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Summary

Transition metal hydrides, including CrH and others, have a significant impact on

chemical synthesis, serving as intermediates and in solid matrix samples for infrared

spectroscopy. Moreover, the CuLi molecule provides insights into the bonding charac-

teristics of mixed transition metal lithides. Additionally, the study of transition metal

carbide molecules like TiC, NiC, and others is currently a highly active research area,

driven by the necessity for accurate measurement of their chemical bonding.

This thesis explores the solution of the Schrödinger equation for the Manning-Rosen

potential alongside a class of Yukawa and the Hulthén plus Yukawa potential models

using the Nikiforov-Uvarov method. It obtains the energy eigenvalues and correspond-

ing eigenfunctions in closed form. Subsequently, the partition function is computed,

and various thermodynamic functions such as Helmholtz free energy, mean energy, en-

tropy, and specific heat capacity of the system are evaluated.

Furthermore, the Schrödinger equation for the Hulthén plus Yukawa potential model

is solved under the influence of magnetic and Aharonov-Bohm flux fields using the ex-

act quantization rule. Closed-form expressions for the energy eigenvalues are derived

and utilized to compute the partition function and other thermo-magnetic functions

such as Helmholtz free energy, mean energy, entropy, specific heat, magnetization, and

magnetic susceptibility for CuLi, CrH, and NiC diatomic molecules. These findings

are relevant in condensed matter physics, chemical and molecular physics, and various

other areas of physics.

Keywords: Aharonov-Bohm flux, Diatomic molecules, Hulthén potential, Magnetic

fields, Manning-Rosen potential, Nikiforov-Uvarov method, Partition function, Schrödinger

equation, Thermodynamic properties, Yukawa potential
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Chapter 1

Introduction

The exact accurate solution of the Schrödinger equation (SE) holds great significance

in physics and chemistry, as it allows for the determination of both the energy spec-

trum and the wave function. These fundamental elements contain essential information

about the physical properties of quantum mechanical systems [1, 2]. In both relativis-

tic and non-relativistic quantum mechanics, various equations such as the Schrödinger,

Klein-Gordon, and Dirac equations are utilized to understand physical systems, em-

ploying potential models to describe particle interactions. However, only a limited

number of potential models enable accurate closed-form solutions of their quantum me-

chanical equations. Notable among these models are the harmonic oscillator, pseudo-

harmonic, Kratzer, Mie-type, and Coulomb potentials. For all other potential models,

only approximate solutions can be derived [3, 4].

1.1 Molecular potential models

Over the years, several potential models have been developed in chemistry and molec-

ular physics to analyze diatomic and polyatomic structures using quantum mechanical

equations. The harmonic oscillator potential stands out as a commonly utilized model

for understanding diatomic molecular dynamics due to its mathematical convenience.

However, recognizing the anharmonic nature of diatomic molecules’ vibrations, the

Morse potential function emerged in 1929 as a more suitable approximation [5–7].

This potential has widespread application across physics and chemistry, making it one

of the most utilized models. Akanbi et al. provided eigenvalues and eigenfunctions
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Introduction

for the modified Morse potential, along with thermodynamic properties for molecules

like caesium and tin carbide [8]. Recently, Nwabuzor and collaborators analyzed how

topographical defects affect the energy spectra and thermal properties of LiH using the

Morse potential [5].

In the realm of molecular physics, the Manning-Rosen potential model has received

significant attention as a mathematical tool for describing diatomic molecule vibra-

tions [9, 10]. While effective in various physics disciplines such as condensed matter,

atomic, particle, and nuclear physics, this model notably overlooks major relativistic

effects [11]. Jia and colleagues provided analytical formulas for several vibrational

properties of diatomic molecules [12]. Additionally, Heman et al. made predictions

on the thermodynamic properties of hydrogen chloride formation using the Manning-

Rosen potential [13].

In 1933, Pöschl and Teller introduced the Pöschl-Teller potential for studying diatomic

molecule vibrations in nuclear and molecular physics [14]. This model is particularly

suited for quantum systems involving excitons, quantum conductors, and quantum

dots. Several studies have derived solutions for the Schrödinger and Klein-Gordon

equations, along with corresponding thermodynamic functions, for the Pöschl-Teller

potential [15–17].

The Deng-Fan oscillator potential, also known as the generalized Morse potential,

has been utilized since its proposal in 1957 to describe nucleon dynamics in diatomic

molecules [18, 19]. Hassanabadi et al. computed energy spectra and eigenfunctions of

the Klein-Gordon equation under asymmetric vector and scalar potentials [20], while

Nath and Roy employed the Nikiforov-Uvarov (NU) approach to solve the Schrödinger

equation using the Deng-Fan potential [21].

The Yukawa potential, known as the screened Coulomb potential in atomic physics and

Debye-Hückel potential in plasma physics, finds applications across various branches

2
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of physics [22]. Napsuciale et al. presented an analytical solution to the quantum

problem of a particle in the Yukawa potential using supersymmetry [24]. The Hulthén

potential, introduced in 1942, is widely used for investigating vibrational properties in

diatomic molecules [25,26]. Ahmadov provided analytical solutions for the Schrödinger

equation of the Hulthén potential using the supersymmetry technique [29].

Researchers have also explored combined potential models, such as Manning-Rosen

plus Yukawa, and Hulthén plus Yukawa, for studying diatomic molecules’ interac-

tions [11,30]. These combined models offer a comprehensive understanding of physical

properties in both continuum and bound states of interacting systems. However, re-

search on the solution of the Schrödinger equation and associated thermodynamic prop-

erties using these combined potential models within the Nikiforov-Uvarov framework

remains scarce [11,33].

1.2 Solution methods

Various methods have been utilized to solve equations such as the Schrödinger, Klein-

Gordon, and Dirac equations. These methods encompass the functional analysis ap-

proach (FAA) [34], asymptotic iteration method (AIM) [35, 36], Laplace transforma-

tion (LTM) [37], supersymmetry of quantum mechanics (SUSYQM) method [38–41],

algebraic methods (AM) [42], proper and exact quantization rules (PEQR) [43], and

Nikiforov-Uvarov functional analysis method (NUFA) [44].

Witten, Copper, and Freedman initially proposed the SUSYQM method [45, 46] to

verify non-perturbative approaches in quantum field theory for understanding SUSY

breaking. Recently, the Nikiforov-Uvarov approach, among others, has been utilized in

conjunction with SUSYQM to generate supersymmetric solutions for the Schrödinger

equation with central confining potentials [47]. SUSYQM considers the supersymmetry

algebra used by fermionic and bosonic operators. The commutation of fermionic oper-
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ators with the Hamiltonian establishes a relationship between the energy eigenvalues,

eigenfunctions, and S-matrix components of the complete supersymmetry Hamiltonian.

Infeld and Hull utilize this correlation in their factorization approach to categorize po-

tential problems that can be resolved analytically [48].

Ciftci and his colleagues developed the asymptotic iteration method to analyze rela-

tivistic equations [49,50]. When a direct solution to the differential equation is absent,

the eigenvalue problem is solved via asymptotic iteration. Unlike other methods, AIM

can effectively solve the eigenvalue problem for large n [51,52]. Hamzavi and colleagues

achieved an accurate solution for the Dirac equation with pseudospin symmetry in the

presence of a spatially varying mass Coulomb potential and a Coulomb-like tensor in-

teraction using this method [53]. Olgar and his colleagues conducted a study on the

Dirac-Coulomb issue, specifically focusing on a solution with a bound state that has a

mass that varies in space. They employed the asymptotic iteration method for their

analysis [54]. Sous also used the AIM method to report the energy eigenvalues for a

complex potential in a correlated manner [55]. In another work, Ikot and his co-workers

recently employed the AIM technique to accurately calculate the bound state energy

spectrum of the Schrödinger equation. This was done for CO, NO, O2, and I2, using

the energy-dependent molecular Kratzer potential [56].

Erwin Schrödinger introduced the Laplace transformation method to solve the eigen-

value problem and determine the radial wave function of the hydrogen atom [57]. This

approach transforms a second-order Schrödinger equation into a first-order differential

equation. Englefield then also resolved the Coulomb, oscillator, exponential, and Ya-

maguchi potentials by employing LTM [58]. Miraboutalebi and Rajaei presented an

analytical solution for the N-dimensional Schrödinger equation with the Morse poten-

tial using this methodology [59]. Additionally, Miraboutalebi obtained precise solutions

of the Klein-Gordon equation for the Mie-type potential while considering the existence

of a vector potential field that has a non-zero spatial component [60]. However, the
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approach cannot be used for extremely short separation distances when dealing with

greater radial and orbital momentum quantum numbers. Furthermore, the approach is

solely efficacious in addressing several forms of spherically symmetrical potentials [57].

In 1981, Iachello utilized Lie algebraic methods to define the rotational vibration spec-

tra of diatomic molecules, based on the second quantization of the Schrödinger equa-

tion [61]. Algebraic methods, which are also used to manage systems with dynamical

symmetry, accurately describe both Dunham-type expansions and force-field varia-

tional approaches [62]. Over the years, there has been an interest in using algebraic

techniques to study polyatomic molecules as well [63,64]. Using a one-dimensional al-

gebraic model, the stretching vibrational spectra of certain AB4 tetrahedral molecules

up to the first overtone are reported for the first time by Choudhury [65]. Setare

and Karimi investigated the Schrödinger equation with the Kratzer potential using the

algebraic technique as well [42]. However, the algebraic method has not been fully

employed to address the treatment of scattering states, even though it has previously

been applied to investigate bound solutions [66].

The exact quantization rule proposed by Ma and Xu in 2005 yields accurate eigenvalues

for quantum systems that can be exactly solved [67, 68]. This is achieved by incorpo-

rating a correction to the well-established JKWB quantization condition. The integral

correction accommodates the solution to the Riccati equation, which is correlated to

the Schrödinger equation for the lowest energy state. To this end, Dong and his col-

laborators derived analytical solutions of the Schrödinger equation for the deformed

harmonic oscillator in one dimension with the Kratzer potential and pseudoharmonic

oscillator in three dimensions, by applying the exact quantization rule [69]. A recent

study by Kumar and Dong introduced a quantization rule for determining the energy

spectrum of bound states in non-relativistic quantum mechanics. This rule is based on

the parametric Nikiforov-Uvarov approach [70].
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The functional analysis approach, alternatively referred to as the modified factorization

method, transforms the second-order differential equation into a hypergeometric equa-

tion through the suitable application of a transformation [71]. The energy eigenvalues

and corresponding eigenfunctions of diatomic molecules, which are characterized by

the Morse-Rosen potential model, were computed using this approach [72]. Ikot and

his collaborators recently utilized the Nikiforov-Uvarov functional analysis method to

successfully solve the Klein-Gordon equation. They employed the improved screened

Kratzer potential (ISKP) model [73].

The Nikiforov-Uvarov method, introduced by Nikiforov and Uvarov in 1988 [5, 74],

stands as a highly effective technique for solving equations akin to Schrödinger’s in

spherical dimensions. It is an analytical approach relying on specific solutions of

orthogonal second-order linear differential equations. This method transforms the

Schrödinger equation into a generalized hypergeometric equation through appropriate

coordinate transformations. Numerous researchers have explored Schrödinger, Dirac,

and Klein-Gordon equations using this method across various potential models. The

Nikiforov-Uvarov method offers a more accurate, straightforward solution to the ra-

dial Schrödinger equation compared to conventional methods [5, 74]. Utilizing this

approach, Edet et al. derived an approximation of the Schrödinger equation for the

modified Kratzer potential plus screened Coulomb potential model [75]. Additionally,

the Nikiforov-Uvarov method has been employed to approximate bound state solu-

tions of the Schrödinger equation within non-relativistic quantum mechanics, focusing

specifically on the Coshine Yukawa potential (CYP) [76].

Recently, Ikot and colleagues proposed the Nikiforov-Uvarov functional analysis ap-

proach to solve second-order differential equations of hypergeometric type [44]. NUFA

utilizes the parametric Nikiforov-Uvarov method and functional analysis to deter-

mine energy eigenvalues and corresponding eigenfunctions of bound states. This func-

tional analysis offers a direct and efficient approach, bypassing the need for complex
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algebraic transformations required by alternative techniques [44]. The Schrödinger

equation featuring the Deng-Fan-Eckart potential (DFEP) is analytically solved using

the Nikiforov-Uvarov-Functional Analysis method to derive thermodynamic proper-

ties for diatomic molecules such as H2, CO, ScN, and ScF [77]. In a separate study,

Udoh and colleagues successfully resolved the radial Schrödinger equation by employ-

ing the Nikiforov-Uvarov functional analysis method with the shifted Morse potential

model [78].

1.3 The objective of this thesis

Numerous attempts have been made to acquire explicit expressions of partition func-

tions for molecular potential energy models in diatomic and polyatomic molecules. In

this context, and also in the non-relativistic case, investigating the thermodynamic

functions of different potential models through a partition function and its derivatives

with respect to temperature was an important development. Moreover, research on the

significance of molecular vibrations and rotational spectroscopy is ongoing in scientific

disciplines such as biology and environmental science [79]. Using the Asymptotic Itera-

tion Method, Ikot et al. presented energy eigenvalues with the general molecular poten-

tial (GMP) and thermodynamic properties of the X1Σ+
g of K2 diatomic molecules [80].

Via the Euler-Maclaurin formula, Chabi and Boumali recently determined eigenso-

lutions of the Schrödinger equation with the three-dimensional Morse potential and

calculated thermal properties of H2, HCl, and LiH diatomic molecules [81].

Moreover, literature highlights the increasing significance of magnetic field effects, such

as the Zeeman, Rashba, and Dresselhaus effects, in altering the behaviour of quantum

systems [82–84]. These effects play a crucial role in eliminating degeneracy within sys-

tems [85]. Additionally, recent discoveries have shown that introducing the Aharonov-

Bohm (AB) field to a system can also serve this purpose [86,87]. Ikhadir et al. employed

the wave function ansatz technique to examine the energy eigenvalues and wave func-
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tions for any arbitrary m-state within the two-dimensional Schrödinger wave equation.

This was done under the influence of various power interaction potentials, within con-

stant magnetic fields and Aharonov–Bohm flux fields perpendicular to the confined

particle plane [88]. Quite recently, Ikot et al. investigated the use of the factorization

method to analyze the Schrödinger equation, which includes a screened Kratzer poten-

tial (SKP), as well as external magnetic and AB flux fields [85].

This thesis employs the Nikiforov-Uvarov method to solve the Schrödinger equation

for two combined potential models: the Manning-Rosen combined with a Yukawa po-

tential (MRCYP), and the Hulthén combined with a Yukawa potential (HYP). These

models were chosen because previous studies have successfully determined energy levels

and wave functions using them. However, no exploration has been done on their solu-

tions to the Schrödinger equation and the associated thermodynamic properties. These

combined potentials are known for accurately representing energy in both bound and

continuum states of interacting systems, as well as physical characteristics of wave func-

tions. Using the energy eigenvalues obtained, we then determine the vibrational parti-

tion function and various thermodynamic properties (such as vibrational free energy,

internal energy, entropy, and specific heat capacity) for different diatomic molecules.

For the Hulthén plus Yukawa potential model, we focus on the diatomic molecules Culi,

CrH, and NiC. These selections are advantageous due to the significance of transition

metal hydrides (e.g., ScH, TiH, VH, CrH, MnH) in chemical synthesis as intermediates

and in solid matrix samples for infra-red spectroscopy. Additionally, CuLi, comprising

copper (Cu) and lithium (Li), serves as a supplementary diatomic molecule to elucidate

bonding characteristics in mixed transition metal lithides. Furthermore, the study of

transition metal carbide molecules like TiC and NiC is of great interest due to the ne-

cessity of comprehending their chemical bonding [89]. The ongoing research in this area

emphasizes the need to investigate their thermo-magnetic properties, particularly at

higher temperatures, and other significant traits, thus warranting further exploration.

8
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To address this, we also explore the effects of the external magnetic and Aharanov-

Bohm flux fields on thermodynamic properties by solving the 2-D Schrödinger equa-

tion with the Hulthén plus Yukawa potential model using the exact quantization rule

(EQR). The energy spectra obtained are then utilized to calculate the vibrational parti-

tion function and other thermo-magnetic properties (including vibrational free energy,

internal energy, entropy, specific heat capacity, magnetization, and magnetic suscepti-

bility) for CuLi, CrH, and NiC diatomic molecules.

1.4 Structure of the thesis

This thesis is outlined as follows: Chapter 2 introduces the Nikiforov-Uvarov method

and obtains thermodynamic properties for diatomic molecules. Chapter 3 presents

mathematical solutions to the Schrödinger equation with specific potentials, along with

the computation of thermodynamic properties for diatomic molecules. Chapter 4 fo-

cuses on the results and discussions, while Chapter 5 offers concise concluding remarks.

9



Chapter 2

Diatomic Molecules

2.1 Schrödinger equation in spherical coordinates

Here, we develop a formula for solving the radial Schrödinger problem in spherical

dimensions based on the citation from [5]. Within the realm of quantum mechan-

ics, solving the Schrödinger equation for a given physical system holds significance

as it provides insight into the wave function Ψ(r, t) and energy E, encapsulating es-

sential information about the system’s physical properties. The information provided

encompasses various attributes of the particle, including its energy, momentum, and

coordinates, alongside its wave properties such as frequency and wavelength. The

quantum mechanical system is delineated by the probability amplitude |Ψ(r, t)|2 and

its accompanying phase [94]. Moreover, the wave function Ψ(r, t) denotes the particle’s

state concerning the potential V (r), with r indicating the particle’s spatial position.

In a system consisting of a single particle moving along a one-dimensional path and

described using Cartesian coordinates, the wave function Ψ(r, t) can be expressed as

Ψ(x, t), while the potential energy function V (r) can be denoted as V (x). Alterna-

tively, in a three-dimensional system with spherical coordinates containing only one

particle, the wave function can be represented as Ψ(r, t) = Ψ(r, θ, ϕ, t) and the poten-

tial as V (r) = V (r, θ, ϕ). In quantum mechanics, predicting the future state Ψ(r, t) of

a particle’s system over time requires referencing its initial state (r, t = 0). To achieve

this, we employ the equation proposed by Erwin Schrödinger

ih̄
∂Ψ(r, t)

∂t
= − h̄2

2µ
∇2Ψ(r, t) + V (r)Ψ(r, t), (2.1)
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as cited in various works [75, 80, 95–101]. Here, µ represents the reduced mass, h̄

represents the reduced Planck’s constant which is defined as h/2π, and ∇2 represents

the Laplacian operator

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (2.2)

in Cartesian coordinates. Equation (2.1) is commonly known as the time-dependent

Schrödinger equation and can easily be converted into the time-independent form by

using a wave function

Ψ(r, t) = e−iEt/h̄ψ(r), (2.3)

that corresponds to states with a constant value of E. In addition, the probability

density

|Ψ(r, t)|2

for states

Ψ(r, t) = e−iEt/h̄ψ(r)

is equal to |ψ(r)|2. This probability density is independent of the state and remains

constant throughout time. Therefore, we may now designate states as ”stationary

states” when they are primarily focused on energy states that remain constant [102].

By substituting the wave function from equation (2.3) into equation (2.1), we obtain

the time-independent Schrödinger equation

− h̄2

2µ
∇2ψ(r) + V (r)ψ(r) = Eψ(r). (2.4)

For simplicity, we’ll denote equation (2.4) as the Schrödinger equation. The solution

to the SE not only relies on the potential energy function V (r) but also on the chosen

coordinate system. While many quantum mechanical systems can be addressed by

solving the one-particle, one-dimensional SE using Cartesian coordinates, our focus

here is on the one-particle, three-dimensional SE using spherical coordinates. Hence, in

this thesis, we will address any one-particle issue with a spherically symmetric potential

energy function V (r), where we assume that V (r) depends solely on the radial variable
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r in spherical coordinates, i.e.,

V (r) = V (r, θ, ϕ) ≡ V (r).

Additionally, the stationary-state wave function ψ(r) takes the form

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ),

whereR(r) represents the unknown radial wave function and Y (θ, ϕ) denotes the spher-

ical harmonics.

Central potentials, as utilized within the Schrödinger equation, are characterized by

their exclusive dependence on the radial distance between a particle. In spherical co-

ordinates, a point in space is defined by its radial distance r from the origin, alongside

two angles: the zenith angle θ and the azimuthal angle ϕ. To ensure a unique assign-

ment of spherical coordinates to each point, it’s imperative to constrain their ranges.

The permissible ranges are r ≥ 0, 0 ≤ θ ≤ π, and 0 ≤ ϕ ≤ 2π. Notably, the necessity

of employing spherical coordinates for solving the Schrödinger equation for a particle

influenced by a potential function can be subject to questioning.

Solving the Schrödinger equation in spherical coordinates for realistic potentials in

physics involves separating the wave function into independent components. Conse-

quently, the motion of a rotating molecule or an electron orbiting an atomic nucleus

can be accurately depicted using a single coordinate in spherical coordinates. A prime

example illustrating this concept is the Coulomb potential, which describes the elec-

tromagnetic interaction between an electron and a proton expressed in Cartesian co-

ordinates as

V (x, y, z) =
−e′2√

x2 + y2 + z2
,

where e′ = e√
4πε0

, with e denoting the elementary electric charge and ε0 representing

the electric permittivity of free space.

Solving the Schrödinger equation with the potential V (x, y, z) can pose challenges due
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to the presence of non-separable variables in Cartesian coordinates, even if the wave

function becomes separable. Converting from Cartesian to spherical coordinates would

streamline the solution of the Schrödinger equation. In spherical coordinates, the

potential V (x, y, z) is represented as V (r) = e′2/r, where it solely relies on the radial

distance r. The transformation utilized for this conversion is given by the formula

r =
√
x2 + y2 + z2.

Furthermore, the variables (x, y, z) in Cartesian coordinates can be correlated with the

variables (r, θ, ϕ) in spherical coordinates as follows:

x = rsinθcosϕ, y = rsinθsinϕ, z = rcosθ, θ = cos−1
(z
r

)
, ϕ = tan−1

(y
x

)
.(2.5)

Now, let’s examine the variables that can be isolated in spherical coordinates. By

taking into account the Schroedinger equation in equation (2.4), we’ll derive the SE in

the same coordinate system by using the relationship given in equation (2.5) and the

Laplacian operator

∇2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂ϕ2
, (2.6)

in spherical coordinates to obtain

(2.7)

[
− h̄2

2µ

(
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂ϕ2

)
+ V (r)

]
ψ(r, θ, ϕ)

= Eψ(r, θ, ϕ).

Our aim is to discover a solution to the Schrödinger equation (2.7) that can be decom-

posed into the structure

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ).

By employing the proposed wave function ψ(r, θ, ϕ), the Schrödinger equation can be

expressed as

(2.8)

1

R(r)

d

dr

(
r2
dR(r)

dr

)
+

2µ

h̄2
r2 (E − V (r)) =

1

Y (θ, ϕ)

[
1

sinθ

∂

∂θ

(
sinθ

∂Y (θ, ϕ)

∂θ

)
+

1

sin2θ

∂2Y (θ, ϕ)

∂ϕ2

]
.
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The two sides of this equation are contingent upon separate variables, hence they can

only be equivalent if they are equal to a fixed value. Hence, it is necessary for both of

the following equations to hold concurrently

(2.9)
1

sinθ

∂

∂θ

(
sinθ

∂Y (θ, ϕ)

∂θ

)
+

1

sin2θ

∂2Y (θ, ϕ)

∂ϕ2
+ LY (θ, ϕ) = 0.

(2.10)
1

R(r)

d

dr

(
r2
dR(r)

dr

)
+

[
2µ

h̄2
r2 (E − V (r))− L

r2

]
R(r) = 0,

Since we have two distinct equations, we can address each one individually. Equation

(2.10) pertains solely to radial variables, while equation (2.9) solely pertains to angu-

lar variables. The solution to the angular component in equation (2.9) is evidently

straightforward as it lacks a potential or energy term. Hence, we can once again utilize

the method of separating variables by assuming the angular function

Y (θ, ϕ) = Θ(θ)Φ(ϕ).

It is crucial to note that equation (2.9) can be decomposed using the substitution

Y (θ, ϕ) = Θ(θ)Φ(ϕ).

To achieve this, the functions Θ(θ) and Φ(ϕ) must satisfy the subsequent differential

equations:

(2.11)
1

Φ(ϕ)

d2Φ(ϕ)

dϕ2

(
r2
dR(r)

dr

)
= −m2.

(2.12)
1

sinθ

d

dθ

(
sinθ

dΘ(θ)

dθ

)
+

(
L − m2

sin2θ

)
Θ(θ) = 0,

Presently, we are certain that solving these equations can be accomplished effortlessly.

However, our attention will be directed solely towards L andm, examining their respec-

tive physical implications. The separable constant m needs to be an integer, whether

positive or negative. Specifically, m can assume values of 0,±1,±2, ..., and is typically

referred to as the magnetic quantum number. Through the substitution of the variable

θ with ω = cos θ, we can reformulate equation (2.12), which becomes more intricate as:

(2.13)
d

dω

[(
1− ω2

) dP (ω)
dω

]
+

(
L − m2

1− ω2

)
P (ω) = 0,
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where polynomial P (ω) denotes the Legendre polynomial. Typically, equation (2.13)

yields two distinct solutions, both becoming infinite when ω = ±1. We investigate

solutions of the Schrödinger equation representing particles in bound states. These

solutions, known as wave functions, must adhere to the boundary conditions specified

in equation (2.13) while remaining finite and single-valued throughout space. However,

if the constant L can be expressed as L = ℓ(ℓ+1), where ℓ denotes the orbital quantum

number taking values ℓ = 0, 1, 2, 3, ..., for such ℓ, one of the solutions remains finite for

all possible ω values.

Since Legendre polynomials are of order ℓ, with |m|= 0, 1, 2, 3, ... ≤ ℓ, the magnetic

quantum number m must be limited to values less than or equal to ℓ in the definition

of the associated Legendre function. Alternatively, there are (2ℓ+ 1) valid options for

m, implying that −ℓ ≤ m ≤ ℓ. By substituting L = ℓ(ℓ + 1) into equation (2.10),

we find that the radial wave function R(r) and the eigenvalues E of the Schrödinger

equation depend on the quantum number ℓ and satisfy the equation

d2R(r)

dr2
+

2

r

dR(r)

dr
+

2µ

h̄2

[
E − V (r)− h̄2ℓ(ℓ+ 1)

2µr2

]
R(r) = 0. (2.14)

The given equation can be restated as an ordinary differential equation, which includes

a variable-dependent coefficient. Standard techniques outlined in quantum mechanics

textbooks can be utilized for its resolution. The solution to equation (2.14) can be

achieved using analytical methods, depending on the specific characteristics of the

potential function V (r) [103].

2.2 The Nikiforov-Uvarov method

The Nikiforov-Uvarov (NU) approach is based on the solution of second-order hyper-

geometric differential equations using specific orthogonal functions [104]. By utilizing

a suitable coordinate transformation r −→ s, the Schrödinger-like equations expressed

in spherical coordinates, along with a given potential V (r), can be simplified to a gen-
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eralized equation with hypergeometric characteristics. These equations can be solved

methodically to obtain accurate and precise solutions. The principles of the Nikiforov-

Uvarov approach were deduced from Chapter 11 in the cited text [5]. The central

equation closely associated with the methodology is as follows:

R′′(s) +
τ̃(s)

σ(s)
R′(s) +

σ̃(s)

σ(s)
R(s) = 0, (2.15)

The wave function ψ(s) is a hypergeometric-type function, characterized by σ̃(s) and

σ(s), which are polynomials of degree two or less, and τ̃(s), which is a polynomial of

degree one or less. By making the assumption that the equation

R(s) = ϕ(s)yn(s), (2.16)

holds and choosing a suitable function ϕ(s), equation (2.15) may be simplified to;

y′′ +

(
2ϕ′(s)

ϕ(s)
+
τ̃(s)

σ(s)

)
y′(s) +

(
ϕ′′

ϕ(s)
+
ϕ′(s)

ϕ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)

)
y(s) = 0. (2.17)

The coefficient of y′(s) is determined by the quotient of τ(s) and σ(s), where τ(s) is a

polynomial with a maximum degree of one. The equation is represented as follows:

τ(s)

σ(s)
=

2ϕ′(s)

ϕ(s)
+
τ̃(s)

σ(s)
, (2.18)

with the regular expression obtained as

π(s)

σ(s)
=
ϕ′(s)
ϕ(s)

, (2.19)

where

π(s) =
1

2
[τ(s)− τ̃(s)]. (2.20)

The most effective illustration of equation (2.18) is

τ(s) = τ̃(s) + 2π(s). (2.21)

The recently proposed parameter π(s) is a polynomial of degree one at most. Further-

more, the expression ϕ′′(s)/ϕ(s), present in the coefficient of y(s) in equation ((2.17)),

can be written in the following form:

ϕ′′

ϕ(s)
=

(
ϕ′(s)

ϕ(s)

)′

+

(
ϕ′(s)

ϕ(s)

)2

=

(
π(s)

σ(s)

)′

+

(
π(s)

σ(s)

)2

. (2.22)
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σ(s)

σ2(s)
=

ϕ′′

ϕ(s)
+
ϕ′(s)

ϕ(s)

τ̃(s)

σ(s)
+

σ̃(s)

σ2(s)
, (2.23)

where

σ(s) = σ̃(s) + π2(s) + π(s) [τ̃(s)− σ′(s)] + π′(s)σ(s). (2.24)

By substituting the right-hand sides of equations (2.18) and (2.23) into equation (2.17),

we obtain the following hypergeometric equation:

y′′(s) +
τ(s)

σ(s)
y′(s) +

σ̄(s)

σ2(s)
y(s) = 0. (2.25)

As a result of the algebraic modifications mentioned above, equation (2.15) is consis-

tently maintained in its functional form. If the polynomial σ̄(s) in equation (2.25) is a

multiple of σ(s), then it can be written as

σ̄(s) = λσ(s), (2.26)

where λ is a constant. In this case, equation (2.25) is simplified to an equation of

hypergeometric-type, and can be written as

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0. (2.27)

The solution to this equation is expressed as a hypergeometric-type function. In order

to determine the polynomial π(s), equation (2.24) is compared with equation (2.26),

resulting in the derivation of a quadratic equation for π(s) given below:

π2(s) + π(s) [σ̃(s)− σ′(s)] + σ̃(s) + kσ(s) = 0, (2.28)

λ = k + π
′
(s). (2.29)

The following equality, results from solving this quadratic equation (2.28 ) for π(s):

π(s) =
σ′(s)− τ̃(s)

2
±

√(
σ′(s)− τ̃(s)

2

)2

− σ̃(s) + kσ(s). (2.30)

To determine the potential solutions based on the positive and negative signs of equa-

tion (2.30), the parameter k inside the square root must be explicitly known. In order
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to fulfil this condition, the expression within the square root must be the result of

squaring a polynomial, as π(s) is a polynomial with a maximum degree of one. For

this situation, there exists a quadratic equation form that can be used to represent the

constant k.

By equating the discriminant of this quadratic equation to zero, the value of the con-

stant k may be unambiguously determined. Once the value of k is determined, the

polynomial π(S) is derived from equation (2.30). Subsequently, equations (2.20) and

(2.29) are employed to yield τ(s) and λ, respectively. A prevalent approach in gen-

eralizing the solutions of equation (2.27) is to demonstrate that all the derivatives of

hypergeometric-type functions also possess the characteristic of being hypergeometric-

type. To achieve this objective, equation (2.27) is differentiated utilizing the notation

υ1(s) = y′′(s), resulting in

σ(s)υ′′1(s) + τ1(s)υ
′
1(s) + µ1υ1(s) = 0. (2.31)

Here, τ1(s) = τ(s) + σ′(s) and µ1 = λ + τ ′(s)τ1(s) is a polynomial of degree at most

one and µ1 is a parameter that is independent of the variable s. Equation (2.31) is

evidently a hypergeometric-type equation. By using υ2(s) = y′′(s) as an alternative

form, the second derivative of equation (2.27) can be expressed as

σ(s)υ′′2(s) + τ2(s)υ
′
2(s) + µ2υ2(s) = 0, (2.32)

where

τ2(s) = τ1(s) + σ′(s) = τ(s) + 2σ′(s), (2.33)

µ2 = µ1 + τ ′1(s) = λ+ 2τ ′(s) + σ′′(s). (2.34)

Similarly, a general hypergeometric-type equation will have its solution constructed by

using υn(s) = yn(s) and takes the form

σ(s)υ′′n(s) + τn(s)υ
′
n(s) + µnυn(s) = 0. (2.35)
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The following are general recurrence relations for τn(s) and µn:

τn(s) = τ(s) + nσ′(s), (2.36)

and

µn = λ+ nτ ′(s) +
n(n− 1)

2
σ′′(s), (2.37)

respectively. when µn = 0, equation (2.37) is reduced to

λn = −nτ ′(s)− n(n− 1)

2
σ′′(s), (n = 0, 1, 2...). (2.38)

Hence, equation (2.35) possesses a solution in the form of y(s) = yn(s), which is a

polynomial of degree n. To achieve an eigenvalue solution using the NU approach, it

is necessary to establish the relationship between and n by utilizing Equations (2.29)

and (2.38). Here, yn(s) is a hypergeometric function whose polynomial solutions are

determined by the Rodrigues relation

yn(s) =
Bn

ρ(s)

dn

dsn
[σn(s)ρ(s)] , (2.39)

where Bn is the normalization constant, and the weight function ρ(s) must satisfy the

following condition:

d

ds
[σ(s)ρ(s)] = τ(s)ρ(s). (2.40)

2.3 Thermo-magnetic properties.

2.3.1 Thermodynamic properties

As previously mentioned, the primary aim of this study is to examine the thermody-

namic properties such as free energy, average energy, entropy, and specific heat capacity

for selected diatomic molecules using the Nikiforov-Uvarov method. Before presenting

expressions for these thermodynamic properties, let us now provide a brief description

of each property.

The Helmholtz free energy
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The Helmholtz free energy, denoted as F , serves as an approximation of the useful

work obtainable from a closed thermodynamic system maintained at a constant tem-

perature [105].

Mean energy

The average energy of a thermodynamic system represents its internal energy. For an

isolated system, the average energy remains constant. It signifies the energy required

to establish or maintain the system’s current internal state, encompassing the kinetic

energy of its particles but excluding the overall kinetic energy of the system. It mon-

itors the energy exchanges within the system resulting from alterations in its internal

state [106].

Entropy

Entropy denotes the amount of thermal energy per unit temperature within a sys-

tem that is unavailable for useful work. As work arises from the ordered motion of

molecules, entropy can be conceptualized as a measure of the molecular disorder or

unpredictability within the system. Understanding entropy provides insights into the

spontaneous changes observed in a wide array of everyday phenomena [107].

Specific heat capacity

Specific heat capacity, also known as massic heat capacity in thermodynamics, is de-

termined by dividing the heat capacity of a material by its mass. It represents the

amount of heat required to raise the temperature of one unit mass of the substance by

one unit. Specific heat capacity is contingent upon temperature and the state of the

material material [108,109].

Next, let us commence the derivation of thermodynamic functions using Section 6 of
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the reference [110]. We consider a system with multiple energy states, each associated

with a distinct probability of occurrence. Our objective is to characterize the ther-

modynamic behaviour of this system under constant temperature T , volume V , and

number of particles N (referred to as a canonical ensemble or NVT ensemble). Given

all conceivable states j, the probability of being in a quantum state i is computed as

indicated.

(2.41)pi =
e
− Ei

kBT∑
j

e
−

Ej
kBT

.

In this equation, kB represents Boltzmann’s constant, T stands for absolute tempera-

ture, and pi denotes the probability that a system within a given canonical ensemble

occupies the quantum state i with quantum energy Ei. The total energy of a particle

in the ith state, denoted by Ei, is determined by the summation of pi.

U = E =
∑
i

piEi. (2.42)

By substituting equation (2.41) into equation (2.42) and connecting the thermodynamic

parameter T with the statistical mechanical parameter β, we obtain the internal energy

U in terms of the partition function Z:

U =

∑
i

Ee−βEi∑
i

e−βEi
, (2.43)

where β = 1/kBT . The statistical partition function Z(N, V, β) is given by [111,112]

Z(N, V, β) =
∑
i

e−Ei/kBT =
∑
i

e−βEi . (2.44)

To connect Partition Function and Probability, the probability pi can also be expressed

in terms of the partition function Z as follows:

pi =
e
− Ei

kBT

Z(N, V, β)
. (2.45)

This shows how the partition function encapsulates the statistical properties of the

system.
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For a collection of N distinguishable particles, the partition function is given by ZN =

ZN , while for N indistinguishable particles, it becomes ZN = ZN

N !
in the limit of large

N . Here, Z denotes the molecular partition function, which signifies the count of

available states for a molecule at a specific temperature T . This function encapsulates

all necessary information for computing the thermodynamic characteristics of a system

composed of independent particles, rooted in quantum mechanics’ wave function. From

equation (2.44), it’s evident that the partition function Z(β) varies with temperature,

where β = 1/kBT . Consequently, the derivative of lnZ(β) can be taken as follows:(
∂lnZ(N, V, β)

∂β

)
N,V

= −
∑
i

(Ei(N, V )) e−βEi(N,V )

Z(N, V, β)
. (2.46)

It can be observed that the right-hand-side of equation (2.46) is in the form of average

energy,

⟨E⟩ = −
∑
i

(Ei(N, V )) e−βEi(N,V )

Z(N, V, β)

= −
∑
i

pi(N, V, β)Ei(N, V, β), (2.47)

which simplifies to

⟨E⟩ = −
(
∂lnZ

∂β

)
N,V

. (2.48)

In equation (2.46), we’ve shown the connection between a microscopic (molecular)

quantity and the partition function, which relates to the macroscopic property of av-

erage energy, a thermodynamic property. Notably, as the systems are composed of

molecules, the energy levels they occupy are quantum energy levels. Equation (2.44)

also allows us to determine additional thermodynamic properties. Before we derive

other thermodynamic functions, let us express equation (2.48) as a temperature deriva-

tive as follows;

∂f

∂T
=
∂f

∂β

∂β

∂T
=
∂f

∂β

d (1/kBT )

dT
= −kT 2 ∂f

∂T
. (2.49)

Therefore, we now have

⟨E⟩ =
(
kBT

2∂Z

∂T

)
N,V

= −
(
∂lnZ

∂β

)
N,V

. (2.50)
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Since the average energy ⟨E⟩ is related to the internal energy U by

U = N.⟨E⟩ = N

(
kBT

2∂Z

∂T

)
N,V

= −N
(
∂lnZ

∂β

)
N,V

. (2.51)

The internal energy U is often reported as a molar quantity

U = ⟨E⟩ = kBT
2∂lnZ(T )

∂T
= −∂lnZ(β)

∂β
. (2.52)

When the probabilities in equation (2.45) are not equal, the entropy is given by

S = −kB
∑
i

pilnpi. (2.53)

Now, taking a logarithm of equation (2.45) yields

ln(pi) = − Ei

kBT
− lnZ, (2.54)

Substituting equation (2.54) into equation (2.53), we obtain

S = kB
∑
i

pi

(
Ei

kBT
+ lnZ

)
, (2.55)

which simplifies to

S =
U

T
+ kBlnZ, (2.56)

using equation (2.42) was used. Note that equation (2.56) can also be rewritten as

U − TS = −kBT lnZ. (2.57)

If we substitute equation (2.52) in equation (2.56) and simplifying, we obtain a partition

function dependent entropy as

S = kBT
∂lnZ(T )

∂T
+ kBlnZ(T ) = − 1

β

∂lnZ(β)

∂β
+ kBlnZ(β). (2.58)

Having acquired the partition function Z, which depends on the mean energy U and

entropy S of the system, we proceed to derive expressions for the free energy F and

the specific heat capacity at constant volume CV . Remembering that free energy is

defined as

F = U − TS. (2.59)
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Substituting equation (2.57) into equation (2.59), we obtain

F = −kBT lnZ(T ), (2.60)

which can also written as function of β in the form

F = −kB
1

β
lnZ(β). (2.61)

The specific heat capacity at constant volume CV is defined as

CV =

(
∂U

∂T

)
V

. (2.62)

Inserting equation (2.51) into equation (2.62) yields

CV =

(
∂

∂T

(
kBT

2

(
∂

∂T
lnZ

)
N,V

))
V

, (2.63)

which can also be expressed as

CV (β) =
1

T 2

∂2lnZ(T )

∂T 2
= kBβ

2∂
2lnZ(β)

∂β2
. (2.64)

These fundamental thermodynamic equations stem from the partition function Z, serv-

ing as the cornerstone of statistical mechanics. They establish a connection between the

microscopic characteristics of a system and its macroscopic thermodynamic properties.

2.3.2 Magnetic properties

We also examine the thermodynamic properties of chosen diatomic molecules, while

also subjecting their molecular structures to magnetic and Aharonov-Bohm (AB) flux

fields. In pursuit of this, we assess the system’s magnetization and magnetic suscepti-

bility.

Magnetization (M)

Magnetization is the measure of the magnetic moment within a material relative to

its volume. Essentially, it represents the concentration of permanent or induced dipole
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moments within a magnetic substance, also known as magnetic polarization. The origin

of magnetization is commonly attributed to the magnetic moments generated by the

spin of electrons or nuclei, or the mobility of electrons within atoms [108,109].

To obtain functions for M and χ, we begin with the Helmholtz free energy F and

examine its application to a magnetic system. Given the Helmholtz free energy:

F = −kBT lnZ

The magnetization M can be obtained as:

M = − 1

β

∂F

∂B

Differentiating F with respect to B, we get:

M = − 1

β

∂

∂B
(−kBT lnZ)

M =
1

β

kBT

Z

∂Z

∂B

M =
1

β

∂Enm

∂B

where Enm is the magnetic energy and B is the magnetic field.

Magnetic Susceptibility (χ)

Magnetic susceptibility denotes a material’s ability to become magnetized when sub-

jected to an external magnetic field. In electromagnetism, it indicates the degree of

magnetization a material undergoes in response to such a field. This trait facilitates

the classification of materials’ reactions to magnetic fields as either aligning with the

field (paramagnetism) or aligning against it (diamagnetism) [108,109].

Similarly, the magnetic susceptibility χ can be derived as:

χ =
∂M

∂B
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χ =
1

β

kBT

Z

∂2Z

∂B2

These expressions provide the magnetization and magnetic susceptibility of the system

in terms of the partition function Z and its derivatives with respect to the magnetic

field B.
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Chapter 3

Thermo-magnetic Functions

3.1 Diatomic Molecular Potentials

In this work, will consider the Manning-Rosen plus a class of Yukawa potential, as well

as the Hulthén plus Yukawa potential models. In the realm of nuclear physics, these

potential models serve to analyze the interaction between pairs of distorted nuclei and

the influence of spin-orbit coupling on particle motion within potential fields. Addition-

ally, the oscillations occurring within the hadronic system’s periphery can be described

accurately by employing multiple potential models, as illustrated in the mathematical

model [11,113–115]. The composite expression for the short-range Manning-Rosen plus

a class of Yukawa potentials, is presented as follows [11]:

V
MRCY

(r) = V
MR

+ V
CY

=
h̄2

2Md2

[
α(α− 1)e−2r/d

(1− e−r/d)2
− Ae−r/d

(1− e−r/d)

]
− V0e

−δr

r
− V ′

0e
−2δ

r2
. (3.1)

Here, A and α denote two dimensionless parameters, while d represents the potential

range and 1/δ signifies the potential strength. Given that the Schrödinger equation for

short-range potential models can be accurately solved using an appropriate approxima-

tion method to circumvent the centrifugal term, it becomes imperative to approximate

this centrifugal term for the Manning-Rosen plus a class of Yukawa potential model.

This approximation is necessary to derive the eigensolution of the Schrödinger equation

(2.14) for ℓ = 0. Thus, when δ << 1, employing an enhanced approximation scheme

becomes crucial. In such conditions, the Greene-Aldrich approximation scheme, as

referenced in [95, 96, 116], is utilized. Note that the above mentioned approximation

27



Thermo-magnetic Functions

scheme is given by;

1

r2
≈ 4δ2e−2δr

(1− e−2δr)2
;

1

r
≈ 2δe−δr

(1− e−2δr)
. (3.2)

Now, substituting equation (3.2) into equation (3.1) we can now write the approxima-

tion for the Manning-Rosen plus a class of Yukawa potential in the form: [11]

V ′
MRCY

(r) = V ′
MR

+ V ′
CY

=
(V1 + V4) e

−4δr

(1− e−2δr)2
− (V2 + V3) e

−2δr

1− e−2δr

=
V14e

−4δr

(1− e−2δr)2
− V23e

−2δr

1− e−2δr
. (3.3)

The following parameters in equation (3.3) are defined as follows;

V1 =
2h̄2δ2α(α− 1)

M
, V2 =

2h̄2δ2A

M
, V3 = 2δV0, V4 = −4δ2V ′

0 , (3.4)

V14 = (V1 + V4), V23 = (V2 + V3). (3.5)

On the other hand the Hulthén plus Yukawa combined potential is of the form [33]:

V
HY

(r) = V
H
(r) + V

Y
(r)

= −Ze
2δe−δr

1− e−δr
− V0e

−δr

r
, (3.6)

In this context, Ze2 represents the potential strength parameter, while δ signifies the

screening parameter, and their product, Zδe2 = V0. Moreover, by employing the

Greene-Aldrich approximation scheme outlined in equation (3.2) within equation (3.6),

we express an approximation for the Hulthén plus Yukawa potential

V ′
HY

(r) = V ′
H
+ V ′

Y

= − V0e
−2δr

1− e−2δr
− 2V ′

0δe
−2δr

1− e−2δr
(3.7)

as stated in [33]. The potentials V (r) (MRCYP and HYP) and their corresponding

approximations V ′(r) are depicted against the separation distance r in Figure 3.1 and

Figure 3.2, respectively.
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Figure 3.1: Comparison of the MRCYP V (r) and its approximation V ′(r) against

the separation distance r for (a) δ = 0.0001; (b) δ = 0.001; (c) δ = 0.01.
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Figure 3.2: Comparison of the HYP V (r) and its approximation V ′(r) against the

separation distance r for (a) CuLi diatomic molecule; (b) CrH diatomic molecule; (c)

for NiC diatomic molecule.
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In Figure 3.3, we plotted the potential difference ∆V (r) between V ′(r) and V (r) against

the separation distance r for the MRCYP and HYP, respectively.

δ = 0.0001

δ = 0.001

δ = 0.01

20 25 30 35 40
-0.0010

-0.0005

0.0000

0.0005

0.0010

r (fm)

Δ
V

(r
)

Figure 3.3: The difference ∆V (r) between V ′(r) and V (r) against the separation

distance r for (a) the MRCYP; (b) the HYP.

From Figure 3.3(a & b), it is evident that ∆V (r) is approximately on the order of 10−3

for a linear combination of Manning-Rosen and a class of Yukawa potential model,

and around 10−2 for the Hulthén plus Yukawa potential model, depending on the

specific parameters of the potentials. This implies that the total potential equations

(3.3) and (3.7) serve as reliable approximations for the centrifugal term 1
r2
. To further

support this assertion, a comparison between the Greene-Aldrich approximation and

the centrifugal term is presented in Figure 3.4.
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Greene-Aldrich Approximation

Centrifugal term

0 2 4 6 8 10

0

2

4
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10
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1 r2

Figure 3.4: Comparison between the Centrifugal term 1/r2 with the Greene-Aldrich

approximation against the separation distance r for δ = 0.0001 for the Manning-Rosen

plus the class of Yukawa potential.

It is evident from the plots in Figure 3.4 that the Greene-Aldrich approximation closely

resembles the centrifugal term 1/r2. This confirms the appropriateness of the approx-

imation scheme (3.2) for both combined potentials examined in this study.

3.2 Eigensolutions and thermodynamic functions with

the MRCYP

3.2.1 Bound solutions for the MRCYP

To determine the partition function and other thermodynamic functions for differ-

ent parameters δ, we first solve the Schrödinger equation using the Nikiforov-Uvarov

method detailed in Chapter 2. Subsequently, we continue with our bounded solutions

by incorporating equation (3.3) into Schrödinger equation (2.14) to obtain:

(3.8)
d2Rnℓ(r)

dr2
+

[
2µ

h̄2
Enℓ−

2µ

h̄2

(
V23e

−2δr

(1− e−2δr)
− V14e

−4δr

(1− e−2δr)2

)
− 2µℓ(ℓ+ 1)

h̄2r2

]
Rnℓ(r) = 0,
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In order to accurately solve the radial Schrödinger equation, which includes the Manning-

Rosen potential along with a class of Yukawa potential models, it becomes imperative

to utilize a suitable approximation method to bypass the centrifugal term. The solu-

tion to equation (2.14) with ℓ = 0 can be obtained by approximating the centrifugal

term through the Greene and Aldrich method (3.2), yielding:

d2Rnℓ(r)

dr2
+

[
2µ

h̄2
Enℓ−

2µ

h̄2

(
V23e

−2δr

(1− e−2δr)
− V14e

−4δr

(1− e−2δr)2

)
− 4ℓ(ℓ+ 1)δ2e−2δr

(1− e−2δr)2

]
Rnℓ(r) = 0,

(3.9)

where V14 and V23 are given by equation (3.5). The algebraic simplifying of equation

(3.9) yields

d2Rnℓ(r)

dr2
+

1

F 2

[
−ε2nℓF 2 + ξe−2δrF − γ1e

−4δr − ℓ(ℓ+ 1)e−2δr
]
Rnℓ(r) = 0, (3.10)

where F = 1 − e−2δr. For bound solution to equation (3.9), we define the following

parameters as follows;

ε2nℓ = − 2µ

4h̄2δ2
Enℓ;

α =
2µ

4h̄2δ2
V23; γ =

2µ

4h̄2δ2
V14. (3.11)

Using the coordinate transformation s = e−2δr with Rnℓ(r) → Rnℓ(s), we obtain the

hypergeometric differential equation of the form:

d2Rnℓ(s)

ds2
+

(1− s)

s(1− s)

dRnℓ(s)

ds
+

1

s2(1− s)2
[
−χ1s

2 + χ2s− χ3

]
Rnℓ(s) = 0, (3.12)

where

χ1 = ε2nℓ + α + γ; χ2 = 2ε2nℓ + α− ℓ(ℓ+ 1); χ3 = ε2nℓ. (3.13)

With the Nikiforov-Uvarov method, we are required to compare equation (2.15) with

equation (3.12), to obtain:

τ̃(s) = 1− s, (3.14)

σ(s) = s(1− s), (3.15)

σ̃(s) = −χ1s
2 + χ2s− χ3. (3.16)
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If one insert equations (3.14), (3.15) and (3.16) into equation (2.30), the following linear

function is obtained

π(s) = −s
2
±
√

(Υ − k) s2 − (χ2 − k) s+ χ3, (3.17)

where Υ = χ1+
1
4
. To find the constant k, we consider the discriminant of the expression

under the square root of equation (3.17) such that

k± = − (ℓ(ℓ+ 1)− α)± 2εnℓ
√
ℓ(ℓ+ 1) + γ. (3.18)

For bound-state solutions, the valid expression for k is in the form

k− = − (ℓ(ℓ+ 1)− α)− 2εnℓ
√
ℓ(ℓ+ 1) + γ. (3.19)

In the view of that, our four possible functions of π(s) are obtained by substituting

equation (3.18) into equation (3.17) and are written as

π(s) = −s
2
±


(
εnℓ +

√
ℓ(ℓ+ 1) + γ

)
s− εnℓ : k+,(

εnℓ −
√
ℓ(ℓ+ 1) + γ

)
s− εnℓ : k−.

(3.20)

For the NU method, we select the expression π(s)− in order to obtain the polynomial

τ(s) = τ̃(s) + 2π(s) has a negative derivative. The selected expression is given by

π(s)− = −s
2
−
[(
εnℓ −

√
ℓ(ℓ+ 1) + γ

)
s− εnℓ

]
. (3.21)

We now write the appropriate polynomial

τ(s) = 1− 2s− 2
(√

ℓ(ℓ+ 1) + γ + εnℓ

)
s+ εnℓ, (3.22)

which satisfies the bound-state condition τ ′ < 0, such that

τ ′(s) = −2
(
1 +

√
ℓ(ℓ+ 1) + γ + εnℓ

)
< 0. (3.23)

By employing equation (2.29), we define the λ parameter as

λ = −ℓ(ℓ+ 1) + α− 2εnl
√
ℓ(ℓ+ 1) + γ − 1

2
−
√
ℓ(ℓ+ 1) + γ − εnℓ. (3.24)
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By determining σ′′(s) = −2 and using equation (2.38), the constant λn can be defined

as

λn = n2 + 2n

[
1

2
+ εnℓ +

√
ℓ(ℓ+ 1) + γ

]
. (3.25)

By letting λ = λn in equation (3.24) and equation (3.25) and solving the resulting

equation for Enℓ, we obtain the discrete energy spectra for the Manning-Rosen plus a

class of Yukawa potential

Enℓ = − h̄
2δ2

2µ


(
n+ 1

2
+
√
ℓ(ℓ+ 1) + γ

)2
− (α + γ)(

n+ 1
2
+
√
ℓ(ℓ+ 1) + γ

)


2

. (3.26)

Next, we calculate the radial wave function Rnℓ in equation (3.9), we first evaluate

ϕ(s) by substituting (3.15) and equation (3.21) into equation (2.18) and solving the

first-order differential equation yields

ϕn(s) = s
εnℓ (1− s)

1
2
+
√

ℓ(ℓ+1)+γ . (3.27)

The weight function ρ(s) from equation (2.40) can be obtained using equation (2.39)

as

ρ(s) = s
2
(
εnℓ−

√
ℓ(ℓ+1)+γ

)
(1− s)2

√
ℓ(ℓ+1)+γ . (3.28)

Implementing the Rodrigues relation of equation (2.39), we obtain

(3.29)
yn(s) = Bns

−2
(
εnℓ−

√
ℓ(ℓ+1)+γ

)
(1− s)−2

√
ℓ(ℓ+1)+γ dn

dsn

×
[
s
n+2

(√
ℓ(ℓ+1)+γ−εnl

)
(1− s)n+2

√
ℓ(ℓ+1)+γ

]
.

It is worthwhile to note that the function above can also be written in the form;

(3.30)yn(s) ≡ BnP
2
(√

ℓ(ℓ+1)+γ−εnℓ

)
,2
(√

ℓ(ℓ+1)+γ
)

n (1− 2s) ,

where Pn is the Jacobi polynomial [117,118]. The functions ynℓ, up a numerical factor,

are expressed in terms of Jacobi polynomials. and physically hold in the interval

(0 ≤ r < ∞ → 0 ≤ s ≤ 1). Lastly, if one inserts equation (3.27) and equation
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(3.30) into Rnℓ(s) = ϕn(s)yn(s), we obtain the normalized radial wave function for the

MRCYP as

(3.31)Rnℓ(s) = Bnℓs
εnℓ (1− s)

1
2
+
√

ℓ(ℓ+1)+γ P
2
(√

ℓ(ℓ+1)+γ−εnℓ

)
,2
√

ℓ(ℓ+1)+γ

n (1− 2s) ,

where Bnℓ is the normalization constant. Note that the wave function above satisfies the

boundary conditions; Rnℓ(s) = 0 as s = 0(r → ∞) and Rnℓ(s) = 0 as s =

1(r = 0) [119]. Therefore the wave functions Rnℓ are physically valid for the closed

interval s ∈ [0, 1] or r ∈ (0,∞). In addition, the wave functions satisfy the normal-

ization condition ∫ ∞

0

| Rnℓ(r) |2 dr = 1 = b

∫ 1

0

s−1|Rnℓ(s)|2ds. (3.32)

3.2.2 Thermodynamic functions for the MRCYP

The partition function is a widely recognized approach for acquiring all thermodynamic

characteristics of a system. Once established, this function enables the calculation of all

other thermal properties of the system under investigation. Determining the vibrational

partition function involves summing the contributions from all attainable vibrational

energy levels accessible to the system. The temperature-dependent partition function

Z(T ) can be derived as outlined in the following references:

Z(β, σ) =
σ∑

n=0

exp (−β (Enℓ − E0ℓ)) , β = (kBT )
−1 (3.33)

[112, 120, 121]. In this context, σ denotes the highest vibration quantum number,

kB represents Boltzmann’s constant, and T signifies the absolute temperature. It is

widely recognized that the partition function cannot be exactly computed through a

closed form. Consequently, we can only obtain a satisfactory estimate for extremely

high temperatures as T −→ ∞ and for extremely low temperatures as T −→ 0 [122].

To achieve our goal, we will calculate the partition function Z(β) utilizing the Euler-

MacLaurin formula [81,123,124]:

∞∑
n=0

f(x) =
1

2
f(0) +

∫ ∞

0

f(x)dx−
∞∑
p=1

B2p

(2p)!
f (2p−1)(0), (3.34)
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The Bernoulli numbers, denoted as B2p, represent the values for the derivative of order

(2p − 1). We consider values of p up to 3. Additionally, B2 = 1/6 and B4 = −1/30.

To evaluate the partition function using equation (3.66), we can express the energy

spectrum of the Manning-Rosen and a class of Yukawa potential model in the following

manner:

(3.35)Enℓ = −h2
[
(n+ κ)− h1

(n+ κ)

]2
,

where

h1 =
2µ

4h̄2δ2
V23 +

2µ

4h̄2δ2
V14, h2 =

h̄2δ2

2µ
, κ =

1

2
+

√
1

4
+ ℓ(ℓ+ 1) + γ. (3.36)

As a result, the Euler-Maclaurin formula vibrational partition function Z(β, σ) simpli-

fies to

(3.37)

Z(β, σ) =
σ∑

n=0

exp (−β (Enℓ − E0ℓ))

=
1

2
+

∫ σ

0

f(n)dn−
∞∑
p=1

B2p

(2p)!
f (2p−1)(0),

where

f(n) = exp

(
−β

[
−h2

(
(n+ κ)− h1

(n+ κ)

)2
])

, (3.38)

σ =
√
h1 − κ. (3.39)

Using Mathematica, we integrate equation (3.38) as follows:

(3.40)

I1 = −
√
π

4
√
−h2β

exp

(
E0ℓβ − 2h1h2β

− 2
√
−h2β

√
−h21h2β

)(
erf

[
κ
√
−h2β −

√
−h21h2β
κ

]

+ erf

[√
−h21h2β
(κ+ σ)

−
√

−h2β (κ+ σ)

]

+ exp

(
4
√

−h2β
√

−h21h2β
)(

erf

[
κ
√
−h2β +

√
−h21h2β
κ

]

− erf

[√
−h21h2β
(κ+ σ)

+
√

−h2β (κ+ σ)

]))
,
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The standard error function, represented by erf(x), is defined as follows: erf(x) =

2√
π

∫ x

0
et

2
dt [12]. By substituting equation (3.40) into equation (3.37) and streamlining

the process, we can obtain the temperature-dependent partition function Z(β, σ) as

indicated below:

(3.41)

Z(T, σ) =
1

2
− (κ4 − h21) h̄

2δ2

12µκ3T
−

√
π

4
√
−h2

T

exp

(
E0ℓ

T
− 2h1h2

T

− 2

√
−h2
T

√
−h

2
1h2
T

)erf

κ√−h2
T

−

√
−h2

1h2

T

κ


+ erf


√

−h2
1h2

T

(κ+ σ)
−
√

−h2
T

(κ+ σ)


+ exp

(
4

√
−h2
T

√
−h

2
1h2
T

)erf

κ√−h2
T

+

√
−h2

1h2

T

κ


− erf


√

−h2
1h2

T

(κ+ σ)
+

√
−h2
T

(κ+ σ)

 .

Upon acquiring the partition function as depicted in equation (3.41), it becomes feasible

to compute the thermodynamic properties of the system, including the free energy

F (T, σ), mean energy U(T, σ), entropy S(T, σ), and specific heat capacity CV (T, σ),

utilizing the following relations, as referenced [80]:

1. Free energy F (T, σ)

The equation below is used to calculate the free energy [80] ;

F (T, σ) = −T lnZ(T, σ)

= −T ln

1

2
− (κ4 − h21) h̄

2δ2

12µκ3T

−
√
π

4
√

−h2

T

exp

(
E0ℓ

T
− 2h1h2

T
− 2

√
−h2
T

√
−h

2
1h2
T

)
Λ

 ,

(3.42)
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where

Λ =

erf

κ√−h2
T

−

√
−h2

1h2

T

κ

+ erf


√
−h2

1h2

T

(κ+ σ)
−
√

−h2
T

(κ+ σ)


+ exp

(
4

√
−h2
T

√
−h

2
1h2
T

)erf

κ√−h2
T

+

√
−h2

1h2

T

κ


− erf


√

−h2
1h2

T

(κ+ σ)
+

√
−h2
T

(κ+ σ)

 .

(3.43)

2. Mean energy U(T, σ)

The following expression can be used to calculate the internal energy [125];

U(T, σ) = −∂lnZ(T, σ)
∂T

= −

1

2
− (κ4 − h21) h̄

2δ2

12µκ3T

−
√
π

4
√

−h2

T

exp

(
E0ℓ

T
− 2h1h2

T
−2

√
−h2
T

√
−h

2
1h2
T

)
Λ

−1

(Γ1+Γ2) ,

(3.44)

where

Γ1 =
(κ4 − h21) h̄

2δ2

12µκ3T
−

√
π

4
√

−h2

T

exp

(
E0ℓ

T
− 2h1h2

T
−2

√
h2
T

√
−h

2
1h2
T

)−E0ℓ

T 2

+
2h1h2
T 2

−
h2

√
−h2

1h2

T√
−h2

T
T 2

−
h21h2

√
−h2

T√
−h2

1h2

T

Λ

− exp

(
E0ℓ

T
− 2h1h2

T
− 2

√
h2
T

√
−h

2
1h2
T

)
√
πh2Λ,

(3.45)
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and

Γ2 =
2√
π

exp
−

κ√−h2
T

−

√
−h2

1h2

T

κ

2

 h2κ

2
√

−h2

T
T 2

− h21h2

2κ

√
−h2

1h2

T
T 2



+ exp

−


√

−h2
1h2

T

(κ+ σ)
−
√

−h2
T
(κ+ σ)

2

 h21h2

2

√
−h2

1h2

T
T 2(κ+ σ)

− h2(κ+ σ)

2
√

−h2

T
T 2


+ 2√

π

exp
−

κ√−h2
T

−

√
−h2

1h2

T

κ

2

 h2κ

2
√

−h2

T
T 2

− h21h2

2κ

√
−h2

1h2

T
T 2


− exp

−


√

−h2
1h2

T

(κ+ σ)
−
√

−h2
T
(κ+ σ)

2

 h21h2

2

√
−h2

1h2

T
T 2(κ+ σ)

− h2(κ+ σ)

2
√

−h2

T
T 2


+ exp

(
4

√
−h2
T

√
−h

2
1h2
T

)2h21h2

√
−h2

T√
−h2

1h2

T
T 2

+
2h2

√
−h2

1h2

T√
−h2

T
T 2

erf

κ√−h2
T

+

√
−h2

1h2

T

κ


− erf


√
−h2

1h

T

(κ+ σ)
+

√
−h2
T
(κ+ σ)

 .

(3.46)

3. Entropy S(T, σ)
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The expression provided below is used to calculate the entropy [126] ;

S(T, σ) = logZ(T, σ) +
1

T

∂logZ(T, σ)

∂T

= log

1

2
− (κ4 − h21) h̄

2δ2

12µκ3T

−
√
π

4
√

−h2

T

exp

(
E0ℓ

T
− 2h1h2

T
− 2

√
−h2
T

√
−h

2
1h2
T

)
Λ


+

1

T

1

2
− (κ4 − h21) h̄

2δ2

12µκ3T

−
√
π

4
√

−h2

T

exp

(
E0ℓ

T
− 2h1h2

T
−2

√
−h2
T

√
−h

2
1h2
T

)
Λ

−1

(Γ1+Γ2) .

(3.47)

4. Specific heat capacity CV (T, σ)

The expression for this thermodynamic property is given by [108,109] ;

CV (β, σ) =
1

T 2

∂2logZ(T, σ)

∂T 2

=

 1

T

1

2
− (κ4 − h21) h̄

2δ2

12µκ3T

−
√
π

4
√

−h2

T

exp

(
E0ℓ

T
− 2h1h2

T
− 2

√
−h2
T

√
−h

2
1h2
T

)
Λ

−1

(Γ1

+ Γ2) .
(3.48)

3.3 Eigensolutions and thermodynamic functions for

the HYP

3.3.1 Bound solutions for the HYP

In the same manner as discussed in subsection 3.2.1, we initiate the process of deter-

mining the partition function and thermodynamic properties of the diatomic molecules
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CuLi, CrH, and NiC by solving the Schrödinger equation using the Hulthén plus

Yukawa potential. The energy spectrum is obtained through the Nikiforov-Uvarov

technique. Substituting equation (3.6) into equation (2.14), we derive the following

expression:

(3.49)
d2Rnℓ(r)

dr2
+

2µ

h̄2

[
Enℓ −

(
V0e

−2δr

1− e−2δr
− V ′

0e
−δr

r

)
− ℓ(ℓ+ 1)h̄2

2µr2

]
Rnℓ(r) = 0.

Substituting equation (3.2) into (3.49), we have;

d2Rnℓ(r)

dr2
+

[
2µEnℓ

h̄2
− 2µ

h̄2

(
V0e

−2δr

1− e−2δr
− V ′

0δe
−2δr

1− e−2δr

)
− 4δ2ℓ(ℓ+ 1)e−2δr

(1− e−2δr)2

]
Rnℓ(r) = 0.

(3.50)

By changing the coordinate s = e−2δr, we write the second derivative of Rnℓ in terms

of the new coordinate s as

d2

dr2
= 4δ2s2

d2

ds2
+ 4δ2s

d

ds
. (3.51)

If we substitute equation (3.54) in (3.50), we rewrite the radial Schrödinger equation

as follows;

d2Rnℓ(s)

ds2
+

(1− s)

s(1− s)

dRnℓ(s)

ds
+

1

s2(1− s)2
[
−ϱ1s2 + ϱ2s− ϱ3

]
Rnℓ(s) = 0, (3.52)

where

ϱ1 = (εnℓ + α1) , ϱ2 = (2εnℓ + α1 − γ1) , ϱ3 = εnℓ, (3.53)

Here, subsequent dimensionless notations have been utilized to facilitate mathematics

εnℓ = − µEnℓ

2h̄2δ2
, α1 =

µV0

2h̄2δ2
+
µV ′

0

h̄2δ
, γ1 = ℓ(ℓ+ 1). (3.54)

Equation (2.15) and (3.52) are compared, and the following parameters are defined:

τ̃(s) = (1− s), σ(s) = s(1− s), σ̃(s) = −ϱ1s2 + ϱ2s− ϱ3. (3.55)

respectively. If we are to use equation (2.30), then polynomial equation π becomes

π(s) = −s
2
±
√

(Π − k) s2 − (ϱ2 − k) s+ ϱ3, (3.56)
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where Π = ϱ1+
1
4
. To find the value of k, we equate the discriminant of equation (3.56)

to zero, yielding the subsequent expression:

k± = α1 − γ1 ± 2
√
εnℓ

√
1

4
+ γ1. (3.57)

For bound solutions, the valid expression for k is given by

k− = α1 − γ1 − 2
√
εnℓ

√
1

4
+ γ1. (3.58)

The substitution of k in equation (3.56) gives the possible functions of π(s) as

π(s) = −s
2
±


(√

εnℓ +
√

1
4
+ γ1

)
s−√

εnℓ, for α1 − γ1 + 2
√
εnℓ

√
1
4
+ γ1,(√

εnℓ +
√

1
4
+ γ1

)
s−√

εnℓ, for α1 − γ1 − 2
√
εnℓ

√
1
4
+ γ1.

(3.59)

For the NU method, we select one function of π(s) which gives a negative derivative

for τ(s), which is

π(s) = −s
2
−

(√
1

4
+ γ1 +

√
εnℓ+

)
s−

√
εnℓ. (3.60)

Taking the derivative of equation (3.60), we obtain

π′(s) = −s
2
−

(√
1

4
+ γ1 +

√
εnℓ+

)
. (3.61)

In order to get the polynomial τ(s), we employ equation (2.21) and obtain the following

result:

τ(s) = 1− 2s− 2

[(√
1

4
+ γ1 +

√
εnℓ+

)
s−

√
εnℓ

]
. (3.62)

The derivative of τ(s) in equation (3.62),

τ
′
(s) = −2

[
1 +

(√
1

4
+ γ1 +

√
εnℓ

)]
< 0. (3.63)

The parameter λ is defined

λ = α1 − γ1 − 2
√
εnℓ

√
1

4
+ γ1 −

1

2
−

(√
1

4
+ γ1 +

√
εnℓ

)
, (3.64)
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and λn is expressed as,

λn = n2 + n+ 2n
√
εnℓ + 2n

√
1

4
+ γ1. (3.65)

The eigenvalue expression holds if λ = λn

εnℓ =
1

4


(
n+ 1

2
+
√

1
4
+ γ1

)2
− α1(

n+ 1
2
+
√

1
4
+ γ1

)


2

. (3.66)

Substituting equation (3.54) into (3.66), we obtain the energy as follows:

Enℓ = − h̄
2δ2

2µ

[
(n+ κ1)

2 − α1

(n+ κ1)

]2
, (3.67)

where

κ1 =
1

2
+

√
1

4
+ γ1. (3.68)

To compute the radial wave function Rnℓ(s) for the Hulthén plus Yukawa potential, we

start by replacing π(s) from equation (3.55) and σ(s) from equation (3.60) in equation

(2.18). This results in:

dϕ(s)

ϕ(s)
=

[√
εnℓ(1− s)− κ1s

s(1− s)

]
ds. (3.69)

Integrating equation (3.69), we obtain

ϕ(s) = s
√
εnℓ(1− s)κ1 . (3.70)

From equation (2.39),

dρ(s)

ρ(s)
=

2√εnℓ(1− s)− 2s
(√

1
4
+ γ1

)
s(1− s)

 ds. (3.71)

Integrating equation (3.71), we obtain

ρ(s) = s2
√
εnℓ(1− s)2

√
1
4
+γ1 . (3.72)

By substituting equation (3.72) into equation (2.39), we get

(3.73)
yn(s) = Bn(s)s

−2
√
εnℓ(1− s)

√
1
4
+γ1

dn

dsn

[
s2

√
εnℓ+n(1− s)

√
1
4
+γ1
]

= P

(
2
√
εnℓ,2

√
1
4
+γ1

)
n (1− 2s).
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By substituting equations (3.70) and (3.73) into equation (2.16), we derive the com-

prehensive expression for the wave function of the Hulthén plus Yukawa potential in

terms of the Jacobi polynomial:

(3.74)Rnℓ(s) = Bnℓs
√
εnℓ(1− s)κ1P

(
2
√
εnℓ,2

√
1
4
+γ1

)
n (1− 2s).

3.3.2 Thermodynamic functions for the HYP

Likewise, as demonstrated in subsection (3.2.2), we calculate the vibrational partition

function and other thermal properties for various diatomic molecules. The overall

impact of the bound state on the system’s partition function Z(β) can be assessed

using Boltzmann’s distribution as follows:

Z(β) =
nmax∑
n=0

e−βEnℓ , (3.75)

where n = 0, 1, 2, ... < nmax, and nmax is the maximum quantum number. The maxi-

mum value nmax can be obtained by setting dEn/dn = 0, to obtain

nmax = −κ1 ±
√
p2. (3.76)

To evaluate the partition function Z(β), the energy eigenvalue equation (3.67) can be

written as follows;

Enℓ = −p1
[
(n+ κ1)

2 − p2
(n+ κ1)

]2
, (3.77)

where

κ1 =
1

2
+

√
1

4
+ γ1, p1 =

h̄2δ2

2µ
, p2 =

µV0

2h̄2δ2
+
µV ′

0

h̄2δ
. (3.78)

Substituting equation (3.78) into equation (3.77) yields

Z(β) =
nmax∑
n=0

exp

[
−βp1

(
(n+ κ1)

2 − p2
(n+ κ1)

)2
]
. (3.79)

By replacing the summation in equation (3.79) by an integral, we obtain;

Z(β) =

∫ nmax

n=0

exp

[
−βp1

(
(n+ κ1)

2 − p2
(n+ κ1)

)2
]
dn. (3.80)
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The integral in equation (3.80), can be evaluated as follows;

Z(β) =

∫ nmax+κ1

κ1

exp

[
−βp1

(
ρ2 +

p22
ρ2

− 2p2

)2
]
dρ, (3.81)

where ρ = n + κ1, and the limits of the integral are: κ1 ≤ ρ ≤ nmax + κ1. From here,

we make use of Mathematica to evaluate the integral in equation (3.81), to obtain the

partition function Z(β) for the Hulthén plus Yukawa potential model as follows:

Z(β) = −
exp

(
2p1p2β − 2

√
p2β
√
p1p22β

)√
π

4
√
p2β

(
erf

[√
p1p22β

κ1
−
√
p2βκ1

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ1
+
√
p2βκ1

]
− erf

[√
p1p22β

κ2
−
√
p2βκ2

]

− exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ2
−
√
p2βκ2

])
.

(3.82)

The expression for κ2 is given by κ2 = nmax +
1
2
+
√

1
4
+ γ1 [111]. Following that,

we present the free energy F (β), mean energy U(β), entropy S(β), and specific heat

capacity C(β) for diatomic molecules CuLi, CrH, and NiC for the Hulthén plus Yukawa

potential model.

1. Free energy F (β)

F (β) = − 1

β
lnZ(β)

=

− 1

β

−
exp

(
2p1p2β − 2

√
p2β
√
p1p22β

)√
π

4
√
p2β

(
−erf

[√
p1p22β

κ1
−
√
p2βκ1

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ1
+
√
p2βκ1

]

+ erf

[√
p1p22β

κ2
−
√
p2βκ2

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ2
−
√
p2βκ2

])−1

.

(3.83)
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2. Mean energy U(β)

U(β)

= −∂lnZ(β)
∂β

=

(
√
π

(
erf

[√
p1p22β

κ1
−
√
p2βκ1

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ1
+
√
p2βκ1

]

− erf

[√
p1p22β

κ2
−
√
p2βκ2

]

+exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p21p2β

κ2
−
√
p2βκ2

]))−1(
4 exp

(
−2p1p2β

+ 2
√
p2β
√
p1p22β

)√
p2β

)
(Ω1 − Ω2) ,

(3.84)

where

Ω1 =
exp

(
2p1p2β − 2

√
p2β
√
p1p22β

)
p2
√
π

8(p2β)3/2

(
−erf

[√
p1p22β

κ1
−
√
p2βκ1

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ1
+
√
p2βκ1

]

+ erf

[√
p1p22β

κ2
−
√
p2βκ2

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ2
−
√
p2βκ2

])

−Π2

(
2p1p2 −

p1p
2
2

√
p2β√

p1p22β
− p2

√
p1p22β√
p2β

)(
−erf

[√
p1p22β

κ1
−
√
p2βκ1

]

+ exp

(
4
√
p1β
√
p1p22β

)
erf

[√
p1p22β

κ1
+
√
p2βκ1

]

+ erf

[√
p1p22β

κ2
−
√
p2βκ2

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ2
−
√
p2βκ2

])
Π1,

(3.85)
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Ω2 = Π2

− 2√
π
exp

−

(√
p1p22β

κ1
−
√
p2βκ1

)2
( p1p

2
2

2
√
p1p22βκ1

− p2κ1

2
√
p2β

)

+
2√
π
exp

4
√
p2β
√
p1p22β

−

(√
p1p22β

ζ1
+
√
p2βκ1

)2
( p1p

2
2

2
√
p1p22βκ1

+
p2κ1

2
√
p2β

)

+
2√
π
exp

−

(√
p1p22β

κ2
−
√
p2βκ2

)2
( p1p

2
2

2
√
p1p22βκ2

− p2κ2

2
√
p2β

)

+
2√
π
exp

4
√
p2β
√
p1p22β

−

(√
p1p22β

κ2
+
√
p2βκ2

)2
( p1p

2
2

2
√
p1p22βκ2

+
p2κ2

2
√
p2β

)
+ exp

(
4
√
p2β
√
p1p22β

)(
2p1p

2
2

√
p2β√

p1p22β
+

2p2
√
p1p22β√
p2β

)
erf

[√
p1p22β

κ1

+
√
p2βκ1

]
+ exp

(
4
√
p2β
√
p1p22β

)(
2p1p

2
2

√
p2β√

p1p22β

+
2p2
√
p1p22β√
p2β

)
erf

[√
p1p22β

κ2
−
√
p2βκ2

]
,

(3.86)

where

(3.87)Π1 =

(
4 exp

(
−2p1p2β + 2

√
p2β
√
p1p22β

)√
p2β

)

and

(3.88)Π2 =
exp

(
2p1p2β − 2

√
p2β
√
p1p22β

)√
π

4
√
p2β

.
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3. Entropy S (β)

S(β) = lnZ(β)− β
∂lnZ(β)

∂β

=

√
π

−erf


√
− 1

β
lnp22β

κ1
−
√
p2βκ1


+ exp

(
4
√
p2β

√
− 1

β
lnp22β

)
erf


√
− 1

β
ln2p2β

κ1
+
√
p2βκ1


+ erf


√

− 1
β
ln2p2β

κ2
−
√
p2βκ2


+ exp

(
4
√
p2β

√
− 1

β
ln2p2β

)
erf


√

− 1
β
ln2p2β

κ2
−
√
p2βκ2

−1

× (βΩ1 − Ω2)− ln

(
Π2

(
−erf

[√
p1p22β

κ1
−
√
p2βκ1

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ1
+
√
p2βκ1

]

+ erf

[√
p1p22β

κ2
−
√
p2βκ2

]

+ exp

(
4
√
p2β
√
p1p22β

)
erf

[√
p1p22β

κ2
−
√
p2βκ2

]))
.

(3.89)
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4. Specific Heat Capacity CV (β)

CV (β) = β2∂
2lnZ(β)

∂β2

= −

√
π

exp

(
4
√
p2β

√
− 1

β
ln2p2β

)
erf


√
− 1

β
ln2p2β

κ1
+
√
p2βκ1


− erf


√

− 1
β
ln2p2β

κ1
−
√
p2βκ1

+ erf


√
− 1

β
ln2p2β

κ2
−
√
p2βκ2


+exp

(
4
√
p2β

√
− 1

β
ln2p2β

)
erf


√
− 1

β
ln2p2β

κ2
−
√
p2βκ2

−1 (
β3Ω1

− Ω2

)
.

(3.90)

3.3.3 Bound solutions for the HYP with the magnetic and AB

flux fields

To analyze how external magnetic and Aharonov-Bohm flux fields affect the thermody-

namic properties of CuLi, CrH, and NiC diatomic molecules, we solve the Schrödinger

equation. This equation incorporates the presence of magnetic and AB flux fields, as

well as the Hulthén plus Yukawa potential. The expression for the Hamiltonian op-

erator of a charged particle moving within the Hulthén plus Yukawa potential can be

derived using cylindrical coordinates. This derivation considers the combined influence

of an external magnetic field with a topological defect and AB flux. Reference [127]

outlines the Schrödinger equation for this case as

(3.91)

[
1

2µ
P 2 −

(
V0e

−2δr

1− e−2δr
− V ′

0e
−δr

r

)]
ψ (r, φ) = Enmψ (r, φ) ,

where Enm denotes the energy level, µ is the effective mass of the system. It is important

to mention that when considering this, the momentum operator of the charged particle

needs modification. For this purpose, we minimally associate a four-vector with the

momentum operator in the following manner:

P =
(
ih̄∇− e

c
A
)
,

50



Thermo-magnetic Functions

and A is the vector potential given by a superposition of two vectors can be expressed

A = A1 +A2 = 0

with azimuthal components [127] and an external magnetic field represented by

∇×A1 = B, ∇×A2 = 0,

where B is the magnetic field.

A1 =
Be−ar

(1− e−ar)
φ̂

and

A2 =
φAB

2πr
φ̂

give the additional magnetic flux φAB produced by a solenoid with

∇.A2 = 0

[127]. The vector potential in full is written in a simple form as [127];

A =

(
0,

Be−δr

(1− e−δr)
+
φAB

2πr
, 0

)
. (3.92)

By utilizing equation (3.91), we deduce the subsequent radial second-order differential

equation:

R′′
nm (r) +

2µ

h̄2
[Enm − Veff (r)]Rnm (r) = 0, (3.93)

(3.94)
Veff (r) = − V0e

−2δr

1− e−2δr
− V ′0e−δr

r
+ h̄ωc(m+ ξ)

e−δr

(1− e−δr) r

+
(µωc

2

) e−2δr

(1− e−δr)2
+
h̄2

2µ

[
(m+ ξ)2 − 1

4

r2

]
.

Here, ξ = φAB is an integer with the flux quantum, φ0 = hc
e
, and the cyclotron

frequency ωc = eB
µc

. The equation (3.93) becomes unsolvable due to the inclusion

of a centrifugal element. To circumvent this centrifugal term, we employ the Greene-

Aldrich approximation scheme (3.2). The approximate potential can then be expressed

as follows [95,116]:

Veff (r) = C1 + C2z + C3z
2. (3.95)
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Here, we have also introduced a new transformation defined as

z =
e−δr

1− e−δr
.

To simplify matters, we will introduce dimensionless notations C1, C2, and C3 in the

following manner.

(3.96)C1 =
h̄2δ2

2µ

(
(m+ ξ)2 − 1

4

)
,

(3.97)C2 = h̄ωc(m+ ξ)δ − V0 − V ′
0δ + 2

(
h̄2δ2

2µ

(
(m+ ξ)2 − 1

4

))
,

(3.98)C3 =
h̄2δ2

2µ

(
(m+ ξ)2 − 1

4

)
+ h̄ωc(m+ ξ)δ +

µω2
c

2
.

Please note that the study of the potential Veff (r) involves applying the quantization

rule. This is accomplished by identifying the turning points za and zb when solving

V (z) = Enm. Therefore, we can deduce that

za = − C2

2C3

−

√
C2

2 − 4C3(C1 − Enm)

2C3

, (3.99)

zb = − C2

2C3

+

√
C2

2 − 4C3(C1 − Enm)

2C3

, (3.100)

with

k(z) =

√
2µC3

h̄2
[(z − za)(z − zb)]

1/2 , (3.101)

where k(z) lies within the interval defined by za and zb. Equation (3.93) can be ex-

pressed in the form of a Riccati equation

−δz(1 + z)φ′
0(z) + (φ0(z))

2 +
2µ

h̄2
[
Enm − C1 + C2z − C3z

2
]
φ0(z) = 0. (3.102)

The logarithmic derivative φ0(z) of the lowest energy state exhibits a consistent trend,

intersecting zero at only one point and lacking singularities. Hence, it becomes im-

perative to utilize a linear equation involving z. As a result, we suggest a tentative

solution represented as

φ0(z) = A+Bz.
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Upon substituting this solution into equation (3.102), we derive the non-linear Riccati

equation, facilitating the computation of the lowest energy state’s energy as follows:

E0m = C1 −
h̄2A2

2µ
, (3.103)

where A and B are given by

A =
δ

2
+
µC2

h̄2B
, B =

δ

2
±
√
δ2

4
+

2µC3

h̄2
. (3.104)

It is crucial to note that the issue can only be effectively addressed through a physical

approach when

B =
δ

2
+

√
δ2

4
+

2µC3

h̄2
.

Now, we’ll calculate the quantum correction. To accomplish this, integrals were uti-

lized, leading to∫ zb

za

k′0(r)
φ0

φ′
0

dr = −
∫ zb

za

k′0(z)

δz(1 + z)

φ0(z)

φ′
0(z)

dz

= ϖ

∫ zb

za

(
z − (za+zb

)

2

) (
A
B
+ z
)

z(1 + z)
√

(z − za)(z − zb)
dz

= ϖ

∫ zb

za

dz√
(z − za)(z − zb)

((
A
B
− 1
) (

1 + za+zb
2

)
z + 1

−
A
B

(
za+zb

2

)
z

+ 1

)
,

(3.105)

where

ϖ =
1

δ

√
2µC3

h̄2
. (3.106)

As a result, the quantum correction term is given as;

Kc =
π

δ

√
2µC3

h̄2

[
1

B

√
2µC3

h̄2
+ 1

]
(3.107)

(3.108)

∫ zb

za

k(r)dr = −
∫ zb

za

k(z)

δz(1 + z)
dσ

= −1

δ

√
2µC3

h̄2

∫ zb

za

√
(z − za)(z − zb)

z(1 + 1)
dz

= −π
δ

√
2µC3

h̄2

[√
(za + 1)(zb + 1)− 1−

√
zazb

]
= −π

δ

√
2µC3

h̄2

[√
C3 − C2 + C1 − Enm

C3

− 1−
√
C2 − Enm

C3

]
,

53



Thermo-magnetic Functions

where appropriate standard integrals were used. Combining the results obtained by

equation (3.107) and (3.108) we obtain

(3.109)

−π
δ

√
2µC3

h̄2

[√
C3 − C2 + C1 − Enm

C3

− 1−
√
C1 − Enm

C3

]

= Nπ +
π

δ

√
2µC3

h̄2

[
1

B

√
2µC3

h̄2
+ 1

]
.

By employing fundamental algebraic operations and applying the formula from equa-

tion (3.95), we calculate the energy of the Hulthén plus Yukawa potential model in

the presence of AB and magnetic flux fields with topological defects in the following

manner:

(3.110)Enm =
h̄2δ2

2µ
η − h̄2

8µ

[
2µV0

h̄2 + 2µV ′

h̄2 +
(
µωc

h̄

)2 − δ2η − (nδ +B)2

(nδ +B)

]2
,

where

η = (m+ ξ)− 1

4
.

3.3.4 Thermo-magnetic functions with the HYP

Once again, we will use a similar method to compute the vibrational partition function

Z(β) and other thermal characteristics, as explained in subsection 3.3.2. Our focus

will be on analyzing the thermodynamic properties of CuLi, CrH, and NiC diatomic

molecules under the influence of Aharanov-Bohm flux fields. Moreover, we will explore

their magnetization and magnetic susceptibility. To begin, we start by restating the

energy spectra in equation (3.110) as follows:

Enℓ =

[
q0 − q1

(
(n+ κ1)

2 − q2
(n+ κ1)

)2
]
, (3.111)

where

q0 =
h̄2δ2

2µ
η, q1 =

h̄2δ2

2µ
, q2 =

2µV0

h̄2
+

2µV ′

h̄2
+
(µωc

h̄

)2
− η, (3.112)
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and

κ1 =
1

2
+

√
(m+ ξ)2 +

(µωc

h̄δ

)2
+

2µωc

h̄δ
(m+ ξ). (3.113)

To evaluate the partition function, we substitute equation (3.111) into equation (3.75),

to obtain

Z(β) =
nmax∑
n=0

exp

[
−β

(
q0 − q1

(
(n+ κ1)

2 − q2
(n+ κ1)

)2
)]

, (3.114)

where

nmax = −κ1 ±
√
q2. (3.115)

By replacing the summation in equation (3.75) by an integral, we obtain;

Z(β) =

∫ nmax

n=0

exp

[
−β

(
q0 − q1

(
(n+ κ1)

2 − q2
(n+ κ1)

)2
)]

dn. (3.116)

The integral in equation (3.80), can be evaluated as follows;

Z(β) =

∫ nmax+κ1

κ1

exp

[
−β

(
q0 − q1

(
(n+ κ1)

2 − q2
(n+ κ1)

)2
)]

dρ, (3.117)

where ρ = n+ κ1, and the limits of the integral are: κ ≤ ρ ≤ nmax + κ1. If we set

x = (n+ κ1)−
q2

(n+ κ1)
,

we can also rewrite the integral in equation (3.117) as follows:

(3.118)

∫ x2

x1

exp

(
−β

(
q0 − q1

(
(n+ κ1)

2 − q2
(n+ κ1)

)2
))

dx

=
1

2
exp(−βq0)

∫ x2

x1

exp

(
βq1x

2

(
x√

x2 + 4q2
− 1

))
dx,

where

x1 = κ1 −
q2
κ1

, (3.119)

x2 = (nmax + κ1)−
q2

(nmax + κ1)
. (3.120)
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To proceed, we now calculate the integral stated in equation (3.118) with the aid of

Mathematica. The partition function, denoted as Z(β), for diatomic molecules CuLi,

CrH, and NiC under the Hulthén plus Yukawa potential model will be evaluated in the

presence of external magnetic and Aharanov-Bohm flux fields in the following manner:

Z(β, η) = −
exp

(
q3β − 2

√
−q2β

√
−q22q1β

)√
π

4
√
−q2β

(
erf

[√
−q22q1β
κ1

−
√

−q2βκ1

]

+ exp

(
4
√

−q2β
√

−q22q1β
)
erf

[√
−q22q1β
κ1

+
√

−q2βκ1

]

− erf

[√
−q22q1β
κ2

−
√

−q2βκ2

]

− exp

(
4
√
−q2β

√
−q22q1β

)
erf

[√
−q22q1β
κ2

−
√

−q2βκ2

])
,

(3.121)

where

κ2 = nmax +
1

2
+

√
(m+ ξ)2 +

(µωc

h̄δ

)2
+

2µωc

h̄δ
(m+ ξ), (3.122)

where q3 = q2q1 + q0. Using a method akin to that described in subsection 3.3.2, we

can formulate thermo-magnetic properties such as the free energy F (β), average energy

U(β), entropy S(β), specific heat capacity C(β), magnetization M(β), and magnetic

susceptibility χm(β) for CuLi, CrH, and NiC diatomic molecules. These expressions

are outlined below:

1. Free energy F (β)

(3.123)F (β) = − 1

β
lnZ(β).

2. Mean energy U(β)

(3.124)U(β) = −d∂lnZ(β)
∂β

.

3. Entropy S (β)

(3.125)S(β) = lnZ(β)− β
∂lnZ(β)

∂β
.
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4. Specific Heat Capacity CV (β)

(3.126)CV (β) = β2∂
2lnZ(β)

∂β2
.

5. Magnetisation M(β)

The following expression is used to calculate the magnetization is given by ;

(3.127)M(β) =
1

β

(
1

Z(β)

)(
∂Z(β)

∂B

)
.

6. Magnetic susceptibility χm(β)

The expression below is used to determine the magnetic susceptibility is written

as follows;

(3.128)χm(β) =
∂M(β)

∂B
.

In the following chapter, we present the numerical results generated by Mathematica

along with their respective analyses.
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Chapter 4

Results and Discussion

4.1 Results with the MRCYP

The numerical determination of energies for the MRCY potential under various screen-

ing parameters and quantum states was conducted using Mathematica software, and

the results are displayed in Table 4.1. Our investigation was conducted with specific

parameters: h̄ = 1, V0 = 1, M = 1, µ = 1, a = 0.75, and V ′
0 = 0.1.

Table 4.1 illustrates that as the number of quantum states n and ℓ increases, the energy

Enℓ rises in correlation with the screening parameter δ. Furthermore, an increase in the

screening parameter leads to a decrease in the energy Enℓ for a given quantum state.

Figures 4.1, 4.2, and 4.3 visually represent the variations of energies Enℓ concerning

different parameters δ, n, and ℓ. It is observed that energy decreases as δ increases

across various quantum states, as demonstrated in Figure 4.1(a). Additionally, an in-

crease in Enℓ is noticed when both n and ℓ are present at a specific δ, as depicted in

Figure 4.1(b) for multiple quantum states.

At specific values of V0, the energies Enℓ rise with an increase in the number of quantum

states n and ℓ. Figure 4.2(a) shows a significant rise in energy at zero reduced mass.

Moreover, a monotonic decrease in energy Enℓ is observed with a further increase in µ,

particularly pronounced for n = 2 and n = 1 compared to other quantum states.

Figure 4.2(b) displays a steady increase in energies with an increase in ℓ for a given n,

Enℓ. Similarly, Figure 4.3 illustrates a monotonic increase in energy Enℓ as ℓ increases
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for various n. It is noted that for a specific angular momentum quantum number ℓ,

Enℓ increases as the principal quantum number n rises.

Table 4.1: Energy eigenvalues of the MRCYP for different screening parameters δ

and quantum states n and ℓ.

n l −Enl

δ = 0.0001 δ = 0.001 δ = 0.01

0 0 −0.2047860794 −0.2056459966 −0.6940114985

1 0 0.1618605870 0.1607692012 0.5135365490

2 0 0.2659258174 0.2640362978 0.2454376935

1 0.1405236150 0.01386819594 0.1209335323

3 0 0.1483481473 0.1465026002 0.1286106270

1 0.08770339890 0.08588439030 0.06874269910

2 0.05785981880 0.05605700625 0.03959817075

4 0 0.09306815480 0.09124584530 0.07394246325

1 0.05987399025 0.05806990360 0.04154688244

2 0.04218571795 0.04039467676 0.02462098684

3 0.03178274934 0.03000293314 0.01502520083

5 0 0.06342586895 0.06161884650 0.04491373596

1 0.04343734854 0.04164520098 0.02580015834

2 0.03209761056 0.03031738282 0.01530837738

3 0.02500506086 0.02323593189 0.009114176240

4 0.02008839780 0.01833050216 0.005177749845
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Figure 4.1: (a) Energy spectra Enℓ as a function of δ for various quantum states n and

ℓ. (b) Energy spectra Enℓ as a function of potential strength V0 for various quantum

states n and ℓ.
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Figure 4.2: (a) Energy spectra Enℓ as a function of µ for various quantum states

n and ℓ. (b) Energy spectra Enℓ as a function of n for various angular momentum

quantum states ℓ.
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Figure 4.3: Energy spectra Enℓ as a function of ℓ for various principal quantum states

n.

Utilizing the analytical expression for the bound energy Enℓ as indicated in equation

(3.26), we derive the formulas for the partition function Z(T ) and other thermodynamic

functions employing the Euler-MacLaurin formula. The expressions for the partition

function and other thermodynamic functions are provided by equations (3.41) and

(3.42), (3.44), (3.47), and (3.48), respectively. Figures 4.4(a) and 4.4(b) illustrate the

variation of the partition function Z(T ) with temperature T for different screening

parameters δ and quantum states n and ℓ, respectively.
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Figure 4.4: Variation of the vibrational partition function Z(T ) with temperature T

for different values of (a) screening parameter δ; and (b) quantum states n and ℓ.

As the temperature T increases, it is observed that the partition function Z(T ) initially

undergoes a sharp rise at zero temperature T and then stabilizes at specific values

corresponding to the screening parameters δ and the quantum states n and ℓ under

consideration.
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In Figure 4.5(a) and Figure 4.5(b), we have depicted the variation of the free energy

F (T ) with temperature T . As evident from the plots, the free energy F (T ) exhibits a

linear decrease with increasing temperature T for the various screening parameters δ

and quantum states n and ℓ examined.

Figure 4.5: Variation of the vibrational free energy F (T ) with temperature T for

different values of (a) screening parameter δ; and (b) quantum states n and ℓ.

The plots in Figure 4.6 depict the variation of the mean energy U(T ) concerning
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temperature T . It is evident from Figure 4.6(a) and Figure 4.6(b) that there is a

consistent increase in mean energy U(T ) with rising temperature T across various

screening parameters δ and quantum states n and ℓ. Additionally, it is noted that in

both graphs, as the temperature T increases, the mean energy U(T ) saturates at the

origin.

Figure 4.6: (a) Variation of the vibrational mean energy U(T ) with temperature for

different values of (a) screening parameter δ; and (b) quantum states n and ℓ.

In Figures 4.7 and 4.8, we provide plots illustrating the entropy S(T ) and the specific
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heat capacity C(T ) of the system.

Figure 4.7: (a) Variation of the vibrational entropy S(T ) with temperature T for

different values of (a) screening parameter δ; and (b) quantum states n and ℓ.
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Figure 4.8: Variation of the specific heat capacity C(T ) with temperature T for

different values of (a) screening parameter δ; and (b) quantum states n and ℓ.

We observe a pronounced increase in entropy, represented as S(T ), and specific heat

capacity, denoted as C(T ), as temperature T rises towards a distinct value known as the

critical temperature. This phenomenon holds true across various screening parameters

and quantum states. Moreover, both entropy S(T ) and specific heat capacity C(T )
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exhibit a steady decline as temperature T continues to rise. Once the temperature

exceeds 0.4K, the entropy S(T ) and specific heat capacity C(T ) for the considered

screening parameters and quantum states reach a saturation point. At this juncture,

the system can no longer absorb much energy due to the complete occupation of its

excited states.

4.2 Results with the HYP.

4.2.1 Calculations without magnetic and AB flux fields

In this part of our study, we have focused on three diatomic molecules that have been

extensively researched by numerous scientists: CuLi, CrH, and NiC. The standard

molecular weights of these compounds are detailed in Table 4.2, derived from investiga-

tions in Source [128]. All computations employed the conversion factors: h̄c = 1973.269

eV Å and 1 amu= 931.5× 106 eV (Å)−1 [129].

Table 4.2: Spectroscopic parameters for CuLi, CrH, and NiC diatomic molecules.

Molecule [128] δ(Å−1) µ(amu)

CuLi 1.00818 6.259494

CrH 1.52179 0.988976

NiC 2.25297 9.974265

In Figures 4.9(a) and 4.9(b), we displayed the energy spectra Enℓ plotted against the

angular momentum quantum number ℓ and the principal quantum number n, respec-

tively. From the graphs, it is evident that the system’s energy Enℓ rises steadily with

increasing values of n and ℓ respectively. These molecules were studied in [131] with

the shifted Deng-Fan potential model. The results presented in the reference are in

good agreement with our results.

68



Results and Discussion

Figure 4.9: Energy spectra variation of the Hulthén plus Yukawa potential with (a)

angular momentum quantum number ℓ, (b) principal quantum number n, for various

diatomic molecules

In Figures 4.10, 4.11, 4.12, and 4.13, we present the vibrational partition function

along with other thermodynamic properties for diatomic molecules CuLi, CrH, and

NiC, derived from the energy spectra Enℓ of the Hulthén plus Yukawa potential. These

thermodynamic characteristics are examined concerning discrete values of β = 1
kT

and

maximum quantum number nmax. We have also depicted the partition function Z(β),

the free energy F (β), and the mean energy U(β) plotted against the temperature
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β = 1
kT

for CuLi, CrH, and NiC diatomic molecules in Figure 4.10(a, b, & c). The

partition function Z(β) increases with the temperature β(K−1), while we also observe a

monotonic rise in free energy F (β) with increasing temperature β(K−1). However, the

mean energy U(β) decreases as the temperature β(K−1) rises. These thermodynamic

properties for CrH and CuLi diatomic molecules were studied in [132] with the shifted

Deng-Fan potential model. Our results agree with the results obtained in the reference.

Figure 4.10: Variation of vibrational partition function Z(β), (b) vibrational free

energy F (β) and (c) vibrational mean energy energy U(β), with changing temperature

β(K−1), for different diatomic molecules with the Hulthén plus Yukawa potential.

In Figures 4.11(a) and 4.11(b), we observe plots depicting the entropy S(β) and spe-

cific heat capacity C(β) as functions of temperature β(K−1) for CuLi, CrH, and NiC

diatomic molecules. It is evident from the graphs that the entropy S(β) decreases

with increasing temperature β(K−1). Moreover, as the temperature β(K−1) increases,

the specific heat capacity C(β) for all molecules considered, initially reaches a peak
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and then declines. The two thermodynamic properties for CrH and CuLi diatomic

molecules were also studied in [132] with the shifted Deng-Fan potential model. Our

results agree with the results obtained in the reference.

Figure 4.11: Variation of vibrational entropy S(β) and (b) vibrational specific

heat capacity energy C(β), with changing temperature β(K−1), for different diatomic

molecules with the Hulthén plus Yukawa potential.

In Figures 4.12 and 4.13, we illustrate the variations of thermodynamic functions with

respect to the maximum quantum number nmax at a constant β = 1
kT
. Figures 4.12(a),

4.12(b), and 4.12(c) portray the behavior of the partition function Z(β), vibrational

free energy F (β), and vibrational mean energy U(β), respectively, as functions of

maximum quantum number nmax for different diatomic molecules. Observing the plots,
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we note that the vibrational partition function Z(β) increases with the rise in maximum

quantum number nmax, while the free energy F (β) decreases with increasing maximum

quantum number nmax. The mean energy U(β) shows a monotonic increase as the

maximum quantum number nmax rises.

Figure 4.12: Variation of vibrational partition function Z(β), (b) vibrational free

energy F (β) and (c) vibrational mean energy energy U(β), with changing maximum

quantum number nmax, for different diatomic molecules with the Hulthén plus Yukawa

potential.

The graphs in Figures 4.13 (a) and 4.13(b) illustrate the variations of vibrational

entropy, S(β), and vibrational specific heat capacity, C(β), respectively, for the Hulthén

plus Yukawa potential across different diatomic molecules as a function of the maximum

quantum number, nmax . As evidenced by the plots, the entropy S(β) of the potential

consistently rises as maximum quantum number nmax decreases, while the specific heat

capacity C(β) increases with increasing maximum quantum number nmax . Notably,
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C(β) reaches a saturation point at higher maximum quantum number nmax , with the

value plateauing, particularly for CrH.

Figure 4.13: Variation of vibrational entropy S(β) and (b) vibrational specific heat

capacity energy C(β), with changing maximum quantum number nmax, for different

diatomic molecules with the Hulthén plus Yukawa potential.

4.2.2 Calculations with magnetic and AB flux fields

In Figures 4.14, 4.15, 4.16, 4.18, 4.19, and 4.20, we depicted the vibrational partition

function Z(β,B,ΦAB), along with other thermodynamic functions, for CuLi, CrH,

and NiC diatomic molecules derived from the Hulthén plus Yukawa potential energy

spectra in the presence of external magnetic and Aharonov-Bohm flux fields. The plots

73



Results and Discussion

in Figures 4.14(a), 4.14(b), and 4.14(c) illustrate the partition function Z(β,B,ΦAB),

the free energy F (β,B,ΦAB), and the mean energy U(β,B,ΦAB) respectively, against

the temperature β(K−1). Observations reveal that the partition function Z(β,B,ΦAB)

decreases as the temperature β(K−1) decreases, while the free energy F (β,B,ΦAB)

exhibits a monotonic increase with increasing temperature β(K−1). However, the mean

energy U(β,B,ΦAB) decreases with rising temperature β(K−1).

Figure 4.14: Variation of (a) vibrational partition function Z(β,B,ΦAB), (b) vibra-

tional free energy F (β,B,ΦAB) and (c) vibrational mean energy energy U(β,B,ΦAB),

with changing temperature β(K−1), for different diatomic molecules with the Hulthén

plus Yukawa potential.

Figure 4.15(a) and Figure 4.15(b) display the entropy S(β,B,ΦAB) and the vibrational

specific heat capacity C(β,B,ΦAB) as functions of temperature β(K−1), respectively.

The entropy S(β,B,ΦAB) decreases slightly with increasing temperature β(K−1), while

the specific heat capacity C(β,B,ΦAB) decreases for various diatomic molecules and
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shows an attempt to increase for CrH.

Figure 4.15: Variation of vibrational entropy S(β,B,ΦAB) and (b) vibrational spe-

cific heat capacity energy C(β,B,ΦAB), with changing temperature β(K−1), for dif-

ferent diatomic molecules with the Hulthén plus Yukawa potential.

Figures 4.16(a), 4.16(b), and 4.16(c) depict the vibrational partition function Z(β,B,ΦAB),

free energy F (β,B,ΦAB), and mean energy U(β,B,ΦAB) as functions of the magnetic

field B(T ) for various diatomic molecules, respectively. It is evident that the partition

function Z(β,B,ΦAB) decreases with increasing magnetic field B(T ), while the free

energy F (β,B,ΦAB) and mean energy U(β,B,ΦAB) both increase with the magnetic

field B(T ).
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Figure 4.16: Variation of (a) vibrational partition function Z(β,B,ΦAB), (b) vibra-

tional free energy F (β,B,ΦAB) and (c) vibrational mean energy energy U(β,B,ΦAB),

with changing magnetic field B, for different diatomic molecules with the Hulthén plus

Yukawa potential.

In Figures 4.17(a) and 4.17(b), we have depicted the vibrational entropy S(β,B,ΦAB)

and the specific heat capacity C(β,B,ΦAB) as functions of B(T ), respectively. It is

evident that the entropy S(β,B,ΦAB) increases with a slight rise in the magnetic field

B(T ), while the specific heat capacity C(β,B,ΦAB) decreases and shows a tendency

to increase for CrH.
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Figure 4.17: Variation of vibrational entropy S(β,B,ΦAB) and (b) vibrational spe-

cific heat capacity energy C(β,B,ΦAB), with changing magnetic field B, for different

diatomic molecules with the Hulthén plus Yukawa potential.

Figures 4.18(a), 4.18(b), and 4.18(c) depict the vibrational partition function Z(β,B,ΦAB),

free energy F (β,B,ΦAB), and mean energy U(β,B,ΦAB) as functions of the Ahara-

nov–Bohm field ξ for various diatomic molecules. As the AB field ξ increases, the

partition function Z(β,B,ΦAB) rises, while the free energy F (β,B,ΦAB) decreases.

Moreover, the mean energy U(β,B,ΦAB) decreases as the AB field ξ increases.
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Figure 4.18: Variation of (a) vibrational partition function Z(β,B,ΦAB), (b) vibra-

tional free energy F (β,B,ΦAB) and (c) vibrational mean energy energy U(β,B,ΦAB),

with changing AB field ξ, for different diatomic molecules with the Hulthén plus Yukawa

potential.

In Figures 4.19(a) and 4.19(b), we have graphed the entropy S(β,B,ΦAB) and the

specific heat capacity C(β,B,ΦAB) as functions of the Aharanov–Bohm field ξ, re-

spectively. It appears that there is a decrease in entropy S(β,B,ΦAB) as the AB

field ξ increases slightly, but it exhibits a quasi-linear or invariant pattern for different

diatomic molecules, respectively. Additionally, we observe that for all three diatomic

molecules studied, the specific heat capacity C(β,B,ΦAB) does not demonstrate a

completely discernible pattern in the variation trend for CuLi and NiC, and it also

shows attempts to increase for CrH.
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Figure 4.19: Variation of vibrational entropy S(β,B,ΦAB) and (b) vibrational spe-

cific heat capacity energy C(β,B,ΦAB), with changing AB field ξ, for different diatomic

molecules with the Hulthén plus Yukawa potential.

The magnetization M(β,B,ΦAB) and magnetic susceptibility χm(β,B,ΦAB) for vari-

ous diatomic molecules with the Hulthén plus Yukawa potential are presented in Figure

4.20 and Figure 4.21, respectively. Figures 4.20(a), 4.20(b), and 4.20(c) depict the mag-

netization M(β,B,ΦAB) plotted against temperature β(K−1), magnetic field B(T ),

and the Aharanov–Bohm field ξ, respectively, for different diatomic molecules with the

Hulthén plus Yukawa potential. It is evident, from these fugues that the magnetiza-

tionM(β,B,ΦAB) increases with temperature β(K−1), while it linearly decreases with
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the rise in magnetic field B(T ). Moreover, the magnetization M(β,B,ΦAB) remains

constant as the Aharanov–Bohm field ξ increases.

Figure 4.20: The magnetizationM(β,B,ΦAB) of the Hulthén plus Yukawa potential

with (a) temperature β(K−1), (b) magnetic field B(T ) (c) AB field ξ, for different

diatomic molecules.

In Figures 4.21(a), 4.21(b), and 4.21(c), we have depicted the variation of magnetic sus-

ceptibility χm(β,B,ΦAB) with respect to temperature β(K−1), magnetic field B(T ),

and the Aharanov–Bohm field ξ for different diatomic molecules, modeled using the

Hulthén plus Yukawa potential. It is evident that magnetic susceptibility χm(β,B,ΦAB)

increases with temperature β(K−1), decreases with magnetic field B(T ), and exhibits

an upward trend with increasing Aharanov–Bohm field ξ.
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Figure 4.21: The variation of the magnetic susceptibility χm(β,B,ΦAB) of the

Hulthén plus Yukawa potential with (a) temperature β(K−1), (b) magnetic field B(T ),

(c) AB field ξ, for different diatomic molecules.
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Chapter 5

Concluding Remarks

In the first part of this study, we applied the Nikiforov-Uvarov technique to solve the

radial the time-independent Schrödinger equation within the context of the Manning-

Rosen plus a class of Yukawa potential model. We obtained expressions for the energy

eigenvaluesand the wave function corresponding to this composite potential model.

By utilizing the closed-form Euler-Maclaurin formula, we computed the vibrational

partition function as well as other thermodynamic functions including the vibrational

free energy, mean vibrational energy, vibrational entropy, and specific heat capacity

for the system. The energy eigenvalues, partition function, and other thermodynamic

functions were evaluated with respect to different parameters such as the screening

parameter, potential strength, reduced mass, principal quantum number, and angular

momentum quantum number. Our numerical analysis involved plotting the results

and engaging in a comprehensive discussion on how temperature affects these ther-

modynamic properties with respect to different screening parameters and quantum

states. Our graphical representations indicated a decrease in energy with increase in

the screening parameter, reduced mass, and potential strength, while energy exhibited

an increasing trend with higher quantum states. This analysis underscores the sig-

nificant influence of the screening parameter and quantum states on the energy and

thermodynamic characteristics of the Manning-Rosen combined with the Yukawa po-

tential model.

We also solved the Schrödinger equation by employing the Hulthén plus Yukawa po-

tential model through the Nikiforov-Uvarov approach. We derived both the energy
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equation and the wave function. Using the resultant energy spectra, we calculated

the vibrational partition function and various thermodynamic functions such as the

vibrational free energy, mean vibrational energy, vibrational entropy, and vibrational

specific heat capacity for CuLi, CrH, and NiC diatomic molecules. Our numerical

computations on the energy spectra were performed by adjusting the quantum states.

Simultaneously, we calculated the partition function and other thermodynamic func-

tions at different temperatures and the maximum quantum number. The analysis of

the results showed that the energy increased with the rise in quantum states. Addi-

tionally, except for CrH, the specific heat capacity for the selected diatomic molecules

reached saturation for large values of the principal quantum number in the classical

limit.

To investigate the influence of external magnetic and Aharonov-Bohm flux fields on

thermodynamic properties, we utilized the exact quantization rule to solve the 2-

dimensional Schrödinger equation incorporating the Hulthén plus Yukawa potential.

Subsequently, the energy spectra derived were employed to compute various thermo-

magnetic functions including the vibrational partition function, as well as the vibra-

tional free energy, mean energy, entropy, and specific heat capacity, alongside mag-

netization and magnetic susceptibility, for diatomic molecules CuLi, CrH, and NiC.

Numerical computations were conducted while varying temperature, magnetic field,

and Aharonov-Bohm field, respectively. Graphical representations were utilized to

elucidate the impact of external fields on the thermodynamic characteristics of the

aforementioned diatomic molecules. Our results unveiled comparable behaviour in the

magnetic susceptibility of the system at both zero and finite temperatures. We illus-

trated that the system exhibits an irregular response to magnetic fields and is notably

sensitive to the Aharonov-Bohm field. As seen from our analysis, it is evident that as

temperature rises, magnetization increases, while it decreases linearly with an increase

in magnetic field. Additionally, magnetization remains steady with the increase of the
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Aharanov–Bohm field. Our study also revealed that when the Aharonov-Bohm field

varies with a constant magnetic field, the magnetic susceptibility of CuLi, CrH, and

NiC diatomic molecules increases, corroborating previous research. These discoveries

offer exciting prospects for applications in chemical, atomic, and condensed matter

physics.
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Birkhäuser: Basel (1988)

[75] C O Edet, U S Okorie, A T Ngiangia and A N Ikot, Ind. J. Phys 94 , 425 (2019)

[76] S A Ekong, U S Okorie, A N Ikot, I B Okon, L F Obagboye, H Y Abdullah, R

Sever, and K. W Qadir, Eur. Phys. J. Plus138 364 (2023) Bulg. J. Phys 45 323

(2018)

[77] E B Ettah, Eur. J. App. Phys3 5 (2021)

[78] M E Udoh, P O Amadi, U S Okorie, A D Antia, L F Obagboye, R Horchani, N

Sulaiman, and A N Ikot, Pramana 96, 222 (2022)

[79] R Khordad, and A Ghanbari, Comp. Theor. Chem (2019)

89



BIBLIOGRAPHY

[80] A N Ikot, E O Chukwuocha, M C Onyeaju, C A Onate, B I Ita and M E Udoh,

Pramana J. Phys 90, 22 (2018)

[81] K Chabi, and A Boumali, Rev. Mex. Fis 66, 1 (2020)

[82] H R Rastegar-Sedehi, Eur. Phys. J. Plus 136, 514 (2021)

[83] C Tavares, S Oliveira, V Fernandes, A Postnikov, and M I Vasilevskiy, Soft Comput

25, 6807–6830 (2021)

[84] SK Tokunaga, J M Dyne, E A Hinds, and M R Tarbutt, New J. Phys. 11, 055038

(2009)

[85] A N Ikot, C O Edet, P O Amadi, U S Okorie, G J Rampho, and H Y Abdullah,

Eur. Phys. J. D 74 , 159 (2020)

[86] C O Edet, and A N Ikot, Eur. Phys. J. Plus 136, 1–11 (2021)

[87] O Negrete, F Peña, and P Vargas, Entropy 20, 888 (2018)

[88] S M Ikhdair, B J Falaye, M Hamzavi, Ann. Phys. 353, 282–298 (2015)

[89] B J Falaye, K J Oyewumi†, F Sadikoglu, M Hamzavi, and S M Ikhdair, J. Theo.

Comp. Chem. 14, 5 (2015)

[90] L G M Pettersson, S R Langhoff, D P Chong, J. Chem. Phys. 85, 2836 (1986)

[91] C W Bauschlicher Jr., S R Langhoff, H Partridge, S P Walch, J. Chem. Phys. 86,

5603 (1987)

[92] C W Bauschlicher Jr., P E M Siegbahn, Chem. Phys. Lett. 104, 331 (1984)

[93] I Shim, K A Gingerich, Chem. Phys. Lett. 303, 87 (1999)

[94] C L Tang, Fundamentals of Quantum Mechanics: For Solid State Electronics and

Optics, Cambridge University Press, Cambridge, (2005)

90



BIBLIOGRAPHY

[95] C O Edet, and P O Okoi, Rev. Mex. Fis 65, 333 (2019)

[96] C O Edet, P O Okoi, S O Chima, Rev. Bras. Ens. FÃs 42, e20190083 (2019)

[97] C O Edet, K O Okorie, H Louis, and N A Nzeata-Ibe, Ind. J. Phys. 94, 243 (2020)

[98] P O Okoi, C O Edet, and T O Magu, Rev. Mex. Fis. 66, 1 (2020)

[99] U S Okorie, A N Ikot, C O Edet, I O Akpan, R Sever and G J Rampho, J. Phys.

Comm 3, 095015 (2019)

[100] H Louis, B I Ita, O U Akakuru, N A Nzeata-Ibe, A I Ikeuba, T O Magu, P I

Amos, and C O Edet, Oriental J. Phys. Sci 3, 1 (2018)

[101] C O Edet, P O Okoi, A S Yusuf, P O Ushie, and P O Amadi, Ind. J. Phys 95,

471 (2021)

[102] I N Levine, Quantum Chemistry, Prentice Hall, (2008)
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