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Abstract

Recent research has highlighted the significance of accuracy and explainability of

classification models applied across various disciplines. A wide range of classification

models and combinations of models have been extensively studied to determine those

with superior performance. These studies demonstrate that models that tend to

be more accurate are also difficult to understand; there appears to be a trade-off

between accuracy and explainability. Consequently, this has led to an increased focus

on explainable artificial intelligence, a field of research concerned with explaining

model predictions.

Although explainable artificial intelligence is an area of research with growing popu-

larity in the science community, there are still limited case studies that explore its

applications in credit default risk. Credit default risk refers to the potential financial

loss or risk that is incurred by a credit provider when an obligor fails to meet their

debt obligations. To quantify, mitigate and manage the risk associated with granting

credit proactively, credit providers utilise scoring classifiers to assess the risk of credit

applicants prior to granting credit. Furthermore, credit risk providers are legally

required to explain predictions of scoring classifiers.

Popular classifiers used in credit risk include logistic regression, discriminant analysis,

decision trees, random forests, bootstrap aggregation, neural networks, support vector

machines and gradient boosting algorithms. Logistic regression and discriminant

analysis are widely adopted in the financial industry because they perform reasonably

well and are inherently interpretable. However, these approaches are giving way to

alternative approaches that offer improved accuracy in risk assessment, even though

these alternatives lack interpretability; they are less comprehensible and are often

regarded as black boxes. This lack of interpretability has resulted in a reluctance to

adopt these alternative techniques in credit granting.
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The aim of this study is to remove the aforementioned barrier of using black box

models by utilising explainable artificial intelligence methods, such as Shapley additive

explanations and local interpretable model-agnostic explanations. The study also

examines the accuracy-explainability trade-off of different classifiers by developing

and evaluating eight classification models on two publicly available credit datasets.

Eight classification models were constructed, including decision trees, logistic regres-

sion, linear discriminant analysis, support vector machines, artificial neural networks,

bootstrap aggregation, random forest, and light gradient boosting classifier. Their

performance and interpretability were assessed after training and tuning the hyper-

parameters for optimal comparison on training, testing and validation subsets of the

data. Performance accuracy was measured using the area under the curve on 30

random subsets generated from the validation data. Furthermore, the Kruskal Wallis

test and Dunn’s multi-comparison test were used to rank the predictive models by

accuracy and to determine if the differences in mean accuracy are statistically signifi-

cant. The interpretability of these classifiers was conducted for both transparent and

black box models. To achieve these ends, key preprocessing steps were developed to

reduce the complexities of local and global model interpretation. In addition, Shap-

ley additive explanations and local interpretable model-agnostic explanations were

utilised to analyse the relative importance of features and the impact on predictions.

The experiments show that the artificial neural network, ensembles and other tree-

based algorithms significantly outperform logistic regression and linear discriminant

analysis in the first case study. However, contradictory results are obtained for the

second case study, as the performance of the classifiers are relatively comparable.

This indicates that model performance depends on the data from which the models

are constructed. These two case studies show that the perceived trade-off between

accuracy and explainability does not always hold true. Furthermore, Shapley additive

explanations yielded results that are consistent with the intrinsic interpretability

results of the transparent methods. This post-hoc interpretability enables us to

understand how the predictions are made and what factors contributed to the

prediction. This is important to create a reliable and trustworthy framework that

uses black box models for credit decisions.

The research highlights the benefits of using alternative methods for credit risk

scoring, showing that the performance can vary significantly. It also demonstrates

the effectiveness of Shapley additive explanations and local interpretable model-

agnostic explanations to explain predictions of black box classifiers. However, it

identifies challenges in using the Shapley additive explanations. The mean absolute

value may be sensitive to outliers, which could have an impact on feature importance.

Therefore, further work is required to enhance the efficiency of calculating Shapley

additive explanations’ values for linear classifiers and some ensembles.
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Opsomming

Onlangse navorsing het die belangrikheid uitgelig van die akkuraatheid en verduide-

likbaarheid van klassifikasiemodelle wat dwarsoor verskeie dissiplines toegepas word.

’n Wye reeks klassifikasiemodelle en modelkombinasies is omvattend bestudeer om

daardie modelle met voortreflike prestasie te bepaal. Hierdie studies het gedemon-

streer dat modelle wat neig om meer akkuraat te wees, ook moeilik is om te verstaan;

dit kom voor of daar ’n kompromie is tussen akkuraatheid en verduidelikbaarheid. Dit

het gevolglik aanleiding gegee tot ’n verhoogde fokus op verduidelikbare kunsmatige

intelligensie, ’n navorsingsveld wat met die verduideliking van modelvoorspellings

gemoeid is.

Alhoewel verduidelikbare kunsmatige intelligensie ’n navorsingsgebied is wat besig

is om in gewildheid toe te neem binne die wetenskapgemeenskap, is daar steeds

beperkte gevallestudies wat die toepassing daarvan op kredietwanbetalingsrisiko on-

dersoek. Kredietwanbetalingsrisiko verwys na die potensiële finansiële verlies of risiko

waaraan ’n kredietverskaffer blootgestel word wanneer ’n skuldenaar in gebreke bly

om hul skuldverpligtinge na te kom. Ten einde die risiko wat met kredietverskaffing

geassosieer word proaktief te kwantifiseer, versag en bestuur, moet kredietverskaffers

kredietgraderingsklassifiseerders gebruik om die moontlike risiko te evalueer wat

kredietaansoekers inhou, voordat krediet toegestaan word. Voorts is kredietrisikover-

skaffers volgens wet verplig om die voorspellings van kredietgraderingsklasifiseerders

te verduidelik.

Gewilde klassifiseerders wat in kredietrisiko gebruik word, sluit logistieke regressie,

diskriminantanalise, besluitnemingsbome, ewekansige woude, skoenlussamevoeging,

neurale netwerke, ondersteuningsvektormasjiene en gradiëntversterkingsalgoritmes

in. Logistieke regressie en diskriminantanalise is algemeen deur die finansiële bedryf

aanvaar aangesien hulle redelik goed presteer en inherent verduidelikbaar is. Hierdie

benaderings skep egter ruimte vir alternatiewe benaderings wat verbeterde akku-
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raatheid ten opsigte van risiko-assessering bied selfs al gaan hierdie alternatiewe

benaderings mank aan interpreteerbaarheid; hulle is nie so verstaanbaar nie en word

dikwels as swartkissies (black boxes) gesien. Hierdie gebrek aan interpreteerbaarheid

het tot gevolg dat daar ’n traagheid is om hierdie alternatiewe kredietverleningsteg-

nieke aan te neem.

Hierdie studie het ten doel om die voorafgenoemde versperring tot die gebruik

van swartkissiemodelle te verwyder deur verduidelikbare kunsmatige intelligen-

siemetodes soos Shapely se additiewe verduidelikings en plaaslike interpreteerbare

model-agnostiese verklarings te gebruik. Die studie ondersoek ook die akkuraatheid-

verduidelikbaarheidskompromie van verskillende klassifiseerders deur agt klassifikasie-

modelle vir twee openbaar beskikbare kredietdatastelle te ontwikkel en te evalueer.

Agt klassifikasiemodelle is saamgestel, naamlik besluitnemingsbome, logistieke re-

gressie, liniêre diskriminantanalise, ondersteuningsvektormasjiene, kunsmatige neu-

rale netwerke, skoenlussamevoeging, ewekansige woud en ligte gradiëntversterk-

ingsklassifiseerder. Hul prestasie en interpreteerbaarheid is geassesseer na opleiding

en instelling van die hiperparameters vir optimale vergelyking van opleiding, toetsing

en geldigverklaring van deelversamelings van die data. Prestasie-akkuraatheid is

gemeet deur van die area onder die kurwe van 30 ewekansige deelversamelings wat

uit die geldigverklaarde data gegenereer is, gebruik te maak. Voorts is daar van

die Kruskal Wallis-toets en Dunn se multivergelykingstoets gebruik gemaak om die

voorspellingsmodelle ten opsigte van akkuraatheid te klassifiseer en te bepaal of

die verskille in gemidddelde akkuraatheid statisties beduidend is. Die interpreteer-

baarheid van hierdie klassifiseerders is vir beide deursigtige en swartkassiemodelle

uitgevoer. Om hierdie resultate te verkry, is belangrike voorverwerkingstappe on-

twikkel om die kompleksiteite van plaaslike sowel as globale modelinterpretasie

te verminder. Daarbenewens is Shapley se additiewe verduidelikings en plaaslike

interpreteerbare model-agnostiese verduidelikings ook ingespan om die relatiewe

belangrikheid van kenmerke en die impak op voorspellings te ontleed.

Die eksperimente toon dat die kunsmatige neurale netwerk, ensembles en ander

boomgebaseerde algoritmes in die eerste gevallestudie beduidend beter as die logistieke

regressie en liniêre diskriminantanalise presteer het. Die tweede gevallestudie het

egter teenstrydige resultate opgelewer. In die tweede gevallestudie is die prestasie

van die klassifiseerders relatief vergelykbaar. Dit is ’n aanduiding dat modelprestasie

afhanklik is van die data waaruit die modelle saamgestel is. Hierdie twee gevallestudies

toon dat die waargenome kompromie tussen akkuraatheid en verduidelikbaarheid

nie altyd waar is nie. Boonop het die Shapley additiewe verduidelikings resultate

opgelewer wat met die intrinsieke interpreteerbaarheidsresultate van die deursigtige

metodes ooreenstem. Hierdie post-hoc interpreteerbaarheid help ons om te verstaan

hoe die voorspellings gemaak word en watter faktore tot die voorspellings bygedra

het. Laasgenoemde is belangrik ten einde ’n betroubare en geloofwaardige raamwerk

te skep wat van swartkassiemodelle vir kredietbesluite gebruik maak.
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Die navorsing beklemtoon die voordele van die gebruik van alternatiewe metodes

vir kredietrisikogradering; dit toon dat die prestasie aansienlik kan varieer. Dit

demonstreer ook die doeltreffendheid van die Shapley additiewe verduidelikings

en plaaslike interpreteerbare model-agnostiese verduidelikings in die verduideliking

van voorspellings van swartkissieklassifiseerders. Dit is egter so dat dit uitdagings

ten opsigte van die Shapley additiewe verduidelikings identifiseer. Die gemiddelde

absolute waarde mag dalk sensitief wees vir uitskieters wat ’n impak op die belan-

grikheid van kenmerke kan hê. Daarom is verdere werk nodig om die doeltreffendheid

van die berekening van Shapley se additiewe verduidelikings se waardes vir liniêre

klassifiseerders en sommige ensembles te versterk.
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Kgutsufatso

Diphuputso tsa morao tjena di totobaditse bohlokwa ba ho nepahala le ho hlaloswa

ha mefuta ya dihlopha e sebediswang dikarolong tse fapaneng. Mefuta e mengata e

fapaneng ya dihlopha le motswako wa mefuta e nnile ya ithutwa haholo ho fumana

hore na ke efe e nang le tshebetso e phahameng. Diphuputso tsena di bontsha hore

mehlala e atisang ho nepahala haholwanyane le yona e thata ho e utlwisisa; ho

bonahala ho e na le kgwebo pakeng tsa ho nepahala le ho hlalosa. Ka lebaka leo,

sena se lebisitse tlhokomelong e eketsehileng ho bohlale bo hlakileng ba maiketsetso,

lefapha la dipatlisiso le amanang le ho hlalosa dikgakanyo tsa mohlala.

Leha bohlale ba maiketsetso bo hlaloswang e le sebaka sa dipatlisiso se ntseng se hola

setumo se ntseng se hola setjhabeng sa mahlale, ho ntse ho na le dithuto tse fokolang

tse hlahlobang tshebediso ya yona kotsing ya ho se be teng ha mekitlane. Kotsi

ya ho se be teng ha mokitlane e bolela tahlehelo ya ditjhelete e ka bang teng kapa

kotsi e hlahiswang ke mofani wa mokoloto ha motho ya tlamang a hloleha ho fihlela

mekoloto ya hae. Ho lekanya, ho fokotsa le ho laola kotsi e amanang le ho fana ka

mokoloto ka potlako, bafani ba mekitlane ba sebedisa dihlopha tsa dintlha ho lekola

kotsi ya bakopi ba mekitlane pele ba fana ka mokoloto. Ho feta moo, bafani ba kotsi

ya mokoloto ba hlokwa ka molao ho hlalosa dikgakanyo tsa dihlopha tsa dintlha.

Dihlopha tse tsebahalang tse sebediswang e le kotsi ya mokoloto di kenyelletsa ho

theola maemo, hlahlobo ya kgethollo, difate tsa diqeto, meru e sa rerwang, pokello

ya bootstrap, marangrang a neural, metjhini ya divector ya tshehetso le dialgorithms

tse matlafatsang. Phokotso ya dintho le hlahlobo ya kgethollo di amohelwa haholo

indastering ya ditjhelete hobane di sebetsa hantle ka mokgwa o utlwahalang mme ka

tlhaho di ka tolokwa. Leha ho le jwalo, mekgwa ena e fana ka mokgwa wa mekgwa e

meng e fanang ka ho nepahala ho ntlafetseng ha ho hlahlojwa kotsi, le hoja mekgwa

ena e meng e se na tlhaloso; ha di utlwisisehe mme hangata di nkwa e le mabokose a

matsho. Kgaello ena ya hlaloso e bakile ho qeaqea ho sebedisa mekgwa ena e meng
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ya ho fana ka mekoloto.

Sepheo sa thuto ena ke ho tlosa mokwallo o boletsweng ka hodimo wa ho sebedisa

mehlala ya diblackbox ka ho sebedisa mekgwa e hlakileng ya bohlale ba maiketsetso,

jwalo ka dihlaloso tsa tlatsetso tsa Shapley le dihlaloso tsa sebaka sa habo bona tsa

agnostic. Boithuto bona bo boetse bo hlahloba kgwebo e nepahetseng le hlaloso e

nepahetseng ya dihlopha tse fapaneng ka ho theha le ho lekola mefuta e robedi ya

dikarolo ho didatabase tse pedi tse fumanehang phatlalatso ya tsa mekoloto.

Ho ile ha ahwa mefuta e robedi ya dikarolo, ho kenyeletswa lifate tsa liqeto, ho theoha

ha thepa, hlahlobo ya kgethollo e tshwanang, metjhini ya divector tse tshehetsang,

marangrang a maiketsetso a neural, aggregation ya bootstrap, moru o sa rerwang,

le sehlopha se matlafatsang se bobebe. Tshebetso ya bona le hlaloso ya bona di

ile tsa hlahlojwa ka mora ho kwetliswa le ho lokisa di-hyperparameters bakeng sa

papiso e nepahetseng mabapi le kwetliso, diteko le ho netefatsa dikarolwana tsa data.

Ho nepahala ha tshebetso ho ile ha lekanyetswa ho sebediswa sebaka se ka tlasa

lekgalo ho disubsets tse 30 tse sa rerwang tse hlahisitsweng ho data ya netefatso.

Ho feta moo, teko ya Kruskal Wallis le ya Dunn ya ho bapisa dintho tse ngata di

ile tsa sebediswa ho beha maemo a ponelopele ka ho nepahala le ho fumana hore

na diphapano tsa ho nepahala ha moelelo di bohlokwa ho latela dipalo. Hlaloso

ya dihlopha tsena e ile ya etswa bakeng sa mehlala ya dibox tse bonaletsang le tse

ntsho. Ho finyella diphello tsena, mehato ya bohlokwa ya ho lokisa esale pele e ile

ya ntlafatswa ho fokotsa ho rarahana ha hlaloso ya mohlala ya lehae le ya lefatshe.

Ntle le moo, dihlaloso tsa tlatsetso tsa Shapley le dihlaloso tsa sebaka sa sebaka sa

motlolo wa agnostic di ile tsa sebediswa ho sekaseka bohlokwa bo lekanyeditsweng

ba dikarolo le phello ya dikgakanyo.

Diteko di bontsha hore marangrang a maiketsetso a methapo ya kutlo, di-ensembles

le di-algorithms tse ding tse thehilweng sefateng di feta haholo ho theoha ha thepa

le hlahlobo e fapaneng ya kgethollo thutong ya pele. Leha ho le jwalo, diphetho tse

hanyetsanang di fumanwa bakeng sa thuto ya mohlala ya bobedi, kaha tshebetso

ya dihlopha di batla di bapiswa. Sena se bontsha hore tshebetso ya mohlala e

itshetlehile ka data eo mehlala e ahilweng ho yona. Dithuto tsena tse pedi tsa

dinyewe di bontsha hore phapang pakeng tsa ho nepahala le ho hlalosa ha se kamehla

e leng nnete. Ho feta moo, dihlaloso tsa tlatsetso tsa Shapley di hlahisitse ditholwana

tse tsamaellanang le sephetho sa ho toloka ha mekgwa e pepeneneng. Hlaloso ena

ya post-hoc e re thusa ho utlwisisa hore na dikgakanyo di etswa jwang le hore na

ke dintlha dife tse tlatseditseng ho bolela esale pele. Sena ke sa bohlokwa ho theha

moralo o ka tsheptjwang le o ka tsheptjwang o sebedisang mehlala ya lebokose le

letsho bakeng sa diqeto tsa mokitlane.

Patlisiso e totobatsa melemo ya ho sebedisa mekgwa e meng bakeng sa dintlha

tsa kotsi ya mokoloto, e bontsha hore tshebetso e ka fapana haholo. E boetse e

bontsa katleho ya dihlaloso tsa tlatsetso ya Shapley le dihlaloso tsa sebaka seo ho ka
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tolokwang tsa mohlala-agnostic ho hlalosa dikgakanyo tsa dihlopha tsa diblackbox.

Leha ho le jwalo, e supa mathata a ho sebedisa dihlaloso tsa tlatsetso ya Shapley.

Theko ya boleng bo felletseng e kanna ya ameha ho barekisi ba kantle, e ka amang

bohlokwa ba karolo. Ka hona, mosebetsi o mong o a hlokahala ho ntlafatsa bokgoni

ba ho bala boleng ba dihlaloso tsa tlatsetso tsa Shapley bakeng sa dihlopha tsa linear

le diensembles tse ding.
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CHAPTER 1

INTRODUCTION

The field of explainable artificial intelligence (XAI) is a fast growing field of interest

in the science community. This is due to the increase in the applications of prediction

models, availability of large data as well as reported failures of complex predictive

models, which can be traced back to the lack of transparency [Bücker et al., 2022].

Traditionally, prediction models were based on domain knowledge and were easy to

understand. However, recent predictive modelling approaches have become more

complex, resulting in higher accuracy but less transparency. Thus, there is a trade-off

between the performance and explainability of prediction models. Often the terms

explainability and interpretability are used interchangeably. Interpretability refers to

the degree to which an observer can understand the cause of a decision [Miller, 2019;

Molnar, 2022]. The aim of XAI is to provide insights as to how and why complex

predictive models produce predictions [Markus et al., 2021].

XAI assists with the adoption of complex predictive models in areas such as credit

risk management, which entails the approval or rejection of credit applications. In the

context of credit risk management, these predictive models are referred to as credit

scoring classifiers. Over the last few decades, credit approval decisions progressed

from judgemental or intuitive approaches to automated scoring systems [Abdou and

Pointon, 2011]. Traditional credit scoring approaches, such as logistic regression (LR)

and linear discriminant analysis (LDA), involve the formalisation of relationships

between variables in the form of mathematical equations. Moreover, they provide

a fine balance between predictive ability and ease of interpretation. Alternative

scoring classifiers, including support vector machine (SVM)s, artificial neural network

(ANN)s, bootstrap aggregation (bagging), boosting methods and random forest

(RF), utilise algorithms that can learn from data without relying on rule-based
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programming and have shown superior performance ability. The main challenge in

utilising alternative approaches is that, despite the potential high predictive accuracy,

they often lack transparency and interpretability [FSB, 2017]. Consequently, these

methods are often referred to as black box models. This accuracy-explainability

trade-off has hindered the adoption of complex predictive models for credit scoring.

Figure 1 illustrates the trade-off between performance accuracy and explainability.

Figure 1: Accuracy-explainability trade-off (Figure 1.4 in Karim [2022]).

Figure 1 shows that complex models, which are capable of learning non-linear and

non-smooth relationships in data, exhibit higher accuracy compared to traditional

models such as decision tree (DT) and LR. However, these complex models are less

interpretable than their traditional counterparts. The aim of this dissertation is

to investigate the accuracy-explainability trade-off on credit scoring classifiers by

assessing the performance and explainability of the classifiers for two case studies.

1.1 Background and rationale

Historically, credit approval decisions were based on an expert judgement approach

that involved evaluating a customer’s creditworthiness based on the 5Cs: character

(reputation), capital (amount), capacity (earnings volatility), collateral, and condition

(economic cycle) [de Servigny and Renault, 2004]. The success of the judgemental

process is dependent on the credit analyst’s or expert’s experience and common

sense. This approach has the advantage of considering the qualitative aspects of a

customer. However, the disadvantage is the potentially subjective, inconsistent, and

biased evaluations [Abdou and Pointon, 2011].

The credit lending landscape has shifted significantly from judgemental to automated

credit scoring systems. Technological advancements resulted in the deployment and
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widespread utilisation of automated credit scoring systems, and the adoption of

statistical scoring methods to aid in credit decision making. Popular credit scoring

approaches include LDA, LR and recursive partitioning algorithm (RPA) [van Gestel

and Baesens, 2008; Thomas et al., 2002]. These are classification scoring approaches

that are used to support credit strategies and decision-making throughout the credit

life cycle, namely acquisitions or origination, account management, and collections.

The main purpose of credit scoring is to differentiate between good and bad credit

customers which has lead to improved credit processing times, reductions of process

costs, and the minimisation of errors [Abdou and Pointon, 2011]. Therefore, the

performance in terms of predictive accuracy plays a critical part in the success of

credit scoring. De Servigny and Renault [2004] argue that an optimal scoring model

must have high accuracy and feasibility. This entails low error rates resulting from

reasonable assumptions, as well as efficiency and ease of implementation.

De Servigny and Renault [2004] also state that an optimal scoring model must meet

other criteria, namely parsimony and transparency. This means using a reasonable

number of explanatory variables, along with producing explainable results. Creditors

are required to be able to explain reasons behind credit decisions [Dastile et al., 2020].

Consequently, creditors prefer to use models that are transparent and interpretable,

sometimes compromising on accuracy and performance. In addition, primary lenders

such as banks are regulated by international committees, such as the Basel Committee

on Banking Supervision (BCBS), local regulators, such as the South African Reserve

Bank (SARB) and auditors to ensure that they comply with lending regulations.

This is to prevent reckless lending, biases when lending and to manage credit risk

proactively. Decisions made using automated scoring systems must be free of biases

and in line with lending legislation and regulations.

Scoring approaches can be used to overcome issues around bias and inconsistency

when making decisions to grant credit where lending to customers remains largely

intuitive. In recent years, there has been a rapid advancement of credit scoring

classifiers that serve as alternative to conventional techniques like LR and LDA and

can be used to model complex multivariate non-linear relationships in contrast to

traditional linear techniques [van Gestel et al., 2005; Abdou and Pointon, 2011].

These alternative classifiers are deemed to be black boxes because often they are

difficult to understand (lack transparency and interpretability). The literature

on these classifiers, which include SVM, ANN, bagging, boosting methods and

RF, suggests that they outperform the traditional approaches. In addition, these

alternative classifiers are broadly categorised as neural networks, ensemble methods

and kernel-based methods as shown in Figure 1.
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1.2 Problem statement

Upon receiving applications for credit, lenders must decide whether or not to grant

credit and to which customers. The decisions are usually aided by the use of

scorecards and automated systems. Nonetheless, lenders must be able to accurately

discriminate between good and bad customers in a fair manner. Furthermore, credit

decisions must be in line with the objectives of the business, generally to minimise

risk and maximise profit or, equivalently to minimise losses [Witzany, 2017].

The likelihood of customers defaulting is estimated using a statistically sound

approach, such as a classification model. An accurate assessment of a customer’s

degree of risk or probability of default is imperative for a lender. Lenders must

determine their risk appetite or the level of risk that they are willing to accept. They

must decide whether to approve or decline credit applications depending on their

risk appetite. This research will assist with predicting of default risk and enable

explanations for predictions. The research was conducted using publicly available

data from the Kaggle and UCI machine learning online repositories.

1.3 Aims and objectives of the research

The aim of this study is to investigate the accuracy-explainability trade-off on credit

scoring classifiers.

The main objectives of this project are to:

• Explore the advantages and effectiveness of alternative approaches in the

context of credit applications, as this can improve the accuracy of predictions

to discriminate between good and bad customers. There is a large body of

literature on LR and other transparent approaches, but limited studies and

recommendations on the use of black box models.

• Analyse the challenges and limitations of using machine learning techniques to

score customers within the credit risk management framework. Many machine

learning classification models are deemed as black box models, i.e. outcomes

are not explainable. This has resulted in the reluctance to adopt and utilise

these models in practice. This study explores the use of XAI methods, such as

Shapley additive explanations (SHAP) and local interpretable model-agnostic

explanations (LIME), to explain reasons behind predictions.

The work on these aspects is currently limited. This study contributes to the ongoing

research on credit scoring approaches and their application in credit risk management,

with a view to optimise credit decisions. Furthermore, this research seeks to contribute

to a growing field of study on the transparency and explainability of such models,

especially within the highly regulated domain of credit risk management.
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1.4 Dissertation structure

This research is organised as follows: In Chapter 1, the introduction presents a brief

overview of the background, research problem and the research objectives. Chapter

2 presents the theoretical foundation on credit scoring models frequently used in

literature. The evaluation of classification models and techniques used to make

models transparent and explainable are discussed. Chapter 3 reviews the relevant

literature on the accuracy or performance of various credit scoring techniques as well

as the challenges of these approaches. A survey of related work on the transparency

and explainability of advanced classifiers is presented. Chapter 4 discusses how

the research was carried out. The computer application, the data collection and

analysis, preprocessing and model construction and approaches on explainability and

interpretability are outlined. Chapter 5 presents the results of the data wrangling,

analysis and preprocessing. Chapter 6 discusses the results achieved by this research.

Chapter 7 provides a summary of the research, stating the research contributions

and recommendations for future work.
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CHAPTER 2

BACKGROUND CONCEPTS

The Board of Governors of the Federal Reserve System [2011] defines a model

as “a quantitative approach that applies mathematical, statistical, economic and

financial theories, techniques and assumptions to process input data into quantitative

estimates”. Credit scoring involves constructing models that can be used to estimate

the default risk associated with credit applicants. The estimated risk is then used

to develop credit strategies, such as deciding whether to accept, decline or refer a

credit application. These decisions have an impact on the profitability of financial

institutions [Thomas et al., 2002; Abdou and Pointon, 2011].

This chapter briefly presents the theoretical foundation of credit scoring classifiers

and the explainability of these classifiers. Several classification models commonly

used for credit scoring, including DTs, LR, LDA, SVM, ANN, bagging, boosting and

RF are presented. Furthermore, the techniques used to understand the behaviour of

these classification models are explained. The field of study that deals with explaining

and interpreting the behaviour of classification models is referred to as XAI.

2.1 Credit scoring classifiers

Extensive research has been conducted on individual classification models, such as LR,

LDA, DT based algorithms, SVM, ANN, as well as multiple classifier system (MCS)s

to predict the risk of default. LR and LDA are the most widely used classification

models in credit risk management due to their interpretability (the level to which one

can understand the reasons behind predictions) [Dastile et al., 2020]. However, these

models require the formalisation of relationships between features and a dependent
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variable in the form of a mathematical formula. Alternative approaches, such as

the SVM, ANN and some ensemble systems, employ algorithms that can identify

complex patterns in large volumes of data and learn from data without relying on

rule-based programming [Dangeti, 2017; FSB, 2017]. These alternative approaches

tend to be more accurate in predicting the risk of default. However, they are often

difficult to explain [Kollár et al., 2015; Dastile et al., 2020].

2.1.1 Decision trees

A DT is a machine learning algorithm that entails recursively partitioning a data

space and fitting a prediction model within each partition. Given a dataset D, with

a subspace or feature space of n predictor variables, i.e., x = (x1, x2, . . . xn) and a

dichotomous class variable y ∈ {0, 1}, the DT involves partitioning the feature space

x, one feature at a time, into a finite number of disjoint subsets until a class can be

predicted [Loh, 2011].

A DT is commonly depicted as a tree-like structure providing a hierarchical repre-

sentation of the feature space and the relationships among the data. A DT is made

up of a root node which represents the entire population, branches or subtrees which

represent the decisions and leaf nodes which are terminal nodes, i.e., subsets that

are usually not partitioned further due a stopping criteria, for example, a specified

maximum depth of the tree.

A number of methods, known as measures of impurity, which include the Kolmogorov-

Smirnov statistic, the Gini index, entropy index or the chi-square statistic can be

used to partition or split the subspace [Witzany, 2017]. These measures provide a

measure of the good and bad populations in a partition Aj, in each node or leaf in

the tree diagram. The measures that are commonly used in literature are the entropy

and Gini index, also referred to as the Gini impurity. However, the best measure

of node impurity usually depends on the data set [Brown and Myles, 2013]. The

process of splitting or partitioning is recursive and stops when a particular stopping

condition is reached.

2.1.2 Logistic regression

A LR model is a parametric statistical technique, developed to discriminate between

two or more groups. It uses a mathematical function to determine the relationship

between a dependent variable and one or more independent variables.

Consider a dichotomous response variable y ∈ {0, 1} associated with a collection of

n independent features denoted by the vector x = (x1, x2, . . . xn), for each member

in a dataset D. Let π(x) be the posterior probability P(y = 1|x1, x2, . . . xn), for each

member. Assume that the posterior probability is governed by a logistic or sigmoid
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function where the input is a linear combination of features xi for i = 1, 2, . . . , n, i.e.,

π(x) =
eβ0+β1x1+···+βkxn

1 + eβ0+β1x1+···+βkxn
. (1)

The logistic function, which restricts the outcome to the interval [0, 1], is a bounding

function. The name LR is derived from the bounding logistic function utilised. It

can be deduced from Equation 1 that

log

(
π(x)

1− π(x)

)
= β0 + β1x1 + · · ·+ βkxn, (2)

where β0, β1, . . . , βn ∈ R. The parameters βi, where i = 0, 1, . . . n, are determined

using the maximum likelihood estimation and are obtained by fitting Equation 2 to

the data. Stochastic average gradient descent (SAGA), Newton method (newton-

cg), library for large linear classification (Liblinear) and limited-memory Broy-

den–Fletcher–Goldfarb–Shanno (LBFGS) can be used to estimate these parameters.

2.1.3 Discriminant analysis

Discriminant analysis is a parametric statistical technique, developed to discriminate

between two groups. There are different approaches leading to the formulation of

the LDA and quadratic discriminant analysis (QDA). These approaches include, the

decision theory or probabilistic approach, separating the two groups approach or

Fischer’s interpretation, and the linear regression approach. This section presents an

outline of the decision theory approach described by Thomas et al. [2002] and James

et al. [2013].

Consider a dichotomous response variable y ∈ {0, 1} associated with a collection of

n independent variables denoted by the vector x = (x1, x2, . . . xn) for each member

in a dataset D. Each class y ∈ {0, 1} is assigned a prior probability πy =
Ny

N
, where

Ny is the number observations in class y and N is the total number of observations.

According to Bayes’ rule the posterior probability is

P (y|x) = fy(x)πy∑1
i=0 fi(x)πi

, (3)

wherefy(x) is the density of x given y. Assume that fy(x) is a multivariate Gaussian

density function

fy(x) =
1

(2π)n/2 detΣ1/2
y

exp

(
−1

2
(x− µy)

TΣ−1
y (x− µy)

)
, (4)

where n is the dimension of x, Σy is the covariance matrix and µy is the mean vector.

The LDA function is obtained by assuming Σ1 = Σ0 = Σ and solving for the decision

8



2.1. Credit scoring classifiers

boundary P (y = 1|x) = P (y = 0|x).

The discriminant equation is of the form xTM+C which is a linear function. However,

the general form is a quadratic function of the form xTAx+BTx+C. The quadratic

form is obtained when Σ1 ̸= Σ0. Furthermore, when employing multiple discriminant

functions, the technique is referred to as multiple discriminant analysis (MDA).

2.1.4 Support vector machines

An SVM is a machine learning technique commonly used in classification problems.

It aims to find an optimal hyperplane with a maximum margin, to discriminate

between two classes [Goh and Lee, 2019]. The hyperplane is a function that separates

different classes. The distance between support vector points and the hyperplane is

called the margin. Fitting an SVM to discriminate between classes requires finding

the solution to the following optimisation problem:

Minimize
w,ϵi,b

ϕ(w, b) =
1

2
∥ w ∥2 +C

∑
i

ϵi (5)

subject to yi(w
Tx+ b) ≥ 1− ϵi, i = 1, 2, ..., n (6)

where w represents the margin, b is the bias term, C is the penalty hyperparameter

and ϵi is the slack variable introduced to account for misclassification. The global

maximum of the quadratic function can be determined by utilising the Lagrange

function. However, when there is no feasible solution, radial basis function (RBF),

or polynomial kernels functions are applied to modify the SVM formulation for

nonlinear classification [Goh and Lee, 2019; Dangeti, 2017].

2.1.5 Artificial neural networks

An ANN is a machine learning process inspired by biological neural network systems.

Biological neural networks comprise neurons which are responsible for receiving

information or signals from the internal and external environment. These signals

are processed and transmitted to other neurons and to effector organs. Similarly,

artificial neural networks receive information or signals in the form of vector inputs

x = (x1, x2, . . . xn), where x is a subspace of features of a dataset. Each input feature

is associated with a weight and transformed by an artificial neuron made up of a

net input function, also referred to as a combination function, and an activation

function. Each artificial neuron can connect to another, i.e., contain multiple hidden

layers and finally produce an output as depicted in Figure 2.

A single-layer neural network consists of only one hidden layer and is expressed

9



2.1. Credit scoring classifiers

Figure 2: A single-layer neural network classification model.

mathematically as

uk =
n∑

i=0

wkixi (7)

y = f(uk) (8)

where wki are the weights. Positive weights are called excitory and they increase

the value of the net input function uk. Negative weights are called inhibitor and

they reduce the value of uk. The net input function need not be a linear function,

however the linear form is commonly used in literature and application. k indicates

the neuron to which the weight applies and i indicates the variable. Furthermore,

x0 is the bias term as shown in Figure 2 [Thomas et al., 2002]. The activation

function f restricts the value generated by the net input function to an interval,

often [0, 1] or [−1, 1]. Various activation functions are used in the application of

neural networks, including the hyperbolic tangent function, logistic function and

rectified linear activation function. Furthermore, the gradient descent algorithm is

commonly applied to model training to minimise the error in prediction.

2.1.6 Bootstrap aggregation

Bagging is an ensemble method that converts a series of weak or base classifiers into

a single strong classifier. A weak classifier, or learner, is a classifier that performs

better than random guessing. These weak classifiers are trained on bootstrapped

samples generated from the entire training dataset. Additionally, the strong classifier

is constructed by aggregating the predictions of the weak classifiers using a voting

system. Bagging has the potential to reduce the variance in the final model [Dangeti,

2017]. The bagging algorithm described by Wang et al. [2011] is as follows:

Given a training set D and a base learner h(xi), then for t = 1, 2, . . . , T iterations:

10
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1. Generate a subspace or bootstrap sample Dt from D.

2. Fit a learner Ht to each Dt.

The final hypothesis is of the form

H(x) = argmax
y

T∑
i=1

I(y = ht(x))

where I(y = ht(x)) = 1 when y = Ht(x), otherwise I(y = ht(x)) = 0.

The bagging method used in this study uses LR as base classifiers and is referred to

as bagged LR.

2.1.7 Random forests

Closely related to bagging is the RF algorithm which integrates the concept of

generating random subspaces (feature subset) and bagging [Nisbet et al., 2009]. In

bagging, all the input features are used for each sample, whereas in a RF, a subset

of features is selected in addition to the bootstrap samples [Trivedi, 2020]. The RF

algorithm described by Han et al. [2020] is as follows:

Given a training set D with n features and T classifiers:

For t = 1, 2, . . . , T

1. Generate a subspace Dt from D.

2. Fit a tree using a subset of random features from Dt.

For a given node:

(a) Randomly select m ≈
√
n or m ≈ n/3.

(b) Find the best split features and cutpoints using the feature subset.

(c) Send down the data using (b).

Repeat (a) - (c) until terminating conditions are met.

3. Develop trained models Ct.

Use simple majority voting to fuse the T trained models.

2.1.8 Boosting

Boosting is an ensemble technique that converts a series of weak classifiers, also

referred to as weak or base learners, to a strong classifier. A weak learner is a

classifier that performs better than random guessing. The fundamental assumption

of boosting is that a weak learner produces a weak hypothesis that is better than

random guessing. This is known as the weak learning assumption [Schapire and

Freund, 2012]. The weak learners in boosting are trained sequentially on modified
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2.1. Credit scoring classifiers

versions of the data, whereas in bagging they are trained in parallel. Moreover

boosting does not involve bootstrap sampling, unlike bagging. The learners are then

aggregated to create a strong classifier [Dangeti, 2017].

Boosting entails generating a series of classifiers repetitively. At each iteration,

a base classifier is trained on a different subset of the training set based on an

iteratively computed distribution or weighting over the sample of the training set.

Furthermore, a higher weighting is placed on the misclassified observations. The

final classifier is determined by computing the weighted average of the preceding

classifiers [Theodoridis and Koutroumbas, 2009].

Boosting refers to a family of algorithms, which include adaptive boosting (adaboost),

gradient boosting (gboost) and extreme gradient boosting (XGBoost). The adaboost

algorithm was formulated by Freund and Schapire [1997]. Friedman [2001] developed

the regression and classification gboost algorithms.

The gboost classification algorithm described in Friedman [2001] and Natekin and

Knoll [2013] is as follows:

Consider a training set {(x1, y1), . . . , (xn, yn)} as input, where xi belongs to some

feature space Xm and yi is a response variable. A differentiable function L(yi, γ) that

will be used to evaluate how well the algorithm models the training set is defined.

The function L(yi, F (xi)) is referred to as the loss function. There is a wide range of

loss functions that have been developed, the choice of which depends on the response

variable yi. The most frequently used loss functions for classification, i.e., when yi is

a categorical response variable, include the Binomial loss function and the Adaboost

loss function. A base-learner h(xi) and the maximum number of iterations T are

then defined.

For t = 1, 2, . . . , T

1. Initialise model with a constant value: F0(x) = argmin
γ

∑n
i=1 L(yi, γ).

2. Compute the pseudo-residuals or negative gradients gt(xi).

3. Fit a new weak learner ht(x).

4. Compute the multiplier or the best gradient step-size:

γt = argmin
γ

n∑
i=1

L(yi, Ft−1(xi) + γ · ht(xi)).

5. Update the model: Ft(xi) = Ft−1(xi) + γt · ht(xi).

The most used base learners can be categorised into three model classes, namely

linear models, smooth models and decision trees. In addition, a combination of

different base learners can be used [Natekin and Knoll, 2013].
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2.2. Explainability of classifiers

There are variants of gboost algorithms such as XGBoost, light gradient boosting

machines (LGBM) and CatBoost which are improvements on the original gboost

algorithms. A popular variant is the XGBoost, in which the loss function is normalized

in order to eliminate model variances. The XGBoost algorithm reduces the likelihood

of model overfitting. Furthermore, while gboost uses the first derivative in learning,

XGBoost improves the loss function with Taylor expansion [Chang et al., 2018].

LGBM credit scoring classifier using DTs as base classifiers is constructed and used

in this study.

2.2 Explainability of classifiers

The explainability and interpretability of classification methods can be challenging

and may be a very important aspect of model predictions. Explainability and

interpretability enable humans to understand the predictions of the models and they

encourage trust in the models. The more complex the architecture of the model, the

more difficult the explainability and justification of why a prediction was obtained.

Various approaches are utilised in attempt to understand the effects of features on

model predictions such as partial dependence plot (PDP) [Friedman, 2001], SHAP

[Lundberg and Lee, 2017], LIME [Ribeiro et al., 2016], anchors [Ribeiro et al., 2018],

local rule-based explanation (LORE) [Guidotti et al., 2019], influence-based local

interpretable model-agnostic explanations (ILIME) [ElShawi et al., 2019] and model-

agnostic supervised explanations (MAPLE) [Plumb et al., 2018]. These approaches

are broadly categorised as local or global methods. Local interpretation methods

explain individual predictions whereas global methods describe the average behaviour

of a machine learning model. In addition, approaches that can be used for any

classifier are said to can be model-agnostic and those that apply to specific classifiers

are said to be model-specific.

2.2.1 Intrinsic explainability

There are classification models that are considered transparent, or glass box models,

because they are inherently explainable, such as LR, LDA and DT. In the cases of

LR and LDA, the contribution of the features is provided by the model coefficients.

Additional analysis of confidence intervals and statistical significance demonstrates

the consistency and applicability of feature attributions in order to build trust in the

model prediction. A DT is also considered as an interpretable model because it can

be displayed visually as a tree diagram or partitions of the feature space, to explain

how the prediction was made. However, even DTs can be difficult to visualise and

interpret if the depth of the tree is excessively large.

13



2.2. Explainability of classifiers

2.2.2 Partial dependence plots

A PDP is a global model-agnostic method that illustrates the dependence of predic-

tions on the joint values of the input features. They depict the marginal effect of one

or two features on a classification model’s predicted outcome. For a classification

problem where the model outputs probabilities, the PDP displays the probability for

a certain class given different features values. Additionally, a PDP can show whether

the target-feature relationship is linear, monotonic, or more complex [Molnar, 2022].

However, this method of interpretation is difficult to use for high dimensional feature

spaces and is therefore limited to a low number of input features. It is useful when

there is a low order of interaction between variables or when features are uncorrelated

[Friedman, 2001].

2.2.3 Local interpretable model-agnostic explanations

LIME is a local model-agnostic method, in which local surrogate models that are

considered interpretable are trained and used to approximate the predictions of

less interpretable model. LIME tries to fit a local model using sample data points

(interpretable representation) that are similar to the observations being explained.

This ensures that explanations are locally faithful, even though they may not be

faithful globally or lack global fidelity. The primary objective of LIME is to find a

model that is interpretable over the interpretable representation and that is locally

faithful to the underlying classifier [Ribeiro et al., 2016].

The optimisation problem to be solved for LIME as proposed in Ribeiro et al. [2016]

is formulated as follows: Given a classifier f and a local interpretable surrogate

model g, the problem to be solved is

ξ(x) = argmin
gϵG

L(f, g, πx) + Ω(g) (9)

where ξ(x) is the explanation, L(f, g, πx) is a measure of how unfaithful g is in

approximating f in the locality defined by πx, and Ω(g) is the complexity of the local

model g. L(f, g, πx) must be minimised and g must be comprehensible to ensure

both local fidelity and interpretability. This formulation can be used with different

explanation families G, loss functions L, and complexity measures Ω(g).

Based on Molnar [2022], the steps for training the approximating model g are as

follows:

1. Select an instance for which an explanation of the black box prediction is

needed.

2. Generate new weighted samples, based on their distances from to the selected

instance.
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3. Perturb the new dataset and obtain the predictions of the black box model for

these new points.

4. Train a local, interpretable model on the weighted dataset.

5. Use the trained local model to generate explanations for the prediction.

An advantage of LIME is that it can be used to explain any classification model

because it does not depend on the original classifier or algorithm used. However,

one of the drawbacks of LIME is that it is sensitive to the accuracy of the surrogate

model. Gramegna and Giudici [2021] state the importance of explainability in the

context of credit risk. It will promote the use of black box models and be used to

address ethical and regulatory concerns. Furthermore, they state that LIME is one

of the widely recognised and state-of-the-art frameworks in XAI. Given the wide

acceptance of this approach, it is used in this study to explain the prediction of the

LGBM at a local instance level.

2.2.4 Shapley additive explanations

The SHAP framework, proposed by Lundberg and Lee [2017], is a technique used to

explain the outputs of any classification model. It was derived from Shapley values,

which are used in game theory to equitably share the gains among players when

their contributions are unequal in a coalitional game setting. According to Molnar

[2022], an explanation can be obtained by treating each feature value as a player

in a game and viewing a prediction as the payout. The underlying assumption of

Shapley values is that the features collaborate to influence the model’s prediction.

Lundberg and Lee [2017] point out that Shapely values satisfy the following three

properties:

1. Local accuracy: ensures that the output of the explanation model matches

the output of the original model for a specific input.

2. Missingness: features that are not part of the prediction of an instance will

have a Shapley feature importance values of zero, indicating that they have no

impact on the explanation.

3. Consistency: if the contribution of a feature x is greater in a model A than

model B, then the Shapley feature importance value of x will be higher in A

than B. This property also means that, if the impact of x increases in a model,

the Shapley feature importance value will also increase.

Furthermore, SHAP can be used as a local model-agnostic method. It is considered

to be more robust than LIME, because unlike LIME, it fairly distributes the contri-

butions of features over all subsets of features. SHAP is used for feature attribution

and to understand the relationship of the features and predictions.
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2.3 Performance evaluation metrics

Several metrics are used in the literature to evaluate the performance of classification

models and the most common are the percentage correctly classified (PCC) metrics,

area under the curve (AUC) and Gini coefficient. These metrics are used to evaluate

the discriminatory and predictive power of the models. Statistical tests, like t-tests,

ANOVA, Kruskal Wallis and Dunn’s multi-comparison test, are used to compare the

performance of different classification models.

2.3.1 Percentage correctly classified

The PCC metrics are a group of ratios calculated from predicted positive and negative

outcomes compared to actual positive and negative outcomes. A positive outcome is

one in which an event occurs and a negative outcome is one in which an event does

not occur. In credit scoring a positive outcome is one in which a customer defaults

and a negative outcome is one in which the customer does not default.

True positives (TP) are the number of cases where the predicted outcomes and

actual outcomes are positive. True negatives (TN) are the number of cases where the

predicted outcomes are negative and actual outcomes are negative. False positives

(FP), also referred to as type I error, are when the predicted outcomes are positive,

but the actual outcomes are negative. False negatives (FN) or type II error are the

total instances where the predicted outcomes are negative, but the actual outcomes

are positive.

The main three PCC measures used to evaluate a binary classifier include accuracy,

precision and recall. The PCC metrics are defined mathematically as follows:

The accuracy measures the proportion of outcomes that were predicted correctly

accuracy =
TP + TN

(TP + FP + FN + TN)
. (10)

The precision is a measure of the fraction of true positive predictions relative to the

total predicted positive outcomes

precision =
TP

(TP + FP )
. (11)

The recall, also referred to as sensitivity or true positive rate, is a measure of the

fraction of true positives relative to the total actual positive outcomes

recall =
TP

(TP + FN)
. (12)

The F-measure (or F1-score) is the harmonic mean of the precision and recall.
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This measure is interpreted in the same way as the average accuracy, however it is

commonly used when the data is imbalanced or skewed

F-measure = 2 · precision× recall

precision + recall
. (13)

2.3.2 Area under the receiver operating characteristic curve

The AUC statistic is derived from two measures, namely, sensitivity (Equation 12)

and specificity. The specificity (true negative rate) measures the fraction of negatives

that are correctly classified relative to actual negatives

specificity =
TN

TN + FP
. (14)

The AUC is used to measure the performance of a classification model at various

thresholds. It is a measure of separability for a binary classification model. An AUC

value close to 1 indicates that the model has a good measure of separability and a

value of 0.5 indicates that the model has no separating power. A value of 0 indicates

that the model is reciprocating the outcomes, i.e. defaults and non-defaults are

misclassified.

Figure 3 is a graphical representation of the AUC. The receiver operating characteris-

tic (ROC) curve is a probability curve and is obtained by plotting the 1− specificity

(false positive rate) on the x-axis against the sensitivity on the y-axis. The AUC is

the area under the ROC curve.

Figure 3: Area under receiver operating characteristic curve

2.3.3 Multiple comparisons tests of mean accuracy

Multiple comparisons of means tests provide a way to determine if the means of

the predictive accuracy of each classifier are statistically different. The statistical
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significance of the means can be assessed using either a set of confidence intervals or a

set of hypothesis tests. In order to achieve this ANOVA tests can be conducted. This

test is used if three assumptions about the means holds. Firstly, ANOVA assumes that

the residuals are normally distributed. Secondly, ANOVA assumes homogeneity of

variances, which means that the variance among the groups should be approximately

equal. Thirdly, ANOVA assumes that the observations are independent of each other.

If the assumptions do not hold, non-parametric tests can be used. In this study,

non-parametric tests, such as the Kruskal Wallis test together with the Dunn multi-

comparison tests are used to determine the statistical significance of the differences

in mean accuracy of classifiers.

2.4 Summary

In this chapter, classification methods that are commonly used in literature on credit

scoring classifiers are presented. These methods are often categorised as transparent

or non-transparent. Transparent means that the predictions are explainable and

can be understood by humans. Various methods, such as PDP, LIME and SHAP

are proposed in the literature in an attempt to explain the predictions of non-

transparent methods. The ability to understand and explain model inputs and

outputs is important for credit providers to meet regulatory requirements, therefore

XAI is a crucial field for credit risk management. Different classification methods

perform differently. Some methods are more accurate or more efficient than others.

The metrics used to measure the performance are explained, this includes PCC

metrics, AUC as well as tests to assess if the means of the predictive accuracy of each

classification model are different. A detailed literature review on the performance

of the different classification models and explainability approaches are explained in

Chapter 3. The methodology, data analysis and results of the study are presented in

Chapters 4, 5 and 6, respectively.
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CHAPTER 3

LITERATURE REVIEW

The literature on credit scoring classifiers indicates that different types of classifiers

yield varying levels of performance. Several studies show that transparent models such

as LR and DT are often outperformed by alternative approaches. These alternative

approaches appear to be more accurate in predicting default risk than transparent

models. However, the drawback of adopting these alternative models is their lack of

explainability and they fail to meet regulatory requirements. Seemingly, there is a

trade-off between accuracy and explainability of classification models.

This chapter provides a literature review of classification models frequently employed

in credit scoring research. The research findings of various individuals models are

reviewed, followed by studies on combinations of modelling approaches. Additionally,

limitations and challenges associated with certain methods are examined. The

approaches for improving the explainability of these methods are explored.

3.1 Performance of classification models

The most common and utilised classification models in credit scoring are LR and

LDA. Despite the common use, there is criticism against the use of LDA in credit

scoring. Several researchers caution against the use of inaccurate prior probabilities,

linear functions instead of quadratic functions and potential classification errors

[Abdou and Pointon, 2011]. Furthermore, Wang et al. [2011] indicate that techniques

like LDA assume that the independent variables conform to a multivariate normal

distribution, and this assumption is often not satisfied in practice, rendering these

techniques invalid for finite samples. Additionally, Thomas [2000] asserts that LDA
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and LR assume that the variables have a linear relationship, whereas this relationship

is non-linear in general, leading to inaccuracies.

A wide range of techniques, which can be used for scoring, have been studied to

ascertain their relative performance over the past two decades. A review by Alaka

et al. [2018] explores how MDA, LR, ANN, SVM, rough sets, case based reasoning,

DT, and genetic algorithm (GA)s applied to bankruptcy prediction perform when

assessed on thirteen criteria. The criteria are broadly classified into three categories:

results related criteria, data related criteria and tools’ properties related criteria.

Results related criteria encompass accuracy, interpretation of results as well as cases

where the technique fails to make classifications (non-deterministic output). Data

related criteria comprises aspects of the data that may affect the performance of

the technique, which includes the size of the sample data, class imbalance (data

dispersion), feature selection method, sensitivity to linear correlations between

features and the ability to analyse different types of variables. The tools’ properties

related criteria refers to inherent limitations of the technique used. This covers the

limitations of the technique to handle linear or non-linear relationships, assumptions

that the data must satisfy for the technique to function optimally, ability to generalise

(tendency to underfit or overfit), time to develop the model and the ease with which

it can be updated as well as the degree to which it is easily hybridisable (integration

ability). Overall, no single method was determined to be significantly superior than

others in relation to the thirteen stated criteria. Moreover, it can be concluded that

constructing a hybrid model by integrating different methods could yield overall

better performance model.

Chopra and Bhilare [2018] carried out a study to examine the superiority of ap-

proaches that involve combinations of classifiers (hybrid models) to predict banking

loan defaults. The study involved the use of ensembles, a particular class of machine

learning techniques involving the combination of multiple classifiers. They investi-

gated the performance of bagging, boosting and RF ensembles and compared them

to DT to evaluate the relative performance. The study showed that the gradient

boosting model performed better than the benchmark DTs.

In the last few years MCSs attracted great attention in the scientific community

across various disciplines like health care, speech, image classification, forecasting and

other applications [Ganaie et al., 2022]. In different studies in the literature MCSs are

referred to as ensemble based systems, committee of classifiers, classifier fusion and

mixture of experts [Abellán and Castellano, 2017]. MCSs involve the amalgamation

of two or more individual classifiers into a single super classifier using a heuristic

algorithm or combination rule [Zang et al., 2014]. This approach showed potential

to enhance the predictive power of classification models [Ala’raj and Abbod, 2016;

Ghodselahi, 2011; Lessmann et al., 2015; Yao et al., 2022]. A common combination

rule used in literature is that of voting, which can be categorised as hard, soft or

weighted voting. Hard voting, also referred to as majority, entails counting the
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predictions for each class label and predicting the class label with the highest number

of votes. Soft voting requires aggregating the probabilities by summing, averaging or

taking the maximum and comparing the result to a threshold value to predict the

class. Majority voting and weighted average are the most commonly used voting

strategies in the literature [Nalić et al., 2020].

Numerous approaches to combined classifiers were developed in literature, given the

success of the performance of MCSs. Ala’raj and Abbod [2016] explored studies

on MCSs employed for credit scoring that were published between 2005 to 2015.

A comparison was made by examining the number of datasets used, homogeneity

or heterogeneity of the developed classifier ensembles, rules used to combine the

classifiers, performance assessment, and if statistical significance tests were conducted.

In the nineteen papers reviewed, the authors point out that most researchers opted

to use homogeneous ensemble classifiers. Heterogeneous classifiers were developed

in only two studies. There were three papers in which both heterogeneous and

homogeneous classifiers were developed in the same study. Over and above that,

majority vote was the most used combination rule because of its simplicity, followed

by the weighted average rule. Four studies utilised reliability-based methods. Two

studies employed stacking, a trainable MCS approach.

Nalić et al. [2020] propose a hybrid ensemble model that incorporates insights

from previous research and outperforms standard methods. In the first phase, the

authors apply a novel voting system, if any, that demonstrated superior performance

compared to all other voting methods, i.e., unanimous and simple hard voting. The

method entails using an adjusted version of unanimous majority voting to fuse the

outputs of the feature selection algorithms. In the second phase, generalized linear

model (GLM), SVM, naive Bayes (NB) and DT were combined using soft voting to

form MCSs. The study shows that the MCS comprising of GLM and DT performed

better in terms of predictive accuracy (ACC), type I error, F-measure and sensitivity

than the other MCSs and individual classifiers. Furthermore, because the MCS

uses transparent classifiers as base models and a comprehensible voting system, it is

understandable or explainable which makes it suitable to be used for credit scoring

purposes. The experiment was conducted on a real-life dataset, consisting of client

personal, demographic and credit history data, of a microfinance institution based in

Bosnia and Herzegovina.

Anil Kumar et al. [2022] propose an MCS in which LR, k-nearest neighbour (KNN),

DT, RF, NB and SVM are used as the base classifiers for the ensemble aggregation.

Their study applies stacking in two phases, firstly in the process of training the base

classifiers. The outputs of these classifiers are called meta-features because they serve

as inputs to the ensemble. Secondly, another set of classifers, specifically three LR,

RF and SVM are applied to the meta-features. This second set of classifiers are called

meta-classifiers. Majority voting is used to construct the final super classifier. Their

study is conducted on the German and Australian datasets from the UCI repository
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of machine-learning databases. In addition, their ensemble approach outperforms

the base classifiers on ACC and AUC.

Runchi et al. [2023] present an MCS, in which data imbalance is taken into account

using a heterogeneous balancing approach. Different imbalance ratios are applied to

the synthetic minority oversampling technique and edited nearest neighbour balancing

algorithm to generate several sub-training datasets. Their ensemble, logistic-BWE

(balancing weight effects), involves training multiple LR classifiers on the different

sub-datasets and a dynamic weighted voting system is used in the final classifier. The

study shows that logistic-BWE outperforms several classifiers: LR, Gaussian Bayes,

DT, KNN, SVM, back propagation artificial neural network (BPANN), RF, adaboost,

gradient boosting decision trees (GBDT), XGBoost, consistently on AUC, geometric

mean, sensitivity and F-measure. It shows that the performance superiority of the

logistic-BWE model is statistically significant. Their experiments are conducted on

several datasets, namely the Australian, German, Chinese personal loan and default

of credit card client from the UCI repository of machine-learning databases.

Many studies on multi-classifiers were conducted on the credit datasets from the

UCI repository of machine-learning databases. Furthermore, practitioners are ex-

perimenting with heterogeneous as opposed to homogeneous MCSs to improve the

accuracy of classifiers. Wang et al. [2011] show through experimentation, using the

Australian, China and German credit datasets that bagging performs better than

boosting across all datasets. Moreover, stacking and bagging DTs yield the overall

best results in terms of average ACC as well as type I and II errors.

The empirical studies on conditions under which MCSs produce improved results

is still lacking. Zhu et al. [2001] present a study on the conditions under which the

classifiers can be combined to produce improved results. They investigate two criteria,

i.e., sufficiency and extraneousness, that are required to ensure that a combination

of classifiers will outperform individual classifiers. Sufficiency is used to assess the

dominance of a classifier’s outputs, whereas extraneousness is used to determine if

one classifier’s outputs yields information that is useful compared to another. In

order for the combination of two classifiers A and B to outperform the individual

classifiers, one must dominate, i.e., A must dominate B, and the other B must not

be extraneous to the combination. While the work of Zhu et al. [2001] is derived

from principles of forecasting, an important finding of the study is that one can

construct a single superior classifier by combining the results of individual classifiers,

provided that the conditions of sufficiency and extraneousness are satisfied.

3.2 Related work on explainability of classifiers

Some classification techniques, such as ANNs and MCSs have flexible model struc-

tures, can analyse enormous amounts of unstructured data, and produce accurate
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predictions. A common problem regarding these methods is that often they are not

transparent, explainable or interpretable, meaning the behaviour and predictions of

these systems are not easily understandable to humans, hence they are termed black

box models. Furthermore, when these black box models are employed for making

decisions, bias that is rooted in datasets that are skewed, inappropriate models, poor

formulation of algorithms, or human stereotypes can result in subpar predictions

and decisions that are not fair, causing financial and possibly reputational losses

[van Giffen et al., 2022]. Therefore, it is crucial that the behaviour of credit scoring

models be understood, inputs that might lead to biases be handled appropriately,

and learning algorithms be well constructed.

While practitioners are cautious of potential pitfalls and risks associated with black

box models, there are socio-economic benefits. Sadok et al. [2022] point out that at the

macroeconomic level, the use of artificial intelligence (AI) can contribute positively to

economic growth by improving access to credit for traditionally undeserved borrowers.

However, Sadok et al. [2022] also caution against the use of AI in credit analysis

processes, due to the possible presence of biases and ethical, legal, and regulatory

problems. New financial regulations introducing the certification of AI algorithms

and of data used by banks is therefore required. Sadok et al. [2022] also point out

that AI methods may provide negligible or marginal improvements in predictive

power. However, the biggest benefit is that they can be used to model unconventional

data from different sources with ease.

There are domains in which models are legally required to be understood and decisions

must be explained, such as in retail and business lending institutions [Dastile et al.,

2020; Visani et al., 2022]. For this reason, there is ongoing research on methods that

seek to make advanced models understandable to remove the black box perception

around machine learning techniques, and to establish a model framework that meets

legal and regulatory requirements.

3.2.1 What is explainability?

XAI, also referred to as explainable machine learning (XML), is a field of research that

seeks to provide insights as to how and why advanced models produce predictions

without compromising the performance levels of the models [Markus et al., 2021].

This is an active field of study that aims to overcome the drawbacks of adopting

advanced methods. In various studies on XAI the terminology used is inconsistent,

may cause confusion, and therefore creates a stumbling block for an agreeable and

adoptable framework. Rudin et al. [2022] point out that there is vast and confusing

literature on interpretability and explainability. Much literature on explainability

confuses it with interpretability or comprehensibility, obscuring the arguments (and

thus reducing their precision) and failing to convey the relative importance and

practical applications of the two topics.
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Gilpin et al. [2018] and Markus et al. [2021], make a distinction between explainability

and interpretability as they aim to provide a nomenclature that is clear. A task

model is said to be explainable if it is intrinsically interpretable or if it can be

complemented by post-hoc explanation that accurately describes the task model

and is understandable to a human. An explanation is said to be interpretable if it

satisfies two criteria, clarity and parsimony, i.e., the explanation of the task model

provides a rationale that is consistent for similar cases and is presented in a compact

form. Furthermore, an explanation is said to be faithful or accurately describes a

task model if it satisfies the completeness and soundness criteria, i.e., it provides

sufficient information to compute the output for a given input and is truthful to the

task model. The terms faithful and fidelity are used interchangeably in literature.

Figure 4 depicts the definitions of terms related to explainability proposed by Markus

et al. [2021].

Figure 4: Definitions for terms related to explainability proposed by Markus et al.
[2021]

3.2.2 Explainable AI methods

There are various XAI methods described in the literature and often there is an overlap

between methods, however each method seems to address different questions. Markus

et al. [2021] state that, one approach to accomplish XAI is to utilise models that are

deemed transparent or intrinsically explainable. Alternatively, post-hoc explanations

can be used to complement the model to make it explainable. Furthermore, Markus

et al. [2021] classify explanations into three types, namely, model-based explanations,

attribution-based explanations and example-based explanations. Model-based expla-

nations encompass all methods in which an explainable model or a more interpretable

surrogate model is created for post-hoc explanations. The class of interpretable

models include, sparse linear classifiers, general additive models, rule-based learners,

DTs and example based learners (e.g. KNN). Attribution methods, also called feature
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or variable importance, relevance, or influence methods, provide a measure of the

explanatory power of features. Example-based methods explain the task model by

selecting instances from the dataset or creating new instances by taking those that

are predicted accurately and those that are inaccurate, identifying instances that

have an impact on model parameters and creating counterfactual explanations.

In addition, post-hoc explainability can be classified into model-specific or model-

agnostic classes and be further subdivided into local and global explanations. Pre-

dictions of a model for a large sample of data may be explained using either local

(individual) instance explanations or global model interpretation techniques. Local

explanations explain why a data point was predicted or not, by segmenting the

solution space and giving explanations to a less complex solution subspace, while

global explanations explain how attributes influence a decision’s behaviour overall.

This is useful for examining the fairness of model predictions for choices in a specific

data group [Demertzis et al., 2023; Barredo Arrieta et al., 2020]. In some literature,

model-specific or model-agnostic techniques are also categorised into explanation by

simplification, explanation by feature relevance, visual explanation and local expla-

nation [Saranya and Subhashini, 2023]. Explanation by simplification encompasses

techniques in which a whole new system or surrogate is rebuilt based on the trained

model to be explained. Feature relevance clarifies the inner functioning of a model

by quantifying the impact that a feature has upon the output of the model. Visual

explanation covers explainability methods that provide a visualisation of the results

[Barredo Arrieta et al., 2020].

3.2.3 Challenges with explainable AI methods

Saeed and Omlin [2023] point out various challenges with respect to the current

XAI methods. Scalability can be an issue with local methods, such as LIME, when

there is a huge number of cases for which predictions and explanations are needed.

Similarly, SHAP can be costly when all combinations of variables must be considered

when there are lots of variables to be analysed. Correlation of variables can also

cause problems when analysing feature dependence and attribution. Saeed and

Omlin [2023] also state that model-based explanations pose a challenge when they

cannot predict with reasonable accuracy as practitioners may resort to more accurate

models.

In addition, XAI methods must be applied with caution because there is no method

that allows for unequivocal, consistent and reliable explanations of machine learning

models. Their consistency and reliability are still a discussion topic. Visani et al.

[2022] propose two complementary indices, namely coefficients stability index (CSI)

and variables stability index (VSI) to measure LIME stability. The CSI assesses

whether the coefficients generated by the same variable for different LIME outputs

are similar. VSI is used to determine whether different calls of LIME return the
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same variables. The CSI and VSI give useful information about the consistency of

the trained LIME method. In addition, they help understand whether LIME is likely

to produce different output at the next call. The CSI and VSI analysis provides a

framework that improves trust in LIME as a reliable explanation method [Visani

et al., 2022].

3.2.4 Proposed explainability frameworks

The gap between XAI and legal requirements creates a problem for the implementation

of transparency, explainability, and interpretability of some classification models. In

light of advancements in the utilisation of black box models, there is a need to close

the gap between their usage, regulatory and legal requirements.

A study by Bücker et al. [2022] demonstrates that a level of interpretability can be

achieved without compromising the predictive power of machine learning techniques.

In their study, they propose a systematic model exploration process focused on

transparency, auditability and explainability for credit scoring (TAX4CS). Figure 5

shows a schematic representation of the framework proposed by Bücker et al. [2022].

The initial stage is to identify the internal and external stakeholders. Stakeholders

include model developers, auditors and regulators as well as bank customers. The

second stage is to define the model life cycle, which encompasses the development,

validation and production of the model. At every stage the relevant stakeholders

are involved in the decisions. The third stage is to recognise the specific needs of

the stakeholders. These needs must be aligned with regulatory requirements. Credit

officers or managers must comprehend the main features behind credit decisions.

Auditors must be able to establish mechanisms to ensure accountability and fairness

at every stage of the development process and proper oversight mechanism must be

made available to meet regulatory requirements. The fourth stage in the process

applies XAI methods and involves exploration at a model-level and local-level. This

exploration commences with metrics for assessing the performance of the model and

drilling down into examining variable importance (attribution) and effects.

Bücker et al. [2022] also provide an overview of model-agnostic measurements and

methods that may be used on any black box model, for each step in the procedure.

The proposed framework can be used as a guide to ensure that the necessary level of

explainability is attained in fields like credit scoring where explainability is required.

In order to attain an agreeable framework, a consensus of definitions and principles

on interpretability must be reached. Principles must be developed on when and how

advanced classifiers can be used. Rudin [2019] and Rudin et al. [2022] provide the

following principles for interpretability of models:

• Machine learning models must adhere to a domain-specific set of constraints

to aid with interpretability.
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Figure 5: Transparency, auditability and explainability framework proposed by
Bücker et al. [2022]

• Interpretable models allow decisions of trust, rather than trust itself.

• In general, the notion of incongruity between interpretability and accuracy is

false.

• Metrics for performance and interpretability must be improved through an

iterative process.

• Interpretable models should be used for high stakes decisions, if possible, as

opposed to explaining black box models.

According to the research and proposed principles by Rudin [2019] and Rudin et al.

[2022] there is no accuracy-interpretability trade-off. Furthermore, they propose

utilising an interpretable algorithm if the performance is not significantly different.

An interpretable model should always serve as a benchmark for model comparison.

There is a need to investigate other strategies that can help practitioners and

model users. The value of feedback from stakeholders and subject matter experts is

emphasised throughout the studies reviewed. Dastile et al. [2020] present a study

on interpretable and black box models and a framework for the interpretability of

machine learning models. They propose the rationalisation of predictions, which is a

justification of predictions by experts. This approach can be used in addition to the

existing local or global model-specific or model-agnostic methods that attempt to

make these models understandable.
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3.3 Summary

The research on credit scoring techniques indicates that there is no single superior

approach to scoring. Furthermore, techniques that are used are problem and data

specific. A wide range of methods can be used from individual models as well as hybrid

techniques. Wang et al. [2011] point out the need for more experimentation on larger

datasets to confirm that MCSs can improve individual base learners substantially

when used for credit scoring.

Furthermore, the notion that black box classifiers outperform transparent classifiers

is not always correct, which means that the accuracy-explainability trade-off may

not always hold. Transparent models must be used as benchmarks to determine

if the opaque (black box models) are worth using. In addition, current methods

such as SHAP and LIME, utilised for transparency and explainability must be used

with caution and tests must be conducted to instil confidence in the explainability

and reliability of predictions made. Lastly, a model framework that meets legal

and regulatory requirements must be developed and agreed upon to allow for the

adoption of black box methods in disciplines where explainability is a requirement.
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CHAPTER 4

RESEARCH METHODOLOGY

The purpose of the study is to explore the accuracy-explainability trade-off on

classification techniques used for credit scoring. It investigates the perception

that black box models outperform transparent models. The study examines the

effectiveness of classification models, including DT, LR, LDA, SVM, RF, bagging,

LGBM and ANN at predicting credit default risk. It also examines methods utilised

to make the predictions of these classification models understandable and explainable.

Past research focused primarily on the accuracy of classification methods, comparing

black box models to models commonly used in credit risk, such as LR. Recent studies

focus on the explainability of black box methods.

This chapter discusses the research methodology used to carry out this study. Section

4.1 describes the Python application and packages used to conduct the experiments

described in Chapter 2 and 3 as well as this chapter. The phases of data wrangling and

analysis, including data extraction, data assessment, and exploratory data analysis,

are discussed in Section 4.2. Section 4.3 discusses the data partitioning. The data

preprocessing techniques, i.e., missing value imputation, outlier treatment, feature

transformations and engineering are presented in Section 4.4. Section 4.5 discusses a

mixed approach to selecting the top features on which to construct the model. The

classification methods as well as performance metrics are presented in Section 4.6.

The chapter concludes with Section 4.7, in which the methods of interpretability and

explainability are discussed. An outline of the research methodology is illustrated in

Figure 6.
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Figure 6: An outline of the research methodology.

4.1 Python application

The experiments for the study, namely, the data wrangling, exploratory data analysis

(EDA), feature transformations and extractions, classification model training, perfor-

mance evaluation and explainability were conducted using Python. Python is an

interpreted, object-oriented, high-level programming language that supports modules

and packages. The project mainly used the following packages: pandas, numpy

and scikit-learn [Pedregosa et al., 2011]. Pandas is used for the manipulation of

structured data. Numpy is used for basic numerical operations and matrix operations.

Scikit-learn is a Python library integrating several predictive modelling techniques.

For data visualisation, the seaborn and matplotlib Python packages were used.
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4.2 Data wrangling and analysis

Data wrangling and analysis are essential processes in the development of accurate

predictive models, as they inform the techniques to be applied when preprocessing

data. The term data wrangling comprises the methods for obtaining raw data and

assessing it for the development of classification models.

4.2.1 Data sources and assessment

The data used in this study are publicly available. They contain credit application and

default related information on customers. According to Finlay [2010], all consumer

datasets contain errors, inconsistencies, and omissions. This could result in a flawed

model development training sample, which would make it difficult to determine the

relationship between features and modelling objectives. In this study, the data was

evaluated in terms of the number of rows and columns, data types, missing values,

outliers and duplicates to identify and address anomalies prior to the construction of

classifiers.

4.2.2 Exploratory data analysis

EDA refers to the process of evaluating and summarising data in an effort to

identify and characterise patterns in the data. The primary goal of this process is

to understand the data. In order to identify trends, a variety of statistical methods

and graphical representations are used. These methods include univariate reports,

distribution summaries, bar charts, heat maps and correlation matrices to understand

associations between features.

Despite the fact that graphical representations are often employed in the EDA, one

of their main limitations is their inability to show more than two or three aspects of

a feature in a single graph. Some of the drawbacks of graphical representations were

avoided using a univariate analysis tabular report. The univariate analysis tabular

report was used to show the strength of the association between each feature and

the target. The measures for degree of association between the feature and target

include Gini, chi-square (χ2) and information value (IV). The IV can be any value

from zero to infinity, but common values range from 0 and 1. An IV that is less than

0.05 indicates a weak relationship between the feature and the target, suggesting

that the feature is less likely to be predictive. An IV that is between 0.05 and 0.25

signifies a moderate relationship, and values equal to or greater than 0.25 show a

fairly strong association [Finlay, 2010].
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4.3 Data partitioning

Each dataset was partitioned into three subsets, namely training, testing and vali-

dation datasets, using stratified random sampling where the strata was the target

variable. The training dataset was used for training, tuning and configuring the

classification models. The testing dataset was used for assessing and improving the

classification models. The validation dataset was to determine how well the model

performs on new data.

4.4 Data preprocessing

Data preprocessing encompasses the methods of transforming, engineering and

encoding features so that the data can be used to build effective classification models.

It includes implementing techniques to handle missing values, outliers and anomalous

data as well removing inconsistencies observed in the data.

4.4.1 Feature transformations and engineering

Features could have missing values if qualitative and quantitative data are not

collected, leaving a field empty. The mode can be used to impute missing values

for categorical data, and the average or median can be used for numerical data.

Depending on the size of the population impacted, entire observations with missing

values can also be eliminated. Various techniques may also be used to predict missing

values. In this study two approaches are used to impute the missing values. Missing

values were either replaced with zeros or an XGBoost regression model was used to

impute missing values for features that were deemed predictive.

Outliers can have a negative impact on the model as they introduce bias into the

data resulting in under or over-estimates [Kwak and Kim, 2017]. Values that skew

the data are treated by either removing the value, capping or removing the entire

observations depending on the size of the population affected. The remedial actions

for outliers depends on EDA process.

Feature engineering entails the creation of features using domain knowledge and

logic to enhance machine learning algorithms. It involves deriving new features,

calculating ratios and aggregating existing features using averages, minimums, and

maximums, with the aim of introducing new features that may be more predictive

than the original features.

4.4.2 Encoding categorical variables

Many machine learning algorithms in the Python scikit-learn library cannot han-

dle qualitative categorical variables. Several encoding techniques, including label

encoding, one hot encoding, dummy encoding, and response encoding, can be used

32



4.5. Feature selection

to transform these variables into quantitative data. In label encoding the values of a

categorical variable are given a distinct integer value [Hancock and Khoshgoftaar,

2020]. In one hot encoding and dummy encoding, a new binary variable is added

for each value to indicate the inclusion or exclusion of a value. Furthermore, if a

categorical variable has n values, one hot encoding creates n binary variables for each

value, whereas dummy encoding creates n− 1 binary variables. Response encoding

involves computing the posterior probabilities of the classes of a given the input of a

categorical feature. Response encoding was used in order to keep the dimensions of

the data minimal.

4.4.3 Feature scaling

Feature scaling involves the transformation of the values of features so that they

lie on a similar scale. The purpose of feature scaling is to reduce the impact of

extreme values on algorithms and classification models that are sensitive to such

extreme values. Two methods were used to scale features, i.e., standardisation and

normalisation.

Standardisation of a feature is obtained by using the formula

x̂i =
xi − µi

σi

, (15)

where µi and σi are the mean and standard deviation of the feature xi, respectively.

Standardisation is commonly used where the data is assumed to follow a normal

distribution.

Normalisation of a feature is obtained by using the formula

x̂i =
xi − xi,min

xi,max − xi,min

, (16)

where x̂i is a feature in the dataset, xi,min and xi,max are minimum and maximum

values of the feature xi, respectively. Normalisation is mainly used for distance-based

algorithms such as SVM.

4.5 Feature selection

Feature selection is the process of selecting a subset of features that have a significant

degree of correlation with the target for inclusion in model construction and excluding

those that are deemed redundant or unnecessary. It is intended to optimise the

learning algorithm so that it works faster and is more efficient. Furthermore, it is

intended to improve the performance metrics of the learning algorithm [Oreski and

Oreski, 2014; Zhu et al., 2018]. This section describes the steps taken to reduce the

dimensions of the data.
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The methods used to select features can have a bearing on the accuracy of predictions

of a scoring model. Trivedi [2020] presents a detailed study on selection techniques

such as information-gain, gain-ratio and χ2. The study shows that the choice of the

selection technique can improve the scoring model. To choose a subset of pertinent

features, many statistical techniques can be used, such as low variance, correlation

between variables or multicollinearity, filtering and wrapper methods. A combination

of the aforementioned techniques was employed to select features using the training

subset. Furthermore, the training subset was downsampled, i.e., balanced such that

classes are almost equal by reducing the number of observations of the majority class,

for the feature selection process. This was done in order to decrease the execution

time of the methods used to select features.

4.5.1 Low variance features

Low variance features are constant, approximately constant or quasi-constant across

all samples and therefore do not improve model performance. A minimum variance

threshold or count of unique values can be used to identify and remove features with

a low variance from the dataset. The Python VarianceThreshold package can be

used to determine the variance of features and remove those with a variance of zero.

A count of unique values was used to identify and remove features with unique values

less than or equal to one for this research project.

4.5.2 Filter methods

Filter methods select features based on a measure of correlation regardless of the

employed modelling algorithm. Additionally, filtering techniques that rank or assess

a single feature are known as univariate filters, whereas multivariate filters assess

entire feature subsets. Numerous filtering techniques are discussed in the literature

and are frequently categorised into information, distance, consistency, similarity, and

statistical measurements [Jović et al., 2015].

The common filter methods, filter class and applicable task, whether they are used

for classification, clustering or regression and search strategies are discussed in the

study by Jović et al. [2015]. Numerous studies show that there is not a single method

that outperforms the other and each one depends on the specific task and use case.

Also the data type (numeric or categorical) of features that are assessed must be

taken into consideration.

In this study, the features were normalised and the χ2 and Kendall’s tau correlation

coefficients were utilised for the initial feature selection. Croux and Dehon [2010]

present a study on Kendall and Spearman correlation measures. Their literature

study suggests that both measures can handle outliers. Furthermore, Kendall’s tau

is more robust and slightly more efficient than Spearman’s rank correlation. The

Python scipy package is used to compute the Kendall’s tau correlation.
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4.5.3 Multicollinear features

Collinearity is a linear association between two predictors. Multicollinearity refers

to the relationship between two or more predictors that is primarily linear. Multi-

collinearity is often indicated by an absolute correlation coefficient greater than 0.7

between two or more predictors.

Multicollinearity may result in an algorithm performing poorly. It causes redundancy,

meaning that two predictors can provide the same information about the response

variable, making the predictors’ coefficients inaccurate. It may also cause overfitting,

in which case the models perform well on the training dataset but poorly on a testing

dataset. Daoud [2017] presents the problems associated with multicollinearity and

the use of variance inflation factor (VIF) to quantify the degree of association between

features. VIF provides the strength of the correlation between the various independent

features. This research uses VIF to identify and reduce multicollinearity. The VIF

function from Python statsmodels package was used to identify and remove features

with VIF above five. A VIF of less than three, indicates low correlation among

variables under ideal conditions. A cutoff value of five is commonly used to determine

features with high multicollinearity. VIF was applied on a subset of features, i.e., after

selecting features using the filter methods, since it is a computationally demanding

process.

4.5.4 Wrapper methods

Wrapper methods evaluate and select features based on the classifier performance.

It has been shown that wrappers often select subsets of features that are better than

those selected by filters because the subsets are evaluated using a real modelling

algorithm [Jović et al., 2015]. Rodriguez-Galiano et al. [2018] demonstrate that,

despite increased computational requirements, wrapper methods can effectively aid

in the selection of the most influential features, improvement of the prediction

model and reduction of the dimensionality of the feature space. Moreover, a wrapper

composed of a RF learner and a sequential forward feature selection (SFFS) searching

strategy performed better than other methods, exhibiting the best accuracy and

interpretability.

In this research, the features were normalised and the recursive feature elimination

(RFE) wrapper was utilised to select the final features, from features remaining after

filtering and removing multicollinear features in the training dataset. RFE seeks to

find a subset of features by iteratively removing one feature at a time until the desired

number of features is achieved. This involves fitting the predictive model using an

initial subset of features, ranking the features according to relevance, removing the

least important features, and repeating this process on the remaining features until

the specified number of features is obtained.
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4.6 Classification methods

The Python scikit-learn library was used to construct and train the LR, LDA, DT,

SVM, ANN, bagging, RF and LGBM classification methods, explained in Section

2.1. Furthermore, the features used for LR, LDA, DT, ANN, RF and LGBM were

scaled using standardisation, whereas the features used for SVM and bagging were

scaled using normalisation (see Section 4.4.3).

Cross-validation was used to train and test the models. This is a resampling procedure

used to evaluate the machine learning models in the training phase. Furthermore,

random hyperparameter tuning was applied on each classification method to obtain

the best performing classification model.

4.6.1 Class imbalance

Credit default risk data tends to be imbalanced, meaning the target is in favour of

one class over the other or that the number of data points for a certain class are

significantly more. This creates a risk of misclassification since classifiers trained

on imbalanced datasets may classify all minority data with majority labels and still

produce a high performance measure of accuracy. Kuhn and Johnson [2013] present

a detailed study on the impact of imbalanced classes on model development as well

as remedies for severe class imbalance in data.

There are numerous balancing approaches that are commonly used in practice and

presented in literature to reduce this risk of misclassification. The remedies to

handle the risk of misclassification include upsampling, downsampling, as well as

using class weights and penalties on the classification methods. The downsampling

method involves reducing or eliminating samples from the majority class until there

is no substantial difference between the minority and majority classes. Although

this method is widely used, caution must be exercised to prevent information loss.

Upsampling entails increasing the representation of the minority class examples until

there is no substantial difference between the minority and majority classes. This is

achieved by either duplicating examples of the minority class or creating synthetic

examples using the synthetic minority oversampling technique (SMOTE) [Rendón

et al., 2020]. In this study, the balanced class weights built into the Scikit-learn

library classification models were used to remedy the effects of the imbalance for

each model.

4.6.2 Performance tuning

The k-fold cross-validation, where k = 4, was used to configure the classification

models. This involved splitting the data into k subsets of equal size as shown in

Figure 7. The parameter k refers to the number of groups or folds that the data will

be split into. The first fold is treated as a validation set, and the model is fit on the
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remaining k − 1 folds. The RepeatedKFold and KFold Python functions were used

to conduct cross-validation.

In addition, cross-validation was used to fine tune the inputs or configurations

that are used to control the learning process of the models. The inputs that are

configured in the learning or training phase of the model construction are referred to as

hyperparameters. A k-fold cross-validation and random search hyperparameter tuning

technique were used to determine optimal hyperparameters for each classification

model.

Lastly, k-fold cross-validation was used to determine the parameters for the best

classification model, which is then used to determine the optimal thresholds to

determine classes from the probabilities. The optimal threshold is the maximum

distance between the point on the ROC curve and the random line, explained in

Section 2.3. The distance between the ROC curve and the random line is referred to

as the Youden’s J-Statistic or J-Statistic.

Iteration 1

Iteration 2

Iteration 3

...

Iteration k

Total number of folds

fold 1

fold 2

fold 3

. . .

fold k

Figure 7: k-fold cross-validation on training dataset

4.6.3 Performance assessment

The classification models were applied to 30 random subsets of data in order to com-

pare the performance in terms of AUC. The scipy.stats, pingouin, scikit_posthocs

Python libraries were used to conduct the ANOVA test, the Kruskal Wallis test and

Dunn’s multi-comparison test, respectively. These tests provide a way to rank the

performance of the classifiers and to determine if the difference in performance is

statistically significant.

4.7 Explainability and interpretability

The sklearn, shap, lime and lime.lime_tabular Python libraries were used to

analyse feature contributions and effects in an effort to interpret and explain the

classification models. The shap package has various methods, which incudes the

KernelExplainer and TreeExplainer. The KernelExplainer was utilised for the
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linear models, which include LR, LDA and SVM. A subset of 6000 observations

of the validation data was used, given that KernelExplainer takes a long time to

process data. The more the observations, the longer it takes. The remaining models

were analysed using TreeExplainer, since it does not support linear models. Given

the effectiveness of TreeExplainer, the full validation data subset was used.

4.8 Summary

The methodology provides details of the steps followed to construct the credit scoring

classifiers as well as the approaches to explain these classifiers. The experiments

were conducted using Python, which was used to analyse data, select features,

train classification models and analyse the outcomes. Data analysis is essential

for understanding patterns and relationships in the data. It is essential to identify

and treat anomalies such as missing values and outliers. Prior to selecting features

for modelling and training classifiers, categorical features were encoded and the

numerical features were scaled to minimise the adverse effects of different scales and

outliers. A number of approaches were applied to identify predictive features and to

ensure that the final features selected for training classifiers were not correlated. The

VIF was used to identify correlated features and to remove those with a high VIF

value. Filter methods, which are model independent methods, were used to identify

predictive features. In addition, wrapper methods, which select features based on

classifier performance, were also used to select features. The classifiers were trained

by tuning hyperparameters and balancing classes. Furthermore, SHAP and LIME

were used to explain the outcomes of the classifiers.
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CHAPTER 5

DATA ANALYSIS AND PREPROCESSING

This chapter discusses aspects of the data preparation process required for the

construction of effective predictive models for case study 1 and 2, i.e., credit card

default and home credit default datasets. The data sources, ethical considerations and

wrangling are presented. In addition, the exploratory data analysis and preprocessing

(transformations and scaling) steps are discussed.

5.1 Case study 1: Credit card default data

The credit card default data is secondary data sourced from the UCI Machine

Learning Repository website submitted by Yeh [2016]. The UCI Machine Learning

Repository is a collection of databases, domain theories, and data generators that

are used by the machine learning community for the development and analysis of

machine learning algorithms. This dataset is licensed under a Creative Commons

Attribution 4.0 International (CC BY 4.0) license. This permits the distribution and

modification of the datasets for any purpose, under the condition that proper credit

is given.

The credit card default data contains 30 000 observations and 25 features. Further-

more, it includes the TARGET, which is a dichotomous response variable where

the value zero indicates that the loan was repaid (non-default) and one indicates

the loan was not repaid (default). The categorical columns were already encoded.

Based on the description of the dataset, it does not contain missing values and

duplicates. Therefore, this data was not processed following the full data processing

steps described in Section 4.4. Furthermore, the credit card default dataset was par-
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5.2. Case study 2: Home credit default data

titioned into subsets of sizes 50%, 30% and 20% for training, testing and validation,

respectively. The proportions of the partitions are to ensure that there are sufficient

volumes in each subset. A low number of observations can result in model instability.

The train test split function from the python Scikit-learn library was used to

ensure that the distribution of the targets are representative of the original dataset.

5.2 Case study 2: Home credit default data

The second credit risk data is secondary data sourced from the Kaggle website

submitted by Home Credit Group [Home Credit Group, 2018a]. Kaggle is an online

hub that hosts data science competitions and often provides data to solve real-world

problems with an incentive for providing the best solution. Home Credit Group, which

is an international non-bank financial institution, submitted information distributed

into several relational datasets containing credit information on borrowers for a

competition in Kaggle. The objective of the competition was to develop predictive

models to estimate the default risk of a given borrower.

Home Credit Group are the sponsors and rights holders of the Home Credit Default

Risk competition. The seventh section under the list of rules provided by Home

Credit group grants permission for one to utilise the competition data for purposes of

the competition and other non-commercial purposes, such as participation on Kaggle

website forums, academic research and education [Home Credit Group, 2018b].

5.2.1 Datasets and structure

The Home Credit Group data is distributed into several data frames containing credit

information on borrowers. The structure of the relational data frames is depicted

schematically in Figure 8, which provides a brief description of the data frames and

the features used to connect each data frame.

The main data frames that were submitted by the Home Credit Group are the

application train and application test. The subsets in these data frames are mutually

exclusive and they contain information about each loan application, identified by the

feature SK ID CURR. In this study, only the application train data frame was used

to train, test and construct the credit scoring models. The application train contains

307 511 observations and 121 features. Furthermore, it includes the TARGET,

which is a dichotomous response variable where the value zero indicates that the

loan was repaid (non-default) and one indicates the loan was not repaid (default).

Throughout the research, non-default and default are also referred to as good and

bad, respectively.

There are two data frames pertaining to previous loans from other financial institu-

tions reported to the credit bureau for each loan applicant in the applications subset.

The first data frame is the bureau, which contains 1 716 428 observations and 17
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5.2. Case study 2: Home credit default data

Figure 8: The structure of the relational datasets of the Home Credit competition
[Home Credit Group, 2018a].

features. The second is the bureau balance, which contains 27 299 925 observations

and two main features, namely monthly balances and statuses of previous credits.

The observations in bureau and bureau balance are identified by SK ID BUREAU.

Each loan in the applications data can have multiple previous credits.

There are four data frames, namely the previous application, POS CASH balance,

instalments payments and credit card balance, related to previous applications or

credits of clients who have loans in the sample of data provided. The previous -

application data frame contains all previous applications for Home Credit loans.

Furthermore, each current loan is identified by the SK ID PREV feature and it may

be linked to multiple previous loans.

The POS CASH balance data frame consists of monthly data on previous point of

sale and cash loans that the applicants had with the Home Credit Group. Each row

in the data frame shows previous credit related to loans in the applications subsets.

It contains 10 001 358 observations and eight features.

The credit card balance data frame contains monthly data about previous credit

cards that the applicant has with the Home Credit Group. Each row in data frame

shows the credit card balance for a particular month. Furthermore, a single credit

card may have multiple rows.

The instalments payments data frame comprises the history of payments made for

the credits that were previously issued in Home Credit for each applicant. Each row
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5.2. Case study 2: Home credit default data

in the data frame reflects a payment that was made, plus one row each for a missed

payment.

5.2.2 Data assessment and analysis

The primary objective of this analysis was to obtain a high level overview of the

data that would inform the model construction process. Table 1 shows the data

assessment and preliminary analysis of the datasets that were used to construct

the credit classifiers. A detailed mathematical description overview of the data is

presented in Appendix C. The application train contains 122 variables (121 features

and a target variable) and 63% of the features contain missing values. Furthermore,

all the datasets excluding installment payments contain categorical data, which

must be encoded. The bureau data has seven features which contain missing values.

This study focuses mainly on the application train datasets for the construction of

the classification models. Therefore, the rest of the exploratory data analysis and

preprocessing is based on the application train datasets.

Table 1: The data assessment and preliminary analysis of the home credit default
datasets.

Rows Columns

Dataset No. No. Numeric Categorical Duplicates Missings

application train 307511 122 106 16 0 67

bureau 1716428 17 14 3 0 7

bureau balance 27299925 3 2 1 0 0

credit card balance 3840312 23 22 1 0 9

installments payments 13605401 8 8 0 0 2

previous application 1670214 37 21 16 0 16

POS CASH balance 10001358 8 7 1 0 2

5.2.3 Missing values identification

There are a significant number of columns with a high number of missing values in

the application train. The majority of features with high missing values are related

to residential or apartment information. It is expected that these features will be

missing if the applicant does not own or rent a property. Figure 9 shows that 41

features contain 50% or more missing values, 16 features have between 10% and 50%

missing values and 10 features have less than 10% missing values.

Features with high missing values (above a subjective proportion or threshold) are

usually dropped, and those below a certain threshold are imputed. However, dropping

features may result in loss of information, therefore it is imperative to understand if

these feature have an impact on the models. Features with missing values were kept

until the feature selection and modelling phases. Furthermore, various strategies were

applied to handle the features with missing values, such as predicting missing values
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5.2. Case study 2: Home credit default data

or replacing the missing values with zero. The EXT SOURCE 1, EXT SOURCE 2

and EXT SOURCE 3 features were imputed using XGBoost regression model for

predicting, starting with the feature with the least number of missing value columns.

Only numeric values were used as input features into the regression model.

Figure 9: Proportion of missing values for each feature containing missing values in
application train dataset.

5.2.4 Anomalies detection and contradictions

Appendix C provides a statistical description of all the features and shows the

distributions, central tendency, quartiles, and extreme values of the numerical

features. The analysis shows the presence of anomalies and extreme numbers across

all the datasets. Negative values were observed for DAYS BIRTH. Extreme values are

found in DAYS EMPLOYED, OBS 30 CNT SOCIAL CIRCLE and OBS 60 CNT -

SOCIAL CIRCLE. The DAYS BIRTH feature was converted to years and made

positive number so that it can be easier to interpret. Erroneous values in some fields

such as DAYS EMPLOYED, OBS 30 CNT SOCIAL CIRCLE and OBS 60 CNT -

SOCIAL CIRCLE were deleted or converted to missings(Nan) and subsequently

replaced with 0 for algorithms that cannot handle missing values. There were also

four rows with unkown value (XNA) in the Gender feature that were removed. The

EXT˙SOURCE features contain missing values and were imputed as described in

5.2.3.

5.2.5 Correlation analysis

The correlation heatmap shows the degree of correlation between the features for the

application train dataset. Highly correlated features can increase the time complexity

of the model and increase the complexity of the model interpretation. These highly
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5.2. Case study 2: Home credit default data

correlated features are removed, as explained in Section 4.5. Figure 10 shows a high

correlation between AMT GOODS PRICE and AMT CREDIT, between DAYS -

EMPLOYED and DAYS BIRTH as well as the apartments or living area related

features.

Figure 10: A heatmap of the correlation of each numeric feature with respect to
other features in application train dataset.

5.2.6 Data transformations

Response encoding was used to transform all categorical features into quantitative

data because the majority of the algorithms in the Scikit-learn library are unable to

handle such features. The categorical features were split into two features (with 1

and 0 suffixes), each of which contains the likelihood that each class label belongs to

that category.
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5.2. Case study 2: Home credit default data

5.2.7 Class imbalance analysis

A distribution analysis of the classes indicates that the proportion of defaults

(encoded 1) is significantly lower than non-defaults (encoded 0), i.e., the data is

highly imbalanced, as shown in Table 2. The low percentage of 8.07% shows that

the Home Credit Group is very selective when providing credit and has managed

to maintain a low rate of customers that fail to meet their financial obligations or

default. Furthermore, when classes are highly imbalanced, some metrics used to

measure the performance of the classification models may be misleading. For instance

the accuracy (percentage correctly classified) may be misleading in this case because

it is biased to the majority class. Other metrics, such as AUC, precision and recall

must be applied when assessing the performance of the classification models.

Table 2: The overall class distribution and analysis by loan type.

Cash loan Revolving loan Overall

Classes Total %Total Total %total Total %total

Non-default (0) 255 011 91.65 27 675 94.52 282 686 91.93

Default (1) 23 221 8.35 1 604 5.48 24 825 8.07

Total 307 511 100.00 307 511 100.00 307 511 100.00

5.2.8 Data partitions

The application train dataset was partitioned into three subsets made up of 60%, 28%

and 12% of the total observations for training, testing and validation respectively.

The proportion of subsets is to ensure sufficient volumes in each subset so that

the classification models are stable. The train test split function from the

python Scikit-learn library was used to ensure that the distribution of the targets are

representative of the original dataset. The imbalance shown by the target distribution

may have an adverse effect on the performance of the predictive models and may

require additional steps in the construction of the models. In order to optimise the

performance of the models, re-sampling, generating synthetic samples, weight class

parameters and penalties for some algorithms were considered.
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CHAPTER 6

RESEARCH RESULTS AND DISCUSSION

In order to address the research objective, eight classification techniques were con-

structed and assessed in terms of performance and explainability. The aim being

firstly, to examine the effectiveness in terms of accuracy of the transparent and black

box models. Secondly, to address the challenges of the explainability of black box

techniques in the context of credit default risk predictions.

This chapter presents the results of the study and it is organised as follows: Section

6.1 presents the key hyperparameters that were tuned for optimal performance for

each classification model applied to case study 1 and case study 2, i.e., the credit card

default dataset and Home-credit default dataset, respectively. Section 6.2 presents

the results of the experiments conducted for case study 1. The performance of the

classification models as well as pre- and post-explainability modelling results are

discussed. In Section 6.3, the results of the experiments conducted for case study 2,

are discussed, covering the performance of the classification models as well as pre-

and post-explainability modelling results.

6.1 Classifier performance tuning

The classification techniques, namely, ANN, bagging, DT, LDA, LGBM, LR, SVM

and, RF discussed in this paper, all required several hyperparameters to be tuned

to enhance performance. Given the numerous hyperparameters to be tuned, tuning

each one by manual trial and error would be both time consuming and inefficient.

Consequently, the hyperparameter optimisation was done with a random search

approach. Furthermore, since the data is highly imbalanced, class weights were used
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6.2. Case study 1: Credit card default data

to optimise the performance of the classifiers that are influenced by imbalanced classes.

Table 3 shows the hyperparameters that were tuned to optimise the performance of

the classification models applied to case study 1 and case study 2.

Table 3: Hyperparameters and search spaces for the classifiers applied for case study
1 and case study 2.

Classifier Hyperparameter Search Space

ANN

Hidden layers One layer with 100 nodes and three layers with 120, 80,
40 nodes, respectively

Activation Tanh and rectified linear activation function

Maximum iterations {10, 20}

Bagging
Number of estimators {50, 100, 150, . . . , 500}
Maximum samples {100, 200, 300, . . . ,1000}

DT

Maximum depth {1, 2, . . . , 6}
Maximum leaf nodes {1, 2, . . . , 50}
Minimum sample per leaf {1, 100, 200, . . . , 1000}
Class weight {balanced, none}

LDA Solver Single value decomposition (SVD), least squares solution
(LSQR) and eigenvalue decomposition (Eigen)

LGBM

Number of leaves {10, 20, 25, 30, 40, 60, 80, 100}
Maximum depth {1, 3, 5, 10, 20}
Learning rate {0.01, 0.05, 0.1, 0.2}
Reg alpha {0, 0.01, 0.03, 0.05, 0.07}

LR
Class weight {balanced, none}
Solver SAGA, newton-cg, LBFGS, Liblinear

SVM
Class weight balanced

Alpha 10−4+i( 9
49

) where i = 0, 1, . . . , 49

RF

Number of estimators {50, 100}
Max depth {6, 9, 12}
Maximum leaf nodes {6, 9, 12}

6.2 Case study 1: Credit card default data

This section presents results for the pre- and post-modelling explainability of the

classification models applied to case study 1. In pre-modelling explainability, features

that served as inputs into the models are described. Post-modelling explainability

covers explainability of classification models that are intrinsically explainable or

transparent such as LR, LDA, and DT. The post-modelling explainability results for

SVM, ANN, bagging, RF, and LGBM achieved using SHAP and LIME are presented.

6.2.1 Pre-modelling explainability

Pre-modelling explainability encompasses methods to understand the data prior to

training and applying the classifiers for credit scoring. Pre-modelling explainability

can be achieved through univariate analysis of features and quantifying the rela-

tionship between features and the target variable. The IV was used to quantify the
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6.2. Case study 1: Credit card default data

strength of the relationship between features and target. The results of the univariate

analysis for each feature are presented in Appendix A.

Table A.5 shows the analysis of PAY 0, which is the repayment status in September,

in relation to the outcome of the loan. The information value of this feature is 0.87,

which indicates a strong relationship to the outcome of the loan. PAY 2, defined as

repayment status in August, has the second highest IV of 0.54, as shown in Table

A.6. Similar analysis was conducted for all features. It is expected that features with

a high IV will be deemed as predictive factors in the classification models.

Pre-modelling explainability can also be achieved through explainable feature engi-

neering. The original features were extracted without any modifications from the

credit card default dataset and no additional features were derived. This aids in

the explainability of features since all the features are defined and computations

are explainable and understood. Furthermore, they can be broadly categorised

as demographic information, repayment statuses, bill amounts, payment amounts

and credit balances. This makes it possible to explain the risk factors or feature

contributions towards model predictions.

Given the small size of the feature space, the VIF was used to reduce multicollinearity

and eliminate redundant features by excluding those with a VIF above 5. Table 4

shows the 18 features that were selected from the original set of 24 features using

VIF.

Table 4: Features selected for case study 1.

Category Feature Selected

Demographics data

SEX ✓

EDUCATION ✓
MARRIAGE ✓
AGE ✓

Repayment statuses

PA 0 ✓

PA 2 ✓
PA 3 ✓
PA 4 ✓

PA 5 ✓
PA 6 ✓

Bill statements

BILL AMT1 ✓
BILL AMT2

BILL AMT3

BILL AMT4 ✓
BILL AMT5

BILL AMT6

Previous payments

PAY AMT1 ✓

PAY AMT2 ✓
PAY AMT3 ✓
PAY AMT4 ✓

PAY AMT5

PAY AMT6 ✓

LIMIT˙BAL ✓
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6.2.2 Classifier performance tuning

The classification models applied in case study 1 were trained with various hyper-

parameters. Table 5 lists the hyperparameters that were tuned for each model,

as well as optimal values obtained for the search spaces described in Section 6.1.

The optimal hyperparameters were obtained using a 5-fold cross-validation random

search, repeated 15 times. For each iteration, random samples were extracted for

cross-validation and the hyperparameters that produced optimal results were used.

Table 5: Optimal hyperparameters for each classifier for case study 1.

Classifier Hyperparameter Optimal value

ANN

Hidden layers Three layers with 120, 80, 40 nodes, respectively.

Activation Tanh

Maximum iterations 20

Bagging
Number of estimators 5

Maximum samples 750

DT

Maximum depth 6

Maximum leaf nodes 43

Minimum sample per leaf 100

Class weight balanced

LDA Solver SVD

LGBM
Number of leaves 20

Maximum depth 3

LR
Class weight balanced

Solver SAGA

RF
Max depth 6

Maximum leaf nodes 12

SVM
Class weight balanced

Alpha 10−4+i( 9
49

) where i = 7

6.2.3 Performance evaluation

The performance of each classification model was analysed in terms of AUC. The

results were obtained by evaluating the models on 30 randomly generated subsets of

data from the validation data. Figure 11 depicts the performance of each classification

model in classifying credit card defaults and non-defaults. LGBM achieved the highest

average AUC of 76.94%, followed by RF and ANN with average AUCs of 76.85% and

76.32%, respectively. The DT classification model yielded an average AUC of 73.95%.

In comparison, bagging, LDA, LR and SVM produced AUCs ranging between 71.18%

and 72.21% which are lower than the performance of DT. In this case study, the black

box models outperform the transparent models, with the exception of the bagging

classifier. This finding suggests that there may be a trade-off between accuracy and

explainability.

A further analysis to assess the difference of means was conducted using ANOVA

and the Kruskal-Wallis test. However, the p-value on the ANOVA test for normality
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6.2. Case study 1: Credit card default data

is less than 0.05. This indicates that data are not normally distributed and therefore

ANOVA cannot be used to compare or to draw meaningful conclusions from the

means. The Kruskal-Wallis test yields a p-value less than 0.05, which suggests that

the means are different. In addition, Dunn’s multi-comparison test shows that the

average AUCs of ANN, LGBM and RF are not statistically significant since the

p-values are greater than 0.05. However, the average AUCs of these classifiers are

significantly different compared to those of bagging, DT, LDA, LR and SVM, at a

95% confidence level, as shown in Table 6.

6.2.4 Post-modelling explainability of interpretable models

The DT inherently produces feature rankings since the order of feature splits depends

on the discriminatory power of the feature. The sequence of features shown as nodes

as well as branches show the relationship between variables. Figure 12 exhibits the

first three levels of the DT for case study 1. The PAY 0, and PAY 2 have the highest

rank in terms of discriminating between classes. While a decision tree is easier to

Figure 11: Performance of the classification models for case study 1.

Table 6: Dunn’s multi-comparison test of the classification models for case study 1.
The average AUCs of ANN, LGBM and RF are significantly different to those of
bagging, DT, LDA, LR and SVM since the p-values are less than 0.05.

AUC ANN Bagging DT LDA LGBM LR RF SVM

ANN 76.32 1.00

Bagging 71.18 0.00 1.00

DT 73.95 0.02 0.00 1.00

LDA 71.65 0.00 1.00 0.00 1.00

LGBM 76.94 1.00 0.00 0.00 0.00 1.00

LR 72.21 0.00 0.99 0.08 1.00 0.00 1.00

RF 76.85 1.00 0.00 0.00 0.00 1.00 0.00 1.00

SVM 72.14 0.00 1.00 0.05 1.00 0.00 1.00 0.00 1.00

.
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interpret because it can be depicted visually, it may be difficult to follow when the

size of the tree is large.

Figure 12: A representation of the DT classifier up to a depth of two for case study
1.

The relative contributions of factors predictive of default were assessed for LR by

extracting the coefficients and analysing the statistical significance. Table 7 shows

the coefficients, p-values, standard errors, and confidence intervals for each feature

for the optimal LR model. The features are ordered in terms of the magnitudes

of the contributions to the predictions, by calculating the absolute values of the

coefficients and ranking them in descending order. The intercept is used to provide

a probability of an outcome when all features are at zero.

The measures of statistical significance and confidence intervals of the LR parameters

indicate only 13 features contribute significantly to the model since the p-values are

less than 0.05. The p-values for PAY 4, PAY 6, PAY AMT1, PAY AMT3, PAY -

AMT5, PAY AMT6 features are higher than 0.05, indicating that those features do

not contribute significantly to the scoring models and could be omitted. An added

advantage of this approach is that it provides information about features that can

be left out of the model without compromising the accuracy.

The measures of statistical significance and confidence intervals of the LDA parameters

indicate that only 10 features contribute significantly to this model since the p-values

are less than 0.05 as shown in Table 8. The bottom 8 features have p-values higher

than 0.05 indicating that the features do not contribute meaningfully to the target

and could be excluded from the LDA classification model.

The group means for each feature and each class are depicted in Table 9. The

differences in mean values for each feature per class imply that these features have an

impact on the classes. Furthermore, the low standard errors and confidence intervals

indicate that the mean values are expected to fall within the range of given values

at a 95% confidence level. Furthermore, the measures of statistical significance of
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the LDA parameters for default class indicate that the top 18 features contribute

significantly to the model since the p-values are less than 0.05.

Table 7: Feature importance and impacts for the LR classifier for case study 1.

Features Coefficients std error z [.025 .975] P ≥ |Z|
INTERCEPT -0.19 0.02 -11.79 -0.21 -0.18 0.00

PAY 0 0.52 0.03 17.37 0.49 0.55 0.00

PAY AMT2 -0.49 0.14 -3.45 -0.63 -0.35 0.00

PAY AMT4 -0.15 0.05 -3.30 -0.20 -0.11 0.00

PAY 2 0.15 0.04 4.12 0.11 0.18 0.00

LIMIT BAL -0.13 0.03 -4.16 -0.16 -0.10 0.00

MARRIAGE -0.11 0.03 -4.36 -0.14 -0.09 0.00

BILL AMT1 -0.10 0.05 -1.88 -0.15 -0.05 0.03

EDUCATION -0.09 0.02 -4.35 -0.11 -0.07 0.00

PAY 3 0.09 0.04 2.04 0.05 0.14 0.02

PAY AMT1 -0.09 0.06 -1.44 -0.15 -0.03 0.08

SEX -0.07 0.02 -3.70 -0.09 -0.05 0.00

PAY 4 0.04 0.04 0.99 -0.00 0.08 0.16

AGE 0.04 0.02 1.96 0.02 0.06 0.02

PAY AMT3 -0.03 0.04 -0.82 -0.08 0.01 0.21

PAY AMT5 -0.03 0.05 -0.55 -0.08 0.02 0.29

BILL AMT6 0.01 0.05 0.22 -0.04 0.07 0.41

PAY AMT6 0.01 0.03 0.19 -0.03 0.04 0.43

PAY 6 -0.00 0.03 -0.08 -0.03 0.03 0.47

Table 8: Feature importance and impacts for the LDA classifier for case study 1.

Features Coefficients std error z [.025 .975] P ≥ |Z|
INTERCEPT -1.51 0.02 -60.57 -1.53 -1.48 0.00

PAY 0 0.71 0.04 20.06 0.68 0.75 0.00

BILL AMT1 -0.27 0.04 -6.90 -0.30 -0.23 0.00

PAY 2 0.19 0.05 3.69 0.14 0.24 0.00

PAY 4 0.14 0.05 3.09 0.09 0.19 0.00

EDUCATION -0.09 0.02 -4.93 -0.11 -0.07 0.00

MARRIAGE -0.08 0.02 -3.99 -0.10 -0.06 0.00

LIMIT BAL -0.08 0.03 -3.19 -0.11 -0.06 0.00

PAY AMT1 -0.08 0.02 -3.85 -0.10 -0.06 0.00

PAY AMT5 -0.06 0.02 -2.52 -0.09 -0.04 0.01

AGE 0.06 0.02 2.79 0.04 0.08 0.00

BILL AMT6 0.05 0.04 1.25 0.01 0.09 0.11

PAY 6 -0.03 0.04 -0.84 -0.07 0.01 0.20

SEX -0.03 0.02 -1.25 -0.05 -0.01 0.10

PAY 3 0.03 0.05 0.50 -0.03 0.08 0.31

PAY AMT2 -0.02 0.03 -0.63 -0.05 0.01 0.26

PAY AMT4 -0.02 0.02 -0.72 -0.04 0.01 0.24

PAY AMT3 0.01 0.02 0.26 -0.01 0.02 0.40

PAY AMT6 0.00 0.02 0.06 -0.02 0.02 0.47
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6.2. Case study 1: Credit card default data

6.2.5 Post-modelling explainability using SHAP

SHAP was used to provide insights into the importance of each feature for each

classification model. Table 10 exhibits the ranking of features based on the relative

magnitudes of the mean absolute SHAP values. The PAY 0 is the most influential

feature as it ranks highest across all the models.

The rankings of features for LR and LDA according to SHAP are different to the

rankings of features presented in Tables 7 and 8. This can be attributed to the fact

that mean absolute values can be easily influenced by extreme values resulting in

erroneous rankings and conclusions. Feature importance provides a view of predictive

factors of the classifiers.

It can be observed that predictions of the DT classifier depend only on 15 features as

shown in Table 10, where the mean absolute SHAP values are not zero. Alternatively,

three features, namely PAY AMT5, MARRIAGE and EDUCATION are not used in

predictions since the mean absolute SHAP values are zero. The features that ranked

the highest in terms of importance according the mean absolute SHAP values also

ranked highest in the graphical representation of the DT. Seemingly, SHAP feature

importance rankings produces, but not always, results similar to the intrinsically

explainable classifiers. Similar observations regarding feature importance can be

made for the other classification models. It is evident that SHAP is also useful for

feature selection because it can quantify the importance of each feature. However, a

suitable threshold would have to be determined in order to decide which feature to

select or remove.

Figures 13a and 13b demonstrate feature dependence plots for the top five features for

each classification model. The y-axis has two coordinates, left and right. The right

coordinate indicates the feature with the highest interaction. The left coordinate

shows the SHAP values. SHAP values that are less than zero contribute negatively

towards the predictions. A value of zero indicates no contribution. Whereas values

greater than zero contribute positively towards predictions. In the case of predicting

default, negative values reduce the expected probability of default and positive values

increase the expected probability of default.

The dependence plots provide a view of the relationship between a feature’s values and

the model’s predicted outcomes. The dependence plots reveal that the relationship

between SHAP values, feature values and feature interaction are different for each

classification model. For example, the LIMIT BAL is the third most important

feature for ANN. Furthermore, as the LIMIT BAL increases the SHAP values decrease

(see the third plot in the first row in Figure 13a). In addition, the LIMIT BAL has a

relatively stronger interaction with PAY 0. However, the LIMIT BAL is the second

most important feature for LGBM. An inverse relationship between the LIMIT BAL

values and SHAP values is observed, similar to that of ANN.
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6.3. Case study 2: Home credit default

Furthermore, the LIMIT BAL has a relatively stronger interaction with BILL -

AMT1 (see the second plot in the fifth row in Figure 13a). In this study, the feature

interaction effects are analysed between the feature of interest and the most influential

feature, i.e., limiting the interaction effects to the most influential feature.

Figure 14 shows the instance level explanation provided by the LIME framework

as predicted by LGBM classification model. These instance level explanations can

be generated for all the classifiers since LIME is model agnostic. For this example,

LIME explains that this customer is predicted not to default on their credit card

and this decision is based mainly on the PAY 0, LIMIT BAL, PAY AMT3, PAY 6,

PAY 4, SEX, MARRIAGE, PAY AMT6 and BILL AMT6. MARRIAGE, highlighted

in blue, contributes towards non-default in this case.

Figure 14: LIME interpretation for LGBM classifier for case study 1.

6.3 Case study 2: Home credit default

This section presents results for the pre- and post-modelling explainability for case

study 2. In pre-modelling explainability, features that served as inputs into the

classification models are described. In post-modelling explainability the results for

intrinsic explainability of LR, LDA, and DT are discussed. Furthermore, the post-

modelling explainability results for SVM, ANN, bagging, RF, and LGBM achieved

using SHAP and LIME are presented.

6.3.1 Pre-modelling explainability

Pre-modelling explainability encompasses methods to understand the data prior to

training of the classifiers for credit scoring. This is achieved through an exploratory

analysis of the data, explainable feature engineering, data summaries and feature

selection approaches. The results of the data summaries, more specifically using
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6.3. Case study 2: Home credit default

univariate analysis, and feature selection are presented. The univariate analysis is

used to show the relationship between features and the target variable. The IV was

used to quantify the strength of the relationship between features and target. Given

the high number of features for this dataset only the most important features were

analysed.

Table D.1 shows the analysis of the education level in relation to the outcome of the

loan. Applicants that have a secondary special (Sec. special) education and higher

education (higher edu.) constitute 71.02% and 24.34% of applicants, respectively.

Applicants with an academic degree make up the lowest percentage of approximately

0.05%. However, applicants with an academic degree also have the lowest bad rate of

less than 2%. Lower secondary (Lower sec.) applicants make up 1.24% of applicants,

but they have the largest bad rate of 10.93%. This is possibly attributed to the

fact that the income of an individual is likely to be higher depending the level of

education. Furthermore, the low income earners are likely to be in financial distress

and consequently default on loan obligations. The IV of this feature is 0.05, which

indicates a moderate relationship to the outcome of the loan.

The analysis of income sources depicted in Table D.2, indicates that most applicants

have income sources from working, followed by commercial associate (Com. associate),

pensioner and state servant make up 51.63%, 23.29%, 18% and 7.06%, respectively.

Applicants from these sources have a bad rate of less than 10%. All other attributes,

namely maternity leave, businessman and student were combined under unemployed

due to low volumes and similar bad rates, and they make up 0.02% of applicants

with a bad rate of 18.18%. The distribution of sources of income indicates that loans

are primarily given to individuals who have a stable source of income. Furthermore,

the information value of this feature is 0.06, indicating a moderate relationship with

the outcome of the loan.

The occupation feature has many occupation types which were grouped based on

the low variability of the weight of evidence (WoE), bad rates as well as low volumes.

Occupation 1 is mainly made up of low-skill labourers and has an observed default

rate of 17.15% as shown in Table D.3. Occupation 8 (accountants) has the lowest

default rate of 4.83%. This table shows that there is a conceivable relationship

between the level of professional skills and default rates. The observed IV is 0.09,

which also shows a moderate relationship between occupation type and default rates.

Similarly, there are many organisation types and they were grouped based on the

low variability of the WoE, bad rates as well as low volumes, as presented in Table

D.4. Organisation 14 has the lowest default rate of 3.70%. This analysis shows that

there is a conceivable relationship between the organisations and default rates. The

observed IV is 0.07, which also shows a moderate relationship between organisation

type and default rates.

The age of the customers is derived from the DAYS BIRTH feature by converting
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6.3. Case study 2: Home credit default

days into years. In addition, this feature is converted to a positive value because

in the data the age is calculated from the time of application and not from the

birth date. The univariate analysis of the age of the applicants, shown in Table D.5,

indicates that the younger the applicants the higher the default rate. This could

be attributed to the fact that the younger population is still new to the job market

and not as financially stable as the older population. Furthermore, the default rate

for the age group 20 to 28 years is above average at 11.57%. In this analysis, the

age variable was binned such that each interval of the age or age groups are fairly

equal in size. The univariate analysis of the age of the applicants yields an IV of

0.08 indicating a moderate association with default rates.

The EXT SOURCE 1 feature is a normalized score from an external data source.

Table D.6 shows this score is not populated for 56% of the population. The bad rate

for the population for which the score is blank is slightly above average at 8.52%.

The highest bad rates observed is 17.56% for the lower scores and 2.5% for the higher

end of the scores. The IV of 0.15 indicates a moderate degree of association between

EXT SOURCE 1 and the target. A similar analysis yields an IV of 0.35 if only the

scored population is analysed, i.e., excluding missing values. This shows that the

score has a fairly strong relationship with the target for the scored population.

The EXT SOURCE 2 feature is also a normalized score from an external data source.

Table D.7 shows this score is mostly populated, since less than 0.5% are missings.

The highest bad rates observed is 18.35% for the lower scores and 2.97% for the

higher end of the scores. The IV of 0.31 indicates a moderate degree of association

between EXT SOURCE 2 and the target.

Similarly, EXT SOURCE 3 is also a normalized score from an external data source.

Table D.8 shows this score is mostly populated, since less than 20% are missings.

The highest bad rates observed is 20% for the lower scores and 3.23% for the higher

end of the scores. The IV of 0.33 indicates a moderate degree of association between

EXT SOURCE 3 and the target.

The subset of relevant features employed for training classifiers was chosen using a

combination of feature selection strategies. The initial selection of 100 features was

aided by the use of two methods, namely Kendall tau’s correlation and χ2, both of

which are categorised as filter methods. The VIF was used to eliminate features that

are correlated by excluding features above a VIF threshold of 5. This reduced the

number of features from 100 to 65.

Furthermore, lasso regression (Lasso R.), ridge regression (Ridge R.), RF and LGBM

RFE wrapper methods were utilised to determine the top ranking features. The

performance of the RFE wrapper methods were evaluated using all top ranking 60,

30 and 15 features. As shown in Table 11, selecting the top ranking 15 features for

each method produces similar performance results as selecting 60 features. Therefore,

the number of features used can be reduced further to 15 without compromising

60



6.3. Case study 2: Home credit default

on performance. The final features were selected based on a voting system of the

methods on the top 15 features selected by each model, where a feature must be

selected by at least one RFE wrapper method.

Table 11: Performance evaluation of RFE wrapper methods tested on 15, 30 and 60
features.

ROC AUC Precision Recall

No. features 15 30 60 15 30 60 15 30 60

LGBM 67.92 68.06 67.92 13.65 13.98 13.85 80.22 79.53 79.69

Lasso R. 67.67 67.66 67.74 13.65 12.78 13.33 79.86 84.38 81.69

RF 66.33 66.22 66.56 13.01 14.06 14.39 80.16 74.38 73.79

Ridge R. 67.61 67.66 67.73 13.47 12.79 13.32 80.68 84.36 81.76

The final number of features that were selected were 24, where each feature was

selected by either one of the RFE wrapper methods as tabulated in Table 12. The

final features that were extracted can be broadly categorised as belonging to the

following categories: external sources, age related, education and employment, gender,

car ownership flag, income and credit characteristics, changes in contact information,

social circle observations, car ownership ratios, apartment scores and loan application

related.

6.3.2 Classifier performance tuning

Table 13 shows the hyperparameters that were tuned for each model, as well as

optimal values for these hyperparameters. The search space is described in Section

6.1. The optimal hyperparameters were obtained using a five-fold cross-validation

random search, repeated 15 times.

The AUC was used to assess and rank the classifiers’ ability to distinguish between

good and bad credit applicants. Table 14 displays the optimal threshold, i.e., best

value to classify an outcome as either default or non-default, as well as the AUC for

all classifiers for the training and test subsets. On the training subsets, the LGBM

classifier had an AUC of 82.54 when applied to 24 features. Furthermore, the LGBM

classifier’s AUC on training was significantly higher compared to performance on

the other subsets. This implies that the LGBM classifier may be overfitting, even

though it still performed reasonably well and consistently on those subsets. Overall,

the classifiers displayed slightly higher performance on the subset of 24 features.

6.3.3 Performance evaluation

The performance of each classification model applied to the home credit default

validation set was analysed in terms of AUC. Figure 15 shows that the DT achieved

the lowest average AUC of 70.50% followed by ANN and RF with average AUCs of

72.70% and 72.85%, respectively. The LR classification model achieved the highest
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Table 12: Features selected using recursive feature elimination methods for case
study 2.

Category Feature Lasso R. Ridge R. RF LGBM

Normalised scores

EXT SOURCE 3 ✓ ✓ ✓ ✓

EXT SOURCE 2 ✓ ✓ ✓ ✓

EXT SOURCE 1 ✓ ✓ ✓ ✓

EXT SOURCE MAX - - ✓ ✓

Age related
DAYS EMPLOYED ✓ ✓ ✓ ✓
DAYS BIRTH ✓ ✓ ✓ ✓

Education and employment

ORGANIZATION TYPE 1 ✓ ✓ - ✓

OCCUPATION TYPE 1 ✓ ✓ - ✓

NAME EDUCATION TYPE 0 ✓ ✓ - ✓

Gender CODE GENDER 1 ✓ ✓ - ✓

Car ownership FLAG OWN CAR 1 ✓ ✓ - ✓

Type of loan NAME CONTRACT TYPE 0 ✓ ✓ - -

Income and credit

AMT INCOME TOTAL - - ✓ -

AMT ANNUITY ✓ ✓ ✓ ✓

CREDIT GOODS RATIO ✓ ✓ - ✓

ANNUITY INCOME RATIO - - ✓ -

CREDIT ANNUITY RATIO - - ✓ ✓

Personal details change

DAYS ID PUBLISH - - ✓ ✓

DAYS REGISTRATION - - ✓ -

DAYS LAST PHONE CHANGE - - ✓ -

Social circle
DEF 30 CNT SOCIAL CIRCLE ✓ ✓ - -

NAME TYPE SUITE 0 - - - -

Apartment related

REGION RATING CLIENT W CITY 0 ✓ ✓ - -

REGION POPULATION RELATIVE - - ✓ -

WALLSMATERIAL MODE 1 - - - -

REG REGION NOT LIVE REGION - - - -

REG CITY NOT WORK CITY - - - -

NONLIVINGAREA MODE - - - -

Application related
HOUR APPR PROCESS START - - ✓ -

WEEKDAY APPR PROCESS START 1 - - - -

average AUC of 74.58%. In this experiment the transparent linear models perform

relatively well on average compared to the black box models. This is possible if the

relationship between the features and target variable is linear and the distributions of

the features meet the requirements of linear models. The findings of this experiment

suggest that the trade-off between accuracy and explainability may not always apply.

An analysis of the means was conducted using ANOVA and the Kruskal Wallis test.

The data fails the test for normality and therefore ANOVA can not be used to compare

the means. The Kruskal Wallis test indicates that there is a significant difference

in the means of the models, since the p-values are less than 0.05. Furthermore, a

multi-comparison analysis using the Dunn test shows that the means of the LR,

LDA, LGBM, bagging and SVM are not significantly different as shown in Table 15.

6.3.4 Post-modelling explainability of interpretable models

The DT inherently produces features importance since the order of feature splits

depends on their discriminatory power. The classification is visually represented

by the branches and terminal nodes of the tree. Figure 16 depicts an example of
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6.3. Case study 2: Home credit default

one of the induced trees illustrating the sequence of features as nodes as well as

branches to show the relationship between variables. The features, EXT SOURCE 3,

EXT SOURCE 2 and EXPECTED INTEREST SHARE have the highest rank in

terms of discriminating between classes.

Table 16 contains the coefficients, p-values, standard errors, and confidence intervals

for each feature for the optimal LR model. The features were ordered in terms of the

contribution to the predictions by calculating the absolute value of the coefficients

and ranking them in descending order. The p-values for the top 22 features were less

Table 13: Optimal hyperparameters for each classifier for case study 2.

Classifier Hyperparameter Optimal value

ANN

Hidden layers Three layers with 120, 80, 40 nodes, respec-
tively.

Activation Tanh

Maximum iterations 20

bagging
Number of estimators 15

Maximum samples 750

DT

Maximum Depth 7

Maximum leaf nodes 48

Minimum sample per leaf 500

Class weight balanced

LDA Solver SVD

LGBM

Number of leaves 40

Maximum depth 5

Learning rate 0.2

Reg alpha 0.01

LR Class weight balanced

SVM
Class weight balanced

Alpha 10−4+i( 9
49

) where i = 5

RF
Max depth 6

Maximum leaf nodes 12

Table 14: The optimal threshold and model performance for the training and testing
subsets for case study 2. Results showed that the LGBM classifier outperformed
other classifiers, particularly on the 24 selected features. Overall, the classifiers
exhibited slightly higher performance on this subset of features.

J-Statistic AUC (Training) AUC (Testing)

No. features 8 12 16 24 8 12 16 24 8 12 16 24

ANN 8.01 7.94 7.91 8.69 74.22 75.30 75.58 76.29 73.99 74.84 75.01 75.47

bagging 8.19 7.96 8.12 7.95 73.37 73.98 74.19 74.24 73.24 73.72 74.02 74.09

DT 51.44 50.68 50.83 50.98 73.03 73.22 73.16 73.16 71.66 71.65 71.84 71.85

LDA 7.55 7.73 7.77 7.29 73.85 74.73 74.84 74.95 73.70 74.53 74.68 74.83

LGBM 8.34 8.00 8.05 9.10 75.17 76.12 76.12 82.54 74.08 74.92 74.96 76.46

LR 48.91 49.33 49.59 8.07 73.89 74.79 74.95 75.06 73.70 74.54 74.72 74.90

RF 8.28 8.24 8.78 8.55 72.70 73.29 73.29 73.72 72.15 72.81 72.95 73.30

SVM 8.02 7.95 8.22 8.28 73.75 74.61 74.73 74.92 73.60 74.37 74.52 74.74

63



6.3. Case study 2: Home credit default

Figure 15: Performance of classification models on the validation set with 24 features
for case study 2.

Table 15: Dunn’s multi-comparison test for classification models for case study 2.
The average AUCs of LR, LDA and LGBM are significantly different to the average
AUCs of ANN and DT since the p-values are less than 0.05.

AUC ANN Bagging DT LDA LGBM LR RF SVM

ANN 72.70 1.00

Bagging 73.58 0.16 1.00

DT 70.50 0.01 0.00 1.00

LDA 74.50 0.00 0.09 0.00 1.00

LGBM 74.27 0.00 0.41 0.00 1.00 1.00

LR 74.58 0.00 0.03 0.00 1.00 1.00 1.00

RF 72.85 1.00 0.43 0.00 0.00 0.00 0.00 1.00

SVM 74.29 0.00 0.43 0.00 1.00 1.00 1.00 0.00 1.00

.

Figure 16: A representation of the DT up to a depth of two for case study 2.

than 0.05, indicating that those features significantly contribute to the scoring models.

This was also supported by the relatively low standard error values of these features.

The AMT ANNUITY, EXT SOURCE MAX and HOUR APPR PROCESS START
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6.3. Case study 2: Home credit default

were less significant and could be removed from the LR classification model. The

intercept is used to provide a probability of an outcome when all features are zero.

Table 16: Feature importance and impacts for the for LR classifier for case study 2.

Features Coefficients std error z [.025 .975] P ≥ |Z|
INTERCEPT -2.79 0.01 -251.47 -2.81 -2.78 0.00

EXT SOURCE 3 -0.48 0.01 -45.53 -0.49 -0.47 0.00

EXT SOURCE 1 -0.39 0.02 -24.77 -0.41 -0.38 0.00

EXT SOURCE 2 -0.36 0.01 -32.39 -0.38 -0.35 0.00

DAYS BIRTH 0.27 0.01 18.44 0.26 0.29 0.00

CREDIT GOODS RATIO 0.17 0.01 16.65 0.16 0.18 0.00

DAYS EMPLOYED 0.14 0.01 11.45 0.13 0.15 0.00

AMT INCOME TOTAL 0.13 0.03 3.85 0.10 0.17 0.00

NAME EDUCATION TYPE 0 -0.13 0.01 -13.12 -0.14 -0.12 0.00

ORGANIZATION TYPE 1 0.13 0.01 12.45 0.12 0.14 0.00

FLAG OWN CAR 1 0.13 0.01 13.47 0.12 0.13 0.00

CODE GENDER 1 0.12 0.01 10.58 0.11 0.13 0.00

ANNUITY INCOME RATIO 0.10 0.01 7.34 0.09 0.12 0.00

REGION RATING CLIENT W CITY 0 -0.08 0.01 -8.99 -0.09 -0.07 0.00

DEF 30 CNT SOCIAL CIRCLE 0.08 0.01 9.79 0.07 0.08 0.00

OCCUPATION TYPE 1 0.06 0.01 5.53 0.05 0.07 0.00

DAYS ID PUBLISH 0.05 0.01 5.24 0.04 0.06 0.00

NAME CONTRACT TYPE 0 -0.04 0.01 -3.29 -0.05 -0.03 0.00

CREDIT ANNUITY RATIO -0.04 0.01 -4.68 -0.05 -0.03 0.00

DAYS LAST PHONE CHANGE 0.04 0.01 3.82 0.03 0.05 0.00

DAYS REGISTRATION 0.03 0.01 2.66 0.02 0.04 0.00

REGION POPULATION RELATIVE 0.02 0.01 1.93 0.01 0.03 0.03

AMT ANNUITY 0.02 0.02 1.00 -0.00 0.03 0.16

EXT SOURCE MAX 0.01 0.02 0.73 -0.00 0.03 0.23

HOUR APPR PROCESS START -0.01 0.01 -0.96 -0.02 0.00 0.17

Table 17 presents the measures of statistical significance and confidence intervals of

the LDA parameters indicate that the top 22 features contribute significantly to the

model, since the p-values are less than 0.05. This provides an indication of feature

importance and the contribution of each feature towards predicting default risk.

The p-values in Table 17 are less than 0.05 indicating that the features are meaningful

additions to the model and are associated with the target. This, like the LR, was

supported by the relatively low standard error values. It is also observed that the

sequence of the importance of features for LDA is similar to that of LR.

The group means for each feature and each class are provided in Table 18. The

differences in mean values for each feature per class imply that these features have

an impact on the predictions of classes. Furthermore, the low standard errors and

confidence intervals indicate that the mean values are expected to fall within the

range of given values at a 95% confidence level. Furthermore, the measures of

statistical significance of the LDA parameters for default class indicate that the top

22 features contribute significantly to the model since the p-values are less than 0.05.
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6.3. Case study 2: Home credit default

Table 17: Feature importance and impacts for LDA classifier for case study 2.

Features Coefficients std error z [.025 .975] P ≥ |Z|
INTERCEPT -2.83 0.01 -240.71 -2.84 -2.82 0.00

EXT SOURCE 3 -0.46 0.01 -34.88 -0.47 -0.44 0.00

EXT SOURCE 2 -0.39 0.01 -33.22 -0.41 -0.38 0.00

EXT SOURCE 1 -0.35 0.02 -19.56 -0.37 -0.33 0.00

DAYS BIRTH 0.28 0.02 17.80 0.26 0.29 0.00

CREDIT GOODS RATIO 0.18 0.01 17.59 0.17 0.19 0.00

CODE GENDER 1 0.16 0.01 15.11 0.14 0.17 0.00

FLAG OWN CAR 1 0.14 0.01 14.41 0.13 0.15 0.00

ORGANIZATION TYPE 1 0.14 0.01 13.04 0.13 0.15 0.00

EXT SOURCE MAX -0.12 0.02 -6.14 -0.14 -0.10 0.00

AMT INCOME TOTAL 0.10 0.04 2.47 0.06 0.15 0.01

ANNUITY INCOME RATIO 0.10 0.02 6.73 0.09 0.12 0.00

DAYS EMPLOYED 0.10 0.01 10.75 0.09 0.11 0.00

DEF 30 CNT SOCIAL CIRCLE 0.09 0.01 8.59 0.08 0.10 0.00

NAME EDUCATION TYPE 0 -0.08 0.01 -9.62 -0.09 -0.07 0.00

REGION RATING CLIENT W CITY 0 -0.08 0.01 -6.91 -0.09 -0.07 0.00

OCCUPATION TYPE 1 0.06 0.01 5.90 0.05 0.07 0.00

CREDIT ANNUITY RATIO -0.06 0.01 -6.88 -0.06 -0.05 0.00

REGION POPULATION RELATIVE 0.05 0.01 5.02 0.04 0.06 0.00

DAYS ID PUBLISH 0.04 0.01 4.19 0.03 0.05 0.00

DAYS LAST PHONE CHANGE 0.03 0.01 3.58 0.02 0.04 0.00

DAYS REGISTRATION 0.03 0.01 3.14 0.02 0.04 0.00

NAME CONTRACT TYPE 0 -0.03 0.01 -2.65 -0.04 -0.02 0.00

AMT ANNUITY 0.03 0.02 1.56 0.01 0.04 0.06

HOUR APPR PROCESS START 0.01 0.01 1.26 0.00 0.02 0.10
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6.3. Case study 2: Home credit default

6.3.5 Post-modelling explainability using SHAP

SHAP is used to provide insights into feature importance and explanations for the

predictions of black box models. In this study, it was also applied to the transparent

models to compare the feature importance results presented in Tables 16 and 17.

Figure 19 shows the ranking of features and the relative magnitudes of the mean

absolute SHAP values, which can be interpreted as measures of feature importance

for each model. The EXT SOURCE 1, EXT SOURCE 2 and EXT SOURCE 3 are

the most influential features as they rank high for most of the classification models

except for the bagging model. The DAYS BIRTH is the most predictive factor for

the bagging classifier. Furthermore, the rankings of all features using SHAP does

not produce the same rankings of features for LR and LDA as presented in Tables 16

and 17. This can be attributed to the fact that mean absolute values can be easily

influenced by extreme values which can also influence how features rank.

The mean absolute SHAP value shows the relative measure of importance of each

feature towards making predictions. This means SHAP is also useful for feature

selection, since it quantifies the importance of each feature. It was that observed

some classification models had features with negligibly small mean absolute SHAP

values, which suggests that further feature selection or reduction could have been

applied. In this study, the DT and SVM had features with mean SHAP values of zero.

This implies that the predictions of default were not influenced by these features.

Figures 17a and 17b exhibit feature dependence plots for the top five features for each

classification technique. The y-axis has two coordinates, left and right. The right

coordinate indicates the feature with the highest interaction. The left coordinate

shows the SHAP values. SHAP values that are less than zero contribute negatively

towards the predictions. A value of zero indicates no contribution. Whereas values

greater than zero contribute positively towards predictions. In the case of predicting

default, negative values reduce the expected probability of default and positive values

increase the expected probability of default. The x-axis shows the range of feature

values. In Figure 17a, from plots 1 - 5 in the second row, it can be observed that

almost all SHAP values for the top 5 features are close to zero for bagging. This

suggests that this particular range of feature values has a minor impact on the SHAP

values and, consequently, on the predictions.

The dependence plots illustrate the relationship between a feature’s values and the

predictions of the model. The dependence plots also show that the relationship

between SHAP values, feature values and feature interaction are different for each

classification model. The feature interaction effects are analysed between the feature

of interest and the most influential feature, i.e., limiting the interaction effects to the

most influential feature. A feature that has a strong interaction effect with another

feature tends to have a longer range of SHAP values at a constant feature value.
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6.3. Case study 2: Home credit default

For example, a long range of SHAP values is observed at a CREDIT GOODS RATIO

value of 1 for the DT classifier (see the last plot in the third row in Figure 17a).

This means that the CREDIT GOODS RATIO has a strong interaction effect with

NAME EDUCATION TYPE 0.

Figure 18 shows the instance level explanation provided by the LIME framework

as predicted by LGBM classification model. In this example, the predicted class

is non-default (encoded as zero) with a 98% probability. LIME shows the top 9

factors, which include DAYS EMPLOYED, EXT SOURCE 3, CREDIT GOODS -

RATIO, EXT SOURCE MAX, CODE GENDER 0, ORGANIZATION TYPE 1,

NAME EDUCATION TYPE 0, EXT SOURCE 1 and DAY BIRTH, contributing

towards the non-default prediction. The features highlighted in blue are pushing the

prediction toward non-default. The total tally of all the features combined are in

favour of the non-default class.

Figure 18: LIME interpretation for LGBM classifier for case study 2.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

The main objectives of this project were to explore the advantages and effectiveness

of alternative approaches in the context of credit applications and to apply XAI

methods to classification models that are deemed as black box models, i.e., where

outcomes are not explainable. These objectives as stated in Section 1.3 have been

met and are discussed in Chapter 6.

To achieve the objectives of the research, eight classification models were constructed

and tested against two credit datasets that are publicly available. Figure 19 highlights

the accuracy-explainability for some classifiers. The ranking of accuracy, shown

on the y-axis, of the classifiers was based on the average AUC and the Dunn’s

multi-comparison test presented in Sections 6.2.3 and 6.3.3. The LGBM, ANN and

RF outperformed the other classifiers for case study 1. However, LGBM, LR, LDA

and SVM outperformed the other classifiers for case study 2. Furthermore, the AUCs

of the top performing classifiers for case one are on average higher than those of

case study 2. The degree of explainability, shown on the x-axis, was determined by

two factors: the intrinsic explainability and the ease of interpretation of the SHAP

dependence plots. The DT, LR and LDA rank highest in terms of explainability, with

the DT ranking highest because the feature importance, interactions and predictions

can be depicted using a diagram. The bagging classifier ranked lowest in terms of

explainability for case study 2. The is because the trends in the SHAP dependence

plots are not clear.

The outcomes of the applications indicate that there is no single credit classifier that
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7.2. Recommendations for future work

outperforms the others and the outcome depends on the datasets in question. The

results also suggest that SHAP outputs are intuitive and enhance understanding and

trust in black box models. Furthermore, SHAP outcomes are fairly consistent with

outputs of transparent models. The local explanations provided by LIME provide a

way to explain reasons behind predictions for individual credit applicants. The latter

is imperative for regulatory and legal requirements. LIME computation is more

efficient for instance level explanations compared to SHAP, since the computation

time of LIME using Python is significantly lower than that of SHAP. LIME produces

local explanations almost instantly, making it ideal for practical purposes.

Figure 19: Accuracy-explainability trade-off of credit scoring classifiers applied in
case study 1 and 2.

This research compliments previous research on the accuracy of various classification

models used in credit and the explainability of these models. The difficulty in

explainability and legal requirements or black box perception of classifiers has

resulted in the reluctance to adopt and utilise these models in practice. Therefore,

the contribution of this research project is to instil confidence in the use of best

performing classifiers irrespective of whether the classifier is deemed as a black box

or not.

7.2 Recommendations for future work

This research has also demonstrated the advantages and effectiveness of alternative

approaches to credit risk scoring. The classification techniques, namely, ANN,
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7.2. Recommendations for future work

bagging, LGBM, SVM and, RF were tested and outcomes were compared against

the popular transparent methods DT, LDA and LR.

Literature shows that MCSs are a growing area of research and show promising

results. The MCS used by Nalić et al. [2020] is both robust and interpretable, making

it ideal to be used for credit scoring. This paper focused on certain MCSs, such as

bagging and boosting. There is more future work on other MCSs, such as blending

and stacking used by Wang et al. [2011], which can be extended to use interpretable

base classifiers.

This research has also demonstrated the effectiveness of SHAP and LIME to explain

predictions of black box classifiers. This approach has shown to be useful for both

global and local explanations. The areas that have been identified for future research

on SHAP include the following:

Current approaches use the mean absolute SHAP values of features to rank the

importance. A limitation with this approach is that outliers may have an impact on

the mean absolute value and this can in turn have an impact of feature importance.

Furthermore, there are cases where the mean absolute values are close to each other

which makes it difficult to determine which feature is more important. Although

this approach is widely accepted, much work is required to ensure that conclusions

are not incorrectly interpreted. An extension of the work on feature importance

is to include significance tests, confidence intervals, error measures and pairwise

comparisons of the features importance values.

Two approaches were employed to determine SHAP values. Kernel SHAP was used

for ANN, bagging, SVM, LDA and LR. Whereas, tree SHAP was used for LGBM,

DT and RF. While the kernel SHAP is an improvement to the classic methods of

calculating SHAP values, it is still inefficient in terms of the time it takes to compute

SHAP values [Misheva et al., 2021]. Tree SHAP is very efficient as it computes

SHAP values quickly, however the algorithm is only applicable to decision tree based

algorithms. Further work is required to enhance the efficiency of calculating SHAP

values for linear classifiers and some ensembles.

The visualisations of SHAP values computed using kernel SHAP sometimes lack

useful insights. The dependence plots sometimes fail to show trends that are easily

interpretable and therefore defeat the purpose of interpretability. This is possibly due

to outliers in SHAP values or the internal computational process. To obtain SHAP

values with kernel SHAP, a reasonable sample must be used, which can impact the

clarity of the resulting visualisations. Further research is necessary to enhance the

quality of plots derived from kernel SHAP calculations.
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A. Jović, K. Brkić, and N. Bogunović. A review of feature selection methods

with applications. In 2015 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), pages

1200–1205, 2015. doi:https://doi.org/10.1109/MIPRO.2015.7160458.

M.R. Karim. Interpreting black-box machine learning models with decision rules and

knowledge graph reasoning, 2022. URL https://publications.rwth-aachen.

de/record/850613.
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APPENDIX A

Univariate analysis for case study 1

Table A.1: Univariate analysis of limit of applicants.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(9999, 30000] 1463 2618 4081 13.60 35.85 1.79 -0.68 0.07

(30000, 50000] 977 2618 3595 11.98 27.18 2.68 -0.27 0.01

(50000, 70000] 443 1113 1556 5.19 28.47 2.51 -0.34 0.01

(70000, 100000] 801 2465 3266 10.89 24.53 3.08 -0.13 0.00

(100000, 140000] 638 2154 2792 9.31 22.85 3.38 -0.04 0.00

(140000, 180000] 578 2753 3331 11.10 17.35 4.76 0.30 0.01

(180000, 210000] 436 2051 2487 8.29 17.53 4.70 0.29 0.01

(210000, 270000] 478 2456 2934 9.78 16.29 5.14 0.38 0.01

(270000, 360000] 528 2954 3482 11.61 15.16 5.59 0.46 0.02

(360000, 1000000] 294 2182 2476 8.25 11.87 7.42 0.75 0.04

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.18

Table A.2: Univariate analysis of education of applicants.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 1] 2036 8563 10599 35.33 19.21 4.21 0.18 0.01

(1, 2] 3330 10700 14030 46.77 23.73 3.21 -0.09 0.00

(2, 3] 1237 3680 4917 16.39 25.16 2.97 -0.17 0.00

(3, 6] 33 421 454 1.51 7.27 12.76 1.29 0.02

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.04
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Table A.3: Univariate analysis of marital status of applicants.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 1] 3211 10502 13713 45.71 23.42 3.27 -0.07 0.00

(1, 2] 3341 12623 15964 53.21 20.93 3.78 0.07 0.00

(2, 3] 84 239 323 1.08 26.01 2.85 -0.21 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.01

Table A.4: Univariate a analysis of age of applicants.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(20, 25] 1032 2839 3871 12.90 26.66 2.75 -0.25 0.01

(25, 27] 566 2167 2733 9.11 20.71 3.83 0.08 0.00

(27, 29] 599 2415 3014 10.05 19.87 4.03 0.14 0.00

(29, 31] 503 2109 2612 8.71 19.26 4.19 0.17 0.00

(31, 34] 671 2795 3466 11.55 19.36 4.17 0.17 0.00

(34, 37] 709 2553 3262 10.87 21.74 3.60 0.02 0.00

(37, 40] 580 2188 2768 9.23 20.95 3.77 0.07 0.00

(40, 43] 520 1768 2288 7.63 22.73 3.40 -0.03 0.00

(43, 49] 778 2528 3306 11.02 23.53 3.25 -0.08 0.00

(49, 79] 678 2002 2680 8.93 25.30 2.95 -0.18 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.02

Table A.5: Univariate analysis of repayment status in September 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-3, -1] 1319 7126 8445 28.15 15.62 5.40 0.43 0.05

(-1, 0] 1888 12849 14737 49.12 12.81 6.81 0.66 0.17

(0, 1] 1252 2436 3688 12.29 33.95 1.95 -0.59 0.05

(1, 2] 1844 823 2667 8.89 69.14 0.45 -2.07 0.50

(2, 8] 333 130 463 1.54 71.92 0.39 -2.20 0.10

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.87

Table A.6: Univariate analysis of repayment status in August 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-3, -1] 1657 8175 9832 32.77 16.85 4.93 0.34 0.03

(-1, 0] 2503 13227 15730 52.43 15.91 5.28 0.41 0.08

(0, 2] 2189 1766 3955 13.18 55.35 0.81 -1.47 0.37

(2, 8] 287 196 483 1.61 59.42 0.68 -1.64 0.06

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.54
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Table A.7: Univariate analysis of repayment status in July 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-3, -1] 1683 8340 10023 33.41 16.79 4.96 0.34 0.04

(-1, 0] 2751 13013 15764 52.55 17.45 4.73 0.30 0.04

(0, 2] 1970 1853 3823 12.74 51.53 0.94 -1.32 0.29

(2, 8] 232 158 390 1.30 59.49 0.68 -1.64 0.05

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.41

Table A.8: Univariate analysis of repayment status in June 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-3, -1] 1741 8294 10035 33.45 17.35 4.76 0.30 0.03

(-1, 0] 3016 13439 16455 54.85 18.33 4.46 0.24 0.03

(0, 2] 1654 1507 3161 10.54 52.33 0.91 -1.35 0.25

(2, 8] 225 124 349 1.16 64.47 0.55 -1.85 0.05

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.36

Table A.9: Univariate analysis of repayment status in May 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-3, -1] 1792 8293 10085 33.62 17.77 4.63 0.27 0.02

(-1, 0] 3195 13752 16947 56.49 18.85 4.30 0.20 0.02

(0, 8] 1649 1319 2968 9.89 55.56 0.80 -1.48 0.28

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.33

Table A.10: Univariate analysis of Repayment status in April 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-3, -1] 1956 8679 10635 35.45 18.39 4.44 0.23 0.02

(-1, 0] 3069 13217 16286 54.29 18.84 4.31 0.20 0.02

(0, 2] 1401 1365 2766 9.22 50.65 0.97 -1.28 0.20

(2, 8] 210 103 313 1.04 67.09 0.49 -1.97 0.05

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.29
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Table A.11: Univariate analysis of amount of bill statement in September 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-165581, 279] 733 2267 3000 10.00 24.43 3.09 -0.13 0.00

(279, 1893] 665 2335 3000 10.00 22.17 3.51 -0.00 0.00

(1893, 6050] 618 2382 3000 10.00 20.60 3.85 0.09 0.00

(6050, 13469] 663 2337 3000 10.00 22.10 3.52 0.00 0.00

(13469, 22382] 766 2234 3000 10.00 25.53 2.92 -0.19 0.00

(22382, 37045] 721 2279 3000 10.00 24.03 3.16 -0.11 0.00

(37045, 52205] 659 2341 3000 10.00 21.97 3.55 0.01 0.00

(52205, 83421] 627 2373 3000 10.00 20.90 3.78 0.07 0.00

(83421, 142134] 590 2410 3000 10.00 19.67 4.08 0.15 0.00

(142134, 964511] 594 2406 3000 10.00 19.80 4.05 0.14 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.01

Table A.12: Univariate analysis of amount of bill statement in August 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-69778, 0] 744 2431 3175 10.58 23.43 3.27 -0.07 0.00

(0, 1473] 623 2202 2825 9.42 22.05 3.53 0.00 0.00

(1473, 5500] 613 2388 3001 10.00 20.43 3.90 0.10 0.00

(5500, 12800] 642 2357 2999 10.00 21.41 3.67 0.04 0.00

(12800, 21200] 772 2228 3000 10.00 25.73 2.89 -0.20 0.00

(21200, 34774] 738 2262 3000 10.00 24.60 3.07 -0.14 0.00

(34774, 50690] 664 2337 3001 10.00 22.13 3.52 -0.00 0.00

(50690, 80292] 635 2364 2999 10.00 21.17 3.72 0.06 0.00

(80292, 136906] 600 2400 3000 10.00 20.00 4.00 0.13 0.00

(136906, 983931] 605 2395 3000 10.00 20.17 3.96 0.12 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.01

Table A.13: Univariate analysis of amount of bill statement in July 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-157265, 0] 819 2706 3525 11.75 23.23 3.30 -0.06 0.00

(0, 1188] 552 1923 2475 8.25 22.30 3.48 -0.01 0.00

(1188, 5219] 609 2391 3000 10.00 20.30 3.93 0.11 0.00

(5219, 12197] 625 2375 3000 10.00 20.83 3.80 0.08 0.00

(12197, 20088] 749 2251 3000 10.00 24.97 3.01 -0.16 0.00

(20088, 31401] 732 2269 3001 10.00 24.39 3.10 -0.13 0.00

(31401, 49217] 703 2296 2999 10.00 23.44 3.27 -0.08 0.00

(49217, 76777] 647 2353 3000 10.00 21.57 3.64 0.03 0.00

(76777, 132051] 603 2397 3000 10.00 20.10 3.98 0.12 0.00

(132051, 1664089] 597 2403 3000 10.00 19.90 4.03 0.13 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.01
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Table A.14: Univariate analysis of amount of bill statement in June 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-170001, 0] 899 2971 3870 12.90 23.23 3.30 -0.06 0.00

(0, 988] 496 1635 2131 7.10 23.28 3.30 -0.07 0.00

(988, 4644] 589 2410 2999 10.00 19.64 4.09 0.15 0.00

(4644, 11145] 594 2407 3001 10.00 19.79 4.05 0.14 0.00

(11145, 19052] 721 2280 3001 10.00 24.03 3.16 -0.11 0.00

(19052, 28604] 743 2255 2998 9.99 24.78 3.03 -0.15 0.00

(28604, 45457] 710 2290 3000 10.00 23.67 3.23 -0.09 0.00

(45457, 70579] 652 2349 3001 10.00 21.73 3.60 0.02 0.00

(70579, 122419] 620 2379 2999 10.00 20.67 3.84 0.09 0.00

(122419, 891586] 612 2388 3000 10.00 20.40 3.90 0.10 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.01

Table A.15: Univariate analysis of amount of bill statement in May 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-81335, 0] 995 3166 4161 13.87 23.91 3.18 -0.10 0.00

(0, 763] 412 1428 1840 6.13 22.39 3.47 -0.02 0.00

(763, 3637] 585 2415 3000 10.00 19.50 4.13 0.16 0.00

(3637, 9809] 570 2429 2999 10.00 19.01 4.26 0.19 0.00

(9809, 18104] 702 2298 3000 10.00 23.40 3.27 -0.07 0.00

(18104, 26690] 758 2242 3000 10.00 25.27 2.96 -0.17 0.00

(26690, 40943] 721 2279 3000 10.00 24.03 3.16 -0.11 0.00

(40943, 65823] 662 2338 3000 10.00 22.07 3.53 0.00 0.00

(65823, 115883] 613 2387 3000 10.00 20.43 3.89 0.10 0.00

(115883, 927171] 618 2382 3000 10.00 20.60 3.85 0.09 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.01

Table A.16: Univariate analysis of amount of bill statement in April 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-339604, 0] 1086 3622 4708 15.69 23.07 3.34 -0.05 0.00

(0, 476] 300 1001 1301 4.34 23.06 3.34 -0.05 0.00

(476, 2702] 616 2375 2991 9.97 20.60 3.86 0.09 0.00

(2702, 8770] 515 2485 3000 10.00 17.17 4.83 0.32 0.01

(8770, 17071] 684 2316 3000 10.00 22.80 3.39 -0.04 0.00

(17071, 25508] 781 2219 3000 10.00 26.03 2.84 -0.21 0.00

(25508, 39252] 742 2258 3000 10.00 24.73 3.04 -0.15 0.00

(39252, 63151] 656 2344 3000 10.00 21.87 3.57 0.01 0.00

(63151, 112110] 654 2346 3000 10.00 21.80 3.59 0.02 0.00

(112110, 961664] 602 2398 3000 10.00 20.07 3.98 0.12 0.00

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.02
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Table A.17: Univariate analysis of amount of previous payment in September 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 316] 2054 3948 6002 20.01 34.22 1.92 -0.61 0.09

(316, 1264] 679 2319 2998 9.99 22.65 3.42 -0.03 0.00

(1264, 1724] 684 2319 3003 10.01 22.78 3.39 -0.04 0.00

(1724, 2100] 652 2358 3010 10.03 21.66 3.62 0.03 0.00

(2100, 3000] 680 2423 3103 10.34 21.91 3.56 0.01 0.00

(3000, 4309] 601 2283 2884 9.61 20.84 3.80 0.08 0.00

(4309, 6192] 471 2529 3000 10.00 15.70 5.37 0.42 0.02

(6192, 10300] 432 2571 3003 10.01 14.39 5.95 0.52 0.02

(10300, 873552] 383 2614 2997 9.99 12.78 6.83 0.66 0.04

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.16

Table A.18: Univariate analysis of amount of previous payment in August 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 269] 1960 4040 6000 20.00 32.67 2.06 -0.54 0.07

(269, 1165] 684 2319 3003 10.01 22.78 3.39 -0.04 0.00

(1165, 1600] 785 2320 3105 10.35 25.28 2.96 -0.18 0.00

(1600, 2009] 634 2263 2897 9.66 21.88 3.57 0.01 0.00

(2009, 3000] 743 2800 3543 11.81 20.97 3.77 0.07 0.00

(3000, 4045] 505 1947 2452 8.17 20.60 3.86 0.09 0.00

(4045, 6000] 544 2518 3062 10.21 17.77 4.63 0.27 0.01

(6000, 10401] 447 2491 2938 9.79 15.21 5.57 0.46 0.02

(10401, 1684259] 334 2666 3000 10.00 11.13 7.98 0.82 0.05

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.15

Table A.19: Univariate analysis of amount of previous payment in July 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 3] 1939 4061 6000 20.00 32.32 2.09 -0.52 0.06

(3, 780] 710 2346 3056 10.19 23.23 3.30 -0.06 0.00

(780, 1206] 659 2286 2945 9.82 22.38 3.47 -0.01 0.00

(1206, 1800] 705 2306 3011 10.04 23.41 3.27 -0.07 0.00

(1800, 2500] 691 2511 3202 10.67 21.58 3.63 0.03 0.00

(2500, 3560] 546 2240 2786 9.29 19.60 4.10 0.15 0.00

(3560, 5284] 511 2489 3000 10.00 17.03 4.87 0.32 0.01

(5284, 10000] 511 2615 3126 10.42 16.35 5.12 0.37 0.01

(10000, 896040] 364 2510 2874 9.58 12.67 6.90 0.67 0.04

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.12
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Table A.20: Univariate analysis of amount of previous payment in June 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 500] 2552 6481 9033 30.11 28.25 2.54 -0.33 0.04

(500, 1000] 906 2843 3749 12.50 24.17 3.14 -0.12 0.00

(1000, 1500] 568 1808 2376 7.92 23.91 3.18 -0.10 0.00

(1500, 2100] 616 2234 2850 9.50 21.61 3.63 0.03 0.00

(2100, 3200] 563 2469 3032 10.11 18.57 4.39 0.22 0.00

(3200, 5000] 558 2602 3160 10.53 17.66 4.66 0.28 0.01

(5000, 9571] 467 2333 2800 9.33 16.68 5.00 0.35 0.01

(9571, 621000] 406 2594 3000 10.00 13.53 6.39 0.60 0.03

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.09

Table A.21: Univariate analysis of amount of previous payment in May 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 500] 2525 6591 9116 30.39 27.70 2.61 -0.30 0.03

(500, 1000] 848 2746 3594 11.98 23.59 3.24 -0.08 0.00

(1000, 1500] 548 1788 2336 7.79 23.46 3.26 -0.08 0.00

(1500, 2123] 655 2299 2954 9.85 22.17 3.51 -0.00 0.00

(2123, 3200] 603 2415 3018 10.06 19.98 4.00 0.13 0.00

(3200, 5000] 571 2604 3175 10.58 17.98 4.56 0.26 0.01

(5000, 9500] 504 2306 2810 9.37 17.94 4.58 0.26 0.01

(9500, 426529] 382 2615 2997 9.99 12.75 6.85 0.66 0.04

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.08

Table A.22: Univariate analysis of amount of previous payment in April 2005.

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-1, 426] 2504 6498 9002 30.01 27.82 2.60 -0.31 0.03

(426, 1000] 968 3054 4022 13.41 24.07 3.15 -0.11 0.00

(1000, 1500] 547 1671 2218 7.39 24.66 3.05 -0.14 0.00

(1500, 2100] 615 2204 2819 9.40 21.82 3.58 0.02 0.00

(2100, 3200] 590 2392 2982 9.94 19.79 4.05 0.14 0.00

(3200, 5000] 586 2652 3238 10.79 18.10 4.53 0.25 0.01

(5000, 9600] 450 2270 2720 9.07 16.54 5.04 0.36 0.01

(9600, 528666] 376 2623 2999 10.00 12.54 6.98 0.68 0.04

Total 6636 23364 30000 100.00 22.12 3.52 0.00 0.09
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APPENDIX B

Description of data for case study 2

Table B.1: Definition of features provided by Home Credit Group [2018a].
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APPENDIX D

Univariate analysis for case study 2

Table D.1: Univariate analysis of education of applicants

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

Lower sec. 417 3 399 3 816 1.24 10.93 8.15 -0.33 0.00

Sec. special 19 524 198 867 218 391 71.02 8.94 10.19 -0.11 0.01

Incom. higher 872 9 405 10 277 3.34 8.48 10.79 -0.05 0.00

Higher edu. 4009 70 854 74 863 24.34 5.36 17.67 0.44 0.04

Academic deg. 3 161 164 0.05 1.83 53.67 1.55 0.00

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.05

Table D.2: Univariate analysis of sources of income of applicants

Attribute Goods Bads Total %Total Bad G:B WoE IV

Rate odds

Unemployed 10 45 55 0.02 18.18 4.50 -0.93 0.00

Working 15 224 143 550 158 774 51.63 9.59 9.43 -0.19 0.02

Com. associate 5 360 66 257 71 617 23.29 7.48 12.36 0.08 0.00

State servant 1 249 20 454 21 703 7.06 5.75 16.38 0.36 0.01

Pensioner 2 982 52 380 55 362 18.00 5.39 17.57 0.43 0.03

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.06
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Table D.3: Univariate analysis of occupation of applicants

Attribute Goods Bads Total %total Bad G:B WoE IV

Ra te odds

Occupation 1 359 1 734 2 093 0.99 17.15 4.83 -0.77 0.01

Occupation 2 2259 17 692 19 951 9.45 11.32 7.83 -0.28 0.01

Occupation 3 7181 60 672 67 853 32.14 10.58 8.45 -0.21 0.01

Occupation 4 3 539 33 216 36 755 17.41 9.63 9.39 -0.10 0.00

Occupation 5 59 692 751 0.36 7.86 11.73 0.12 0.00

Occupation 6 92 1 213 1305 0.62 7.05 13.18 0.24 0.00

Occupation 7 4 584 68 015 72 599 34.39 6.31 14.84 0.36 0.04

Occupation 8 474 9 339 9 813 4.65 4.83 19.70 0.64 0.01

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.09

Table D.4: Univariate analysis of organisation of applicants

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

Organization 1 199 1 079 1 278 0.42 15.57 5.42 -0.74 0.00

Organization 2 997 7 535 8 532 2.77 11.69 7.56 -0.41 0.01

Organization 3 144 1 155 1 299 0.42 11.09 8.02 -0.35 0.00

Organization 4 5 329 46 827 52 156 16.96 10.22 8.79 -0.26 0.01

Organization 5 7 624 74 262 81 886 26.63 9.31 9.74 -0.16 0.01

Organization 6 1 838 19 989 21 827 7.10 8.42 10.88 -0.05 0.00

Organization 7 1 855 22 179 24 034 7.82 7.72 11.96 0.05 0.00

Organization 8 1 465 19 448 20 913 6.80 7.01 13.28 0.15 0.00

Organization 9 1 198 16 963 18 161 5.91 6.60 14.16 0.22 0.00

Organization 10 534 8 493 9 027 2.94 5.92 15.90 0.33 0.00

Organization 11 3 045 53 305 56 350 18.32 5.40 17.51 0.43 0.03

Organization 12 543 10 240 10 783 3.51 5.04 18.86 0.50 0.01

Organization 13 38 794 832 0.27 4.57 20.89 0.61 0.00

Organization 14 16 417 433 0.14 3.70 26.06 0.83 0.00

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.07
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Table D.5: Univariate analysis of age of applicants

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(20.0, 28.0] 3 558 27 194 30 752 10.00 11.57 7.64 -0.40 0.02

(28.0, 32.0] 3 382 27 378 30 760 10.00 10.99 8.10 -0.34 0.01

(32.0, 36.0] 3 015 27 730 30 745 10.00 9.81 9.20 -0.21 0.00

(36.0, 39.0] 2 723 28 036 30 759 10.00 8.85 10.30 -0.10 0.00

(39.0, 43.0] 2 430 28 315 30 745 10.00 7.90 11.65 0.02 0.00

(43.0, 47.0] 2 398 28 366 30 764 10.00 7.79 11.83 0.04 0.00

(47.0, 52.0] 2 193 28 540 30 733 9.99 7.14 13.01 0.13 0.00

(52.0, 56.0] 1 951 28 807 30 758 10.00 6.34 14.77 0.26 0.01

(56.0, 61.0] 1 668 29 089 30 757 10.00 5.42 17.44 0.43 0.02

(61.0, 69.0] 1 507 29 231 30 738 10.00 4.90 19.40 0.53 0.02

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.08

Table D.6: Univariate analysis of external source 1

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(0.005, 0.21] 2 356 11 058 13 414 4.36 17.56 4.69 -0.89 0.05

(0.21, 0.3] 1 555 11 858 13 413 4.36 11.59 7.63 -0.40 0.01

(0.3, 0.37] 1 220 12 194 13 414 4.36 9.09 10.00 -0.13 0.00

Missing Values 14 771 15 8607 173 378 56.38 8.52 10.74 -0.06 0.00

(0.37, 0.44] 1 124 12 288 13 412 4.36 8.38 10.93 -0.04 0.00

(0.44, 0.51] 898 12 517 13 415 4.36 6.69 13.94 0.20 0.00

(0.51, 0.57] 808 12 604 13 412 4.36 6.02 15.60 0.31 0.00

(0.57, 0.64] 689 12 724 13 413 4.36 5.14 18.47 0.48 0.01

(0.64, 0.71] 588 12 825 13 413 4.36 4.38 21.81 0.65 0.01

(0.71, 0.79] 471 12 942 13 413 4.36 3.51 27.48 0.88 0.02

(0.79, 0.96] 345 13 069 13 414 4.36 2.57 37.88 1.20 0.04

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.15
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Table D.7: Univariate analysis of external source 2

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-0.01, 0.22] 5 631 25 055 30 686 9.98 18.35 4.45 -0.94 0.13

(0.22, 0.34] 3 706 26 979 30 685 9.98 12.08 7.28 -0.45 0.02

(0.34, 0.44] 3 056 27 631 30 687 9.98 9.96 9.04 -0.23 0.01

(0.44, 0.51] 2 566 28 118 30 684 9.98 8.36 10.96 -0.04 0.00

Missing Values 52 608 660 0.21 7.88 11.69 0.03 0.00

(0.51, 0.57] 2 278 28 406 30 684 9.98 7.42 12.47 0.09 0.00

(0.57, 0.61] 2 042 28 645 30 687 9.98 6.65 14.03 0.21 0.00

(0.61, 0.65] 1 794 28 889 30 683 9.98 5.85 16.10 0.35 0.01

(0.65, 0.68] 1 499 29 195 30 694 9.98 4.88 19.48 0.54 0.02

(0.68, 0.72] 1 289 29 387 30 676 9.98 4.20 22.80 0.69 0.04

(0.72, 0.85] 912 29 773 30 685 9.98 2.97 32.65 1.05 0.07

Total 24825 282686 307511 100.00 8.07 11.39 0.00 0.31

Table D.8: Univariate analysis of external source 3

Attribute Goods Bads Total %total Bad G:B WoE IV

Rate odds

(-0.009, 0.23] 4 941 19 760 24 701 8.03 20.00 4.00 -1.05 0.14

(0.23, 0.33] 3 156 21 588 24 744 8.05 12.75 6.84 -0.51 0.03

(0.33, 0.41] 2 383 22 674 25 057 8.15 9.51 9.51 -0.18 0.00

Missing Values 5 677 55 288 60 965 19.83 9.31 9.74 -0.16 0.01

(0.41, 0.48] 1 970 22 719 24 689 8.03 7.98 11.53 0.01 0.00

(0.48, 0.54] 1 494 22 692 24 186 7.87 6.18 15.19 0.29 0.01

(0.54, 0.59] 1 357 24 035 25 392 8.26 5.34 17.71 0.44 0.01

(0.59, 0.64] 1 173 23 552 24 725 8.04 4.74 20.08 0.57 0.02

(0.64, 0.69] 1 043 23 702 24 745 8.05 4.21 22.72 0.69 0.03

(0.69, 0.75] 836 22 839 23 675 7.70 3.53 27.32 0.88 0.04

(0.75, 0.9] 795 23 837 24 632 8.01 3.23 29.98 0.97 0.05

Total 24 825 282 686 307 511 100.00 8.07 11.39 0.00 0.33
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