ih

Nh

dNh

dt
(5.21)

= (λh + µh) ih + γi2
h + nqℓivsh − (ρ + γ + λh) + qnℓivsv (5.22)

= nqℓivsh + γi2
h − (λh + γ + ρ) ih (5.23)

drh

dt
=

d
dt

(
Rh

Nh

)
=

1
Nh

dRh

dt
−

rh

Nh

dNh

dt
(5.24)

= ρih + rhµh + γihrh − (λh + µh) rh (5.25)

= ρih + γihrh − (β + λh) rh (5.26)
dsv

dt
=

d
dt

(
S v

Nv

)
=

1
Nv

dS v

dt
−

sv

Nv

dNv

dt
(5.27)

= λv + svµv − svλv − µvsv − qcihsv (5.28)

= λv − (qcih + λv) sv (5.29)
div

dt
=

d
dt

(
Iv

Nv

)
=

1
Nv

dIv

dt
−

iv

Nv

dNv

dt
(5.30)

= qcsviv + ivµv − ivλv − µviv (5.31)

= qcivsh − λviv (5.32)
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subject to the restrictions as the following (5.33) sh + ih + rh = 1

sv + iv = 1.
(5.33)

The system equation does not contain the variables Nh and Nv, as is to be noted. Utilizing

the relations  rh = 1 − sh + ih

sv = 1 − iv

(5.34)

led to the study of the equation system below.

dsh

dt
= β + λh + γihsh − βih − (λh + qnℓiv + β + ih) sh (5.35)

dih

dt
= ℓqniv + (γih − (γ + λh + n)) ih (5.36)

div

dt
= cqih − (cqih + λv) iv (5.37)

The model makes epidemiological sense in that region, which is practicable, according to

the field

Ω =
{
(sh, ih, iv) ∈ R3

+

}
(5.38)

where 0 ≤ sh ≤ 1, 0 ≤ ih ≤ 1, and 0 ≤ ih ≤ 1 are proven to be positive invariant with

regard to the (5.35) - (5.37), where R3
+ includes its lower dimensional faces. We use the

symbols ∂Ω in (5.38), to signify the border and interior of (5.38).

Suppose there exist t1 > 0 such that S h (t1) = 0, S
′

h (t1) ≤ 0 and S h, Ih,Rh, S v, Iv > 0 for

0 < t < t1. Then from system equation (5.1), we have get

dS h

dt
= λhNh + βRh − µhNh −

qnIvS h

Nh
(5.39)

= λhNh(t1) + βRh(t1) > 0 (5.40)

which is an inconsistency. Therefore, S h(t) > 0. System equation (5.2)

⇒
dIh

dt
=

qnS h

Nh
− (ρ + γ + µh) Ih (5.41)

⇒
dIh

Ih
≥ − (µh + β + ρ) dt (5.42)

⇒ Ih(t) ≥ I0he−(µh+β+ρ)t (5.43)

⇒ Ih(t) > 0. (5.44)
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Hence, Ih(t) > 0. System equation (5.3)

⇒
dRh

dt
= ρIh − (µh + β) Rh (5.45)

⇒
dRh

Rh
≥ − (µh + β) Rh (5.46)

⇒ Rh(t) ≥ R0he−(µh+β)t (5.47)

⇒ Rh(t) > 0. (5.48)

Therefore, Rh > 0. System equation (5.4)

⇒
dS v

dt
= λvNv − µvS v −

cqIhS v

Nh
(5.49)

⇒
dS v

S v
≥ −(µv +

cqIh

Nh
)dt (5.50)

⇒ S v(t) ≥ S 0ve
−(µv+

cqIh
Nh

)t (5.51)

⇒ S v(t) > 0. (5.52)

Hence, S v > 0, and from (5.5) we have get Iv(t) > 0. Therefore, the feasible solution set

which is positively invariant set of (5.1)-(5.5) is in Ω.

5.3 Equilibrium points and local stability analysis

The model is qualitatively examined in this section to take into account the persistence

and stability of its associated equation. Each and every parameter should be non-negative.

We solve equations by setting the right sides of equations(5.35) to equation (5.37) to zero.

The resulting arrangement is
β + λh + γihsh − βih − (λh + qnℓiv + β + ih) sh = 0

ℓqniv + (γih − (γ + λh + n)) ih = 0

cqih − (cqih + λv) iv = 0.

(5.53)

In the absence of infection, the model is in a stable state. This state, which we’ll refer to

as the DFE point E0 is (1, 0, 0). The Jacobian of (5.53) is determined at E0 to establish the

stability of this equilibrium. On the basis of the Jacobian’s eigenvalue’s signs, the local

steadiness of E0 is calculated. If all of these eigenvalues’ real components are negative,
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the equation E0 is said to be locally steady. The Jacobian matrix is the following when

the model is in its stable position:

JE =


− (λh + β + qnℓiv − γih) −β + γsh −qnℓsh

qnℓiv −GΩ + 2γih qnℓsh

0 qc − qciv − (qcih + λv)

 (5.54)

Calculating (5.54) at the equilibrium point, (sh, ih, iv) = (1, 0, 0), we have

JE =


− (λh + β) −β + γ −qnℓ

0 −GΩ qnℓ

0 qc −λv

 (5.55)

The eigenvalues of (5.55) are provided by (5.56), where GΩ = ρ + λh + γ

(λv +GΩ) ±
√

4GΩλvR0 − 4GΩλv + (λv +GΩ)2

2
and − β −GΩ (5.56)

Let’s define R0, also known as the reproductive number of the model equations (5.1) to

equation (5.5), as R0 =
q2nℓc
GΩλv

. If R0 < 1, then the two eigenvalues have negative values.

It aids in the understanding of the malaria infection since it identifies the prerequisite for

the development of the disease. In the event when R0 < 1, the DFE point is locally steady.

The EE point E1 = (sh, iv, ih) must satisfy the conditions ih > 0, iv > 0 and sh > 0 in

order to survive and be considered exceptional. Then by adding the system of equations

(5.53), then we have get (β + λh − γih) (1 − sh − ih) + (qc − ρ)ih − (qcih + λv) iv = 0. Since

qcih − (λv + qcih) iv = 0 then we get the following

(1 − sh − ih) (β + λh − γih) = ρih. (5.57)

Since (1 − sh − ih) > 0 and from γih < λh + β, then we have get ih <
β+λh
γ
. Consequently,

an endemic equilibrium point be real, where ih lies in the interval
(
0,min

{
1, β+λh

γ

})
The

assumption that γ < λh+β is significant important and plays a immense role when malaria

persists. It demonstrates that the death rate caused by malaria should be below the point at

which the vulnerable human population is replenished as a result of births and the loss of

malaria resistance. The preservation of matrices migrate toward the Stein citation in order
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to analyze the constancy of the endemic equilibrium. The second additive matrix, which

may be calculated from the Jacobian matrix JE, is represented by the equation (5.58).
−D + 3γih qnℓsh qnℓsh

qc(1 − iv) −N + γih γsh − β

0 qnℓiv −Q + 2γih

 where


N = β + qcih + λh + qnℓiv + λv

Q = GΩ + qcih + λv

D = λh +GΩ + β + qcnℓiv

(5.58)

Suppose that N is a 3 × 3 real matrix. Each and every eigenvalue of N has a negative real

component if tr(N), det
(
N[2]

)
, and det(N) are all negative.

Proof. We have the following outcome as a result of the Jacobian matrix JE.

tr(JE) = 2γih −G − qcih + γih − β − λh − qnℓiv (5.59)

= 3γih − (G + qcih + β + λh + qnℓiv) < 0. (5.60)

We have obtained the following from the Jacobian matrix of the system (5.53)
β+(1−β)ih+λh

sh
= β + λh + qnℓiv − γih

−qnℓiv sh
ih
= γih −GΩ

qcih(−iv+1)
iv

= λv

(5.61)
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The equation (5.54) then has the following predetermined determinant.

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
γih − (qnℓiv + β + λh) −β + γsh −qnℓsh

qnℓiv 2γih −GΩ qnℓsh

0 qc(−iv + 1) −(qcih + λv)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.62)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
β(−ih + 1) + λh + ηih γsh − β −qnℓsh

qnℓiv
γih−qnℓshiv

ih
+ γih qnℓsh

0 ivλv
ih

−qcih
iv

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.63)

=

(
q2nℓc −

qcγi2
h

ivsh
−

qnℓλviv

ih
+ q2nℓc

)
(λh + βih + β(1 − ih)) +

(
c(−β + γsh)

sh
−

nℓλvi2
v

ih

)
= −Ψ

(
q2nℓc −

qcγi2
h

ivsh
−

qnℓivλv

ih

)
+ q2nℓsh

(
c(−β + γsh)ih

sh
− qnℓc(1 − iv)

)
(5.64)

= −Ψ

(
q2nℓc −

qcγi2
h

ivsh
−

qcℓλviv

ih

)
+ q2nℓcsh

(
(−β + γsh)ih

sh
− qnℓ(1 − iv)iv

)
(5.65)

= −Ψ

(
−qcγi2

h

ihsh
+ q2nℓciv

)
+ q2nℓcsh

(
(sh − 1)(β + λh)

sh
+ qnℓi2

v

)
(5.66)

=
qc
ivsh

(
qnℓi2

v sh − γi2
h

)
− q2nℓc

(
(1 − sh)(β + λh) − qnℓi2

v sh

)
(5.67)

= q2nℓiv(−ϕ + qnℓivsh) + qc(Ψγi2
h − qnℓivsh)

(β + λh)(1 − sh)
ivsh

(5.68)

= −cq2nℓivsh(β + λh − γih) + qc
(
Ψγi2

h − qnivsh(β + λh)(1 − sh)
ivsh

)
(5.69)

where Ψ − ηih + λh + β(1 − ih) and since γ < β + λh indicate that the determinant ofE1 is

negative. This illustrates how the determinant of the negative value of J[2]
E1

can be inferred

from the additive matrix. Let phi be the diagonal matrix and E1 be the endemic stability

point’s (sh, ih, iv) value. Then

ϕJ[2]
E1
ϕ−1 =


3γih − D qnℓivsh qnℓiv

qc(1 − iv)
(

ih
iv

)
−γih + D (γsh − β)ih

0 qnℓ
(

iv sh
ih

)
2γih − Q

 (5.70)

Then the matrix J[2]
E1

is stable iff the matrix ϕJ[2]
E1
ϕ−1 is steady by examining if the ϕJ[2]

E1
ϕ−1

is diagonally leading in rows, because its diagonal element are negative. Represent the
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left hands part of V(t) by H+(V(t)), then we have obtained (5.71)

H+(|u1(t)|) ≤ (|u3(t)| + qnℓ|u2(t)|) + (−3γih(t) + D)|u1(t)| (5.71)

≤

(
|u3(t)| +

ih(t)
iv(t)
|u2(t)|

)
qnℓ

iv(t)sh(t)
ih(t)

+ (−3γih(t) + β)|u1| (5.72)

H+(|u12(t)|) ≤ (γsh(t))|u2(t)| + (γih − N)|u2(t)| + qc(−iv + 1)|u1(t)| (5.73)

H+(|u3(t)|) ≤ (2γih − Q)|u3(t)| + qnℓiv|u2(t)| (5.74)

We also have the subsequent equation (5.75)

H+

(
ih

iv
|u2(t)| + |u2(t)|

)
=

ih

iv
H+(|u2(t)| + |u3(t)|) +

 i
′

h

ih
−

i
′

v

iv

 ih

iv
(|u2| + |u3|). (5.75)

By adding equation (5.73) and (5.74), we have obtained equation (5.76)

H+(|u2(t)| + |u3|) = qc(1 − iv)|u1(t)| + (γih + qnℓiv − N)|u2(t)|(η − β + γsh + 2γih − Q)|u3(t)|

= qc(1 − λv)|u1(t)| − (λh + λv + qcih + β − γih)|u2(t)| + ρ(1 − sh − ih)|u3(t)|

− (λh + λv + qcih + β − γih)

≤ qc(1 − iv)|u1(t)| − (λh + λv + qcih + β − γih)(|u2(t)| + |u3(t)|). (5.76)

Substitute (5.76) into (5.75), then we have (5.77)

H+

(
ih(t)
iv(t)

)
(|u2(t)| + |u3(t)|) ≤

(
ih(t)
iv(t)

)  i
′

h(t)
iv(t)
−

i′v(t)
iv(t)

 (|u2(t)| + |u3(t)|) +
ih(t)
iv(t)

qc(1 − iv)|u1(t)| − (λh + λv + qcih + β − γih)(|u2(t)| + |u3(t)|)

≤ qc(1 − iv)
(
ih(t)
iv(t)

)
(|u1(t)|) +

i
′

h(t)
iv(t)
−

i′v(t)
iv(t)
− λh − λv

− qcih − β + γih
ih(t)
iv(t)

(|u2(t)| + |u3(t)|). (5.77)

As of equation (5.71) and equation (5.77), we have obtained (5.78)

H+(V(t)) ≤ sup(d1(t), d2(t))V(t) (5.78)

in which we have the subsequent equation (5.79)

d1(t) =
qℓcivsh

ih
+ (3γih − D) (5.79)

d2(t) = qc(1 − iv)
ih

iv
+

γih − λh − λv − β +
i
′

h(t)
i′v(t)
−

i
′

v(t)
i′v(t)

 . (5.80)
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Using the following expression
qnℓih sh

iv
= ρ + λh + γ − γih +

i
′

h(t)
ih(t)

qc(1 − iv)
i
′

h(t)
ih(t) =

i
′

v(t)
iv(t) + λv

(5.81)

Equation (5.79) and equation (5.81) make simpler to the subsequent result

d1(t) =
qnℓivsh

ih
− (GΩ + λh + qnℓiv + β − 3γih) (5.82)

=
i
′

h(t)
ih(t)
+GΩ − γih − (GΩ + λh + qnℓiv + β) (5.83)

= (2γih − λh − qnℓiv + β) +
i
′

h(t)
ih(t)

and (5.84)

d2(t) =
i
′

h(t)
ih(t)
−

i
′

v(t)
iv(t)
− λh − λv + γih − qcih

= γih − λh − qcih − β +
i
′

h(t)
ih(t)

so that (5.85)

Sup{d1(t), d2(t)} ≤
i
′

h(t)
ih(t)
− γ. (5.86)

From equation (5.86), we have obtained the subsequent∫ ∞

0
Sup{d1(t), d2(t)}dt ≤ [ln(ih(t))]∞0 − γω < 0. (5.87)

It is clear from this why the periodic solution(sh, ih, iv) is asymptotically stable. As a

result, it is proven that the disease’s EE point is steady everywhere.

5.4 Global stablity annalysis

Theorem 5.4.1. The disease free equilbrium(DFE) point is equal to (1, 0, 0). If R0 >

1 and the disease free equilbrium(DFE) point E0 = (1, 0, 0) is unstable. If R0 ≤ 1,

then is e disease free equilbrium(DFE) point is equal to (1, 0, 0) is globally asyptotically

stable(GAS) in Ω.

Proof. Consider the following Lyapunov function (5.88)

F = GΩiv + qcih where GΩ = λh + n + γ. (5.88)
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Its derivatives along the solution of equation (5.35) to equation (5.37) is

F
′

= qciv (qnℓsh −GΩih) + qcih (γih −GΩ) −GΩ(cqih + λviv) (5.89)

= qciv(qnℓsh − ihGΩ) + qcγ2i2
h − ivλvGΩ (5.90)

= λvivGΩ

(
q2nℓcsh −GΩλv

λvGΩ

)
+ qcih(γih − ivGΩ) (5.91)

= ivλvGΩ(R0sh − 1) − qcih(ivGΩ − γih) (5.92)

≤ ivλvGΩ(R0sh − 1) ≤ 0 if R0 ≤ 1. (5.93)

It is demonstrated that F
′

≤ 0 if R0 ≤ 1 and that F′ = 0 when R0 = 1 and ih = iv = 0.

If R0 > 1, then F′ > 0 if sh is sufficiently close to one except when ih = iv = 0. It is

shown that F
′

≤ 0 if R0 ≤ 1 and the fairness F
′

= 0 when R0 = 1 and ih = iv = 0. If

R0 > 1, then F
′

> 0 when sh is adequately close up to one excluding when ih = iv = 0.

According to the Layapunov-Lasalle’s theorem, which is cited by [52], this implies that

all directions in GΩ move toward the primary positive invariant subset of the set where we

get the following

G
′

Ω = 0 is {(sh, ih, iv) ∈ GΩ/G
′

Ω = 0} (5.94)

on the boundary of GΩ where ih and iv are zero that means in sh- axis, s
′

h = (λh) (1 − sh)

so that sh =
(
1 + e−(λh)t

)
→ 1 as t → ∞. The disease-free equilibrium point (1, 0, 0) will

be approached by all paths found in the GΩ solution space. As a result, the equilibrium

point that is free of infection is GAS, which makes the theorem complete. It is widely

known that the reproductive number depends on the product of the spread coefficients qnℓ

and qc, the standard residence time of the infective group (ρ + λh + γ)−1, and the standard

lifespan of the mosquito λ−1
v . Being rid of the resistance loss rate, R0, is an important point

to remember. The concern of an infection can, however, be raised by greater values of ℓ

and q. This suggests that even in cases when malaria does not cause disease resistance

and there isn’t a vaccine yet, the available tools can be effectively employed to control

the disease. In the event that R0 ≤ 1, the DFE point E0 is GAS. That is how the infected

mosquito, humans, and infection ultimately vanish.
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5.5 Sensitivity analysis and simulation

We applied our model to simulate malaria cases, and the results are shown in Fig. eqref11,

which indicates that the reported malaria case cost less than 2000. In 2016, there were

over 15 million instances reported in [24], starting in the years 2000 − 2006. Table (5.1),

lists all the parameter values for our model. According to these parameter values, we

carried out numerical simulations of our model and obtained a suitable fitting between

the infected human of model (5.1)-(5.5) and the malaria reported cases of WHO, from

2007 − 2016, as shown in Figures (5.5) (a) and (5.5)(b). The parameter settings in Ta-

ble (5.1) were used to simulate the model compartments in Figure (5.5)(a). In addition,

Figure (5.5)(b) shows how the initial size of mosquitoes that are sensitive affects the fre-

quency of human malaria cases. er of human malaria cases in Figure (5.5)(b). The disease

is endemic, and the estimated basic reproduction number is 4.5589, according to the in-

formation given. With parameter values from Table (5.1), Figures (5.5)(a) and (5.5)(b)

demonstrate the solution of the model (5.1)-(5.5). We utilized sensitivity analysis to eval-

uate the effects of the model parameter values used. This study offers information on the

model parameters that have a substantial impact on the theoretical model of malaria trans-

mission in terms of the basic reproduction rate. The normalized forward sensitivity index

of a variable to a parameter is what we utilize to conduct this study. A variable’s normal-

ized forward sensitivity index, which measures how differently a variable r depends on a

parameter s, is defined as follows:

γs
r =

∂r
∂s
.
s
r
. (5.95)

In Table (5.2), the sensitivity indices based on the computed are listed in detail. The

parameters are arranged so that the largest sensitive parameter is at the top of the list, fol-

lowed by the lowest. The most sensitive parameters in Table (5.2) are the mosquito biting

rate, natural death rate of humans, loss of immunity rate for humans, recovery rate of

humans, transmission rate in humans, transmission rate in mosquitoes, and natural death

rate of mosquitoes
(
n, µh, ρ, µv,

qnIhS h
Nh

, qnIhS v
Nh

)
. The least sensitive parameter is ℓ. At the EE

for models (5.1)-(5.5). If the value of n is reduced to 0.087 or less while maintaining the

same values for the other variables, then R0 < 1(0.9916) holds true. If we changed ρ value

from 3.5× 10−5 to 7.9× 10−5 then R0 < 1, or R0, would be reduced from 4.5589− 0.9978.
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If the value of qnIhS h
Nh

is set to 0.023, but the other parameters remain the same, then R0 < 1

will be the result. If 0.023 is used as the value for qnIhS h
Nh

and all other parameters remain

the same, then R0 < 1.

Table 5.1: State variables for the model in five compartements

Variables Description Values Reference

µh per capita normal passing away speed of human being 4.7 × 10−5 [103]

µv per capita normal passing away speed of mosquitoes 0.1 [24]

β The speed of defeat of resistance 2.74 × 10−3 [25]

γ The death rate of human induced by the disease 9.74 × 10−3 [25]

ρ The recovery rate of human 3.5 × 10−3 [24]
qnIhS h

Nh
The transmission rate in human 0.048 [25]

qnIhS v
Nh

The transmission rate in mosquitoes 0.48 [25]

Table 5.2: Sensitivity analysis

Parameter sensitive index

µh -0.75

µv -0.5

n 1

ρ 0.59
qnIhS h

Nh
0.5

qnIhS v
Nh

0.5

ℓ 0.5
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Figure 5.2: Description suitcases of malaria from WHO

5.6 Discussion and Conclusion

We examined a three-dimensional, two-dimensional model that included S hIhRh in a

human host and S vIv.The typical incidence for the dynamics of malaria in people and

mosquitoes, in which immunity declines to the disease refills the reservoir of the suscep-

tible humans. After adding the appropriate inhabitants, the model was revised. The model

variables are used to identify the reproductive number. The rate of immunity has no bear-

ing on the reproductive number. The illness-free equilibrium point is unstable if R0 > 1,

and it is globally unstable if R0 ≤ 1; in contrast, the equilibrium point for the existence

of the disease emerges as a singular position where reinvention is always feasible and the

sickness never goes away. Since there are currently no effective vaccines against malaria,

the methods at hand can be utilized to control it as malaria-induced protection gradually

wears off over time. These could be depending on the porch quantity R0 specifications.

The intervention techniques must concentrate on treatment and lowering the content be-

tween mosquito and human in order to lower the reproduction number to less than one.

Thus, there is a need for effective insecticides and bed nets that have been drug-treated to

cut down on mosquito populations. Even if a person is immune to malaria, the illness can

still be eradicated because malaria-induced immunity is not permanent.
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Figure 5.3: Contrast of the malaria suitcases from WHO and the solution of transmittable

persons Ih(t) for (5.1)-(5.5), Fig. (5.5)a: Reproduction of malaria suitcases in WHO as of

2007 to 2016, Fig. (5.5)b: Forecast of malaria suitcases for WHO 2007 to 2030.
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Figure 5.4: Solution of (5.1) to (5.5) with constraint for WHO, Fig. (5.5) (a) replication

the number of person as of 2007 to 2500, Fig. (5.5)(b) the number of human from 2007

to 3000
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Figure 5.5: Solution of (5.1) to (5.5) with constraints for WHO with the number of

mosquito from 2007 to 2500 fig.(5.5)(b): The pressure of original magnitude of vulnera-

ble mosquito on the number of person malaria in WHO
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Figure 5.6: Solution of (5.1) to (5.5) with constraint for WHO with the number of

mosquito as of 2007 to 2500 fig. (5.5) (b): The pressure of original amount of vulnerable

mosquito on the number of person malaria in WHO



Chapter 6

ANALYSIS OF MATHEMATICAL

MODEL OF MALARIA

TRANSMISSION IN TEN

DIMENSIONS

6.1 Formulation of the Model

In order to analyze the ten compartmental mathematical models of malaria transmission,

we separated the human population into two categories. All people who have never

developed malaria resistance are considered to be members of the non-immune human

species, which is the first human type. The term ”semi-immune human” refers to a sec-

ond category of people who, even if they lose their immunity, have at least gained it

at some point in their lives. The second group is believed to be less vulnerable since

the idea of natural immunity is based on memory. We assume that, the human popu-

lation is sub-divided into susceptible non-immune (S e), exposed non-immune (Ee), in-

fectious non-immune (Ie), susceptible semi-immune (S a), exposed semi-immune (Ea),

infectious semi-immune (Ia), recovery semi-immune (Ra). Thus, the total human popu-

78
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lation Nh(t) = S e + Ee + Ie + S a + Ea + Ia + Ra. We sub-divide the mosquito population

into three subclasses: susceptible mosquitoes S v, exposed mosquitoes Ev and infectious

mosquitoes Iv. The mosquitoes stay infectious for life and do not recover. Thus, the total

mosquitoes population Nv(t) = S v + Ev + Iv. We assume that non-immune people who

have been exposed to the infection develop resistance and join the group of those who

have recovered. Malaria cannot be transmitted from mosquito to mosquito or directly

from person to person. Every single parasite, weak human, and non-resistant human is

born with some level of resistance. Assume there are no deaths from malaria. The rates of

birth and natural death are both taken into consideration. The assumption is that the birth

and death rates are equal in order to fix the population as a whole. There are infection

transmissions from Iv to S e, from Iv to S a, from Ie to S v, from Ia to S v. In this section,

Figure 6.1: The Schematic of the Mathematical Model in Ten compartmental

we refer to the non-immune human population as e, the semi-immune human population

as a, and the mosquito population as v. When a susceptible mosquito bites an infectious

human who is non-immune to the infection and an infectious human who is semi-immune

to the infection, the mosquito moves from the susceptible to the exposed mosquito group.
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When an infectious mosquito bites a susceptible human who is non-resistant to the infec-

tion and an immune human, the parasite enters the human and the human moves to their

own exposed group. The non-immune human leaves the class S e at the rates of βe and

µh and enters the non-immune human class through birth at the rate of λe. Humans who

are not immune enter the Ee class at a rate of βe and exit the class at a rate of γe and µh.

The population enters the Ie class with a γe rate and exits the Ie class with a αe and µh

rate. The susceptible semi-immune human class is entered by birth or human recovery

at the rate of Ωa, and the susceptible semi-immune human class is exited at the rates of

βa and µh. Humans with some degree of resistance enter the Ea class at a rate of βa and

exit the class at a rate of γa and µh. The human population enters the Ia class at a rate

of γa and exits at a rate of αa and µh. The human population enters the Ra class at a rate

of αa and αe and exits the class at a rate of µh and Ωa. Mosquitoes enter the susceptible

group at birth at a λv per capita birth rate and exit the class S v with βv and µv. The hu-

man population enters the class Ev with a βv rate and leaves it with a γv and µv rate. The

mosquito population enters the infected class at a rate of γv and leaves the infectious class

at a rate of µv. Assume that all the variables are positive. Tables (6.1) and (6.2), respec-

tively. Utilizing the same standard incidence as in the model [80]. Infection occurrences

are what we categorize and report as follows: βe = ΥφveIv is the infection incidences

from mosquitoes to non-immune humans, βa = ΥφvaIv is the infection incidences from

mosquitoes to semi-immune humans and βv = (φevIe + φavIa)Υ is the disease occurrence

from semi-immune humans or non-immune humans to mosquitoes, then βv is given by

the amount of the power of disease from Ia and Ie. In light of this, the compartmental

representation in Figure (6.1) can be represented on paper as a set of differential equations
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Table 6.1: The explanation of state variables for malaria model of ten dimensional

Variables The explanation of the state variables

S e Susceptible non-immune humans .

Ee Exposed non-immune humans.

Ie Infectious non-immune humans.

S a Susceptible semi-immune humans.

Ea Exposed semi-immune humans.

Ia Infectious semi-immune humans.

Ra Recovery of humans.

S v Susceptible mosquitoes.

Ev Exposed mosquitoes.

Iv Infectious mosquitoes.

generated by the following equation, which goes from equation (6.1) to equation (6.10).

dS e

dt
= λeNh − S e (ΥφveIv + µh) . (6.1)

dEe

dt
= ΥIvφveS e − Ee (γe + µh) . (6.2)

dIe

dt
= γeEe − Ie (αe + µh) . (6.3)

dS a

dt
= (λh − λe) Nh + ΩaRa − S a (ΥφvaIv + µh) . (6.4)

dEa

dt
= S aΥφvaIv − Ea (γa + µh) . (6.5)

dIa

dt
= γaEa − Ia (µh + αa) . (6.6)

dRa

dt
= (αaIa + αeIe) − Ra (Ωa + µh) . (6.7)

dS v

dt
= λvNv − S vφevIeΥ − S vµv − φavS vΥIa. (6.8)

dEv

dt
= (φevIe + φavIa)ΥS v − Ev (γv + µv) . (6.9)

dIv

dt
= γvEv − Ivµv. (6.10)
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Table 6.2: The explanation of parameters for malaria model of ten dimensional

Parameter The explanation of the parameter

αe The rate at which non-immune human progress to recovery.

λh A per capita birth rate of human.

γe The rate at which non-immune human progress to infective.

λe A per capita birth rate of non-immune human.

λv A per capita birth rate of mosquitoes.

αa The rate of the infective non-immune human progress to recovery.

γa The rate at which semi-immune human progress to infective.

γv The rate at which mosquito progress to infective.

λh A per capita birth rate of human.

Ωa The rate at which recovered humans progress to susceptible.

Υ The number of bites

µh The death rate of humans.

µv The death rate of of mosquitoes.

φav The possibility of an infectious disease spreading from Ia to S v.

φev The possibility of an infectious disease spreading from Ie to S v.

φva The possibility of an infectious disease spreading from Iv to S a .

φve The possibility of an infectious disease spreading from Iv to S e.

with the following affirmative original situation

S e0, Ee0, Ie0, S a0, Ea0, Ia0,Ra0, S v0, Ev0, Iv0 (6.11)

6.2 Uniqueness and Existence of the solution

Theorem 6.2.1. In the domain Ω = Ω1 × Ω2 for all time t ≥ 0, the malaria model (6.1)

-(6.10) has a single globally specified solution, where

Ω1 =

{(
S e

Nh
,

Ee

Nh
,

Ie

Nh
,

S a

Nh
,

Ea

Nh
,

Ia

Nh
,

Ra

Nh
,

S v

Nv
,

Ev

Nv
,

Iv

Nv

)
∈ [0, 1]10

}
(6.12)
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such that 0 ≤ S v
Nv
+ Ev

Nv
+ Iv

Nv
≤ 1 and 0 ≤ S a

Nh
+ Ea

Nh
+ Ia

Nh
+ Ra

Nh
+ S e

Nh
+ Ee

Nh
+ Ie

Nh
≤ 1 and

Ω2 =
{
(Nh,Nv) ∈ R2

}
/0 < Nh ≤

λh − µh +
√

(λh − µh)2 + 4µh

µh
and 0 < Nv ≤

λv − µv

µv
≤ 1

Proof. The local existence of the solution follows from the regularity of the function

g = (g1, g2, .., g10) which is of the class continuous differentiable in the domain Ω. We

first show that Ω1 is forward-invariant for all (Nh,Nv) ∈ Ω2. It is easy to see that if xi = 0

then dxi
dt = gi(t) ≥ 0, i = 1, 2, ..., 10. It follows that if

S v

Nv
+

Ev

Nv
+

Iv

Nv
= 0⇒

d
dt

(
S v

Nv

)
+

d
dt

(
Ev

Nv

)
+

d
dt

(
Iv

Nv

)
≥ 0 (6.13)

and if S a
Nh
+ Ea

Nh
+ Ia

Nh
+ Ra

Nh
+ S e

Nh
+ Ee

Nh
+ Ie

Nh
= 0 then S a

Nh
+ Ea

Nh
+ Ia

Nh
+ Ra

Nh
+ S e

Nh
+ Ee

Nh
+ Ie

Nh
≥

0. Moreover, if S v
Nv
+ Ev

Nv
+ Iv

Nv
= 1 then d

dt

(
S v
Nv

)
+ d

dt

(
Ev
Nv

)
+ d

dt

(
Iv
Nv

)
= −λv < 0 and if

S a
Nh
+ Ea

Nh
+ Ia

Nh
+ Ra

Nh
+ S e

Nh
+ Ee

Nh
+ Ie

Nh
= 1 then

d
dt

(
S a

Nh

)
+

d
dt

(
Ea

Nh

)
+

d
dt

(
Ia

Nh

)
+

d
dt

(
Ra

Nh

)
+

d
dt

(
S e

Nh

)
+

d
dt

(
Ee

Nh

)
+

d
dt

(
Ie

Nh

)
= −

βaRa

Nh
< 0.

Now, we show that Ω2 is forward invariant for all(
S a

Nh
,

Ea

Nh
,

Ia

Nh
,

Ra

Nh
,

S e

Nh
,

Ee

Nh
,

Ie

Nh
,

S v

Nv
,

Ev

Nv
,

Iv

Nv

)
∈ Ω1, (6.14)

then dNh
dt > 0 if λh > µh and dNv

dt > 0 if λv > µv. It is easy to see that

lim
t→∞

supNv(t) ≤
λv − µv

µv
and lim

t→∞
supNh(t) ≤

λh − µh +
√

(λh − µh)2 + 4µh

µh

We get to the conclusion that if the solutions of (6.1)-(6.10) exist worldwide in the domain

Ω, then it is mathematically and epidemiologically well-posed. Let X(t) = (S e(t), Ee(t), Ie(t), S a(t), Ea(t), Ia(t),Ra(t), S v(t), Ev(t), Iv(t))

and

ϕ : Γ→ Ψ and X : 7→ X
′

(6.15)
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such that ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8, ϕ9, ϕ10), where

ϕ1 =
dS e

dt
= λeNh − S e (ΥφveIv + µh) . (6.16)

ϕ2 =
dEe

dt
= ΥIvφveS e − Ee (γe + µh) . (6.17)

ϕ3 =
dIe

dt
= γeEe − Ie (αe + µh) . (6.18)

ϕ4 =
dS a

dt
= (λh − λe) Nh + ΩaRa − S a (ΥφvaIv + µh) . (6.19)

ϕ5 =
dEa

dt
= S aΥφvaIv − Ea (γa + µh) . (6.20)

ϕ6 =
dIa

dt
= γaEa − Ia (µh + αa) . (6.21)

ϕ7 =
dRa

dt
= (αaIa + αeIe) − Ra (Ωa + µh) . (6.22)

ϕ8 =
dS v

dt
= λvNv − S v ((φevIe + φavIa)Υ + µv) . (6.23)

ϕ9 =
dEv

dt
= (φevIe + φavIa)ΥS v − Ev (γv + µv) . (6.24)

ϕ10 =
dIv

dt
= γvEv − Ivµv. (6.25)

Then, (6.16)-(6.25) can be written in the form of the following (6.26)

X
′

(t) = ϕ(X(t)) : X(0) = (S e0, Ee0, Ie0, S a0, Ea0,Ra0, S v0, Ev0, Iv0) ∈ Γ (6.26)

We will perform the confirmation follow by [25]. Suppose that there exists t1 and t∗ with

t1 < t∗ such that S e (t1) = 0, dS e(t)
dt < 0 in (t1, t∗) where all the ten compartments are

positives. Then from (6.1), we have

dS e (t)
dt

= λeNh − S e (t)ΥIv (t)φev − S e (t) µh > 0 (6.27)

which is contradiction. Hence, S e (t) > 0 for all t ≥ 0. Suppose that there exist

t1 = Sup {t > 0 : S a, Ia, Ea,Ra, S e, Ie,Re, , S v, Ev, Iv > 0} . (6.28)

Then from equation (6.2), we have get the following equation (6.29)

d
dt

(
Ee(t)e(γe+µh)t

)
= (ΥIv(t)S e(t)) e(γe+µh)t. (6.29)

Integrating equation (6.29) from 0 to t1, we have get equation (6.30)

Ee(t)e(γe+µh)t = Ee0 +

∫ t1

0
(ΥIv(θ)S e(θ)φve) e(γe+µh)θdθ. (6.30)
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Multiply both sides of (6.30) by e−(γe+µh)t1 , then we have get the following (6.31)

Ee(t) (t1) = (Ee0) e−(γe+µh)t1 + e−(γe+µh)t1∫ t1

0
(ΥIv(θ)S e(θ)φve) e(γe+µh)θdθ > 0. (6.31)

Since Ie(t) > 0 for all t ≥ 0, then equation (6.3)

⇒
dIe(t)

dt
≥ − (αe + µe) Ie (6.32)

⇒
dIe(t)

Ie
≥ − (αe + µe) dt (6.33)

⇒ Ie(t) ≥ e−(αe+µe)t > 0. (6.34)

It is simple to observe S a(t) > 0 for all t ≥ 0. Suppose that there exists t1 and t∗ with

t1 < t∗ such that S a (t1) = 0, dS a(t)
dt < 0 and every the ten compartments are positives that is

S e(t), Ee(t), Ie(t), S a(t), Ia(t), Ea(t),Ra(t), S v(t), Iv(t), Ev(t), > 0 for t1 < t < t∗. Then from

equation (6.4), we have obtained the subsequent

dS a(t)
dt

= (λe − λh) Nh + ΩaRa(t) − S aΥφvaIv(t) − S a(t)µh > 0.

which is contradiction. Hence, S a(t) > 0,∀t ≥ 0. As of (6.5) we have obtained

d
dt

(
Ea(t)e(γa+µh)t

)
= (S a(t)ΥIv(t)φva) e(γa+µh)t. (6.35)

Integrating equation (6.35) from 0 to t1, we have get equation (6.36)(
Ea(t1)e(γa+µh)t1

)
= −Ea0 +

∫ t1

0
(S a(t)ΥIv(θ)φva) e(γa+µh)θdθ. (6.36)

Multiply both sides of equation (6.36) by e(γa+µh)t1 ,then we have get

Ea(t1) = (Ea0) e(γa+µh)t1 + e(γa+µh)t1

∫ t1

0
(S a(t)ΥIv(θ)φva) e(γa+µh)θdθ > 0.

Hence, Ea(t) > 0 for all t ≥ 0. Since Ea(t) > 0 for all t ≥ 0 and from (6.6)

⇒
dIa(t)

dt
≥ −Ia (αa + µh) (6.37)

⇒
dIa(t)

Ia
≥ − (αa + µh) dt (6.38)

⇒ Ia(t) ≥ (Ia0)e−(αa+µh)t > 0 (6.39)
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Hence, Ia(t) > 0 for all t ≥ 0. Since Ia(t) > 0,∀t ≥ 0 and from equation (6.7)

⇒
dRa(t)

dt
≥ −Ra (Ωa + µh) (6.40)

⇒
dRa(t)

Ra
≥ − (Ωa + µh) dt (6.41)

⇒ Ra(t) ≥ (Ra0)e−(Ωa+µh)t > 0. (6.42)

It is simple observe that S v(t) > 0 for all t ≥ 0. Suppose that there exists t1 and t∗ with

t1 < t∗ such that S v (t1) = 0, dS v(t)
dt < 0 and every the ten compartments are affirmative that

is S e(t), Ee(t), Ie(t), S a(t), Ea(t), Ia(t),Ra(t), S v(t), Ev(t), Iv(t) > 0 for t1 < t < t∗. Then from

equation (6.8), we have obtained the subsequent

dS v(t)
dt

= λvNv − S v(t)φevIe(t) − µvS v(t) − ΥφavS v(t)Ia(t) > 0 (6.43)

which is contradiction, hence S v(t) > 0, Ie > 0, Ia > 0, S v > 0,∀t ≥ 0 then

⇒
dEv(t)

dt
≥ −Ev(t) (γv + µv) (6.44)

⇒
dEv(t)

Ev
≥ − (γv + µv) dt (6.45)

⇒ Ev(t) ≥ (Ev0)e−(γv+µv)t > 0 (6.46)

Hence, Ev(t) > 0 for all t ≥ 0. Since Ev(t) > 0 for all t ≥ 0 then equation (6.10)

⇒
dIv(t)

dt
≥ −Iv(t)µv (6.47)

⇒
dIv(t)

Iv
≥ −µvdt (6.48)

⇒ Iv(t) ≥ (Iv0)e−µvt > 0 (6.49)

Hence, Iv(t) > 0,∀t ≥ 0. Therefore, the solution of the system equation (6.1) to equation

(6.10) is positive. Since the total number of humans population Nv(t) is the sum of S e(t),

Ee(t), Ie(t), S a(t), Ea(t), Ia(t) and Ra(t), and the total number of mosquito population Nv(t)

is the sum of S v(t), Ev(t) and Iv(t), Since S e(t)+Ee(t)+Ie(t)+S a(t)+Ea(t)+Ia(t)+Ra(t) = Nh

and S v(t) + Ev(t) + Iv(t) = Nv, then S e(t) ≤ Nh, Ee(t) ≤ Nh, Ie(t) ≤ Nh, S a(t) ≤ Nh, Ea(t) ≤

Nh, Ia(t) ≤ Nh,Ra(t) ≤ Nh, and S v(t) ≤ Nv, Ev(t) ≤ Nv, Iv(t) ≤ Nv,∀t ≥ 0. Thus X is

bounded. As a result, there is only one solution that is non-negative and bounded for the

equations (6.1) to equation (6.10). As a result, the evidence is now complete.
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6.3 Equilibria points

DFE points are equivalent to steady-state solutions in which all residents are totally at

risk, i.e., there are no transferable residents and all residents are zero. In EE points, the

sickness persists in the population and there is a stable condition

Theorem 6.3.1. DFE and EE points are at least two of the equilibrium points in the model

equations (6.1) to equation (6.10).

Proof. Equations must be solved in order to arrive get the solution.

dS e

dt
=

dEe

dt
=

dIe

dt
=

dS a

dt
=

dEa

dt
=

dIa

dt
=

dRa

dt
=

dS v

dt
=

dEv

dt
=

dIv

dt
= 0. (6.50)

Therefore, we set the system equation (6.1)-(6.10) equal to zero, then

λeNh − S e (ΥφveIv + µh) = 0. (6.51)

ΥS eφveIv − Ee (γe + µh) = 0. (6.52)

γeEe − Ie (αe + µh) = 0. (6.53)

(λh − λe) Nh + ΩaRa − S a (ΥφvaIv + µh) = 0. (6.54)

S aΥφvaIv − Ea (γa + µh) = 0. (6.55)

γaEa − Ia (µh + αa) = 0. (6.56)

(αaIa + αeIe) − Ra (Ωa) = 0. (6.57)

λvNv − S vΥ (φevIe + φavIa) = 0. (6.58)

(φevIe + φavIa)ΥS v − Ev (γv + µv) = 0. (6.59)

γvEv − Ivµv = 0. (6.60)

We were able to derive equation (6.61) from equation (6.51).

S e =
λeNh

ΥφveIv + µh
. (6.61)

We have arrived at the following conclusion from equations (6.52) and (6.61).

Ee =

(
Υφve

γe + µh

) (
λeNh

ΥφveIv + µh

)
Iv (6.62)

The following is the outcome we obtained using the equation (6.57)

Ra =

(
αa + αe

Ωa

)
Ia. (6.63)
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The outcome is as follows when equation (6.63) is substituted for (6.54).

S a =

(
λh − λe

ΥφvaIv + µh

)
Nh +

(
αa + αe

ΥφvaIv + µh

)
Ia. (6.64)

As a result of equation (6.56), we have the following outcome.

Ea =
(αa + µh)Ia

γa
. (6.65)

The following conclusion was derived from equation (6.58)

S v =
λvNv

ΥφevIe + µv + φavIeΥ
(6.66)

The following is the outcome we obtain from the equation (6.60)

Ev =
µvIv

γv
. (6.67)

In [80], the DFE point is present if the infectious zero, which is Ie = Ia = Iv = 0. Then,

we obtained (6.68) from (6.61).

S ∗e =
λeNh

µh
, (6.68)

The following equation, (6.69) , can be obtained from equation (6.64).

S ∗a =
(
λh − λe

µh

)
Nh, (6.69)

Thus we have deduced the following equation, (6.70), from equation (6.66).

S ∗v =
λvNv

µv
(6.70)

and the values for (6.62), (6.65), (6.63) and (6.67) are all zero, we reached the following

disease free equilibrum (DFE)point.

Xd f e =
(
S ∗e, 0, 0, S

∗
a, 0, 0, 0, S

∗
v, 0, 0

)
(6.71)

where S e∗, S ∗a ∗, and S v∗ are defined in (6.68), (6.69) and (6.70), respectively, there is

a DFE point for (6.51) to (6.60), and to get the EE point for (6.51) to (6.60), we have to

take the next (6.72)

E∗∗v =
λvNv

γv + µv
. (6.72)



Equilibria points 89

Equation (6.73) is the result of changing equation (6.72) into equation (6.60).

I∗∗v =
γvλvNv

µv (γv + µv)
. (6.73)

By changing (6.73) into (6.51), we were able to create (6.74).

S ∗∗e =
(
λeNh

Υφveγv

) (
µv (γv + µv)

λvNv

)
. (6.74)

We have obtained (6.75) by changing (6.74) into (6.52).

E∗∗e =
Nhλe

µh + γe
. (6.75)

Substituting (6.74) into (6.53), we have obtained (6.76)

I∗∗e =
(
γeλe

αe + µh

) (
Nh

γe + µh

)
. (6.76)

We have obtained the next equation from (6.57),

Ia =

(
Ωa + µh

αa + αe

)
Ra. (6.77)

We have obtained the following (6.78) if we replace (6.77) into (6.56).

Ea =

(
µh + αa

γa

) (
µh + αa

γa

) (
Ωa + µh

αa + αe

)
Ra. (6.78)

By substituting (6.78) for (6.56), we obtain eqrefc.

S a =

(
γa + µh

γa

) (
Ωa + µh

αa + αe

)
Ra. (6.79)

We can get (6.80) if we replace (6.79) into (6.54).

R∗∗a =
(αa + αe)(λe − λh)Nh

Ωa (αa + αe) − (γa + µh) (µh + αa) (Ωa + µh)
. (6.80)

We were able to get (6.81)by changing (6.80) into (6.57).

I∗∗a =
(Ωa + µh) (λe − λh) Nh

Ωa (λe + λa) − (λa + µh) (µh + αa) (Ωa + µh)
. (6.81)

We have obtained (6.82) by changing (6.81) into (6.56).

E∗∗a =
(µh + αa) (Ωa + µh) (λe − λh) Nh

γa ((αa + αe) − (γa + µh) (µh + αa) (Ωa + µh))
. (6.82)
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We have obtained (6.83) by changing (6.82) into (6.55).

S ∗∗a =
(

(µh + αe) (Ωa + µh) (λe − λh) Nh

Ωa (αe + αa) − (γa + µh) (µh + αa) (Ωa + µh)

) (
µv (γv + µh) (γa + µh)

γvλvNvΥφvaγa

)
. (6.83)

By changing (6.80) into (6.7), we were able to obtain (6.84).

S ∗∗v =
λvNv ((Ωaαa + Ωaαe − (γa + µh) (µh + αe) (Ωa + µh))) ((αe + µh) (γe + µh))

φev ((Ωa + µh) (λe − λh) (αe + µh) (γe + µh) + (γeλeNh) (Ωa (αe + αe) − (γa + µh) (µh + αa)))

As a result, the EE point of the equation (6.1) to (6.10) is

(
E∗∗v , I

∗∗
v , S

∗∗
e , E

∗∗
e , I

∗∗
e ,R

∗∗
a , I

∗∗
a , E

∗∗
a , S

∗∗
a , S

∗∗
v
)
, (6.84)

where S ∗∗e , E
∗∗
e , I

∗∗
e , S

∗∗
a , E

∗∗
a , I

∗∗
a ,R

∗∗
a , S

∗∗
v , E

∗∗
v and I∗∗v are defined in equation (6.72), (6.73),

(6.74), (6.75), (6.76), (6.80), (6.81), (6.82), (6.83) and equation (6.84) respectively. The

malaria model has an EE point between equations (6.51) to (6.60). So, given the equation

(6.51) to (6.60) of the malaria model system, there is the DFE point and the EE point.

6.4 Reproductive Number

Let us denote the rate of the disease spread from e to e by βee, from a to a by βaa, from

v to v by βvv, from a to e by βae, from e to a by βea, from e to v by βev, from v to e

by βve, from v to a by βva and from v to a by βva. We use the next-generation operator

approach outlined by [106]to define the reproductive number as the number of secondary

diseases that one transferable individual would cause above the period of the transferable

period, given that each is vulnerable and the next-generation matrix beta can be attained

by incorporating [71]:

β =


βee βae βve

βea βaa βva

βev βav βvv

 (6.85)

When each component of β f g characterizes the predictable number of secondary suitcases

in the host indexed by g produced by a distinctive primary case in the crowd indexed by

f in a totally sensitive population, where g and f can be a, e, and v. Therefore, based on
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our theory, the non-diseases are disseminated as follows: βee, βaa, βvv, βea and βae. Next,

we obtained

βee = βaa = βvv = βea = βae = 0. (6.86)

These are the diseases that spread and are also referred to as βev, βea, βav and βva. When it

took place, we had

βev , 0, βve , 0, βav , 0, βva , 0. (6.87)

As a result, when we combine (6.86), (6.87) and(6.85), we get below.

β =


0 0 βve

0 0 βva

βev βav 0

 . (6.88)

Similar to how β f g has the concept of reproductive number, it can be obtained by adding

the average time for the transferable life span, the probability of transmission per con-

tact, the possibility of continued existence up until the transferable state, and the contact

number per unit of time in [58]. The elements of β that are βev, βav, βve and βva of β are

gained. When a disease is recently introduced in a population by one polluted person, R0

defines as the typical number of secondary cases produced by that pollutant during his full

infectious period. In the case of our model, a new pollutant can start in the classes S v or

S e or S a. We place a single freshly polluted mosquito at the DFE site and define βva as the

anticipated number of susceptible semi-immune humans that this insect will contaminate.

From this, we can calculate the equivalent number of (6.89).

βva =

(
γv

µv + γv

) (
ΥS a

Nh

) (
φva

µv

)
(6.89)

We gained (6.90) by acquiring βve, where βve is the predicted number of susceptible non-

immune humans that this mosquito will contaminate.

βve =

(
γv

µh + γv

) (
ΥS e

Nh

) (
φve

µv

)
(6.90)

When a disease first manifests itself in a population due to a semi-immune person who

has been exposed to pollution at the DFE point, we have (6.91).

βav =

(
γa

µh + γa

) (
ΥS v

Nh

) (
φav

µh + αa

)
(6.91)
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At the DFE point, we first introduce a single freshly polluted non-immune human to the

population after which we have acquired the following equation.

βev =

(
γe

µh + γe

) (
ΥS v

Nh

) (
φev

µh + αe

)
(6.92)

Let’s define the reproductive number, R0, for the malaria model with (6.1) to (6.10) pre-

cisely as the spectral radius of β in [33], followed by the acquired reproductive number,

(6.93).

(R0)2 = (βev) (βve) + (βav) (βva) (6.93)

where the variables βva, βve, βav and βev are specified in the corresponding equations (6.89),

equation (6.90), equation (6.91) and equation (6.92), respectively. Let’s assume that a per-

son lives at the DFE point without any semi-immune humans, in which case we get the

equation (6.94), which states that either all susceptible semi-immune humans are pro-

tected by vaccination, there are no semi-immune humans at the disease-free equilibrium,

or there are other control measures in place. Consequently, we have

S a = 0 and S e = Nh. (6.94)

Moreover, let’s assume that there are no non-immune individuals in the human population

at the DFE point, as shown by our acquisition of the equation (6.95).

S e = 0 and S a = Nh. (6.95)

then we obtain (6.96) from(6.90), (6.92) and (6.95).

βev = 0 and βve = 0. (6.96)

Equation (6.96) was put into (6.93), and from there we obtained equation (6.100).

R0 =
√

(βva) (βav). (6.97)

As a result of (6.89), (6.91) and (6.94), we have obtained the subsequent (6.98), and the

spread from semi-immune people to mosquitoes is zero.

βav = 0 and βva = 0. (6.98)
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Equation (6.98) was inserted into (6.93), and from there we obtained.

R0 =
√

(βve) (βev). (6.99)

If R1 is the reproductive number for an infection caused by βev or βve, then equation (6.93)

becomes the corresponding equation (6.100)

R1 =
√

(βve) (βev). (6.100)

and assuming that R2 represents the reproductive number for pollution caused by either

βav or βva, the equation (6.93) becomes the following equation (6.101).

R2 =
√

(βva) (βav). (6.101)

We define the reproductive number, R0, as in (6.102).

R0 =

√
R2

1 + R2
2 (6.102)

where R1 and R2 are defined in equations (6.100) and (6.101), respectively.

6.5 Stability of DFE and EE point

We present a fundamentally crucial justification for the persistence of super and sub-

threshold common equilibrium for R0 close to unity. We make use of the bifurcation

finding, which is demonstrated in Appendix 2 of the cited work by [38]. Prior to config-

uring these outcomes, we first modify the stability equations for equations (6.1) through

(6.10) in two scopes. We can rephrase equation (6.1) to equation (6.10) in the compact

form dxi
dt = fi(x), i = 1, ..., 10. The stationary solution is obtained by resolve f (x) = 0,

anywhere f = ( f1, ..., f10).

Theorem 6.5.1. The disease free stability point is unstable if the reproductive number R0

is greater than one and it is GAS in ψ if the reproductive number R0 less than or equal

to one, where ψ =
{
(S e, Ee, Ie, S a, Ea, Ia,Ra, S v, Ev, Iv) ∈ R10

+

}
such that, S e ≥ 0, Ee ≥ 0,

Ie ≥ 0, S a ≥ 0, Ea ≥ 0, Ia ≥ 0, Ra ≥ 0,S v ≥ 0, Ev ≥ 0, Iv ≥ 0, the sum of S e, Ee, Ie, S a,

Ea, Ia and Ra is less than or equal to the total number of people, and the sum of S v, Ev,

and Iv is less than or equal to the total number of mosquitoes.
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Proof: The Proof follows from [106]. We start to rephrase equation (6.1) in the form of
dS
dt = ψ1(S , I) and dI

dt = ψ2(S , I) wherever S = (S e,S a, S v) and I = (Ee, Ie, Ea, Ia,Ra, Ev, Iv).

Suppose B be the Jacobean matrix of ψ = (ψ1, ψ2) calculate at the DEF (S , 0). Then we

obtained

B =

 B1 − B2 0

B1 + B2 B3

 wherever (6.103)

B1 =



0 0 0 0 0 Mve

0 0 0 0 0 0

0 0 0 0 0 Mva

0 0 0 0 0 0

0 0 0 0 0 0

0 Mev 0 Mav 0 0


(6.104)

B2 =



K1 0 0 0 0 0

−νe K3 0 0 0 0

0 0 K2 0 0 0

0 0 −νv K4 0 0

0 −αe 0 −αa 0 0

0 0 0 0 −νv λv


(6.105)

B3 =

 B̂3 0

0 λvS v − µv

 (6.106)

B̂3 =

 λh − µhS e − µh λh − µhS e

−µhS a −µhS a − µh

 (6.107)

wherever, K1 = νe + µh,K2 = νa + µh,K3 = µh + αe,K4 = αa + µh, Mev = Υφev
S v
Nh
,Mav =

Υφav
S v
Nh
,Mve = Υφve

S e
Nh
,Mva = Υφva

S a
Nh

. If at least one of B’s eigenvalues has a positive

real component, the DEF point is unstable, and if all of its eigenvalues have negative

real components, it is asymptotically stable close by. The eigenvalues of B are therefore

−S vµv < 0, as well as those of B̂3 and B1 − B2. Numerous statistical analyses demonstrate
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that

Tr
(
B̂3

)
=

3
√

4µh + (λh − µh)2 + µh + λh

2
< 0 and (6.108)

det
(
B̂3

)
=

√
(µh − λh)2 + µh > 0 (6.109)

As a result, all of B̂3’s eigenvalues have only strictly negative real components. We came

to the conclusion that the eigenvalues of B1 − B2 are what determine the stability of the

DEF point. Observe that B2 has a positive column sum and a negative off-diagonal way

in. It follows that B2 is a non-singular M-matrix, according to [18]. Additionally, since B1

is a non-negative matrix as of [106], the following result was discovered: s (B1 − B2) <

0 ⇔ ρ
(
B1B−1

2

)
< 1 or s (B1 − B2) > 0 ⇔ ρ

(
B1B−1

2

)
> 1, where s(Q) is the sum of all the

real components of the eigenvalues of the matrix Q. For the reason that

B−1
2 B1 =



0 0 0 0 βve 0

0 0 0 0 0 0

0 0 0 0 βva 0

0 0 0 0 0 0

0 0 0 0 0 0

βev 0 βav 0 0 0


wherever βve is defined in equation (6.90) , βva is defined in equation (6.89) , βav is defined

in equation (6.91) and βev is defined in equation (6.92) in that case R0 = ρ
(
B−1

2 B1

)
. As a

result, the generation of disease in mosquitoes is included in our explanation of R0. Due

to the fact that R0 is positive, R0 < 1 is equivalent to R2
0 < 1; R0 = 1 is equivalent to

R2
0 = 1, and R0 > 1 is equivalent to R2

0 > 1. As a result, if R0 ≤ 1, the disease free equilib-

rium point is globally asymptotically stable, and as a result, mosquitoes vanish, whereas if

R0 > 1, the disease free equilibrium point is unstable, and as a result, mosquitoes endure.

Theorem 6.5.2. The stationary equations (6.1) to equation (6.10) can be summary to a

two dimensional one:

F(u) = 0, u = (Ia, Ie) ∈ Uc ⊂ R2 (6.110)

anywhere u in U is a release region of 0 ∈ R2 and F is a number of function of the group

C∞ on U. Furthermore for any δ > 0 sufficiently small, all solution u ∈ U+c := Uc∩ (0, δ)2
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of the equation F(u) = 0 communicate to a exceptional solution x = x(u) ∈ ψ/{xd f e} from

equation (6.1) to equation (6.10).

A number of bifurcation studies are eliminated with this dimensional reduction. Prior

to describing an example of application, we first state a frequent conclusion. Rewrite

Equation (6.110) in the form of an equation after that.

F(u, κ) = 0, (6.111)

Whenever there is a bifurcation control with the symbol κ in R. This control can orig-

inate from a precise model coefficient or from a large number of models that are all

parametrized by κ. For the sake of simplicity, let’s consider κ to be one exacting con-

trol that occurs in the model. We will take for granted that: (B1): κ ∈ V ⊂ R, wherever V

is a number of region of κ = 0, (B2): Function F is distinct on some district UxV of 0 ∈ R3

and is of the group C2 on UxV , (B3): F(0, κ) = 0,∀κV , furthermore, observance in mind

that κ is more or less included in a few control of the model, this permit us to clear a map

κ → R0(κ) that is suppose to assure, (B4): When κ = 0 we get R0(0) = 1, (B5): The map

κ → R0(κ) is derivable at κ = 0 and dR0
dκ |κ , 0, and B

′

5: The map κ → R0(Θ) is derivable

at κ = 0 and dR0
dκ |κ > 0. After that, by means of theorem (6.5.2) there is a only one of

its kind infection free equilibrium point; therefore the point u = 0 ∈ R2 match to xd f e.

After that, (ud f e, κ), according to B3, is a one-parameter solution of (6.111) that connects

to the original system’s disease-free equilibrium point. Currently, we have a collection of

ud f e(Ia, Ie) = (0, 0). It will be shown as a result that a transcritical bifurcation may occur

when κ crosses κ = 0, and the symbol for this bifurcation will be revealed. Because of

this, we focus on the following situation.

Theorem 6.5.3. Assume that B1 through B4 are true. The matrix B(κ) = Du(0, κ) then has

two simple eigenvalues, σ1(κ) and σ2(κ), which depend continuously on kappa and have

values of σ1(0) = 0 and σ2(0) < 0, respectively, up to a decrease in the magnitude of

V . Additionally, if B5 is unspecified, the map κ to σ1(κ) = 0 is valid up to a decrease in

V .Succeed in satisfying σ1(κ) , 0 and ∀κ ∈ v/{0}.

Suppose v and v∗∗ be positive right and left eigenvectors of B(0) equivalent to the null

eigenvalue σ1(0) and regularize by vT v = v∗∗v = 1. If we set χ = v∗∗D2
uF(ud f e, 0)⟨v, v⟩ the
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subsequent grasp where D2
uF(ud f e, 0) is defined in [38].

Theorem 6.5.4. Assuming that B1 through B5 are true. The answer to the equation (6.111)

is u(κ) ∈ U(0, 1)2 iff χσ1(κ) < 0, which means that if χ , 0, there is a neighbourhood of

u ⊂ U of u = 0 and a neighbourhood of v ⊂ V of κ = 0.

The proof of this result can be found in [38]. Now that we know how the bifurcating

answer u(κ) works, we can look into it.

Theorem 6.5.5. Assume that B1 through B4 and B′5 are true. Then, if η > 0, there is

widespread equilibrium x ∈ Ω close to the infection free equation xd f e for 1 − η < R0 < 1

and if χ > 0, there is endemic stability x ∈ Ω close to the infection free equation xd f e for

1 < R0 < 1 + η.

Note that when χ0, making R0 somewhat more than one by a little modification in the

control, offer increase to a positive branch of stability, in order to provide some strictly

relevant analysis of the aforementioned result. However, there isn’t an ordinary stable

state if we drop R0 to a little below one. Frequently referred to as a forward bifurcation,

this type of bifurcation. For the time being, when χ > 0, we obtain a positive branch

of equilibrium when R0 is just below one. Also known as a backward bifurcation or

a sub-critical bifurcation, this type of bifurcation has two branches. To sum up, if we

apply the amount R0 directly to manage the malaria, we must lower R0 beneath one to

prevent it when χ > 0. But in order to prevent malaria when χ > 0,R0 must be less

than the amount suggested by ξ. For some η > 0, we can observe that ξ ≤ 1 − η. This

is according to the theory (6.5.5). We should not forget that the bifurcation was prone to

occur at R0 = 1 in the analysis of common epidemic models. In recent times, some authors

have developed epidemic models that are crucial to the sub-critical bifurcation at R0 = 1

and have emphasized their importance for the transmission of communicable diseases.

For a known control situation, numerous stable states might undoubtedly persist even if

R0 < 1. The stability performance may change significantly with only little changes to

the underlying concepts of these controls.
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6.6 Effort required to control malaria

[52] By connecting the type-reproduction number ω for each host kind, the reproductive

number (R0) is a common signal that clarifies the required control effort for a particular

host kind and offers an acceptable reproductive number. We examined the potential for

controlling malaria through one of the three host types. The reproductive factor is the

projected number of cases in individuals of type l, caused by one infected individual of

kind l in a completely susceptible population, either directly or indirectly. We developed

it separately for each variety of host. In [85], it is defined as the number of cases in in-

dividuals of kind l, directly or indirectly. The three host types that our model considers

are mosquitoes, semi-immune hosts, and non-immune hosts. As was shown in the previ-

ous part, if we directly apply R0 to control malaria, we must lower R0 to less than one to

avoid malaria while χ < 0, or we must lower R0 to less than xi to prevent malaria while

χ > 0. If we use the human population as the type host l, it is evident that the original

definition of the malaria reproductive number accords with the type reproduction number

ωl. We must send the control to each subgroup in each situation in order to drop R0 below

one or ξ. Given how difficult and expensive it is to control each sub-group in order to

minimize malaria, we pose the following question: Is it possible to eradicate malaria by

using a particular subgroup of mosquitoes, such as non-immune or semi-immune insects?

For each host type non-immune, semi–immune, and mosquito, we calculate the type re-

productive numbers ωe, ωa, ωv using the method outlined in [85]. The symbol ρ(Q) is

used to represent the spectral radius of the matrix Q, which is the transpose of the vector

I, and the matrix Q, which is the 3 × 3 identity matrix. According to Roberts’ citation,

ωI = ν
′

IνI (I(1 − β) − βℓI)−1 for every l = e, a, and v.
νe = (1 0 0)

νa = (0 1 0)

νv = (0 0 1)

, ℓe =


1 0 0

0 0 0

0 0 0

 , ℓa =


0 1 0

0 0 0

0 0 0

 , ℓv =


0 0 0

0 0 0

0 0 1


and the next-generation matrix indicated by Equation (6.85) is β. The author demonstrates

in [85] that if the host kind βl cannot sustain an epidemic on their own, then ωl is defined.

It is demonstrated logically that ρ((I − ℓI)β) < 1 is positive if ωl is correctly defined. The

truth is that if ωl is defined, a decrease of ωl below one is sufficient to lower R0 below 1
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by limiting a control to the particular host l. Their theory is appropriate when the model

is unable to exhibit the χ < 0 backward bifurcation that is specified by Theorem (6.5.3).

But when χ > 0, we reinstate the condition ρ((I − ℓI)β) < 1 by ρ((I − ℓI)β) < ξ < 1. The

following results are obtained for ωe, ωa and ωv.
ωe =

R2
1

I−R2
2

and R2 = βρ(I − ℓe)

ωa =
R2

2
I−R2

1
and R1 = βρ(I − ℓa)

ωv = R2
0 and βρ(I − ℓv) = 0

(6.112)

Assume χ > 0 is true. The same reasoning can be applied if χ is greater than 0 by putting

ξ = 1. ωe and ωa are clearly well defined if R1 < ξ and ρβ(I − ℓv) = 0 < 1 are equal to

0, and ωv is always well defined regardless of whether the substance is semi-resistant or

not. As a result, the following can be said:

1. In regions with R1 < ξ and R2 < ξ, such as 1 < R0 <
√

2ξ or 1 < ωv < 2ξ2, malaria

can be completely eliminated by targeting a control to one of the three host types.

2. To eradicate malaria in places where R1 < ξ and R2 > ξ exist, it is sufficient to

target a control to semi-resistant or mosquito host types.

3. In locations where R1 > ξ and R2 < ξ are present, it is sufficient to target a control

towards non-resistant mosquito host types.

4. Either we need to simultaneously target semi-resistant and non-resistant host types,

or we need to focus on mosquito control in locations where R1 > ξ and R2 > ξ.

Considering that the aim of the malaria control program is to reduce the proportion of

susceptible people in a specific host type l, l = a, e, v after one of the conditions (1) − (4),

Keep in mind that the next-generation matrix coefficients, denoted by β jl, represent the

expected number of hosts of type l that would contract an infection from a single infec-

tious host of type j. To totally eradicate malaria in the three populations in question, a

fraction of sl > 1 − ξ2

ωl
of susceptible host type l needs to be safeguarded (by the con-

trol). When ξ = 1, see [52, 85]. This is presuming that β jl is linearly affected by the

aforementioned controls. The use of bed nets sprayed with insecticide, sporadic preven-

tative care, or a vaccine for those who are not yet resistant can all be used to implement
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this control strategy. As a method of vector control for mosquitoes, residual insecticide

spraying inside is an option, as are insecticide-treated nets. It is sufficient to eradicate a

percentage of mosquitoes greater than 1 − ξ2

ωa
, a percentage of non-resistant mosquitoes

greater than 1− ξ2

ωe
, or a percentage of semi-resistant mosquitoes in areas where condition

(1) is satisfied. It is sufficient to destroy a percentage of mosquitoes greater than 1 − ξ2

ωv

in places where condition (2) is met, or to permanently protect a section of semi-resistant

plants more than 1 − ξ2

ωa
. It is sufficient to permanently protect a portion of non-resistant

organisms greater than 1 − ξ2

ωe
or destroy a portion of mosquitoes greater than 1 − ξ2

ωv
in

places where condition (3) is satisfied. For malaria to be completely eradicated or to con-

currently protect the non-resistant and the semi-resistant, it is sufficient to permanently

remove a part of mosquitoes more than1 − ξ2

ωv
at birth in locations where condition (4) is

met.

Since the non-immune are the most vulnerable, we must begin the control process with

them. This has led to a decline in morbidity and mortality. Effective control may also

contribute to the eventual eradication of malaria because requirement (3) is frequently

satisfied. A forward bifurcation of endemic steady states in the malaria model is possible,

according to simulations with realistic parameter settings. Because of this, eliminating

malaria may not always be feasible when R0 is less than 1. Even if malaria has been

completely eradicated in the region in question, a slight disturbance, such as ecological

changes, could still result in its reappearance in the three categories (mosquitoes, non-

resistant people, and semi-resistant people). In an area with low or moderate malaria

transmission, our model suggests that it is sufficient to target a control at a specific host

type to eradicate malaria. In a larger area where the birth rate of semi-resistant people is

much higher than the birth rate of non-resistant humans, malaria can always be kept un-

der control among the non-resistant population. Malaria can always be maintained under

control among the semi-resistant in a populated area where the birth rate of non-resistant

people is fairly high, followed by the birth rate of semi-resistant people. With the use of

vaccines, malaria can be fully eradicated in some regions where there is a low number of

human births. Based on the results of our investigation, we draw the conclusion that if a

vaccine or other straightforward preventive measure were to become available, it would
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be required to research the particular host type in order to entirely eradicate malaria. In re-

gions where we are unable to target a control toward either non-resistant or semi-resistant

host species to prevent the transmission of malaria, our model shows that malaria can

be entirely eradicated by controlling mosquitoes. Similar to this, malaria can always be

managed by employing non-resistant people in an area where the disease is endemic and

there is a high rate of births per person. Epidemiological outbreaks can occasionally oc-

cur in regions of the world where the spread of malaria is unpredictable and varies greatly

from year to year. Our analysis leads us to the conclusion that we need to pinpoint the

exact host type to focus on if we want to eradicate malaria. Even if a simple vaccine

or preventive measure were to become available, this would still be the case. Our model

shows that, even in environments where we are unable to direct a control toward either the

non-resistant human host type or the semi-resistant human host type, malaria can always

be entirely eradicated by controlling mosquitoes.

Even if doing so has a well-known result, it is frequently easier said than done. This is

because it is impossible to entirely eradicate mosquitoes in places where there is a sig-

nificant mosquito population. Even if these steps are feasible, they are very expensive.

On the other hand, by reducing the mosquito population in locations where malaria trans-

mission is comparatively weak, malaria can be successfully eradicated in areas with a

low mosquito population. Consider a region with a very low human birthrate per person,

which makes it possible for it to be disregarded, as in the scenario where condition (2) is

met. The semi-immune are the only ones who support the human population. Therefore,

we must target the semi-immune with the control in order to stop the sickness. In light

of this, if a vaccine were available, it would be sufficient to immunize any susceptible

semi-immune, and if condition (3) were satisfied, R2 might naturally be lower than one

in accordance with the theory known as transmission-blocking immunity, which consid-

ers that immunity reduces the transmission of parasites from semi-immune to mosquito).

As a result, the possibility of transmission from a person who is partially immune to a

mosquito is discounted. We must concentrate the control on non-immune people in or-

der to stop the disease from spreading since semi-immune people have a built-in immune

memory and there is less chance that an infected semi-immune will transmit the disease
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to a mosquito. Consequently, if a vaccine were to become available, it would be sufficient

to immunize every susceptible, non-immune person.

6.7 Numerical Simulation

Table (6.3) is plotted with a constraint worth mentioning in region two of the charitable

figure (6.2): R1 = 2.62339 > 1, R2 = 1.4225 > 1 and R0 = 2.97458 > 1, respectively.

Figure (6.3)is achieved with constraint ideals that are evident in Table (6.3) in region

one charitable R1 = 0.445567 < 1, R2 = 0.36789 < 1, R0 = 0.73795 < 1, ωe = 1.6876,

ωa = 17.29 andωv = 1.3937 with original situation: Ee = 0.000, Ea = 0.000, Ie = 2.0000,

Ia = 1.00, Ra = 29.000, Ev = 18.0000, Iv = 13.00, Nh = 395.00 and Nv = 13, 000.0000.

with the original situation. An example in mathematics is R0 = 2.9838,R1 = 2.6449 and

R2 = 1.4245 with the following primary situation: Ee = 0.000, Ea = 0.000, Ie = 2.00, Ia =

1.0000,Ra = 29.0000, Ev = 19.0000, Iv = 11.0000,Nv = 396 and Nv = 13, 000 are plotted

with constraint worth defined in Table (6.3) region one are specified in Figure (6.2). When

using the restrictions in Table (6.3), on region two, we were able to see the broad stability

values for the number of transferable non-resistant individuals in Figure (6.4).

Figure 6.2: Infectous and semi-infectious class: R1 > 1 and R2 > 1
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Table 6.3: The Base Line principles and variety for ten dimensional malaria model

No parameter (constraint) region one region two low high

1 λv 0.23 0.23 0.4 0.39

2 φve 0.0430 0.092 0.033 0.45

3 φva 0.044 0.044 0.03 0.49

4 φev 0.33 0.66 0.078 0.96

5 φav 0.09 0.6600 0.083 0.93

7 γe 0.3 0.3 0.087 0.45

8 γa 0.09 0.09 0.088 0.04

9 γv 0.091 0.094 0.094 0.33

10 αa 0.03 0.03 0.0025 0.035

11 αe 0.007 0.006 0.0066 0.087

12 µv 0.055 0.066 0.008 0.9

13 Υ 0.48 0.49 0.55 0.77

14 Ωa 0.88×10−5 0.45×10−4 0.33×10−3 0.77×10−6

Figure 6.3: Infectous and semi-infectious class: R1 < 1 and R2 < 1
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Figure 6.4: Forward birfication

6.8 Conclusion

In this section of the thesis, we examined a 10-compartmental mathematical model for

the transmission of malaria. We divided the human host into two major groups: the first

group, called non-immune, included all individuals who are not immune to malaria, and

the second group, called semi-immune, included those who are somewhat immune to

malaria. On the other hand, we divided non-immune persons into vulnerable, exposed,

and infectious groups as well as semi-immune people into vulnerable, exposed, and infec-

tious categories. Additionally, we separated the mosquito population into three categories:

vulnerable, exposed, and infectious. We provide an explicit formula for the reproduc-

tive number that depends on the weights of transmission from non-immune humans to

mosquito and from non-immune humans to mosquito, as well as the weights of transmis-

sion from semi-immune humans to mosquito and from mosquito to semi-immune humans.

As a result, the reproductive number for the entire population is equal to the square root

of the sum of the squares of these weights for the two types of interaction. The DFE point

is stable if R0 > 1, which indicates that the population is still infected with malaria, and

the DFE point is GAS if R0 ≤ 1, which indicates that the malaria dies off. We discuss the

potential for a control for malaria transmission throughout a specific sub-group such as

non-immune or semi-immune mosquitoes. The model’s results confirm that the disease

free equilibrium is asymptotically stable at the reproductive number less than one and un-

stable at the reproductive number greater than one. To present the findings and investigate

potential outcomes of the developed model, simulations are run. Our model has a sin-

gular, globally defined solution that stays in this area for all non-negative moments, and
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we have cleared this area of that solution. By using the local stability of the DFE point,

we were able to obtain an explicit formula for the reproductive number,R0. We discussed

R1, which is the weight of the transmission from semi-immune to mosquito and -semi-

immune and R2, which is the weight of the transmission from semi-resistant mosquito to

semi-resistant mosquito. When we attempted to evaluate the mathematical modeling of

malaria transmission in ten dimensions like we did the other mathematical modeling of

malaria transmission, it was challenging or we could not analyze some aspects due to the

number of dimensions.



Chapter 7

CONCLUSION AND

RECOMMENDATION

Smallpox, tetanus, and seasonal influenza are just a few of the illnesses that can be avoided

with vaccination. For some diseases, such as HIV, there is no vaccine against resistance.

According to one study, malaria is an infectious illness that passes between people through

mosquito bites and claims the lives of almost two million people every year. The pre-

vention of these diseases requires a multi-system approach, which includes the use of

vaccines that can be purchased. The spread of communicable diseases has a negative in-

fluence on the economics and population growth of non-vaccination countries, even when

vaccination campaigns are ineffectual. In this thesis, we look at the analysis of a S IR

model with reproduction number R0 and the analysis of a S IRV model with a new repro-

duction number Rv. Along with the relationship between the two models S IR and S IRV

with regard to the existence of the DFE and EE points, the viability of the solution, the

positivity of the solution, the reproductive number, and the analysis of the linear stability

and the global stability of both the models SIR and S IRV are all argued. In this thesis,

we extend the derivation and analysis to a five-compartmental mathematical model, with

three human factors and two insect factors, for better acceptance of the transmission of

malaria infection. This mathematical model with five compartments is analyzed by exam-
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ining the reproductive number, reproductive viability, equilibrium points, linear stability,

and global stability of the solution.

In order to better understand the transmission of malaria infection, we further expand the

derivation and analysis in this thesis to a ten-compartmental mathematical model with

four variables for semi-immune humans, three variables for non-immune humans, and

three variables for mosquitoes. The analysis of the reproductive number, equilibrium

points, linear stability, and global stability, as well as the viability and positivity of the

solution, are all included in this ten-compartment mathematical model’s investigation. It

progresses from straightforward analysis to intricate analysis, as we observed in our study

of the three, four, five, and ten-compartmental models. The ten-compartmental model in

particular was more challenging to assess and less clear-cut than the three, four, and five

compartmental models. Although it is advantageous to develop a ten-compartment math-

ematical model to better understand malaria transmission, we suggested that it would be

better to study a model with fewer compartments. It is common knowledge that Ethiopia

is one of the underdeveloped countries lacking adequate resources. We suggested to those

nations including Ethiopia that they lacked the resources necessary to comprehend the

life cycle of mosquitoes, how malaria is spread, and how to create a mathematical model

of malaria transmission in order to completely remove the disease from their populations.

When we studied the mathematical modeling of malaria transmission in ten compartments

like we did with the other mathematical modeling of malaria transmission, it was chal-

lenging or we couldn’t investigate some points because of the numbers of the dimensions.
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