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Abstract

Recent research has highlighted the significance of accuracy and explainability of
classification models applied across various disciplines. A wide range of classification
models and combinations of models have been extensively studied to determine those
with superior performance. These studies demonstrate that models that tend to
be more accurate are also difficult to understand; there appears to be a trade-off
between accuracy and explainability. Consequently, this has led to an increased focus
on explainable artificial intelligence, a field of research concerned with explaining
model predictions.

Although explainable artificial intelligence is an area of research with growing popu-
larity in the science community, there are still limited case studies that explore its
applications in credit default risk. Credit default risk refers to the potential financial
loss or risk that is incurred by a credit provider when an obligor fails to meet their
debt obligations. To quantify, mitigate and manage the risk associated with granting
credit proactively, credit providers utilise scoring classifiers to assess the risk of credit
applicants prior to granting credit. Furthermore, credit risk providers are legally
required to explain predictions of scoring classifiers.

Popular classifiers used in credit risk include logistic regression, discriminant analysis,
decision trees, random forests, bootstrap aggregation, neural networks, support vector
machines and gradient boosting algorithms. Logistic regression and discriminant
analysis are widely adopted in the financial industry because they perform reasonably
well and are inherently interpretable. However, these approaches are giving way to
alternative approaches that offer improved accuracy in risk assessment, even though
these alternatives lack interpretability; they are less comprehensible and are often
regarded as black boxes. This lack of interpretability has resulted in a reluctance to
adopt these alternative techniques in credit granting.
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The aim of this study is to remove the aforementioned barrier of using black box
models by utilising explainable artificial intelligence methods, such as Shapley additive
explanations and local interpretable model-agnostic explanations. The study also
examines the accuracy-explainability trade-off of different classifiers by developing
and evaluating eight classification models on two publicly available credit datasets.

Eight classification models were constructed, including decision trees, logistic regres-
sion, linear discriminant analysis, support vector machines, artificial neural networks,
bootstrap aggregation, random forest, and light gradient boosting classifier. Their
performance and interpretability were assessed after training and tuning the hyper-
parameters for optimal comparison on training, testing and validation subsets of the
data. Performance accuracy was measured using the area under the curve on 30
random subsets generated from the validation data. Furthermore, the Kruskal Wallis
test and Dunn’s multi-comparison test were used to rank the predictive models by
accuracy and to determine if the differences in mean accuracy are statistically signifi-
cant. The interpretability of these classifiers was conducted for both transparent and
black box models. To achieve these ends, key preprocessing steps were developed to
reduce the complexities of local and global model interpretation. In addition, Shap-
ley additive explanations and local interpretable model-agnostic explanations were

utilised to analyse the relative importance of features and the impact on predictions.

The experiments show that the artificial neural network, ensembles and other tree-
based algorithms significantly outperform logistic regression and linear discriminant
analysis in the first case study. However, contradictory results are obtained for the
second case study, as the performance of the classifiers are relatively comparable.
This indicates that model performance depends on the data from which the models
are constructed. These two case studies show that the perceived trade-off between
accuracy and explainability does not always hold true. Furthermore, Shapley additive
explanations yielded results that are consistent with the intrinsic interpretability
results of the transparent methods. This post-hoc interpretability enables us to
understand how the predictions are made and what factors contributed to the
prediction. This is important to create a reliable and trustworthy framework that
uses black box models for credit decisions.

The research highlights the benefits of using alternative methods for credit risk
scoring, showing that the performance can vary significantly. It also demonstrates
the effectiveness of Shapley additive explanations and local interpretable model-
agnostic explanations to explain predictions of black box classifiers. However, it
identifies challenges in using the Shapley additive explanations. The mean absolute
value may be sensitive to outliers, which could have an impact on feature importance.
Therefore, further work is required to enhance the efficiency of calculating Shapley

additive explanations’ values for linear classifiers and some ensembles.
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Opsomming

Onlangse navorsing het die belangrikheid uitgelig van die akkuraatheid en verduide-
likbaarheid van klassifikasiemodelle wat dwarsoor verskeie dissiplines toegepas word.
'n Wye reeks klassifikasiemodelle en modelkombinasies is omvattend bestudeer om
daardie modelle met voortreflike prestasie te bepaal. Hierdie studies het gedemon-
streer dat modelle wat neig om meer akkuraat te wees, ook moeilik is om te verstaan;
dit kom voor of daar 'n kompromie is tussen akkuraatheid en verduidelikbaarheid. Dit
het gevolglik aanleiding gegee tot 'n verhoogde fokus op verduidelikbare kunsmatige
intelligensie, 'n navorsingsveld wat met die verduideliking van modelvoorspellings

gemoeid is.

Alhoewel verduidelikbare kunsmatige intelligensie 'n navorsingsgebied is wat besig
is om in gewildheid toe te neem binne die wetenskapgemeenskap, is daar steeds
beperkte gevallestudies wat die toepassing daarvan op kredietwanbetalingsrisiko on-
dersoek. Kredietwanbetalingsrisiko verwys na die potensiéle finansiéle verlies of risiko
waaraan 'n kredietverskaffer blootgestel word wanneer n skuldenaar in gebreke bly
om hul skuldverpligtinge na te kom. Ten einde die risiko wat met kredietverskaffing
geassosieer word proaktief te kwantifiseer, versag en bestuur, moet kredietverskaffers
kredietgraderingsklassifiseerders gebruik om die moontlike risiko te evalueer wat
kredietaansoekers inhou, voordat krediet toegestaan word. Voorts is kredietrisikover-
skaffers volgens wet verplig om die voorspellings van kredietgraderingsklasifiseerders
te verduidelik.

Gewilde klassifiseerders wat in kredietrisiko gebruik word, sluit logistieke regressie,
diskriminantanalise, besluitnemingsbome, ewekansige woude, skoenlussamevoeging,
neurale netwerke, ondersteuningsvektormasjiene en gradiéntversterkingsalgoritmes
in. Logistieke regressie en diskriminantanalise is algemeen deur die finansiéle bedryf
aanvaar aangesien hulle redelik goed presteer en inherent verduidelikbaar is. Hierdie

benaderings skep egter ruimte vir alternatiewe benaderings wat verbeterde akku-
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raatheid ten opsigte van risiko-assessering bied selfs al gaan hierdie alternatiewe
benaderings mank aan interpreteerbaarheid; hulle is nie so verstaanbaar nie en word
dikwels as swartkissies (black boxes) gesien. Hierdie gebrek aan interpreteerbaarheid
het tot gevolg dat daar 'n traagheid is om hierdie alternatiewe kredietverleningsteg-

nieke aan te neem.

Hierdie studie het ten doel om die voorafgenoemde versperring tot die gebruik
van swartkissiemodelle te verwyder deur verduidelikbare kunsmatige intelligen-
siemetodes soos Shapely se additiewe verduidelikings en plaaslike interpreteerbare
model-agnostiese verklarings te gebruik. Die studie ondersoek ook die akkuraatheid-
verduidelikbaarheidskompromie van verskillende klassifiseerders deur agt klassifikasie-
modelle vir twee openbaar beskikbare kredietdatastelle te ontwikkel en te evalueer.

Agt klassifikasiemodelle is saamgestel, naamlik besluitnemingsbome, logistieke re-
gressie, liniere diskriminantanalise, ondersteuningsvektormasjiene, kunsmatige neu-
rale netwerke, skoenlussamevoeging, ewekansige woud en ligte gradiéntversterk-
ingsklassifiseerder. Hul prestasie en interpreteerbaarheid is geassesseer na opleiding
en instelling van die hiperparameters vir optimale vergelyking van opleiding, toetsing
en geldigverklaring van deelversamelings van die data. Prestasie-akkuraatheid is
gemeet deur van die area onder die kurwe van 30 ewekansige deelversamelings wat
uit die geldigverklaarde data gegenereer is, gebruik te maak. Voorts is daar van
die Kruskal Wallis-toets en Dunn se multivergelykingstoets gebruik gemaak om die
voorspellingsmodelle ten opsigte van akkuraatheid te klassifiseer en te bepaal of
die verskille in gemidddelde akkuraatheid statisties beduidend is. Die interpreteer-
baarheid van hierdie klassifiseerders is vir beide deursigtige en swartkassiemodelle
uitgevoer. Om hierdie resultate te verkry, is belangrike voorverwerkingstappe on-
twikkel om die kompleksiteite van plaaslike sowel as globale modelinterpretasie
te verminder. Daarbenewens is Shapley se additiewe verduidelikings en plaaslike
interpreteerbare model-agnostiese verduidelikings ook ingespan om die relatiewe
belangrikheid van kenmerke en die impak op voorspellings te ontleed.

Die eksperimente toon dat die kunsmatige neurale netwerk, ensembles en ander
boomgebaseerde algoritmes in die eerste gevallestudie beduidend beter as die logistieke
regressie en liniére diskriminantanalise presteer het. Die tweede gevallestudie het
egter teenstrydige resultate opgelewer. In die tweede gevallestudie is die prestasie
van die klassifiseerders relatief vergelykbaar. Dit is 'n aanduiding dat modelprestasie
afhanklik is van die data waaruit die modelle saamgestel is. Hierdie twee gevallestudies
toon dat die waargenome kompromie tussen akkuraatheid en verduidelikbaarheid
nie altyd waar is nie. Boonop het die Shapley additiewe verduidelikings resultate
opgelewer wat met die intrinsieke interpreteerbaarheidsresultate van die deursigtige
metodes ooreenstem. Hierdie post-hoc interpreteerbaarheid help ons om te verstaan
hoe die voorspellings gemaak word en watter faktore tot die voorspellings bygedra
het. Laasgenoemde is belangrik ten einde 'n betroubare en geloofwaardige raamwerk

te skep wat van swartkassiemodelle vir kredietbesluite gebruik maak.



Die navorsing beklemtoon die voordele van die gebruik van alternatiewe metodes
vir kredietrisikogradering; dit toon dat die prestasie aansienlik kan varieer. Dit
demonstreer ook die doeltreffendheid van die Shapley additiewe verduidelikings
en plaaslike interpreteerbare model-agnostiese verduidelikings in die verduideliking
van voorspellings van swartkissieklassifiseerders. Dit is egter so dat dit uitdagings
ten opsigte van die Shapley additiewe verduidelikings identifiseer. Die gemiddelde
absolute waarde mag dalk sensitief wees vir uitskieters wat 'n impak op die belan-
grikheid van kenmerke kan hé. Daarom is verdere werk nodig om die doeltreffendheid
van die berekening van Shapley se additiewe verduidelikings se waardes vir liniére

klassifiseerders en sommige ensembles te versterk.

vi



Kgutsufatso

Diphuputso tsa morao tjena di totobaditse bohlokwa ba ho nepahala le ho hlaloswa
ha mefuta ya dihlopha e sebediswang dikarolong tse fapaneng. Mefuta e mengata e
fapaneng ya dihlopha le motswako wa mefuta e nnile ya ithutwa haholo ho fumana
hore na ke efe e nang le tshebetso e phahameng. Diphuputso tsena di bontsha hore
mehlala e atisang ho nepahala haholwanyane le yona e thata ho e utlwisisa; ho
bonahala ho e na le kgwebo pakeng tsa ho nepahala le ho hlalosa. Ka lebaka leo,
sena se lebisitse tlhokomelong e eketsehileng ho bohlale bo hlakileng ba maiketsetso,
lefapha la dipatlisiso le amanang le ho hlalosa dikgakanyo tsa mohlala.

Leha bohlale ba maiketsetso bo hlaloswang e le sebaka sa dipatlisiso se ntseng se hola
setumo se ntseng se hola setjhabeng sa mahlale, ho ntse ho na le dithuto tse fokolang
tse hlahlobang tshebediso ya yona kotsing ya ho se be teng ha mekitlane. Kotsi
va ho se be teng ha mokitlane e bolela tahlehelo ya ditjhelete e ka bang teng kapa
kotsi e hlahiswang ke mofani wa mokoloto ha motho ya tlamang a hloleha ho fihlela
mekoloto ya hae. Ho lekanya, ho fokotsa le ho laola kotsi e amanang le ho fana ka
mokoloto ka potlako, bafani ba mekitlane ba sebedisa dihlopha tsa dintlha ho lekola
kotsi ya bakopi ba mekitlane pele ba fana ka mokoloto. Ho feta moo, bafani ba kotsi
ya mokoloto ba hlokwa ka molao ho hlalosa dikgakanyo tsa dihlopha tsa dintlha.

Dihlopha tse tsebahalang tse sebediswang e le kotsi ya mokoloto di kenyelletsa ho
theola maemo, hlahlobo ya kgethollo, difate tsa digeto, meru e sa rerwang, pokello
ya bootstrap, marangrang a neural, metjhini ya divector ya tshehetso le dialgorithms
tse matlafatsang. Phokotso ya dintho le hlahlobo ya kgethollo di amohelwa haholo
indastering ya ditjhelete hobane di sebetsa hantle ka mokgwa o utlwahalang mme ka
tlhaho di ka tolokwa. Leha ho le jwalo, mekgwa ena e fana ka mokgwa wa mekgwa e
meng e fanang ka ho nepahala ho ntlafetseng ha ho hlahlojwa kotsi, le hoja mekgwa
ena e meng e se na tlhaloso; ha di utlwisische mme hangata di nkwa e le mabokose a

matsho. Kgaello ena ya hlaloso e bakile ho qeagea ho sebedisa mekgwa ena e meng
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ya ho fana ka mekoloto.

Sepheo sa thuto ena ke ho tlosa mokwallo o boletsweng ka hodimo wa ho sebedisa
mehlala ya diblackbox ka ho sebedisa mekgwa e hlakileng ya bohlale ba maiketsetso,
jwalo ka dihlaloso tsa tlatsetso tsa Shapley le dihlaloso tsa sebaka sa habo bona tsa
agnostic. Boithuto bona bo boetse bo hlahloba kgwebo e nepahetseng le hlaloso e
nepahetseng ya dihlopha tse fapaneng ka ho theha le ho lekola mefuta e robedi ya
dikarolo ho didatabase tse pedi tse fumanehang phatlalatso ya tsa mekoloto.

Ho ile ha ahwa mefuta e robedi ya dikarolo, ho kenyeletswa lifate tsa ligeto, ho theoha
ha thepa, hlahlobo ya kgethollo e tshwanang, metjhini ya divector tse tshehetsang,
marangrang a maiketsetso a neural, aggregation ya bootstrap, moru o sa rerwang,
le sehlopha se matlafatsang se bobebe. Tshebetso ya bona le hlaloso ya bona di
ile tsa hlahlojwa ka mora ho kwetliswa le ho lokisa di-hyperparameters bakeng sa
papiso e nepahetseng mabapi le kwetliso, diteko le ho netefatsa dikarolwana tsa data.
Ho nepahala ha tshebetso ho ile ha lekanyetswa ho sebediswa sebaka se ka tlasa
lekgalo ho disubsets tse 30 tse sa rerwang tse hlahisitsweng ho data ya netefatso.
Ho feta moo, teko ya Kruskal Wallis le ya Dunn ya ho bapisa dintho tse ngata di
ile tsa sebediswa ho beha maemo a ponelopele ka ho nepahala le ho fumana hore
na diphapano tsa ho nepahala ha moelelo di bohlokwa ho latela dipalo. Hlaloso
ya dihlopha tsena e ile ya etswa bakeng sa mehlala ya dibox tse bonaletsang le tse
ntsho. Ho finyella diphello tsena, mehato ya bohlokwa ya ho lokisa esale pele e ile
ya ntlafatswa ho fokotsa ho rarahana ha hlaloso ya mohlala ya lehae le ya lefatshe.
Ntle le moo, dihlaloso tsa tlatsetso tsa Shapley le dihlaloso tsa sebaka sa sebaka sa
motlolo wa agnostic di ile tsa sebediswa ho sekaseka bohlokwa bo lekanyeditsweng
ba dikarolo le phello ya dikgakanyo.

Diteko di bontsha hore marangrang a maiketsetso a methapo ya kutlo, di-ensembles
le di-algorithms tse ding tse thehilweng sefateng di feta haholo ho theoha ha thepa
le hlahlobo e fapaneng ya kgethollo thutong ya pele. Leha ho le jwalo, diphetho tse
hanyetsanang di fumanwa bakeng sa thuto ya mohlala ya bobedi, kaha tshebetso
yva dihlopha di batla di bapiswa. Sena se bontsha hore tshebetso ya mohlala e
itshetlehile ka data eo mehlala e ahilweng ho yona. Dithuto tsena tse pedi tsa
dinyewe di bontsha hore phapang pakeng tsa ho nepahala le ho hlalosa ha se kamehla
e leng nnete. Ho feta moo, dihlaloso tsa tlatsetso tsa Shapley di hlahisitse ditholwana
tse tsamaellanang le sephetho sa ho toloka ha mekgwa e pepeneneng. Hlaloso ena
ya post-hoc e re thusa ho utlwisisa hore na dikgakanyo di etswa jwang le hore na
ke dintlha dife tse tlatseditseng ho bolela esale pele. Sena ke sa bohlokwa ho theha
moralo o ka tsheptjwang le o ka tsheptjwang o sebedisang mehlala ya lebokose le
letsho bakeng sa digeto tsa mokitlane.

Patlisiso e totobatsa melemo ya ho sebedisa mekgwa e meng bakeng sa dintlha
tsa kotsi ya mokoloto, e bontsha hore tshebetso e ka fapana haholo. E boetse e

bontsa katleho ya dihlaloso tsa tlatsetso ya Shapley le dihlaloso tsa sebaka seo ho ka
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tolokwang tsa mohlala-agnostic ho hlalosa dikgakanyo tsa dihlopha tsa diblackbox.
Leha ho le jwalo, e supa mathata a ho sebedisa dihlaloso tsa tlatsetso ya Shapley.
Theko ya boleng bo felletseng e kanna ya ameha ho barekisi ba kantle, e ka amang
bohlokwa ba karolo. Ka hona, mosebetsi o mong o a hlokahala ho ntlafatsa bokgoni
ba ho bala boleng ba dihlaloso tsa tlatsetso tsa Shapley bakeng sa dihlopha tsa linear
le diensembles tse ding.
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CHAPTER 1

INTRODUCTION

The field of explainable artificial intelligence (XAI) is a fast growing field of interest
in the science community. This is due to the increase in the applications of prediction
models, availability of large data as well as reported failures of complex predictive
models, which can be traced back to the lack of transparency [Biicker et al., 2022].
Traditionally, prediction models were based on domain knowledge and were easy to
understand. However, recent predictive modelling approaches have become more
complex, resulting in higher accuracy but less transparency. Thus, there is a trade-off
between the performance and explainability of prediction models. Often the terms
explainability and interpretability are used interchangeably. Interpretability refers to
the degree to which an observer can understand the cause of a decision [Miller, 2019;
Molnar, 2022]. The aim of XAI is to provide insights as to how and why complex
predictive models produce predictions [Markus et al., 2021].

XAT assists with the adoption of complex predictive models in areas such as credit
risk management, which entails the approval or rejection of credit applications. In the
context of credit risk management, these predictive models are referred to as credit
scoring classifiers. Over the last few decades, credit approval decisions progressed
from judgemental or intuitive approaches to automated scoring systems [Abdou and
Pointon, 2011]. Traditional credit scoring approaches, such as logistic regression (LR)
and linear discriminant analysis (LDA), involve the formalisation of relationships
between variables in the form of mathematical equations. Moreover, they provide
a fine balance between predictive ability and ease of interpretation. Alternative
scoring classifiers, including support vector machine (SVM)s, artificial neural network
(ANN)s, bootstrap aggregation (bagging), boosting methods and random forest
(RF), utilise algorithms that can learn from data without relying on rule-based
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programming and have shown superior performance ability. The main challenge in
utilising alternative approaches is that, despite the potential high predictive accuracy,
they often lack transparency and interpretability [FSB, 2017]. Consequently, these
methods are often referred to as black box models. This accuracy-explainability
trade-off has hindered the adoption of complex predictive models for credit scoring.
Figure 1 illustrates the trade-off between performance accuracy and explainability.

High
A
Neural networks Highly accurate models:
', (e.g., CNN, RNN - Non-linear relationships Black-box model
- Non-smooth relationships
Ensemble methods - High computation time.
+(e.g., Random forest, XGBoost)

. Kernel-based methods
> ‘@, (eg, SVM, PCA)
g e ._Decision trees
- )
=]
]
0
< Highly interpretable models:

- Linear and smooth T . :

- Well defined relationships yLinearflogistic regression

- High interpretability

- Easy to compute.

", Decision rules
Low Interpretability High

Figure 1: Accuracy-explainability trade-off (Figure 1.4 in Karim [2022]).

Figure 1 shows that complex models, which are capable of learning non-linear and
non-smooth relationships in data, exhibit higher accuracy compared to traditional
models such as decision tree (DT) and LR. However, these complex models are less
interpretable than their traditional counterparts. The aim of this dissertation is
to investigate the accuracy-explainability trade-off on credit scoring classifiers by

assessing the performance and explainability of the classifiers for two case studies.

1.1 Background and rationale

Historically, credit approval decisions were based on an expert judgement approach
that involved evaluating a customer’s creditworthiness based on the 5Cs: character
(reputation), capital (amount), capacity (earnings volatility), collateral, and condition
(economic cycle) [de Servigny and Renault, 2004]. The success of the judgemental
process is dependent on the credit analyst’s or expert’s experience and common
sense. This approach has the advantage of considering the qualitative aspects of a
customer. However, the disadvantage is the potentially subjective, inconsistent, and

biased evaluations [Abdou and Pointon, 2011].

The credit lending landscape has shifted significantly from judgemental to automated
credit scoring systems. Technological advancements resulted in the deployment and
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widespread utilisation of automated credit scoring systems, and the adoption of
statistical scoring methods to aid in credit decision making. Popular credit scoring
approaches include LDA, LR and recursive partitioning algorithm (RPA) [van Gestel
and Baesens, 2008; Thomas et al., 2002]. These are classification scoring approaches
that are used to support credit strategies and decision-making throughout the credit

life cycle, namely acquisitions or origination, account management, and collections.

The main purpose of credit scoring is to differentiate between good and bad credit
customers which has lead to improved credit processing times, reductions of process
costs, and the minimisation of errors [Abdou and Pointon, 2011]. Therefore, the
performance in terms of predictive accuracy plays a critical part in the success of
credit scoring. De Servigny and Renault [2004] argue that an optimal scoring model
must have high accuracy and feasibility. This entails low error rates resulting from

reasonable assumptions, as well as efficiency and ease of implementation.

De Servigny and Renault [2004] also state that an optimal scoring model must meet
other criteria, namely parsimony and transparency. This means using a reasonable
number of explanatory variables, along with producing explainable results. Creditors
are required to be able to explain reasons behind credit decisions [Dastile et al., 2020].
Consequently, creditors prefer to use models that are transparent and interpretable,
sometimes compromising on accuracy and performance. In addition, primary lenders
such as banks are regulated by international committees, such as the Basel Committee
on Banking Supervision (BCBS), local regulators, such as the South African Reserve
Bank (SARB) and auditors to ensure that they comply with lending regulations.
This is to prevent reckless lending, biases when lending and to manage credit risk
proactively. Decisions made using automated scoring systems must be free of biases
and in line with lending legislation and regulations.

Scoring approaches can be used to overcome issues around bias and inconsistency
when making decisions to grant credit where lending to customers remains largely
intuitive. In recent years, there has been a rapid advancement of credit scoring
classifiers that serve as alternative to conventional techniques like LR and LDA and
can be used to model complex multivariate non-linear relationships in contrast to
traditional linear techniques [van Gestel et al., 2005; Abdou and Pointon, 2011].
These alternative classifiers are deemed to be black boxes because often they are
difficult to understand (lack transparency and interpretability). The literature
on these classifiers, which include SVM, ANN, bagging, boosting methods and
RF, suggests that they outperform the traditional approaches. In addition, these
alternative classifiers are broadly categorised as neural networks, ensemble methods
and kernel-based methods as shown in Figure 1.
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1.2 Problem statement

Upon receiving applications for credit, lenders must decide whether or not to grant
credit and to which customers. The decisions are usually aided by the use of
scorecards and automated systems. Nonetheless, lenders must be able to accurately
discriminate between good and bad customers in a fair manner. Furthermore, credit
decisions must be in line with the objectives of the business, generally to minimise
risk and maximise profit or, equivalently to minimise losses [Witzany, 2017].

The likelihood of customers defaulting is estimated using a statistically sound
approach, such as a classification model. An accurate assessment of a customer’s
degree of risk or probability of default is imperative for a lender. Lenders must
determine their risk appetite or the level of risk that they are willing to accept. They
must decide whether to approve or decline credit applications depending on their
risk appetite. This research will assist with predicting of default risk and enable
explanations for predictions. The research was conducted using publicly available
data from the Kaggle and UCI machine learning online repositories.

1.3 Aims and objectives of the research

The aim of this study is to investigate the accuracy-explainability trade-off on credit
scoring classifiers.

The main objectives of this project are to:

e Explore the advantages and effectiveness of alternative approaches in the
context of credit applications, as this can improve the accuracy of predictions
to discriminate between good and bad customers. There is a large body of
literature on LR and other transparent approaches, but limited studies and

recommendations on the use of black box models.

e Analyse the challenges and limitations of using machine learning techniques to
score customers within the credit risk management framework. Many machine
learning classification models are deemed as black box models, i.e. outcomes
are not explainable. This has resulted in the reluctance to adopt and utilise
these models in practice. This study explores the use of XAl methods, such as
Shapley additive explanations (SHAP) and local interpretable model-agnostic
explanations (LIME), to explain reasons behind predictions.

The work on these aspects is currently limited. This study contributes to the ongoing
research on credit scoring approaches and their application in credit risk management,
with a view to optimise credit decisions. Furthermore, this research seeks to contribute
to a growing field of study on the transparency and explainability of such models,

especially within the highly regulated domain of credit risk management.
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1.4 Dissertation structure

This research is organised as follows: In Chapter 1, the introduction presents a brief
overview of the background, research problem and the research objectives. Chapter
2 presents the theoretical foundation on credit scoring models frequently used in
literature. The evaluation of classification models and techniques used to make
models transparent and explainable are discussed. Chapter 3 reviews the relevant
literature on the accuracy or performance of various credit scoring techniques as well
as the challenges of these approaches. A survey of related work on the transparency
and explainability of advanced classifiers is presented. Chapter 4 discusses how
the research was carried out. The computer application, the data collection and
analysis, preprocessing and model construction and approaches on explainability and
interpretability are outlined. Chapter 5 presents the results of the data wrangling,
analysis and preprocessing. Chapter 6 discusses the results achieved by this research.
Chapter 7 provides a summary of the research, stating the research contributions
and recommendations for future work.



CHAPTER 2

BACKGROUND CONCEPTS

The Board of Governors of the Federal Reserve System [2011] defines a model
as “a quantitative approach that applies mathematical, statistical, economic and
financial theories, techniques and assumptions to process input data into quantitative
estimates”. Credit scoring involves constructing models that can be used to estimate
the default risk associated with credit applicants. The estimated risk is then used
to develop credit strategies, such as deciding whether to accept, decline or refer a
credit application. These decisions have an impact on the profitability of financial
institutions [Thomas et al., 2002; Abdou and Pointon, 2011].

This chapter briefly presents the theoretical foundation of credit scoring classifiers
and the explainability of these classifiers. Several classification models commonly
used for credit scoring, including DTs, LR, LDA, SVM, ANN, bagging, boosting and
RF are presented. Furthermore, the techniques used to understand the behaviour of
these classification models are explained. The field of study that deals with explaining
and interpreting the behaviour of classification models is referred to as XAl

2.1 Credit scoring classifiers

Extensive research has been conducted on individual classification models, such as LR,
LDA, DT based algorithms, SVM, ANN, as well as multiple classifier system (MCS)s
to predict the risk of default. LR and LDA are the most widely used classification
models in credit risk management due to their interpretability (the level to which one
can understand the reasons behind predictions) [Dastile et al., 2020]. However, these

models require the formalisation of relationships between features and a dependent
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variable in the form of a mathematical formula. Alternative approaches, such as
the SVM, ANN and some ensemble systems, employ algorithms that can identify
complex patterns in large volumes of data and learn from data without relying on
rule-based programming [Dangeti, 2017; FSB, 2017]. These alternative approaches
tend to be more accurate in predicting the risk of default. However, they are often
difficult to explain [Kollar et al., 2015; Dastile et al., 2020].

2.1.1 Decision trees

A DT is a machine learning algorithm that entails recursively partitioning a data
space and fitting a prediction model within each partition. Given a dataset D, with
a subspace or feature space of n predictor variables, i.e., x = (z1,Z2,...x,) and a
dichotomous class variable y € {0,1}, the DT involves partitioning the feature space
X, one feature at a time, into a finite number of disjoint subsets until a class can be
predicted [Loh, 2011].

A DT is commonly depicted as a tree-like structure providing a hierarchical repre-
sentation of the feature space and the relationships among the data. A DT is made
up of a root node which represents the entire population, branches or subtrees which
represent the decisions and leaf nodes which are terminal nodes, i.e., subsets that
are usually not partitioned further due a stopping criteria, for example, a specified
maximum depth of the tree.

A number of methods, known as measures of impurity, which include the Kolmogorov-
Smirnov statistic, the Gini index, entropy index or the chi-square statistic can be
used to partition or split the subspace [Witzany, 2017]. These measures provide a
measure of the good and bad populations in a partition Aj;, in each node or leaf in
the tree diagram. The measures that are commonly used in literature are the entropy
and Gini index, also referred to as the Gini impurity. However, the best measure
of node impurity usually depends on the data set [Brown and Myles, 2013]. The
process of splitting or partitioning is recursive and stops when a particular stopping

condition is reached.

2.1.2 Logistic regression

A LR model is a parametric statistical technique, developed to discriminate between
two or more groups. It uses a mathematical function to determine the relationship
between a dependent variable and one or more independent variables.

Consider a dichotomous response variable y € {0, 1} associated with a collection of
n independent features denoted by the vector x = (1,29, ... x,), for each member
in a dataset D. Let m(x) be the posterior probability P(y = 1|z1, xs, ... z,), for each
member. Assume that the posterior probability is governed by a logistic or sigmoid
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function where the input is a linear combination of features x; for v =1,2,...,n, i.e.,

ePotPrzit+Brzn

7T(X - 14+ eBotBrzit+PBrn (1)

The logistic function, which restricts the outcome to the interval [0, 1], is a bounding
function. The name LR is derived from the bounding logistic function utilised. It
can be deduced from Equation 1 that

log <ﬂ> = Bo + Biw1 + - - + BTy, (2)
1 —m(x)

where 0, f1, ..., 8, € R. The parameters 3;, where ¢ = 0,1,...n, are determined

using the maximum likelihood estimation and are obtained by fitting Equation 2 to

the data. Stochastic average gradient descent (SAGA), Newton method (newton-

cg), library for large linear classification (Liblinear) and limited-memory Broy-

den-Fletcher-Goldfarb-Shanno (LBFGS) can be used to estimate these parameters.

2.1.3 Discriminant analysis

Discriminant analysis is a parametric statistical technique, developed to discriminate
between two groups. There are different approaches leading to the formulation of
the LDA and quadratic discriminant analysis (QDA). These approaches include, the
decision theory or probabilistic approach, separating the two groups approach or
Fischer’s interpretation, and the linear regression approach. This section presents an
outline of the decision theory approach described by Thomas et al. [2002] and James
et al. [2013].

Consider a dichotomous response variable y € {0, 1} associated with a collection of
n independent variables denoted by the vector x = (x1, z3, ... x,) for each member
in a dataset D. Each class y € {0, 1} is assigned a prior probability m, = %, where
N, is the number observations in class y and N is the total number of observations.
According to Bayes’ rule the posterior probability is

fy(X)my

Pk =1 % om

(3)

wheref, (x) is the density of x given y. Assume that f,(x) is a multivariate Gaussian
density function

1) = e (g ) S ) ) )

where n is the dimension of x, 3, is the covariance matrix and g, is the mean vector.

The LDA function is obtained by assuming »; = ¥y = ¥ and solving for the decision
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boundary P(y = 1|x) = P(y = 0]x).

The discriminant equation is of the form x” M+ C which is a linear function. However,
the general form is a quadratic function of the form x” Ax+B7x 4 C. The quadratic
form is obtained when ¥; # ¥3. Furthermore, when employing multiple discriminant

functions, the technique is referred to as multiple discriminant analysis (MDA).

2.1.4 Support vector machines

An SVM is a machine learning technique commonly used in classification problems.
It aims to find an optimal hyperplane with a maximum margin, to discriminate
between two classes [Goh and Lee, 2019]. The hyperplane is a function that separates
different classes. The distance between support vector points and the hyperplane is
called the margin. Fitting an SVM to discriminate between classes requires finding
the solution to the following optimisation problem:

L 1 2
Minimize  $(w,b) = 5 || w | +C’Zei (5)
subject to (W x+b)>1—¢, i=1,2 ...,n (6)

where w represents the margin, b is the bias term, C' is the penalty hyperparameter
and ¢; is the slack variable introduced to account for misclassification. The global
maximum of the quadratic function can be determined by utilising the Lagrange
function. However, when there is no feasible solution, radial basis function (RBF),
or polynomial kernels functions are applied to modify the SVM formulation for
nonlinear classification [Goh and Lee, 2019; Dangeti, 2017].

2.1.5 Artificial neural networks

An ANN is a machine learning process inspired by biological neural network systems.
Biological neural networks comprise neurons which are responsible for receiving
information or signals from the internal and external environment. These signals
are processed and transmitted to other neurons and to effector organs. Similarly,
artificial neural networks receive information or signals in the form of vector inputs
X = (21,9, ...2,), where x is a subspace of features of a dataset. Each input feature
is associated with a weight and transformed by an artificial neuron made up of a
net input function, also referred to as a combination function, and an activation
function. Each artificial neuron can connect to another, i.e.; contain multiple hidden
layers and finally produce an output as depicted in Figure 2.

A single-layer neural network consists of only one hidden layer and is expressed
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Figure 2: A single-layer neural network classification model.

mathematically as

up = zn:wk,xz (7)
y = f(ug) (8)

where wy; are the weights. Positive weights are called excitory and they increase
the value of the net input function uy. Negative weights are called inhibitor and
they reduce the value of ux. The net input function need not be a linear function,
however the linear form is commonly used in literature and application. £ indicates
the neuron to which the weight applies and i indicates the variable. Furthermore,
xo is the bias term as shown in Figure 2 [Thomas et al., 2002]. The activation
function f restricts the value generated by the net input function to an interval,
often [0,1] or [—1,1]. Various activation functions are used in the application of
neural networks, including the hyperbolic tangent function, logistic function and
rectified linear activation function. Furthermore, the gradient descent algorithm is
commonly applied to model training to minimise the error in prediction.

2.1.6 Bootstrap aggregation

Bagging is an ensemble method that converts a series of weak or base classifiers into
a single strong classifier. A weak classifier, or learner, is a classifier that performs
better than random guessing. These weak classifiers are trained on bootstrapped
samples generated from the entire training dataset. Additionally, the strong classifier
is constructed by aggregating the predictions of the weak classifiers using a voting
system. Bagging has the potential to reduce the variance in the final model [Dangeti,
2017]. The bagging algorithm described by Wang et al. [2011] is as follows:

Given a training set D and a base learner h(z;), then for t = 1,2,... T iterations:

10
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1. Generate a subspace or bootstrap sample D; from D.
2. Fit a learner H; to each D;.
The final hypothesis is of the form
T

H(zr) = argmax A I(y = hy(z))

Yy

where I(y = hy(x)) =1 when y = Hy(x), otherwise I(y = hy(z)) = 0.

The bagging method used in this study uses LR as base classifiers and is referred to
as bagged LR.

2.1.7 Random forests

Closely related to bagging is the RF algorithm which integrates the concept of
generating random subspaces (feature subset) and bagging [Nisbet et al., 2009]. In
bagging, all the input features are used for each sample, whereas in a RF, a subset
of features is selected in addition to the bootstrap samples [Trivedi, 2020]. The RF
algorithm described by Han et al. [2020] is as follows:

Given a training set D with n features and T classifiers:
Fort=1,2,...,T
1. Generate a subspace D; from D.

2. Fit a tree using a subset of random features from D;.

For a given node:
(a) Randomly select m ~ y/n or m ~ n/3.
(b) Find the best split features and cutpoints using the feature subset.

(c) Send down the data using (b).
Repeat (a) - (¢) until terminating conditions are met.

3. Develop trained models C}.

Use simple majority voting to fuse the 7" trained models.

2.1.8 Boosting

Boosting is an ensemble technique that converts a series of weak classifiers, also
referred to as weak or base learners, to a strong classifier. A weak learner is a
classifier that performs better than random guessing. The fundamental assumption
of boosting is that a weak learner produces a weak hypothesis that is better than
random guessing. This is known as the weak learning assumption [Schapire and

Freund, 2012]. The weak learners in boosting are trained sequentially on modified

11
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versions of the data, whereas in bagging they are trained in parallel. Moreover
boosting does not involve bootstrap sampling, unlike bagging. The learners are then
aggregated to create a strong classifier [Dangeti, 2017].

Boosting entails generating a series of classifiers repetitively. At each iteration,
a base classifier is trained on a different subset of the training set based on an
iteratively computed distribution or weighting over the sample of the training set.
Furthermore, a higher weighting is placed on the misclassified observations. The
final classifier is determined by computing the weighted average of the preceding
classifiers [Theodoridis and Koutroumbas, 2009].

Boosting refers to a family of algorithms, which include adaptive boosting (adaboost),
gradient boosting (ghoost) and extreme gradient boosting (XGBoost). The adaboost
algorithm was formulated by Freund and Schapire [1997]. Friedman [2001] developed
the regression and classification ghoost algorithms.

The ghoost classification algorithm described in Friedman [2001] and Natekin and
Knoll [2013] is as follows:

Consider a training set {(z1,%1), ..., (Zn,yn)} as input, where z; belongs to some
feature space X™ and y; is a response variable. A differentiable function L(y;,~) that
will be used to evaluate how well the algorithm models the training set is defined.
The function L(y;, F'(x;)) is referred to as the loss function. There is a wide range of
loss functions that have been developed, the choice of which depends on the response
variable y;. The most frequently used loss functions for classification, i.e., when y; is
a categorical response variable, include the Binomial loss function and the Adaboost
loss function. A base-learner h(z;) and the maximum number of iterations 7" are
then defined.

Fort=1,2,...,T

1. Initialise model with a constant value: Fy(z) = argmin ;| L(y;, 7).
v

2. Compute the pseudo-residuals or negative gradients g;(z;).
3. Fit a new weak learner h;(z).
4. Compute the multiplier or the best gradient step-size:
v = argminz L(y;, oo () + v - he(zy)).
v i=1
5. Update the model: Fi(z;) = Fy_1(x;) + 7 - he(z5).

The most used base learners can be categorised into three model classes, namely
linear models, smooth models and decision trees. In addition, a combination of
different base learners can be used [Natekin and Knoll, 2013].
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There are variants of ghoost algorithms such as XGBoost, light gradient boosting
machines (LGBM) and CatBoost which are improvements on the original ghoost
algorithms. A popular variant is the XGBoost, in which the loss function is normalized
in order to eliminate model variances. The XGBoost algorithm reduces the likelihood
of model overfitting. Furthermore, while ghoost uses the first derivative in learning,
XGBoost improves the loss function with Taylor expansion [Chang et al., 2018].
LGBM credit scoring classifier using DT's as base classifiers is constructed and used
in this study.

2.2 Explainability of classifiers

The explainability and interpretability of classification methods can be challenging
and may be a very important aspect of model predictions. Explainability and
interpretability enable humans to understand the predictions of the models and they
encourage trust in the models. The more complex the architecture of the model, the
more difficult the explainability and justification of why a prediction was obtained.
Various approaches are utilised in attempt to understand the effects of features on
model predictions such as partial dependence plot (PDP) [Friedman, 2001}, SHAP
[Lundberg and Lee, 2017], LIME [Ribeiro et al., 2016], anchors [Ribeiro et al., 2018§],
local rule-based explanation (LORE) [Guidotti et al., 2019], influence-based local
interpretable model-agnostic explanations (ILIME) [ElShawi et al., 2019] and model-
agnostic supervised explanations (MAPLE) [Plumb et al., 2018]. These approaches
are broadly categorised as local or global methods. Local interpretation methods
explain individual predictions whereas global methods describe the average behaviour
of a machine learning model. In addition, approaches that can be used for any
classifier are said to can be model-agnostic and those that apply to specific classifiers
are said to be model-specific.

2.2.1 Intrinsic explainability

There are classification models that are considered transparent, or glass box models,
because they are inherently explainable, such as LR, LDA and DT. In the cases of
LR and LDA, the contribution of the features is provided by the model coefficients.
Additional analysis of confidence intervals and statistical significance demonstrates
the consistency and applicability of feature attributions in order to build trust in the
model prediction. A DT is also considered as an interpretable model because it can
be displayed visually as a tree diagram or partitions of the feature space, to explain
how the prediction was made. However, even DT's can be difficult to visualise and
interpret if the depth of the tree is excessively large.

13
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2.2.2 Partial dependence plots

A PDP is a global model-agnostic method that illustrates the dependence of predic-
tions on the joint values of the input features. They depict the marginal effect of one
or two features on a classification model’s predicted outcome. For a classification
problem where the model outputs probabilities, the PDP displays the probability for
a certain class given different features values. Additionally, a PDP can show whether
the target-feature relationship is linear, monotonic, or more complex [Molnar, 2022].
However, this method of interpretation is difficult to use for high dimensional feature
spaces and is therefore limited to a low number of input features. It is useful when
there is a low order of interaction between variables or when features are uncorrelated
[Friedman, 2001].

2.2.3 Local interpretable model-agnostic explanations

LIME is a local model-agnostic method, in which local surrogate models that are
considered interpretable are trained and used to approximate the predictions of
less interpretable model. LIME tries to fit a local model using sample data points
(interpretable representation) that are similar to the observations being explained.
This ensures that explanations are locally faithful, even though they may not be
faithful globally or lack global fidelity. The primary objective of LIME is to find a
model that is interpretable over the interpretable representation and that is locally
faithful to the underlying classifier [Ribeiro et al., 2016].

The optimisation problem to be solved for LIME as proposed in Ribeiro et al. [2016]
is formulated as follows: Given a classifier f and a local interpretable surrogate
model g, the problem to be solved is

{(z) = argerélin L(f,g,m) 4+ Q(9) (9)

where {(z) is the explanation, L(f,g,7,;) is a measure of how unfaithful ¢ is in
approximating f in the locality defined by =, and Q(g) is the complexity of the local
model g. L(f,g,m,) must be minimised and g must be comprehensible to ensure
both local fidelity and interpretability. This formulation can be used with different
explanation families G, loss functions L, and complexity measures €2(g).

Based on Molnar [2022], the steps for training the approximating model g are as
follows:

1. Select an instance for which an explanation of the black box prediction is
needed.

2. Generate new weighted samples, based on their distances from to the selected

mstance.
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2.2. Explainability of classifiers

3. Perturb the new dataset and obtain the predictions of the black box model for
these new points.

4. Train a local, interpretable model on the weighted dataset.
5. Use the trained local model to generate explanations for the prediction.

An advantage of LIME is that it can be used to explain any classification model
because it does not depend on the original classifier or algorithm used. However,
one of the drawbacks of LIME is that it is sensitive to the accuracy of the surrogate
model. Gramegna and Giudici [2021] state the importance of explainability in the
context of credit risk. It will promote the use of black box models and be used to
address ethical and regulatory concerns. Furthermore, they state that LIME is one
of the widely recognised and state-of-the-art frameworks in XAl. Given the wide
acceptance of this approach, it is used in this study to explain the prediction of the

LGBM at a local instance level.

2.2.4 Shapley additive explanations

The SHAP framework, proposed by Lundberg and Lee [2017], is a technique used to
explain the outputs of any classification model. It was derived from Shapley values,
which are used in game theory to equitably share the gains among players when
their contributions are unequal in a coalitional game setting. According to Molnar
[2022], an explanation can be obtained by treating each feature value as a player
in a game and viewing a prediction as the payout. The underlying assumption of
Shapley values is that the features collaborate to influence the model’s prediction.

Lundberg and Lee [2017] point out that Shapely values satisfy the following three

properties:

1. Local accuracy: ensures that the output of the explanation model matches
the output of the original model for a specific input.

2. Missingness: features that are not part of the prediction of an instance will
have a Shapley feature importance values of zero, indicating that they have no

impact on the explanation.

3. Consistency: if the contribution of a feature x is greater in a model A than
model B, then the Shapley feature importance value of x will be higher in A
than B. This property also means that, if the impact of x increases in a model,

the Shapley feature importance value will also increase.

Furthermore, SHAP can be used as a local model-agnostic method. It is considered
to be more robust than LIME, because unlike LIME, it fairly distributes the contri-
butions of features over all subsets of features. SHAP is used for feature attribution

and to understand the relationship of the features and predictions.
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2.3. Performance evaluation metrics

2.3 Performance evaluation metrics

Several metrics are used in the literature to evaluate the performance of classification
models and the most common are the percentage correctly classified (PCC) metrics,
area under the curve (AUC) and Gini coefficient. These metrics are used to evaluate
the discriminatory and predictive power of the models. Statistical tests, like t-tests,
ANOVA, Kruskal Wallis and Dunn’s multi-comparison test, are used to compare the
performance of different classification models.

2.3.1 Percentage correctly classified

The PCC metrics are a group of ratios calculated from predicted positive and negative
outcomes compared to actual positive and negative outcomes. A positive outcome is
one in which an event occurs and a negative outcome is one in which an event does
not occur. In credit scoring a positive outcome is one in which a customer defaults
and a negative outcome is one in which the customer does not default.

True positives (TP) are the number of cases where the predicted outcomes and
actual outcomes are positive. True negatives (TN) are the number of cases where the
predicted outcomes are negative and actual outcomes are negative. False positives
(F'P), also referred to as type I error, are when the predicted outcomes are positive,
but the actual outcomes are negative. False negatives (FN) or type II error are the
total instances where the predicted outcomes are negative, but the actual outcomes

are positive.

The main three PCC measures used to evaluate a binary classifier include accuracy,

precision and recall. The PCC metrics are defined mathematically as follows:

The accuracy measures the proportion of outcomes that were predicted correctly

TP+ TN
('P+FP+FN+TN)

accuracy = (10)

The precision is a measure of the fraction of true positive predictions relative to the

total predicted positive outcomes

TP 1
TP+ FP) (1)

precision =

The recall, also referred to as sensitivity or true positive rate, is a measure of the

fraction of true positives relative to the total actual positive outcomes

TP
n=_ - 12
= TP L EN) (12)

The F-measure (or Fl-score) is the harmonic mean of the precision and recall.
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This measure is interpreted in the same way as the average accuracy, however it is
commonly used when the data is imbalanced or skewed

precision X recall

(13)

F-measure = 2 - — .
precision + recall

2.3.2 Area under the receiver operating characteristic curve

The AUC statistic is derived from two measures, namely, sensitivity (Equation 12)
and specificity. The specificity (true negative rate) measures the fraction of negatives

that are correctly classified relative to actual negatives

TN

—_— 14
TN+ FP (14)

specificity =
The AUC is used to measure the performance of a classification model at various
thresholds. It is a measure of separability for a binary classification model. An AUC
value close to 1 indicates that the model has a good measure of separability and a
value of 0.5 indicates that the model has no separating power. A value of 0 indicates
that the model is reciprocating the outcomes, i.e. defaults and non-defaults are
misclassified.

Figure 3 is a graphical representation of the AUC. The receiver operating characteris-
tic (ROC) curve is a probability curve and is obtained by plotting the 1— specificity
(false positive rate) on the z-axis against the sensitivity on the y-axis. The AUC is
the area under the ROC curve.

Receiver operating

0% characteristic curve

0.6

0.4

True positive rate

Area under the receiver

operating characteristic
curve

0 0.2 0.4 0.6 0.8 1

False positive rate

Figure 3: Area under receiver operating characteristic curve

2.3.3 Multiple comparisons tests of mean accuracy

Multiple comparisons of means tests provide a way to determine if the means of
the predictive accuracy of each classifier are statistically different. The statistical
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significance of the means can be assessed using either a set of confidence intervals or a
set of hypothesis tests. In order to achieve this ANOVA tests can be conducted. This
test is used if three assumptions about the means holds. Firstly, ANOVA assumes that
the residuals are normally distributed. Secondly, ANOVA assumes homogeneity of
variances, which means that the variance among the groups should be approximately
equal. Thirdly, ANOVA assumes that the observations are independent of each other.
If the assumptions do not hold, non-parametric tests can be used. In this study,
non-parametric tests, such as the Kruskal Wallis test together with the Dunn multi-
comparison tests are used to determine the statistical significance of the differences

in mean accuracy of classifiers.

2.4 Summary

In this chapter, classification methods that are commonly used in literature on credit
scoring classifiers are presented. These methods are often categorised as transparent
or non-transparent. Transparent means that the predictions are explainable and
can be understood by humans. Various methods, such as PDP, LIME and SHAP
are proposed in the literature in an attempt to explain the predictions of non-
transparent methods. The ability to understand and explain model inputs and
outputs is important for credit providers to meet regulatory requirements, therefore
XAl is a crucial field for credit risk management. Different classification methods
perform differently. Some methods are more accurate or more efficient than others.
The metrics used to measure the performance are explained, this includes PCC
metrics, AUC as well as tests to assess if the means of the predictive accuracy of each
classification model are different. A detailed literature review on the performance
of the different classification models and explainability approaches are explained in
Chapter 3. The methodology, data analysis and results of the study are presented in
Chapters 4, 5 and 6, respectively.
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CHAPTER 3

LITERATURE REVIEW

The literature on credit scoring classifiers indicates that different types of classifiers
yield varying levels of performance. Several studies show that transparent models such
as LR and DT are often outperformed by alternative approaches. These alternative
approaches appear to be more accurate in predicting default risk than transparent
models. However, the drawback of adopting these alternative models is their lack of
explainability and they fail to meet regulatory requirements. Seemingly, there is a

trade-off between accuracy and explainability of classification models.

This chapter provides a literature review of classification models frequently employed
in credit scoring research. The research findings of various individuals models are
reviewed, followed by studies on combinations of modelling approaches. Additionally,
limitations and challenges associated with certain methods are examined. The
approaches for improving the explainability of these methods are explored.

3.1 Performance of classification models

The most common and utilised classification models in credit scoring are LR and
LDA. Despite the common use, there is criticism against the use of LDA in credit
scoring. Several researchers caution against the use of inaccurate prior probabilities,
linear functions instead of quadratic functions and potential classification errors
[Abdou and Pointon, 2011]. Furthermore, Wang et al. [2011] indicate that techniques
like LDA assume that the independent variables conform to a multivariate normal
distribution, and this assumption is often not satisfied in practice, rendering these
techniques invalid for finite samples. Additionally, Thomas [2000] asserts that LDA
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3.1. Performance of classification models

and LR assume that the variables have a linear relationship, whereas this relationship

is non-linear in general, leading to inaccuracies.

A wide range of techniques, which can be used for scoring, have been studied to
ascertain their relative performance over the past two decades. A review by Alaka
et al. [2018] explores how MDA, LR, ANN, SVM, rough sets, case based reasoning,
DT, and genetic algorithm (GA)s applied to bankruptcy prediction perform when
assessed on thirteen criteria. The criteria are broadly classified into three categories:
results related criteria, data related criteria and tools’ properties related criteria.
Results related criteria encompass accuracy, interpretation of results as well as cases
where the technique fails to make classifications (non-deterministic output). Data
related criteria comprises aspects of the data that may affect the performance of
the technique, which includes the size of the sample data, class imbalance (data
dispersion), feature selection method, sensitivity to linear correlations between
features and the ability to analyse different types of variables. The tools’ properties
related criteria refers to inherent limitations of the technique used. This covers the
limitations of the technique to handle linear or non-linear relationships, assumptions
that the data must satisfy for the technique to function optimally, ability to generalise
(tendency to underfit or overfit), time to develop the model and the ease with which
it can be updated as well as the degree to which it is easily hybridisable (integration
ability). Overall, no single method was determined to be significantly superior than
others in relation to the thirteen stated criteria. Moreover, it can be concluded that
constructing a hybrid model by integrating different methods could yield overall
better performance model.

Chopra and Bhilare [2018] carried out a study to examine the superiority of ap-
proaches that involve combinations of classifiers (hybrid models) to predict banking
loan defaults. The study involved the use of ensembles, a particular class of machine
learning techniques involving the combination of multiple classifiers. They investi-
gated the performance of bagging, boosting and RF ensembles and compared them
to DT to evaluate the relative performance. The study showed that the gradient
boosting model performed better than the benchmark DTs.

In the last few years MCSs attracted great attention in the scientific community
across various disciplines like health care, speech, image classification, forecasting and
other applications [Ganaie et al., 2022]. In different studies in the literature MCSs are
referred to as ensemble based systems, committee of classifiers, classifier fusion and
mixture of experts [Abellan and Castellano, 2017]. MCSs involve the amalgamation
of two or more individual classifiers into a single super classifier using a heuristic
algorithm or combination rule [Zang et al., 2014]. This approach showed potential
to enhance the predictive power of classification models [Ala’raj and Abbod, 2016;
Ghodselahi, 2011; Lessmann et al., 2015; Yao et al., 2022]. A common combination
rule used in literature is that of voting, which can be categorised as hard, soft or

weighted voting. Hard voting, also referred to as majority, entails counting the
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predictions for each class label and predicting the class label with the highest number
of votes. Soft voting requires aggregating the probabilities by summing, averaging or
taking the maximum and comparing the result to a threshold value to predict the
class. Majority voting and weighted average are the most commonly used voting
strategies in the literature [Nali¢ et al., 2020].

Numerous approaches to combined classifiers were developed in literature, given the
success of the performance of MCSs. Ala'raj and Abbod [2016] explored studies
on MCSs employed for credit scoring that were published between 2005 to 2015.
A comparison was made by examining the number of datasets used, homogeneity
or heterogeneity of the developed classifier ensembles, rules used to combine the
classifiers, performance assessment, and if statistical significance tests were conducted.
In the nineteen papers reviewed, the authors point out that most researchers opted
to use homogeneous ensemble classifiers. Heterogeneous classifiers were developed
in only two studies. There were three papers in which both heterogeneous and
homogeneous classifiers were developed in the same study. Over and above that,
majority vote was the most used combination rule because of its simplicity, followed
by the weighted average rule. Four studies utilised reliability-based methods. Two
studies employed stacking, a trainable MCS approach.

Nali¢ et al. [2020] propose a hybrid ensemble model that incorporates insights
from previous research and outperforms standard methods. In the first phase, the
authors apply a novel voting system, if_any, that demonstrated superior performance
compared to all other voting methods, i.e., unanimous and simple hard voting. The
method entails using an adjusted version of unanimous majority voting to fuse the
outputs of the feature selection algorithms. In the second phase, generalized linear
model (GLM), SVM, naive Bayes (NB) and DT were combined using soft voting to
form MCSs. The study shows that the MCS comprising of GLM and DT performed
better in terms of predictive accuracy (ACC), type I error, F-measure and sensitivity
than the other MCSs and individual classifiers. Furthermore, because the MCS
uses transparent classifiers as base models and a comprehensible voting system, it is
understandable or explainable which makes it suitable to be used for credit scoring
purposes. The experiment was conducted on a real-life dataset, consisting of client
personal, demographic and credit history data, of a microfinance institution based in
Bosnia and Herzegovina.

Anil Kumar et al. [2022] propose an MCS in which LR, k-nearest neighbour (KNN),
DT, RF, NB and SVM are used as the base classifiers for the ensemble aggregation.
Their study applies stacking in two phases, firstly in the process of training the base
classifiers. The outputs of these classifiers are called meta-features because they serve
as inputs to the ensemble. Secondly, another set of classifers, specifically three LR,
RFE and SVM are applied to the meta-features. This second set of classifiers are called
meta-classifiers. Majority voting is used to construct the final super classifier. Their

study is conducted on the German and Australian datasets from the UCI repository
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of machine-learning databases. In addition, their ensemble approach outperforms
the base classifiers on ACC and AUC.

Runchi et al. [2023] present an MCS, in which data imbalance is taken into account
using a heterogeneous balancing approach. Different imbalance ratios are applied to
the synthetic minority oversampling technique and edited nearest neighbour balancing
algorithm to generate several sub-training datasets. Their ensemble, logistic-BWE
(balancing weight effects), involves training multiple LR classifiers on the different
sub-datasets and a dynamic weighted voting system is used in the final classifier. The
study shows that logistic-BWE outperforms several classifiers: LR, Gaussian Bayes,
DT, KNN, SVM, back propagation artificial neural network (BPANN), RF, adaboost,
gradient boosting decision trees (GBDT), XGBoost, consistently on AUC, geometric
mean, sensitivity and F-measure. It shows that the performance superiority of the
logistic-cBWE model is statistically significant. Their experiments are conducted on
several datasets, namely the Australian, German, Chinese personal loan and default
of credit card client from the UCI repository of machine-learning databases.

Many studies on multi-classifiers were conducted on the credit datasets from the
UCI repository of machine-learning databases. Furthermore, practitioners are ex-
perimenting with heterogeneous as opposed to homogeneous MCSs to improve the
accuracy of classifiers. Wang et al. [2011] show through experimentation, using the
Australian, China and German credit datasets that bagging performs better than
boosting across all datasets. Moreover, stacking and bagging D'T's yield the overall

best results in terms of average ACC as well as type I and II errors.

The empirical studies on conditions under which MCSs produce improved results
is still lacking. Zhu et al. [2001] present a study on the conditions under which the
classifiers can be combined to produce improved results. They investigate two criteria,
i.e., sufficiency and extraneousness, that are required to ensure that a combination
of classifiers will outperform individual classifiers. Sufficiency is used to assess the
dominance of a classifier’s outputs, whereas extraneousness is used to determine if
one classifier’s outputs yields information that is useful compared to another. In
order for the combination of two classifiers A and B to outperform the individual
classifiers, one must dominate, i.e., A must dominate B, and the other B must not
be extraneous to the combination. While the work of Zhu et al. [2001] is derived
from principles of forecasting, an important finding of the study is that one can
construct a single superior classifier by combining the results of individual classifiers,

provided that the conditions of sufficiency and extraneousness are satisfied.

3.2 Related work on explainability of classifiers

Some classification techniques, such as ANNs and MCSs have flexible model struc-

tures, can analyse enormous amounts of unstructured data, and produce accurate
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predictions. A common problem regarding these methods is that often they are not
transparent, explainable or interpretable, meaning the behaviour and predictions of
these systems are not easily understandable to humans, hence they are termed black
box models. Furthermore, when these black box models are employed for making
decisions, bias that is rooted in datasets that are skewed, inappropriate models, poor
formulation of algorithms, or human stereotypes can result in subpar predictions
and decisions that are not fair, causing financial and possibly reputational losses
[van Giffen et al., 2022]. Therefore, it is crucial that the behaviour of credit scoring
models be understood, inputs that might lead to biases be handled appropriately,
and learning algorithms be well constructed.

While practitioners are cautious of potential pitfalls and risks associated with black
box models, there are socio-economic benefits. Sadok et al. [2022] point out that at the
macroeconomic level, the use of artificial intelligence (Al) can contribute positively to
economic growth by improving access to credit for traditionally undeserved borrowers.
However, Sadok et al. [2022] also caution against the use of Al in credit analysis
processes, due to the possible presence of biases and ethical, legal, and regulatory
problems. New financial regulations introducing the certification of Al algorithms
and of data used by banks is therefore required. Sadok et al. [2022] also point out
that Al methods may provide negligible or marginal improvements in predictive
power. However, the biggest benefit is that they can be used to model unconventional
data from different sources with ease.

There are domains in which models are legally required to be understood and decisions
must be explained, such as in retail and business lending institutions [Dastile et al.,
2020; Visani et al., 2022]. For this reason, there is ongoing research on methods that
seek to make advanced models understandable to remove the black box perception
around machine learning techniques, and to establish a model framework that meets

legal and regulatory requirements.

3.2.1 What is explainability?

XAL also referred to as explainable machine learning (XML), is a field of research that
seeks to provide insights as to how and why advanced models produce predictions
without compromising the performance levels of the models [Markus et al., 2021].
This is an active field of study that aims to overcome the drawbacks of adopting
advanced methods. In various studies on XAl the terminology used is inconsistent,
may cause confusion, and therefore creates a stumbling block for an agreeable and
adoptable framework. Rudin et al. [2022] point out that there is vast and confusing
literature on interpretability and explainability. Much literature on explainability
confuses it with interpretability or comprehensibility, obscuring the arguments (and
thus reducing their precision) and failing to convey the relative importance and
practical applications of the two topics.
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Gilpin et al. [2018] and Markus et al. [2021], make a distinction between explainability
and interpretability as they aim to provide a nomenclature that is clear. A task
model is said to be explainable if it is intrinsically interpretable or if it can be
complemented by post-hoc explanation that accurately describes the task model
and is understandable to a human. An explanation is said to be interpretable if it
satisfies two criteria, clarity and parsimony, i.e., the explanation of the task model
provides a rationale that is consistent for similar cases and is presented in a compact
form. Furthermore, an explanation is said to be faithful or accurately describes a
task model if it satisfies the completeness and soundness criteria, i.e., it provides
sufficient information to compute the output for a given input and is truthful to the
task model. The terms faithful and fidelity are used interchangeably in literature.
Figure 4 depicts the definitions of terms related to explainability proposed by Markus
et al. [2021].

Explainability
Task model is intrinsically
interpretable or complemented
with an interpretable and faithful

explanation
Interpretability Fidelity
Understandable to a human Accurately describing
(comprehensibility, intelligibility, the task mode
understandability)
Clarity Parsimony Completeness Soundness
Providing a single Presented in a Providing sufficient Truthful to the task
rationale that is compact form information to compute model
similar for similar the output for a given
instances input

Figure 4: Definitions for terms related to explainability proposed by Markus et al.
[2021]

3.2.2 Explainable AI methods

There are various XAl methods described in the literature and often there is an overlap
between methods, however each method seems to address different questions. Markus
et al. [2021] state that, one approach to accomplish XAT is to utilise models that are
deemed transparent or intrinsically explainable. Alternatively, post-hoc explanations
can be used to complement the model to make it explainable. Furthermore, Markus
et al. [2021] classify explanations into three types, namely, model-based explanations,
attribution-based explanations and example-based explanations. Model-based expla-
nations encompass all methods in which an explainable model or a more interpretable
surrogate model is created for post-hoc explanations. The class of interpretable
models include, sparse linear classifiers, general additive models, rule-based learners,
DTs and example based learners (e.g. KNN). Attribution methods, also called feature
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or variable importance, relevance, or influence methods, provide a measure of the
explanatory power of features. Example-based methods explain the task model by
selecting instances from the dataset or creating new instances by taking those that
are predicted accurately and those that are inaccurate, identifying instances that

have an impact on model parameters and creating counterfactual explanations.

In addition, post-hoc explainability can be classified into model-specific or model-
agnostic classes and be further subdivided into local and global explanations. Pre-
dictions of a model for a large sample of data may be explained using either local
(individual) instance explanations or global model interpretation techniques. Local
explanations explain why a data point was predicted or not, by segmenting the
solution space and giving explanations to a less complex solution subspace, while
global explanations explain how attributes influence a decision’s behaviour overall.
This is useful for examining the fairness of model predictions for choices in a specific
data group [Demertzis et al., 2023; Barredo Arrieta et al., 2020]. In some literature,
model-specific or model-agnostic techniques are also categorised into explanation by
simplification, explanation by feature relevance, visual explanation and local expla-
nation [Saranya and Subhashini, 2023]. Explanation by simplification encompasses
techniques in which a whole new system or surrogate is rebuilt based on the trained
model to be explained. Feature relevance clarifies the inner functioning of a model
by quantifying the impact that a feature has upon the output of the model. Visual
explanation covers explainability methods that provide a visualisation of the results
[Barredo Arrieta et al., 2020].

3.2.3 Challenges with explainable AI methods

Saeed and Omlin [2023] point out various challenges with respect to the current
XAI methods. Scalability can be an issue with local methods, such as LIME, when
there is a huge number of cases for which predictions and explanations are needed.
Similarly, SHAP can be costly when all combinations of variables must be considered
when there are lots of variables to be analysed. Correlation of variables can also
cause problems when analysing feature dependence and attribution. Saeed and
Omlin [2023] also state that model-based explanations pose a challenge when they
cannot predict with reasonable accuracy as practitioners may resort to more accurate
models.

In addition, XAl methods must be applied with caution because there is no method
that allows for unequivocal, consistent and reliable explanations of machine learning
models. Their consistency and reliability are still a discussion topic. Visani et al.
[2022] propose two complementary indices, namely coefficients stability index (CSI)
and variables stability index (VSI) to measure LIME stability. The CSI assesses
whether the coefficients generated by the same variable for different LIME outputs
are similar. VSI is used to determine whether different calls of LIME return the
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3.2. Related work on explainability of classifiers

same variables. The CSI and VSI give useful information about the consistency of
the trained LIME method. In addition, they help understand whether LIME is likely
to produce different output at the next call. The CSI and VSI analysis provides a
framework that improves trust in LIME as a reliable explanation method [Visani
et al., 2022].

3.2.4 Proposed explainability frameworks

The gap between XAl and legal requirements creates a problem for the implementation
of transparency, explainability, and interpretability of some classification models. In
light of advancements in the utilisation of black box models, there is a need to close
the gap between their usage, regulatory and legal requirements.

A study by Biicker et al. [2022] demonstrates that a level of interpretability can be
achieved without compromising the predictive power of machine learning techniques.
In their study, they propose a systematic model exploration process focused on
transparency, auditability and explainability for credit scoring (TAX4CS). Figure 5
shows a schematic representation of the framework proposed by Biicker et al. [2022].
The initial stage is to identify the internal and external stakeholders. Stakeholders
include model developers, auditors and regulators as well as bank customers. The
second stage is to define the model life cycle, which encompasses the development,
validation and production of the model. At every stage the relevant stakeholders
are involved in the decisions. The third stage is to recognise the specific needs of
the stakeholders. These needs must be aligned with regulatory requirements. Credit
officers or managers must comprehend the main features behind credit decisions.
Auditors must be able to establish mechanisms to ensure accountability and fairness
at every stage of the development process and proper oversight mechanism must be
made available to meet regulatory requirements. The fourth stage in the process
applies XAl methods and involves exploration at a model-level and local-level. This
exploration commences with metrics for assessing the performance of the model and
drilling down into examining variable importance (attribution) and effects.

Biicker et al. [2022] also provide an overview of model-agnostic measurements and
methods that may be used on any black box model, for each step in the procedure.
The proposed framework can be used as a guide to ensure that the necessary level of
explainability is attained in fields like credit scoring where explainability is required.

In order to attain an agreeable framework, a consensus of definitions and principles
on interpretability must be reached. Principles must be developed on when and how
advanced classifiers can be used. Rudin [2019] and Rudin et al. [2022] provide the
following principles for interpretability of models:

e Machine learning models must adhere to a domain-specific set of constraints

to aid with interpretability.
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Figure 5: Transparency, auditability and explainability framework proposed by
Biicker et al. [2022]

Interpretable models allow decisions of trust, rather than trust itself.

In general, the notion of incongruity between interpretability and accuracy is
false.

Metrics for performance and interpretability must be improved through an

iterative process.

Interpretable models should be used for high stakes decisions, if possible, as
opposed to explaining black box models.

According to the research and proposed principles by Rudin [2019] and Rudin et al.
[2022] there is no accuracy-interpretability trade-off. Furthermore, they propose
utilising an interpretable algorithm if the performance is not significantly different.
An interpretable model should always serve as a benchmark for model comparison.

There is a need to investigate other strategies that can help practitioners and
model users. The value of feedback from stakeholders and subject matter experts is
emphasised throughout the studies reviewed. Dastile et al. [2020] present a study
on interpretable and black box models and a framework for the interpretability of
machine learning models. They propose the rationalisation of predictions, which is a
justification of predictions by experts. This approach can be used in addition to the
existing local or global model-specific or model-agnostic methods that attempt to
make these models understandable.
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3.3 Summary

The research on credit scoring techniques indicates that there is no single superior
approach to scoring. Furthermore, techniques that are used are problem and data
specific. A wide range of methods can be used from individual models as well as hybrid
techniques. Wang et al. [2011] point out the need for more experimentation on larger
datasets to confirm that MCSs can improve individual base learners substantially
when used for credit scoring.

Furthermore, the notion that black box classifiers outperform transparent classifiers
is not always correct, which means that the accuracy-explainability trade-off may
not always hold. Transparent models must be used as benchmarks to determine
if the opaque (black box models) are worth using. In addition, current methods
such as SHAP and LIME, utilised for transparency and explainability must be used
with caution and tests must be conducted to instil confidence in the explainability
and reliability of predictions made. Lastly, a model framework that meets legal
and regulatory requirements must be developed and agreed upon to allow for the

adoption of black box methods in disciplines where explainability is a requirement.
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CHAPTER 4

RESEARCH METHODOLOGY

The purpose of the study is to explore the accuracy-explainability trade-off on
classification techniques used for credit scoring. It investigates the perception
that black box models outperform transparent models. The study examines the
effectiveness of classification models, including DT, LR, LDA, SVM, RF, bagging,
LGBM and ANN at predicting credit default risk. It also examines methods utilised
to make the predictions of these classification models understandable and explainable.
Past research focused primarily on the accuracy of classification methods, comparing
black box models to models commonly used in credit risk, such as LLR. Recent studies
focus on the explainability of black box methods.

This chapter discusses the research methodology used to carry out this study. Section
4.1 describes the Python application and packages used to conduct the experiments
described in Chapter 2 and 3 as well as this chapter. The phases of data wrangling and
analysis, including data extraction, data assessment, and exploratory data analysis,
are discussed in Section 4.2. Section 4.3 discusses the data partitioning. The data
preprocessing techniques, i.e., missing value imputation, outlier treatment, feature
transformations and engineering are presented in Section 4.4. Section 4.5 discusses a
mixed approach to selecting the top features on which to construct the model. The
classification methods as well as performance metrics are presented in Section 4.6.
The chapter concludes with Section 4.7, in which the methods of interpretability and
explainability are discussed. An outline of the research methodology is illustrated in
Figure 6.
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Figure 6: An outline of the research methodology.

4.1 Python application

The experiments for the study, namely, the data wrangling, exploratory data analysis
(EDA), feature transformations and extractions, classification model training, perfor-
mance evaluation and explainability were conducted using Python. Python is an
interpreted, object-oriented, high-level programming language that supports modules
and packages. The project mainly used the following packages: pandas, numpy
and scikit-learn [Pedregosa et al., 2011]. Pandas is used for the manipulation of
structured data. Numpy is used for basic numerical operations and matrix operations.
Scikit-learn is a Python library integrating several predictive modelling techniques.

For data visualisation, the seaborn and matplotlib Python packages were used.

30



4.2. Data wrangling and analysis

4.2 Data wrangling and analysis

Data wrangling and analysis are essential processes in the development of accurate
predictive models, as they inform the techniques to be applied when preprocessing
data. The term data wrangling comprises the methods for obtaining raw data and
assessing it for the development of classification models.

4.2.1 Data sources and assessment

The data used in this study are publicly available. They contain credit application and
default related information on customers. According to Finlay [2010], all consumer
datasets contain errors, inconsistencies, and omissions. This could result in a flawed
model development training sample, which would make it difficult to determine the
relationship between features and modelling objectives. In this study, the data was
evaluated in terms of the number of rows and columns, data types, missing values,
outliers and duplicates to identify and address anomalies prior to the construction of
classifiers.

4.2.2 Exploratory data analysis

EDA refers to the process of evaluating and summarising data in an effort to
identify and characterise patterns in the data. The primary goal of this process is
to understand the data. In order to identify trends, a variety of statistical methods
and graphical representations are used. These methods include univariate reports,
distribution summaries, bar charts, heat maps and correlation matrices to understand

associations between features.

Despite the fact that graphical representations are often employed in the EDA | one
of their main limitations is their inability to show more than two or three aspects of
a feature in a single graph. Some of the drawbacks of graphical representations were
avoided using a univariate analysis tabular report. The univariate analysis tabular
report was used to show the strength of the association between each feature and
the target. The measures for degree of association between the feature and target
include Gini, chi-square (x?) and information value (IV). The IV can be any value
from zero to infinity, but common values range from 0 and 1. An IV that is less than
0.05 indicates a weak relationship between the feature and the target, suggesting
that the feature is less likely to be predictive. An IV that is between 0.05 and 0.25
signifies a moderate relationship, and values equal to or greater than 0.25 show a
fairly strong association [Finlay, 2010].
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4.3 Data partitioning

Each dataset was partitioned into three subsets, namely training, testing and vali-
dation datasets, using stratified random sampling where the strata was the target
variable. The training dataset was used for training, tuning and configuring the
classification models. The testing dataset was used for assessing and improving the
classification models. The validation dataset was to determine how well the model

performs on new data.

4.4 Data preprocessing

Data preprocessing encompasses the methods of transforming, engineering and
encoding features so that the data can be used to build effective classification models.
It includes implementing techniques to handle missing values, outliers and anomalous

data as well removing inconsistencies observed in the data.

4.4.1 Feature transformations and engineering

Features could have missing values if qualitative and quantitative data are not
collected, leaving a field empty. The mode can be used to impute missing values
for categorical data, and the average or median can be used for numerical data.
Depending on the size of the population impacted, entire observations with missing
values can also be eliminated. Various techniques may also be used to predict missing
values. In this study two approaches are used to impute the missing values. Missing
values were either replaced with zeros or an XGBoost regression model was used to
impute missing values for features that were deemed predictive.

Outliers can have a negative impact on the model as they introduce bias into the
data resulting in under or over-estimates [Kwak and Kim, 2017]. Values that skew
the data are treated by either removing the value, capping or removing the entire
observations depending on the size of the population affected. The remedial actions

for outliers depends on EDA process.

Feature engineering entails the creation of features using domain knowledge and
logic to enhance machine learning algorithms. It involves deriving new features,
calculating ratios and aggregating existing features using averages, minimums, and
maximums, with the aim of introducing new features that may be more predictive

than the original features.

4.4.2 Encoding categorical variables

Many machine learning algorithms in the Python scikit-learn library cannot han-
dle qualitative categorical variables. Several encoding techniques, including label
encoding, one hot encoding, dummy encoding, and response encoding, can be used
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to transform these variables into quantitative data. In label encoding the values of a
categorical variable are given a distinct integer value [Hancock and Khoshgoftaar,
2020]. In one hot encoding and dummy encoding, a new binary variable is added
for each value to indicate the inclusion or exclusion of a value. Furthermore, if a
categorical variable has n values, one hot encoding creates n binary variables for each
value, whereas dummy encoding creates n — 1 binary variables. Response encoding
involves computing the posterior probabilities of the classes of a given the input of a
categorical feature. Response encoding was used in order to keep the dimensions of
the data minimal.

4.4.3 Feature scaling

Feature scaling involves the transformation of the values of features so that they
lie on a similar scale. The purpose of feature scaling is to reduce the impact of
extreme values on algorithms and classification models that are sensitive to such
extreme values. Two methods were used to scale features, i.e., standardisation and
normalisation.

Standardisation of a feature is obtained by using the formula

& == (15)

g;

where y; and o; are the mean and standard deviation of the feature z;, respectively.
Standardisation is commonly used where the data is assumed to follow a normal

distribution.

Normalisation of a feature is obtained by using the formula

3 = M7 (16)

xi,maw - xi,min
where Z; is a feature in the dataset, ; i, and ; ;4. are minimum and maximum
values of the feature x;, respectively. Normalisation is mainly used for distance-based
algorithms such as SVM.

4.5 Feature selection

Feature selection is the process of selecting a subset of features that have a significant
degree of correlation with the target for inclusion in model construction and excluding
those that are deemed redundant or unnecessary. It is intended to optimise the
learning algorithm so that it works faster and is more efficient. Furthermore, it is
intended to improve the performance metrics of the learning algorithm [Oreski and
Oreski, 2014; Zhu et al., 2018]. This section describes the steps taken to reduce the

dimensions of the data.
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The methods used to select features can have a bearing on the accuracy of predictions
of a scoring model. Trivedi [2020] presents a detailed study on selection techniques
such as information-gain, gain-ratio and x?. The study shows that the choice of the
selection technique can improve the scoring model. To choose a subset of pertinent
features, many statistical techniques can be used, such as low variance, correlation
between variables or multicollinearity, filtering and wrapper methods. A combination
of the aforementioned techniques was employed to select features using the training
subset. Furthermore, the training subset was downsampled, i.e., balanced such that
classes are almost equal by reducing the number of observations of the majority class,
for the feature selection process. This was done in order to decrease the execution
time of the methods used to select features.

4.5.1 Low variance features

Low variance features are constant, approximately constant or quasi-constant across
all samples and therefore do not improve model performance. A minimum variance
threshold or count of unique values can be used to identify and remove features with
a low variance from the dataset. The Python VarianceThreshold package can be
used to determine the variance of features and remove those with a variance of zero.
A count of unique values was used to identify and remove features with unique values
less than or equal to one for this research project.

4.5.2 Filter methods

Filter methods select features based on a measure of correlation regardless of the
employed modelling algorithm. Additionally, filtering techniques that rank or assess
a single feature are known as univariate filters, whereas multivariate filters assess
entire feature subsets. Numerous filtering techniques are discussed in the literature
and are frequently categorised into information, distance, consistency, similarity, and

statistical measurements [Jovi¢ et al., 2015].

The common filter methods, filter class and applicable task, whether they are used
for classification, clustering or regression and search strategies are discussed in the
study by Jovi¢ et al. [2015]. Numerous studies show that there is not a single method
that outperforms the other and each one depends on the specific task and use case.
Also the data type (numeric or categorical) of features that are assessed must be

taken into consideration.

In this study, the features were normalised and the y? and Kendall’s tau correlation
coefficients were utilised for the initial feature selection. Croux and Dehon [2010]
present a study on Kendall and Spearman correlation measures. Their literature
study suggests that both measures can handle outliers. Furthermore, Kendall’s tau
is more robust and slightly more efficient than Spearman’s rank correlation. The
Python scipy package is used to compute the Kendall’s tau correlation.
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4.5.3 Multicollinear features

Collinearity is a linear association between two predictors. Multicollinearity refers
to the relationship between two or more predictors that is primarily linear. Multi-
collinearity is often indicated by an absolute correlation coefficient greater than 0.7

between two or more predictors.

Multicollinearity may result in an algorithm performing poorly. It causes redundancy,
meaning that two predictors can provide the same information about the response
variable, making the predictors’ coefficients inaccurate. It may also cause overfitting,
in which case the models perform well on the training dataset but poorly on a testing
dataset. Daoud [2017] presents the problems associated with multicollinearity and
the use of variance inflation factor (VIF') to quantify the degree of association between
features. VIF provides the strength of the correlation between the various independent
features. This research uses VIF to identify and reduce multicollinearity. The VIF
function from Python statsmodels package was used to identify and remove features
with VIF above five. A VIF of less than three, indicates low correlation among
variables under ideal conditions. A cutoff value of five is commonly used to determine
features with high multicollinearity. VIF was applied on a subset of features, i.e., after
selecting features using the filter methods, since it is a computationally demanding
process.

4.5.4 Wrapper methods

Wrapper methods evaluate and select features based on the classifier performance.
It has been shown that wrappers often select subsets of features that are better than
those selected by filters because the subsets are evaluated using a real modelling
algorithm [Jovi¢ et al., 2015]. Rodriguez-Galiano et al. [2018] demonstrate that,
despite increased computational requirements, wrapper methods can effectively aid
in the selection of the most influential features, improvement of the prediction
model and reduction of the dimensionality of the feature space. Moreover, a wrapper
composed of a RF learner and a sequential forward feature selection (SFFS) searching
strategy performed better than other methods, exhibiting the best accuracy and
interpretability.

In this research, the features were normalised and the recursive feature elimination
(RFE) wrapper was utilised to select the final features, from features remaining after
filtering and removing multicollinear features in the training dataset. RFE seeks to
find a subset of features by iteratively removing one feature at a time until the desired
number of features is achieved. This involves fitting the predictive model using an
initial subset of features, ranking the features according to relevance, removing the
least important features, and repeating this process on the remaining features until

the specified number of features is obtained.
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4.6 Classification methods

The Python scikit-learn library was used to construct and train the LR, LDA, DT,
SVM, ANN, bagging, RF and LGBM classification methods, explained in Section
2.1. Furthermore, the features used for LR, LDA, DT, ANN, RF and LGBM were
scaled using standardisation, whereas the features used for SVM and bagging were
scaled using normalisation (see Section 4.4.3).

Cross-validation was used to train and test the models. This is a resampling procedure
used to evaluate the machine learning models in the training phase. Furthermore,
random hyperparameter tuning was applied on each classification method to obtain
the best performing classification model.

4.6.1 Class imbalance

Credit default risk data tends to be imbalanced, meaning the target is in favour of
one class over the other or that the number of data points for a certain class are
significantly more. This creates a risk of misclassification since classifiers trained
on imbalanced datasets may classify all minority data with majority labels and still
produce a high performance measure of accuracy. Kuhn and Johnson [2013] present
a detailed study on the impact of imbalanced classes on model development as well
as remedies for severe class imbalance in data.

There are numerous balancing approaches that are commonly used in practice and
presented in literature to reduce this risk of misclassification. The remedies to
handle the risk of misclassification include upsampling, downsampling, as well as
using class weights and penalties on the classification methods. The downsampling
method involves reducing or eliminating samples from the majority class until there
is no substantial difference between the minority and majority classes. Although
this method is widely used, caution must be exercised to prevent information loss.
Upsampling entails increasing the representation of the minority class examples until
there is no substantial difference between the minority and majority classes. This is
achieved by either duplicating examples of the minority class or creating synthetic
examples using the synthetic minority oversampling technique (SMOTE) [Rendén
et al., 2020]. In this study, the balanced class weights built into the Scikit-learn
library classification models were used to remedy the effects of the imbalance for

each model.

4.6.2 Performance tuning

The k-fold cross-validation, where k = 4, was used to configure the classification
models. This involved splitting the data into k£ subsets of equal size as shown in
Figure 7. The parameter k refers to the number of groups or folds that the data will
be split into. The first fold is treated as a validation set, and the model is fit on the
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remaining k — 1 folds. The RepeatedKFold and KFold Python functions were used
to conduct cross-validation.

In addition, cross-validation was used to fine tune the inputs or configurations
that are used to control the learning process of the models. The inputs that are
configured in the learning or training phase of the model construction are referred to as
hyperparameters. A k-fold cross-validation and random search hyperparameter tuning
technique were used to determine optimal hyperparameters for each classification
model.

Lastly, k-fold cross-validation was used to determine the parameters for the best
classification model, which is then used to determine the optimal thresholds to
determine classes from the probabilities. The optimal threshold is the maximum
distance between the point on the ROC curve and the random line, explained in
Section 2.3. The distance between the ROC curve and the random line is referred to
as the Youden’s J-Statistic or J-Statistic.

Total number of folds

Iteration 1 fold 1

Iteration 2 fold 2

Iteration 3 fold 3

Tteration k fold k

Figure 7: k-fold cross-validation on training dataset

4.6.3 Performance assessment

The classification models were applied to 30 random subsets of data in order to com-
pare the performance in terms of AUC. The scipy.stats, pingouin, scikit_posthocs
Python libraries were used to conduct the ANOVA test, the Kruskal Wallis test and
Dunn’s multi-comparison test, respectively. These tests provide a way to rank the
performance of the classifiers and to determine if the difference in performance is
statistically significant.

4.7 Explainability and interpretability

The sklearn, shap, 1lime and lime.lime_tabular Python libraries were used to
analyse feature contributions and effects in an effort to interpret and explain the
classification models. The shap package has various methods, which incudes the

KernelExplainer and TreeExplainer. The KernelExplainer was utilised for the
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linear models, which include LR, LDA and SVM. A subset of 6000 observations
of the validation data was used, given that KernelExplainer takes a long time to
process data. The more the observations, the longer it takes. The remaining models
were analysed using TreeExplainer, since it does not support linear models. Given

the effectiveness of TreeExplainer, the full validation data subset was used.

4.8 Summary

The methodology provides details of the steps followed to construct the credit scoring
classifiers as well as the approaches to explain these classifiers. The experiments
were conducted using Python, which was used to analyse data, select features,
train classification models and analyse the outcomes. Data analysis is essential
for understanding patterns and relationships in the data. It is essential to identify
and treat anomalies such as missing values and outliers. Prior to selecting features
for modelling and training classifiers, categorical features were encoded and the
numerical features were scaled to minimise the adverse effects of different scales and
outliers. A number of approaches were applied to identify predictive features and to
ensure that the final features selected for training classifiers were not correlated. The
VIF was used to identify correlated features and to remove those with a high VIF
value. Filter methods, which are model independent methods, were used to identify
predictive features. In addition, wrapper methods, which select features based on
classifier performance, were also used to select features. The classifiers were trained
by tuning hyperparameters and balancing classes. Furthermore, SHAP and LIME

were used to explain the outcomes of the classifiers.
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CHAPTER b

DATA ANALYSIS AND PREPROCESSING

This chapter discusses aspects of the data preparation process required for the
construction of effective predictive models for case study 1 and 2, i.e., credit card
default and home credit default datasets. The data sources, ethical considerations and
wrangling are presented. In addition, the exploratory data analysis and preprocessing
(transformations and scaling) steps are discussed.

5.1 Case study 1: Credit card default data

The credit card default data is secondary data sourced from the UCI Machine
Learning Repository website submitted by Yeh [2016]. The UCI Machine Learning
Repository is a collection of databases, domain theories, and data generators that
are used by the machine learning community for the development and analysis of
machine learning algorithms. This dataset is licensed under a Creative Commons
Attribution 4.0 International (CC BY 4.0) license. This permits the distribution and
modification of the datasets for any purpose, under the condition that proper credit
is given.

The credit card default data contains 30 000 observations and 25 features. Further-
more, it includes the TARGET, which is a dichotomous response variable where
the value zero indicates that the loan was repaid (non-default) and one indicates
the loan was not repaid (default). The categorical columns were already encoded.
Based on the description of the dataset, it does not contain missing values and
duplicates. Therefore, this data was not processed following the full data processing

steps described in Section 4.4. Furthermore, the credit card default dataset was par-
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titioned into subsets of sizes 50%, 30% and 20% for training, testing and validation,
respectively. The proportions of the partitions are to ensure that there are sufficient
volumes in each subset. A low number of observations can result in model instability.
The train test_split function from the python Scikit-learn library was used to
ensure that the distribution of the targets are representative of the original dataset.

5.2 Case study 2: Home credit default data

The second credit risk data is secondary data sourced from the Kaggle website
submitted by Home Credit Group [Home Credit Group, 2018a]. Kaggle is an online
hub that hosts data science competitions and often provides data to solve real-world
problems with an incentive for providing the best solution. Home Credit Group, which
is an international non-bank financial institution, submitted information distributed
into several relational datasets containing credit information on borrowers for a
competition in Kaggle. The objective of the competition was to develop predictive

models to estimate the default risk of a given borrower.

Home Credit Group are the sponsors and rights holders of the Home Credit Default
Risk competition. The seventh section under the list of rules provided by Home
Credit group grants permission for one to utilise the competition data for purposes of
the competition and other non-commercial purposes, such as participation on Kaggle
website forums, academic research and education [Home Credit Group, 2018b].

5.2.1 Datasets and structure

The Home Credit Group data is distributed into several data frames containing credit
information on borrowers. The structure of the relational data frames is depicted
schematically in Figure 8, which provides a brief description of the data frames and

the features used to connect each data frame.

The main data frames that were submitted by the Home Credit Group are the
application_train and application_test. The subsets in these data frames are mutually
exclusive and they contain information about each loan application, identified by the
feature SK_ID_CURR. In this study, only the application_train data frame was used
to train, test and construct the credit scoring models. The application_train contains
307 511 observations and 121 features. Furthermore, it includes the TARGET,
which is a dichotomous response variable where the value zero indicates that the
loan was repaid (non-default) and one indicates the loan was not repaid (default).
Throughout the research, non-default and default are also referred to as good and
bad, respectively.

There are two data frames pertaining to previous loans from other financial institu-
tions reported to the credit bureau for each loan applicant in the applications subset.

The first data frame is the bureau, which contains 1 716 428 observations and 17
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application_{train|test}.csv
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Figure 8: The structure of the relational datasets of the Home Credit competition
[Home Credit Group, 2018a).

features. The second is the bureau_balance, which contains 27 299 925 observations
and two main features, namely monthly balances and statuses of previous credits.
The observations in bureau and bureau_balance are identified by SK_ID_BUREAU.
Each loan in the applications data can have multiple previous credits.

There are four data frames, namely the previous_application, POS_CASH balance,
instalments_payments and credit_card_balance, related to previous applications or
credits of clients who have loans in the sample of data provided. The previous._-
application data frame contains all previous applications for Home Credit loans.
Furthermore, each current loan is identified by the SK_ID_PREV feature and it may
be linked to multiple previous loans.

The POS_CASH balance data frame consists of monthly data on previous point of
sale and cash loans that the applicants had with the Home Credit Group. Each row
in the data frame shows previous credit related to loans in the applications subsets.
It contains 10 001 358 observations and eight features.

The credit_card _balance data frame contains monthly data about previous credit
cards that the applicant has with the Home Credit Group. Each row in data frame
shows the credit card balance for a particular month. Furthermore, a single credit
card may have multiple rows.

The instalments_payments data frame comprises the history of payments made for

the credits that were previously issued in Home Credit for each applicant. Each row
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5.2. Case study 2: Home credit default data

in the data frame reflects a payment that was made, plus one row each for a missed
payment.

5.2.2 Data assessment and analysis

The primary objective of this analysis was to obtain a high level overview of the
data that would inform the model construction process. Table 1 shows the data
assessment and preliminary analysis of the datasets that were used to construct
the credit classifiers. A detailed mathematical description overview of the data is
presented in Appendix C. The application_train contains 122 variables (121 features
and a target variable) and 63% of the features contain missing values. Furthermore,
all the datasets excluding installment_payments contain categorical data, which
must be encoded. The bureau data has seven features which contain missing values.
This study focuses mainly on the application_train datasets for the construction of
the classification models. Therefore, the rest of the exploratory data analysis and
preprocessing is based on the application_train datasets.

Table 1: The data assessment and preliminary analysis of the home credit default
datasets.

Rows Columns
Dataset No. | No. | Numeric | Categorical | Duplicates | Missings
application_train 307511 | 122 106 16 0 67
bureau 1716428 17 14 3 0 7
bureau_balance 27299925 3 2 0 0
credit_card_balance 3840312 23 22 0 9
installments_payments | 13605401 8 8 0 0 2
previous_application 1670214 37 21 16 0 16
POS_CASH _balance 10001358 8 7 1 0 2

5.2.3 Missing values identification

There are a significant number of columns with a high number of missing values in
the application_train. The majority of features with high missing values are related
to residential or apartment information. It is expected that these features will be
missing if the applicant does not own or rent a property. Figure 9 shows that 41
features contain 50% or more missing values, 16 features have between 10% and 50%

missing values and 10 features have less than 10% missing values.

Features with high missing values (above a subjective proportion or threshold) are
usually dropped, and those below a certain threshold are imputed. However, dropping
features may result in loss of information, therefore it is imperative to understand if
these feature have an impact on the models. Features with missing values were kept
until the feature selection and modelling phases. Furthermore, various strategies were
applied to handle the features with missing values, such as predicting missing values
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5.2. Case study 2: Home credit default data

or replacing the missing values with zero. The EXT_SOURCE_1, EXT_SOURCE_2
and EXT_SOURCE_3 features were imputed using XGBoost regression model for
predicting, starting with the feature with the least number of missing value columns.

Only numeric values were used as input features into the regression model.
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Figure 9: Proportion of missing values for each feature containing missing values in
application_train dataset.

5.2.4 Anomalies detection and contradictions

Appendix C provides a statistical description of all the features and shows the
distributions, central tendency, quartiles, and extreme values of the numerical
features. The analysis shows the presence of anomalies and extreme numbers across
all the datasets. Negative values were observed for DAYS_BIRTH. Extreme values are
found in DAYS_EMPLOYED, OBS_30_CNT_SOCIAL_CIRCLE and OBS_60_CNT -
SOCTAL_CIRCLE. The DAYS_ BIRTH feature was converted to years and made
positive number so that it can be easier to interpret. Erroneous values in some fields
such as DAYS_EMPLOYED, OBS_30_CNT_SOCIAL_CIRCLE and OBS_60_CNT -
SOCIAL_CIRCLE were deleted or converted to missings(Nan) and subsequently
replaced with 0 for algorithms that cannot handle missing values. There were also
four rows with unkown value (XNA) in the Gender feature that were removed. The
EXT'SOURCE features contain missing values and were imputed as described in
5.2.3.

5.2.5 Correlation analysis

The correlation heatmap shows the degree of correlation between the features for the
application_train dataset. Highly correlated features can increase the time complexity
of the model and increase the complexity of the model interpretation. These highly
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correlated features are removed, as explained in Section 4.5. Figure 10 shows a high
correlation between AMT_GOODS_PRICE and AMT_CREDIT, between DAYS_-
EMPLOYED and DAYS_BIRTH as well as the apartments or living area related

features.
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Figure 10: A heatmap of the correlation of each numeric feature with respect to
other features in application_train dataset.

5.2.6 Data transformations

Response encoding was used to transform all categorical features into quantitative
data because the majority of the algorithms in the Scikit-learn library are unable to
handle such features. The categorical features were split into two features (with 1
and 0 suffixes), each of which contains the likelihood that each class label belongs to

that category.
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5.2.7 Class imbalance analysis

A distribution analysis of the classes indicates that the proportion of defaults
(encoded 1) is significantly lower than non-defaults (encoded 0), i.e., the data is
highly imbalanced, as shown in Table 2. The low percentage of 8.07% shows that
the Home Credit Group is very selective when providing credit and has managed
to maintain a low rate of customers that fail to meet their financial obligations or
default. Furthermore, when classes are highly imbalanced, some metrics used to
measure the performance of the classification models may be misleading. For instance
the accuracy (percentage correctly classified) may be misleading in this case because
it is biased to the majority class. Other metrics, such as AUC, precision and recall
must be applied when assessing the performance of the classification models.

Table 2: The overall class distribution and analysis by loan type.

Cash loan Revolving loan Overall
Classes Total | %Total Total | %total Total | %total
Non-default (0) | 255 011 91.65 27 675 94.52 | 282 686 91.93
Default (1) 23 221 8.35 1 604 5.48 24 825 8.07
Total 307 511 | 100.00 | 307 511 | 100.00 | 307 511 | 100.00

5.2.8 Data partitions

The application_train dataset was partitioned into three subsets made up of 60%, 28%
and 12% of the total observations for training, testing and validation respectively.
The proportion of subsets is to ensure sufficient volumes in each subset so that
the classification models are stable. The train test_split function from the
python Scikit-learn library was used to ensure that the distribution of the targets are
representative of the original dataset. The imbalance shown by the target distribution
may have an adverse effect on the performance of the predictive models and may
require additional steps in the construction of the models. In order to optimise the
performance of the models, re-sampling, generating synthetic samples, weight class

parameters and penalties for some algorithms were considered.
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CHAPTER 6

RESEARCH RESULTS AND DISCUSSION

In order to address the research objective, eight classification techniques were con-
structed and assessed in terms of performance and explainability. The aim being
firstly, to examine the effectiveness in terms of accuracy of the transparent and black
box models. Secondly, to address the challenges of the explainability of black box
techniques in the context of credit default risk predictions.

This chapter presents the results of the study and it is organised as follows: Section
6.1 presents the key hyperparameters that were tuned for optimal performance for
each classification model applied to case study 1 and case study 2, i.e., the credit card
default dataset and Home-credit default dataset, respectively. Section 6.2 presents
the results of the experiments conducted for case study 1. The performance of the
classification models as well as pre- and post-explainability modelling results are
discussed. In Section 6.3, the results of the experiments conducted for case study 2,
are discussed, covering the performance of the classification models as well as pre-
and post-explainability modelling results.

6.1 Classifier performance tuning

The classification techniques, namely, ANN, bagging, DT, LDA, LGBM, LR, SVM
and, RF discussed in this paper, all required several hyperparameters to be tuned
to enhance performance. Given the numerous hyperparameters to be tuned, tuning
each one by manual trial and error would be both time consuming and inefficient.
Consequently, the hyperparameter optimisation was done with a random search

approach. Furthermore, since the data is highly imbalanced, class weights were used
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6.2. Case study 1: Credit card default data

to optimise the performance of the classifiers that are influenced by imbalanced classes.
Table 3 shows the hyperparameters that were tuned to optimise the performance of
the classification models applied to case study 1 and case study 2.

Table 3: Hyperparameters and search spaces for the classifiers applied for case study

1 and case study 2.

Classifier | Hyperparameter Search Space
Hidden layers One layer with 100 nodes and three layers with 120, 80,
ANN 40 nodes, respectively
Activation Tanh and rectified linear activation function
Maximum iterations {10, 20}
Bagei Number of estimators {50, 100, 150, ..., 500}
agging
Maximum samples {100, 200, 300, ...,1000}
Maximum depth {1,2,...,6}
DT Maximum leaf nodes {1,2,...,50}
Minimum sample per leaf | {1, 100, 200, . . . , 1000}
Class weight {balanced, none}
LDA | Solver Single value decomposition (SVD), least squares solution
(LSQR) and eigenvalue decomposition (Eigen)
Number of leaves {10, 20, 25, 30, 40, 60, 80, 100}
LGBM Maximum depth {1, 3, 5, 10, 20}
Learning rate {0.01, 0.05, 0.1, 0.2}
Reg alpha {0, 0.01, 0.03, 0.05, 0.07}
LR Class weight {balanced, none}
Solver SAGA, newton-cg, LBFGS, Liblinear
SVM Class weight balan@;}l .
Alpha 10~**+as) where i =0, 1,...,49
Number of estimators {50, 100}
RF | Max depth {6, 9, 12}
Maximum leaf nodes {6, 9, 12}

6.2 Case study 1: Credit card default data

This section presents results for the pre- and post-modelling explainability of the
classification models applied to case study 1. In pre-modelling explainability, features
that served as inputs into the models are described. Post-modelling explainability
covers explainability of classification models that are intrinsically explainable or
transparent such as LR, LDA, and DT. The post-modelling explainability results for
SVM, ANN, bagging, RF, and LGBM achieved using SHAP and LIME are presented.

6.2.1 Pre-modelling explainability

Pre-modelling explainability encompasses methods to understand the data prior to
training and applying the classifiers for credit scoring. Pre-modelling explainability
can be achieved through univariate analysis of features and quantifying the rela-

tionship between features and the target variable. The [V was used to quantify the
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strength of the relationship between features and target. The results of the univariate
analysis for each feature are presented in Appendix A.

Table A.5 shows the analysis of PAY _0, which is the repayment status in September,
in relation to the outcome of the loan. The information value of this feature is 0.87,
which indicates a strong relationship to the outcome of the loan. PAY 2, defined as
repayment status in August, has the second highest IV of 0.54, as shown in Table
A.6. Similar analysis was conducted for all features. It is expected that features with
a high IV will be deemed as predictive factors in the classification models.

Pre-modelling explainability can also be achieved through explainable feature engi-
neering. The original features were extracted without any modifications from the
credit card default dataset and no additional features were derived. This aids in
the explainability of features since all the features are defined and computations
are explainable and understood. Furthermore, they can be broadly categorised
as demographic information, repayment statuses, bill amounts, payment amounts
and credit balances. This makes it possible to explain the risk factors or feature
contributions towards model predictions.

Given the small size of the feature space, the VIF was used to reduce multicollinearity
and eliminate redundant features by excluding those with a VIF above 5. Table 4
shows the 18 features that were selected from the original set of 24 features using
VIF.

Table 4: Features selected for case study 1.

Category Feature Selected
SEX
EDUCATION
MARRIAGE
AGE

PAO

PA2

PA 3

PA 4

PA5

PA 6
BILL_AMT1
BILL_AMT?2
BILL_AMT3
BILL_AMT4
BILL_AMT5
BILL_AMT6
PAY_AMT1
PAY_AMT?2
PAY_AMT3
PAY_AMT4
PAY_AMT5
PAY_AMT6
LIMIT'BAL

Demographics data

Repayment statuses

N NN N NN N NN

Bill statements

\

Previous payments

SNENENEN
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<
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6.2.2 Classifier performance tuning

The classification models applied in case study 1 were trained with various hyper-
parameters. Table 5 lists the hyperparameters that were tuned for each model,
as well as optimal values obtained for the search spaces described in Section 6.1.
The optimal hyperparameters were obtained using a 5-fold cross-validation random
search, repeated 15 times. For each iteration, random samples were extracted for
cross-validation and the hyperparameters that produced optimal results were used.

Table 5: Optimal hyperparameters for each classifier for case study 1.

Classifier | Hyperparameter Optimal value
Hidden layers Three layers with 120, 80, 40 nodes, respectively.
ANN | Activation Tanh
Maximum iterations 20
. Number of estimators 5
Bagging
Maximum samples 750
Maximum depth 6
DT Maximum leaf nodes 43
Minimum sample per leaf | 100
Class weight balanced
LDA | Solver SVD
LGBM Num.ber of leaves 20
Maximum depth 3
LR Class weight balanced
Solver SAGA
RF Max depth 6
Maximum leaf nodes 12
SVM Class weight balanqegl ‘
Alpha 10~*+s) where i = 7

6.2.3 Performance evaluation

The performance of each classification model was analysed in terms of AUC. The
results were obtained by evaluating the models on 30 randomly generated subsets of
data from the validation data. Figure 11 depicts the performance of each classification
model in classifying credit card defaults and non-defaults. LGBM achieved the highest
average AUC of 76.94%, followed by RF and ANN with average AUCs of 76.85% and
76.32%, respectively. The DT classification model yielded an average AUC of 73.95%.
In comparison, bagging, LDA, LR and SVM produced AUCs ranging between 71.18%
and 72.21% which are lower than the performance of DT. In this case study, the black
box models outperform the transparent models, with the exception of the bagging
classifier. This finding suggests that there may be a trade-off between accuracy and
explainability.

A further analysis to assess the difference of means was conducted using ANOVA
and the Kruskal-Wallis test. However, the p-value on the ANOVA test for normality
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is less than 0.05. This indicates that data are not normally distributed and therefore
ANOVA cannot be used to compare or to draw meaningful conclusions from the
means. The Kruskal-Wallis test yields a p-value less than 0.05, which suggests that
the means are different. In addition, Dunn’s multi-comparison test shows that the
average AUCs of ANN, LGBM and RF are not statistically significant since the
p-values are greater than 0.05. However, the average AUCs of these classifiers are
significantly different compared to those of bagging, DT, LDA, LR and SVM, at a
95% confidence level, as shown in Table 6.

6.2.4 Post-modelling explainability of interpretable models

The DT inherently produces feature rankings since the order of feature splits depends
on the discriminatory power of the feature. The sequence of features shown as nodes
as well as branches show the relationship between variables. Figure 12 exhibits the
first three levels of the DT for case study 1. The PAY_0, and PAY _2 have the highest
rank in terms of discriminating between classes. While a decision tree is easier to
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Figure 11: Performance of the classification models for case study 1.

Table 6: Dunn’s multi-comparison test of the classification models for case study 1.
The average AUCs of ANN, LGBM and RF are significantly different to those of
bagging, DT, LDA, LR and SVM since the p-values are less than 0.05.

AUC | ANN | Bagging | DT | LDA | LGBM | LR | RF | SVM
ANN 76.32 1.00
Bagging | 71.18 | 0.00 1.00
DT 73.95 | 0.02 0.00 | 1.00
LDA 71.65 | 0.00 1.00 | 0.00 | 1.00
LGBM 76.94 1.00 0.00 | 0.00 | 0.00 1.00
LR 72.21 | 0.00 0.99 | 0.08 | 1.00 0.00 | 1.00
RF 76.85 1.00 0.00 | 0.00 | 0.00 1.00 | 0.00 | 1.00
SVM 72.14 | 0.00 1.00 | 0.05 | 1.00 0.00 | 1.00 | 0.00 1.00
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6.2. Case study 1: Credit card default data

interpret because it can be depicted visually, it may be difficult to follow when the
size of the tree is large.

PAY_0=0454
entropy = 1.0
samples = 15000
value = [7500.0. 7500.0]

class = 1
PAY AMT2<-0.17 [ PAY 0=1335
entropy = 0.943 entropy = 0.759
samples = 11568 samples = 3432
value = [6404.083, 3600.814] value = [1095.917, 3899.186]
class=0 class =1
True False Ise
PAY 3=0951 PAY 4 <1025 PAY 2 <1.339 BILL_AMT1 < -0.666
entropy = 0.994 entropy = 0.878 entropy = 0.94 =0.499
samples = 4138 samples = 7430 samples = 1863 samples = 1569
value = [2145.609, 1799.277] value = [4258.475, 1801.537] value = [790.96, 1426.311] wvalue = [304.956, 2472 875]
class=0 class=0 class=1 =1

Figure 12: A representation of the DT classifier up to a depth of two for case study
1.

The relative contributions of factors predictive of default were assessed for LR by
extracting the coefficients and analysing the statistical significance. Table 7 shows
the coefficients, p-values, standard errors, and confidence intervals for each feature
for the optimal LR model. The features are ordered in terms of the magnitudes
of the contributions to the predictions, by calculating the absolute values of the
coefficients and ranking them in descending order. The intercept is used to provide
a probability of an outcome when all features are at zero.

The measures of statistical significance and confidence intervals of the LR parameters
indicate only 13 features contribute significantly to the model since the p-values are
less than 0.05. The p-values for PAY 4, PAY_6, PAY_AMT1, PAY_AMT3, PAY _-
AMT5, PAY_AMTG6 features are higher than 0.05, indicating that those features do
not contribute significantly to the scoring models and could be omitted. An added
advantage of this approach is that it provides information about features that can

be left out of the model without compromising the accuracy.

The measures of statistical significance and confidence intervals of the LDA parameters
indicate that only 10 features contribute significantly to this model since the p-values
are less than 0.05 as shown in Table 8. The bottom 8 features have p-values higher
than 0.05 indicating that the features do not contribute meaningfully to the target
and could be excluded from the LDA classification model.

The group means for each feature and each class are depicted in Table 9. The
differences in mean values for each feature per class imply that these features have an
impact on the classes. Furthermore, the low standard errors and confidence intervals
indicate that the mean values are expected to fall within the range of given values
at a 95% confidence level. Furthermore, the measures of statistical significance of
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the LDA parameters for default class indicate that the top 18 features contribute
significantly to the model since the p-values are less than 0.05.

Table 7: Feature importance and impacts for the LR classifier for case study 1.

Features Coefficients | std error z | [.025 | .975] | P > |Z|
INTERCEPT -0.19 0.02 | -11.79 | -0.21 | -0.18 0.00
PAY 0 0.52 0.03 | 1737 | 049 | 0.55 0.00
PAY_AMT?2 -0.49 0.14 | -3.45| -0.63 | -0.35 0.00
PAY_AMTH4 -0.15 0.06 | -3.30 | -0.20 | -0.11 0.00
PAY_2 0.15 0.04 4.12 0.11 0.18 0.00
LIMIT _BAL -0.13 0.03 | -4.16 | -0.16 | -0.10 0.00
MARRIAGE -0.11 0.03 | -4.36 | -0.14 | -0.09 0.00
BILL_AMT1 -0.10 0.05 | -1.88 | -0.15 | -0.05 0.03
EDUCATION -0.09 0.02| -435]| -0.11 | -0.07 0.00
PAY 3 0.09 0.04 2.04 | 005| 0.14 0.02
PAY_AMT1 -0.09 0.06 | -1.44 | -0.15 | -0.03 0.08
SEX -0.07 0.02 | -3.70 | -0.09 | -0.05 0.00
PAY 4 0.04 0.04 0.99 | -0.00 | 0.08 0.16
AGE 0.04 0.02 1.96 | 0.02 | 0.06 0.02
PAY_AMT3 -0.03 0.04 | -0.82 | -0.08 | 0.01 0.21
PAY_AMTS5 -0.03 0.05| -0.55| -0.08 | 0.02 0.29
BILL_AMT6 0.01 0.05 0.22 | -0.04 | 0.07 0.41
PAY_AMT6 0.01 0.03 0.19 | -0.03 | 0.04 0.43
PAY 6 -0.00 0.03 | -0.08 | -0.03 | 0.03 0.47
Table 8: Feature importance and impacts for the LDA classifier for case study 1.
Features Coefficients | std error z | [.025 | .975] | P > |Z]
INTERCEPT -1.51 0.02 | -60.57 | -1.53 | -1.48 0.00
PAY_0 0.71 0.04 | 20.06 | 0.68 | 0.75 0.00
BILL_AMT1 -0.27 0.04 | -6.90 | -0.30 | -0.23 0.00
PAY 2 0.19 0.05 3.69 | 0.14 | 0.24 0.00
PAY 4 0.14 0.05 3.09 1 0.09| 0.19 0.00
EDUCATION -0.09 0.02 | -493 | -0.11 | -0.07 0.00
MARRIAGE -0.08 0.02 | -3.99 | -0.10 | -0.06 0.00
LIMIT _BAL -0.08 0.03 | -3.19| -0.11 | -0.06 0.00
PAY_AMT1 -0.08 0.02 | -3.85| -0.10 | -0.06 0.00
PAY_AMT5 -0.06 0.02 | -2.52 | -0.09 | -0.04 0.01
AGE 0.06 0.02 2.79 | 0.04| 0.08 0.00
BILL_AMT6 0.05 0.04 1.25 1 0.01 | 0.09 0.11
PAY 6 -0.03 0.04 | -0.84 | -0.07 | 0.01 0.20
SEX -0.03 0.02 | -1.25| -0.05 | -0.01 0.10
PAY 3 0.03 0.05 0.50 | -0.03 | 0.08 0.31
PAY_AMT?2 -0.02 0.03 | -0.63| -0.05| 0.01 0.26
PAY_AMTH4 -0.02 0.02 | -0.72 | -0.04 | 0.01 0.24
PAY_AMTS3 0.01 0.02 0.26 | -0.01 | 0.02 0.40
PAY_AMTG6 0.00 0.02 0.06 | -0.02 | 0.02 0.47
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6.2. Case study 1: Credit card default data

6.2.5 Post-modelling explainability using SHAP

SHAP was used to provide insights into the importance of each feature for each
classification model. Table 10 exhibits the ranking of features based on the relative
magnitudes of the mean absolute SHAP values. The PAY _0 is the most influential
feature as it ranks highest across all the models.

The rankings of features for LR and LDA according to SHAP are different to the
rankings of features presented in Tables 7 and 8. This can be attributed to the fact
that mean absolute values can be easily influenced by extreme values resulting in
erroneous rankings and conclusions. Feature importance provides a view of predictive

factors of the classifiers.

It can be observed that predictions of the DT classifier depend only on 15 features as
shown in Table 10, where the mean absolute SHAP values are not zero. Alternatively,
three features, namely PAY_AMT5, MARRIAGE and EDUCATION are not used in
predictions since the mean absolute SHAP values are zero. The features that ranked
the highest in terms of importance according the mean absolute SHAP values also
ranked highest in the graphical representation of the D'T. Seemingly, SHAP feature
importance rankings produces, but not always, results similar to the intrinsically
explainable classifiers. Similar observations regarding feature importance can be
made for the other classification models. It is evident that SHAP is also useful for
feature selection because it can quantify the importance of each feature. However, a
suitable threshold would have to be determined in order to decide which feature to

select or remove.

Figures 13a and 13b demonstrate feature dependence plots for the top five features for
each classification model. The y-axis has two coordinates, left and right. The right
coordinate indicates the feature with the highest interaction. The left coordinate
shows the SHAP values. SHAP values that are less than zero contribute negatively
towards the predictions. A value of zero indicates no contribution. Whereas values
greater than zero contribute positively towards predictions. In the case of predicting
default, negative values reduce the expected probability of default and positive values
increase the expected probability of default.

The dependence plots provide a view of the relationship between a feature’s values and
the model’s predicted outcomes. The dependence plots reveal that the relationship
between SHAP values, feature values and feature interaction are different for each
classification model. For example, the LIMIT_BAL is the third most important
feature for ANN. Furthermore, as the LIMIT_BAL increases the SHAP values decrease
(see the third plot in the first row in Figure 13a). In addition, the LIMIT_BAL has a
relatively stronger interaction with PAY_0. However, the LIMIT_BAL is the second
most important feature for LGBM. An inverse relationship between the LIMIT_BAL
values and SHAP values is observed, similar to that of ANN.
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6.3. Case study 2: Home credit default

Furthermore, the LIMIT _BAL has a relatively stronger interaction with BILL -
AMT1 (see the second plot in the fifth row in Figure 13a). In this study, the feature
interaction effects are analysed between the feature of interest and the most influential
feature, i.e., limiting the interaction effects to the most influential feature.

Figure 14 shows the instance level explanation provided by the LIME framework
as predicted by LGBM classification model. These instance level explanations can
be generated for all the classifiers since LIME is model agnostic. For this example,
LIME explains that this customer is predicted not to default on their credit card
and this decision is based mainly on the PAY_0, LIMIT_BAL, PAY_AMT3, PAY _6,
PAY 4, SEX, MARRIAGE, PAY_AMT6 and BILL_AMT6. MARRIAGE, highlighted
in blue, contributes towards non-default in this case.

0

Prediction probabilities

0 [N .92 0
1 —no0 121 <LIMIT BAL .

-0.19 < PAY_AMT3 <
0.02

b
DAY 0<= 057 Feature Value
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-0.62 <PAY 6==024

0.02
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123 <SEX <=0281

MARRIAGE <= ln(i? AGE e
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-0.63 < BILL_AMT6 < -
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-0.22 =PAY_AMTS =_|
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0.01
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.00
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Figure 14: LIME interpretation for LGBM classifier for case study 1.

6.3 Case study 2: Home credit default

This section presents results for the pre- and post-modelling explainability for case
study 2. In pre-modelling explainability, features that served as inputs into the
classification models are described. In post-modelling explainability the results for
intrinsic explainability of LR, LDA, and DT are discussed. Furthermore, the post-
modelling explainability results for SVM, ANN, bagging, RF, and LGBM achieved
using SHAP and LIME are presented.

6.3.1 Pre-modelling explainability

Pre-modelling explainability encompasses methods to understand the data prior to
training of the classifiers for credit scoring. This is achieved through an exploratory
analysis of the data, explainable feature engineering, data summaries and feature
selection approaches. The results of the data summaries, more specifically using
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6.3. Case study 2: Home credit default

univariate analysis, and feature selection are presented. The univariate analysis is
used to show the relationship between features and the target variable. The IV was
used to quantify the strength of the relationship between features and target. Given
the high number of features for this dataset only the most important features were
analysed.

Table D.1 shows the analysis of the education level in relation to the outcome of the
loan. Applicants that have a secondary special (Sec. special) education and higher
education (higher edu.) constitute 71.02% and 24.34% of applicants, respectively.
Applicants with an academic degree make up the lowest percentage of approximately
0.05%. However, applicants with an academic degree also have the lowest bad rate of
less than 2%. Lower secondary (Lower sec.) applicants make up 1.24% of applicants,
but they have the largest bad rate of 10.93%. This is possibly attributed to the
fact that the income of an individual is likely to be higher depending the level of
education. Furthermore, the low income earners are likely to be in financial distress
and consequently default on loan obligations. The IV of this feature is 0.05, which
indicates a moderate relationship to the outcome of the loan.

The analysis of income sources depicted in Table D.2; indicates that most applicants
have income sources from working, followed by commercial associate (Com. associate),
pensioner and state servant make up 51.63%, 23.29%, 18% and 7.06%, respectively.
Applicants from these sources have a bad rate of less than 10%. All other attributes,
namely maternity leave, businessman and student were combined under unemployed
due to low volumes and similar bad rates, and they make up 0.02% of applicants
with a bad rate of 18.18%. The distribution of sources of income indicates that loans
are primarily given to individuals who have a stable source of income. Furthermore,
the information value of this feature is 0.06, indicating a moderate relationship with
the outcome of the loan.

The occupation feature has many occupation types which were grouped based on
the low variability of the weight of evidence (WoE), bad rates as well as low volumes.
Occupation 1 is mainly made up of low-skill labourers and has an observed default
rate of 17.15% as shown in Table D.3. Occupation 8 (accountants) has the lowest
default rate of 4.83%. This table shows that there is a conceivable relationship
between the level of professional skills and default rates. The observed IV is 0.09,
which also shows a moderate relationship between occupation type and default rates.

Similarly, there are many organisation types and they were grouped based on the
low variability of the Woll, bad rates as well as low volumes, as presented in Table
D.4. Organisation 14 has the lowest default rate of 3.70%. This analysis shows that
there is a conceivable relationship between the organisations and default rates. The
observed [V is 0.07, which also shows a moderate relationship between organisation
type and default rates.

The age of the customers is derived from the DAYS_BIRTH feature by converting
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6.3. Case study 2: Home credit default

days into years. In addition, this feature is converted to a positive value because
in the data the age is calculated from the time of application and not from the
birth date. The univariate analysis of the age of the applicants, shown in Table D.5,
indicates that the younger the applicants the higher the default rate. This could
be attributed to the fact that the younger population is still new to the job market
and not as financially stable as the older population. Furthermore, the default rate
for the age group 20 to 28 years is above average at 11.57%. In this analysis, the
age variable was binned such that each interval of the age or age groups are fairly
equal in size. The univariate analysis of the age of the applicants yields an [V of

0.08 indicating a moderate association with default rates.

The EXT_SOURCEL_1 feature is a normalized score from an external data source.
Table D.6 shows this score is not populated for 56% of the population. The bad rate
for the population for which the score is blank is slightly above average at 8.52%.
The highest bad rates observed is 17.56% for the lower scores and 2.5% for the higher
end of the scores. The IV of 0.15 indicates a moderate degree of association between
EXT_SOURCE_1 and the target. A similar analysis yields an IV of 0.35 if only the
scored population is analysed, i.e., excluding missing values. This shows that the

score has a fairly strong relationship with the target for the scored population.

The EXT_SOURCE_2 feature is also a normalized score from an external data source.
Table D.7 shows this score is mostly populated, since less than 0.5% are missings.
The highest bad rates observed is 18.35% for the lower scores and 2.97% for the
higher end of the scores. The IV of 0.31 indicates a moderate degree of association
between EXT_SOURCE_2 and the target.

Similarly, EXT_SOURCE_3 is also a normalized score from an external data source.
Table D.8 shows this score is mostly populated, since less than 20% are missings.
The highest bad rates observed is 20% for the lower scores and 3.23% for the higher
end of the scores. The IV of 0.33 indicates a moderate degree of association between
EXT_SOURCE_3 and the target.

The subset of relevant features employed for training classifiers was chosen using a
combination of feature selection strategies. The initial selection of 100 features was
aided by the use of two methods, namely Kendall tau’s correlation and 2, both of
which are categorised as filter methods. The VIF was used to eliminate features that
are correlated by excluding features above a VIF threshold of 5. This reduced the
number of features from 100 to 65.

Furthermore, lasso regression (Lasso R.), ridge regression (Ridge R.), RF and LGBM
RFE wrapper methods were utilised to determine the top ranking features. The
performance of the RFE wrapper methods were evaluated using all top ranking 60,
30 and 15 features. As shown in Table 11, selecting the top ranking 15 features for
each method produces similar performance results as selecting 60 features. Therefore,

the number of features used can be reduced further to 15 without compromising
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on performance. The final features were selected based on a voting system of the
methods on the top 15 features selected by each model, where a feature must be
selected by at least one RFE wrapper method.

Table 11: Performance evaluation of RFE wrapper methods tested on 15, 30 and 60
features.

ROC AUC Precision Recall
No. features | 15 | 30| 60| 15| 30| 60| 15| 30| 60
LGBM 67.92 | 68.06 | 67.92 | 13.65 | 13.98 | 13.85 | 80.22 | 79.53 | 79.69
Lasso R. 67.67 | 67.66 | 67.74 | 13.65 | 12.78 | 13.33 | 79.86 | 84.38 | 81.69
RF 66.33 | 66.22 | 66.56 | 13.01 | 14.06 | 14.39 | 80.16 | 74.38 | 73.79
Ridge R. 67.61 | 67.66 | 67.73 | 13.47 | 12.79 | 13.32 | 80.68 | 84.36 | 81.76

The final number of features that were selected were 24, where each feature was
selected by either one of the RFE wrapper methods as tabulated in Table 12. The
final features that were extracted can be broadly categorised as belonging to the
following categories: external sources, age related, education and employment, gender,
car ownership flag, income and credit characteristics, changes in contact information,
social circle observations, car ownership ratios, apartment scores and loan application
related.

6.3.2 Classifier performance tuning

Table 13 shows the hyperparameters that were tuned for each model, as well as
optimal values for these hyperparameters. The search space is described in Section
6.1. The optimal hyperparameters were obtained using a five-fold cross-validation
random search, repeated 15 times.

The AUC was used to assess and rank the classifiers’ ability to distinguish between
good and bad credit applicants. Table 14 displays the optimal threshold, i.e., best
value to classify an outcome as either default or non-default, as well as the AUC for
all classifiers for the training and test subsets. On the training subsets, the LGBM
classifier had an AUC of 82.54 when applied to 24 features. Furthermore, the LGBM
classifier’s AUC on training was significantly higher compared to performance on
the other subsets. This implies that the LGBM classifier may be overfitting, even
though it still performed reasonably well and consistently on those subsets. Overall,
the classifiers displayed slightly higher performance on the subset of 24 features.

6.3.3 Performance evaluation

The performance of each classification model applied to the home credit default
validation set was analysed in terms of AUC. Figure 15 shows that the DT achieved
the lowest average AUC of 70.50% followed by ANN and RF with average AUCs of
72.70% and 72.85%, respectively. The LR classification model achieved the highest
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6.3. Case study 2: Home credit default

Table 12: Features selected using recursive feature elimination methods for case
study 2.

Category Feature Lasso R. | Ridge R. | RF | LGBM
EXT_SOURCE_3 v v v v
. EXT_SOURCE_2 v v v v
Normalised scores
EXT_SOURCE_1 v v v v
EXT_SOURCE_MAX - - v v
DAYS_EMPLOYED v v v v
Age related
DAYS_BIRTH v v v v
ORGANIZATION_TYPE_1 v v - v
Education and employment | OCCUPATION_TYPE_1 v v - v
NAME_EDUCATION_TYPE_0 v v - v
Gender CODE_GENDER_1 v v - v
Car ownership FLAG_.OWN_CAR_1 v v - v
Type of loan NAME_CONTRACT_TYPE.O v v - -
AMT_INCOME_TOTAL - - v -
AMT_ANNUITY v v v v
Income and credit CREDIT_GOODS_RATIO v v - v
ANNUITY INCOME_RATIO - - v -
CREDIT_ANNUITY_RATIO - - v v
DAYS_ID_PUBLISH - - v v
Personal details change DAYS_REGISTRATION - - v -
DAYS_LAST PHONE_CHANGE - - v -
. . DEF_30_CNT_SOCIAL_CIRCLE v v - -
Social circle
NAME_TYPE_SUITE_0 - - - -
REGION_RATING_CLIENT W _CITY_0 v v - -
REGION_POPULATION _RELATIVE - - v -
WALLSMATERIAL_ MODE_1 - - - -
Apartment related
REG_REGION_NOT _LIVE_REGION - - - -
REG_CITY_NOT_WORK_CITY - - - -
NONLIVINGAREA_MODE - - - -
.. HOUR_APPR_PROCESS_START - - v -
Application related
WEEKDAY_APPR_PROCESS_START_1 - - - -

average AUC of 74.58%. In this experiment the transparent linear models perform
relatively well on average compared to the black box models. This is possible if the
relationship between the features and target variable is linear and the distributions of
the features meet the requirements of linear models. The findings of this experiment

suggest that the trade-off between accuracy and explainability may not always apply.

An analysis of the means was conducted using ANOVA and the Kruskal Wallis test.
The data fails the test for normality and therefore ANOVA can not be used to compare
the means. The Kruskal Wallis test indicates that there is a significant difference
in the means of the models, since the p-values are less than 0.05. Furthermore, a
multi-comparison analysis using the Dunn test shows that the means of the LR,
LDA, LGBM, bagging and SVM are not significantly different as shown in Table 15.

6.3.4 Post-modelling explainability of interpretable models

The DT inherently produces features importance since the order of feature splits
depends on their discriminatory power. The classification is visually represented

by the branches and terminal nodes of the tree. Figure 16 depicts an example of
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one of the induced trees illustrating the sequence of features as nodes as well as
branches to show the relationship between variables. The features, EXT_SOURCE_3,
EXT_SOURCE_2 and EXPECTED_INTEREST_SHARE have the highest rank in

terms of discriminating between classes.

Table 16 contains the coefficients, p-values, standard errors, and confidence intervals
for each feature for the optimal LR model. The features were ordered in terms of the
contribution to the predictions by calculating the absolute value of the coefficients
and ranking them in descending order. The p-values for the top 22 features were less

Table 13: Optimal hyperparameters for each classifier for case study 2.

Classifier | Hyperparameter Optimal value
Hidden layers Three layers with 120, 80, 40 nodes, respec-
ANN tively.
Activation Tanh
Maximum iterations 20
. Number of estimators 15
bagging )
Maximum samples 750
Maximum Depth 7
DT Maximum leaf nodes 48
Minimum sample per leaf | 500
Class weight balanced
LDA | Solver SVD
Number of leaves 40
LGBM Maximum depth )
Learning rate 0.2
Reg alpha 0.01
LR | Class weight balanced
SVM Class weight balangegl .
Alpha 10~*+s) where i = 5
RF Max depth 6
Maximum leaf nodes 12

Table 14: The optimal threshold and model performance for the training and testing
subsets for case study 2. Results showed that the LGBM classifier outperformed
other classifiers, particularly on the 24 selected features. Overall, the classifiers
exhibited slightly higher performance on this subset of features.

J-Statistic AUC (Training AUC (Testing)
No. features 8 12 16 24 8 12 16 24 8 12 16 24
ANN 801 | 794 | 791 | 8.69 | 7422 | 7530 | 75.58 | 76.29 | 73.99 | 74.84 | 75.01 | 75.47
bagging 819 | 796 | 812 | 7.95| 73.37 | 73.98 | T4.19 | 74.24 | 73.24 | 73.72| 74.02 | 74.09
DT 51.44 | 50.68 | 50.83 | 50.98 | 73.03 | 73.22 | 73.16 | 73.16 | 71.66 | 71.65 | 71.84 | 71.85
LDA 755 | 773 77| 729 | 73.85 | T4.73 | 74.84 | 74.95 | 73.70 | 74.53 | 74.68 | 74.83
LGBM 834 | 8.00| 805| 9.10 | 75.17 | 76.12 | 76.12 | 82.54 | 74.08 | 74.92 | 74.96 | 76.46
LR 48.91 | 49.33 | 49.59 | 8.07 | 73.89 | 74.79 | 74.95 | 75.06 | 73.70 | 74.54 | 74.72 | 74.90
RF 828 | 824 | 878 | 855 | 7270 | 73.29 | 73.29 | 73.72 | 72.15 | 7281 | 7295 | 73.30
SVM 8.02| 795 | 822 | 828 | 73.75| 74.61 | T4.73 | 74.92 | 73.60 | 74.37 | 74.52 | 74.74
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Figure 15: Performance of classification models on the validation set with 24 features

for case study 2.

Table 15: Dunn’s multi-comparison test for classification models for case study 2.
The average AUCs of LR, LDA and LGBM are significantly different to the average
AUCs of ANN and DT since the p-values are less than 0.05.

AUC | ANN | Bagging | DT | LDA | LGBM | LR | RF | SVM
ANN 72.70 1.00
Bagging | 73.58 0.16 1.00
DT 70.50 | 0.01 0.00 | 1.00
LDA 74.50 | 0.00 0.09 | 0.00 | 1.00
LGBM 74.27 | 0.00 0.41 ] 0.00 | 1.00 1.00
LR 74.58 | 0.00 0.03 | 0.00 | 1.00 1.00 | 1.00
RF 72.85 1.00 0.43 | 0.00 | 0.00 0.00 | 0.00 | 1.00
SVM 74.29 | 0.00 0.43 | 0.00 | 1.00 1.00 | 1.00 | 0.00 1.00

EXT_SOURCE 375 -0.024

gini = 0.5

samples = 184504
value = [92252.0, 92252.0]

EXT_SOURCE_2<-0.317
gini = 0.475
samples = §2912
value = [39606.425, 62517.065]
class =1

EXT_SOURCE_3s-14
gini = 0.499
samples = 52873
value = [26263.773, 28403.335]
class=1

class =1

EXT_SOURCE_2 =-0.516
gini = 0.461
samples = 101592
value = [52645.575, 29734.935]

class =0

gini=05
samples = 24256
value = [12092.203, 12535.619]

EXPECTED_INTEREST_SHARE < 0.602
class=1

Figure 16: A representation of the DT up to a depth of two for case study 2.

than 0.05, indicating that those features significantly contribute to the scoring models.

This was also supported by the relatively low standard error values of these features.
The AMT_ANNUITY, EXT_SOURCE_MAX and HOUR_APPR_PROCESS_START
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were less significant and could be removed from the LR classification model. The
intercept is used to provide a probability of an outcome when all features are zero.

Table 16: Feature importance and impacts for the for LR classifier for case study 2.

Features Coefficients | std error z | [.025 | .975] | P > |Z]

INTERCEPT -2.79 0.01 | -251.47 | -2.81 | -2.78 0.00
EXT_SOURCE_3 -0.48 0.01 | -45.53 | -0.49 | -0.47 0.00
EXT_SOURCE_1 -0.39 0.02 | -24.77| -0.41 | -0.38 0.00
EXT_SOURCE_2 -0.36 0.01 | -32.39| -0.38 | -0.35 0.00
DAYS_BIRTH 0.27 0.01 1844 | 0.26 | 0.29 0.00
CREDIT_GOODS_RATIO 0.17 0.01 16.65 | 0.16 | 0.18 0.00
DAYS_EMPLOYED 0.14 0.01 11.45| 0.13| 0.15 0.00
AMT_INCOME_TOTAL 0.13 0.03 3.85 | 0.10 | 0.17 0.00
NAME_EDUCATION_TYPE_O -0.13 0.01 | -13.12 | -0.14 | -0.12 0.00
ORGANIZATION_TYPE_1 0.13 0.01 1245 | 0.12 ] 0.14 0.00
FLAG_.OWN_CAR_1 0.13 0.01 13.47 | 0.12| 0.13 0.00
CODE_GENDER.1 0.12 0.01 10.58 | 0.11 ] 0.13 0.00
ANNUITY_INCOME_RATIO 0.10 0.01 734 0.09 | 0.12 0.00
REGION_RATING_CLIENT_W_CITY_0 -0.08 0.01 -8.99 | -0.09 | -0.07 0.00
DEF_30_.CNT_SOCIAL_CIRCLE 0.08 0.01 9.79 | 0.07| 0.08 0.00
OCCUPATION_TYPE_1 0.06 0.01 5.53 | 0.05| 0.07 0.00
DAYS_ID_PUBLISH 0.05 0.01 5.24 | 0.04 | 0.06 0.00
NAME_CONTRACT_TYPE_O -0.04 0.01 -3.29 | -0.05 | -0.03 0.00
CREDIT_ANNUITY_RATIO -0.04 0.01 -4.68 | -0.05 | -0.03 0.00
DAYS_LAST PHONE_CHANGE 0.04 0.01 3.82 | 0.03] 0.05 0.00
DAYS_REGISTRATION 0.03 0.01 2.66 | 0.02 | 0.04 0.00
REGION_POPULATION_RELATIVE 0.02 0.01 1.93 | 0.01] 0.03 0.03
AMT_ANNUITY 0.02 0.02 1.00 | -0.00 | 0.03 0.16
EXT_SOURCE_MAX 0.01 0.02 0.73 | -0.00 | 0.03 0.23
HOUR_APPR_PROCESS_START -0.01 0.01 ] -0.96| -0.02| 0.00 0.17

Table 17 presents the measures of statistical significance and confidence intervals of
the LDA parameters indicate that the top 22 features contribute significantly to the
model, since the p-values are less than 0.05. This provides an indication of feature

importance and the contribution of each feature towards predicting default risk.

The p-values in Table 17 are less than 0.05 indicating that the features are meaningful
additions to the model and are associated with the target. This, like the LR, was
supported by the relatively low standard error values. It is also observed that the

sequence of the importance of features for LDA is similar to that of LR.

The group means for each feature and each class are provided in Table 18. The
differences in mean values for each feature per class imply that these features have
an impact on the predictions of classes. Furthermore, the low standard errors and
confidence intervals indicate that the mean values are expected to fall within the
range of given values at a 95% confidence level. Furthermore, the measures of
statistical significance of the LDA parameters for default class indicate that the top
22 features contribute significantly to the model since the p-values are less than 0.05.
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Table 17: Feature importance and impacts for LDA classifier for case study 2.

Features Coefficients | std error z | [.025 | .975] | P > |Z]

INTERCEPT -2.83 0.01 | -240.71 | -2.84 | -2.82 0.00
EXT_SOURCE_3 -0.46 0.01 | -34.88 | -0.47 | -0.44 0.00
EXT_SOURCE_2 -0.39 0.01 | -33.22 | -0.41 | -0.38 0.00
EXT_SOURCE_1 -0.35 0.02 | -19.56 | -0.37 | -0.33 0.00
DAYS_BIRTH 0.28 0.02 1780 | 0.26 | 0.29 0.00
CREDIT_GOODS_RATIO 0.18 0.01 1759 | 017 | 0.19 0.00
CODE_GENDER-1 0.16 0.01 1511 0.14 | 0.17 0.00
FLAG_.OWN_CAR_1 0.14 0.01 1441 | 0.13| 0.15 0.00
ORGANIZATION_TYPE_1 0.14 0.01 13.04 | 0.13| 0.15 0.00
EXT_SOURCE_MAX -0.12 0.02 -6.14 | -0.14 | -0.10 0.00
AMT_INCOME_TOTAL 0.10 0.04 247 0.06 | 0.15 0.01
ANNUITY_INCOME_RATIO 0.10 0.02 6.73 | 0.09 | 0.12 0.00
DAYS_EMPLOYED 0.10 0.01 10.75 | 0.09 | 0.11 0.00
DEF_30_CNT_SOCIAL_CIRCLE 0.09 0.01 8.59 | 0.08 | 0.10 0.00
NAME_EDUCATION_TYPE_O -0.08 0.01 -9.62 | -0.09 | -0.07 0.00
REGION_RATING_CLIENT_W_CITY_0 -0.08 0.01 -6.91 | -0.09 | -0.07 0.00
OCCUPATION_TYPE_1 0.06 0.01 5.90 | 0.05| 0.07 0.00
CREDIT_ANNUITY_RATIO -0.06 0.01 -6.88 | -0.06 | -0.05 0.00
REGION_POPULATION_RELATIVE 0.05 0.01 5.02 | 0.04 | 0.06 0.00
DAYS_ID_PUBLISH 0.04 0.01 419 0.03| 0.05 0.00
DAYS_LAST_PHONE_CHANGE 0.03 0.01 3.58 | 0.02| 0.04 0.00
DAYS_REGISTRATION 0.03 0.01 3.14 | 0.02| 0.04 0.00
NAME_CONTRACT_TYPE_O -0.03 0.01 -2.65 | -0.04 | -0.02 0.00
AMT_ANNUITY 0.03 0.02 1.56 | 0.01| 0.04 0.06
HOUR_APPR_PROCESS_START 0.01 0.01 1.26 | 0.00 | 0.02 0.10
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6.3.5 Post-modelling explainability using SHAP

SHAP is used to provide insights into feature importance and explanations for the
predictions of black box models. In this study, it was also applied to the transparent
models to compare the feature importance results presented in Tables 16 and 17.
Figure 19 shows the ranking of features and the relative magnitudes of the mean
absolute SHAP values, which can be interpreted as measures of feature importance
for each model. The EXT_SOURCE_1, EXT_SOURCE_2 and EXT_SOURCE_3 are
the most influential features as they rank high for most of the classification models
except for the bagging model. The DAYS_BIRTH is the most predictive factor for
the bagging classifier. Furthermore, the rankings of all features using SHAP does
not produce the same rankings of features for LR and LDA as presented in Tables 16
and 17. This can be attributed to the fact that mean absolute values can be easily

influenced by extreme values which can also influence how features rank.

The mean absolute SHAP value shows the relative measure of importance of each
feature towards making predictions. This means SHAP is also useful for feature
selection, since it quantifies the importance of each feature. It was that observed
some classification models had features with negligibly small mean absolute SHAP
values, which suggests that further feature selection or reduction could have been
applied. In this study, the DT and SVM had features with mean SHAP values of zero.
This implies that the predictions of default were not influenced by these features.

Figures 17a and 17b exhibit feature dependence plots for the top five features for each
classification technique. The y-axis has two coordinates, left and right. The right
coordinate indicates the feature with the highest interaction. The left coordinate
shows the SHAP values. SHAP values that are less than zero contribute negatively
towards the predictions. A value of zero indicates no contribution. Whereas values
greater than zero contribute positively towards predictions. In the case of predicting
default, negative values reduce the expected probability of default and positive values
increase the expected probability of default. The z-axis shows the range of feature
values. In Figure 17a, from plots 1 - 5 in the second row, it can be observed that
almost all SHAP values for the top 5 features are close to zero for bagging. This
suggests that this particular range of feature values has a minor impact on the SHAP
values and, consequently, on the predictions.

The dependence plots illustrate the relationship between a feature’s values and the
predictions of the model. The dependence plots also show that the relationship
between SHAP values, feature values and feature interaction are different for each
classification model. The feature interaction effects are analysed between the feature
of interest and the most influential feature, i.e., limiting the interaction effects to the
most influential feature. A feature that has a strong interaction effect with another

feature tends to have a longer range of SHAP values at a constant feature value.
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6.3. Case study 2: Home credit default

For example, a long range of SHAP values is observed at a CREDIT_GOODS_RATIO
value of 1 for the DT classifier (see the last plot in the third row in Figure 17a).
This means that the CREDIT_GOODS_RATIO has a strong interaction effect with
NAME_EDUCATION_TYPE_O.

Figure 18 shows the instance level explanation provided by the LIME framework
as predicted by LGBM classification model. In this example, the predicted class
is non-default (encoded as zero) with a 98% probability. LIME shows the top 9
factors, which include DAYS_EMPLOYED, EXT_SOURCE_3, CREDIT_GOODS -
RATIO, EXT_SOURCE_MAX, CODE_GENDER_0, ORGANIZATION_TYPE_1,
NAME_EDUCATION_TYPE_0, EXT_SOURCE_1 and DAY _BIRTH, contributing
towards the non-default prediction. The features highlighted in blue are pushing the
prediction toward non-default. The total tally of all the features combined are in
favour of the non-default class.

0 1 -

Prediction probabilities A EABLOYED Feature  Value
o [ 0.98 002
1 0.09 <EXT_SOURC. DAYS EMPLOYED
. 0.02
CREDIT_GOODS_R. EXT SOURCE 3
oo CREDIT GOODS_RATIO

0.18 < EXT_SOURC
s EXT_SOURCE MAX
CODE_GENDER_0 <. |
o0l CODE_GENDER 0
ORGANIZATION_TY. |
o ORGANIZATION_TYPE 1

NAME _EDUCATIO.. |
0.01

NAME_EDUCATION_TYPE_0
0.12 =EXT_SOURC EXT SOURCE 1

0.01
-0.83 = DAYS_BIRTH DAYS_BIRTH

0.
-0.64 <EXT_SOURC.. 14 4
001

Figure 18: LIME interpretation for LGBM classifier for case study 2.
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CHAPTER [

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The main objectives of this project were to explore the advantages and effectiveness
of alternative approaches in the context of credit applications and to apply XAI
methods to classification models that are deemed as black box models, i.e., where
outcomes are not explainable. These objectives as stated in Section 1.3 have been
met and are discussed in Chapter 6.

To achieve the objectives of the research, eight classification models were constructed
and tested against two credit datasets that are publicly available. Figure 19 highlights
the accuracy-explainability for some classifiers. The ranking of accuracy, shown
on the y-axis, of the classifiers was based on the average AUC and the Dunn’s
multi-comparison test presented in Sections 6.2.3 and 6.3.3. The LGBM, ANN and
RF outperformed the other classifiers for case study 1. However, LGBM, LR, LDA
and SVM outperformed the other classifiers for case study 2. Furthermore, the AUCs
of the top performing classifiers for case one are on average higher than those of
case study 2. The degree of explainability, shown on the z-axis, was determined by
two factors: the intrinsic explainability and the ease of interpretation of the SHAP
dependence plots. The DT, LR and LLDA rank highest in terms of explainability, with
the DT ranking highest because the feature importance, interactions and predictions
can be depicted using a diagram. The bagging classifier ranked lowest in terms of
explainability for case study 2. The is because the trends in the SHAP dependence
plots are not clear.

The outcomes of the applications indicate that there is no single credit classifier that
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7.2. Recommendations for future work

outperforms the others and the outcome depends on the datasets in question. The
results also suggest that SHAP outputs are intuitive and enhance understanding and
trust in black box models. Furthermore, SHAP outcomes are fairly consistent with
outputs of transparent models. The local explanations provided by LIME provide a
way to explain reasons behind predictions for individual credit applicants. The latter
is imperative for regulatory and legal requirements. LIME computation is more
efficient for instance level explanations compared to SHAP, since the computation
time of LIME using Python is significantly lower than that of SHAP. LIME produces

local explanations almost instantly, making it ideal for practical purposes.

High
LGBM
0] O ANN O RF
A O DT
NN
s | |
§ C 1
=] Q Q (0] (@]
3 SVM LpA LR
Bagging
Low High

Explainability

o Case study 1: credit default Case study 2: Home-cre fat

Figure 19: Accuracy-explainability trade-off of credit scoring classifiers applied in
case study 1 and 2.

This research compliments previous research on the accuracy of various classification
models used in credit and the explainability of these models. The difficulty in
explainability and legal requirements or black box perception of classifiers has
resulted in the reluctance to adopt and utilise these models in practice. Therefore,
the contribution of this research project is to instil confidence in the use of best
performing classifiers irrespective of whether the classifier is deemed as a black box

or not.

7.2 Recommendations for future work

This research has also demonstrated the advantages and effectiveness of alternative
approaches to credit risk scoring. The classification techniques, namely, ANN,
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7.2. Recommendations for future work

bagging, LGBM, SVM and, RF were tested and outcomes were compared against
the popular transparent methods DT, LDA and LR.

Literature shows that MCSs are a growing area of research and show promising
results. The MCS used by Nali¢ et al. [2020] is both robust and interpretable, making
it ideal to be used for credit scoring. This paper focused on certain MCSs, such as
bagging and boosting. There is more future work on other MCSs, such as blending
and stacking used by Wang et al. [2011], which can be extended to use interpretable
base classifiers.

This research has also demonstrated the effectiveness of SHAP and LIME to explain
predictions of black box classifiers. This approach has shown to be useful for both
global and local explanations. The areas that have been identified for future research
on SHAP include the following:

Current approaches use the mean absolute SHAP values of features to rank the
importance. A limitation with this approach is that outliers may have an impact on
the mean absolute value and this can in turn have an impact of feature importance.
Furthermore, there are cases where the mean absolute values are close to each other
which makes it difficult to determine which feature is more important. Although
this approach is widely accepted, much work is required to ensure that conclusions
are not incorrectly interpreted. An extension of the work on feature importance
is to include significance tests, confidence intervals, error measures and pairwise

comparisons of the features importance values.

Two approaches were employed to determine SHAP values. Kernel SHAP was used
for ANN, bagging, SVM, LDA and LR. Whereas, tree SHAP was used for LGBM,
DT and RE. While the kernel SHAP is an improvement to the classic methods of
calculating SHAP values, it is still inefficient in terms of the time it takes to compute
SHAP values [Misheva et al., 2021]. Tree SHAP is very efficient as it computes
SHAP values quickly, however the algorithm is only applicable to decision tree based
algorithms. Further work is required to enhance the efficiency of calculating SHAP

values for linear classifiers and some ensembles.

The visualisations of SHAP values computed using kernel SHAP sometimes lack
useful insights. The dependence plots sometimes fail to show trends that are easily
interpretable and therefore defeat the purpose of interpretability. This is possibly due
to outliers in SHAP values or the internal computational process. To obtain SHAP
values with kernel SHAP, a reasonable sample must be used, which can impact the
clarity of the resulting visualisations. Further research is necessary to enhance the
quality of plots derived from kernel SHAP calculations.
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APPENDIX A

Univariate analysis for case study 1

Table A.1: Univariate analysis of limit of applicants.

Attribute | Goods | Bads | Total | %total Bad | G:B | WoE IV
Rate | odds

(9999, 30000 1463 2618 4081 13.60 | 3585 | 1.79| -0.68 | 0.07

(30000, 50000 977 2618 3595 11.98 | 27.18 | 2.68 | -0.27 | 0.01

(50000, 70000 443 1113 1556 5.19 | 2847 | 251 | -0.34| 0.01

(70000, 100000 801 2465 3266 10.89 | 2453 | 3.08 | -0.13 | 0.00

(100000, 140000 638 2154 2792 931 2285 | 3.38| -0.04| 0.00

(180000, 210000 436 2051 2487 829 | 1753 | 4.70| 0.29| 0.01

(210000, 270000 478 2456 2934 9.78 | 16.29 | 514 | 0.38 | 0.01

(270000, 360000 528 2954 3482 11.61 | 15.16 | 5.59 | 0.46 | 0.02

(360000, 1000000 294 2182 2476 825 | 1187 | 742| 0.75| 0.04

]
]
]
]
]
(140000, 180000] 578 | 2753 | 3331| 1110 17.35| 476 | 0.30 | 0.01
]
]
]
]
1

Tota 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.18

Table A.2: Univariate analysis of education of applicants.

Attribute | Goods | Bads | Total | %total Bad | G:B | WoE IV
Rate | odds

(-1 2036 8563 | 10599 35.33 | 19.21 | 4.21 | 0.18 | 0.01

(1 2 3330 | 10700 | 14030 46.77 | 23.73 | 3.21 | -0.09 | 0.00

(3,6 33 421 454 1.51 7.27 1 12776 | 1.29 | 0.02

> 1]
]
(2, 3] 1237 3680 4917 16.39 | 25.16 | 2.97 | -0.17 | 0.00
]
1

Tota 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.04
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Table A.3: Univariate analysis of marital status of applicants.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v
Rate | odds

(-1,1] | 3211 | 10502 | 13713 | 45.71| 2342 3.27| -0.07 | 0.00

(1, 2] 3341 | 12623 | 15964 53.21 | 2093 | 3.78 0.07 | 0.00

(2, 3] 84 239 323 1.08 | 26.01 2.85 | -0.21 | 0.00

Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.01
Table A.4: Univariate a analysis of age of applicants.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE IV
Rate | odds

(20, 25] 1032 2839 3871 1290 | 26.66 | 2.75| -0.25| 0.01

(25, 27] 566 2167 2733 9.11 | 20.71 3.83 0.08 | 0.00

(27, 29] 599 2415 3014 10.05 | 19.87 | 4.03 | 0.14 | 0.00

(29, 31] 503 2109 2612 8.71 | 19.26 | 4.19 0.17 | 0.00

(31, 34] 671 2795 3466 11.55 | 19.36 | 4.17 0.17 | 0.00

(34, 37] 709 2553 3262 10.87 | 21.74 | 3.60 | 0.02| 0.00

(37, 40] 580 2188 2768 9.23 | 20.95 | 3.77 0.07 | 0.00

(40, 43] 520 1768 2288 7.63 | 22.73 | 3.40 | -0.03 | 0.00

(43, 49] 778 2528 3306 11.02 | 23.53 | 3.25| -0.08 | 0.00

(49, 79] 678 2002 2680 8.93 | 2530 | 2.95| -0.18 | 0.00

Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.02

Table A.5: Univariate analysis of repayment status in September 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v
Rate | odds

(-3, -1] 1319 7126 8445 28.15 | 15.62 | 5.40 0.43 | 0.05

(-1, O] 1888 | 12849 | 14737 49.12 | 1281 6.81 0.66 | 0.17

(0, 1] 1252 2436 3688 12.29 | 33.95 1.95 | -0.59 | 0.05

(1, 2] 1844 823 2667 8.89 | 69.14 | 0.45 | -2.07 | 0.50

(2, 8] 333 130 463 1.54 | 71.92 | 0.39| -2.20| 0.10

Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.87

Table A.6: Univariate analysis of repayment status in August 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE IV
Rate | odds

(-3, -1] 1657 8175 9832 32.77 | 16.85 | 4.93 0.34 | 0.03

(-1, O] 2503 | 13227 | 15730 52.43 | 15.91 5.28 0.41 | 0.08

(0, 2] 2189 1766 3955 13.18 | 55.35| 0.81 | -1.47| 0.37

(2, 8] 287 196 483 1.61 | 59.42 | 0.68 | -1.64 | 0.06

Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.54
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Table A.7: Univariate analysis of repayment status in July 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE | IV
Rate | odds
(-3, -1] 1683 8340 | 10023 3341 | 16.79 | 4.96 | 0.34 | 0.04
(-1, 0] 2751 | 13013 | 15764 52.55 | 1745 | 4.73 | 0.30 | 0.04
(0, 2] 1970 1853 3823 12.74 | 51.53 | 094 | -1.32 | 0.29
(2, 8] 232 158 390 1.30 | 59.49 | 0.68 | -1.64 | 0.05
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.41
Table A.8: Univariate analysis of repayment status in June 2005.
Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE | IV
Rate | odds
(-3, -1] 1741 8294 | 10035 3345 | 1735 | 4.76| 0.30 | 0.03
(-1, 0] 3016 | 13439 | 16455 54.85 | 18.33 | 4.46 | 0.24 | 0.03
(0, 2] 1654 1507 3161 10.54 | 52.33 | 091 | -1.35| 0.25
(2, 8] 225 124 349 1.16 | 64.47 | 0.55 | -1.85 | 0.05
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.36
Table A.9: Univariate analysis of repayment status in May 2005.
Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE | IV
Rate | odds
(-3, -1] 1792 8293 | 10085 33.62 | 17.77| 4.63| 0.27 | 0.02
(-1, 0] 3195 | 13752 | 16947 56.49 | 18.85| 4.30 | 0.20 | 0.02
(0, 8] 1649 1319 2968 9.89 | 55.56 | 0.80 | -1.48 | 0.28
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.33
Table A.10: Univariate analysis of Repayment status in April 2005.
Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE | IV
Rate | odds
(-3, -1] 1956 8679 | 10635 3545 | 18.39 | 4.44 | 0.23 | 0.02
(-1, 0] 3069 | 13217 | 16286 54.29 | 18.84 | 4.31 0.20 | 0.02
(0, 2] 1401 1365 2766 9.22 | 50.65 | 0.97| -1.28 | 0.20
(2, 8] 210 103 313 1.04 ] 67.09 | 0.49 | -1.97 | 0.05
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.29
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Table A.11: Univariate analysis of amount of bill statement in September 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v

Rate | odds
(-165581, 279] 733 2267 3000 10.00 | 24.43 | 3.09 | -0.13 | 0.00
(279, 1893] 665 2335 3000 10.00 | 22.17 | 3.51 | -0.00 | 0.00
(1893, 6050] 618 2382 3000 10.00 | 20.60 | 3.85| 0.09 | 0.00
(6050, 13469] 663 2337 3000 10.00 | 22.10 | 3.52 | 0.00 | 0.00
(13469, 22382] 766 2234 3000 10.00 | 25.53 | 2.92| -0.19 | 0.00
(22382, 37045] 721 2279 3000 10.00 | 24.03 | 3.16 | -0.11 | 0.00
(37045, 52205] 659 2341 3000 10.00 | 21.97 | 3.55| 0.01 | 0.00
(52205, 83421] 627 2373 3000 10.00 | 20.90 | 3.78 | 0.07 | 0.00
(83421, 142134] 590 2410 3000 10.00 | 19.67 | 4.08 | 0.15| 0.00
(142134, 964511 594 2406 3000 10.00 | 19.80 | 4.05| 0.14 | 0.00
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.01

Table A.12: Univariate analysis of amount of bill statement in August 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v

Rate | odds
(-69778, 0] 744 2431 3175 10.58 | 23.43 | 3.27 | -0.07 | 0.00
(0, 1473] 623 2202 2825 9.42 | 22.05| 3.53| 0.00]| 0.00
(1473, 5500] 613 2388 3001 10.00 | 2043 | 3.90 | 0.10 | 0.00
(5500, 12800] 642 2357 2999 10.00 | 21.41| 3.67| 0.04 | 0.00
(12800, 21200] 772 2228 3000 10.00 | 25.73 | 2.89 | -0.20 | 0.00
(21200, 34774] 738 2262 3000 10.00 | 24.60 | 3.07 | -0.14 | 0.00
(34774, 50690] 664 2337 3001 10.00 | 22.13 | 3.52 | -0.00 | 0.00
(50690, 80292] 635 2364 2999 10.00 | 21.17 | 3.72| 0.06 | 0.00
(80292, 136906] 600 2400 3000 10.00 | 20.00 | 4.00 | 0.13 | 0.00
(136906, 983931] 605 2395 3000 10.00 | 20.17 | 3.96 | 0.12 ] 0.00
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.01

Table A.13: Univariate analysis of amount of bill statement in July 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v

Rate | odds
(-157265, 0] 819 2706 3525 11.75 | 23.23 | 3.30 | -0.06 | 0.00
(0, 1188] 552 1923 2475 825 2230 | 348 | -0.01| 0.00
(1188, 5219] 609 2391 3000 10.00 | 20.30 | 3.93| 0.11 | 0.00
(5219, 12197] 625 2375 3000 10.00 | 20.83 | 3.80 | 0.08 | 0.00
(12197, 20088] 749 2251 3000 10.00 | 2497 | 3.01 | -0.16 | 0.00
(20088, 31401] 732 2269 3001 10.00 | 24.39 | 3.10 | -0.13 | 0.00
(31401, 49217] 703 2296 2999 10.00 | 23.44 | 3.27 | -0.08 | 0.00
(49217, 76777) 647 2353 3000 10.00 | 21.57 | 3.64| 0.03 | 0.00
(76777, 132051] 603 2397 3000 10.00 | 20.10 | 3.98 | 0.12 | 0.00
(132051, 1664089] 597 2403 3000 10.00 | 19.90 | 4.03 | 0.13 | 0.00
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.01
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Table A.14: Univariate analysis of amount of bill statement in June 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v

Rate | odds
(-170001, 0] 899 2971 3870 1290 | 23.23 | 3.30 | -0.06 | 0.00
(0, 988] 496 1635 2131 7.10 | 2328 | 3.30 | -0.07| 0.00
(988, 4644)] 589 2410 2999 10.00 | 19.64 | 4.09 | 0.15| 0.00
(4644, 11145] 594 2407 3001 10.00 | 19.79 | 4.05| 0.14 | 0.00
(11145, 19052] 721 2280 3001 10.00 | 24.03 3.16 | -0.11 | 0.00
(19052, 28604] 743 2255 2998 9.99 | 24.78 | 3.03| -0.15| 0.00
(28604, 45457] 710 2290 3000 10.00 | 23.67 | 3.23 | -0.09 | 0.00
(45457, 70579] 652 2349 3001 10.00 | 21.73 | 3.60 | 0.02 | 0.00
(70579, 122419] 620 2379 2999 10.00 | 20.67 | 3.84 | 0.09 | 0.00
(122419, 891586] 612 2388 3000 10.00 | 20.40 | 3.90 | 0.10 | 0.00
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.01

Table A.15: Univariate analysis of amount of bill statement in May 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v

Rate | odds
(-81335, 0] 995 3166 4161 13.87 | 2391 | 3.18 | -0.10 | 0.00
(0, 763] 412 1428 1840 6.13 | 2239 | 3.47| -0.02| 0.00
(763, 3637] 585 2415 3000 10.00 | 19.50 | 4.13 | 0.16 | 0.00
(3637, 9809] 570 2429 2999 10.00 | 19.01 | 4.26 | 0.19 | 0.00
(9809, 18104] 702 2298 3000 10.00 | 23.40 | 3.27 | -0.07 | 0.00
(18104, 26690] 758 2242 3000 10.00 | 25.27 | 2.96 | -0.17 | 0.00
(26690, 40943] 721 2279 3000 10.00 | 24.03 | 3.16 | -0.11 | 0.00
(40943, 65823] 662 2338 3000 10.00 | 22.07 | 3.53 | 0.00 | 0.00
(65823, 115883] 613 2387 3000 10.00 | 2043 | 3.89 | 0.10 | 0.00
(115883, 927171] 618 2382 3000 10.00 | 20.60 | 3.85| 0.09 | 0.00
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.01

Table A.16: Univariate analysis of amount of bill statement in April 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v

Rate | odds
(-339604, 0] 1086 3622 4708 15.69 | 23.07 | 3.34| -0.05| 0.00
(0, 476] 300 1001 1301 4.34 | 23.06 | 3.34| -0.05| 0.00
(476, 2702] 616 2375 2991 9.97 | 20.60 | 3.86| 0.09| 0.00
(2702, 8770] 515 2485 3000 10.00 | 17.17| 4.83| 0.32| 0.01
(8770, 17071] 684 2316 3000 10.00 | 22.80 | 3.39 | -0.04 | 0.00
(17071, 25508] 781 2219 3000 10.00 | 26.03 | 2.84 | -0.21 | 0.00
(25508, 39252] 742 2258 3000 10.00 | 24.73 | 3.04 | -0.15| 0.00
(39252, 63151] 656 2344 3000 10.00 | 21.87 | 3.57 | 0.01 | 0.00
(63151, 112110] 654 2346 3000 10.00 | 21.80 | 3.59 | 0.02 | 0.00
(112110, 961664] 602 2398 3000 10.00 | 20.07 | 3.98 | 0.12 | 0.00
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.02
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Table A.17: Univariate analysis of amount of previous payment in September 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v
Rate | odds
(-1, 316] 2054 3948 6002 20.01 | 34.22 | 1.92| -0.61 | 0.09
(316, 1264] 679 2319 2998 9.99 | 2265 | 3.42| -0.03 | 0.00
(1264, 1724] 684 2319 3003 10.01 | 22.78 | 3.39 | -0.04 | 0.00
(1724, 2100] 652 2358 3010 10.03 | 21.66 | 3.62 | 0.03 | 0.00
(2100, 3000] 680 2423 3103 10.34 | 2191 | 3.56 | 0.01 | 0.00
(3000, 4309] 601 2283 2884 9.61 | 20.84 | 3.80| 0.08 | 0.00
(4309, 6192] 471 2529 3000 10.00 | 15.70 | 5.37 | 0.42 | 0.02
(6192, 10300] 432 2571 3003 10.01 | 14.39 | 5.95| 0.52 | 0.02
(10300, 873552] 383 2614 2997 9.99 | 12.78 | 6.83 | 0.66 | 0.04
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.16

Table A.18: Univariate analysis of amount of previous payment in August 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE IV
Rate | odds
(-1, 269] 1960 4040 6000 20.00 | 32.67 | 2.06 | -0.54 | 0.07
(269, 1165] 684 2319 3003 10.01 | 22.78 | 3.39 | -0.04 | 0.00
(1165, 1600] 785 2320 3105 10.35 | 25.28 | 2.96 | -0.18 | 0.00
(1600, 2009] 634 2263 2897 9.66 | 21.88 | 3.57| 0.01 | 0.00
(2009, 3000] 743 2800 3543 11.81 | 2097 | 3.77| 0.07 | 0.00
(3000, 4045] 505 1947 2452 8.17 | 20.60 | 3.86| 0.09 | 0.00
(4045, 6000] 544 2518 3062 10.21 | 17.77| 4.63 | 0.27| 0.01
(6000, 10401] 447 2491 2938 9.79 | 15.21 | 5.57| 0.46 | 0.02
(10401, 1684259] 334 2666 3000 10.00 | 11.13 | 7.98 | 0.82| 0.05
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.15

Table A.19: Univariate analysis of amount

of previous payment in July 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v
Rate | odds
(-1, 3] 1939 4061 6000 20.00 | 32.32 | 2.09 | -0.52 | 0.06
(3, 780] 710 2346 3056 10.19 | 23.23 | 3.30 | -0.06 | 0.00
(780, 1206] 659 2286 2945 9.82 | 2238 | 347 | -0.01| 0.00
(1206, 1800] 705 2306 3011 10.04 | 23.41| 3.27 | -0.07 | 0.00
(1800, 2500] 691 2511 3202 10.67 | 21.58 | 3.63 | 0.03 | 0.00
(2500, 3560] 546 2240 2786 9.29 | 19.60 | 4.10| 0.15| 0.00
(3560, 5284] 511 2489 3000 10.00 | 17.03 | 4.87| 0.32| 0.01
(5284, 10000] 511 2615 3126 1042 | 16.35| 5.12| 0.37| 0.01
(10000, 896040] 364 2510 2874 9.58 | 12.67| 6.90 | 0.67| 0.04
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.12
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Table A.20: Univariate analysis of amount of previous payment in June 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE 1A%
Rate | odds
(-1, 500] 2552 6481 9033 30.11 | 28.25 | 2.54 | -0.33 | 0.04
(500, 1000] 906 2843 3749 12.50 | 24.17 | 3.14| -0.12 | 0.00
(1000, 1500] 568 1808 2376 7.92 | 2391 | 3.18| -0.10 | 0.00
(1500, 2100] 616 2234 2850 9.50 | 21.61| 3.63| 0.03| 0.00
(2100, 3200] 563 2469 3032 10.11 | 1857 | 4.39 | 0.22 | 0.00
(3200, 5000] 558 2602 3160 10.53 | 17.66 | 4.66 | 0.28 | 0.01
(5000, 9571] 467 2333 2800 9.33 | 16.68 | 5.00 | 0.35| 0.01
(9571, 621000] 406 2594 3000 10.00 | 13.53 | 6.39 | 0.60 | 0.03
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.09

Table A.21: Univariate analysis of amount

of previous payment in May 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v
Rate | odds
(-1, 500] 2525 6591 9116 30.39 | 27.70 | 2.61 | -0.30 | 0.03
(500, 1000] 848 2746 3594 11.98 | 23.59 | 3.24 | -0.08 | 0.00
(1000, 1500] 548 1788 2336 779 2346 | 3.26 | -0.08 | 0.00
(1500, 2123] 655 2299 2954 9.85| 22.17| 3.51| -0.00| 0.00
(2123, 3200] 603 2415 3018 10.06 | 19.98 | 4.00 | 0.13 | 0.00
(3200, 5000] 571 2604 3175 10.58 | 17.98 | 4.56 | 0.26 | 0.01
(5000, 9500] 504 2306 2810 9.37| 1794 | 458 | 0.26 | 0.01
(9500, 426529] 382 2615 2997 9.99 | 12.75| 6.85| 0.66 | 0.04
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.08

Table A.22: Univariate analysis of amount of previous payment in April 2005.

Attribute | Goods | Bads | Total | %total | Bad | G:B | WoE v
Rate | odds
(-1, 426] 2504 6498 9002 30.01 | 27.82 | 2.60 | -0.31 | 0.03
(426, 1000] 968 3054 4022 13.41 | 24.07| 3.15| -0.11 | 0.00
(1000, 1500] 547 1671 2218 739 2466 | 3.05| -0.14 | 0.00
(1500, 2100] 615 2204 2819 940 | 21.82| 3.58 | 0.02| 0.00
(2100, 3200] 590 2392 2982 994 | 19.79 | 4.05| 0.14| 0.00
(3200, 5000] 586 2652 3238 10.79 | 18.10 | 4.53 | 0.25| 0.01
(5000, 9600] 450 2270 2720 9.07| 16.54| 5.04| 0.36| 0.01
(9600, 528666 ] 376 2623 2999 10.00 | 12.54 | 6.98 | 0.68 | 0.04
Total 6636 | 23364 | 30000 | 100.00 | 22.12 | 3.52 | 0.00 | 0.09
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APPENDIX B

Description of data for case study 2

Table B.1: Definition of features provided by Home Credit Group [2018a].

Table Row Description

application SK_ID_CURR ID of loan in our sample

application TARGET Target variable (1 - client with payment
difficulties: he/she had late payment
more than X days on at least one of
the first Y installments of the loan in
our sample, 0 - all other cases)

application NAME_CONTRACT_TYPE Identification if loan is cash or revolving

application CODE_GENDER Gender of the client

application FLAG.OWN_CAR Flag if the client owns a car

application

FLAG.OWN_REALTY

Flag if client owns a house or flat

application CNT_CHILDREN Number of children the client has

application AMT_INCOME_TOTAL Income of the client

application AMT_CREDIT Credit amount of the loan

application AMT_ANNUITY Loan annuity

application AMT_GOODS_PRICE For consumer loans it is the price of the
goods for which the loan is given

application NAME_TYPE_SUITE Who was accompanying client when he
was applying for the loan

application NAME_INCOME_TYPE Clients income type (businessman,

working, maternity leave,...)

application

NAME_EDUCATION_TYPE

Level of highest education the client

achieved
application NAME_FAMILY _STATUS Family status of the client
application NAME_HOUSING_TYPE What is the housing situation of the

client (renting, living with parents, ...)
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application REGION_POPULATION _- Normalized population of region where
RELATIVE client lives (higher number means the
client lives in more populated region)
application DAYS_BIRTH Client’s age in days at the time of ap-
plication
application DAYS EMPLOYED How many days before the application
the person started current employment
application DAYS REGISTRATION How many days before the application
did client change his registration
application DAYS_ID_PUBLISH How many days before the application
did client change the identity document
with which he applied for the loan
application OWN_CAR_AGE Age of client’s car
application FLAG_MOBIL Did client provide mobile phone
(1=YES, 0=NO)
application FLAG_EMP_PHONE Did client provide work phone (1=YES,
0=NO)
application FLAG.-WORK_PHONE Did client provide home phone
(1=YES, 0=NO)
application FLAG_CONT_MOBILE Was mobile phone reachable (1=YES,
0=NO)
application FLAG_PHONE Did client provide home phone
(1=YES, 0=NO)
application FLAG_EMAIL Did client provide email (1=YES,
0=NO)
application OCCUPATION_TYPE What kind of occupation does the client
have
application CNT_FAM_MEMBERS How many family members does client
have
application REGION _RATING_CLIENT | Our rating of the region where client
lives (1,2,3)
application REGION_RATING - Our rating of the region where client
CLIENT W_CITY lives with taking city into account
(1,2,3)
application WEEKDAY_APPR_PRO- On which day of the week did the client
CESS_START apply for the loan
application HOUR_APPR_PROCESS - Approximately at what hour did the
START client apply for the loan
application REG_REGION_NOT_LIVE_- | Flag if client’s permanent address does
REGION not match contact address (1=differ-
ent, O=same, at region level)
application REG_REGION_NOT - Flag if client’s permanent address does

WORK_REGION

not match work address (1=different,
O=same, at region level)

91




application

LIVE_ REGION_NOT -
WORK_REGION

Flag if client’s contact address does
not match work address (1=different,
O=same, at region level)

application

REG_CITY_NOT_LIVE_-
CITY

Flag if client’s permanent address does
not match contact address (1=differ-
ent, O=same, at city level)

application

REG_CITY NOT_WORK_-
CITY

Flag if client’s permanent address does
not match work address (1=different,
O=same, at city level)

application

LIVE_CITY NOT_WORK -
CITY

Flag if client’s contact address does
not match work address (1=different,
O=same, at city level)

application

ORGANIZATION_TYPE

Type of organization where client works

application

EXT_SOURCE_1

Normalized score from external data

source

application

EXT_SOURCE_2

Normalized score from external data

source

application

EXT_SOURCE_3

Normalized score from external data

source

application

APARTMENTS_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

BASEMENTAREA_AVG

Normalized information about building
where the client lives, What is average
(-AVG suffix), modus (-MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

YEARS_BEGINEXPLUATA-
TION_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

YEARS_BUILD_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_ MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

COMMONAREA _AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (.(MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

ELEVATORS_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

ENTRANCES_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median ((MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

FLOORSMAX_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_ MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

FLOORSMIN_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

LANDAREA_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_.MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LIVINGAPARTMENTS -
AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (.MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LIVINGAREA_AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_.MODE suffix),
median (_.MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

NONLIVINGAPARTMENTS -
AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

NONLIVINGAREA _AVG

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_.MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

APARTMENTS_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

BASEMENTAREA MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_(MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

YEARS_ BEGINEXPLUATA-
TION_MODE

Normalized information about building
where the client lives, What is average
(.AVG suffix), modus (-.MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

YEARS_ BUILD_MODE

Normalized information about building
where the client lives, What is average
(_LAVG suffix), modus (.MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

COMMONAREA_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

ELEVATORS_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (( MODE suffix),
median (_ MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

ENTRANCES_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (( MODE suffix),
median (_ MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

FLOORSMAX MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDIT suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

FLOORSMIN_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LANDAREA_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LIVINGAPARTMENTS -
MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LIVINGAREA_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

NONLIVINGAPARTMENTS
MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_ MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

NONLIVINGAREA MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

APARTMENTS_MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

BASEMENTAREA MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

YEARS_BEGINEXPLUATA-
TION_MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

YEARS BUILD MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median ( MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

COMMONAREA _MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

ELEVATORS_MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (( MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

ENTRANCES_MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

FLOORSMAX_MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

FLOORSMIN_MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LANDAREA MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (( MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

LIVINGAPARTMENTS -
MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_(MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application

LIVINGAREA MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

NONLIVINGAPARTMENTS
MEDI

Normalized information about building
where the client lives, What is average
(-AVG suffix), modus (-MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

NONLIVINGAREA _MEDI

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

FONDKAPREMONT -
MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

HOUSETYPE_MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus ( MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor

application

TOTALAREA _MODE

Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_ MODE suffix),
median (_MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
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application WALLSMATERIAL_MODE | Normalized information about building
where the client lives, What is average
(LAVG suffix), modus (_(MODE suffix),
median (_(MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
application EMERGENCYSTATE - Normalized information about building
MODE where the client lives, What is average
(LAVG suffix), modus ((MODE suffix),
median (_.MEDI suffix) apartment size,
common area, living area, age of build-
ing, number of elevators, number of en-
trances, state of the building, number
of floor
application OBS_30_CNT_SOCIAL_CIR- | How many observation of client’s social
CLE surroundings with observable 30 DPD
(days past due) default
application DEF_30_CNT_SOCIAL_CIR- | How many observation of client’s so-
CLE cial surroundings defaulted on 30 DPD
(days past due)
application OBS_60_CNT_SOCIAL_CIR- | How many observation of client’s social
CLE surroundings with observable 60 DPD
(days past due) default
application DEF_60_.-CNT_SOCIAL_CIR- | How many observation of client’s so-
CLE cial surroundings defaulted on 60 (days
past due) DPD
application DAYS_LAST PHONE. - How many days before application did
CHANGE client change phone
application FLAG_DOCUMENT_2 Did client provide document 2
application FLAG DOCUMENT_3 Did client provide document 3
application FLAG.DOCUMENT 4 Did client provide document 4
application FLAG_DOCUMENT_5 Did elient provide document 5
application FLAG DOCUMENT _6 Did client provide document 6
application FLAG.DOCUMENT.7 Did client provide document 7
application FLAG_DOCUMENT_8 Did client provide document 8
application FLAG DOCUMENT 9 Did client provide document 9
application FLAG_DOCUMENT_10 Did client provide document 10
application FLAG_DOCUMENT_11 Did client provide document 11
application FLAG.DOCUMENT_12 Did client provide document 12
application FLAG_DOCUMENT_13 Did client provide document 13
application FLAGDOCUMENT_14 Did client provide document 14
application FLAG_DOCUMENT_15 Did client provide document 15
application FLAG_DOCUMENT_16 Did client provide document 16
application FLAG_DOCUMENT_17 Did client provide document 17
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application FLAG_DOCUMENT_18 Did client provide document 18
application FLAG.DOCUMENT_19 Did client provide document 19
application FLAG_DOCUMENT_20 Did client provide document 20
application FLAG_DOCUMENT 21 Did client provide document 21
application AMT_REQ_-CREDIT_BU- Number of enquiries to Credit Bureau
REAU_HOUR about the client one hour before appli-
cation
application AMT_REQ_CREDIT_BU- Number of enquiries to Credit Bureau
REAU_DAY about the client one day before applica-
tion (excluding one hour before appli-
cation)
application AMT _REQ_CREDIT_BU- Number of enquiries to Credit Bureau
REAU_WEEK about the client one week before appli-
cation (excluding one day before appli-
cation)
application AMT_REQ_CREDIT_BU- Number of enquiries to Credit Bureau
REAU_MON about the client one month before ap-
plication (excluding one week before
application)
application AMT_REQ-CREDIT_BU- Number of enquiries to Credit Bureau
REAU_QRT about the client 3 month before appli-
cation (excluding one month before ap-
plication)
application AMT_REQ_CREDIT_BU- Number of enquiries to Credit Bureau
REAU_YEAR about the client one day year (exclud-
ing last 3 months before application)
bureau SK_ID_ CURR ID of loan in our sample - one loan in
our sample can have 0,1,2 or more re-
lated previous credits in credit bureau
bureau SK_BUREAU_ID Recoded ID of previous Credit Bureau
credit related to our loan (unique cod-
ing for each loan application)
bureau CREDIT_ACTIVE Status of the Credit Bureau (CB) re-
ported credits
bureau CREDIT_CURRENCY Recoded currency of the Credit Bureau
credit
bureau DAYS_CREDIT How many days before current applica-
tion did client apply for Credit Bureau
credit
bureau CREDIT_DAY_OVERDUE Number of days past due on CB credit
at the time of application for related
loan in our sample
bureau DAYS_CREDIT_ENDDATE | Remaining duration of CB credit (in

days) at the time of application in
Home Credit
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bureau DAYS_ENDDATE _FACT Days since CB credit ended at the time
of application in Home Credit (only for
closed credit)

bureau AMT_CREDIT_-MAX - Maximal amount overdue on the Credit

OVERDUE Bureau credit so far (at application

date of loan in our sample)

bureau CNT_.CREDIT_PROLONG How many times was the Credit Bureau
credit prolonged

bureau AMT_CREDIT_SUM Current credit amount for the Credit
Bureau credit

bureau AMT_CREDIT_SUM_DEBT | Current debt on Credit Bureau credit

bureau AMT_CREDIT_.SUM_LIMIT | Current credit limit of credit card re-
ported in Credit Bureau

bureau AMT_CREDIT_SUM_OVER- | Current amount overdue on Credit Bu-

DUE reau credit

bureau CREDIT_TYPE Type of Credit Bureau credit (Car,
cash,...)

bureau DAYS_CREDIT_UPDATE How many days before loan application
did last information about the Credit
Bureau credit come

bureau AMT_ANNUITY Annuity of the Credit Bureau credit

bureau_balance

SK_BUREAU_ID

Recoded 1D of Credit Bureau credit
(unique coding for each application) -
use this to join to CREDIT _BUREAU
table

bureau_balance

MONTHS BALANCE

Month of balance relative to applica-
tion date (-1 means the freshest balance
date)

bureau_balance

STATUS

Status of Credit Bureau loan during
the month (active, closed, DPD0-30,. ..
[C means closed, X means status un-
known, 0 means no DPD, 1 means max-
imal did during month between 1-30, 2
means DPD 31-60,... 5 means DPD
120+ or sold or written off | )

POS_CASH _bal-

arnce

SK_ID_PREV

ID of previous credit in Home Credit re-
lated to loan in our sample. (One loan
in our sample can have 0,1,2 or more
previous loans in Home Credit)

POS_CASH _bal-

ance

SK_ID_CURR

ID of loan in our sample
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POS_CASH bal-

ance

MONTHS_BALANCE

Month of balance relative to applica-
tion date (-1 means the information to
the freshest monthly snapshot, 0 means
the information at application - often it
will be the same as -1 as many banks
are not updating the information to
Credit Bureau regularly )

POS_CASH_bal-

ance

CNTINSTALMENT

Term of previous credit (can change

over time)

POS_CASH _bal-

ance

CNT_INSTALMENT_FU-
TURE

Installments left to pay on the previous
credit

POS_CASH _bal-

ance

NAME_CONTRACT_STA-
TUS

Contract status during the month

POS_CASH _bal- SK_DPD DPD (days past due) during the month
ance of previous credit
POS_CASH _bal- SK_DPD_DEF DPD during the month with tolerance
ance (debts with low loan amounts are ig-
nored) of the previous credit
credit_card_bal- SK_ID_PREV ID of previous credit in Home credit re-
ance lated to loan in our sample. (One loan
in our sample can have 0,1,2 or more
previous loans in Home Credit)
credit_card_bal- SK ID_CURR ID of loan in our sample

ance

credit_card_bal-

ance

MONTHS_BALANCE

Month of balance relative to applica-
tion date (-1 means the freshest balance
date)

credit_card_bal-

ance

AMT _BALANCE

Balance during the month of previous
credit

credit_card_bal-

ance

AMT_CREDIT _LIMIT_AC-
TUAL

Credit card limit during the month of
the previous credit

credit_card_bal-

ance

AMT _DRAWINGS_ATM -
CURRENT

Amount drawing at ATM during the
month of the previous credit

credit_card_bal-

ance

AMT_DRAWINGS_CUR-
RENT

Amount drawing during the month of
the previous credit

credit_card_bal-

ance

AMT_DRAWINGS_-
OTHER_CURRENT

Amount of other drawings during the
month of the previous credit

credit_card_bal-

ance

AMT_DRAWINGS_POS -
CURRENT

Amount drawing or buying goods dur-
ing the month of the previous credit

credit_card_bal-

ance

AMT_INST_MIN_REGU-
LARITY

Minimal installment for this month of
the previous credit

credit_card_bal-

ance

AMT_PAYMENT_CUR-
RENT

How much did the client pay during the
month on the previous credit

credit_card_bal-

ance

AMT_PAYMENT_TOTAL.-
CURRENT

How much did the client pay during the
month in total on the previous credit
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credit_card_bal-

ance

AMT_RECEIVABLE PRIN-
CIPAL

Amount receivable for principal on the

previous credit

credit_card_bal-
ance

AMT_RECIVABLE

Amount receivable on the previous
credit

credit_card_bal-

ance

AMT_TOTAL_RECEIV-
ABLE

Total amount receivable on the previ-
ous credit

credit_card_bal-

ance

CNT_DRAWINGS_ATM -
CURRENT

Number of drawings at ATM during
this month on the previous credit

credit_card_bal-
ance

CNT_DRAWINGS_CUR-
RENT

Number of drawings during this month
on the previous credit

credit_card_bal-

ance

CNT_DRAWINGS_OTHER _-
CURRENT

Number of other drawings during this
month on the previous credit

credit_card_bal-

ance

CNT_DRAWINGS_POS_-
CURRENT

Number of drawings for goods during
this month on the previous credit

credit_card_bal-

ance

CNT_INSTALMENT MA-
TURE_CUM

Number of paid installments on the pre-
vious credit

credit_card_bal-

NAME_.CONTRACT_STA-

Contract status (active signed,...) on

ance TUS the previous credit

credit_card_bal- SK_DPD DPD (Days past due) during the month

ance on the previous credit

credit_card_bal- SK_DPD_DEF DPD (Days past due) during the month

ance with tolerance (debts with low loan
amounts are ignored) of the previous
credit

previous_applica- SK_ID_PREV ID of previous credit in Home credit re-

tion lated to loan in our sample. (One loan
in our sample can have 0,1,2 or more
previous loan applications in Home
Credit, previous application could, but
not necessarily have to lead to credit)

previous_applica- SK_ID_CURR ID of loan in our sample

tion

previous_applica-
tion

NAME_CONTRACT.TYPE

Contract product type (Cash loan, con-
sumer loan [POS] ,...) of the previous
application

previous_applica-
tion

AMT_ANNUITY

Annuity of previous application

previous_applica-
tion

AMT_APPLICATION

For how much credit did client ask on
the previous application

previous_applica-

tion

AMT_CREDIT

Final credit amount on the previous
application. This differs from AMT -
APPLICATION in a way that the
AMT_APPLICATION is the amount
for which the client initially applied
for, but during our approval process he
could have received different amount -
AMT_CREDIT
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previous_applica-
tion

AMT DOWN _PAYMENT

Down payment on the previous appli-
cation

previous_applica-
tion

AMT_GOODS_PRICE

Goods price of good that client asked
for (if applicable) on the previous ap-
plication

previous_applica-
tion

WEEKDAY_APPR_PRO-
CESS_START

On which day of the week did the client
apply for previous application

previous_applica-
tion

HOUR_APPR_PROCESS -
START

Approximately at what day hour did
the client apply for the previous appli-
cation

previous_applica-
tion

FLAG_LAST _APPL_PER -
CONTRACT

Flag if it was last application for the
previous contract. Sometimes by mis-
take of client or our clerk there could
be more applications for one single con-
tract

previous_applica-
tion

NFLAG_LAST_APPL_IN_-
DAY

Flag if the application was the last ap-
plication per day of the client. Some-
times clients apply for more applica-
tions a day. Rarely it could also be er-
ror in our system that one application
is in the database twice

previous_applica-
tion

NFLAG_-MICRO_CASH

Flag Micro finance loan

previous_applica-
tion

RATE_ DOWN_PAYMENT

Down payment rate normalized on pre-
vious credit

previous_applica-
tion

RATE_INTEREST _PRI-
MARY

Interest rate normalized on previous
credit

previous_applica-
tion

RATE_INTEREST_PRIVI-
LEGED

Interest rate normalized on previous
credit

previous_applica-
tion

NAME_CASH_LOAN_PUR-
POSE

Purpose of the cash loan

previous_applica-

tion

NAME_CONTRACT _STA-
TUS

Contract status (approved, cancelled,
...) of previous application

previous_applica-
tion

DAYS_DECISION

Relative to current application when
was the decision about previous appli-
cation made

previous_applica-
tion

NAME_PAYMENT_TYPE

Payment method that client chose to
pay for the previous application

previous_applica-

tion

CODE_REJECT_REASON

Why was the previous application re-
jected

previous_applica-
tion

NAME_TYPE_SUITE

Who accompanied client when applying
for the previous application

previous_applica-

tion

NAME_CLIENT_TYPE

Was the client old or new client when
applying for the previous application

previous_applica-
tion

NAME_GOODS_CATE-
GORY

What kind of goods did the client apply
for in the previous application
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previous_applica-
tion

NAME PORTFOLIO

Was the previous

CASH, POS, CAR, ...

application for

previous_applica-
tion

NAME_PRODUCT_TYPE

Was the previous application x-sell o
walk-in

previous_applica-
tion

CHANNEL_TYPE

Through which channel we acquired the
client on the previous application

previous_applica-
tion

SELLERPLACE_AREA

Selling area of seller place of the previ-
ous application

previous_applica-
tion

NAME_SELLER_INDUS-
TRY

The industry of the seller

previous_applica-
tion

CNT_PAYMENT

Term of previous credit at application
of the previous application

previous_applica-
tion

NAME_YIELD_GROUP

Grouped interest rate into small

medium and high of the previous ap-
plication

previous_applica-
tion

PRODUCT_COMBINATION

Detailed product combination of the
previous application

previous_applica-
tion

DAYS_FIRST_DRAWING

Relative to application date of current
application when was the first disburse-
ment of the previous application

previous_applica-
tion

DAYS_FIRST_DUE

Relative to application date of current
application when was the first due sup-
posed to be of the previous application

previous_applica-
tion

DAYS_LAST DUE_1ST -
VERSION

Relative to application date of current
application when was the first due of
the previous application

previous_applica-
tion

DAYS_LAST DUE

Relative to application date of current
application when was the last due date
of the previous application

previous_applica-
tion

DAYS_TERMINATION

Relative to application date of current
application when was the expected ter-
mination of the previous application

previous_applica-

NFLAG_INSURED_ON_AP-

Did the client requested insurance dur-

tion PROVAL ing the previous application
installments_pay- SK_ID PREV ID of previous credit in Home credit re-
ments lated to loan in our sample. (One loan
in our sample can have 0,1,2 or more
previous loans in Home Credit)
installments_pay- | SK_ID_CURR ID of loan in our sample

ments

installments_pay-
ments

NUM_INSTALMENT _VER-
SION

Version of installment calendar (0 is for
credit card) of previous credit. Change
of installment version from month to
month signifies that some parameter of
payment calendar has changed
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installments_pay-
ments

NUM_INSTALMENT _NUM-
BER

On which installment we observe pay-
ment

installments_pay-
ments

DAYS_INSTALMENT

When the installment of previous credit
was supposed to be paid (relative to ap-
plication date of current loan)

installments_pay-
ments

DAYS_ENTRY_PAYMENT

When was the installments of previous
credit paid actually (relative to appli-
cation date of current loan)

installments_pay-
ments

AMT INSTALMENT

What was the prescribed installment
amount of previous credit on this in-
stallment

installments_pay-
ments

AMT PAYMENT

What the client actually paid on previ-
ous credit on this installment
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APPENDIX D

Univariate analysis for case study 2

Table D.1: Univariate analysis of education of applicants

Attribute Goods Bads Total | %total | Bad | G:B | WoE v
Rate | odds
Lower sec. 417 3 399 3 816 1.24 | 10.93 8.15 | -0.33 | 0.00
Sec. special 19 524 | 198 867 | 218 391 71.02 | 894 | 10.19 | -0.11 | 0.01
Incom. higher 872 9 405 10 277 3.34 | 848 | 10.79 | -0.05 | 0.00
Higher edu. 4009 70 854 74 863 24.34 | 5.36 | 17.67| 0.44 | 0.04
Academic deg. 3 161 164 0.05 | 1.83 | 53.67 | 1.55 | 0.00
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.05

Table D.2: Univariate analysis of sources of income of applicants

Attribute Goods Bads Total | %Total | Bad | G:B | WoE v
Rate | odds
Unemployed 10 45 55 0.02 | 18.18 4.50 | -0.93 | 0.00
Working 15224 | 143 550 | 158 774 51.63 | 9.59 9.43 | -0.19 | 0.02
Com. associate 5 360 66 257 71617 23.29 | 7.48 | 12.36 | 0.08 | 0.00
State servant 1249 20 454 21 703 7.06 | 575 16.38 | 0.36 | 0.01
Pensioner 2 982 52 380 55 362 18.00 | 5.39 | 17.57 | 0.43 | 0.03
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.06
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Table D.3: Univariate analysis of occupation of applicants

Attribute Goods Bads Total | %total Bad G:B | WoE IV
Ra te | odds
Occupation 1 359 1734 2 093 099 | 17.15 4.83 | -0.77 | 0.01

Occupation 2 2259 17 692 19 951 945 | 11.32 7.83 | -0.28 | 0.01

Occupation 3 7181 60 672 67 853 32.14 | 10.58 8.45 | -0.21 | 0.01

Occupation 4 3 539 33 216 36 755 17.41 9.63 9.39 | -0.10 | 0.00

Occupation 5 59 692 751 0.36 7.86 | 11.73 | 0.12 | 0.00
Occupation 6 92 1213 1305 0.62 7.05 | 13.18 | 0.24 | 0.00
Occupation 7 4 584 68 015 72 599 34.39 6.31 | 14.84 | 0.36 | 0.04
Occupation 8 474 9 339 9 813 4.65 4.83 | 19.70 | 0.64 | 0.01
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.09

Table D.4: Univariate analysis of organisation of applicants

Attribute Goods Bads Total | %total | Bad | G:B | WoE v
Rate | odds
Organization 1 199 1079 1278 0.42 | 15.57 5.42 | -0.74 | 0.00
Organization 2 997 7 535 8 532 2.77 | 11.69 7.56 | -0.41 | 0.01
Organization 3 144 1155 1299 0.42 | 11.09 8.02 | -0.35| 0.00

Organization 4 5 329 46 827 52 156 16.96 | 10.22 8.79 1 -0.26 | 0.01

Organization 5 7624 74 262 81 886 26.63 | 9.31 9.74| -0.16 | 0.01

Organization 6 1 838 19 989 21 827 7.10 | 842 | 10.88 | -0.05| 0.00

Organization 7 1 855 22179 24 034 782 | T7.72| 11.96 | 0.05| 0.00

Organization 8 1 465 19 448 20 913 6.80 | 7.01 | 13.28 | 0.15| 0.00

Organization 9 1198 16 963 18 161 591 | 6.60| 14.16 | 0.22 | 0.00

Organization 10 534 8 493 9 027 294 592 | 1590 | 0.33] 0.00
Organization 11 3 045 53 305 56 350 18.32 | 540 | 17.51 | 0.43| 0.03
Organization 12 543 10 240 10 783 351 | 5.04| 1886 | 0.50 | 0.01
Organization 13 38 794 832 0.27 | 4.57| 2089 | 0.61 | 0.00
Organization 14 16 417 433 0.14 | 3.70 | 26.06 | 0.83 | 0.00
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.07

115




Table D.5: Univariate analysis of age of applicants

Attribute Goods Bads Total | %total | Bad G:B | WoE v
Rate | odds
(20.0, 28.0] 3 558 27 194 30 752 10.00 | 11.57 7.64 | -0.40 | 0.02
(28.0, 32.0] 3 382 27 378 30 760 10.00 | 10.99 8.10 | -0.34 | 0.01
(32.0, 36.0] 3 015 27 730 30 745 10.00 | 9.81 9.20 | -0.21 | 0.00
(36.0, 39.0] 2723 28 036 30 759 10.00 | 8.85| 10.30 | -0.10 | 0.00
(39.0, 43.0] 2 430 28 315 30 745 10.00 | 7.90 | 11.65| 0.02 | 0.00
(43.0, 47.0] 2 398 28 366 30 764 10.00 | 7.79 | 11.83 | 0.04 | 0.00
(47.0, 52.0] 2193 28 540 30 733 9.99 | 7.14 | 13.01 0.13 | 0.00
(52.0, 56.0] 1951 28 807 30 758 10.00 | 6.34 | 14.77 | 0.26 | 0.01
(56.0, 61.0] 1 668 29 089 30 757 10.00 | 542 | 17.44 | 0.43| 0.02
(61.0, 69.0] 1 507 29 231 30 738 10.00 | 4.90 | 19.40 | 0.53 | 0.02
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.08
Table D.6: Univariate analysis of external source 1
Attribute Goods Bads Total | %total | Bad | G:B | WoE v
Rate | odds
(0.005, 0.21] 2 356 11 058 13 414 4.36 | 17.56 4.69 | -0.89 | 0.05
(0.21, 0.3] 1 555 11 858 13 413 4.36 | 11.59 7.63 | -0.40 | 0.01
(0.3, 0.37] 1220 12 194 13 414 4.36 9.09 | 10.00 | -0.13 | 0.00
Missing Values | 14 771 | 158607 | 173 378 56.38 | 8.52 | 10.74 | -0.06 | 0.00
(0.37, 0.44] 1124 12 288 13 412 4.36 8.38 | 10.93 | -0.04 | 0.00
(0.44, 0.51] 898 12 517 13 415 436 | 6.69 | 13.94 | 0.20 | 0.00
(0.51, 0.57] 808 12 604 13 412 4.36 6.02 | 15.60 0.31 | 0.00
(0.57, 0.64] 689 12 724 13 413 4.36 5.14 | 1847 0.48 | 0.01
(0.64, 0.71] 588 12 825 13 413 4.36 4.38 | 21.81 0.65 | 0.01
(0.71, 0.79] 471 12 942 13 413 4.36 3.51 | 27.48 0.88 | 0.02
(0.79, 0.96] 345 13 069 13 414 4.36 2.57 | 37.88 1.20 | 0.04
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.15
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Table D.7: Univariate analysis of external source 2

Attribute Goods Bads Total | %total | Bad | G:B | WoE IV
Rate | odds
(-0.01, 0.22] 5631 | 25055 | 30686 9.98 | 18.35 4.45| -0.94 | 0.13
(0.22, 0.34] 3706 | 26979 | 30685 9.98 | 12.08 728 | -0.45 | 0.02
(0.34, 0.44] 3056 | 27631 | 30687 9.98 | 9.96 9.04 | -0.23 | 0.01
(0.44, 0.51] 2566 | 28118 | 30684 9.98 | 836 | 10.96 | -0.04 | 0.00
Missing Values 52 608 660 0.21| 788 | 11.69 | 0.03 | 0.00
(0.51, 0.57] 2278 | 28406 | 30 684 9.98 | 742 | 1247 | 0.09 | 0.00
(0.57, 0.61] 2042 | 28645 | 30 687 9.98 | 6.65| 14.03 | 0.21 | 0.00
(0.61, 0.65] 1794 | 28889 | 30683 9.98 | 585 | 16.10 | 0.35| 0.01
(0.65, 0.68] 1499 | 29195 | 30694 9.98 | 4.88 | 19.48 | 0.54 | 0.02
(0.68, 0.72] 1289 | 29387 | 30676 9.98 | 4.20 | 22.80| 0.69| 0.04
(0.72, 0.85] 912 | 29773 | 30685 9.98 | 297 | 32.65| 1.05| 0.07
Total 24825 | 282686 | 307511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.31
Table D.8: Univariate analysis of external source 3
Attribute Goods Bads Total | %total | Bad | G:B | WoE v
Rate | odds
(-0.009, 0.23] 4 941 19 760 24 701 8.03 | 20.00 4.00 | -1.05| 0.14
(0.23, 0.33] 3 156 21 588 24 744 8.05 | 12.75 6.84 | -0.51 | 0.03
(0.33, 0.41] 2 383 22 674 25 057 8.15 9.51 9.51 | -0.18 | 0.00
Missing Values 5677 55 288 60 965 19.83 | 9.31 9.74 | -0.16 | 0.01
(0.41, 0.48] 1970 22 719 24 689 8.03 7.98 | 11.53 0.01 | 0.00
(0.48, 0.54] 1494 22 692 24 186 7.87 6.18 | 15.19 0.29 | 0.01
(0.54, 0.59] 1 357 24 035 25 392 8.26 5.34 | 17.71 0.44 | 0.01
(0.59, 0.64] 1173 23 552 24 725 8.04 4.74 | 20.08 0.57 | 0.02
(0.64, 0.69] 1043 23 702 24 745 8.05 4.21 | 22.72 0.69 | 0.03
(0.69, 0.75] 836 22 839 23 675 7.70 3.53 | 27.32 0.88 | 0.04
(0.75, 0.9] 795 23 837 24 632 801 | 3.23] 2998 | 0.97| 0.05
Total 24 825 | 282 686 | 307 511 | 100.00 | 8.07 | 11.39 | 0.00 | 0.33
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