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Abstract

The understanding of the nuclear breakup dynamics at sub-barrier incident energies,

remains a hot subject in Nuclear Physics. In this dissertation, the breakup of the weakly-

bound neutron-halo 11Be nucleus impinging on a lead target is investigated for sub-barrier

and around the Coulomb barrier incident energies. As theoretical framework, the contin-

uum discretized coupled channels (CDCC) formalism is used. The fundamental mathe-

matical description of this formalism leading to a discretized set of coupled di�erential

equations is outlined and the analytical expressions of the resulting coupling matrix ele-

ments as well as the breakup cross sections are derived.

The convergence of the angular-distributions breakup cross section is �rst checked against

various numerical parameters that are used in the numerical solution of the coupled di�er-

ential equations. The stability of the numerical calculations is further tested by comparing

the numerical results with the available experimental data.

Comparison of breakup cross section with the total fusion cross section, it is reported

that for incident energies below the Coulomb barrier, the breakup cross section is more

important than the total fusion cross section. This observation has also been reported

in the breakup of the proton-halo 8B on the same target nucleus, in a similar incident

energy range. It is found that this importance of the breakup cross section over its fusion

counterpart is due to a strong enhancement of the breakup cross section by the continuum-

continuum couplings. These couplings are otherwise known to strongly suppress the

breakup cross section for incident energies above the Coulomb barrier.

In order to further probe the enhancement of the breakup cross section by the continuum-

continuum couplings, the e�ect of these couplings on its Coulomb and nuclear breakup

components is analysed. It is shown that at sub-barrier incident energies, the continuum-

continuum couplings strongly enhance the Coulomb breakup cross section, whereas they

strongly suppress the nuclear breakup cross section. It followed that the enhancement

of the total breakup cross section by these couplings comes exclusively from its Coulomb

component. The argument is that the enhancement of the Coulomb breakup cross section

below the Coulomb barrier by the continuum-continuum couplings can be explained by

© University of South Africa 2024 iv



the projectile breakup on its outgoing trajectory. A dominant breakup channel over

other reaction channels at deep sub-barrier energies could be comprehensive to breakup

of weakly-bound systems and may be justi�ed by the projectile breakup on its outgoing

trajectory.

A paper manuscript based on these results has been submitted for review in the journal

of European Physical Letters.
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Chapter 1

Introduction

1.1 Background

The studies of the atomic nucleus can be traced back to the early 20th century, when

the famous Rutherford experiment was conducted by Geiger and Marsden. Motivated

by that experiment, tremendous progress have been made in order to understand nuclear

properties from both theoretical and experimental aspects. The atomic nucleus as basic

constituent of matter, provides a unique opportunity to study the competition between

strong, weak and electromagnetic forces. Therefore, understanding the nuclear structure

and reaction mechanisms is critical to other �elds, ranging from natural science to human

science.

Figure 1.1: Nuclear chart of weakly-bound two and three-body neutron and proton halo
nuclei.
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It is well-known that the chemical properties of an atom are mainly determined by its

atomic number (number of proton) Z. However, isotopes with di�erent number of neu-

trons N may exhibit di�erent properties. Such isotopes become more and more unstable

as the number of neutrons increases. As a result, beyond the neutron and proton drip-

lines on the nuclear chart (see Figure 1.1), no isotopes can be bound. Consequently, of

more than three thousand identi�ed nuclei, only a few hundred are known to be stable,

having a half-life longer than their natural existence. The remaining ones are referred

to as exotic nuclei, meaning that they are arti�cially produced and characterized. This

process is done in Radioactive Ion Beam (RIB) facilities, and hundreds of these facilities

have been set up around the world, with advanced equipment designed to produce and

detect exotic nuclei. Owing to these facilities, the nuclear chart is being expanded to

included more super-heavy elements. Since the discovery of exotic nuclei [1], the study of

halo and other loosely-bound nuclei remains one of the most attractive subjects in nuclear

physics as exempli�ed by Refs [2�88] among others. Quantum halos are considered as sys-

tems dominated with a few-body structure where nuclear larger radii than the size of the

classically allowed regions [89, 90]. As such, a halo system is de�ned as a compact cloud

of nucleons, the so-called core nucleus to which one, two or more nucleons (proton or neu-

tron) are weakly-bound. Due to the e�ect of the centrifugal barrier, nuclear halos occur

in states with low angular momentum (ℓ = 0, 1) [2], such that halo systems are de�ned as

s-state or p-state systems. Some of the well-known halo systems are 8B (7Be + p), 11Be

(10Be + n), 19C (18C + n). These are two-body halo systems since they are formed by a

core nucleus with one valence nucleon. When the valence nucleon is a proton, the system

is referred to as a proton-halo and when the valence nucleon is a neutron, the system is

referred to as a neutron-halo. Therefore, 8B is a proton-halo system, whereas 11Be and

19C are neutron-halo systems. When the core nucleus is surrounded by two nucleons, we

have a three-body halo system, such as 6He (4He + n + n) , 16Be (14Be + n + n), 22C

(20C+n+n), among others. A three-body system is called Borromean if none of its three

two-body sub-systems is bound.

© University of South Africa 2024 2



1.2 Statement of the problem and motivation

Because of their weak binding energies (low breakup threshold), weakly-bound nuclei

break up easily when they come in contact with a target nucleus, or if it enters a Coulomb

�eld of a heavy target nucleus. Consequently, breakup reactions, where a weakly-bound

nucleus is dissociated into its constituent fragments, are considered to be one of the

adequate tools to probe the structures of weakly-bound systems. The study of e�ect of

the breakup channel on other reaction channels such as elastic scattering, fusion, among

others, is the most interesting subject in this �eld, for example see Refs. [4�17], and

references therein. The breakup process of a weakly-bound projectile is mainly caused by

two main sources: Coulomb and nuclear forces, leading to Coulomb and nuclear breakups.

Despite a spectacular progress in the study of both Coulomb and nuclear breakups over

the past few decades, several questions are yet to be fully elucidated. For example: how

do the Coulomb and nuclear forces interfere to produce the total breakup? What is the

role of the Coulomb-nuclear interference in the breakup process? Which of the Coulomb

and nuclear breakups is more dominated by couplings among the projectile continuum

states (continuum-continuum couplings)? How do couplings to breakup channels suppress

the Coulomb-nuclear interference peak in the elastic scattering cross section?

Studies in this �eld are mainly focused on incident energy around and above the Coulomb

barrier. A recent experimental measurement of the breakup of 8B system on a lead target

at deep sub-barrier energies by Pakou et al., [21], yielded quite interesting results. The

breakup channel is reported to be the main reaction channel at these energies, overtaking

the fusion channel. Intuitively one assumes that at deep sub-barrier energies, the reaction

should be dominated by reaction channels other than the breakup channel, given the fact

that at such energies, the projectile can be expected to breakup in the absorption region,

where its fragments have low probability to survive absorption. A subsequent study in

Ref. [22], showed that the predominance of the breakup channel over the fusion chan-

nel in this incident energy region can be ascribed to couplings among continuum states.

These couplings are otherwise known to strongly suppressed the breakup cross section at

incident energies above the Coulomb barrier, see for instance Refs. [4,5,23�27]. However,

in Ref. [22], it is reported that these couplings rather enhance the breakup cross section

© University of South Africa 2024 3



below and around the Coulomb barrier and that could be the main reason the breakup

channel becomes dominant in this incident energy region. It is further suggested in that

reference, that this enhancement could signal a projectile breakup on the outgoing trajec-

tory. Whether the projectile breaks up on its incoming trajectory towards the target or

on its outgoing trajectory as it leaves the target and how does that a�ect the breakup dy-

namics remains an open question. A following analysis of the same reaction in Ref. [95],

within the same incident energy range, further con�rmed the �ndings of Ref. [21], by

indicating the e�ect of Coulomb polarization in the proton halo case, with the correla-

tion information revealing that the prompt breakup mechanism is dominant, occurring

predominantly on the outgoing trajectory. This assertion corroborates the suggestion

anticipated in Ref. [22] on the breakup of the projectile on the outgoing trajectory.

The results in Refs. [21,22,95], deserve further investigation in order to better understand

the breakup dynamics at deep sub-barrier energies. For example, does the enhancement of

the breakup cross section by the continuum-continuum couplings at sub-barrier energies

come from the Coulomb or nuclear component? An answer to this question could be a

further step towards an understanding of the breakup on the outgoing trajectory. Related

to the competition between the breakup and fusion channels below the Coulomb barrier,

it was also shown in Refs. [54, 94], that the breakup cross section is dominant over the

fusion cross section for a heavy target, by considering the 6Li as the projectile (treated as

a weakly-bound cluster of an alpha particle and a deuteron), on a lead target.

The results reported in Refs. [21, 22, 95], were obtained for a proton-halo projectile. In

order to test their universality, one would consider the neutron-halo projectile as well.

The fundamental di�erence between proton- and neutron-halos is the presence of the

Coulomb interaction in the core-proton system that creates a Coulomb barrier within

the system, which is absent in the core-neutron system since the neutron is not charged.

The Coulomb barrier serves con�ne the valence proton in the neighbourhood of the core

nucleus, as opposed to the neutron-halo case. Therefore, the neutron is expected to

be located at a larger distance from its core, compared to the proton, such that the

neutron-halo ground state wave function exhibits a longer tail compared to the proton-halo

ground state wave function for comparable proton-halo and neutron-halo ground-state

© University of South Africa 2024 4



binding energies. Given the asymptomatic nature of the breakup process, the neutron-

halo breakup cross section is then expected to be larger in magnitude compared to the

proton-halo breakup cross section. It is therefore important to verify whether the Coulomb

barrier in the core-proton system has anything to do with the importance of breakup

channel over other reaction channels at sub-barrier incident energies, by performing a

similar study with a neutron-halo projectile. Such study would also serve to generalize

the results of Refs. [21, 22,95].

1.3 Aims and objectives of the study

The main objective of the present study is to extend the study in Refs. [21, 22, 95], to a

neutron-halo system in an e�ort to test their universality. To this end, we consider the

breakup of the 11Be neutron-halo projectile on a lead target, at incident energies below

and around the Coulomb barrier. We aim to verify whether for nucleus, where there is no

Coulomb barrier between the core nucleus and the valence neutron, the breakup cross sec-

tion is more important than the total fusion cross section at sub-barrier incident energies.

Therefore, this study will implicitly reveal the role of the core-proton Coulomb barrier

on the results in Ref. [21, 22, 95], in order to better understand the breakup dynamics at

deep sub-barrier energies. In order to extend the study of Ref. [22], we will consider the

e�ect of the couplings among continuum states on the Coulomb and nuclear breakup cross

sections at sub-barrier incident energies. We will also investigate whether at sub barrier

incident energies the breakup of the projectile nucleus occurs on its incoming or outgoing

trajectory. The 11Be nucleus is a well-known one-neutron halo nucleus [7,90,105,106] and

have been extensively investigated, both theoretically and experimentally, as evidenced

by Refs. [4, 7, 10,16,26,29,36,37,41,59,64,105,107,108].

The 11Be nucleus, being the lightest established one neutron-halo system, is a suitable

candidate in the attempt to extend the study of the 8B proton-halo system to its neutron-

halo counterpart, given the fact that their masses and charges are comparable. However,

a study of the relevance of the projectile charge and mass on the breakup cross section

is reported in Ref. [3, 94]. It is shown in Ref. [3], that two neutron-halo systems with

equivalent ground-state structures, account for di�erent breakup cross sections in mag-
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nitude, due to a di�erence of only one unit in their electric charges. In Ref. [94], it is

found that actually the charge and mass of the projectile nucleus could account to similar

e�ects on the breakup cross sections. Again, if the present study proves that the breakup

cross section remains larger than the total fusion cross section at incident energies below

the Coulomb barrier, that would imply that the charge and atomic mass of the projectile

might have limited e�ect on this feature.

1.4 Methodology

To study the breakup reactions involving weakly-bound projectiles can prove to be a

challenging task, in particular from a numerical point of view. The reason is that as al-

ready mentioned elsewhere, these reactions are characterized by strong couplings among

continuum states of the projectile nucleus. The continuum-continuum couplings matrix

elements contain an integration over a product scattering wave functions, which are not

square-integrable, making such integration highly oscillatory. As a result, the matrix

elements of the continuum-continuum couplings cannot converge and even so for the

breakup observables. Such problem is addressed by the continuum discretized coupled-

channel (CDCC) method [91�93]. Within this method, the projectile's in�nite continuum

is truncated subject to convergence requirements, and the continuum wave functions are

transformed into square-integrable bin wave functions. This leads to the convergence of

the radial integral of the continuum-continuum couplings matrix elements. This method

also accurately includes the continuum-continuum couplings in the coupling matrix ele-

ments, and it treats the Coulomb and nuclear breakups on the same footing. Its other

advantage is that it takes into account multipole excitations as well as the �nal state

interaction e�ects. As such, this method is known to be the most adequate theoretical

tool to probe breakup reactions induced by weakly-bound projectiles. It is therefore the

method that we also adopt in the present work. For the sake of simplicity, we will not

take into account any target excitations other than those induced by the projectile-target

optical potentials. Upon the expansion of projectile-target wave function on the projec-

tile internal states (bound and continuum states), a discretized set of coupled di�erential

equations will be obtained. These equations are transformed into an eigen-value problem
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which can be solved iteratively [114, 115]. By imposing the appropriate boundary scat-

tering conditions, the scattering matrix elements are obtained, from which the breakup

observables are derived. The stability of our numerical calculations will be tested by

analysing the convergence of the breakup cross sections against various parameters such

as the the projectile continuum orbital angular momenta, among others. A detailed anal-

ysis of the projectile internal structure will be considered given its paramount importance

in the breakup process.

1.5 Structure of the Dissertation

This dissertation is structured in the following order: in Chapter 2, we discuss the basic

theory of two-body halo systems as well as the Continuum Discretized Couple Channel

(CDCC) method. Chapter 3 covers the theoretical description of the three-body scattering

systems. The three-body wave function is expanded on the bound-state and bin states

of the projectile nucleus, leading to a set of coupled di�erential equations. In Chapter

4, the details of the numerical calculations are described. The results are presented and

discussed in Chapter 5, whereas the conclusion remarks are reported in Chapter 6.
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Chapter 2

Theoretical description of two-body

bound and scattering states

This chapter, outline the theoretical description of two-body bound- and scattering states.

The Hamiltonian of the system and the Schrödinger equation describing the relative mo-

tion of the system, as well as the associated boundary conditions are discussed. We are

considering a system consisting of a core nucleus (denoted �c�), and a valence nucleon

(denoted �v�). In a general description, the spin of the core nucleus is denoted by I, and

s denotes the spin of the valence nucleon. The relative motion of the core-nucleon system

is denoted by r, which will be referred to as the projectile internal coordinate in chapter

3. The Schrödinger equation describing the relative motion of the two body-system is

given by

Hcvϕ(r) = εcvϕ(r), (2.1)

where ϕ(r), is the wave function, εcv the total energy
εcv < 0 bound state,

εcv > 0 scattering states,

(2.2)

and Hcv, is the two-body Hamiltonian de�ned as

Hcv = T̂r + Vcv(r), (2.3)
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with Vcv(r), the core-nucleon interacting potential, and T̂r, the kinetic energy operator

which is de�ned as follows

T̂r = − ℏ2

2µcv

∇2
r, (2.4)

where µcv, is the core-nucleon reduced mass, it is given by

µcv =
mcmv

mc +mv

, (2.5)

with mc, mv, being the respective atomic masses the core nucleus and valence nucleon,

and ∇2
r the nabla operator is de�ned, in spherical coordinates (r, θr, ϕr) as

∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin2 θr

∂

∂θr

(
sin θr

∂

∂θr

)
+

1

r2 sin2 θr

∂2

∂ϕ2
r

. (2.6)

If we de�ne the the squared angular momentum operator ℓ̂2 as

ℓ̂2 = −ℏ2
[

1

sin2 θr

∂2

∂ϕ2
r

+
1

sin θr

∂

∂θr

(
sin θr

∂

∂θr

)]
, (2.7)

whose z-projection ℓ̂z is given by

ℓ̂z =
ℏ
i

∂

∂ϕr

, (2.8)

then equation (2.6) becomes,

∇2
r =

1

r2
∂

∂r

(
r2
∂

∂r

)
+

ℓ̂2

r2
. (2.9)

Substituting equation (2.6), into equation (2.4) the kinetic energy operator becomes

T̂r = − ℏ2

2µcv

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

ℓ̂2

r2

]
. (2.10)

Taking Vcv(r) as a spherical potential, equation (2.6) makes the Hamiltonian Hcv to

commute with the angular momentum operator ℓ̂ and its z-projection ℓ̂z.

If the internal degrees of freedom of the interacting particles are taken into account, the
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wave function ϕ(r), can be written as

ϕ(r) = iℓ
[
[Y ν

ℓ (r̂)⊗X µ
s ]jmj

⊗X σ
I

]
jabΛ

ujabkℓ (r)

r
, (2.11)

where Y ν
ℓ (r̂) is a spherical harmonics [with r̂ ≡ (θr, ϕr), is the angular part of the coordi-

nate r], ν the z-projection of the orbital angular momentum ℓ associated with coordinates

r], X µ
s is the wave function nucleon's spin (with µ is the z-projection of the nucleon's spin

s). To obtain the angular momentum j, we couple the orbital angular momentum ℓ with

the spin s (j = ℓ + s, with mj = ν + µ, its z-projection, ), X σ
I is the wave function of

the core's spin (with σ the z-projection of I), and jab is the total angular momentum

(jab = j + I), and Λ = mj + σ its z-projection. In equation (2.11), ujabkℓ (r) is the radial

part of the wave function, with k the relative wave number de�ned as

k =

√
2µcvεcv

ℏ2
. (2.12)

The wave function can be identi�ed by the various quantum numbers and write it as

ϕΛ
γ (r) = iℓ

∑
νµ

∑
mjσ

⟨ℓνsµ|jmj⟩⟨jmjIσ|jabΛ⟩Y ν
ℓ (Ωr̂)X µ

s X σ
I

ujkℓ(r)

r
, (2.13)

where γ ≡ (k, ℓ, s, j, I, jab) represents a set of quantum numbers that describing a state

of the system, ⟨....|..⟩ is the Clebsh-Gordon coe�cient [101]. For a core nucleus with

zero spin (I = 0), such that jab = j, γ ≡ (k, ℓ, s, j), equation (2.13), can be reduced to

following simpler form

ϕmj
γ (r) = iℓ

∑
νµ

⟨ℓνsµ|jmj⟩Y ν
ℓ (Ωr̂)X µ

s

ujkℓ(r)

r
. (2.14)

It can be shown that the radial wave function ujkℓ(r) satis�es the following di�erential

equation

[
− ℏ2

2µcv

(
d2

dr2
− ℓ(ℓ+ 1)

r2

)
+ Vcv(r)

]
ujkℓ(r) = εcvu

j
kℓ(r), (2.15)

where ℓ(ℓ+ 1)/r2, is the centrifugal barrier.
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2.1 Boundary conditions

The solution of the di�erential equation (2.15), requires one to implement the asymptotic

appropriate boundary conditions for bound states and scattering states.

2.1.1 Boundary conditions for bound-states

Considering a bound-state, the boundary conditions are such that the wave function

ujbkbℓb(r) is regular at origin [ujbkbℓb(r) → 0, r → 0, where ℓb and jb represent the bound state

orbital and total angular and kb the corresponding relative momentum and asymptotically

vanishes in the asymptotic region, i.e., r → ∞. That is

ujbkbℓb(r)
r→∞→ Cℓb ,jb W−ηb,ℓb+

1
2
(2kbr), (2.16)

where Cℓb ,jb , represents the asymptotic normalization coe�cient, and ηb = −iη, the di-

mensionless Sommerfeld parameter

ηb =
µcv

ℏ2
ZcZve

2

k
, (2.17)

with Zc, Zv, being the numbers of the core nucleus and nucleon (Zv = 1), andW−ηb,ℓb+
1
2
(2kbr),

the Whittaker function [100], which has the following asymptotic form

W−ηb,ℓb+
1
2
(2kbr)

r→∞→ e−kbr+ηb ln(2kbr), (2.18)

with ηb and kb given by

ηb =
−iZcZve

2µcv

ℏ2kb
, kb = i

√
−2µcvεcv

ℏ2
, (2.19)

where εcv < 0, is the binding energy. If the nucleon is a neutron (Zv = 0), then ηb = 0,

and equation (2.20) reduces to

ujbkbℓb(r)
r→∞→ Cℓbjbe

−kbr. (2.20)
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The bound-states are normalized according to

∫ ∞

0

|ujbkbℓb(r)|
2dr = 1, (2.21)

and ful�ll the following orthogonality relation

⟨ukbαb
(r)|ukbα′

b
(r)⟩ = δαbα

′
b
, (2.22)

where αb = (ℓb, s, jb) is a set of bound-state quantum numbers describing the projectile

bound-state.

2.1.2 Boundary conditions for scattering states

Considering scattering states, the wave function remains regular at the origin, and is

asymptotically normalized according to

ujkℓ(r)
r→∞→ Fℓ(η, kr) cos δℓj(k) +Gℓ(η, kr) sin δℓj(k), (2.23)

where δℓj(k), represents the nuclear phase shift, and Fℓ(η, kr) and Gℓ(η, kr) are regular

and irregular Coulomb functions [114], with the following asymptotic behaviour

Fℓ(η, kr)
r→∞→ sin

[
kr − η ln(2kr)− ℓπ

2
+ σℓ

η(k)

]
,

Gℓ(η, kr)
r→∞→ cos

[
kr − η ln(2kr)− ℓπ

2
+ σℓ

η(k)

]
, (2.24)

where σℓ
η(k), represents the Coulomb phase shift and it is de�ned as

σℓ
η(k) = arg Γ(1 + ℓ+ iη), η =

µcvZcZve
2

ℏ2k
(2.25)

© University of South Africa 2024 12



with Γ(x), the Gamma function. Again, in the case of a valence neutron, the Coulomb

functions are reduced to spherical Bessel functions jℓ(kr) and nℓ(kr), with

jℓ(kr)
r→∞→ sin

(
kr − ℓπ

2

)
,

nℓ(kr)
r→∞→ cos

(
kr − ℓπ

2

)
, (2.26)

and they are generally de�ned as

jℓ(kr) = (−r)ℓ
(
1

r

d

dr

)ℓ
sin(r)

r
,

nℓ(kr) = −(−r)ℓ
(
1

r

d

dr

)ℓ
cos(r)

r
. (2.27)

In such a case equation (2.23) becomes,

ujkℓ(r)
r→∞→ sin

(
kr − ℓπ

2
+ δℓj(k)

)
. (2.28)

Considering an s-state, equation (2.29), becomes

ujkℓ(r)
r→∞→ sin

(
kr + δℓj(k)

)
. (2.29)

Although scattering wave functions are not square-integrable, they are known to satisfy

the following orthogonality relation

〈
ujkℓ(r)|uj

′

k′ℓ′(r)

〉
= δ(k − k′)δℓℓ′δjj′ , (2.30)

where δaa′ , is the delta function. Scattering states are orthogonal to bound states,

i.e.,

〈
ujkℓ(r)|ujbkbℓb(r)

〉
= 0. (2.31)
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For an accurate description of the breakup process, the exact scattering wave function

ψ+
kνµ(k, r), is needed which is obtained by the following expression

ψ+
kνµ(r) →

1

(2π)3/2

[
eik·r + f(Ω)

eikr

r

]
, (2.32)

where eik·r, represents the the incoming plane wave, f(Ω) the scattering amplitude, and
eikr

r
, the outgoing spherical wave. Following Ref. [55], we can expand the wave function

ψ+
kνµ(r), as follows

ψ+
kνµ(r) →

1

(2π)3/2

∑
γ

Cγϕ
mj
γ (r), (2.33)

where the coe�cient Cγ is de�ned as

Cγ =
4π

kr
eiδℓ(k)+σℓ(k)

∑
νµ

⟨ℓνsµ|jmj⟩Y ν⋆
ℓ (Ωk), (2.34)

where σℓ(k) is the Coulomb phase shift, given by equation (2.25).

2.2 Discretization of the continuum

Unlike the bound-state, scattering states are in�nite, and scattering wave functions are

actually not square-integrable. As we have indicated in the introduction, this non square-

integrability poses a serious challenge to any numerical treatment of an integral that

involves two scattering wave function. Within the Continuum Discretized Couple Channel

(CDCC) formalism, the scattering wave function is reduced to a set of discretized bin

wave functions that are square-integrable. Being square-integrable, they almost exhibit

similar asymptotic behaviour as bound-state wave functions. Two di�erent techniques are

commonly used to obtain the bin wave function. The binning technique [92,114] and the

pseudo-state technique [66]. It has been shown in Ref [66, 92], that these two techniques

produce equivalent results. In either techniques, the orbital angular momentum ℓ is

truncated by ℓmax, and the continuous relative momentum k, is truncated by kmax. In

the pseudo-state technique, the internal Hamiltonian Hcv, of the projectile is diagonalized

using some basic functions. For instance, the Lagrange-Legendre functions were used in
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Ref. [58]. In the binning technique, which we adopt in this work, the truncated momentum

interval [0, kmax] discretized into Nb bins [k1, k2], [k2, k3],. . . [kNb−1, kNb
]. The width of each

bins is ∆k=ki − ki−1, with i = 1, 2, 3, . . . Nb), and averaged over the relative momentum

k [6, 114]. With this technique, the following square integrable bin wave functions φα(r)

are obtained

φα(r) =

√
2

πWα

∫ ki

ki−1

gα(k)u
j
kℓ(r)dk, (2.35)

where α = (i, ℓ, s, j) stands for the set of quantum numbers which describe the bin

states, gα(k), the weight function andWα, is the normalization coe�cient which is de�ned

as

Wα =

∫ ki

ki−1

|gα(k)|2dk. (2.36)

The wave function φα(r) is normalized according to

⟨φα(r)|φα′(r)⟩ = δαα′ . (2.37)

The bin energies εα given by [114]

εα =
ℏ2

2µcv Wα

∫ ki

ki−1

k2|gα(k)|2dk. (2.38)

The choice of the weight function gα(k) is based on the bin's state. For non s-state wave

and non-resonant bins, gα(k) = 1, such that

Wα =

∫ ki

ki−1

dk = ki − ki−1 = ∆ki. (2.39)
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In that case, the bin energies are

εα =
ℏ2

2µcv Wα

∫ ki

ki−1

k2|gα(k)|2dk

=
ℏ2

2µcv Wα

∫ ki

ki−1

k2dk

=
ℏ2

2µcv Wα

× 1

3

[
k3
]ki
ki−1

=
ℏ2

2µcv Wα

× 1

3

(
k3i − k3i−1

)
(2.40)

=
ℏ2

2µcv Wα

× 1

3

(
ki − ki−1

)(
k2i + kiki−1 + k2i−1

)
=

ℏ2

2µcv

× 1

3

(
k2i + kiki−1 + k2i−1

)
.

For s-wave bins, it is convenient to set gα(k) = k. This choice is useful in stabilizing the

extraction of the three-body transition amplitude [6,114]. In that case, the normalization

coe�cient becomes

Wα =

∫ ki

ki−1

k2dk =
1

3

(
k3i − k3i−1

)
(2.41)

=
∆ki
3

(
k2i + k2i−1 + kiki−1

)
,
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and the bin energies are then given by

εα =
ℏ2

2µcv

1

Wα

∫ ki

ki−1

k4dk

=
ℏ2

2µcv

× 1

5Wα

(k5i − k5i−1)

=
ℏ2

2µcvWα

× 1

5

(
(ki − ki−1)(k

4
i + k3i ki−1 + k2i k

2
i−1 + kik

3
i−1 + k4i )

)

=
ℏ2

2µcvWα

× ∆ki
5

(
k4i + k3i ki−1 + k2i k

2
i−1 + kik

3
i−1 + k4i

)
(2.42)

=
ℏ2

2µcv

× 3∆ki
5∆ki

(
k4i + k3i ki−1 + k2i k

2
i−1 + kik

3
i−1 + k4i

k2i + kiki−1 + k2i−1

)

=
ℏ2

2µcv

× 3

5

(
k4i + k3i ki−1 + k2i k

2
i−1 + kik

3
i−1 + k4i

k2i + kiki−1 + k2i−1

)
.

For resonant bins, we follow [27], and write the weight function as

gα(k) =

∣∣∣∣ i
2
Γ

εα − Er +
i
2
Γ

∣∣∣∣, (2.43)

where the resonance width Γ is given by equation (2.44) and the phase shifts δℓj(k) is also

used to de�ne the resonance state parameters

Γ = 2

[
∂

∂ε
cot δℓj

]−1

. (2.44)

2.3 Core-nucleon interacting potentials

The core-nucleon potential Vcv(r), is an important input that enters into the Schrödinger

equation. The general form of this potential is the following

Vcv(r) = V nucl
cv (r) + V coul

cv (r) + Vcent(r), (2.45)
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where V nucl
cv (r), is the nuclear component, V coul

cv (r), the Coulomb component, and Vcent(r),

the centrifugal component. The nuclear component is de�ned as

V nucl
cv (r) = V nucl

0 (r) + V nucl
SO (r), (2.46)

where V nucl
0 (r), represents the central part and V nucl

SO (r), the spin-orbit coupling part. The

literature o�ers a variety of form factors of the nuclear potential, one of the popular ones

is the Woods-Saxon form factor, where V nucl
0 (r) and V nucl

SO (r) are de�ned as

V nucl
0 (r) =

V0[
1 + exp

(
r−R0

a0

)]
V nucl
so (r) =

(
ℏ
mπc

)2
(ℓ · s)
r

d

dr

VSO[
1 + exp

(
r−RSO

aSO

)] (2.47)

= −
(

ℏ
mπc

)2
(ℓ · s)VSO

r

exp
(

r−RSO

aSO

)
aSO

[
1 + exp

(
r−RSO

aSO

)]2 ,
V0 (in MeV) is depth of the central part, and VSO (in MeV · fm2), is depth of the spin-orbit

coupling part, (Rx, ax) [x ≡ (0, SO)] are the corresponding radii and di�useness, respec-

tively,
( ℏ
mπc

)2 ≃ 2 fm2, and the spin-coupling factor is ℓ · s = [j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)]/2.

From equation (2.47), we can see that the the potential V nucl
cv (r) vanishes for large values

of r, and in fact, this occurs when r ≥ Rx. This re�ects the short-range character of the

nuclear potential, owing to the short-range nature of nuclear forces.

As for the Coulomb potential, we consider it to be a point-like sphere, and it is given

by

V coul
cv (r) =



ZcZve
2

RC

(
3
2 − r2

2R2
C

)
r ≤ RC ,

ZcZve
2

r r > RC ,

(2.48)
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where RC , represents the Coulomb radius. The centrifugal component is given by

V cent
cv (r) =

ℓ(ℓ+ 1)

r2
, (2.49)

and does not exist for an s-state.

In this chapter, we have described the fundamental basis of two-body systems where we

considered bound and scattering states. Boundary conditions in each case were discussed

boundary conditions. The two-body potential, which is a crucial input in the numerical

evaluation of the two-body Schrödinger equation is also discussed. The basis of the CDCC

method, where the scattering wave functions are transformed into square-integrable bin

wave functions has also been outlined. In chapter 3, we focus on the dynamics of the three-

body system, where the two-body described in this chapter will serve as the projectile

nucleus.

© University of South Africa 2024 19



Chapter 3

Scattering of three-body systems

3.1 Description of a three-body system

In chapter 2, the fundamentals of a two-body problem are discussed, where two-body

bound and scattering states are described. Although the description is valid for any two-

body system, we assumed that the system is composed of a core nucleus and valence

nucleon. In this chapter, we are going to identify such two-body system as the projectile

nucleus (p) which is scattered o� a target nucleus (t). In that case, when such projectile

interacts with the target one obtains a three-body system (c+ v+ t). The Jacobi coordi-

nates of this system are represented in �gure 3.1. In that �gure, R is relative coordinate

in the projectile-target center-of-mass , Rct is the core-target coordinate and Rvt is the

nucleon-target coordinate. The coordinates r and R can be expressed in terms of the

particles internal coordinates as follows

r = rc − rv,

R = rt −
mcrc +mvrv
mc +mv

, (3.1)

where rv, rc and rt, are valence nucleon, core nucleus and target nuclei internal coordi-

nates, respectively. The coordinatesRct andRvt are obtained from the relative coordinate

r and R as follows

Rct = R− mv

mc +mv

r,

Rvt = R+
mc

mc +mv

r. (3.2)
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Figure 3.1: Representation of Jacobi coordinates for a the three-body system.

3.2 Schrödinger equation for a three-body system

We consider the three-body wave function ΨJM(r,R) that satis�es the Schrödinger equa-

tion

(Hpt − E)ΨJM(r,R) = 0, (3.3)

where E is the total energy, J , the total angular momentum, (which is constant of motion,

with M z-projection of J), and Hpt the three-body Hamiltonian de�ned as

Hpt = Hcv + T̂R + Upt(r,R), (3.4)

where Hcv, is the two-body Hamiltonian given by equation (2.3), T̂R, is the kinetic energy

operator de�ned as

T̂R = − ℏ2

2µpt

∇2
R, (3.5)

with µpt, being the reduced mass of the projectile-target system, and ∇2
R, is the usual

nabla operator. In equation (3.4), Upt(r,R) is the three-body potential. This potential has

two components, namely the core-target potential Uct(Rct) and valence-target potential

Uvt(Rvt), i.e.,

Upt(r,R) = Uct(Rct) + Uvt(Rvt)

= V Coul
ct (Rct) + UNucl

ct (Rct) + V Coul
vt (Rvt) + UNucl

vt (Rvt), (3.6)
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where V Coul
a (Ra) and U

nucl
a (Ra) are Coulomb and nuclear components (a = ct, vt). The

nuclear potential contains two parts: a real part and an imaginary one, that is

Unucl
xt (Rxt) = Vxt(Rxt) + iWxt(Rxt), (3.7)

where Vxt(Rxt) is the real part and Wxt(Rxt) the imaginary part.

3.3 Expansion of the three-body wave function

The three-body wave function ΨJM
Kγ

(r,R) is expanded on the projectile internal states as

follows (considering an inert target nucleus)

ΨJM
Kγ

(r,R) =
∑
αb,L

FLJ
αb

(R)

R
YLJ

αb
(r,ΩR̂) +

∑
γ,L

∫
FLJ
γ (R)

R
YLJ

γ (r,ΩR̂)dR, (3.8)

where FLJ
αb

(R) and FLJ
γ (R), are respectively the radial components of the wave function

in the elastic scattering and breakup channels, and YLJ
αb

(r,ΩR̂) and YLJ
γ (r,ΩR̂) are the

corresponding channel wave functions, with ΩR̂, the angular part of the coordinate R

(ΩR̂ ≡ (θ, ϕ)), and Kαb
and Kγ are the the initial and �nal linear momenta. They are

related through the conservation of energy

ℏ2

2µpt

K2
γ + εγ =

ℏ2

2µpt

K2
αb

+ εαb
. (3.9)

In Eq(3.8) the channel wave functions are de�ned as

YLJ
αb

(r,ΩR̂) = iL
[
ϕ
mjb
αb (r)⊗ Y ML

L (ΩR̂)
]
JM
,

YLJ
γ (r,ΩR̂) = iL

[
ϕmj
γ (r)⊗ Y ML

L (ΩR̂)
]
JM
, (3.10)

where ϕ
mjb
αb (r) is the bound-state wave function identi�ed by equation (2.11) [whose radial

part is normalized according to equation (2.20)], and ϕ
mj
γ (r) is the scattering wave func-

tion, and its radial part is normalized according to equation (2.23), and Y ML
L (ΩR), are

spherical harmonics, with L, the orbital angular momentum related to relative coordinate

R. The total angular momentum is then given by J = L+ j.
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In equation ((3.8), �rst sum runs over the internal bound-states of the projectile and the

second sum over the scattering states. For a system with only one bound-state, the �rst

sum has one term. However, due to the in�nite number of scattering states, the second

sum runs to in�nity, and in that case, the wave function (3.8) has an in�nite number of

terms, leading to numerical intractability. In order to reduce the expansion (3.8) to a

�nite number of terms for numerical purpose, we apply the CDCC formalism outlined in

Section 2.2. To this end, the wave function ΨJM
Kγ

(r,R) is approximated by the following

CDCC wave function

ΨJM
Kβ

(r,R) =
∑
αb,L

FLJ
αb

(R)

R
YLJ

αb
(r,ΩR̂) +

∑
α,L

FLJ
α (R)

R
Y LJ

α (r,ΩR̂), (3.11)

where the subscript β ≡ (αb, α) reduces to αb = (ℓb, s, jb) in the elastic channel and

to α = (i, ℓ, s, j) in the breakup channel, and the discretized channel wave function

Y LJ
α (r,ΩR̂) is given by

Y LJ
α (r, R̂) = iL

[
Φmj

α (r)⊗ Y ML
L (ΩR̂)

]
JM

= iℓ+L
∑
νµ

∑
mjML

⟨ℓνsµ|jmj⟩⟨jmjLML|JM⟩Yℓ(Ωr̂)YL(ΩR̂)Xs
φα(r)

r
,

(3.12)

with Φ
mj
α (r), being the discretized wave function which contains the bin wave function

φα(r) (2.35).

3.4 Coupled di�erential equations

The substitution of the expansion (3.11) into the Schrödinger equation, yields the following

set of coupled di�erential equations

[
TR + V LJ

ββ (R) + εβ − E
]
FLJ
β (R)−

∑
β ̸=β′

iL−L′
V L′J
ββ′ (R)FL′J

β′ (R) = 0, (3.13)
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where the kinetic energy term TR is given by

TR = − ℏ2

2µpt

[
d2

dR2
− L(L+ 1)

R2

]
, (3.14)

and V LJ
ββ (R) and V LL′J

ββ′ are coupling matrix elements, where V LJ
ββ (R), represents the di-

agonal coupling matrix elements and V LL′J
ββ′ stands for the o�-diagonal coupling matrix

elements, with

V LJ
ββ (R) = Vαbαb

(R) + Vαα(R)

V LL′J
ββ′ (R) = Vαbα′(R) + Vαα′(R). (3.15)

In this equation, Vαbαb
(R), is the coupling matrix elements in the elastic scattering channel,

Vαα(R), is the coupling matrix elements among that couple diagonal continuum states,

Vαbα′(R), is the coupling to and from the bound-state, and Vαα′(R), is for the o�-diagonal

continuum-continuum couplings. The coupling matrix elements are given by the following

equation

V LL′J
ββ′ (R) =

〈
YLJ

αb
(r,ΩR̂)|Upt(r,R)|Y LJ

α (r,ΩR̂)
〉

(3.16)

+
〈
Y LJ

α (r,ΩR̂)|Upt(r,R)|Y L′J
α′ (r,ΩR̂)

〉
,

where the wave function Y LJ
α (r, R̂), is given by equation (3.12), and optical potential

Upt(r,R) by equation (3.6).

3.5 Calculation of the coupling matrix elements

To solve the coupled di�erential equations (3.13), the coupling matrix elements must be

evaluated. To this end, the three-body potential Upt(r,R) �rst is expanded in potential
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multipole with multipole order λ as

U(r,R) =
λmax∑
λ=0

Uλ(r, R)Pλ(cos θ)

=
λmax∑
λ=0

Uλ(r, R)
4π

2λ+ 1

λ∑
ϑ=−λ

Y ϑ
λ (Ωr̂) · Y ϑ⋆

λ (ΩR̂) (3.17)

=
λmax∑
λ=0

4π

2λ+ 1
Uλ(r, R)Yλ(Ωr̂) · Yλ(ΩR̂),

where λmax is the maximum multipole order, Pλ(cos θ) are Legendre polynomials, and

Uλ(r, R) are potential multipole, which we can de�ne as

Uλ =
2λ+ 1

2

∫ 1

−1

Upt(r,R)Pλ(z)dz, (3.18)

with z = cos θ. Substituting the expansion (3.17), into equation (3.16), yields

Vαα′(R) =

〈
Y LJ
α (r,Ω

R̂
)

∣∣∣∣ λmax∑
λ=0

4π

2λ+ 1
Uλ(r,R)Yλ(Ωr̂) · Yλ(ΩR̂

)

∣∣∣∣Y LJ
α′ (r,Ω

R̂
)

〉

=

λmax∑
λ=0

4π

2λ+ 1

〈
Y LJ
α (r,Ω

R̂
)

∣∣∣∣Uλ(r,R)Yλ(Ωr̂) · Yλ(ΩR̂
)

∣∣∣∣Y LJ
α′ (r,Ω

R̂
)

〉
. (3.19)

Substituting equation (3.12) into equation (3.19), one obtains

Vαα′(R) = iℓ+ℓ′+L+L′
λmax∑
λ=0

4π

2λ+ 1

∑
νν′µ

∑
mjmj′MLML′

⟨ℓνsµ|jmj⟩⟨jmjLML|JM⟩

× ⟨ℓ′ν ′sµ|j′mj′⟩⟨j′mj′L
′ML′ |JM⟩⟨ℓ′ν ′sµ|λ0⟩⟨LMLL

′ML′|λ0⟩ (3.20)

× ⟨Yℓ(Ωr̂)|Yλ(Ωr̂)|Yℓ′(Ωr̂)⟩⟨YL(ΩR̂)|Yλ(ΩR̂)|YL′(ΩR̂)⟩⟨φα|Uλ(r, R)|φα′⟩,
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where according to the properties of spherical harmonics [101], we have

⟨Yℓ(Ωr̂)|Yλ(Ωr̂)|Yℓ′(Ωr̂)⟩ = (−1)ℓ
√
(2ℓ+ 1)(2λ+ 1)(2ℓ′ + 1)√

4π

 ℓ λ ℓ′

0 0 0

 ,

⟨YL(ΩR̂
)|Yλ(ΩR̂

)|YL′(Ω
R̂
)⟩ = (−1)L

√
(2L+ 1)(2λ+ 1)(2L′ + 1)√

4π

 ℓ λ ℓ′

0 0 0

 . (3.21)

Since the Clebsch-Gordan coe�cients can be written in terms of 3-j symbols, as follows

[101]

⟨j1m1j2m2|j3m3⟩ = (−1)−j1+j2−m3
√
2j3 + 1

 j1 j2 j3

m1 m2 −m3

 , (3.22)

and  j1 j2 j3

m1 m2 m3

 = (−1)j1+j2+j3

 j1 j3 j2

m1 m3 m2

 , (3.23)
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equation (3.20) becomes,

Vαα′(R) = iℓ+ℓ′+L+L′
λmax∑
λ=0

4π

2λ+ 1

∑
νν′µ

∑
mjmj′MLML′

(−1)2s+j−mj
√
2j + 1

 ℓ j s

ν −mj µ



× (−1)2L+J−M
√
2J + 1

 j J L

mj −M ML

 (−1)2s+j′−mj′
√
2j′ + 1

 ℓ′ j′ s

ν ′ −mj′ µ′



× (−1)2L
′+J−M

√
2J + 1

 j′ J L′

mj′ −M ML′

 (−1)2ℓ
′+λ

√
2λ+ 1

 ℓ λ ℓ′

ν 0 ν ′

 (3.24)

× (−1)2L
′+λ

√
2λ+ 1

 L λ L′

ML 0 ML′

 (−1)ℓ+L

√
(2λ+ 1)(2ℓ+ 1)(2ℓ′ + 1)(2L+ 1)(2L′ + 1)

4π

×

 ℓ λ ℓ′

0 0 0


 ℓ λ ℓ′

0 0 0

 ⟨φα|Uλ(r,R)|φα′⟩.

Considering the de�nition of Racah coe�cients in terms of the 3-j symbols [101], the

following �nal expression of the coupling matrix elements is obtained

Vαα′(R) = iℓ+ℓ′+L+L′
λmax∑
λ=0

(−1)J−L−j′+λ−L′
ℓ̂ℓ̂′L̂L̂′ĵĵ′Ĵ

×

 ℓ λ ℓ′

0 0 0


 L λ L′

0 0 0

W (ℓℓ′jj′;λs)W (LL′jj′;λJ)Iαα′(R), (3.25)

where W (abcd; ef) are Racah coe�cients [101], and Iαα′(R) is the radial integral given

by

Iαα′(R) =

∫ ∞

0

drφ⋆
α(r)Uλ(r, R)φα′(r), (3.26)

which is to be evaluated numerically and it is expected to converge owing to the square-

integrability of the bin wave functions. This is what makes the CDCC formalism uniquely

designed to handle breakup dynamics of weakly-bound systems. If one considers the pure
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scattering wave functions ujkℓ(r), the radial integral in this equation will not converge, since

the product of two pure scattering wave functions would be highly oscillatory, implying

a convergence failure of the coupling matrix elements Vαα′(R). We would follow the

same procedure to derive the matrix elements for couplings to and from the ground-

state Vαbα(R). In the asymptotic region where the projectile and target are far apart

(R → ∞), the nuclear interactions are inactive due to the short-range character of nuclear

forces. Then, the potential Upt(r,R) is reduced to its Coulomb component. The potential

multipole expansion of the Coulomb potential gives [117,118]

V Coul
pt (r,R)

R→∞→ 4πZte
λmax∑
λ=0

√
2λ+ 1

Rλ+1

[
Mε

λ(r)⊗ Yλ(ΩR̂)
]
λ0
, (3.27)

where Zte, represents the charge of the target nucleus, and Mε
λ(r), the core-nucleon

electric operator, which is given by

Mε
λ(r) = Zλr

λY ϑ
λ (r̂), (3.28)

with Zλ, being the e�ective charge de�ned as

Zλ = e

[
Zv

(
mc

mp

)λ

+ Zc

(
−mv

mp

)λ
]
, (3.29)

where Zve and Zce, the respective valence nucleon and core nucleus charges. The continuum-

continuum Coulomb coupling matrix elements are given by

V Coul
αα′ (R) = Zte

λmax∑
λ=0

(−1)J−L−j′+λ−L′√
2L+ 1)(2L′ + 1)(2j′ + 1)(2J + 1)

 L λ L′

0 0 0


× W (LL′jj′;λJ)

〈
φα(r)

∣∣Yλ(Ωr̂)Mε
λ(r)

∣∣φα′(r)
〉
Iαα′(R). (3.30)

In this equation, the radial integral Iαα′(R) is de�ned as

Iαα′(R) =

∫ ∞

R>Rn

FL(KαR)
1

Rλ+1
FL′(Kα′R)dR, (3.31)
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with FL(x), being Coulomb functions [114], and Rn = r0(A
1/3
p + A

1/3
t ). After the are

numerically calculation of coupling matrix elements, the coupled di�erential equations

(3.13), are numerically solved with to the following boundary conditions in the asymptotic

region

FLJ
β (R)

R→∞→ i

2

[
H−

β (KβR)δαbα −H+
β (KβR)S

J
ββ′(Kβ′)

]
, (3.32)

where H±
β (KβR), are Coulomb-Hankel functions [114], and SJ

ββ′(Kβ′) is the scattering

S-matrix.

3.6 Breakup cross sections

One can calculate the breakup cross sections by �rst determining the transition matrix

elements among di�erent states of the projectile nucleus. This transition matrix, which

we denote by T mj
νµ (k,Kγ), is given by [6, 114]

T mj
νµ (k,Kγ) =

〈
ψ

(+)
kνµ(r)e

iKγ ·R|U(r,R)|ΨJM
Kγ

(r,R)
〉
, (3.33)

where the ψ
(+)
kνµ(r) is given by equation (2.33), eiK·R, is the plane wave describing the

projectile-target �nal state, and the original projectile-target wave function ΨJM
Kγ

(r,R),

is given by equation (3.8). For the transition matrix elements T mj
νµ (k,Kγ) to converge, the

pure replace the projectile-target wave function is replaced by its CDCC approximation

ΨJM
Kβ

(r,R), and insert the bin wave functions Φ
mj
α (r) in the bra and ket of equation (3.33)

to obtain [6, 114]

T mj
νµ (k,Kβ) =

∑
β

∑
mj

s(k)T β
νmj

(Kβ), (3.34)

where

T β
νmj

(Kβ) =
〈
Φmj

α (r)|U(r,R)|ΨJM
Kγ

(r,R)
〉
, (3.35)
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and s(k) =
〈
ψ

(−)
kνµ(r)|Φ

mj
α (r)

〉
, is the so-called smoothing factor, and it is given by [6,

114]

s(k) =
4π

k

∑
α

(−i)ℓei[δℓj(k)+σℓj(k)]
∑
ν

〈
ℓνsµ|jmj

〉
Y ν
ℓ (k̂)

×
∫

Φ
m⋆

j
α (k, r)ϕmj

α (r)d3r. (3.36)

The projectile �nal state wave function ψ
(−)
kνµ(r) is obtained through the application of the

time-reversal operator [100], on the wave function ψ
(+)
kνµ(r). Considering the orthogonal-

ity of the Clebsh-Gordon coe�cients and the properties of the spherical harmonics, one

obtains

∫
Φ

m⋆
j

α (k, r)Φmj
α (r)d3r =

√
2

πWα

gα(k) if k∈[ki−1, ki], (3.37)

where this integral is zero if k /∈[ki−1, ki]. The factor s(k) becomes

s(k) =
4π

k

∑
α

(−i)ℓei[δℓj(k)+σℓj(k)]

√
2

πWα

∫ ki

ki−1

dk gi(k)
∑
ν

〈
ℓνsµ|jmj

〉
Y ν
ℓ (k̂). (3.38)

Because the breakup process is generally regarded as an inelastic excitation of the pro-

jectile nucleus, the matrix elements T β
νmj

(Kβ) can be expressed in terms of the inelastic

scattering amplitude F
mj′
mj (R̂) as follows [114]

T β
νmj

(Kβ) = −2πℏ2

µpt

√
Kαb

Kα

Fmj′
mj

(R̂), (3.39)

where the amplitude F
mj′
mj (R̂), is given by

Fmj ′
mj

(R̂) =

√
π

iKαb

√
Kα

Kαb

∑
LL′

∑
J

√
2L+ 1⟨LMLjmj|JML⟩⟨L′ML′j′mj′|JM⟩

× ei(σL+σL′ )SJ
ββ′(Kβ′)Y

ML′
L′ (R̂), (3.40)
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with SJ
ββ′ the scattering matrix that appears in equation (3.32), and σL, and σL′ , the

Coulomb phase shifts given by

σL = arg Γ(L+ 1 + iηpt), ηpt =
µptZpZte

2

ℏ2Kαb

, (3.41)

Substituting of equations (3.38), (3.40) into equation (3.34) results in the following ex-

pression for the breakup transition matrix elements

T mj
νµ (k,Kβ) = −8π

5
2ℏ2

µpt

1

ikKαb

∑
ℓ

∑
jmj

(−i)ℓh(k)
∑
ν

〈
ℓνsµ|jmj

〉
Y ν
ℓ (k̂)

√
Kα′

Kα

×
∑
L

∑
L′

∑
J

√
2L+ 1

〈
LMLjmj|JM

〉〈
L′ML′j′mj′ |JM

〉
ei(σL+σL′ )

× Sββ′(Kβ′)Y
ML′
L′ (R̂), (3.42)

where

h(k) =
4π

k

∑
α

(−i)ℓe[σℓ(k)+δℓj(k)]

√
2

πWα

∫ ki

ki−1

dk gi(k).

The triple-di�erential breakup cross sections can be obtained as follows [114]

d3σ

dk̂dR̂dε
=

µcvµ
2
ptk

(2π)5ℏ6
Kα

Kαb

1

2J + 1

∑
νmj

∣∣∣∣T mj
νµ (k,Kβ)

∣∣∣∣2. (3.43)

Carrying out an integration over the solid angle k̂, with the substitution of equation(3.42)

into equation (3.43), leads to the following double-di�erential breakup cross section

d2σ

dR̂dε
=

∫
d3σ

dk̂dR̂dε
dk̂

=
µcvKα

4π
5
2ℏ2kK3

αb

1

2j + 1

∑
νmj

∑
ℓjmj

∑
ν′j′µ

〈
ℓνsµ|jmj

〉〈
ℓ′ν ′sµ|j′mj′

〉

×
∫
dk̂Y ν⋆

ℓ (k̂)Y ν′

ℓ′ (k̂)

∣∣∣∣∑
i′

h(k)

√
Ki′

Ki

∑
L

∑
L′

∑
J

√
2L+ 1

×
〈
LMLjmj|JM

〉〈
L′M ′

Lj
′m′

j|JM
〉
ei(σL+σL′ )SJ

ii′(Ki′)Y
ML′
L′ (R̂)

∣∣∣∣2. (3.44)
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If one applies again the properties of Clebsh-Gordan as well as of spherical harmonics,

the equation above reduces to

d2σ

dR̂dε
=

µcvKα

4π
5
2ℏ2kK3

αb

1

2j + 1

∑
νj

∣∣∣∣∑
i′

h(k)

√
Ki′

Ki

∑
LL′J

√
2L+ 1

∑
ℓ′j′ν′

〈
ℓνsµ|jmj

〉〈
ℓ′ν ′sµ|j′mj′

〉

×
〈
LMLjmj|JM

〉〈
L′M ′

Lj
′m′

j|JM
〉
ei(σL+σL′ )SJ

ii′(Ki′)Y
ML′
L′ (R̂)

∣∣∣∣2. (3.45)

The integration of the double-di�erential breakup cross sections over the excitation energy

dε, gives the following di�erential angular distribution breakup cross section

dσ

dΩ
=

∫
dε

d2σ

dΩdε
, (3.46)

(Ω ≡ R̂) and the integration of the solid angle dΩ, gives the following di�erential energy

distribution breakup cross section

dσ

dε
=

∫
dΩ

d2σ

dΩdε
. (3.47)

The integrated breakup cross section is obtained from equation (3.46) as follows

σ =

∫
dΩ

dσ

dΩ

= 2π

∫ π

0

sin θdθ
dσ

dΩ
. (3.48)

Also, the integrated breakup cross section directly derived from the corresponding scat-

tering matrix elements as follows [104]

σ =
∑
J

σJ

σJ =
π

K2
αb

∑
β

∑
L

∑
L′

2J + 1

2Jb + 1

∣∣∣∣Sββ′(Kβ′)

∣∣∣∣2. (3.49)

As for other breakup observables such total fusion cross section, it can be obtained from
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the imaginary part of the coupling matrix elements (3.16)

WLL′J
αα′ (R) =

〈
Y LJ

α (r,ΩR̂)|Wct(Rct) +Wpt(Rpt)|Y L′J
α′ (r,ΩR̂)

〉
, (3.50)

as well as the whole breakup wave function. This means that the fusion cross section

is the expectation value of the imaginary part with the breakup wave function, given

by [102,103]

σTF =
∑
J

σJ
TF

σJ
TF =

2µpt

ℏ2Kd

(2L+ 1)
∑
αα′

〈
FLJ
α (R)

∣∣∣∣WLL′J
αα′ (R)

∣∣∣∣FL′J
α′ (R)

〉
. (3.51)

In this chapter, we have discussed the dynamics of the three-body scattering states. Steps

leading to the coupled di�erential equations have been highlighted. The resulting cou-

pling matrix elements are derived in details, as well as the breakup cross sections. The

next chapter outlines the various input parameters that are needed to solve two-body

di�erential equation (2.15), and the coupled di�erential equations (3.13).
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Chapter 4

Details of numerical calculations

As indicated in the introduction, the reaction that we are investigating in this disser-

tation is 11Be + 208Pb at various incident energies. In this chapter, we mainly discuss

the numerical parameters that are useful in the numerical solution of the coupled dif-

ferential equations (3.13) related to this reaction. These parameters are those related

to the CDCC model space, the core-target and neutron-target optical potentials and to

the internal structure of 11Be projectile nucleus. Due to the relevance of the internal

structure of the projectile in the breakup process, as already shown in chapter 3, we start

by describing the internal structure of the 11Be nucleus. The choice of this nucleus as a

projectile in the present work is motivated in the introduction.

4.1 Description of the 11Be projectile nucleus

As already indicated in the introduction, the 11Be nucleus is a well established one-neutron

halo nucleus [7,90,105,106], with a few-body structure, where it is formed by the 10Be core

nucleus and a halo neutron which is weakly-bound to the core nucleus (11Be −→ 10Be+n),

with an experimental ground-state binding energy of 0.504 ±0.006 MeV [109]. Its ground-

state is an s-state, identi�ed by the following quantum numbers ℓb = 0, s = 1
2
and jb =

1
2

+
.

Its �rst excited state (1p 1
2

− state) is a bound-state, with a binding energy of 0.184 ±0.007
MeV. Its continuum contains a narrow resonance 1.274 ±0.018 MeV, in the continuum

state d 5
2

+ [108]. For the sake of simplicity, in the present study, we considering an inert

core nucleus, meaning that we do not take into account its internal structure during the

breakup process. Therefore, we only consider the following 11Be →
∣∣10Be(0+)⊗ n(2s 1

2

+)
〉

ground state con�guration.
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4.1.1 Bound-state structure and wave function

The ground-state wave function is an important parameter in the breakup process. It

is well-known that a lower breakup threshold corresponds to an extended ground-state

wave function to the peripheral region. Due to the the peripheral nature of the breakup

process, the extension of the wave function plays an important role in the breakup process.

Also, one can obtain di�erent ground-state properties such as the size of the system, once

the ground-state wave function is known. To obtain the ground-state as well as the

�rst excited bound-state wave functions, the two-body Schrödinger equation (2.15), was

numerically solved with the boundary conditions (2.20). For the core-neutron potential

we adopted the Woods-Saxon shape, given by equation (2.46), whose parameters listed

in Table 4.1, where V ℓ
0 and VSO are depths of the central and spin-orbit coupling terms,

Table 4.1: Numerical values of the 10Be + n potential parameters (V ℓ
0 , R0, a0) and

(VSO, RSO, aSO), taken from Ref. [64].

System V ℓ=0
0 V ℓ>0

0 R0 a0 VSO RSO aSO

(MeV) (MeV) (fm) (fm) (MeV · fm2) (fm) (fm)

10Be + n 59.5 40.5 2.699 0.6 32.8 2.99 0.6

and (R0, a0), (RSO, aSO) are the corresponding radii and di�useness. All these parameters

were taken from Ref. [64]. The components V nucl
0 (r) and V nucl

so (r) of the nuclear potential

V nucl
cv (r) are plotted in Table 4.1. As one would expect, this potential vanishes rapidly

beyond r ≥ Rx (x ≡ 0, SO). The ground-state and �rst excited bound-state wave functions

V nucl
so (r)

V nucl
o (r)

r (fm)

V
nu

cl
cv

(r
)

6543210

0

−10

−20

−30

−40

−50

−60

−70

Figure 4.1: Core-neutron nuclear potential V nucl
cv (r) of the 10Be+n system. The spin-orbit

coupling term V nucl
so (r) is calculated in the p1/2-state.
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Figure 4.2: Wave functions of the ground (s1/2-state) and �rst excited bound-state (p1/2-
state) for the 10Be + n system.

are depicted in Figure 4.2. To better check the extension of the wave function to the

peripheral region we consider the root-mean-square radius, de�ned as

√
⟨r2⟩ = 1√

2A

(∫ ∞

0

|ujbkbℓb(r)|
2r2dr

)1/2

, (4.1)

where A is the atomic mass number. For the ground-state, we obtained
√

⟨r2⟩ = 5.77 fm,

which is similar to
√
⟨r2⟩ = 5.77 ± 0.16 fm obtained from an experimental study of this

system [16]. Comparing this value to the radius of the 10Be core nucleus, which is Rcore =

2.36 fm [122], we see that core nucleus radius represents about 40% of the system such

that the remainder accounts for the halo state.

4.1.2 Continuum structure and dipole electric response function

The continuum structure of a weakly-bound system plays an important role in this pro-

cess. Resonant states have been reported to in�uence di�erent reaction observables such

as elastic scattering, breakup cross sections, fusion, etc., as exempli�ed for example by

Refs. [112, 113]. In Figure 4.3, we plot the phase shifts (in degrees), in terms of the

excitation energy ε (in MeV). The continuum wave functions were calculated with the

same core-neutron potential parameters given Table 4.1. That �gure indicates three

resonances in s-state and d-states. However, only the d5/2+ narrow resonance is know

experimentally [108]. According to the �rst-order approximation theory [117�120], the

Coulomb breakup cross section cross section is directly proportional to the structure of

the projectile nucleus through its dipole electric response function. To explicitly show
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Figure 4.3: Phase shifts in s and d partial waves, shown as functions of the excitation
energy for the 10Be + n system.

this dependence, notice that equation (3.30) contains the factor
〈
ϕ
mjb
αb (r)|Mϵ

λ(r)|ϕ
mj
γ (r)

〉
,

with the electric operator Mϵ
λ(r), given by equation (3.28), and the bound-state ϕ

mjb
αb (r)

and scattering states ϕ
mj
γ (r) wave functions are given by equation (2.14). The dipole

electric response function of the transition from the ground-state to the continuum can

be obtained in terms of this factor as follows is given by [9]

dB(E1)

dε
=
µcv

ℏ2k
∑
j

(2j + 1)

∣∣∣∣〈ϕjb
αb
(r)|Mϵ

λ(r)|ϕj
γ(r)

〉∣∣∣∣2. (4.2)

Expanding this factor as in section 3.5, we obtain

dB(E1)

dε
=

µcv

ℏ2k
∑
j

(2j + 1)

∣∣∣∣eZλ(−1)ℓb+ℓ+j+s+λ

 ℓb λ ℓ

0 0 0



×


s ℓb jb

λ j′ ℓ


∫ ∞

0

ujbℓb(kb, r)r
λujℓ(k, r)dr

∣∣∣∣2, (4.3)

where Zλ is the e�ective charge, given by equation (3.29), ujbℓb(kb, r) and u
j
ℓ(k, r) are the

ground-state and continuum radial wave functions, normalized according to equations

(2.20) and (2.29). The electric response function calculated using the computer code

RADCAP [123], is plotted in �gure 4.4 as function of the excitation energy ε. As one can

see, the response function has a peak around the binding energy, which is a characteristic

of weakly-bound systems. One also sees that the relevant contribution to the response
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Figure 4.4: Plot of the dipole electric response function of the 10Be + n system obtained
for the transition from the ground-state to p-state.

function is located at ε ≤ 1.0MeV. Following Refs. [117,120], we can show that the dipole

response function is related to the Coulomb breakup cross section through the following

equation

dσE1
C

dε
=

32π2

9

(
Zte

ℏv

)2

zmK0(zm)K1(zm)
dB(E1)

dε
, (4.4)

where Zte, is the target nucleus charge, v, velocity of the the projectile, given by v =√
2E/µpt (E being the incident energy), and

zmin =
ε− ε0
ℏv

[
ZpZte

2

2E tan( θc
2
)

]
, (4.5)

with θc the cut-o� angle, and K0 and K1 are modi�ed Bessel functions of the second kind

of order 0 and 1 [100]. As an illustration, we use equation (4.5) to study the �rst-order

Coulomb breakup cross section for the 11Be + 208Pb reaction at a laboratory incident

energy Elab = 68MeV/A. With µpt = 9732MeV/c2, the velocity is v ≃ 0.277c, where

c = 3× 108m/s, is the speed of light in vacuum. The calculated Coulomb breakup cross

section as function of the energy energy ε is plotted Figure 4.5, for θc = 6◦ and θc = 4.5◦.

One can see that the theoretical calculations are in good agreement with the experimental

data that were taken from Ref. [16,110].
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Figure 4.5: Coulomb breakup cross sections, plotted as functions of the projectile exci-
tation energy ε, obtained using Eq.(4.5), in the breakup of 11Be projectile on the 208Pb
target at a laboratory incident energy Elab = 68MeV/A. The two sets of experimental
data points were obtained in Ref. [16], and Ref. [110].

4.2 Core-target and neutron-target potentials

In order to solve the coupled di�erential equations (3.13), we also need the the numerical

parameters of core-target and neutron-target optical potentials. We are not interested

in the event where possibly all three particles are interacting simultaneously, leading to

a three-body interaction. Such interaction is not included in our numerical calculations.

The nuclear part of the core-target optical potential is given by the Woods-Saxon form

factor similar to that in equation (2.47)

Uct(Rct) = Vct(Rct) + iWct(Rct)

=
V0[

1 + exp(Rct−R0

a0
)
] +

iWV[
1 + exp(Rct−Rw

aw
)
] , (4.6)

where V0 is the depth of the real part, and WV , the depth of the imaginary parts, and

Rx, ax [x ≡ (0,W )] the corresponding radii and di�useness. The core-target Coulomb

potential also similar to equation (2.48), is

V coul
ct (Rct) =



ZcZte
2

RC

(
3
2 − R2

ct
2R2

C

)
Rct ≤ RC ,

ZcZte
2

Rct
Rct > RC ,

(4.7)
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Table 4.2: Numerical parameters (V0, R0, a0), (WV, RW, aW), (WD, RD, aD) and (VSO,
RSO, aSO), core-target and neutron-target optical potentials. For the neutron-target sur-
face and spin-orbit terms, these parameters are WD = −0.908MeV, RD = 7.397MeV,
aD = 0.510MeV, WSO = 3.654MeV · fm2, RSO = 6.376 fm, and WSO = 0.590 fm. The
core-target potential parameters were obtained from the global parametrization of Akyuz-
Winther [116], whereas for the neutron-target potential, the global parametrization of
Koning [111], was used.

V0 R0 a0 WV RW aW

(MeV) (fm) (fm) (MeV) (fm) (fm)

10Be + 208Pb -51.978 9.515 0.64 -12.994 9.515 0.64

n+ 208Pb -35.684 7.32 0.647 -3.216 7.32 0.647

The neutron-target potential Uvt is given by

Uvt(Rvt) = Vvt(Rvt) + Vvt,SO(Rvt) + i[Wvt(Rvt) +Wvt,D(Rvt)], (4.8)

Vvt(Rvt) is the central term, Vvt,SO(Rvt), the spin orbital term (both terms represent the

real part of the potential), Wvt(Rvt) and Wvt,D(Rvt) represent the volume and surface

terms of the imaginary part. All these potential terms are given by the Woods-Saxon

form factor, meaning that

Vvt(Rvt) = V0f(Rvt, R0, a0),

Wvt(Rvt) = WV f(Rvt, RW , aW ,

Wvt,D(Rvt) = −4aDWD
d

dRvt

f(Rvt, RD, aD), (4.9)

Vvt,SO(Rvt) = VSO
(
L.s

)( ℏ
mπc

)2
1

Rvt

d

dRvt

f(Rvt, RSO, aSO),

f(Rvt, Rx, ax) =
1[

1 + exp
(

Rvt−Rx

ax

)] . (4.10)

The numerical values parameters core-target and neutron-target potential parameters

are displayed in Table 4.2. For the core-target optical potential, the di�erent parameters

were obtained from the global parametrization of Akyuz-Winther [116], whereas neutron-
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target potential parameters were obtained from the global parametrization of Koning

[111]. Apart from the o�-diagonal nuclear potential, we also include a monopole nuclear

interaction in the elastic scattering channel with both real and imaginary parts [Ubb(R) =

Vbb(R)+iWbb(R)]. This potential is obtained by folding the core-target and neutron-target

potentials with the density of the ground-state projectile wave function. That is

Vbb(R) =

∫
d3r|ϕmj

b (r)|2[Vct(Rct) + Vnt(Rnt)]

Wbb(R) =

∫
d3r|ϕmj

b (r)|2[Vct(Wct) +Wnt(Rnt)]. (4.11)

This potential, as such takes into account the halo nature of the projectile nucleus. Owing

to the long tail of the halo ground-state wave function,the nuclear potential thus obtained

has a long-range compared to a phenomenological short-range nuclear potential, which

assumes the projectile to be a one-body system. In Ref. [4], a comparison of both po-

tentials was performed and it was the importance of structure in the ground state was

elucidated.

4.3 CDCC numerical parameters

In order to numerically solve the coupled di�erential equations (3.13), another set of

numerical parameters is needed. These parameters are to be optimized in order to achieve

convergence. The numerical values of these parameters are given in Table 4.3, where

- ℓmax: is the maximum value of the core-nucleon orbital angular momentum.

- λmax: is the maximum value of the multipole order in the potential multi pole expansion.

- εmax: is the maximum value of the bin energy.

- rmax: is the maximum value of the matching matching radius for bin integration.

- ∆r: is the integration step size in the discretization of the maximum matching radius

rmax.

- Lmax: is the maximum value of the orbital angular momentum associated with projectile-

target relative center-of-mass motion.
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- Rmax: is the maximum value of the matching radius in the numerical integration of the

coupled di�erential equations.

- ∆R: is the integration step size in the discretization of the maximum matching radius

with Rmax.

Table 4.3: Optimal numerical parameters ℓmax,λmax,εmax, rmax, Rmax, Lmax, ∆r and ∆R
adopted in the numerical solution of the coupled equations solutions.

ℓmax λmax εmax rmax ∆r Lmax Rmax ∆R

(ℏ) - (MeV) (fm) (fm) (ℏ) (fm) (fm)

6 6 10 120 0.1 10000 1000 0.05

Having discussed the various input parameters, the next chapter focuses on the results

obtained in the 11Be+208Pb breakup reaction at various sub-barrier incident energies. The

numerical calculations were carried out using FRESCO computer codes [114,115].
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Chapter 5

Results and Discussions

In this chapter, we study the breakup of the 11Be neutron-halo nucleus on 208Pb target,

at below and around the Coulomb barrier incident energies. As already mentioned in the

introduction, the main objective of this dissertation is to study dynamics of a neutron-halo

projectile nucleus considering incident energies below and around the Coulomb barrier.

Interested in investigating whether the conclusions drawn for the 8B proton-halo system in

Refs. [21,22,95] in the same energy region can be extended to its neutron-halo counterpart.

In particular, we will verify whether at such incident energies, the breakup cross section

remains the main reaction channel as it has been shown in the case of 8B system. We

consider the 11Be+208Pb in the incident energy range 0.5 ≤ Ecm/VB ≤ 1.2, with VB, being

the Coulomb barrier height, which was calculated with the São Paulo potential [121].

5.1 Convergence analysis of the breakup cross sections

Before we dive into the analysis of the results, let us �rst discuss the convergence of

the numerical calculations, namely the breakup cross section. In Section 4.3, we have

enumerated the a number of numerical parameters that are adopted in the numerical so-

lution of the coupled di�erential equations (3.13). Although the convergence was checked

with respect to other numerical parameters, and incident energies, we only discuss the

convergence of the breakup cross section as function of the centre-of-mass angle θ, in

terms of εmax, ℓmax, λmax, and rmax, at Ecm/VB = 0.9, Ecm/VB = 1.0 and Ecm/VB = 1.2

incident energies, where VB = 38.87MeV. In the left panel of �gure 5.1 [panels (a')]

the convergence of the breakup cross section is shown in terms of the maximum bin en-

ergy εmax. Inspecting that �gure, we notice that for Ecm/VB = 0.9, the convergence

is achieved for εmax = 6MeV, since the curve corresponding to εmax = 6MeV, and the
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Figure 5.1: Convergence of the angular distributions di�erential breakup cross section as func-

tion of the Laboratory angle θ in terms of the maximum projectile excitation energy εmax and

the maximum orbital core-neutron angular momentum ℓmax. The top panel corresponds to

Ecm/VB =0.9, the middle panel corresponds to Ecm/VB =1.0, and lower panel corresponds to

Ecm/VB =1.2, where Ecm is the projectile incident energy in the projectile-target center of mass,

and VB is the projectile-target Coulomb barrier height.

one corresponding to εmax = 8MeV are hardly distinguishable. In other words we can

say that ,
dσ

dΩ
(εmax = 6MeV)− dσ

dΩ
(εmax = 8MeV) → 0. Although for Ecm/VB = 1.0 and

Ecm/VB = 1.2 incident energies [panels (b') and (c')] the convergence appears to be

achieved for εmax = 6MeV, we noted that maximum bin energies up to εmax = 10MeV

were needed to guarantee a satisfactory convergence. Another striking aspect in that �gure

is the fact that the breakup cross section is dominated by lower bin energies. One observes

that εmax = 2MeV accounts for the main contribution to the breakup cross section in all

three cases, and corresponds to narrow breakup cross sections around the peak (around

20◦). This is in accordance with the breakup cross sections of weakly-bound systems,

which are known to peak around the breakup threshold (for example, see Fig.4.5 where

the peak of the breakup cross section is located around the breakup threshold εb).The
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Figure 5.2: Convergence of the angular distributions di�erential breakup cross section as func-

tion of the Laboratory angle θ in terms of the maximummulti-pole expansion λmax, and the maxi-

mum core-neutron radial coordinate rmax.The top panel corresponds to Ecm/VB =0.9, the middle

panel corresponds to Ecm/VB =1.0, and lower panel corresponds to Ecm/VB =1.2, where Ecm

is the projectile incident energy in the projectile-target center of mass, and VB is the projectile-

target Coulomb barrier height.

convergence of the breakup cross section as function of the maximum core-neutron orbital

angular momentum ℓmax is displayed in panel (b) of Figure 5.1. Observing that �gure,

one sees that the convergence is achieved for ℓmax = 3, since higher partial waves do

not seem to have any meaningful contribution to the cross section. In panels (d), (e)

and (f), we notice that the contribution of the s-wave (ℓmax = 0), is quite small. We

notice that p-waves ( ℓmax = 1) account for the largest contribution to the breakup cross

section. Also, although higher partial waves seem to be important in the convergence of

the calculations, their observed overall contribution to the breakup cross section is rather

small compare to the contribution of p-waves. A larger contribution to the breakup cross

section by p-waves, is a signature of breakup reactions involving weakly-bound systems.

Panel (a) of �gure 5.2, displays the convergence of the breakup cross section in terms of
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the maximum multi-pole order in the potential multi-pole expansion λmax. One notices

that in all three cases, the monopole order λmax = 0, represents a small contribution, and

dipole order λmax = 1, accounts for the largest contribution, as expected. This in fact

the essence of the �rst-order approximation theory. This larger contribution can be ex-

plained by the fact dipole transition favours p-waves (see details for example in Ref. [97]).

A careful observation of �gure 5.2 (a'), shows that higher multi-pole orders (λmax ≥ 2)

appear to reduce the breakup cross section. This can be seen as an e�ect of the higher

order interference e�ect, which seems to be destructive in this case (again see Ref. [97],

for details).Panel (b) of �gure 5.2, displays the convergence of the breakup cross section

as function of the maximum core-neutron internal radial coordinate rmax, or the maxi-

mum matching radius for bin integration for various values rmax = 40 to rmax = 100. We

notice in all panels that the convergence of the results is already achieved convergence

for rmax = 40, which implies that there is no compelling need to consider larger values

of rmax, which would unnecessarily increase the computing burden. This implies that for

rmax = 40 fm, the orthogonal of the bin wave functions is already guaranteed. We have

also checked the convergence of the fusion cross section against the various parameters,

although the details are not presented here.

5.2 Comparison with experimental data

In order to further test the stability of our numerical calculations, we compare the angular-

distributions breakup cross section with the experimental data. Because we are not aware

of any measurement of the 11Be+208Pb reaction at the incident energies we are considering,

we performed numerical calculations considering an incident energy of Elab = 140MeV, for

which there are experimental data [107]. The numerical calculations are compared with

the experimental in �gure 5.3, where a satisfactory agreement is observed. It is clear from

this �gure that the elastic breakup alone provides a better �t of the experimental data,

such that there is no need of adding a contribution from the inelastic breakup component,

which as apparent is not that relevant in �tting the data. The observed agreement between

the numerical calculations and the experimental data is quite interesting because it is

indicated in Ref. [107] (see also Ref. [7] and Ref. [98], among others) that to obtain
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Figure 5.3: Angular distributions di�erential breakup cross section as a function of angle
θ, compared with the experimental data, taken from Ref. [107]

a better �t of the experimental data one needs to add a contribution from the inelastic

breakup cross section, indicating the relative signi�cant of the latter, which is not re�ected

in the present case.

5.3 Breakup cross section versus total fusion cross sec-

tion

Having discussed the convergence of the numerical calculations, we dedicate this section

to the comparison of the breakup and total fusion cross section. Figure 5.4, shows the

breakup and total fusion cross sections, plotted in terms of the ratio Ecm/VB ∈ [0.5, 1.2],

obtained with the inclusion of all various couplings in the couplings matrix elements �All

coupl.�, i.e., couplings to and from the ground-state as well as couplings among continuum

states (continuum-continuum couplings). Inspecting that �gure, one observes that at sub-

barrier energies (Ecm/VB ≤ 1), the breakup cross section is quite dominant over the total

fusion cross section. One sees that the transition occurs around the Coulomb barrier where

the total fusion cross section prevails. Therefore, one infers that even for a weakly-bound

neutron-halo projectile, the breakup channel remains the dominant reaction channel at

sub-barrier incident energies. Therefore, it follows that even for a neutron-halo projectile
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Figure 5.4: Breakup and total fusion cross sections plotted in terms of the incident energy
scaled by the Coulomb barrier height VB, and obtained with the inclusion of all the
di�erent coupled the coupling matrix elements.

such as 11Be, the breakup cross section remains more dominant over the fusion cross

section at sub-barrier energies, implying that the breakup channel is the most dominant

reaction channel in this energy region. We can therefore conclude that the conclusions

reported in Refs. [21, 22, 95] are as well extended to a neutron-halo projectile. This

similarity highlights the fact that the Coulomb barrier in the core-proton system is not

responsible for a dominant breakup cross section over the total fusion cross section at

sub-barrier incident energies. That amounts to saying that, the static e�ect related to the

tail of the projectile ground-state wave function is not the main factor that contributes

to this phenomenon. As argued in Ref. [22], this leaves the dynamical e�ect, due to

the projectile-target interaction to be one of the main factors that are responsible for a

dominant breakup cross section over the total fusion cross section in this incident energy

region.

5.3.1 E�ect of the continuum-continuum couplings

In order to gain more insight into the observed dominance of the breakup cross section

over the total fusion cross section at incident energies below the Coulomb barrier as ob-

served in �gure 5.4, we study the e�ect of the continuum-continuum couplings. As already

pointed out in the introduction, continuum-continuum couplings (ccc) have been found
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Figure 5.5: Breakup and total fusion cross sections plotted in terms of the incident en-
ergy scaled by the Coulomb barrier height VB, and obtained with the exclusion of the
continuum-continuum couplings from the coupling matrix elements (�No ccc�).

to exhibit an important e�ect in the breakup of weakly-bound systems, and in fact, they

are a signature of breakup reactions induced by weakly-bound systems. The relevance of

these couplings have been mainly investigated for incident energies above the Coulomb

barrier, where they are observed to strongly suppress the breakup cross section by orders

of magnitude. Notice that with the inclusion of all the di�erent couplings in the coupling

matrix elements, they contains two radial integrals, namely Iαbα(R) and Iαα′(R). As in-

dicated in Chapter 3, the former represents couplings to and from the ground-state, and

the latter represents continuum-continuum couplings, and it is given by equation (3.26).

The most relevant information about couplings among di�erent states of the projectile

nucleus is contained in these radial integrals. When the continuum-continuum couplings

are excluded [Iαα′(R) = 0], the coupling matrix elements contain only the radial integral

Iαbα(R). In that case, the CDCC method is reduced to standard one-step methods such as

distorted wave Born approximation (DWBA). As we already mentioned in the introduc-

tion, the inclusion of Iαα′(R) by the CDCC formalism, make it the most popular methods

to probe the breakup dynamics of weakly-bound systems. In �gure 5.5, we compare the

total fusion and breakup cross sections obtained when the continuum-continuum couplings

are removed from the couplings matrix elements (�No ccc�), meaning that Iαα′(R) = 0,

leaving a single transition to and from the projectile bound-state, i.e., Iαbα(R) ̸= 0. In-
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specting that �gure, one registers a signi�cant departure from �gure 5.4, in the sense that

at sub-barrier energies (Ecm/VB ≤ 0.8), both breakup and total fusion cross sections are

almost similar, with the two curves being hardly distinguishable. Above the Coulomb

barrier, the breakup cross becomes dominant. Comparing �gure 5.4 and �gure 5.5, the

continuum-continuum couplings appear to be responsible for the quantitative importance

of the breakup cross section over the fusion cross section at sub-barrier incident energies,

as also reported in Ref. [22]. For a better assessment of the e�ect on the breakup and

total fusion cross section of the continuum-continuum couplings, we plot in �gure 5.6

and �gure 5.7, the breakup and fusion cross sections, respectively in the presence and

absence of the continuum-continuum couplings. Starting with �gure 5.6, we note that at
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Figure 5.6: Integrated breakup cross sections plotted as functions of the incident energy
scaled by the Coulomb barrier height VB, and obtained with the inclusion of all the
di�erent couplings in the coupling matrix elements �All coupl.� and with the exclusion of
the continuum-continuum couplings from the couplings matrix elements �No ccc�.

deep sub-barrier energies (Ecm/VB ≤ 0.7), the continuum-continuum couplings serve to

enhance the breakup cross section, as the breakup cross section in the presence of these

couplings is larger than the breakup cross section in the absence of these couplings. A sim-

ilar trend is reported in Ref. [113], for the breakup of the weakly-bound cluster system 6Li

on the same target nucleus. At larger incident energies (Ecm/VB > 0.7), the continuum-

continuum couplings account for the suppression of the breakup cross section since in

that case the breakup cross section obtained when the continuum-continuum couplings

are removed is larger than the breakup cross section obtained when these couplings are
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Figure 5.7: Total Fusion cross sections plotted as functions of the incident energy scaled
by the Coulomb barrier height VB, and obtained with the inclusion of all the di�erent
couplings in the coupling matrix elements �All coupl.� and with the exclusion of the
continuum-continuum couplings from the couplings matrix elements �No ccc�.

included in the coupling matrix elements. In �gure 5.7, we observe a similar trend where

the fusion cross section is also enhanced by the continuum-continuum couplings at deep

sub-barrier energies (Ecm/VB ≤ 0.6), and it is suppressed at higher incident energies. We

already know that the breakup channel enhances fusion at sub-barrier energies (see for

example Ref. [22]). To better visualize the enhancement and suppression of the breakup

σBU

σTF

Ecm/VB

σ/
σnc

c
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Figure 5.8: Breakup over fusion cross section plotted as functions of the incident energy
scaled by the Coulomb barrier height VB, continuum-continuum couplings are excluded
from the couplings matrix elements �No ccc".

© University of South Africa 2024 51



and fusion cross sections, plotted in �gure.5.8, is the ratio σx/σ
ncc
x , where σx (x ≡ BU,TF)

is the breakup/total fusion cross section obtained with the inclusion of all the various cou-

plings in the coupling matrix elements and σncc
x , the breakup/total fusion cross section

obtained when the continuum-continuum couplings are removed. Observing that Figure

5.8, one sees that for Ecm/VB < 1, σTF/σ
ncc
TF < σBU/σ

ncc
BU , whereas for Ecm/VB > 0.9,

σTF/σ
ncc
TF > σBU/σ

ncc
BU . In other words, the breakup cross section is more enhanced by

the continuum-continuum couplings at sub-barrier energies compared to the fusion cross

section. For energies above the barrier, the breakup cross section more suppressed by

these couplings. We shall emphasize that in the calculation of the fusion cross section, we

did not use short-range nuclear potentials as it is usually done when one is only interested

in fusion cross section, as one can see for example in Ref. [68]. Also, the longer tail of

the projectile ground-state wave function means that the diagonal nuclear potential given

by equation (4.11), has a longer tail and can account for nuclear absorption outside the

absorption region. The will result in the increase of the total fusion cross section, as

pointed out in Ref. [68]. However, this is not expected to have any meaningful e�ect on

the results reported in the �gures above. What can we learn from the enhancement of

the breakup cross section at sub-barrier energies? Notice that couplings to continuum

states result in the delay of the breakup process. This is due to the multi-step process

nature of such couplings as opposed to single step couplings to and from the ground state.

For energies above the Coulomb barrier, delaying the breakup implies the increase of the

probability of the breakup occurring within the interaction region where nuclear forces are

active to trigger absorption. That can explains the importance of the total fusion cross

section over the breakup cross section at above the Coulomb barrier incident energies in

�gure 5.4. In the same energy region, with the exclusion of the continuum-continuum

couplings, the breakup becomes more prompt, meaning that after breakup the projec-

tile fragments have enough time to survive absorption. This assertion can justify the

importance of the breakup cross section over the total fusion cross section in �gure 5.5.

Considering incident energies below the Coulomb barrier, the projectile is slower due to

its low incident energy, and it is further slows down by the Coulomb repulsion, since on its

incoming trajectory, the projectile's motion is opposed to the projectile-target Coulomb

force. The loss in the projectile kinetic energy can be exacerbated by including the
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continuum-continuum couplings, since energy will be required to excite these states. As

such, not enough projectile kinetic energy might be left to trigger the projectile breakup

on its incoming trajectory. This implies that the projectile could be excited to its contin-

uum states without breaking up. However, on the outgoing trajectory, the projectile gains

an initial kinetic energy as its leaves the target because in this case it is accelerated by

the projectile-target Coulomb force. On both incoming and outgoing projectile projectile

trajectories, the continuum-continuum couplings play the same role, which is to delay

the breakup process. The delay caused by these couplings together with the projectile

acceleration coming from the projectile-target Coulomb force, ensure that the projectile

breaks up on its outgoing trajectory away from the absorption region out of the reach of

nuclear forces. This will reduce the fusion cross section but will increase the breakup cross

section as less amount of �ux is removed from the breakup channel to feed up the fusion

channel. Therefore, the enhancement of the breakup cross section at sub-barrier by the

continuum-continuum couplings can be explained by the breakup on the projectile outgo-

ing trajectory. The breakup on the projectile outgoing trajectory at sub-barrier incident

energy is discussed in Refs. [95, 96]. The argument that on the outgoing trajectory the

projectile could breakup away from the reach of the nuclear forces can be substantiated

by showing that at sub-barrier energies, the enhancement of the breakup cross section is

due to its Coulomb breakup component. This inference is born out of the fact that in that

case, the nuclear breakup will increasingly become irrelevant as the projectile progresses

away from the target nucleus. One can then expect the Coulomb breakup cross section

to be enhanced by the continuum-continuum couplings. To show this, in the next section

we analyse the Coulomb as well as nuclear breakup cross sections.

5.4 Coulomb and nuclear breakup cross sections

In order to further test that the enhancement of the breakup cross section by the continuum-

continuum couplings at deep sub-barrier energies could hint at a projectile breakup on its

outgoing trajectory, we propose to analyses the Coulomb as well as nuclear breakup cross

sections. Notice that the breakup of the projectile nucleus comes from its interaction with

the target nucleus via Coulomb and nuclear forces. The Coulomb interaction produces
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the Coulomb breakup, whereas the nuclear interaction produces the nuclear breakup.

Because of the long-range character of Coulomb forces and the short-range nature of

nuclear forces, the former are responsible for an asymptotic breakup (away from the tar-

get), whereas the breakup caused by nuclear forces occurs when the projectile reaches the

neighbourhood of the target nucleus. Due to the asymptotic component of the Coulomb

breakup, lower projectile continuum partial wave such as p-wave are known to contribute

the largest portion of the Coulomb breakup cross section, and this is in fact the essence

of the �rst-order approximation theory. Coulomb and nuclear breakups are regarded as

components of the total breakup cross section, and this is the breakup cross section that

we have so far discussed in the previous sections. It is obtained when both Coulomb and

nuclear interactions are simultaneously included in the coupling matrix elements. Such

breakup cross section contains the e�ect of the Coulomb-nuclear interference which we

will discuss later. To Separate the total breakup cross section into Coulomb and nuclear

components remains a major challenge for breakup reaction theories. In this work we

do not intend to perform such task, but we rather resort to the following approximate

procedure to obtain the Coulomb and nuclear breakup cross sections. To calculate the

Coulomb breakup cross section, we removed all the core-target and neutron-target nuclear

interactions from the coupling matrix elements (3.25), keeping only its monopole compo-

nent in the elastic scattering channel [it is given by equation (3.6), where the core-target

coordinate Rcvt, is replaced by the projectile-target center-of-mass coordinate R]. To this

potential we added the monopole nuclear potential given by equation (4.11), with both

its real and imaginary parts. In that case, the Coulomb breakup cross section is a�ected

by the absorption in the elastic scattering channel because of to the imaginary part of

this potential. Similarly, the nuclear breakup cross section was calculated by removing

the core-target Coulomb potential from the coupling matrix elements, also keeping the

projectile-target Coulomb and nuclear monopole potentials in the elastic scattering chan-

nel. This procedure, although approximate, has been shown to yield the desired e�ect.

The Coulomb and nuclear breakup cross sections thus obtained are shown in �gure 5.9,

where results are shown with the inclusion and exclusion from the coupling matrix el-

ements of the continuum-continuum couplings. Indeed, in that �gure, we notice that

at sub-barrier energies, the Coulomb breakup cross section is strongly enhanced by the
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Figure 5.9: Coulomb breakup cross sections [panel (a)] and nuclear breakup cross sections
[panel (b)] plotted as functions of the incident energy scaled by the Coulomb barrier height
VB, and obtained when the continuum-continuum couplings are included and excluded
from the coupling matrix elements.

continuum-continuum couplings [see panel (a)]. Therefore, the results in this �gure con-

curs with our assessment in Section 5.3.1, that if the breakup occurs on the outgoing

trajectory, the continuum continuum couplings are expected to enhance the Coulomb

breakup cross section. One may further argue that enhance of the breakup cross section

by these couplings could be characteristic of a projectile breakup on the outgoing trajec-

tory. One further sees that as the incident energy increases, the enhancement strength

decreases and the trend suggests that at higher incident energies, continuum-continuum

couplings would amount to a smaller e�ect on the Coulomb breakup cross section. In

fact, it has been shown that at higher incident energy, these couplings have limited sup-

pression e�ect on the Coulomb breakup cross section (for example, see Ref. [4]). Contrary
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Figure 5.10: Total, nuclear and Coulomb breakup cross sections shown as functions of the
incident energy scaled by the Coulomb barrier height VB, obtained in the case where the
continuum-continuum couplings are included in [panel (a)] and removed from the coupling
matrix elements in [panel (b)] .

to the Coulomb breakup, panel (b) of that �gure, shows that the nuclear breakup cross

section is largely suppressed by continuum-continuum couplings at all the displayed inci-

dent energy region. At energies above the barrier, the nuclear breakup cross section has

been reported to be strongly suppressed by these couplings compared to the Coulomb

breakup cross section. Actually, as shown in Ref. [4], this suppression is reported as one

of the main reasons why the Coulomb breakup is substantially dominant over the nuclear

breakup in reactions involving heavy targets. It then inferred in that reference, that a

larger target charge alone cannot justify the importance of the Coulomb breakup over the

nuclear breakup in the breakup of loosely-bound systems. To better display this aspect,
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Table 5.1: Integrated total, nuclear and Coulomb breakup cross sections (millibarns)
with the inclusion of all the various couplings (σtot, σCoul, σnucl) and when the ccc are
excluded (σncc

tot , σ
ncc
Coul, σ

ncc
nucl), κ = 1−σtot/(σCoul+σnucl) and κ

ncc = 1−σncc
tot /(σ

ncc
Coul+σ

ncc
nucl)

is the measure of the Coulomb-nuclear interference.

All couplings No cc couplings

Ecm/VB σcoul σnucl σtot κ σncc
coul σncc

nucl σncc
tot κncc

0.488 1407 2.540 960 0.3189 210 52 298 -0.1374

0.550 1994 5.615 1352 0.3239 465 150 708 -0.1512

0.614 2546 9.970 1644 0.3568 790 332 1248 -0.1123

0.677 2920 15.33 1872 0.3623 1144 587 1808 -0.0445

0.739 3128 21.59 2065 0.3444 1494 876 2319 0.0215

0.864 3303 36.01 2312 0.3076 2108 1402 3183 0.0932

0.956 3376 46.65 2423 0.2921 2458 1617 3721 0.0869

1.005 3396 51.65 2462 0.2859 2599 1653 3938 0.0738

1.145 3414 65.83 2545 0.2686 2921 1651 4393 0.0392

1.240 3435 74.47 2593 0.2611 3093 1628 4632 0.0189

in �gure 5.10, we plot on the same panels, the total, Coulomb and nuclear breakup cross

sections. In panel (a) of that �gure, we have shown the results obtained with the inclusion

of all the di�erent couplings and the results obtained with the exclusion of the continuum-

continuum couplings in panel (b). In panel (a), one sees that the nuclear breakup cross

section is just a fraction of the Coulomb and total breakup cross section. This was ex-

pected given the fact that the reaction at hand is considered to be a Coulomb-dominated

reaction, given the large electric charge of the target. However, in panel (b), we notice

a competition between the Coulomb and nuclear breakup cross sections. For a further

assessment of continuum-continuum couplings e�ect on the total, Coulomb and nuclear

breakup cross sections, Table 5.1 summarizes the integrated total, Coulomb and nuclear

breakup cross sections obtained when the continuum-continuum couplings are included

and excluded from the coupling matrix elements. Contemplating that table, one observes

(as we have already seen in �gure 5.9), a huge enhancement of the Coulomb breakup cross

section due to the continuum-continuum couplings. For instance at Ecm/VB = 0.488, we

deduce that the Coulomb breakup cross section is enhanced by factor of about 7.0, the

total breakup cross section by a factor of about 3.0, whereas the nuclear breakup cross
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section is suppressed by a fact of about 20.0. at Ecm/VB = 1.24, we deduce that the

Coulomb breakup cross section enhanced by factor of about 1.0, the total breakup cross

section is suppressed by a factor of about 2.0, whereas the nuclear breakup cross section is

suppressed by a fact of about 22.0. The enhancement or suppression factor was obtained

from the ratio of the larger breakup cross section to the small breakup cross section. It fol-

lows that the nuclear breakup cross section is more a�ected by the continuum-continuum

couplings compared to the Coulomb breakup cross section. Among other factors, this is

mainly due to the fact that the nuclear breakup occurs in the vicinity of the target nucleus

where couplings to higher partial waves are important. A further comparison between the

Coulomb and nuclear breakup cross section, when the continuum-continuum couplings

are included, one sees that for all the incident energy considered, the Coulomb breakup

cross section is larger than the total breakup cross section, whereas the nuclear breakup

cross section is just a fraction of the Coulomb and total breakup cross section. For in-

stance, at Ecm/VB = 0.488, the nuclear breakup cross section represents about 0.20% and

0.3% of the Coulomb and total breakup cross sections, respectively. For Ecm/VB = 1.2,

the nuclear breakup cross section represents about 2.0% and 3.0% of the Coulomb and

total breakup cross sections, respectively. However, when the continuum-continuum cou-

plings are removed, the nuclear breakup cross section rapidly grows such that for example,

at Ecm/VB = 0.488, now the nuclear breakup cross section represents about 25.0% and

17.0% of the Coulomb and total breakup cross sections, respectively. For Ecm/VB = 1.2,

the nuclear breakup cross section represents about 52.0% and 35.0% of the Coulomb and

total breakup cross sections, respectively. These numbers indicate that the dominance

of the Coulomb breakup cross section over its nuclear counterpart is not only related to

the larger electric charge of the target nucleus but also to stronger continuum-continuum

couplings in the nuclear breakup case.

5.4.1 Coulomb-nuclear interference

It is known that when Coulomb and nuclear forces are simultaneously included into the

coupling matrix elements, they interfere to create the total breakup. This interference

has been found to be quite signi�cant even when the nuclear breakup is itself regarded as

negligible. To estimate this interference, we compare the breakup cross section obtained
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when the Coulomb and nuclear forces are simultaneously included into the coupling matrix

elements (i.e., coherent sum of the Coulomb and nuclear breakup cross sections), and the

breakup cross section obtained by summing up the Coulomb and nuclear breakup cross

sections (i.e., incoherent sum of the Coulomb and nuclear breakup cross sections). Notice

that in the calculations of the individual Coulomb and nuclear breakup cross sections, the

Coulomb-nuclear interference is not taken into account except in the diagonal channel.

This because in both calculations, the projectile-target Coulomb and nuclear monopole

potentials in the elastic scattering channel are included as outlined in Section 5.4. We

estimate the strength of the Coulomb-nuclear interference as follows:

κ = 1− σtot
σCoul + σnucl

, (5.1)

where σCoul + σnucl, the incoherent sum of both Coulomb and nuclear breakup cross

sections. The values of κ are given in columns 5 (when continuum-continuum couplings

are included) and 9 (when continuum-continuum couplings are excluded). According to

equation (5.1), if κ→ 0, then σtot → σCoul+σnucl. In this case there is no Coulomb-nuclear

interference or rather that this interference is very weak. If κ > 0, then σtot < σCoul+σnucl.

In this case, the interference is destructive as it lowers the total breakup cross section. If

κ < 0, then σtot > σCoul+σnucl. In this case, the interference is constructive as it increases

the total breakup cross section. Now examining Table 5.1, it follows that this interference

is exclusively destructive when all the couplings are included. When the continuum-

continuum couplings are removed, this interference is constructive for Ecm/VB ≤ 0.677,

and becomes weakly destructive at larger incident energies.
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Chapter 6

Concluding Remarks

In this dissertation we have investigated the breakup of the 11Be weakly-bound neutron-

halo nucleus on a lead target, considering an incident energy range below and around

the Coulomb barrier. We �rst provided a detailed quantum mechanical description of

bound and scattering states of the two-body projectile nucleus, where a valence neutron

is loosely-bound to the core nucleus. Then, a three-body quantum system was obtained

through the interaction of the projectile with the target nucleus. For the sake of simplic-

ity, and in order to reduce the computational burden, explicit target excitations were not

taken into account, except those induced by the projectile-target optical interactions. In

order to handle such a complex system, we employed to the continuum discretized coupled

channels (CDCC) formalism, where the three-body scattering wave function is expanded

on a basis formed by the internal projectile states, namely the bound and scattering states.

However, given the in�nite number of scattering states together with the oscillatory be-

haviour of the scattering wave functions, we employed the binning technique of the CDCC

formalism, and truncated the linear scattering momentum k by kmax and discretized the

truncated momentum space into momentum bins. With this procedure, the pure scatter-

ing wave functions were transformed into square-integrable bin wave functions, leading

to a �nite and orthogonal expansion basis. Expanding the wave function on that basis

and its substitution in the Schrödinger equation of the three-body system, yielded a �-

nite set of coupled di�erential equations. The derivation of the analytical expression of

the resulting coupling matrix elements is also provided. The set of coupled di�erential

equations was numerically solved, with the appropriate asymptotic boundary conditions

to obtain the scattering matrix elements. The latter were then used to construct the

breakup observables. To test the stability of the numerical calculations, the convergence

of the angular-distributions di�erential breakup cross sections was tested against various
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numerical parameters, such as maximum value of the core-neutron orbital angular mo-

mentum ℓmax, the maximum value of the core-neutron internal radial coordinate, rmax, the

maximum value of the core-neutron excitation energy, εmax, and the maximum multipole

order expansion λmax. Although the convergence was tested for all the incident energies

considered, only the results obtained for Ecm/VB = 0.9, Ecm/VB = 1.0 and Ecm/VB = 1.2

incident energies, where VB = 38.87MeV, were displayed. It is found that a much larger

breakup space is not needed to obtained converged breakup cross sections. A satisfactory

convergence was obtained for (ℓmax, εmax, λmax, rmax) = (3ℏ, 6MeV, 3, 60 fm).

The stability of the numerical calculations was further tested by comparing the numerical

results with the experimental data. Owing to the lack of experimental data in the energy

range of interest in the present dissertation, numerical calculations were performed consid-

ering an incident energy of Elab = 140MeV, at which the 11Be + 208Pb reaction has been

measured. A satisfactory description of the experimental data is obtained even though

the inelastic breakup component was not included in the numerical calculations, unlike in

some other studies. To investigate whether the breakup channel could be the dominant

reaction channel at deep sub-barrier energies for the reaction at hand, we compared the

breakup cross section with the total fusion cross section. Indeed, it is found that the

breakup cross section is more important than the total fusion cross section for incident

energies below the Coulomb barrier, whereas above the Coulomb barrier, the total fusion

cross section more important. The similarity of these results with the results obtained

with other loosely-bound projectiles such as 8B and 6Li, could signal the universality of

this feature in breakup reactions induced by weakly-bound systems at low incident en-

ergy regime. In order to probe the origin of this importance, we performed a series of

calculations where the continuum-continuum couplings were removed from the coupling

matrix elements. In that case, only couplings to and from the bound state were taken into

account. It is found that below the Coulomb barrier, the breakup and total fusion cross

sections become almost similar, with their respective curves hardly distinguishable. For

incident energy above the Coulomb barrier, the breakup cross section becomes slightly

larger. Therefore, we concluded that the importance of the breakup cross section over the

total fusion cross section is actually due to the e�ect of the continuum-continuum cou-

plings. To better understand this e�ect, we separately analysed the role of these couplings
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on both cross sections. It is found that below the Coulomb barrier, these couplings serve

to enhance the breakup and total fusion cross sections, whereas they are both suppressed

above the Coulomb barrier. A further analysis showed that the breakup cross section is

strongly enhanced compared the total fusion cross section, and also it is more suppressed

above the Coulomb barrier.

To further probe the enhancement of the breakup cross section by the continuum-continuum

couplings, we analysed the Coulomb and nuclear breakup cross sections, which are compo-

nents of the total breakup cross section that is discussed above. The process to calculate

the Coulomb and nuclear breakup cross sections was �rst outlined. It is shown that be-

low the Coulomb barrier, the Coulomb breakup cross section is strongly enhanced by the

continuum-continuum couplings, whereas the nuclear breakup cross section is strongly

suppressed. It followed that the enhancement of the total breakup cross section by

these couplings comes exclusively from its Coulomb component. It is argued that the

enhancement of the Coulomb breakup cross section below the Coulomb barrier by the

continuum-continuum couplings can be explained by the projectile breakup on its outgo-

ing trajectory.

In conclusion, a dominant breakup channel over other reaction channels at deep sub-

barrier energies could be a universal feature in the breakup of weakly-bound systems

and may be justi�ed by the projectile breakup on its outgoing trajectory. It could be

interesting to extend this study four-body breakup reactions, where the projectile is a

three-body weakly-bound system such as 6He, 19B, 22C, among others.
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