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Abstract

The main aim of this study is to compare machine learning models with traditional
statistical models in predicting credit risk for a commercial bank. Furthermore, the
evaluation is conducted on varying levels of data balancing to determine the impact of
data balancing on the performance of the models under study. The Logistic Regression
is considered the statistical baseline model, while the machine learning techniques in
relation to the literature reviewed are k-NN, SVM, Decision Tree, MLP, and RBFNN.
Logistic Regression showed consistent AUC values around 0,72, while SVM excelled at
higher balance levels with an AUC of 0,73. The MLP model was superior in a fully bal-
anced dataset, achieving a 0,78 AUC. However, Decision Tree and k-NN’s performance
varied with dataset balance, and RBFNN underperformed. The analysis concludes that
no single model is universally superior. Therefore, the choice of credit risk models
by financial institutions should be based on the specifics of the data and predictive
requirements, considering prediction errors’ financial impacts.

Keywords · Credit Risk · Machine Learning · Data Imbalance
· Logistic Regression · SVM · MLP · k-NN · Decision Tree · RBFNN
· AUC · Predictive Analytics · Chi-square Statistics · SMOTE
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Chapter 1

Introduction

This chapter introduces the study by providing background context, reviewing relevant
literature, stating the problem being addressed, outlining the study’s objectives, and
describing the overall structure of the study.

1.1 Background

Credit risk poses a significant concern in commercial banking as it directly impacts
the stability and performance of a developing country’s economic growth. This risk
revolves around the occurrence of a default event, which happens when a debtor fails
to fulfill the legal obligations outlined in the debt contract (Zhang, 2009). To mitigate
the risks associated with credit, it is essential to analyse customer behavior beforehand.
The global financial crisis that began in 2007 prompted a reevaluation of previous credit
risk management methods to minimise potential losses and allocate resources effectively
(Mačerinskienė et al., 2014). Credit risk assessment is crucial for banks as it assists in
determining the likelihood of a borrower defaulting on a loan. This is crucial for banks,
as loan defaults can have serious financial consequences. To evaluate credit risk, banks
commonly examine a borrower’s credit history, financial records, and pertinent details.
Additionally, factors like the borrower’s employment track record, debt-to-income ratio,
and general financial standing are taken into account. Based on this information, banks
can assign a credit score to the borrower, which helps to indicate the level of risk
involved in approving a loan. Through careful evaluation of credit risk, banks can make
well-informed decisions regarding which borrowers to extend loans to and under what
conditions, thereby reducing the likelihood of defaults and safeguarding the financial
stability of the institution.

Banks and other financial firms typically use a quantitative model for credit risk assess-
ment. A quantitative model is a system of variables. It is formulated based on a set of
assumptions and relies on statistical or mathematical theories. Quantitative model risk
arises when a model fails to perform as required and produces the incorrect outcome.
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Evaluating a quantitative credit risk model in the banking industry is important for a
number of reasons according to Hull and Suo (2002). Firstly, a model that functions
correctly helps financial institutions to accurately assess the likelihood that a borrower
will default on a loan. Secondly, a robust credit risk model enables banks to detect
potential credit risks and implement suitable measures to reduce those risks.. This can
include implementing risk management strategies such as setting higher interest rates
on higher risk loans or requiring collateral (an asset pledged as security for the repay-
ment of credit). Banks are also often required to reserve funds for risk arising from
inadequate quantitative models. Thirdly, evaluating a credit risk model allows banks to
ensure that the model is accurately reflecting the current credit risk environment. This
is important because credit risk can change over time, and a model that is not regularly
evaluated and updated may not accurately reflect the current risk profile of borrowers.

Machine learning, particularly Neural Networks (NN) and Artificial Intelligence (AI),
have emerged as powerful tools in credit risk modelling. Machine learning algorithms
can effectively handle large and diverse datasets, identify complex patterns, and improve
predictive accuracy. Algorithms such as Decision Trees, Random Forests, Support Vec-
tor Machines (SVM), and NNs are commonly employed in credit risk modelling (Shi
et al., 2022, Bastos, 2022, Bhoge, 2019, Fantazzini and Figini, 2022, Moula et al., 2017,
Liu and Huang, 2020). These algorithms enable the inclusion of multiple variables and
capture nonlinear relationships that may be missed by traditional models (Shi et al.,
2022). However, these methods can be computationally costly, complex and often lack
transparency (interpretability and explainability) (Zednik and Boelsen, 2021). Inter-
pretability and explainability of credit risk models are crucial for building stakeholder
trust and understanding in the banking sector.

Addressing data imbalance is another important aspect to consider when modelling
credit risk using machine learning and statistical models. Data imbalance occurs when
the difference in the number of observations across different classes (e.g., default and
non-default) is significantly uneven, leading to biased model performance (Alam et al.,
2020). In credit risk modelling, data imbalance is a common issue as defaults are rela-
tively rare compared to non-default cases (Garćıa and Sánchez, 2013). This imbalance
presents a challenge for machine learning algorithms, as they tend to prioritise the ma-
jority class, leading to potential difficulties in accurately predicting the minority class
(Rawat and Mishra, 2022). Consequently, models may exhibit high overall accuracy
while demonstrating limited proficiency in identifying default cases.

This research is sought to explore an opportunity to enhance accuracy, improve risk man-
agement practices, and make more informed decisions in the banking sector. By over-
coming the constraints of traditional models, leveraging machine learning algorithms,
and considering interpretability, data imbalance, model validation and risk quantifi-
cation, this research aims to contribute to the advancement of credit risk modelling
and provide insights for practitioners and researchers in their pursuit of effective credit
model risk assessment and management strategies.
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1.2 Literature Review

In a study by Yap et al. (2011), the application of the Weight of Evidence (WoE) tech-
nique, Credit Scorecard Model, Logistic Regression, and Decision Trees was explored
for credit scoring. The researchers employed WoE as a means to transform independent
variables, with the aim of enhancing the predictive power of the models. The results
showed that no model performs better than the other with accuracy rates of approxi-
mately 72% for all models, however the Credit Scorecard Model is concluded to be the
simplest to deploy in banks.

Blanco et al. (2013) investigated the application of Multi-Layer Perceptron (MLP) NNs
using a credit dataset comprising around 5500 borrowers from a microfinance institution
in Peru. They compared the performance of this model against traditional statistical
methods namely: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analy-
sis (QDA), and Logistic Regression. The results showed that the NNs outperformed all
traditional models in terms of area under curve (AUC) and misclassifiation costs.

Yang et al. (2015) explored a Logistic Regression model using WoE applied to a credit
risk dataset of 690 observations. The Percentage Correctly Classified (PCC) goodness-
of-fit measure was used to evaluate the model which gave a percentage of above 84% on
the test dataset. The analysis went further to construct a scorecard model to determine
the credit score and accuracy of the model. The study has shown that Logistic Regres-
sion with WoE is a good model but a comparative analysis could have been done for
performance evaluation with and without using WoE on the same Logistic Regression
model. Additionally, only the PCC measure was used to evaluate performance.

A study done by Xia et al. (2017) focused on using a sequential ensemble credit scor-
ing model based on an XGBoost gradient boosting machine, together with Bayesian
hyper-parameter optimisation. The outcome was to show that the proposed method
outperforms baseline models using accuracy, error rate, area under the curve H mea-
sure (AUC-H) and Brier score.

A mixed credit scoring model with WoE and Logistic Regression was constructed by
Chen et al. (2018) applied to a large credit dataset of 100 000 observations. Ordinary
Least-squares (OLS) was used to determine parameters in the regression model. The
traditional Logistic Regression model was compared to the hybrid model with WoE. It
was concluded that the hybrid model outperformed the traditional model by analysing
the coefficient values for each model. Other methods of evaluation could have been
explored in this study. The method also makes reference to NN models in outperforming
the traditional Logistic Regression model. However, no NN model was constructed and
compared to the hybrid model to confirm the improvement in predictability when using
WoE.

Nehrebecka (2018) used an approach of comparing WoE applied to both Logistic Re-
gression and SVM models (Linear, Gaussian and Laplace kernel) on credit risk data of
non-financial firms. The models were assessed based on GINI statistics, Kolmogorov-
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Smirnov (K-S) and Area Under Receiver Operating Charactistic (AUROC). WoE was
applied to all models and it was concluded that the Logistic Regression model produced
the best accuracy amongst the models.

An assessment of five different machine learning models was conducted by Wang et al.
(2020) with the application to credit scoring. The study made use of a Naive Bayesian
Model, Logistic Regression Analysis, Random Forest, Decision Tree and the k-NN clas-
sifier. The results showed through an evaluation using precision, recall, AUC and accu-
racy that the best performing model was the Random Forest. This research focused on
a comparative performance analysis using accuracy, sensitivity and specificity, and the
limitations of each model were not assessed and outlined.

A study completed by Alam et al. (2020) focused on addressing the challenge of im-
balanced datasets and explores the effectiveness of different data resampling methods.
The study was on credit risk prediction in commercial banks using various machine
learning techniques and used three different datasets. The results demonstrated that
the proposed models significantly improved accuracy compared to traditional statistical
approaches. The Gradient Boosted Decision Tree method outperformed other classi-
fiers, particularly when combined with the k-means SMOTE oversampling method. No
NNs were explored in this paper.

A study on the effect of WoE on the discriminatory power of credit scoring models was
produced by Persson (2021). The study showed that using WoE with Logistic Regres-
sion decreased the discriminatory power through evaluation across multiple metrics, in
comparison to models that did not use WoE to transform features. In addition, the
study also shows that using the feature selection technique, Information Value (IV), did
not provide any benefit over using backward selection techniques. However, the results
were different when applied to the SVM models in both WoE and IV where certain
metrics proved that these methods improved the performance of the models.

Aranha and Bolar (2023) developed a study on comparing the performance of machine
learning models to a traditional Logistic Regression model in credit risk prediction.
The Classification Tree, Random Forest, NN, Naive Bayes, Logistic Regression, and
AdaBoost, were used. Undersampling was applied to balance the dataset containing
10 000 records by addressing the majority class. After assessing five parameters across
six techniques, including AUROC, accuracy, F1 Score, precision, and recall, the study
concluded that Random Forest modelling stood out for its superior performance in accu-
rately predicting outcomes and distinguishing between classes. Following closely, the NN
technique also showed competitive results. By utilising changes in operating expenses
as a measure of the Covid-19 pandemic’s impact, the research revealed that machine
learning methods (NN, AdaBoost, and Random Forest) outperformed Logistic Regres-
sion in predictive accuracy. Additionally, integrating Covid-19-related uncertainty into
the analysis improved the model’s predictive ability.

Abdou et al. (2008) achieved promising results in classification accuracy using various
techniques on an credit dataset from an Egyptian bank. Discriminant analysis yielded
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an average correct classification rate of 86,75%, while employing a stepwise approach
increased it to 86,92%. Probit analysis achieved 87,78% accuracy, which revealed 87,26%
after eliminating insignificant variables. Logistic regression attained a higher average
correct classification rate of 88.30%, or 87.95% after eliminating insignificant variables.
Remarkably, probabilistic NNs achieved an outstanding average correct classification
rate of 96.21%, surpassing the performance of conventional methods. Multi-layer feed-
forward nets achieved rates of 94,84% (five nodes) and 93,98% (four nodes). The models
demonstrated superior performance compared to the existing system, which achieved a
correct classification rate of 74.50% for approved loans that did not result in default.
Additionally, the study explored misclassification costs, taking into account the varying
consequences of type I and type II errors. No data balancing was performed on the
dataset.

In a study conducted by West (2000), credit scoring accuracy was investigated utilising
various NN models. In particular, the study examined Mixture-of-Experts (MOE),
MLP, Radial Basis Function (RBF), Learning Vector Quantization, and Fuzzy Adaptive
Resonance models. The performance evaluation utilised 10-fold cross-validation with
two real-world datasets. The NN models were compared to traditional approaches
like Linear Discriminant Analysis (LDA), Logistic Regression, k-NN, Kernel Density
Estimation, and Decision Trees.

The findings suggested that the MLP may not be the most accurate NN model for
credit scoring applications. Nevertheless, both the Radial Basis Function Neural Net-
work (RBFNN) and MOE models demonstrate promising performance and warrant
consideration. Among traditional approaches, Logistic Regression emerged as the most
precise method. These findings enhance understanding of credit scoring accuracy and
offer insights into the applicability of different models in real-world scenarios. Addi-
tionally, the paper explores two methods for handling data imbalance to assist NNs in
identifying the minority class. It is noteworthy that neither of these training strategies
resulted in a more accurate classifier when the primary goal was minimising overall error
rate. However, both strategies proved effective when considering the significant costs
associated with misclassifications, which vary considerably. These results shed light on
the importance of considering disparate misclassification costs when designing credit
risk models.

Pearson et al. (1995) investigated the suitability of RBFNNs for credit vetting systems.
The study compared the performance of the RBFNN model in classifying good and bad
loan cases with a manually configured MLP and a genetic algorithm-designed counter-
part. The findings indicate that the RBFNN model performs similarly to other meth-
ods, yielding comparable prediction accuracy. The RBF approach’s simplicity results in
faster computation without sacrificing performance, potentially aiding decision-making
processes by simplifying information retrieval.

This study addresses gaps in current literature by conducting a comprehensive compar-
ative analysis of credit risk models. While previous studies have individually explored
models like Logistic Regression, NN, SVM, and Decision Trees, this research consolidates
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and expands upon these investigations within a unified framework. By encompassing a
diverse range of models, from a traditional statistical approach (Logistic Regression) to
modern machine learning techniques (k -NN, SVM, Decision Trees, MLP and RBFNN),
this study seeks to provide a more holistic understanding of their relative effectiveness
in credit risk contexts.

One additional gap in existing research is the limited exploration of how different data
balancing techniques impact model performance. While data imbalance is a well-known
challenge in credit risk, prior studies have often overlooked its significance. This re-
search aims to bridge this gap by systematically investigating the effects of various data
balancing levels on model performance.

Furthermore, by employing a wide range of performance metrics, including accuracy,
precision, recall, and AUC, log loss, Jaccard Scores and F1 Scores, this study aims to
provide a thorough evaluation of each model’s strengths and weaknesses.

1.3 Problem Overview and Motivation

Credit risk is a key problem in commercial banking because it impacts the stability and
performance of a developing country’s economic growth. By modelling and managing
credit risk effectively and reducing the impact of model risk, banks can maintain a
healthy loan portfolio. This will ensure capital adequacy, support lending capacity,
foster confidence in the financial institution’s system and its models, and facilitate
economic development (Siddique et al., 2021).

A variety of approaches have been employed for this task, from traditional statistical
modelling to machine learning and AI. Many machine learning models necessitate exten-
sive computational power to handle intricate and voluminous datasets. Machine learning
and AI techniques can be complex and usually require statisticians or mathematicians
to interpret them. Simpler statistical techniques can provide excellent results while
requiring fewer computational resources. Simplified methods have also been adjusted
and integrated to enhance the efficacy of models. In the financial sector, models are
constantly adapted and improved to account for changing circumstances. The problem
statement of this research is to determine if machine learning models can provide better
results than traditional statistical modelling tools when used for credit risk assessment.

Evaluating the performance of the model requires careful consideration of model risk.
This evaluation allows the modeller to understand which aspects of the model are de-
ficient and why. It is also important for the customer who has received an undesirable
credit score to understand the reasons as to why. Therefore, to guarantee the relia-
bility and robustness of credit risk models, comprehensive evaluation and validation
procedures are essential. Evaluation criteria like accuracy, precision, recall, and area
under the Receiver Operating Characteristic (ROC) curve are frequently employed to
gauge the effectiveness of credit risk models. Model validation techniques, including
out-of-sample testing, cross-validation, and back-testing, help verify that the models
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accurately reflect the current credit risk environment (Bhattacharya et al., 2023).

This research aims to conduct a comparative analysis of different statistical and ma-
chine learning methods of classification on a credit dataset from a commercial bank, as
well as optimising various NN techniques to enhance performance. To further test the
robustness, the performance of the models will be evaluated under various levels of data
imbalance. This is to understand how a real-world dataset, which inherently exhibits
data imbalance, can impact model performance and risk. The primary motivation is to
gain a better understanding of the limitations of the different models and the dataset’s
features. Furthermore, to ascertain whether machine learning techniques are superior to
optimised or non-optimised statistical analysis. This will be accomplished by employing
various performance metrics to quantify the model risk.

1.4 Research Objectives

The main objective of this research is to determine the best performing model between
the traditional statistical techniques and machine learning classifiers, by using various
evaluation methods. The following objectives apply to this research in achieving the
main objective:

1. To determine the features of the credit registry dataset contribute the most to
credit risk.

2. To model the credit registry dataset using a traditional statistical technique (Lo-
gistic Regression), and various modern techniques (k-Nearest Neighbours (k-NN),
SVM, Decision Trees and NNs).

3. To employ optimisation techniques for the statistical model and machine learning
classifiers with the intent of improving the credit risk models.

4. To determine the limitations of each statistical and machine learning model em-
ployed in objective 2.

5. To assess if more modern statistical methods based on machine learning outper-
form traditional techniques for credit risk prediction on a real-world dataset.

6. To assess the performance of both traditional statistical models and machine learn-
ing models in handling imbalanced datasets commonly encountered in credit risk
prediction.

7. To use various techniques to evaluate and quantify model risk with the application
to credit risk.

1.5 Tools and Techniques

This section outlines the various tools and techniques that will be utilised in this re-
search for credit risk assessment. These tools and techniques encompass statistical and
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exploratory analysis, data pre-processing and balancing, feature selection, parameter
estimation, machine learning models, hyper-parameter tuning, and model evaluation.
The following is a summary of the tools and techniques:

1. Statistical and exploratory analysis using Python including, but not limited to,
the following packages: sklearn, matplotlib, pandas and seaborn.

2. Data pre-processing and balancing through techniques such as Synthetic Minority
Over-sampling Technique (SMOTE), Random Under-Sampling (RUS) or Random
Over-Sampling (ROS).

3. Feature Selection through the use of dimensionality reduction. This can be achieved
through extraction of important variables by techniques such as filter, wrapper and
embedded methods.

4. Parameter Estimation techniques for statistical analysis such as Maximum Like-
lihood Estimation.

5. Machine learning such as k-NN, SVM, Decision Trees and NNs, as well as statisti-
cal learning using Logistic Regression through Python packages such as: sklearn,
tensorflow, pytorch, matplotlib, numpy, imblearn, pandas and seaborn.

6. Hyper-parameter tuning of the machine learning models, where necessary, through
the use of grid and random search, and other applicable methods.

7. Model evaluation and risk quantification through the use of specificity, sensitivity
and accuracy methods.

1.6 Research Layout

The paper is structured as follows: Chapter 2 presents the statistical model and machine
learning techniques. Chapter 3 outlines the methodology used in the study. Chapter 4
presents the results and evaluates the models employed. Finally, Chapter 5 concludes
the findings and offers recommendations for future research.
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Chapter 2

Statistical Modelling and
Machine Learning Techniques

This chapter provides an overview of feature selection methods, outlines data balanc-
ing techniques, explains relevant machine learning and statistical models, and outlines
different model evaluation methods.

2.1 Feature Selection Methods

Features represent the predictor variables used in a quantitative model to classify the
predicted variable. Having too many, and particularly irrelevant, features can nega-
tively impact model performance, computing power, model complexity and interpreta-
tion (Beniwal and Arora, 2012). Feature selection is a process whereby unnecessary
predictor variables are removed or transformed so that the final dataset is more at-
tributable to the modelling process and problem statement. There are different tech-
niques that can be used for feature selection in supervised learning, filter, wrapper and
embedded (Wah et al., 2018), which are highlighted in this section.

2.1.1 Filter Methods

The filter methods use a process of ranking the predictor variables and thus filtering
out low-scoring features. These methods are simple, fast and are independent of the
classifier. However, a threshold must be determined for filtered features since all features
can be selected through this process (Sánchez-Marono et al., 2007). There are various
techniques that fall under the filter category, but the methods applicable to classification
are outlined in this sub-section.

• Chi-square statistics: the Chi-square statistics involves measuring how indepen-
dent one categorical variable is from another. If the dataset consists of numerical
variables, then these must be discretised to form groups or levels. The purpose
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is to determine if the class variable is independent of the feature, in which case
the feature is disregarded. On the contrary, if the feature and class variable are
dependent, then the feature is important. The Chi-square statistic is given in
Equation 2.1 (Liu et al., 2002),

χ2 =

m∑
i=1

k∑
j=1

(
Aij − Eij

Eij

)
, (2.1)

where m is the number of levels or groups, k is the number of classes, Aij is the
number of observations in the interval i and class j. Eij is the expected frequency
of Aij and is determined from Equation 2.2,

Eij = Ri ×
Cj

N
, (2.2)

where Ri is the number of observations in the interval i, Cj is the number of
observations in the class j and N is the total number of observations. The larger
the chi-square value, the more important the feature is.

• Correlation Coefficient: A correlation coefficient can be used on a dataset to
determine how linearly correlated a feature is to the class variable. A threshhold
for correlation is set to filter out features that are insignificant to the target class
and are correlated with other features. This method is used for numerical features
and cannot be used for categorical or nominal features. Most commonly, the
Pearson correlation coefficient, r, is used and is defined as follows (Biesiada and
Duch, 2007),

r =

∑
(xi − x)(yi − y)√∑

(xi − x)2
∑

(yi − y)2
, (2.3)

where xi is value of the independent variable, x is the average of the independent
variables, yi is value of the class variable and y is the average of the class variables
in the dataset. The correlation coefficient can take on values in the range [-1,1].
A value close to 1 means the feature is positively correlated with the target class,
a value close to -1 means the feature is negatively correlated with the target class,
and a value of 0 means there exists no correlation between the feature and the
target class.

• Information Gain: this is a measure based on the theory of entropy which is a study
of the disorderliness of a process. The information gain determines the reduction
in entropy before and after a feature is included in the dataset. The purpose is
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to determine how relevant features are for classification. The information gain
between two random variables x and y is determined using Equation 2.4 (Jadhav
et al., 2018),

IG(y|x) = H(y)−H(y|x), (2.4)

where H(y) is the binary entropy of event Y (target class) which can have two
possible outcomes, and H(y|x) is the conditional entropy of the events X (feature)
and Y when X = x. The higher the information gain, the more relevant a feature
is and the more discriminatory power it has.

• Symmetrical Uncertainty: The symmetrical uncertainty (SU) measures feature
redundancy as follows using the feature entropy and information gain value (Piao
et al., 2019),

SU(X,Y ) = 2× IG(Y |X)

H(X) +H(Y )
, (2.5)

where SU(X,Y ) is the symmetrical uncertainty between featuresX and Y , IG(Y |X)
is the information gain, and H(Y ) and H(X) are the entropies of features X and
Y . SU(X,Y ) can take on a value in the range [0,1], where a value of 1 indicates
strong predictability of one feature to others, and a value of 0 indicates that two
features are uncorrelated (Potharaju and Sreedevi, 2017).

• Minimum Redundancy, Maximum Relevance (mRmR): this method serves the
purpose of reducing feature redundancy among selected features and maximising
relevance to the the class variable (Peng et al., 2005). Search methods can also
be used with the mRmR to further obtain the best features. The process is
iterative whereby at each iteration, the feature that has maximum relevance to
the class and minimum redundancy with respect to all the features selected in
preceding iterations, is selected. For continuous features, a score is determined at
each iteration by using the F-Statistic for relevance and Pearson Correlation for
redundancy.

• Correlation-Based Feature Selection (CFS): this method deals with feature redun-
dancy. The method selects features which are highly correlated with the predicted
variable , but have correlation among the independent variables. This is done
through the use of a correlation coefficient. The idea is to find feature subsets
that have high feature to class correlation to improve prediction and low feature
to feature correlation to avoid redundant features. For a subset of features, the
metric (Sánchez-Marono et al., 2007) is given in Equation 2.6,
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MS =
krcf√

k + k(k − 1)rff
, (2.6)

where Ms is the heuristic merit of the feature subset S with k features, rcf is
the average feature to class correlation and rff is the average feature to feature
correlation. In general, the numerator of Equation 2.6 indicates the predictability
of the feature subset to the class. The denominator indicates the feature to feature
redundancy within the subset.

• Fast Correlation-Based Filter (FCBF): this method makes use of the symmetrical
uncertainty (SU) value, represented in Equation 2.4, on a full set of features to
determine correlation between features. It further makes use of backward selection
to identify a final subset of features together with a sequential search method
(Senliol et al., 2008). The purpose is to filter out insignificant features until there
are no features to eliminate. It will select features correlated with the class variable
above a specified SU threshold. This method is ideal for a multivariate dataset.

• Fisher Score: the Fisher score is an approach which aims to find a feature subset
that it maximises the distances between observations from different classes and
minimises the distances between observations of the same class (Lin et al., 2021).
The Fisher Score of on an iteration for the ith feature can be calculated as follows
(Aggarwal, 2015),

Si =

∑
nj(µij − µi)∑

njρ2ij
, (2.7)

where µij and ρij are the mean and the variance of the ith feature in the jth class,
respectively, nj is the number of instances in the jth class and µi is the mean of
the ith feature.

• Relief: the Relief method is an algorithm that calculates statistical weights in
relation to relevance to the class variable. These weights,W [X] (Weight of variable
X), can take on values from [−1,1] with −1 being the worst and 1 being the best in
relation to quality and relevance to the class variable. The algorithm uses feature
value difference through k-nearest neighbours to determine the nearest hit H and
nearest miss M for an instance pair. If a feature value difference exists for a
neighbouring pair of the same class, then the weight score decreases. Conversely,
if a feature value difference exists between a neighbouring pair of a different class,
then the weight score increases (Urbanowicz et al., 2018).

2.1.2 Wrapper Methods

Wrapper methods are based on machine learning algorithms, known as black boxes, for
example SVM or Naive Bayes, fitted on the given dataset. The feature selection follows
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an iterative process on the dataset which eliminates or adds features and the final subset
is one based on maximum accuracy. Wrapper methods are slower than filter methods
as the algorithms require more computational resources to fit, train and predict using
the model, but produce subsets that have better performance (Jović et al., 2015). The
final dataset is also biased towards the particular algorithm used and hence should be
validated with a secondary algorithm for maximum accuracy.

• Forward Selection: this feature selection method is a type of stepwise regression
and greedy search strategy which starts with an empty dataset and adds features
one by one on each iteration. Features are added based on maximising model
performance using an evaluation function (Marcano-Cedeño et al., 2010).

• Backward Elimination: this method is similar to forward selection and is also a
type of step-wise regression and greedy search strategy which starts with a full
dataset and works backward to eliminate redundant features to maximise model
performance based on evaluation criteria.

• Standard Step-wise Regression: this method combines forward selection and back-
ward elimination whereby features are added or removed on each iteration based
on improving the R-square score.

• Recursive Feature Elimination: unimportant features are eliminated using an algo-
rithm in the recursive feature elimination method to improve model performance.
The features are removed such that there is mimimal impact on training errors
and is thus ideal for small sample classification datasets (Chen and Jeong, 2007).

2.1.3 Embedded Methods

Embedded methods are attributed to selecting features during execution of the model
and are known to combine qualities of filter and wrapper methods. These methods are
known for good interpretability and prediction performance.

• Least Absolute Shrinkage and Selection Operator (LASSO) L1 Regularisation: the
LASSO Regularisation method was introduced by Tibshirani (1996) and selects
features through ‘shrinking’ regression coefficients and reducing some to zero.
Features with coefficients that are greater than zero are selected to be used in the
final dataset. This method is ideal for reducing errors when predicting and is best
used in datasets which have a low number of observations and a high number of
features.

• Random Forest: this method is an algorithm that uses a series of several decision
trees established over a randomised selection of observations and features (Nguyen
et al., 2013). Since each tree does not select all features, the model is not prone to
over-fitting. At each point in a tree, also known as a node, the algorithm fits the
observations into two buckets which classify those which are similar to one another
but different to the observations in the second bucket. Feature importance is then
based on how pure a bucket is using a measure such as the Gini Impurity Measure
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(the probability of misclassifying an observation) or Information Gain which has
been described in Section 2.1.1. The more important a feature is, the more it
reduces the impurity measure. The decrease in impurity is averaged out for each
feature across all trees and aids in determining how important a feature is for the
final dataset.

• Classification and Regression Tree (CART): this method is useful for non-linear
datasets and consists of a binary decision tree. It is constructed by determining
the best feature that reduces impurity in the subsequent two tree nodes (Questier
et al., 2005). This reduction in impurity is measured by the Gini Impurity Measure
or Entropy as discussed in Section 2.1.1. The tree can be grown until a user-
specified threshold. The difficulty is in selecting an optimal threshold for which
performance is maximised but can be aided using cross-validation techniques.

2.2 Data Balancing

In the real-world, credit risk datasets are often imbalanced. In classification, an im-
balanced dataset is one in which the forecast variable has an uneven distribution of
observations. In other words, one group of the forecast variable contains more or less
observations than the alternative group (s) of the forecast variable. A crucial step
in data analysis is balancing. Problems with imbalanced data arise when modelling
because a model’s performance can be biased toward a specific group of the forecast
variable and affect prediction accuracy. The purpose of balancing a dataset is to ensure
that the model accurately predicts the minority and majority class. There are a few
techniques which can be used to balance a dataset:

• Random Under-sampling (RUS): this method is a technique whereby the number
of observations from the majority class are randomly removed until equal to the
minority class (Mohammed et al., 2020). Figure 2.1 shows a simple diagram of
how RUS works in modelling. Because observations are removed when under-
sampled, valuable features and patterns that can be beneficial to one, are also
removed. This technique is therefore not suitable for small datasets.

• Random Over-sampling (ROS): this technique is opposite to the RUS method,
whereby observations from the minority class are duplicated to achieve the same
number of observations in the majority class. Figure 2.1 shows a diagram of how
ROS works in modelling.

14



0.4 0.6 0.8

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Original Dataset

Class A
Class B

0.4 0.6 0.8

Undersampled Dataset

Class A (Kept)
Class A (Removed)
Class B

0.4 0.6 0.8

Oversampled Dataset

Class A
Class B (Original)
Class B (Added)

Figure 2.1: Random Under-sampling and Over-sampling differences for imbalanced
datasets (Towards Data Science, 2019).

• Synthetic Minority Over-sampling Technique (SMOTE): this method is an exten-
sion of the ROS method developed by Chawla et al. (2002). The purpose is to
create ‘synthetic’ observations of the minority class in place of duplicating samples
to avoid model over-fitting (Elhassan et al., 2016). The technique works by select-
ing random observations from the minority class and determining the k-nearest
neighbours for this data point. Thereafter, ‘synthetic’ observations are added
between the chosen observation and its neighbours. SMOTE should be applied
after selecting a test set, onto the training set. This is because the test set may
contain the same points as in the training set if the SMOTE technique is applied
beforehand and the model may over-fit the data (Mishra, 2017). Figure 2.2 shows
a diagram of how SMOTE works.
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Figure 2.2: Synthetic Minority Over-sampling Technique for imbalanced datasets
(Ashes Das, 2019).
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The original SMOTE technique will not work for datasets that are fully categorical
or mixed between categorical and quantitative, and must be adapted. This is
because the method interpolates between points to create a ‘synthetic’ point.
Depending on how the data is encoded, the ‘synthetic’ points produced have the
possibility of having no meaning. For example, if feature A has categories 1 and 2,
there is a possibility of achieving a ‘synthetic’ point of 0,5 which has no meaning
to the feature. There are a few adaptations of the SMOTE technique to cater for
these types of datasets:

1. Synthetic Minority Over-sampling Technique – Nominal Continuous: this
method is a variant of SMOTE applied to a mixed dataset of quantitative
and categorical observations. The method works as follows (Chawla et al.,
2002):

(a) Determine the median: the median of the standard deviations of the
quantitative or continuous observations in the minority class is calcu-
lated.

(b) Compute the nearest neighbour: the Euclidean distance for the sample
set for which the k-nearest neighbours are being evaluated and other
feature observations in the minority class.

(c) Populate the ‘synthetic’ sample: this step involves the same approach
used in the SMOTE technique where the ‘synthetic’ sample feature is
given a value that occurs the most in the k-nearest neighbours evaluated
for the sample set.

2. Synthetic Minority Over-sampling Technique – Nominal: this method is an
extension of the SMOTE technique applied to nominal features only. The
k-nearest neighbours are computed using an adapted Value Difference Metric
(VDM) (Stanfill and Waltz, 1986). VDM considers feature value overlapping
over all feature subsets and then a generates distance matrix which can be
used to determine the nearest neighbours.

2.3 Statistical and Machine Learning Classifiers

There are numerous statistical and machine learning methods applied to model classi-
fication and prediction. The following sections will cover the most common methods
used for classification and supervised learning.

2.3.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), also known as Fischer Discriminant Analysis
(FDA), is a popular statistical technique used for classification and dimensionality re-
duction. The technique is advantageous for handling within-class imbalance (Balakrish-
nama and Ganapathiraju, 1998). The aim is to find a linear combination of independent
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variables that maximises the separation of two or more target classes. LDA assumes
features are linearly separable and that the features are normally distributed.

Steps in Analysis

1. The first step in an LDA classification is to find the distance between the means
of the different classes known as the between-class matrix.

2. The distance between the mean and the sample observations are computed and
this is known as the within-class matrix.

3. The next step is to construct a reduced dimensional space such that the between-
class variance is maximised and the within-class variance is minimised (Tharwat
et al., 2017).

The reduced dimensional space can then be used to construct a discriminant using
Bayes’ rule. This determines the posterior probability or the probability that a sample
point is associated with a certain target class, given the attribute of the sample point.

LDA outperforms Logistic Regression in cases where there are more than two target
classes. It falls short when linear decision boundaries are not effective in separating
classes which are non-linearly separable. LDA is also performance sensitive to datasets
where the number of independent variables are less than the number of observations.
In this case, regularisation is needed.

2.3.2 Logistic Regression

Logistic Regression is a type of traditional statistical model used in classification and
prediction. It is widely used in credit risk models due to its mathematical flexibility
and ease of interpretation (Satchidananda and Simha, 2006). The method, in contrast
to Linear Regression, does not assume that the distributions of characteristics in the
feature space are normal. Over-fitting can be a disadvantage for model performance
in datasets where the number of observations are less than the number of features.
The concept behind Logistic Regression is to find a relationship between a dependent
variable and one or more independent variables. The independent variables can be
categorical, continuous or both, in nature. The method can be used as a classification
technique to predict a dichotomous target variable by determining the probability that
an observation belongs to a particular class. The functional form of this probability can
be expressed as follows (Dreiseitl and Ohno-Machado, 2002):

P (y|x) = f(x,β), (2.8)

where P (y|x) is the probability that an observation belongs to a class y given that the
observation takes on a specific value x, modelled by some functional form f(x,β). The
parameters for β can be determined through maximum likelihood estimation on the
given dataset.
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The mathematical model for the functional form of Logistic Regression for one inde-
pendent variable is as follows (Korkmaz et al., 2012) and is characterised as a sigmoid
function shown in Figure 2.3:

P (Y = 1) =
eβ0+β1X

1 + eβ0+β1X
. (2.9)
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Figure 2.3: Graphical form of the Logistic Regression Model – sigmoid function
(Kanade, 2022).

The model can also be extended to multiple independent variables as follows (Yang
et al., 2015):

P (n) =
eβ0+β1Xn,1+β2Xn,2+···+βkXn,k

1 + eβ0+β1Xn,1+β2Xn,2+···+βkXn,k
, (2.10)

where P (n) is the probability of the the outcome of the class, Xn,i is the value of
observation n for a specific category i and βi is the regression coefficient of the model.
Since the functional form is a probability distribution, the values of βi can be determined
using maximum likelihood estimation.
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Assumptions of Logistic Regression

• The independent variables are linearly correlated to the log-odds log P (n)
1−P (n) of the

class variable (Tu, 1996).

• No multicollinearity exists between independent variables.

• Observations in the dataset are independent.

• There are no outliers in the dataset as the model is sensitive to large changes in
observation values.

Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a parameter estimation technique used for
a Logistic Regression model. The MLE is the value that maximises the predicted
probability of an observation belonging to a particular class. Referring to Equation 2.10,
the parameters to be estimated are the β vectors. The parameters are estimated such
that the product of all probability P (n) is as close to 1 as possible for a given observation
for the target class y equal to 1. For the target class y equal to 0, the parameters are
then estimated such that the product of the probability 1 − P (n) is as close to 1 as
possible.

The product of all probability for P (n) or 1 − P (n) is called the likelihood function
L(β) (Czepiel, 2002).

L(β) =
∏

n in yi = 1

P (n)×
∏

n in yi = 0

(1− P (n)) (2.11)

=
∏
n

P (n)yi × (1− P (n))1−yi .

To simplify solving Equation 2.11, the log of the function is taken to get the log likelihood
function l(β).

l(β) = ln

[∏
n

P (n)yi × (1− P (n))1−yi

]
(2.12)

=
N∑
i=1

yi ln (P (n)) + (1− yi) ln(1− P (n)).

Weight of Evidence

WoE is a type of variable transformation that can be used with Logistic Regression to
maximise the predictive ability of a feature. WoE determines the predictive power of
an independent variable in relation to the target or dependent variable. The method

19



works by assigning a weight to each binned category in the feature dataset. Logistic
Regression assumes that the independent variables have a linear relationship with the
log odds. Knowing this, a WoE is formulated so that a higher weighting is assigned to
more relevant categories, and a lower weighting is assigned to less relevant categories.
This allows the method to satisfy the log-odds assumption and is a good variable trans-
formation for Logistic Regression. The WoE is calculated as follows (Yuan, 2018):

WoEi = ln

[
Gi
G
Bi
B

]
, (2.13)

where i represents an integer from 1 to the number of categories in the dataset, Gi is
the number of observations representing good risk given the ith category, in terms of
credit risk, G is the total number observations classed as good risk, Bi is the number
of observations representing bad risk given the ith category, in terms of credit risk and
B is the total number observations classed as bad risk.

The transformed variables are then used instead of the original values in the Logistic
Regression model. It must be noted that before using WoE, feature selection should be
performed for optimal performance.

2.3.3 Naive Bayes

Naive Bayes is a classification algorithm that can be used for dichotomous or polyto-
mous dependent variable classification. The classification algorithm is based on Baye’s
rule and assumes that the features are conditionally independent of one another, given
the class variable (Krichene, 2017). The naive aspect comes from the fact that the
hypothesis probabilities used in the classification, are simplified.

The basis of Naive Bayes comes from Bayes’ rule and hypothesis testing where the
conditional probability of each target variable given the feature space is calculated. For
example, consider a dataset that consists of the feature space A1,A2,A3, . . . ,Ak with a
target variable that has a binary output B1 or B2. The hypothesis h can then be defined
as the target class, B1 or B2, to which the given feature sample space is assigned. Then
the following relationship is used (Frank et al., 2000):

P (h|A1,A2,A3, . . . ,Ak) =
P (A1,A2,A3, . . . ,Ak|h)× P (h)

P (A1,A2,A3, . . . ,Ak)
, (2.14)

where,

• P (h|A1,A2,A3, . . . Ak) is the posterior probability or the probability of hypothesis
h given the data A1,A2,A3, . . . ,Ak.
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• P (A1,A2,A3, . . . ,Ak|h) is the probability of feature space A1,A2,A3, . . . ,Ak given
that the hypothesis h was true.

• P (h) is the prior probability or the probability that the hypothesis h was true.

• P (A1,A2,A3, . . . ,Ak) is the probability of the feature space A1,A2,A3, . . . ,Ak.

The Naive Bayes classifier is advantageous for its speed, accuracy and minimal resource
usage. The model is used in many areas for classification, however, performance is
adversely affected when the assumption of feature independence is violated (Wang et al.,
2020). This can be a disadvantage in real-world modelling since most datasets have
features which are correlated.

2.3.4 Decision Tree

The Decision Tree is a supervised learning method that can be used for classification
and regression. The method is based on a tree structure, where the decision nodes of the
tree represent the deciding features of the data, branches represent the decision-based
algorithms and the ending nodes or leaves represent the outcome. The algorithm begins
at the root node and compares a feature’s attribute value to that of population dataset
and makes a decision to which node it branches to. A graphical representation of the
tree structure is shown in Figure 2.4.

Decision Node

Decision NodeDecision Node

Leaf Node Leaf NodeDecision Node Leaf Node

Leaf Node

 

Sub-Tree

 

Figure 2.4: Structure of the Decision Tree classifier (Arain, 2022).

Algorithms based on impurity measures form the foundation of constructing a Decision
Tree from a dataset. Impurity is a measure of the homogeneity of the labels at a par-
ticular node. The most common impurity measures used in Decision Trees are Entropy,

21



Gini Index and Information Gain. Entropy is defined as the amount of information
required to describe data. If the data is homogeneous, then it has an entropy of 0,
while less homogeneous data will contain an entropy moving toward 1. The Gini Index
measures how impure a node is. The metric can take on a value between 0 and 1 and
it is calculated as follows (Muchai and Odongo, 2014):

Gini Index = 1−
n∑

i=1

p2i , (2.15)

where pi is the probability of each class. The lower the index, the more pure a node
is. Decision Trees measure homogeneity in data, and if the data is homogeneous then
it is binned into the same class. This is how a Decision Tree will branch its nodes. At
every decision node, the best feature used to branch the tree and its best feature value
or category, are selected. These attributes are based on reducing the impurity at each
node using the impurity measures.

While the Decision Tree classifier can be easily understood, is computationally fast
and similar to human-based decision-making patterns, it can contain many branches if
a dataset is large with many features, rendering it complex. Decision Trees are also
sensitive to noisy data (Podgorelec et al., 2002).

2.3.5 k-Nearest Neighbours

k-NN is a supervised machine learning method that uses proximity to predict outcomes
or classify data. The method is non-parametric in nature which means that it does not
require the population feature space to be normally distributed. A probability density
function is developed to estimate the probability that a sample feature space belongs
to a certain target class by using the proportions of the target class determined by the
k most similar points (Henley and Hand, 1996). A graphical and high-level overview of
this algorithm is shown in Figure 2.5.
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Figure 2.5: Graphical representation of the k-NN classifier (Al-Rahman Al-Serw, 2021).

The k-NN algorithm uses one of a variety of distance metrics to calculate the distance or
proximity between a observation and its neighbours. The most popular distance metric
used is the Euclidean distance which is a variant of the Minkowski distance measures.
The Euclidean distance formula is computed as follows (Gu and Dong, 2018):

d(x,y) =

√√√√ n∑
i=1

(xi − yi)2, (2.16)

where d(x,y) is the measure of similarity between vectors x and y, given that x =
(x1,x2, . . . ,xn) and y = (y1,y2, . . . ,yn).

There are several other distance metrics which can be used such as Manhattan, Cheby-
shev, Sorensen, Hassanat and Cosine distance to name a few. A full study on the
effect of distance measures on the performance of the k-NN classifier was completed by
Surya et al. (2019). The study showed that k-NN model performance is significantly
affected by the type of distance metric, however, the performance is also dependent on
the nature of the dataset used, for example, noisy data. This means there is no best
distance metric to use and it is up to one to decide depending on the dataset. The
model performance is also affected by the parameter k. There are many methods to
choose the value of k, however, it is suggested to use different values and select the best
performing k-NN model (Paryudi, 2019).

k-NN can be beneficial in datasets where the target variable is polytomous. The method
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is also known to be easily interpreted. As with most machine learning models, k-NN
is sensitive to imbalanced datasets and requires a balanced distribution on the target
variable for better performance (Hand and Henley, 1997). Hence, data balancing is of
interest to the current study.

2.3.6 Support Vector Machines

Support Vector Machines (SVM) is a supervised learning technique used for classifi-
cation and regression modelling. However, it is more commonly used in classification.
The SVM algorithm is known to be robust, accurate and simple. A major advantage of
the model is that it is not prone to over-fitting.

The purpose of the SVM algorithm is to find an optimal decision boundary called a
hyperplane in an n-dimensional space, where n is the number of features in the dataset,
such that the plane separates the data points by target class. Since there can be several
planes to correctly separate the data points, the maximum margin is calculated to find
the optimal hyperplane. This is the maximum distance between the support vectors of
each class. The support vectors are the points closest to the hyperplane. The reason
the maximum distance is required is because the support vectors represent data points
that are the most difficult to classify since they are close to the boundary separating
the classes. Hence, the further away these points are from one another, the more
accurately the algorithm can classify a data point. A graphical representation of the
SVM algorithm is shown in Figure 2.6.
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Figure 2.6: Graphical representation of the SVM classifier (Gandhi, 2022).

The aim of the technique is to find a hyperplane g(x) that has the following mathemat-
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ical formula (Awad and Khanna, 2015):

g(x) = wTx+ b. (2.17)

This is so that the plane correctly separates the data points per class variable. In
mathematical terms, given the set of data points x, categorised by two linearly separable
classes y1 and y2, SVM aims to find w and b such that g(x) is equal to 1 for the support
vectors belonging to class y1 and −1 for the support vectors belonging to class y2 (Awad
and Khanna, 2015).

2.4 Neural Networks

NNs represent a class of machine learning algorithms applicable in tasks such as clas-
sification, clustering, and regression analysis. They comprise intricate networks that
loosely mimic the interconnected structure of neurons in the human brain. In super-
vised machine learning, where datasets are labelled, NNs are utilised for classification
tasks. Input nodes are interconnected with coefficients known as weights, which are
aggregated and processed through an activation function to generate an output. This
mechanism bears resemblance to the activation of neurons in the human brain in re-
sponse to stimuli. Activation functions are mathematical functions that introduce non-
linearity into the neuron’s output. They aid in representing intricate relationships and
capturing non-linear patterns within the data.

There are many variants of NNs that can be used for both unsupervised and supervised
machine learning. This section will discuss the most common NN techniques used in
modelling data for credit risk classification.

2.4.1 Multilayer Perceptron

The Multilayer Perceptron (MLP) is a type of feedforward NN model comprising an in-
put layer, followed by one or more hidden layers, and finally an output layer (Ramchoun
et al., 2016). In the context of NNs, feedforward refers to the process of information
propagation through the network in a one-way direction, starting from the input layer
and progressing towards the output layer, without any feedback loops. In an MLP
network architecture, the input layer comprises artificial neurons representing input
variables, while the output layer predicts the desired outcome. Situated between these
layers, there may exist one or multiple hidden layers, aiding the network in discern-
ing intricate patterns and correlations within the dataset. The structure of the MLP
network is depicted in Figure 2.7.
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Figure 2.7: MLP architecture (Sebastian Raschka, 2023).

Throughout training, the MLP network fine-tunes the connections, termed weights,
between its neurons to minimise the disparity between its predictions and the true
outcomes within the training dataset. This iterative adjustment process is referred
to as backpropagation (Taud and Mas, 2018). The network then, through iteration,
updates the weights based on the produced error, gradually improving its prediction
ability.

Weighted Sum

Weights can be thought of as coefficients for the equation modelled by the data which
is required to be solved. During training, the weights are adjusted to minimise the loss,
which represents the difference between the model’s output and the desired target.

The weighted sum of a neuron’s inputs is computed by multiplying each input by its
respective weight and then summing up all these products. This is shown visually in
Figure 2.8.
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Figure 2.8: Weights in the MLP network (Pablo Caceres, 2020).

For the neuron j in a single layer perceptron, the weighted sum (h) is computed by
(Heidari et al., 2019):

hj =
∑

(wij × xi) + bj , (2.18)

where xi is the ith input unit, wij is the weight connecting input xi to neuron j, and bj
is the bias term. Following this summation, the weighted sum undergoes an activation
function to produce the output for neuron j. The outcome yi after subjecting the
weighted sum to the activation function is computed as follows:

yi = al−1
i = fj(

∑
(wij × xi) + bj), (2.19)

where al−1
i represents the activation of neuron i in the preceding layer l − 1 and fj

denotes the activation function applied to the neuron.

Regarding many hidden layers, for the neuron j in layer l, the weighted sum (hlj) is
computed by:

hlj =
∑

(wl
ij × al−1

i ) + blj . (2.20)

Activation Functions in MLP

There are several functions used to activate a neuron in the MLP network. The following
functions are the most commonly used in MLP.
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• Sigmoid Function (Logistic Function): This is a smooth, S-shaped curve that
maps the weighted sum of a neuron’s inputs, h, to value between 0 and 1. The
equation for the sigmoid activation function is (Aljarah et al., 2018):

f(h) =
1

1 + e−h
. (2.21)

• Hyperbolic Tangent Function (Tanh): Much like the sigmoid function, the tanh
function also converts the weighted sum to a value within the range of −1 and 1
using the following equation (Roy et al., 2022):

f(h) =
eh − e−h

eh + e−h
. (2.22)

The tanh function is more commonly used in the hidden layers of the MLP network
as they allow for negative output values and can capture a larger range of patterns
within data compared to the sigmoid function.

• Rectified Linear Unit (ReLU): This function operates in a piece-wise linear man-
ner. It returns the input unchanged if the input is positive, but yields 0 if the
input is negative. The function is defined by the following equation:

f(h) = max(0,h). (2.23)

The ReLU function is frequently employed within the hidden layers of the MLP
network due to its computational efficiency, especially in deep neural networks.
Deep NNs are those with many hidden layers.

• Leaky ReLU: This function is an adaptation of the ReLU function that introduces
a small slope for negative inputs. This prevents ‘dead’ or zero output neurons
during training that addresses issues such as a neuron becoming stuck at zero (Yu
et al., 2020). The equation for this is given by:

f(h) = max(ah,h), (2.24)

where a is some small positive constant.
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2.4.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are those designed for sequential data, for example
sentences, time series data or even music. Because each piece of data is dependent on the
data which precedes it, the order of the data is important. RNNs have a memory based
structure to allow information to be persisted throughout the network structure. This
allows the network to understand dependencies and context within a data sequence.
Using time steps, RNNs process sequential data by going through each element in the
data sequence. At each iteration, the network receives an input and adjusts its memory
using information from the current input as well as the memory retained from the
preceding step.

The RNN network comprises three layers: input, recurrent hidden, and output. The
input layer can have n many units and is fed through the network in a sequence through
time t. The hidden state h(t) at time step t is calculated by (Salehinejad et al., 2017):

h(t) = f(wxh × x(t) + whh × h(t− 1) + b), (2.25)

where the weight why links the input x(t)o the hidden state h(t), while whh connects
the current hidden state h(t) to the previous hidden state h(t − 1). The function f()
applied here represents the activation function for the hidden layer, and b denotes the
bias term. Then, the output y(t) is calculated as follows:

y(t) = fy(why × h(t) + by), (2.26)

where why denotes the weight parameter linking the hidden state to the output layer,
while by represents the bias term associated with the output layer. The function fy() is
the applied activation function for the output layer.

It is crucial to note that these function computations are recurrent, meaning the network
will repeat the process at each time step to revise the weights accordingly. This allows
information to be integrated throughout training to make accurate predictions.

Activation Functions in RNNs

The activation functions used in RNNs are the same as for the MLP network which in-
clude the sigmoid, hyberbolic tangent and ReLU functions described earlier. Moreover,
the Softmax activation function is frequently applied to the output layer in datasets
involving multi-class classification. This function transforms the outputs of the RNN
into a probability distribution across the multiple classes, ensuring that the probabilities
sum up to 1. The equation is as follows (Wang et al., 2018a):
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f(hi) =
ehi∑n
j=1 e

hj
(i = 1,2,...,n), (2.27)

where h1,h2,...,hn are the inputs to the softmax layer and f(hi) is the probability that
the observation sample belongs to class i.

2.4.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of RNN that is particularly effective in
modelling sequential or time series data. In credit risk, LSTMs can be used to model
credit transactional data. The LSTM model architecture consists of one or more LSTM
layers, followed by one or more fully connected (dense) layers for classification. It uses
memory cells and gates to capture long-term dependencies to make accurate predictions.
The input gate determines which information should be updated. The forget gate
determines what to forget from previous memory (Toharudin et al., 2023). The output
gate regulates the information that is to be emitted as output. The fundamental unit of
the LSTM is the memory cell or cell state, denoted as C(t), which retains information
over time. This can be thought of as a conveyor belt that takes in new information at
each time step and updates its internal state.

The process that information flows through in an LSTM network can be covered across
a few steps. All equations used are referenced from Ala’raj et al. (2021). The high-level
architecture is shown in Figure 2.9.

Figure 2.9: Architecture of LSTMs (Liu et al., 2022).

LSTMs process inputs and generate outputs in vector form. Input data is fed into
the network sequentially, one element at a time. At each time step, the LSTM network
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determines which information from the previous hidden state to retain. The forget gate,
functioning as a sigmoid function, evaluates the current input alongside the previous
hidden state, producing values between 0 and 1 for each element within the hidden
state. This mechanism enables the forget gate to determine which information should
be discarded from the previous hidden state. The forget gate f(t), where t represents
the time step, is calculated as follows:

f(t) = σ(Wf · [h(t− 1),x(t)] + bf ), (2.28)

where σ represents the sigmoid activation function, Wf denotes the weight associated
with the forget gate, h(t− 1) represents the hidden state output at time step t− 1, x(t)
denotes the input at time step t, and bf signifies the bias term of the forget gate.

Subsequently, an input gate is employed to determine which information should be
modified in the hidden state. This gate considers both the input at the current time
step and the previous hidden state. Similar to the forget gate, it produces a value
between 0 and 1 for each element within the hidden state. The equation for the input
gate i(t) is:

i(t) = σ(Wi · [h(t− 1),x(t)] + bi), (2.29)

where Wi denotes the weight parameter, while bi represents the bias parameter associ-
ated with the input gate. A candidate vector of new information is created that could
be added to the hidden state. This process is done using the hyperbolic tangent function
that condenses the values between −1 and 1.

C̃(t) = tanh(WC · [h(t− 1),x(t)] + bC), (2.30)

where WC and bC are the weight and bias of the cell state, respectively. In the next
step, the LSTM updates the current hidden state by integrating information from both
the previous hidden state and the newly calculated candidate information, guided by
the forget and input gates as follows:

C(t) = f(t) · C(t− 1) + i(t) · C̃(t), (2.31)

Finally, the LSTM decides what part of the hidden state to output as the current output
through the output gate. The equation for the output gate is:

o(t) = σ(Wo · [h(t− 1),x(t)] + bo), (2.32)
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where Wo represents the weight parameter, while bo denotes the bias parameter associ-
ated with the output gate. The output gate is applied through a tanh function to get
the updated hidden state which is then used to get the final output:

h(t) = o(t) · C(t). (2.33)

Activation Functions in LSTM

LSTMs use specific activation functions within their gates and cell state computations.
The following are the most frequently used activation functions in LSTM:

• Sigmoid Function: The sigmoid function is used in the input gate, forget gate, and
output gate to condense the values between 0 and 1. It manages the information
flow by adjusting the activation of the gates.

• Hyperbolic Tangent Function: The hyperbolic tangent function is used to compute
the candidate values that can be added to the cell state. It compresses the values
between −1 and 1, capturing the potential updates to the memory.

2.4.4 Gated Recurrent Unit

Gated Recurrent Units (GRUs) are another variant of RNNs that can perform similarly
to LSTMs while being computationally more efficient. They are used for prediction in
scenarios where LSTM models might be too resource-intensive. Like LSTMs, GRUs
are predominantly used for sequential data. GRUs are known for capturing long-term
dependencies in sequential data in comparison to traditional RNNs (Wang et al., 2018b).
The network also uses fewer parameters compared to complex RNNs like LSTMs, and
are thus easier to train due to their simpler architecture.

The architecture of the GRU network is shown in Figure 2.10.

Figure 2.10: Architecture of GRUs (Chung et al., 2014).
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The process GRUs follow is determined by gates which combine and filter information.
All equations used are referenced from Dey and Salem (2017).

Initially, the update gate determines the degree to which the previous hidden state is
merged with the candidate hidden state to generate the new current hidden state. This
is mathematically defined as follows:

zt = σ(Wzxt + Uzht−1 + bz). (2.34)

This gate receives the previous hidden state ht−1 and the current input xt, then subjects
them to a linear transformation denoted as Wz. The parameter bz is the bias and Uz is
a parameter matrix of the update gate. The applied activation function σ is the sigmoid
function.

Next, the reset gate rt regulates the extent to which the previous hidden state should
be disregarded when calculating the candidate hidden state. The equation for the reset
gate is:

rt = σ(Wrxt + Urht−1 + br). (2.35)

The candidate hidden state is then computed by the following equation:

h̃t = tanh(Whxt + Uh(rt · ht−1) + bh). (2.36)

The reset gate regulates the extent to which the previous hidden state is taken into ac-
count, and the outcome is then processed through a hyperbolic tangent (tanh) function
to form the candidate hidden state.

Ultimately, the current hidden state is computed by combining together the previous
hidden state and the candidate hidden state. The hidden state ht at time t can be
determined using the previous hidden state ht−1 using the following equation:

ht = (1− zt) · ht−1 + zt · h̃t, (2.37)

where zt is denoted as the update gate and h̃t is the candidate hidden state.

Activation Functions in GRUs

• Sigmoid: This activation function compresses the input values within the range
of 0 to 1, enabling the gates to manage the flow of information.
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• Hyperbolic Tangent (tanh): This activation function compresses the input values
within the range of -1 to 1, aiding in controlling the values of the candidate hidden
state.

2.4.5 Radial Basis Function Neural Network

RBFNNs can be thought of as a feedforward network of artificial neurons that uses
radial basis functions to make predictions. Each neuron in an RBFNN takes input
values and calculates its output based on a radial basis function. RBFNNs consist of
three main layers: input layer, hidden layer, and output layer. The input layer consists
of neurons that represent the input variables. The hidden layer is where the radial basis
functions are applied. The output layer is where prediction outcomes are determined.
This layer aggregates the outputs of the hidden layer neurons using weights to generate
the final output. The architecture of a typical RBFNN is shown in Figure 2.11.

Figure 2.11: Architecture of RBFNNs (Chai et al., 2019).

The radial basis function calculates the similarity between the input values and a set of
reference points called centroids. The similarity is commonly assessed using a distance
metric such as the Euclidean distance. The output of the neuron is a weighted com-
bination of the similarity values, where the weights represent the importance of each
centroid (Bekhet and Eletter, 2014).

For an input xi, the output y(xi) of the RBF network is given by the following equation
(Wu et al., 2012):
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y(xi) =
∑

wiΦ(||x− ci||), (2.38)

where Φ() is the applied radial basis function, ||x−ci|| is the Euclidean distance between
x and ci, wi is the weight associated with the i− th hidden neuron and ci is the center
point associated with the RBF.

The hidden layer output hi is calculated using a radial basis function using the following
equation:

hi = Φ(||x− ci||). (2.39)

Activation Functions in RBFNN

The main activation function used in RBFNNs is the radial basis function itself. It cal-
culates the similarity or distance between the input values and the centroids (reference
points) in the hidden layer. The RBF function assigns higher values to inputs that are
closer to the centroids and lower values to inputs that are farther away. There are a
few types of radial basis functions that can be used. All functions used are referenced
from Satapathy et al. (2019).

• Gaussian: This is the most widely used radial basis function for RBFNN in prac-
tice. The Gaussian RBF is defined as a bell-shaped curve centered around a
specific point. The equation is defined as follows:

Φ(xi) = exp

{
x− c2i
σ2

}
, (2.40)

where ||x− ci|| is the Euclidean distance between x and ci and the spread of the
Gaussian RBF is changed through the size of σ.

• Multiquadric: The multiquadric RBF is frequently employed and is calculated as
the square root of the sum of squared differences between the input x and the
centre point ci augmented by σ2 which governs the curve’s shape. The equation
is defined as follows:

Φ(xi) =
√
σ2 + x− c2i . (2.41)

• Inverse Multiquadric: The inverse multiquadric RBF is the inverse of the square
root of the sum of the squared differences between the input x and the centre
point ci. This is given as:

Φ(xi) =
1√

σ2 + x− c2i

. (2.42)
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2.4.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of NN specifically designed for pro-
cessing structured grid-like data, such as images (Sharan et al., 2021). They are com-
posed of various layers, such as pooling layers, convolutional layers, and fully connected
layers. CNNs learn to automatically extract meaningful features from the input data
through the convolution operation, which involves sliding small filters, known as kernels,
over the input and capturing patterns or features. Pooling layers decrease the size of the
output, reducing spatial dimensions while retaining essential features. These extracted
features are subsequently fed into fully connected layers for tasks such as classification
or regression.

The way CNNs work can be explained by the following steps.

1. The first step is the convolution operation that consists of sliding a kernel over the
input to extract different attributes. The kernel performs element-wise multipli-
cation with the local regions of the input and then sums up the results to create
a map of features. The equation for this operation to give the output Aj is given
as follows at a location on the map (Li et al., 2014):

Aj = f(

N∑
i=1

Ii ×Ki,j +Bj), (2.43)

where Ii is the value of the input, Ki,j is the value of the filter or kernel, Bj

represents the bias term and f denotes an activation function applied to intro-
duce non-linearity to the output, allowing the network to capture more complex
patterns.

2. The next step is the pooling operation which includes reducing the spatial dimen-
sions of the feature map while keeping important information. Max-pooling is the
most commonly used pooling which takes the maximum value within a local area
on the feature map then discards the rest (Wang et al., 2012). The other type
is average pooling which then takes the average value within a local area on the
feature map.

3. Following multiple convolutional and pooling layers, the network produces one
or more fully connected layers. These layers process the reduced and abstracted
features and then perform classification or regression operations based on the
learned representations.

Activation Functions in CNN

The activation functions commonly used in CNNs are:

• ReLU: ReLU is the predominant activation function utilised in CNNs. It ef-
fectively converts all negative input values to zero while keeping positive values
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unchanged. ReLU helps introduce non-linearity, allowing CNNs to learn complex
relationships and speeding up the training process. These enable enhancement of
the discriminative capability of the CNN network. (Nair and Hinton, 2010).

• Sigmoid Function: The sigmoid activation function transforms the input into a
value ranging from 0 to 1. It is often used in the final layer of a CNN for binary
classification tasks, where the output represents a probability of belonging to one
of the classes (LeCun et al., 1998).

• Softmax Function: this activation function is typically applied in the final layer of
NNs for multi-class classification purposes. It transforms the output values into a
probability distribution, guaranteeing that the sum of probabilities for all classes
equals 1. Softmax helps in selecting the most likely class among multiple choices.

2.5 Methods of Model Evaluation

Evaluation of a model’s performance is a crucial part of prediction and analysis to
understand the limitations of performance and to determine how well a model can
predict an outcome. This section covers the most common methods used in evaluating
statistical and machine learning models for classification.

2.5.1 Confusion Matrix

The Confusion Matrix, developed as a contingency table by Pearson (1904), is a per-
formance evaluation tool for statistical classification models particularly for supervised
learning. It consists of a contingency grid containing information about actual and pre-
dicted values of a classification model as shown in Figure 2.12. The matrix allows the
modeller to calculate metrics such as recall, accuracy, precision, specificity and others
(Bénédict et al., 2021).
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Figure 2.12: Confusion Matrix representation for classification (Narkhede, 2018).
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For binary classification, a target variable can have a positive and negative class. Then
the following definitions exist:

• True Positives (TP): the number of correctly predicted observations belonging to
the positive class.

• False Positives (FP): the number of incorrectly predicted observations belonging
to the positive class.

• True Negatives (TN): the number of correctly predicted observations belonging to
the negative class.

• False Negatives (FN): the number of incorrectly predicted observations belonging
to the negative class.

Using a Confusion Matrix, there are various performance metrics that can be calculated
to mathematically describe the performance of a classification model. The equations
used in this section are referenced from Kohavi (1998).

Accuracy

Accuracy is defined as the proportion of correct predictions as a percentage of the total
number of predictions made by a model. It can be calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100. (2.44)

Precision

Precision is the proportion of true positives as a percentage of the total predictions made
such that the predictions were for a specific class. The purpose is to determine to what
degree a model can correctly predict a specific class in relation to its total predictions
for that class. It is calculated using the following equation:

Precision =
TP

TP + FP
× 100. (2.45)

Recall

Recall, also known as model sensitivity, is defined as the proportion of true positives as a
percentage of the total actual positives predicted. For example, if a dataset contains two
target classes, good and bad, recall allows one to determine how many other observations
were predicted to be of the class good but actually belonged to class bad. The formula
for recall is as follows:

Recall =
TP

TP + FN
× 100. (2.46)
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Specificity

Specificity is the proportion of true negatives as a percentage of the total actual negatives
predicted. It is computed by the following equation:

specificity =
TN

TN + FP
× 100. (2.47)

F1 Score

The F1 Score combines precision and recall by taking harmonic the mean of both met-
rics. This is used to understand accuracy for a model in cases where the metrics vary.
For example, one model could have a higher recall but another comparative model could
have a higher precision. In this case, the F1 score combines both metrics such that both
are taken into consideration. The calculation of the metric is as follows:

F1 Score =
2× precision× recall

precision + recall
. (2.48)

All of the aforementioned measures of evaluation should be as high as possible for a
good model.

2.5.2 Receiver Operating Characteristic (ROC)

The ROC curve is defined as a graph of the recall or sensitivity (true positive rate) versus
one minus the specificity (false positive rate) and is used to evaluate the diagnostic
ability of a classification model.
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Figure 2.13: Receiver Operating Chararacteristic curve (Bewick et al., 2004).

39



Referring to Figure 2.13, the ideal curve would be a vertical line along the sensitivity axis
and a horizontal line connecting the vertical line, parallel to the one minus specificity
axis. This would mean a model can accurately predict observations belonging to the
positive class correctly. In reality, models will not follow this pattern. An unsatisfactory
model would have a curve lying below the diagonal dotted line. Model performance will
thus improve if the curve is skewed towards the upper left of the graph.

Area Under the Curve (AUC)

The area under the ROC curve (AUC-ROC) can also be evaluated for performance. As
stated, if the ROC curve is skewed toward the upper left of the graph in Figure 2.13,
the the model performance is better than that of one that lies toward the diagonal
random predictor line. The ideal area would then be equal to one. Therefore, the larger
AUC-ROC, the better the model performance in predicting outcomes.

2.5.3 Log Loss

Log loss is an accuracy metric used for models that determine the probability of an
observation belonging to a particular class such as Logistic Regression. The metric
indicates how far away each predicted probability is from the actual class. It is calculated
using the following equation (Aggarwal et al., 2021):

Log Loss = − 1

N

N∑
i=1

M∑
j=1

yij ln pij , (2.49)

where N is the number of observations in the test set, M is the number of class variables,
yij is equal to 1 if the observation i belongs to class j and is 0 otherwise, and pij is the
predicted probability that the observation i belongs to class j.

The lower the log loss score is, the higher a model’s accuracy will be.

2.5.4 Jaccard Index

The Jaccard Index is an intersection over union ratio of the number of correctly predicted
values to the sum of the wrongly predicted values and the total actual positives. The
higher the Jaccard Index is, the higher the model performance will be. The measure is
calculated as follows (Eelbode et al., 2020):

J(y,ŷ) =
y ∩ ŷ

y ∪ ŷ
, (2.50)

where y represents the actual values and ŷ represents the predicted values.

40



Chapter 3

Methodology

This chapter outlines the dataset selected for the study and the corresponding data
pre-processing procedures. Additionally, it presents the findings of exploratory data
analysis. Furthermore, the methods utilised to model the data are explained in detail.

A summary of the methodology which is used in this study is shown in Figure 3.1.
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Figure 3.1: Research methodology applied to the analysis and prediction of credit
registry data.
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3.1 Data Pre-processing

The dataset used for modelling in this study was sourced from Society for Data Science
(2020), a platform known for hosting published datasets applicable in the field of data
science for purposes such as modelling and prediction. Specifically, the dataset consists
of credit registry data from a bank in South Germany.

3.1.1 Background of Data

The dataset originates from a commercial bank in South Germany and comprises 1 000
credit observations spanning from 1973 to 1975. Initially contributed by German pro-
fessor Hans Hofmann in 1994 through the European Stratlog project, the dataset was
found to have coding errors, which were rectified as detailed by Groemping (2019). The
dataset contains 700 observations classified as representing good risk customers and 300
observations classified as representing bad risk customers, indicating an imbalance in
the dataset. No missing values were identified within any of the records. Good risk
customer profiles are defined as those who adhered to the conditions outlined in the
credit contract, while bad risk customer profiles are characterised by non-compliance
with these conditions.

3.1.2 Description of Data

The dataset is labelled and comprises 20 explanatory predictor variables. Among these
variables, 7 are quantitative, with 4 being discretised into ordinal levels and the remain-
ing 3 available in their original units. Additionally, there are 13 categorical variables.
The target variable, denoted as credit risk in the dataset, represents the credit risk
and is a binary variable indicating whether the contract has been complied with (good
risk) or not (bad risk). The dataset was imported into Python as a comma-separated
value file and loaded into a dataframe using the pandas package. Prior to analysis, the
variable names were translated from German to English, as the original dataset was in
German.

The list of predictor variables are given as follows:

• status: status of the debtor’s checking account with the bank (categorical).

• credit history : history of compliance with previous or concurrent credit contracts
(categorical);

• purpose: purpose for which the credit is needed (categorical);

• savings: debtor’s savings (categorical);

• employment duration: duration of debtor’s employment with current employer
(ordinal; discretised quantitative);

• installment rate: credit installments as a percentage of debtor’s disposable income
(ordinal; discretised quantitative);
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• personal status sex : combined information on sex and marital status. Sex cannot
be recovered from the variable, because male singles and female non-singles are
coded with the same code (2). Female widows cannot be easily classified because
the code table does not list them in any of the female categories (categorical);

• other debtors: specifies if there is another debtor or a guarantor for the credit
(categorical);

• property : the debtor’s most valuable property, i.e. the highest possible code is
used. Code 2 is used if codes 3 or 4 are not applicable and there is a car or any
other relevant property that does not fall under the variable savings (ordinal);

• other installment plans: installment plans from providers other than the credit-
giving bank (categorical);

• housing : type of housing the debtor lives in (categorical);

• number credits: number of credits including the current one the debtor has (or
had) at this bank (ordinal, discretised quantitative);

• job: quality of debtor’s job (ordinal);

• people liable: number of persons who financially depend on the debtor or are
entitled to maintenance (binary, discretised quantitative);

• telephone: specifies if is there a telephone landline registered on the debtor’s name
(binary);

• foreign worker : specifies if the debtor a foreign worker (binary);

• duration: credit duration in months (quantitative);

• amount : credit amount in Deutsche Mark (DM) (quantitative);

• age: age in years (quantitative).

Table 3.1 presents a comprehensive list of variables along with their respective cate-
gories. Among these variables, three are quantitative and retain their original units:
duration, amount and age. The remaining variables are categorical. In the raw dataset,
categories are represented by codes rather than textual descriptions, which are provided
in the table. The final variable, credit risk, serves as the target variable and is encoded
as 1 for good risk and 0 for bad risk. It is noteworthy that certain categories include
monetary values denominated in the German currency Deutsche Mark (DM), which was
in use in Germany from 1948 to 1990.
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Table 3.1: Different categories for the list of variables in the credit dataset.

Variable Code Category

status

1
2
3
4

no checking account
...<0 DM
0≤...<200 DM
≥200 DM/salary for at least 1 year

credit history

0
1
2
3
4

delay in paying off in the past
critical account/other credits elsewhere
no credits taken/all credits paid back duly
existing credits paid back duly till now
all credits at this bank paid back duly

purpose

0
1
2
3
4
5
6
7
8
9
10

others
car (new)
car (used)
furniture/equipment
radio/television
domestic appliances
repairs
education
vacation
retraining
business

savings

1
2
3
4
5

unknown/no savings account
...<100 DM
100≤...<500 DM
500≤...<1000 DM
≥1000 DM

employment duration

1
2
3
4
5

unemployed
<1 year
1≤...<4 years
4≤...<7 years
≥7 years

installment rate

1
2
3
4

≥35
25≤...<35
20≤...<25
<20

personal status sex

1
2
3
4

male: divorced/separated
female: non-single or male: single
male: married/widowed
female: single

other debtors
1
2
3

none
co-applicant
guarantor
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present residence

1
2
3
4

<1 year
1≤...<4 years
4≤...<7 years
≥7 years

property

1
2
3
4

unknown/no property
car or other
building soc. savings agr./ life insurance
real estate

other installment plans
1
2
3

bank
stores
none

housing
1
2
3

for free
rent
own

number credits

1
2
3
4

1
2-3
4-5
≥6

job

1
2
3
4

unemployed/unskilled - non-resident
unskilled - resident
skilled employee/official
manager/self-empl./highly qualified employee

people liable
1
2

0-2
≥3

telephone
1
2

no
yes (under customer name)

foreign worker
1
2

no
yes

duration N/A N/A
amount N/A N/A
age N/A N/A

credit risk
0
1

bad risk
good risk

3.2 Exploratory and Statistical Data Analysis

3.2.1 Descriptive Statistics

The value counts() function in Python was used to determine the distribution of cat-
egories for each categorical feature. These values are given in Table 3.2. Using the
describe() function, the mean, standard deviations and percentiles were produced for
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the quantitative variables amount, duration and age. These values are provided in
Table 3.3.

The distribution of categories for each categorical feature was assessed in Python, and
the results are summarised in Table 3.2 Additionally, descriptive statistics including
mean, standard deviation, and percentiles were computed for the quantitative variables
amount, duration and age. These statistics are presented in Table 3.3.

Table 3.2: Percentage of each category for categorical features as a total of the obser-
vations and good or bad credit risk.

Credit Risk (Percent)

Variable Code Count (Percent) Bad (0) Good (1)

status

1
2
3
4

27,4
26,9
6,3
39,4

45,0
35,0
4,7
15,3

19,9
23,4
7,0
49,7

credit history

0
1
2
3
4

4,0
4,9
53,0
8,8
29,3

8,3
9,3
56,3
9,3
16,7

2,1
3,0
51,6
8,6
34,7

purpose

0
1
2
3
4
5
6
7
8
9
10

23,4
10,3
18,1
28,0
1,2
2,2
5,0
0,0
0,9
9,7
1,2

29,7
5,7
19,3
20,7
1,3
2,7
7,3
0,0
0,3
11,3
1,7

20,7
12,3
17,6
31,1
1,1
2,0
4,0
0,0
1,1
9,0
1,0

savings

1
2
3
4
5

60,3
10,3
6,3
4,8
18,3

72,3
11,3
3,7
2,0
10,7

55,1
9,6
7,4
6,0
21,6

employment duration

1
2
3
4
5

6,2
17,2
33,9
17,4
25,3

7,7
23,3
34,7
13,0
21,3

5,6
14,6
33,6
19,3
27,0
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personal status sex

1
2
3
4

5,0
31,0
54,8
9,2

6,7
36,3
48,7
8,3

4,3
28,7
57,4
9,6

installment rate

1
2
3
4

13,6
23,1
15,7
47,6

11,3
20,7
15,0
53,0

14,6
24,1
16,0
45,3

other debtors
1
2
3

90,7
4,1
5,2

90,7
6,0
3,3

90,7
3,3
6,0

present residence

1
2
3
4

13,0
30,8
14,9
41,3

12,0
32,3
14,3
41,3

13,4
30,1
15,1
41,3

property

1
2
3
4

28,2
23,2
33,2
15,4

20,0
23,7
34,0
22,3

31,7
23,0
32,9
12,4

other installment plans
1
2
3

13,9
4,7
81,4

19,0
6,3
74,7

11,7
4,0
84,3

housing
1
2
3

17,9
71,4
10,7

23,3
62,0
14,7

15,6
75,4
9,0

number credits

1
2
3
4

63,3
33,3
2,8
0,6

66,7
30,7
2,0
0,7

61,9
34,3
3,1
0,6

job

1
2
3
4

2,2
20,0
63,0
14,8

2,3
18,7
62,0
17,0

2,1
20,6
63,4
13,9

people liable
1
2

84,5
15,5

84,7
15,3

84,4
15,6

telephone
1
2

59,6
40,4

62,3
37,7

58,4
41,6

foreign worker
1
2

96,3
3,7

98,7
1,3

95,3
4,7
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The following descriptive statistics were observed for each feature:

• status: For the status feature, 45% and 35% of the total bad risk make up cus-
tomers in the category “no checking account” and “...<0DM”. This is expected as
customers who have no debit account or a negative balance currently, would not
have any liquid capital to pay back credit and would be considered risky to the
bank. On the contrary, 49,7% of the total good risk make up customers who had
more than 200DM or at least a one year’s salary. However, it is unusual to note
that only 7% of the total good risk make up customers who had between 0DM
and 200DM, in comparison to 19,9% and 23,4% who make up customers who had
a negative account balance or no checking account, respectively. Also a similar
pattern is observed for the bad risk totals where 15,3% of the total make up cus-
tomers who have more than 200DM on account, where only 4,7% of the total had
between 0DM and 200DM. It must be noted that only 6,3% of the total between
good and bad risk consist of customers that had between 0DM and 200DM on
account. Of the entire total, 39,4% of the dataset make up customers who have
more than 200DM or at least one year’s salary on account. It is worthwhile to
state that the percentage totals cannot be fairly compared between good and bad
risk since the dataset is imbalanced with the good risk totals making up the major
class.

• credit history : 56,3% of the total bad risk make up customers who had taken no
credit or had paid back all credits in full. This is expected as the customer would
have no history or current credit for the bank to assess. 51,6% of the total bad
risk make up customers who had taken no credit or had paid back all credits in
full. Although these percentages are not fairly comparable, it is worthwhile to
note that these classes make up majority for both bad and good risk. 34% of the
good risk are customers that had paid back all credits duly in the current bank.
Conversely, 16,7% of the bad risk total make up customers who ha paid up all
credit in full at the current bank, which also indicates that the bank used other
information to assess the customer’s risk and not solely on whether the customer
had paid back all credit or not.

• purpose: For this feature, the categories that make up most of the customers
between both bad and good risk are “others”, “car(used)” and “furniture/equip-
ment” of 23,4%, 18% and 28,0%, respectively. The category “others” is not very
descriptive of purpose of the credit and could represent a variety of credits for
which the contract was taken.

• savings: The category for this variable that makes up the majority of observations
between good and bad risk is “unknown/no savings account”. Of the total bad
risk observations 72,3% fall within this category and of good risk, 55,1% fall within
the same category.

• employment duration: For this feature, the statistics show a middle ground cat-
egory making up 33,9% of the total observations of a customer being employed
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between one and four years. In this category, the distributions for good and bad
risk are somewhat equal indicating that between one and four years, a customer
was equally likely to be a good risk or a bad risk to the bank. In the categories
below this, specifically for good, a trend is noticed that the less time a customer
is employed, the lower the chances of being a good risk to the bank. On the
categories above, the percentage distribution increases for good risk as the years
a customer is employed increases. This represents positive correlation between
the good risk target variable and the employment duration feature. This positive
correlation does not exist for the bad risk target variable and distributions vary.
For example, the category of “<1 year” has a distribution of 23,3% and similar
distribution of 21,3% exists for the category of having an employment duration of
more than seven years.

• personal status sex : The categories in this feature incorporate multiple descrip-
tions per category. For example, the code 2 represents non-single females but also
single males. It is difficult to attribute a particular customer description to the
type of risk. In the total dataset, 54,8% of all observations make up customers
who are male and who are married or widowed.

• installment rate: For this feature, more than half of the total observations which
have a classification of bad risk were within in the installment rate category of
“< 20”. The same pattern is followed for the good risk category.

• other debtors: For both good and bad risk, 90,7% of observations make up the
category of “none”. In other words, the vast majority of customers classified took
the credit contract individually. This is an indication that this feature is not a
good classifier to the target class.

• present residence: The normalised distributions between good and bad risk as a
percentage of individual totals, can be seen to be fairly balanced between the two
target classes. This may indicate the this feature is not a good classifier to the
target class as the same patterns occur for both good and bad risk, and this is
seen across all categories in Table 3.4. For example, a customer residing in the
current residence for more than seven years was equally as likely to have bad risk
as the customer was to having good risk since the distributions across both are
41,3%.

• property : The distributions per risk class for this feature are fairly balanced for
categories 2 and 3, which are “car or other” and “building society. savings agr./life
insurance”, respectively. For the “real estate” category, the percentage of obser-
vations making up the bad risk category is 22,4% which is more than the 12,4%
making up the good risk category. This may indicate that customers who owned
real estate properties had a higher chance of defaulting than those who did not.
For the “unknown/no property” category, 31,7% make up the distribution of ob-
servations in the good risk class, which is 10% more than the distribution in the
bad risk class. This means the likelihood of defaulting on credit was higher if the
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customer owned no property.

• other installment plans: The category in this feature that makes up the largest
distribution between both good and bad risk is “none”. This means that the
customers who have no other installment plans other than at the current bank
made up the major class for this feature. The distribution of bad risk for the same
category is 74,7% and the distribution of good risk is approximately 10% more.
The “stores” category make up a small percentage for this feature and are similar
for both target classes. For the “bank” category, it is noticed that the distribution
for bad risk is approximately 8% higher than the distribution for good risk. This
means the likelihood of defaulting against credit at the current bank was higher
if the customer had an installment plan taken out at another bank.

• housing : The major category for this feature is “rent” with a total percentage
distribution of 71,4%. The distribution is similar between good and bad risk with
a difference of approximately 13%. For good risk, this means that a customer was
more likely to have been a good risk to the bank if they were renting rather than
owning a residence or living at no cost. The same pattern, however, also occurred
for bad risk customers.

• number credits: For this feature, customers who had only one credit contract taken
out made up the most for both good and bad risk. The distributions across each
category are similar which also indicate this feature may not be a good predictive
variable to credit risk for this dataset.

• job: The category that makes up the major distribution for this feature is “skilled
employee/official” with 63,0% and the minor distribution, “unemployed/unskilled
- non-resident” with 2,2%. This is expected as a customer would need a form of
income in order to pay off credit. The distributions are similar across all categories
for good and bad risk also indicating that this feature is not a good predictive
variable to credit risk for this dataset.

• people liable: This feature has only two categories, where “0-2” make up 84,5%
across both target classes, and 15,5% make up the category “≥ 3”. The distri-
butions are similar across both categories for good and bad risk again indicating
that this feature is not a good predictive variable to credit risk for this dataset.

• telephone: This feature has two categories, where 59,6%, across both target
classes, are made up of observations for customers who did not own a telephone,
and 40,4% make up the category “≥ 3”. The distributions are similar across both
categories for good and bad risk with approximately a 4% difference, indicating
that this feature is not a good predictive variable to credit risk for this dataset.

• foreign worker : 96,3% of the observations are made up of customers who were not
foreign workers. The distribution is similar across both target classes for those
who were not foreign workers. Only 3,7% of observations are made up of customers
who were foreign workers. The distributions also indicate that if a customer was
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a foreign worker, then he or she was more likely to have good risk.

Table 3.3: Descriptive statistics for quantitative variables in the credit risk dataset.

Variable Mean 25% 50% 75% Min Max

duration (months) 20,9 12,0 18,0 24,0 4,0 72,0

amount (DM) 3271,2 1365,0 2319,5 3972,3 250,0 18424,0

age (years) 35,5 27,0 33,0 42,0 19,0 75,0
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Figure 3.2: Distribution of the duration variable for the credit risk dataset between
good (1) and bad (0) risk.
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Figure 3.3: Distribution of the amount variable for the credit risk dataset between
good (1) and bad (0) risk.
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Figure 3.4: Distribution of the age variable for the credit risk dataset between good
(1) and bad (0) risk.
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Referring to Table 3.3, the distribution for the quantitative variable duration indicates
that 50% of the customers in the dataset had a credit duration of 18 months or less,
while the other 50% had a credit duration of 18 to 72 months. The average duration
was around 20,9 months. Referring to individual distributions for the good and bad risk
classes, Figure 3.2, the distributions for bad risk are more spread out across the duration
values but is also concentrated around the 15 to 20 month duration. Conversely, for good
risk, there is a skewness towards lower duration values. This indicates that customers
who were classified as good risk also took out a credit contract with a duration that
was lower. The distributions for both classes do have noise, which makes it difficult to
find correlations between this variable and the target class.

In Table 3.3, the statistics show that for the amount variable, 50% of the customers
took out a credit contract with an amount of 2319,5DM or lower. The distribution curve
in Figure 3.3 is smoother and more distinct in comparison to the duration variable. It
can be seen that customers were more likely to have good risk at lower credit amounts
and the likelihood decreases significantly when the amount was increased. A similar
pattern occurs for bad risk, and as expected, higher credit amounts were associated
with a customer having bad risk.

For the age variable, 50% of the distribution are customers that were below the age of
33 with a minimum age of 19 years, the other 50% were above the age of 33 with a
maximum age of 75. Thus, the variation in age is spread out evenly about an average
age of 35,5. Referring to Figure 2.13, the distribution lies toward the age of 27 for both
bad and good risk. The distribution declines with an increase in age.

3.3 Feature Selection

In this section, a methodology is outlined for extracting the most significant independent
variables from the dataset. Additionally, graphical representations will be provided
for these selected features to visually investigate key aspects and relationships among
variables within the dataset.

3.3.1 Chi-square Statistics

For feature selection in the dataset, the filter method utilising Chi-square Statistics
was employed. This method was deemed suitable due to its applicability to datasets
containing categorical data. The Chi-square Statistics test aims to assess the degree
of dependence between the class and target variables. It was chosen specifically for
its ability to operate without requiring homoscedasticity within the data, its minimal
assumption requirement, and its classification as a non-parametric method.

Since the Chi-squared Statistics test is non-parametric, there are a few conditions that
the dataset must adhere to.

Conditions for Non-parametric Tests
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• The data to which the test is applied must be measured in levels which are nominal
or ordinal.

• If the dataset contains variables that were originally measured as continuous data,
the variables must have violated one of the following assumptions of parametric
tests:

– The data is homescedastistic in nature. This is also known as the assumption
of equal variance.

– The distributions are marginally skewed and assume normal distribution.

– The data are continuous and not collapsed into a small number of categories.

Due to the dataset’s non-parametric nature and the violation of parametric assumptions,
the Chi-squared Statistic feature selection method was chosen. An alternative method,
the Fischer Score, was not selected due to the risk of producing a sub-optimal subset, as
features are independently selected in relation to the target variable. In this scenario,
there are seventeen categorical or ordinal independent variables and three quantitative
independent variables. The dependent variable, representing credit risk, is also nominal.
To meet the conditions of the non-parametric test, the variables age, duration, and
amount will be categorised into levels.
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Assumptions of the Chi-square Statistics Test

To use the Chi-square Statistics test, there are a few assumptions which the data should
follow.

1. The categories of the variables are mutually exclusive. This means the categories
cannot overlap.

2. The data must be categorical and any continuous variables must be discretised
into levels or categories.

3. The expected frequency of any of the variables should be greater than 5.

4. The data is independently sampled.

Before any processing for modelling is undertaken on the dataset, it is imperative to
split the data into training and test subsets. This step is crucial to ensure that the
models do not have prior knowledge of the test dataset during prediction, thereby
maximising model performance and reducing overfitting. Utilising a splitting ratio
defines the percentage of observations allocated to training and test subsets. The 80:20
splitting ratio, where 80% of observations are used for training and 20% for testing, is
a commonly employed and standard ratio in practice (Joseph, 2022). While ratios such
as 70:30 and 60:40 are also widely used, there is no fixed rule or formula for selecting a
ratio, and it typically depends on the dataset and modeller preferences. In this dataset,
the 80:20 splitting ratio will be adopted, meaning a random sample of 200 observations
will be used for testing, while 800 observations will be allocated for training across all
models.

As mentioned earlier, the variables age, duration, and amount will be categorised into
levels to suit the non-parametric test conditions. The three variables were extracted
into individual dataframes and categorised into bins. The resulting bins or categories,
along with their corresponding encoding, are presented in Table 3.4.
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Table 3.4: Categorised data for the continuous variables in the credit dataset.

Variable Code Category

amount (DM)

0
1
2
3
4
5
6
7

0 - 1000
1001 - 2000
2001 - 3000
3001 - 4000
4001 - 5000
5001 - 6000
6001 - 7000
≥ 7000

duration (months)

0
1
2
3
4
5
6

0 - 6
7 - 12
13 - 18
19 - 24
25 - 30
31 - 36
≥ 37

age (years)

0
1
2
3
4

0 - 25
26 - 35
36 - 45
46 - 55
≥ 56

For feature selection, the Python package sklearn.feature selection was employed, along-
side the chi2 scoring function and the SelectKBest function. The SelectKBest function
utilises the chi2 scoring function and a parameter k, allowing the modeller to specify
the number of best features to select. In this case, the value of k was set to 20 to in-
clude all features in the credit dataset. The Chi-square score indicates the significance
of each feature, with higher scores implying greater significance. However, to select the
best features, a threshold must be set on this score. Therefore, hypothesis testing was
conducted. A null hypothesis and an alternative hypothesis were formulated, and a
p-value test was applied with a threshold of 5%. If the p-value from the Chi-square test
exceeded 0,05, the alternative hypothesis was rejected. Conversely, if the p-value was
less than 0,05, the null hypothesis could be rejected.

1. Null hypothesis: the feature has no association with the target variable.

2. Alternative hypothesis: the feature is associated with the target variable and is
significant.
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Figure 3.5: Variation in Chi-square values across all features in the credit dataset.

Table 3.5: Chi-square score and p-values for the various features in the credit dataset.

Variable Chi-square Score p-value
status 53,97 < 0,0001

discretised duration 45,83 < 0,0001
savings 25,33 < 0,0001

discretised amount 23,19 < 0,0001
credit history 17,06 < 0,0001
discretised age 7,65 < 0,0001

property 5,73 0,02
employment duration 4,02 0,05

purpose 2,29 0,13
other installment plans 1,22 0,27

installment rate 0,82 0,36
personal status sex 0,58 0,44
number credits 0,50 0,48

telephone 0,21 0,65
job 0,16 0,69

foreign worker 0,10 0,75
present residence 0,07 0,79

housing 0,03 0,86
other debtors 0,02 0,88
people liable 0,02 0,88
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Referring to Figure 3.5, it is evident that numerous variables exhibit low Chi-square
scores, corroborating the earlier discussion on descriptive statistics where many fea-
tures showed similar distributions across all categories. Among the features, status and
duration emerge as the most significant based on the Chi-square test. Conversely, the
variables people liable and other debtors are identified as the least significant features
according to the Chi-square test.

Table 3.5 presents the p-values obtained from the Chi-square test conducted using
Python. These p-values are arranged in descending order based on the Chi-square score.
According to the hypothesis testing criteria established, the features listed below, ranked
from highest to lowest significance, are considered significant. This determination is
based on both the high Chi-square test scores and, more importantly, the p-values
being less than 0,05:

1. status

2. discretised duration

3. savings

4. discretised amount

5. credit history

6. discretised age

7. property

8. employment duration

These features will be used in the final dataset for modelling.

3.4 Data Balancing

3.4.1 Synthetic Minority Over-sampling Technique - Nominal

To prevent any bias towards a particular classification within the class variable, it
is necessary to balance the data. In this context, the initial dataset comprised 300
instances labelled as bad risk and 700 instances labelled as good risk. Following a split
based on an 80:20 ratio, the training dataset encompassed a total of 800 instances,
with 564 instances classified as good risk and 236 instances classified as bad risk. The
distribution is shown in Figure 3.6.
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Figure 3.6: Distribution between good and bad risk on the training dataset before
balancing.

As all variables were discretised, the entire feature dataset was categorical. Conse-
quently, the Synthetic Minority Over-sampling Technique – Nominal was employed.
This technique involves oversampling the minority class (in this case, the bad risk class)
to match the size of the majority class, using synthetic data points generated based on
the k-nearest neighbours. The rationale behind using oversampling was to ensure that
crucial characteristics within the dataset are retained, especially given the dataset’s
small size. Downsampling the majority target class could risk losing significant infor-
mation essential for modelling. The SMOTEN API from the imbalanced-learn package
in Python was utilised to balance the training dataset, with the number of nearest
neighbors set to 5 for computing the synthetic samples.

Various imbalance levels were computed as the secondary objective to determine the
effect of imbalance on the models to follow. Since the minority class contains 236 obser-
vations which is approximately 41% of the majority class (564 observations), balancing
in percentage of the majority class was taken from 50% all the way to 100% which is
fully balanced. This was to ensure that the minority class is not under-sampled. These
percentages are visually represented in Figure 3.7.
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Figure 3.7: Distribution between good and bad risk on the training dataset after
balancing for various balancing percentages.

A summary of the counts of the minority class observations and total observations are
provided in Table 3.6.

Table 3.6: Summary of the various imbalance levels and observation counts.

Imbalance Level Percentage of Majority Class Count of Minority Class Total Observations
1 50% 282 846
2 60% 338 902
3 70% 394 958
4 80% 451 1015
5 90% 507 1071
6 100% 564 1128

3.5 Parameter Estimation, Modelling and Prediction

3.5.1 Traditional Learning: Logistic Regression

This section details the mathematical approach employed in constructing the Logistic
Regression model. These techniques serve as the conventional statistical methods for
comparison with machine learning models.
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Maximum Likelihood Estimation with Gradient Descent Optimisation

The initial stage of modelling involves obtaining the regression coefficients through Max-
imum Likelihood Estimation coupled with a gradient descent optimisation algorithm.
Referring back to Equation 2.12, which represents the log likelihood function that needs
to be maximised to acquire the regression coefficients, a new cost function is formulated
to be minimised. This is achieved by transforming Equation 2.12 into a negative log
likelihood function:

J = −
N∑
i=1

yi ln (P (n)) + (1− yi) ln(1− P (n)), (3.1)

where J denotes the cost function. After obtaining the cost function, its derivative with
respect to the parameters (also known as weights) can be computed and equated to zero
to determine the parameters. However, solving this function analytically might not be
feasible, hence optimisation techniques like gradient descent are employed. The gradient
descent method starts by initialising the parameters with initial guesses, followed by
updating the parameter values (weights) by calculating the slope or derivative of the
cost function (Haji and Abdulazeez, 2021). This process is repeated until the gradient
approaches zero. Mathematically, the method can be expressed as follows (all formulas
utilised for the optimisation technique are adapted and cited from Cheon et al. (2018)):

ω := ω −∆ω, (3.2)

where ω is the weight and ∆ω is the learning rate multiplied by the derivative of the
cost function with respect to the weights; also known as the gradient. The weights are
also known as the regression coefficients which need to be determined and Equation 3.2
can be written as:

βupdated := β − α
∂J(β)

∂β
, (3.3)

where β is the regression coefficient vector, α is the learning rate, J(β) is the cost func-
tion in terms of the regression coefficient vector and βupdated is the regression coefficient

vector at which the cost function is optimised. The term ∂J(β)
∂β can be further expanded

as follows:

∂J(β)

∂β
=

1

m
X⃗T · (f(X⃗ · β)− Y⃗ ), (3.4)
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where m is the number of observations in the training feature dataset, X⃗ is the vector
of the training dataset, f(X⃗ · β) is the dot product of the training feature set and the
regression coefficient vector, and Y⃗ is the target vector corresponding to the training
feature dataset.

Equation 3.4 was implemented in a Python function using the training feature dataset
and training target dataset until the model converged for all levels of data imbalance,
indicating the lowest possible value for the cost function. To obtain the coefficients for
the Logistic Regression model, 100 iterations with a learning rate of 1 were performed.
The initial values for β were set to random values using the Python numpy.random
package. The optimisation process for the cost function of the Logistic Regression
model for a 100% balanced dataset, which serves as the baseline model, is depicted in
Figure 3.8.
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Figure 3.8: Cost function minimisation for the Logistic Regression model for a 100%
balance level.

Referring to Figure 3.8, the Logistic Regression baseline model was optimised after
approximately 20 iterations.

The coefficients after optimising for Logistic Regression for the different balanced models
are provided in Table 3.7.
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Table 3.7: Regression coefficients for the various balanced models.

Coefficient 100% 90% 80% 70% 60% 50%

β0 0,02 0,16 0,31 0,47 0,67 0,88

β1 0,68 0,69 0,66 0,65 0,67 0,67

β2 −0,36 −0,39 −0,39 −0,39 −0,41 −0,40

β3 0,25 0,24 0,23 0,26 0,27 0,22

β4 0,06 0,05 0,06 0,06 0,05 0,03

β5 0,49 0,50 0,49 0,46 0,42 0,38

β6 0,36 0,33 0,31 0,26 0,22 0,20

β7 −0,25 −0,21 −0,24 −0,25 −0,26 −0,25

β8 0,17 0.20 0,19 0,17 0,16 0,15

For a Logistic Regression model, the mathematical equation can be written in general
as follows:

Y =
1

1 + e−f(β)
, (3.5)

where Y is the probability that an observation has the outcome of 1.

In terms of the 8 independent variables, Equation 3.5 can be expanded to the following:

Y =
1

1 + e−(β0+X1β1+X2β2+X3β3+X4β4+X5β5+X6β6+X7β7+X8β8)
(3.6)

Then, the equation for the Logistic Regression model baseline model (100% balanced),
is given as follows:

Y =
[
1 + e−(0,017+0,677X1−0,359X2+0,245X3+0,056X4+0,493X5+0,356X6−0,247X7+0,175X8)

]−1
.

The variables X1 . . . X8 are associated with the selected independent variables sum-
marised in Table 3.8, and β0 is the intercept or bias of the model.
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Table 3.8: Variable to feature mapping for the Logistic Regression model.

Variable Xi(i ∈ [1,8])
status X1

discretised duration X2

savings X3

discretised amount X4

credit history X5

discretised age X6

property X7

employment duration X8

After obtaining the coefficients, the βupdated values were multiplied by the test feature
dataset, followed by the application of a sigmoid function. This step yielded the predic-
tion probability necessary to validate the model. However, to make actual predictions,
a threshold probability needed to be set. This threshold probability determines whether
the predicted outcome is 1 (indicating good risk) or 0 (indicating bad risk). To deter-
mine the optimal threshold probability, the log loss of the model was computed. This
process involved iterating through 300 threshold values and computing the log loss using
the sklearn.metrics package in Python. The results were plotted on a graph to identify
the threshold value corresponding to the lowest loss, as depicted in Figure 3.9 for the
baseline model. This procedure was repeated for all levels of data imbalance, and a
summary is presented in Table 3.9. The log loss serves as an indicator of how closely
the prediction probability aligns with the actual outcome, with lower log loss values
indicating better prediction accuracy.

Table 3.9: Log loss and probability threshold for the various balanced models.

Balanced Model Log Loss Threshold Probability

50% 7,93 0,48

60% 7,57 0,49

70% 7,57 0,44

80% 7,57 0,42

90% 7,93 0,32

100% 7,93 0,30

Referring to Figure 3.9, the threshold probability for the Logistic Regression model
baseline model is 0,3 for a log loss of 7,93.
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Figure 3.9: Log loss for various threshold probabilities for the Logistic Regression model
with 100% balance on the minority class.

3.5.2 Machine Learning Models

k-Nearest Neighbours

For the k-NN model, theKNeighborsClassifier class from the Python sklearn.neighborspackage
was employed. However, this classifier requires a specified integer value for the number
of neighbors to consider when classifying the data. To determine the optimal number
of neighbors (k), a range of values from 1 to 15 was tested, and the accuracy score was
computed for each iteration. The results were plotted in Figure 3.10 for the baseline
model (100% balance). The graphs illustrate that the accuracy for the training dataset
tended to decrease as the number of nearest neighbors increased.
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Figure 3.10: Train and testing accuracy of different neighbour values used in the k-NN
baseline model.

A summary of the best k for all the balanced k-NN models are provided in Table 3.10.

Table 3.10: Best value of k for the various balanced k-NN models with the corresponding
test accuracy.

Balanced Model Best k Test Accuracy

50% 3 0,76

60% 3 0,73

70% 3 0,73

80% 11 0,73

90% 9 0,72

100% 7 0,72

Based on the results depicted in Figure 3.10, the highest accuracy was achieved when
using 7 nearest neighbors for classification for the baseline model using the testing
dataset. This value was selected for both training and testing the model to strike a bal-
ance between maximising test accuracy and maintaining reasonable training accuracy.
It is important to note that this optimisation process was performed using a baseline
k-NN model without any hyperparameter tuning.

Support Vector Machines
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For the Support Vector Machines (SVM) model, Python’s sklearn.model selection and
sklearn.svm packages were utilised, employing the GridSearchCV and SVC classes for
modelling. In SVM classification, three key parameters are typically adjusted: C, which
denotes the regularisation parameter inversely related to the strength of regularisation;
kernel, specifying the kernel type chosen from options like ‘linear’, ‘poly’, ‘rbf’, ‘sign-
moid’, ‘precompted’, or a predefined callable function; and gamma, representing the
kernel coefficient for ‘rbf’, ‘poly’, or ‘sigmoid’ kernels.

To find the optimal combination of parameters for the SVM model, the GridSearchCV
class was employed. This class systematically explores a grid of parameter combinations
to determine the best set that maximises the accuracy of the model. Since the ‘rbf’
kernel is commonly used as a baseline for SVM, it was selected as the default kernel.
Initial values for the parameters were set, and the GridSearchCV class was utilised to
perform parameter optimisation. This process typically takes longer compared to other
machine learning models due to the exhaustive search over the parameter grid. The
initial parameter values were set as follows:

• C : [0.01,0.1,1, 10, 100,1000];

• kernel : ‘rbf’;

• gamma:[1,0.1,0.01,0.001,0.0001,2,3,10].

A sample of the optimisation process is shown in Figure 3.11.

Figure 3.11: A sample of the parameter optimisation for the SVM baseline model.

A summary of the best parameters for the various balanced SVM models are provided
in Table 3.11.
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Table 3.11: Best parameters for the various balanced SVM models.

Balanced Model C gamma

50% 2 0,1

60% 3 0,1

70% 3 0,1

80% 3 0,1

90% 3 0,1

100% 50 1

Following the optimisation of the SVM baseline model, the parameter set yielding the
highest overall accuracy was identified as: ‘C’: 50, ‘gamma’: 1, ‘kernel’: ‘rbf’. It is
noteworthy that these parameter values diverge considerably from those of the models
with imbalance levels below 100%.

Decision Tree

For the Decision Tree model, the Python sklearn.tree package was employed, utilising
the DecisionTreeClassifier class. The Gini Index impurity measure was selected as it
yielded the best overall accuracy. Additionally, a maximum depth of 4 was imposed on
the tree. This maximum depth constraint ensures that the tree does not become overly
complex, thus mitigating the risk of overfitting and maintaining model interpretability.
Notably, no hyperparameter optimisation was performed. The structure of the resulting
tree is illustrated in Figure 3.12, depicting 4 levels below the highest node. At each node,
the Gini impurity was calculated, and the corresponding class (0 or 1) was determined.
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Figure 3.12: Decision Tree model structure for a balance level of 100%.
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3.5.3 Neural Network Models

Multi-layer Perceptron

The MLP model was built using the Keras package in Python, consisting of three fully
connected layers which are also known as dense layers. The first two dense layers have
64 and 32 neurons, respectively. The layers use the ReLU activation function. To
prevent over-fitting, L2 regularisation was used with a penalty of 0,001. The Dropout
parameter of 0,5 was also used after each dense layer which aids in over-fitting. Finally,
the last dense layer contains 1 neuron using sigmoid activation, which is suitable for
binary classification in this case. The architecture for this model is shown in Figure 3.13.
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discretised_duration

status

Credit Risk

Input Layer
Hidden Layer 1

(ReLU)
Hidden Layer 2

(ReLU)
Output Layer

(Sigmoid)

... ...

Figure 3.13: MLP model architecture.

The model used the Adam and binary cross-entropy function, both frequently employed
in binary classification tasks. Validation was used in training with two main parameters
through callbacks. The first was EarlyStopping which is responsible for stopping the
training when the validation loss hasn’t improved for the specified number of epochs
to prevent over-fitting. In this case, 5 epochs were used. The second callback was
ReduceLROnPlateau which reduces the learning rate when the validation loss has not
improved for the epochs (5), aiding in model convergence. These parameters were set
as the same for all the differently balanced models.

The model is trained for up to 100 epochs and 20% of the training data was used for
validation. However, the model stops training at 20 epochs. The accuracy and loss was
plotted for the baseline model to visualise the training process. These plots are provided
in Figure 3.14 and Figure 3.15. For the accuracy plot, the goal is to observe an upward
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trend in both the validation and training lines as epochs progress. This indicates that
the model performs effectively not only on the training dataset but also on unseen or
validation data.
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Figure 3.14: MLP model accuracy for the baseline model.

The loss plot in Figure 3.15 illustrates the loss metric, which quantifies how closely the
model’s predictions align with the actual outcomes. Lower values indicate less error.
The aim for this plot is to see the validation and training lines decreasing with the
epochs, indicating that the model is learning and improving. Additionally, a converging
trend between the training an validation lines is desirable which suggests that the model
is not over-fitting. Over-fitting is indicated by an decreasing training loss while the
validation loss begins to increase or ceases to decrease.
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Figure 3.15: MLP model loss for the baseline model.

RBFNN

The RBFNN model contains only three layers. The second layer, called the RBF layer,
calculates the distance of the input data from points called centres and applies an
exponential function based on these distances. There are two main parameters in the
RBF layer which are units and gamma. Units refer to the number of centres the RBF
layer will use. The centres can be thought of as reference points against which the
distances of the input data are measured. Gamma is a scaling factor for distances. A
higher gamma value indicates increased sensitivity of the RBF layer to small changes in
distance. The output layer consists of a dense layer with a sigmoid activation function.

Since there is no pre-defined model in Python for the RBFNN, a custom RBFNN model
was created. Before training the model, a k-means clustering was used to find the initial
centres. This step is carried out to establish an initial reference point for the RBF layer,
which is determined by classifying the input data. This is then provided to the model
as a starting point for training.

The model architecture is provided in Figure 3.16.
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Figure 3.16: RBFNN model architecture.

Hyperparameter Tuning

In this procedure, the objective is to identify the optimal or most effective combination
of center points and gamma values. Cross-validation was employed to ascertain these
combinations. Cross-validation entails partitioning the training data into multiple sub-
sets, with the model being trained on some of these subsets and tested on the remaining
ones. This process is iterated several times, typically 5 times in this instance, to ensure
dependable results. The combination offering the highest average accuracy across all
splits is selected as the best choice. The highest average accuracy was 72% giving the
best number of centres of 15 with a gamma of 0,1.
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Chapter 4

Results and Discussion

This chapter will discuss the assessment of various models and balancing levels following
predictions made using the test dataset. The test dataset comprised 136 instances of
good risk and 64 instances of bad risk. The baseline model is defined as having fully
balanced training data, with a 100% balance. It is important to note that the evaluation
metrics employ a weighted average approach for precision, recall, and F1 score. When
comparing models against each other on an imbalanced dataset, the weighted average
of these metrics is typically preferred. This method offers a more realistic assessment
of the model’s performance by considering the imbalanced nature of the dataset.

4.1 Evaluation Metrics

Table 4.1: Evaluation metrics for the different balanced Logistic Regression models.

Balanced Model Precision Recall F1 Score Jaccard Index Accuracy AUC Log Loss

50% 0,77 0,78 0,77 0,73 0,78 0,71 7,93

60% 0,79 0,79 0,79 0,74 0,79 0,75 7,57

70% 0,79 0,79 0,79 0,74 0,79 0,75 7,57

80% 0,78 0,79 0,78 0,74 0,79 0,73 7,75

90% 0,77 0,78 0,77 0,73 0,78 0,72 7,93

100% 0,77 0,78 0,77 0,73 0,78 0,72 7,93

Referring to Table 4.1, both precision and recall appear to be relatively stable across
the various levels of dataset balancing, ranging from 0,77 to 0,79. This suggests that
the Logistic Regression model’s ability to correctly predict positive cases (precision)
and its ability to find all positive observations (recall) is not highly sensitive to the
degree of imbalance in the dataset. The F1 scores also remain fairly stable with slight
variations, inhibiting a similar pattern as precision and recall. The highest F1 scores
are seen at 60% and 70% balance, indicating that these levels may offer a good trade-off
between precision and recall. The Jaccard Index scores, which indicate a measure of
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the similarity between the predicted and actual positive observations, are also stable
across the different levels of balance, with a slight decrease as the dataset becomes
fully balanced. This may suggest that as the balance increases, the model does not
necessarily improve in distinguishing the positive class. The accuracy improves slightly
from 50% to 60% and remains constant up to 80% before decreasing slightly. This
indicates that for the Logistic Regression model, moderate balance may contribute to
the overall accuracy without a clear benefit from a fully balanced model. The AUC
score, indicative of the model’s capability to differentiate between positive and negative
classes, is the highest at 60% and 70% balance. This suggests that these levels of balance
improve the model’s discrimination capability, while balancing fully to 100% does not
improve and may slightly diminish capability. The log loss, which measures the error of
the probability estimates by the model, is the lowest at 60% and 70% balance, indicating
that these models are more confident in their probability estimates. The increase in log
loss at higher levels of balance suggests that the model’s confidence in its probability
estimates decreases as the dataset becomes fully balanced.

Table 4.2: Evaluation metrics for the different balanced k-NN models.

Balanced Model Precision Recall F1 Score Jaccard Index Accuracy AUC

50% 0,75 0,76 0,75 0,70 0,76 0,72

60% 0,74 0,73 0,74 0,67 0,74 0,71

70% 0,74 0,72 0,73 0,65 0,73 0,71

80% 0,75 0,73 0,74 0,65 0,73 0,72

90% 0,75 0,72 0,73 0,63 0,72 0,72

100% 0,76 0,71 0,72 0,62 0,72 0,73

For the k-NN model from Table 4.2, the precision slightly decreases from 50% to full
balance, suggesting that a perfectly balanced dataset does not improve the model’s abil-
ity to predict positive instances correctly. The recall also declines as the model balance
increases, indicating that the model becomes less capable of identifying all relevant in-
stances in a fully balanced dataset. The F1 score follows the trend of the precision and
recall values, diminishing with increased balance, implying that the balanced dataset
does not enhance the balance between precision and recall. The Jaccard Index decreases
with more balanced data, suggesting overlap between the model’s predictions and the
actual positive instances in a fully balanced dataset. The accuracy slightly reduces as
the dataset balance increases, with the highest accuracy at 50% balance. This may
suggest that the k-NN model is suited to slightly imbalanced datasets for this type of
scenario. The AUC also remains fairly stable across the different balance levels, with a
marginal increase at the fully balanced model. This stability implies that the model’s
capability in discriminating between good and bad risk is not heavily influenced by
dataset imbalance.
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Table 4.3: Evaluation metrics for the different balanced Decision Tree models.

Balanced Model Precision Recall F1 Score Jaccard Index Accuracy AUC

50% 0,71 0,73 0,71 0,69 0,73 0,64

60% 0,71 0,73 0,71 0,69 0,73 0,64

70% 0,75 0,69 0,70 0,59 0,69 0,71

80% 0,71 0,70 0,70 0,63 0,70 0,67

90% 0,77 0,71 0,72 0,61 0,71 0,74

100% 0,78 0,69 0,70 0,57 0,69 0,73

Referring to Table 4.3, the precision on the Decision Tree model remains stable as the
dataset is balanced from 50% to 60%, then increases at 70%, and continues to improve
as the dataset becomes fully balanced. This indicates that having a balanced dataset
enhances the model’s accuracy in predicting the positive class. The recall starts higher
at 50% and 60% at 0,73, then declines at 70%, thereafter remaining consistent from
80% to 100% balance at 0,69. The initial drop may indicate that the model’s sensitivity
to identifying all actual positives is affected when the dataset is moderately balanced.
The F1 score is stable from 50% to 60%, drops at 70% balance, then slightly improves
as the dataset becomes more balanced. This metric indicates that the balance between
precision and recall does not uniformly improve with more balanced data. The accuracy
and Jaccard Index seem to decrease with increased balance, while AUC improves, indi-
cating a complex relationship between dataset balance and model performance. These
results highlight that for Decision Tree models, a fully balanced dataset does not guar-
antee superior performance across all metrics, and that the optimal balance level might
depend on which performance metric is prioritised for the scenario.

Table 4.4: Evaluation metrics for the different balanced SVM models.

Balanced Model Precision Recall F1 Score Jaccard Index Accuracy AUC

50% 0,77 0,77 0,77 0,70 0,77 0,73

60% 0,75 0,74 0,74 0,67 0,74 0,72

70% 0,75 0,74 0,74 0,67 0,74 0,72

80% 0,76 0,74 0,75 0,67 0,75 0,73

90% 0,76 0,74 0,75 0,66 0,74 0,73

100% 0,69 0,71 0,67 0,68 0,71 0,59

Referring to Table 4.4, the performance of SVM models on the dataset demonstrates a
trend where certain metrics peak at intermediate levels of dataset balancing rather than
at full balance. Initially, with 50% balance, precision, recall, and F1 score are at their
highest (0,77), indicating a strong balance between the accuracy of positive predictions
and the model’s ability to detect all positives. As the dataset becomes more balanced
from 60% to 90%, these metrics slightly decline or remain stable (precision and F1
score at 0.75 and recall at 0,74 for 80% and 90% balance), suggesting a slight impact
of increased balance on the model’s performance. However, at full balance (100%), a
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notable drop in precision (0,69) and F1 score (0,67) is observed, along with a moderate
decrease in recall (0,71), which could indicate that the model’s ability to classify may
be compromised when the data is perfectly balanced. Interestingly, while the accuracy
remains fairly consistent, peaking at 0,77 for 50% balance and declining to 0,71 at
full balance, the AUC drastically falls to 0,59 at 100% balance. This sharp decline in
AUC implies a significant deterioration in the model’s discriminative capacity when the
dataset is fully balanced, potentially due to the SVM model’s sensitivity to the overlap
of data points near the decision boundary in a fully balanced state. Overall, while some
balancing may be beneficial, overbalancing can adversely affect SVM model’s predictive
power in this credit risk dataset.

Table 4.5: Evaluation metrics for the different balanced MLP models.

Balanced Model Precision Recall F1 Score Jaccard Index Accuracy AUC

50% 0,73 0,74 0,73 0,69 0,74 0,68

60% 0,73 0,74 0,72 0,70 0,74 0,65

70% 0,73 0,74 0,72 0,70 0,74 0,65

80% 0,71 0,73 0,71 0,69 0,73 0,64

90% 0,78 0,78 0,78 0,73 0,78 0,73

100% 0,80 0,80 0,80 0,74 0,80 0,78

For the MLP model in Table 4.5, measures such as recall, precision, and F1 score
demonstrate consistent performance at lower levels of balance (50% to 80%), with values
around 0,73 for precision and F1 score, and a slight drop in recall to 0,73 at 80%
balance. These metrics improve significantly at higher levels of balance, peaking at 0,80
for both precision and recall at full balance (100%), indicating an enhanced ability of
the model to correctly identify and predict positive instances when the dataset is fully
balanced. The Jaccard Index and accuracy follow a similar trend, showing a marked
improvement at 90% and 100% balance, with scores of 0,74 and 0,80, respectively. The
AUC increases notably from 0,68 at 50% balance to 0,78 at full balance, confirming that
the MLP model’s overall performance on predicting credit risk improves as the data
approaches full balance. These results suggest that, unlike the previous models, the
MLP benefits more distinctly from a balanced dataset, achieving its best performance
across all metrics at 100% balance, which could be due to the MLP’s ability to learn
more complex patterns when the class distribution is even.

Table 4.6: Evaluation metrics for the different balanced RBFNN models.

Balanced Model Precision Recall F1 Score Jaccard Index Accuracy AUC

50% 0,62 0,68 0,57 0,68 0,68 0,51

60% 0,62 0,68 0,57 0,68 0,68 0,51

70% 0,65 0,69 0,59 0,68 0,69 0,52

80% 0,66 0,69 0,60 0,68 0,69 0,53

90% 0,67 0,69 0,62 0,68 0,70 0,54

100% 0,72 0,73 0,69 0,70 0,73 0,61
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Referring to Table 4.6, the evaluation metrics for RBFNN models on the dataset demon-
strate a clear trend of improvement across all metrics as the level of balance in the
training data increases. Precision starts at a lower value of 0,62 for both 50% and
60% balance, then gradually increases, reaching its peak at 0,72 with a fully balanced
dataset. Similarly, recall increases marginally from 0,68 to 0,73 as the dataset balance
increases from 50% to 100%. The F1 Score, which integrates precision and recall, fol-
lows this upward trend, starting at 0,57 and growing to 0,69, indicating an enhanced
balance between precision and recall at higher levels of dataset balance. The Jaccard
Index remains constant at 0,68 until 80% balance and then slightly improves to 0,70 at
full balance. Accuracy improves consistently from 0,68 to 0,73 as the dataset balance
increases, suggesting that the model’s overall predictive performance benefits from a
more balanced dataset. The AUC shows a more pronounced increase from 0,51 to 0,61,
confirming a significant enhancement in the model’s discriminative capacity with a fully
balanced dataset. These trends indicate that the RBFNN model significantly benefits
from a balanced dataset, likely due to the enhanced generalisation ability provided by a
more uniform distribution of classes, which helps the RBFNN model to better capture
the underlying patterns in the data.

4.2 Confusion Matrices for the Models Under Study
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Figure 4.1: Confusion Matrix for the Logistic Regression baseline model.

The confusion matrix in Figure 4.1 for the Logistic Regression model on a fully balanced
credit risk dataset shows that out of the total predictions, 36 instances of ‘Bad Risk’
were correctly identified (true negatives), and 120 instances of ‘Good Risk’ were correctly
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predicted (true positives). However, there were 28 instances where ‘Bad Risk’ was incor-
rectly predicted as ‘Good Risk’ (false positives), and 16 instances where ‘Good Risk’ was
incorrectly labelled as ‘Bad Risk’ (false negatives). This gives the model a precision of
0,81 (120/(120+28)) for predicting ‘Good Risk’ and a recall of 0,88 (120/(120+16)) for
the same (note that these are not weighted averages). The ability to accurately predict
‘Good Risk’ is crucial for approving credit and minimising default risk, while correctly
identifying ‘Bad Risk’ helps in reducing the chances of extending credit to customers
who are likely to default. The relatively small count of false positives and negatives
suggests that the model is reliable, but the presence of false predictions also points to
the inherent risk and uncertainty in credit risk assessment. Hence, while the model
performs well, there is still a tangible risk of misclassification that must be accounted
for in decision-making processes.
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Figure 4.2: Confusion Matrix for the k-NN baseline model.

The confusion matrix for the k-NN model in on a balanced credit risk dataset in Fig-
ure 4.2 shows that the model correctly identified 50 ‘Bad Risk’ cases and 93 ‘Good
Risk’ cases, which are the true negatives and true positives, respectively. However, it
also misclassified 14 ‘Bad Risk’ cases as ‘Good Risk’ (false positives) and 43 ‘Good Risk’
cases as ‘Bad Risk’ (false negatives). The model has a precision of 0,87 (93/(93+14))
for ‘Good Risk’ and a recall of 0,68 (93/(93+43)) for the same. In the context of credit
risk prediction in the banking and finance industry, the ability of the k-NN model to
accurately classify ‘Bad Risk’ is vital for minimising the risk of default by identifying
potential non-payers. The high number of false negatives (43), where ‘Good Risk’ is
classified as ‘Bad Risk’, could result in a loss of business by denying credit to potentially
good customers. Conversely, the relatively smaller count of false positives (14) suggests
the model is more conservative in predicting ‘Good Risk’, which is prudent for risk
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management but could impact customer acquisition and the bank’s profitability.
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Figure 4.3: Confusion Matrix for the Decision Tree baseline model.

The confusion matrix for the Decision Tree model in Figure 4.3 reveals that the model
correctly predicted 55 instances of ‘Bad Risk’ and 83 instances of ‘Good Risk’, represent-
ing true negatives and true positives, respectively. It incorrectly classified 9 instances of
‘Bad Risk’ as ‘Good Risk’ (false positives) and 53 instances of ‘Good Risk’ as ‘Bad Risk’
(false negatives). This gives a precision of 0,90 (83/(83+9)) for ‘Good Risk’ predictions,
but the recall is lower at 0,61 (83/(83+53)) for identifying ‘Good Risk’. In the bank-
ing and finance industry, these results are significant; the high precision indicates that
when the model predicts an applicant as a ‘Good Risk’, it is very likely to be correct,
which is crucial for trust in credit approvals. However, the lower recall and substantial
number of false negatives mean that the model is conservative, potentially leading to
the rejection of creditworthy applicants, which could result in missed opportunities for
revenue.
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Figure 4.4: Confusion Matrix for the SVM baseline model.

For the Support Vector Machine (SVM) model, Figure 4.4 indicates the model has a
high ability to identify ‘Good Risk’ applicants, with 125 true positives and a low false
negative rate of 11. Conversely, the model is less proficient at identifying ‘Bad Risk’
applicants, with 47 false positives and only 17 true negatives. This results in a high
precision rate for ‘Good Risk’ (125/(125+47) = 0,73) but a lower recall (125/(125+11) =
0,92), suggesting the model is conservative when predicting ‘Good Risk’. In the context
of credit risk prediction within the banking and finance industry, the high number
of false positives for ‘Bad Risk’ is concerning as it indicates a propensity to classify
potentially defaulting applicants as creditworthy, which could lead to higher default
rates. The high recall for ‘Good Risk’ implies that the institution would likely approve
most creditworthy applicants. However, the precision imbalance between ‘Good Risk’
and ‘Bad Risk’ necessitates careful risk management strategies to mitigate potential
financial losses if this model is used.
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Figure 4.5: Confusion Matrix for the MLP baseline model.

The confusion matrix for the MLP model in Figure 4.5 indicates that the model has
correctly predicted 46 ‘Bad Risk’ and 114 ‘Good Risk’ applicants, which are true neg-
atives and true positives, respectively. However, there are 18 false positives and 22
false negatives. This results in a precision of 0,86 (114/(114+18)) for ‘Good Risk’ pre-
dictions, indicating a high likelihood that individuals labelled as ‘Good Risk’ by the
model are creditworthy. The model has a recall of 0,84 (114/(114+22)) for ‘Good Risk’,
showing it is quite proficient at identifying most of the actual ‘Good Risk’ individuals.
A high number of false positives could lead to granting credit to those likely to default,
while false negatives could mean denying loans to potential good customers, leading
to lost revenue opportunities. Hence, this MLP model’s balance between precision and
recall suggests it could be a valuable tool for credit risk evaluation, minimising potential
defaults while not excessively turning away good customers.
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Figure 4.6: Confusion Matrix for the RBFNN baseline model.

The confusion matrix for the RBFNN model in Figure 4.6 indicates only 20 true neg-
atives, and 123 true positives. The model produced 44 false positives and 13 false
negatives. This results in a precision for ‘Good Risk’ of 0,74 (123/(123+44)) and a
recall for ‘Good Risk’ of 0,90 (123/(123+13)). This suggests that while the model is
fairly accurate, there may still be a considerable portion of ‘Bad Risk’ applicants being
incorrectly classified as ‘Good Risk’. The recall for ‘Good Risk’ is high at approxi-
mately 0,90, indicating the model’s strength in identifying the majority of ‘Good Risk’
applicants.
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4.3 AUC-ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Line of no Discrimination
Logistic Regression (AUC = 0.71)
KNN (AUC = 0.72)
SVM (AUC = 0.73)
Decision Tree (AUC = 0.64)
MLP (AUC = 0.68)
RBFNN (AUC = 0.53)

Figure 4.7: AUC-ROC curve for the various models at a 50% balance level.

The AUC-ROC curves in Figure 4.7 showcase how the various models perform on a
credit risk dataset that is balanced at 50%, where the true positive rate (sensitivity)
is plotted against the false positive rate (1− specificity) at different threshold values.
Recall that the AUC quantifies the overall ability of the model to discriminate between
the positive (‘Good Risk’) and negative (‘Bad Risk’) classes.

The Logistic Regression model (AUC = 0.71) and the SVM model (AUC = 0.73) ex-
hibit curves positioned nearer to the top-left corner. This suggests that they strike a
better balance between sensitivity and specificity, implying a more robust capability to
distinguish between the two classes. The k-NN model’s curve (AUC = 0,72) is slightly
below these two, suggesting a slightly lower but comparable discriminative performance.

In contrast, the Decision Tree model’s curve (AUC = 0,64) and the MLP model’s curve
(AUC = 0,68) are further from the top-left corner, which implies a weaker performance
in distinguishing between good and bad risks. The RBFNN model, with an AUC of
0.53, shows only slight improvement compared to random chance. This is evident from
its curve closely tracking the diagonal line of no discrimination (AUC = 0.5), which
signifies a model incapable of distinguishing between the two classes effectively.
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Figure 4.8: AUC-ROC curve for the various models at a 60% balance level.

The AUC-ROC curves for the various models at a 60% balance level is provided in
Figure 4.8. The Logistic Regression model achieves the highest AUC of 0,74, indicating
a strong ability to discriminate between the two classes. This is followed closely by
the SVM model with an AUC of 0,72 and the k-NN model with an AUC of 0,71, both
showing good discriminative performance.

The Decision Tree and MLP models have lower AUC values of 0,64 and 0,65, respec-
tively, suggesting that while they are better than random guessing (which would result
in an AUC of 0,5), they are less effective at correctly classifying risks compared to Lo-
gistic Regression, SVM, and k-NN models. The RBFNN model has the lowest AUC
of 0,54, indicating that its performance is not much better than random chance and
it struggles to distinguish between the risk classes effectively. This suggests that the
RBFNN model is highly impacted by class imbalance.

The Logistic Regression model, with its curve positioned highest towards the top-left,
suggests it would be the most effective model in this set for credit risk assessment.
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Figure 4.9: AUC-ROC curve for the various models at a 70% balance level.

The AUC-ROC curves for different models trained on a 70% balanced credit risk dataset
are provided in Figure 4.9. The Logistic Regression model outperforms others with an
AUC of 0,75, indicating a strong discriminative ability between the two classes. The
SVM model follows closely with an AUC of 0,72, and both k-NN and Decision Tree
models have an AUC of 0,71, which are respectable but slightly lower than Logistic
Regression.

The MLP model has a lower AUC of 0,65, showing less discriminative power than the
previously mentioned models. Lastly, the RBFNN model has the lowest AUC of 0,52,
suggesting its performance is only slightly better than random guessing, as depicted by
its proximity to the diagonal line of no discrimination (AUC = 0,5).
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Figure 4.10: AUC-ROC curve for the various models at an 80% balance level.

The AUC-ROC curves at an 80% balanced credit risk dataset are given in Figure 4.10.
The Logistic Regression model shows the highest AUC of 0,77, which suggests it has
the best predictive capability among the models. The SVM model follows with an
AUC of 0,73, indicating a strong ability to differentiate between the classes. The k-NN
model has an AUC of 0,72, comparable to SVM, while the Decision Tree model shows
a moderate AUC of 0,67.

The MLP model, with an AUC of 0,64, and the RBFNN model, with an AUC of 0,53, lag
behind the other models. The low AUC for the RBFNN model indicates a performance
near random chance and suggests that this model might be the least suitable for credit
risk prediction at this balance level. The position of each curve in relation to the line
of no discrimination (diagonal dotted line) and the axes, defined by the true positive
rate along the y-axis and the false positive rate along the x-axis, confirms the Logistic
Regression model as the most reliable for predicting credit risk, while the RBFNN
model is likely to be the least reliable, with the other models offering varied degrees of
effectiveness in between.
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Figure 4.11: AUC-ROC curve for the various models at a 90% balance level.

The AUC-ROC curve for various models at a 90% balance level are illustrated in Fig-
ure 4.11. The Decision Tree model exhibits the highest AUC at 0,74, indicating a strong
ability to differentiate between ‘Good Risk’ and ’Bad Risk.’ This is closely followed by
the SVM and MLP models, both with an AUC of 0,73, and the Logistic Regression and
k-NN models with an AUC of 0,72, suggesting these models have a similar capability in
distinguishing the two classes at this level of balance. The RBFNN model has a lower
AUC of 0,60, implying it is less effective in discrimination. It is worthwhile to note that
the MLP model starts to increase in disciminatory power at this balance level.
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Figure 4.12: AUC-ROC curve for the various models at a 100% balance level.

The AUC-ROC curve for different models on the fully balanced (100%) training dataset
is given in Figure 4.12. The MLP model achieves the highest AUC of 0,78, indicating
a strong capability to differentiate between ‘Good Risk’ and ‘Bad Risk’. The curve
lies further to the top-left and indicates that the model performs the best after being
trained on a fully balanced dataset. The Decision Tree and k-NN models are also
strong performers with an AUC of 0,73, demonstrating good classification effectiveness.
Logistic Regression follows with an AUC of 0,72, suggesting slightly less discriminative
power than the Decision Tree and k-NN but still a robust model.

The SVM model, however, has a notably lower AUC of 0,59, indicating a poorer perfor-
mance in distinguishing between the risk categories. The RBFNN model has an AUC
of 0,61, which is better than the SVM model but still indicates limited discriminative
ability. Throughout all balance levels, the RBFNN model performed the worst.

4.4 Comparative Analysis with Existing Literature

This section briefly examines how the findings of this study align with or diverge from
established literature in the area of credit risk prediction.

Chen et al. (2023) propose a selective learning framework that combines transparent
Logistic Regression with a NN to balance accuracy and interpretability in credit risk
assessment. The NN utilised in the study is a shallow model comprising only one hidden
layer with a limited number of neurons. Training is conducted using the backpropa-
gation optimisation algorithm. The empirical results show that the NN outperforms
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Logistic Regression in terms of accuracy and recall for credit risk assessment, partic-
ularly in capturing relevant default cases. The dataset used in the study contains 30
000 observations and is imbalanced, with a lower proportion of default cases. The sim-
plicity of Logistic Regression in the current research is particularly beneficial for clear,
direct insights, although it may not capture the more subtle, complex patterns present
in larger datasets. The larger scale and diversity of dataset used by the authors likely
contribute to the observed deviation in performance between the Logistic Regression
model in this research and their approach. The extensive dataset could potentially en-
compass a broader range of credit risk scenarios, thereby enabling the NN to effectively
learn and predict more complex patterns that may not be as prevalent or detectable in
a smaller dataset like the one used in this research.

Alonso and Carbo (2021) utilise a large and imbalanced dataset from a major Spanish
bank for credit default prediction. To address the imbalance, the authors apply SMOTE,
resulting in a dataset with a 25% default rate. They compare the performance of tradi-
tional Logistic Regression with more advanced machine learning models such as Lasso
penalised Logistic Regression, Random Forest, CART, XGBoost, and deep NNs. The
results indicate that the advanced machine learning models, particularly XGBoost and
Random Forest, outperform Logistic Regression in terms of classification and calibration
for credit default prediction. While Logistic Regression and Lasso models exhibit lower
false positive rates, the superior true positive rates of the advanced machine learning
models offset these differences. The deep NN model did not outperform the Logistic
Regression model by a significant amount with an AUC of 0,79 for Logistic Regression
and 0,80 for the deep NN. This aligns with the results on a fully balanced dataset in
this research, however, for the imbalanced datasets, the MLP and RBFNN models un-
derperform. This again suggests that the dataset may be too small for the NN models
to capture complexities.

Chen and Ma (2022) focuses on enhancing an SVM model for predicting credit market
risk. They use the SMOTE technique for dataset balancing and optimised the SVM’s pa-
rameters with the Fruit Fly Optimization Algorithm (FOA). The model demonstrates
superior performance, particularly in stability and generalisation, compared to other
models enhanced with FOA-SMOTE. The SVM model used by the authors and the
SVM model in this research differ primarily in optimisation techniques and dataset
performance. The model in this research employs GridSearchCV for optimising pa-
rameters like ‘C’, ‘kernel’, and ‘gamma’, and defaulted to the ‘rbf’ kernel. This led to
good performance at higher balance levels but a dip in fully balanced datasets. These
methodological differences, including kernel choice and parameter optimisation strate-
gies, could account for the variations in performance between the two models.
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Chapter 5

Conclusions and
Recommendations

This chapter concludes the findings of the study and provides recommendations for
future research.

5.1 Conclusions

Credit risk assessment is a crucial aspect in commercial banking and finance, where
institutions face substantial financial risks while evaluating the creditworthiness of cus-
tomers seeking credit. Various factors like employment status, credit history, income,
and duration of employment play a significant role in determining the likelihood of a cus-
tomer defaulting on credit repayments. In a high-volume operational context, analysing
these factors is not only expensive but also time-intensive. Quantitative learning mod-
els enable these institutions to perform efficient, cost-effective, and accurate credit as-
sessments using a range of statistical and machine learning algorithms. Despite their
effectiveness, certain machine learning models pose challenges due to their computa-
tional intensity and complexity. On the other hand, statistical learning models, though
less resource-intensive, can potentially offer comparable performance. This research un-
dertook a thorough analytical comparison of six distinct models: the statistical model
of Logistic Regression, machine learning models including k-NN, Decision Trees, and
SVM, alongside NN models such as MLP and RBFNN. The aim was to explore whether
statistical learning models can match or even surpass the performance of machine learn-
ing models in credit risk assessment using a real-world dataset while also considering
data imbalance.

The comparative analysis of various predictive models on a credit risk dataset at differ-
ent levels of class balance reveals that no single model consistently outperforms others
across all balance levels. However, certain trends can be observed which are highlighted
below.
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The Logistic Regression model shows strong and stable performance across different
balance levels, with AUC values reflecting good discriminative power. It demonstrates
robustness and reliability as a baseline model for credit risk assessment.

The k-NN model performs well, particularly at moderate balance levels, but does not
exhibit the highest discriminative ability at any specific balance level. Its performance
is competitive, yet it is overshadowed by other models depending on the balance of the
dataset.

The SVM model generally shows good performance, especially at higher balance levels.
However, it does exhibit a dip in performance at the fully balanced level, suggesting
that SVM may require careful parameter tuning or may not be as suitable for fully
balanced datasets in credit risk prediction.

The Decision Tree model, while simpler and more interpretable than other models,
shows variability in its performance, with its highest AUC at a 90% balance level. This
indicates that while Decision Trees can be effective, their performance may be sensitive
to the balance of the dataset.

The MLP model stands out with the highest AUC at a fully balanced level, suggesting
that neural network-based approaches can be very effective for credit risk assessment,
particularly when the class distribution is equal. However, its performance at other
balance levels suggests that MLP models may require a balanced dataset to perform
optimally. This model achieved the highest accuracy of 80% on a fully balanced dataset.

The RBFNN model generally under-performs compared to other models, with lower
AUC values. This suggests that RBFNN may not be the best choice for credit risk
prediction tasks, or it may require more sophisticated data pre-processing and feature
engineering to improve its performance. Additionally, this model is intricate and de-
mands greater computational resources compared to the other models.

In the banking and finance industry, where the consequences of misclassification can be
significant, the choice of model can impact both the profitability and the risk profile of
the institution. The analysis suggests that while MLP may provide the best performance
in a fully balanced scenario, Logistic Regression and SVM are strong contenders across
various levels of dataset balance, offering a more consistent performance for credit risk
assessment.

Ultimately, the selection of a predictive model for credit risk assessment should be based
on the specific requirements of the task, the available data, and the acceptable trade-off
between different types of errors. It is also crucial to consider model interpretability,
computational efficiency, and ease of integration into existing systems. In practice,
a combination of models or an ensemble approach may be employed to leverage the
strengths of different models and mitigate their weaknesses.
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5.2 Recommendations

Future research in credit risk assessment using predictive models can extend in sev-
eral directions in an attempt to enhance performance, interpretability, and integration
into financial systems. Ensemble methods should be explored in an attempt to achieve
more robust predictions by leveraging the strengths of multiple models. Enhanced
feature engineering might uncover more complex data relationships, while advanced
hyper-parameter optimisation techniques can fine-tune models for better accuracy. The
exploration of alternative balancing techniques could offer insights into handling imbal-
anced datasets more effectively.

Given the complexity of models like NNs, applying explainable AI methods would be
crucial for interpretability, especially in a heavily regulated industry like finance. Ad-
justing classification thresholds to account for the costs of misclassification in credit risk,
and validating models against data from different domains and over time, may help en-
sure robustness and generalisability. Compliance with financial regulations should be a
key consideration, ensuring models not only perform well but also align with industry
standards. Considering the operational integration of these models will ensure that they
contribute value to the existing credit risk management processes, balancing technolog-
ical advancement with practical business applications.
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