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ABSTRACT 

Weather recognition from still images remains a challenge due to weather diversity and lack 

of distinct characteristics amongst weather conditions. The building blocks of deep learning  

involves a lot of hyperparameters, which is difficult to tune manually. Fine-tuning 

Hyperparameter is a crucial part of building a good deep learning model. This study 

proposes a simplified ResNet-15 model fine-tuned by two distinct optimisers, SGD, and 

Adam  for the purpose of optimising the momentum, number of dense layers, learning rate, 

batch size and dropout rate to  find the optimal hyperparameters that gives the best 

performance on the model. The Convolutional layers are used to extract the most related 

visual features, then the images are classified  through the fully connected layers of the 

Softmax classifier. To evaluate the recommended approach, a comparison of 

hyperparameter tuning with and without hyperparameter tuning of ResNet-15 during the 

experiments shows that fine-tuning of ResNet-15 hyperparameter  using random search  

optimisation method gives more accurate result  with accuracy of 97.29% than other 

techniques. 

  

KEY TERMS: 

 

Deep learning; SGD; Resnet-15; Classifier; SoftMax; hyperparameter; optimisers; weather 

diversity; Adam; fully connected layers. 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Our daily lives are impacted by the weather condition (Lu et al., 2014). Understanding of 

the weather conditions plays a crucial role in human activities, such as dressing, traveling, 

sporting, manufacturing, farming, aviation, production, and  solar technologies etc. 

Therefore, obtaining weather conditions automatically is important to avoid natural 

phenomenon.  

 

Traditionally, human observation has been the basis for recognising weather conditions. 

However, it is labor intensive and leads to errors to distinguish between weather 

conditions using the conventional artificial image approaches. Therefore, the 

development of highly accurate, effective, and automatic systems for the recognition of 

weather conditions are urgently needed. Other traditional method of weather recognition 

models previously used also depended heavily on expensive sensors to recognise the 

weather conditions, of which, the set up and repairs of the expensive sensors takes so 

much material resources including manpower, which restricts scalability of analysing local 

weather conditions for many locations. Cameras usually cost less than sensor devices for 

weather recognition due to the following reasons:  

❖ Flexibility: Cameras capture different weather conditions, thus providing visual 

information about it. In fact, only specialised sensor devices collect information 

about the weather because it is limited to one function (Smith et al., 2019).  

❖ Low production cost : The Low-cost during production is attributed to the wide 

application range of cameras. In contrast, the production cost of sensor devices 

that are intended for weather recognition increases because more specialized 

technologies and components are necessary (Johnson et al., 2020). 

❖ Using the existing Infrastructure: Several areas have installed cameras which are 

meant for safety purposes such as observing and controlling traffic. Given the 

circumstance that it would cost more if we were to purchase additional sensors for 
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this purpose, hence using cameras that has sensors to recognise weather 

conditions  would be more economical. (Williams et al., 2018). 

❖ Efficient data processing: Data processing can be done efficiently using computer 

vision algorithms, which help in recognising weather patterns from visual images 

captured from cameras. Although sensors require intricate calibration and 

interpretation algorithms, processing is fast nowadays because of current 

computer abilities. (Brown et al., 2021). 

❖ Maintenance: Maintaining cameras takes less effort when compared to sensor 

devices, sensor devices require protection from extreme weather conditions, 

regular calibration checks, as well as uninterrupted power supply. 

  

In previous years, weather recognition has been based on the use of tools such as,  

sensors. Although the hardware equipment is normally expensive and depends on 

experts for maintenance. Thus, the need for a different method to recognise weather 

condition from still images with the use of computer vision techniques (Elhoseiny et al., 

2015). Computer vision techniques has become important in many applications  (Han & 

Cheng, 2018),  such as image retrieval, (Qayyum et al., 2017), image restoration (Liu et 

al., 2011), and the reliability improvement of outdoor surveillance systems (Huang et al., 

2015), and vehicle assistant driving systems (Kurihata and Luo, 2009) can also benefit 

because of weather recognition. 

 

Deep learning neural networks have become more popular for image classification such 

as computer visions. Deep Neural Networks (DNNs) are multi-layered feed forward neural 

networks (Goodfellow & Bengio, 2016),   mostly, deep convolutional neural networks 

(CNNs) which learns features automatically from raw images. These are made up of 

simple processing components known as artificial neurons. 

Support vector machine (SVM) method was used for recognising weather conditions from 

images by extracting features such as contrast, slope, power spectrum, saturation, and 

noise, (Li et al., 2014; Jindal et al.,2016). This technique was tried by using a small amount 

of data. It achieved a recognition error rate for rainy and foggy weather of 25%, and 15% 
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respectively. (Narasimhan et al., 2002). The dataset was very small and not enough, 

which led to lack of generalisation, and robustness. However, most of the approaches 

based on machine learning were designed for manual feature extraction and abstraction 

of weather characteristics. Besides, these approaches were very complex and usually led 

to weak generalisation capabilities.  

Currently, deep learning is fast-growing, and convolutional neural network (CNN) has 

achieved incredibly in several machine vision tasks such as, image classification, 

semantic segmentation and object detection, (Tang et al., 2017). Many deep learning 

models faces gradient problems at the lower layers when training. To resolve this 

problem, an approach that functions across many domains are needed to train neural 

networks from end-to-end. CNNs can extract very rich abstracts and deep semantic 

information from weather images, which makes them perform better than the conventional 

techniques for weather recognition.  Insufficient flow of gradient has become an obstacle 

for training deeper networks, a different technique is recommended for weather 

recognition using ResNet-15 which uses the means of identity mappings to remove the 

vanishing gradients problem and make it  possible to train very deep networks. 

To build CNNs, the machine learning researcher must manually adjust a few 

configurations. Hyperparameters are the variables of the network structure and the 

network parameters that are trained and adjusted in a CNN (Aszemi et al., 2019). The 

main goals of hyperparameter optimisation are to minimize the loss or to achieve a 

satisfactory model. Though it is computationally costly to test every possible combination 

of hyperparameters. 

1.2 MOTIVATION AND OVERVIEW  

Though weather recognition is of high importance, works related to weather recognition 

using image processing are quite few, most works done were conducted for vision-based 

driver assistance systems. Other authors explored recognition from a particular outdoor 

image, of which they refered to recognition of weather conditions as a single classfication 

task, which seems inappropriate. The inappropriateness can be explained based on two 
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major reasons.The first reason being ambiguity, that is to say, the class limits among 

some weather categories are  basically uncertain. For instance, as seen from Figure 1.1 

 

Figure 1.1: Various outdoor images. Some of the images were taken from Boksburg area 

of Johannesburg South Africa, and some from dataset 2. (a) sunny image but clear cloud. 

(b)  Sunny image with a very few clouds. (c) Comparing with (b), image has more clouds 

(b). (d) and(e) present both rainy and sunny features. (f) A rainy and cloudy image. (g) 

Shows a cloudy and sunny feature. (h) Cloudy image with no sun. (i) cloudy image with 

sunny features. (j) foggy image with a clear sun on its background. (k) A foggy image that 

looks more overcast. (l) A foggy image with obvious snow on the ground.  
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The changes from Figure 1.1 (a) to (l) demonstrates that there is a sequence of conditions 

between a clear sunny weather such as Figure 1 (a) and an obvious cloudy weather as  

Depicted in Figure 1.1 (h), it is also difficult to determine whether the category in 

Figure1.1(i) becomes sunny or cloudy when one is referring to immediate weather 

conditions such as Figures 1.1 (c), (g) and (h). Therefore, the ambiguity of such borderline 

models gives bases of the complexity of determining the ground-truth categories from the 

human standpoint, moreover, a very little work done previously presents solutions to the 

uncertainty challenges. Another shortcoming of tackling weather recognition as a single 

classification task can be seen as insufficiency, the distinct weather category may not 

refer to the weather conditions widely for the specific image. An instance, haze is obvious 

from the visual effect of images in Figures 1.1 (j), (k) and (l). However, when comparing 

these three images, it can be seen from Figure 1.1(j) appears sunnier while Figure1.1 (k) 

looks much like overcast, while Figure1.1 (l) appears snowy. Hence, just a haze category 

may not tell the fluctuations among the three images. 

 

Figure 1.2: Demonstration of some specific regions for image recognition. (a)  Sunny 

condition with sky blue. (b) A snowy weather with obvious snow at the background. (c) 

And (d) when obstructing the vital regions, becomes a bit complex to assess the weather 

condition. 
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Inspired by the above-mentioned two reasons, this work understands recognition task as 

a challenge. That is, allocating an image according to the weather condition present.  This 

can be accomplished using a convolutional neural network architecture. This insight 

comes from two parts. The first is that some of the earlier research concentrated on using 

handcrafted weather features (Lu et al.2014), (Zhang et al. 2016), although the features 

could not attain the anticipated outcomes for the recognition task. Motivated by this huge 

success in Convolutional Neural Network (CNN) over the years, this work utilises CNN 

for feature extraction. Secondly, classes display a good co-existence reliance in the 

weather field. An instance, where snow and fog commonly happen together, while rain 

and snow almost never happen at the same time. As can be seen from Figure 1.2, the 

sky blue is very vital for assessing a sunny day, and snow at the background is important 

for the snowy weather estimation. (Lu et al., 2014), (Lin et al., 2017) emphases that such 

weather cues are severe. Thus, this is required towards making the weather cues 

discriminative.  

In a situation where the accessible data is statistically limited, another suitable approach 

to use is Transfer Learning, which is becoming more popular (Yosinski et al.,2014). This 

method uses the knowledge formerly obtained for solving a new task, which may not really 

be interrelated to the previous task. 

The aim of this work is to distinguish the presence of the weather condition from the given 

image. A first step is to look at the different group of features extracted from weather 

images, secondly, utilise an image recognition method that can reliably differentiate 

between certain weather conditions. Weather images were collected from online sources 

like, Flickr, Wikimedia, Pixabay, Sky finder, dataset2,  including other search engines. 

 

1.3 PROBLEM STATEMENT  

One of the most important issues in analysing weather conditions from still images is how 

well we can recognise the conditions and their impacts in areas such as  agriculture, 

transportation, and disaster management. 

A system is being developed in this study that will automatically recognise different 

weather conditions such as cloudy foggy, rainy, sunny, or extreme weather conditions 
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involving storms or hurricanes by using still images. The system must be capable of 

processing images taken at  various places with high accuracy and speed. 

The key problems are: 

❖ Inconsistency in weather patterns: Weather patterns vary across different regions 

and can change quite fast. Instead, the system needs to be capable of handling 

this variability and adapting to various weather conditions efficiently. 

❖ Data quality and noise: Still images may exhibit noise, objects, or obstructions that 

can obscure weather recognition accuracy. It is important  to develop strategies 

that will filter such data challenges. 

❖ Integration with pre-existing Infrastructure: Leveraging the extensive coverage 

provided by the existing camera networks or satellite images, as well as keeping 

up the performance and reliability are important in the seamless integration. 

❖ Multi-class weather:  Recognising weather types is a complex task that requires 

developing algorithms which can classify weather images such as rainy ,cloudy, 

foggy, and sunny among others. 

❖ Efficiency and scale: Scale as well as efficiency matter most since the system deals 

with huge amount of image data where performance in terms of scalability and 

computational efficiency has become paramount. It is therefore important that 

algorithms be optimised for speed and resourceful use. 

 

1.4 HYPOTHESIS 

If the multiple non-linear layer of deep learning neural network approaches a limit or 

infinity function, then it is equal to hypothesize that they can approach the limit of the 

residual function, after going through this hypothesis, what comes to the mind is What is 

a residual Function?  
Residual function also called residual mapping, is the difference between the input and 

output of the residual block. Thus, residual mapping is the value that is added to the input 

to estimate the final function of the block. Further explanation to address the hypothesis 

is detailed in section 3.3 and Figure 3.4 has more information on the hypothesis. 
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1.5 OVERALL AIMS AND OBJECTIVES 

The primary focus of this study is to devise methods of addressing the research question. 

By understanding, analysing, reducing, evaluating, and applying measures to overcome 

the constraints and challenges in the optimisation of hyperparameters for deep learning 

model. 

 

The aims and objectives of this study are. 

1) Enhancing Performance: The main aim is to increase the performance of deep 

learning by searching for the best values of several hyperparameters as well as 

getting better accuracy, loss functions reduction and overall model quality. 

2) Training time reduction: The goal of this work is to reduce the training time for deep 

learning models by selecting efficient hyperparameter configurations. Which will 

result in higher productivity as well as speed up experimentation time. 

3) Improving generalisation: deep learning can help with challenges of overfitting and 

underfitting where they do not generalize well to unseen data. The optimisation of 

the hyperparameters would help improve generalisation, thereby allowing  the 

models to perform well on both training and testing datasets, by reducing the time 

and efforts required for training 

4) Random search optimisation: Using techniques such as random search 

optimisation would help to reduce computational costs by efficiently exploring the 

hyperparameter space. This would help to tackle the key problems with 

hyperparameter optimisation in deep learning models which comprises of 

computational costs and overfitting. 

 

1.6 RESEARCH QUESTIONS 

Optimising the hyperparameters of deep neural networks to perform weather   

recognition from images has not been extensively done. To address the problems that 

deep learning neural works faces when optimising them, the following research 

questions were asked. 
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1) What is the impact of optimising deep learning hyperparameters on the overall 

performance and accuracy of the model? 

2) How does the selection of different optimisation algorithms for tuning 

hyperparameters affect the training time and convergence of deep learning 

models? 

3) How effectively should the optimization of hyperparameters in deep learning models 

be automated to save time and labor? 

4) What are the challenges linked with optimising hyperparameters for deep learning 

and how can they be prevented? 

 

1.7  CONTRIBUTION 

By optimising the hyperparameters of  deep learning, including adjustment of     

 hyperparameters such as,  momentum, dense layer number, batch size, and dropout   

 presents the following contributions 

1) The model’s superior performance is attributed to the adjustment of these 

hyperparameters. It is worth noting that the learning dynamics and generalisation 

abilities of the model are affected by each hyperparameter in a different way, thus, 

selecting appropriate values for momentum, learning rate, batch size, and dropout 

has yield accuracies through faster convergence speeds as well as avoidance of 

overfitting. 

2) The enhancement to convergent acceleration was implemented by adjusting the 

momentum hyperparameter to ensure a better control as well as search balance 

over hyper-parameters during the optimization phase; this has consequently 

reduced training time as well as led to quicker achievement of expected result. 

3) Tuning the batch size hyperparameter has helped to balance batches that are 

either too small or too large thereby enhancing generalisation.  In the study a good 

batch size was necessary to make the model generalize well on unseen data. 

4) The dropout  used during the training process helped to prevent the variance of 

the neurons in the model, making it more robust. Evidently, tuning a 

hyperparameter for .dropout was one way that contributed to finding how much 
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regularization should be applied such that the risk from overfitting is reduced, yet 

preserving the model’s accuracy. 

 

1.8 DISSERTATION  STRUCTURE 

The subsequent part of this dissertationis organised as follows; 

Chapter two: Describes the reviewed literature around deep learning together with 

previous work related to weather recognition involving various CNN and their 

architectures respectively. 

Chapter three: Gives details of the construction methods for the dataset. Also Illustrates 

the data creation and presents the deep learning neural network architecture and the 

methods used in this study. 

Chapter four: Entails the implementation and development of the ResNet algorithm and 

the design of the neural network to recognise weather conditions. It also involves the 

overview of hyperparameter optimisation.   

Chapter five: This chapter  describes the experiments performed, it outlines the overview 

of training and testing of the neural network. It also gives the details of the results obtained 

from the experiments and presents the outcomes in contrast to various deep learning 

techniques 

Chapter six: Draws conclusions and summary,then provide recommendations for future 

work. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 CHAPTER OVERVIEW 

This chapter presents the background and related work of the thesis. Section 2.1 presents 

an outline of past works on traditional methods of weather recognition models, 2.2 covers 

the machine learning methods of weather, 2.3 entails the deep learning methods of  

weather recognition , Section 2.4  discusses in depth of deep learning Neural Networks 

and in Section 2.5, a look at the how to reduce overfitting and the overview of CNN , while 

2.6 presents the deep residual networks  and 2.7 the chapter conclusion. 

 

2.2 TRADITIONAL METHODS OF WEATHER RECOGNITION   

In the past weather recognition was traditionally done by hand-crafted feature extraction. 

These methods often rely on handcrafted feature extraction that may not generalise well 

to new data, also, the traditional models are not capable of learning complex and abstract 

features that are possible with machine learning feature extraction methods. Several 

vehicle assistant driving systems (VADs) used weather recognition to improve road 

safety. For instance, the limit in speed of adverse weather condition can be set, automatic 

opening of the car wipers. Hand-crafted features were common to the work by. (Kurihata 

et al., 2005, Q. Li et al., 2014) and recommended rain drop as a powerful cue in detecting 

the existence of drizzly weather, also, developed a rain feature to sense rain drops on the 

windshield. 

(Roser et al., 2008) discovered several regions of interest (ROI) and developed different 

types of histogram features for rainy conditions. (Yan et al., 2009) utilised gradient 

amplitude histogram, Hue Saturation Value (HSV) color histogram as well as road 

information for the classification task among sunny, cloudy, and rainy categories. 

Moreover, many methods were proposed particularly for fog recognition, (Hautière et al., 

2006) used Koschmieders Law to detect the presence of fog and estimated the visibility 

distance. (Bronte et al., 2009) utilised many techniques, including a Sobel based sunny-

foggy detector, edge binarization, though line detection, vanishing point detection and 

road and sky segmentation. (Gallen et al., 2011) based his work for fog recognition by 
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discovering back scattered shroud from the car lights. (Pavlic et al., 2012; Pavlic, 2013) 

converted an image using the rate of recurrence and identified the existence of fog 

through training different scaled and oriented Gabor filters in the power spectrum. 

However, the above-mentioned approaches have shown good performance, though, 

were usually limited to the in-vehicle standpoint and cannot be applied to a broader range 

of applications. 

In recent times, several research have been devoted to weather recognition from common 

outdoor images. (Shen et al., 2009) proposed a photometric stereo-based approach to 

estimate weather condition of a given site. (Zhao et al., 2011) pointed out that pixel-wise 

intensities of dynamic weather conditions (rainy, snowy, etcetera.) changes over time 

while static weather conditions (sunny, foggy, etcetera.) almost stays unchanged. They 

suggested a two stage classification scheme which first distinguishes between the two 

conditions and then utilises several spatio-temporal and chromatic features to further 

estimate the weather category. (Song et al., 2014) extracted numerous global features to 

be classified, such as, edge gradient energy, saturation, contrast, power spectral slope, 

and noise. (Li et al., 2014) similarly utilised several features in Song et al., work and built 

a decision tree, according to the distance between features. Except for regular global 

features, (Lu et al., 2014) suggested several cues as well as shadow and sky descriptor 

for two-class weather recognition and reflection. (Zhang et al., 2015, Zhang et al., 2016) 

proposed the sunny feature, rainy, snowy, and haze features independently for each 

weather class as well as two global features. Furthermore, a multiple kernel learning 

approach is proposed in (Zhang et al., 2015) work to fuse these features. (Derpanis et al., 

2012) formulated spatial appearance and temporal dynamics to investigate audiovisual 

clip which could recognise several weather types.  

The ability to generalise on a new dataset has made it complex for important features to 

be extracted from the images. For this reason, (Lu et al., 2014) proposed a two-class 

weather classifier which classified images based on five features (Sky, Haze, Contrast, 

Reflection and Shadow). Their work was extended by the authors, by contacting CNN 

features in the feature vector. (Zhang & Ma, 2015) relied on manual feature identification 

and extraction for the improvement of their weather classifier. The authors used global 
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and local features, to represent the images. In their work, local features represent certain 

characteristics of weather conditions, this may not be present in images depicting a 

different kind of weather.  

 

2.3 MACHINE LEARNING MODELS  

Machine learning is a type of artificial intelligence (AI)  which centers  on using data and 

algorithms to mimic the way  human learns, by gradually improving the accuracy rate. 

(Roser & Moosmann, 2008) proposed a model to classify weather conditions using a 

Support Vector Machine (SVM) trained on single color images. Though, the model was 

limited to recognising three weather conditions, light, heavy rain, and clear weather. (Chu 

et al., 2017) employed a random forest classifier to classify weather conditions using 

tagged images of weather conditions, like, (sunny, foggy, and cloudy). Finally, (Zhang et 

al., 2016) formulated a method to classify weather conditions based on a general 

framework that aims to extract multiple features such as, sky, rain, snowflakes, shadow, 

dark channel, saturation, and contrast relying on SVM and k-nearest neighbors. Yet, the 

suggested models were rather limited to a specific weather classification.   

In a study that was published, (Lisha et al., 2018) first proposed the Hyperband  method 

of hyperparameter optimisation. According to the authors study, hyperparameter 

optimisation is a non-stochastic, finite-armed bandit problem where a given resource, 

such as features, data samples, or iterations is distributed among randomly selected 

configurations. Hyperparameters refer to the adjustments made to machine 

learning models' parameters that are not learnable during the training process. 

The process of fine-tuning hyperparameters to improve the performance is known as 

hyperparameter optimisation. To get the best performance out of a machine learning 

model, hyperparameter optimisation is essential. A manual process of trial and error is 

frequently used in hyperparameter optimisation, where the developer tries out 

different configurations and develops new ones based on experience and what has been 

observed. hyperparameter optimisation has attempted to automate the process from 

manual  hyperparameter optimisation to automatic. The primary motivation for automated 
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hyperparameter optimisation is to save the developers time because the manual process 

is very labour intensive. Enhancing performance is another reason for automated 

hyperparameter optimisation. some studies have demonstrated that 

hyperparameter optimisation mostly selects  better settings than when done manually. 

(Melis et al., 2017)  

 

2.4 DEEP LEARNING MODELS  

Deep learning is a type of machine learning that is based on artificial neural networks 

(ANN). It can learn complex patterns and connections within a given dataset. DNN 

consist of three layers of neural network, which includes input, hidden, and output layer.  

The input data is fed into the input layer, the output layer displays the output data. While 

the hidden layer is accountable for performing all the calculations and every other hidden 

task.  Few approaches have been used in the computer vision field to do the weather 

recognition task from images. An advantage of deep learning algorithms is its ability to 

discover and learn good representations using feature learning. The general methods 

involve feature abstraction from images which can be used in image recognition 

algorithms (Bossu, Hautière & Tarel, 2011), or machine learning techniques. Deep 

learning architectures have become a hopeful tool as regards image classification and 

analysis, (Goodfellow et al., 2016), Figure 2.1 illustrates the three different layers of a 

typical DNN 

The research area of computer vision changed significantly over recent years, mostly due 

to the advances made around DNN (Krizhevsky A, Sutskever I, Hinton, 2012).  DNN was 

employed as an effective machine in an artificial neural network for resolving complicated 

glitches (Bengio, 2009). This network allows automatic feature extraction from raw data, 

known as feature learning. Deep neural networks can rebuild the original raw data set, 

learn features with neural networks (NN) instead of selecting features manually that was 

done traditionally (X. Wang and Q, 2004).  

 The computer vision techniques that rely on the DNN prototypes, particularly, CNN 

models have been seen as a promising tool in recognition task by (LeCun et al., 2015). 

https://en.wikipedia.org/wiki/Feature_learning
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Many applications based on categorization, segmentation, and localization of pixels from 

images has turn out to be a general method based on the different components of an 

urban scene according to (Chaurasia & Culurciello, 2017;  Li et al., 2017; Yang et al., 

2018; Zhou et al., 2017). Also, several models have been implemented to classify weather 

from the extracted features based on a convolutional building block of deep learning 

models. A CNN model combined with sparse decomposition is trained to classify weather 

conditions (Liu et al., 2017). Furthermore, a CNN that performs binary classification was 

trained to classify images as either cloudy or sunny (Elhoseiny et al., 2015; Lu et al., 

2017). Though, this model remains limited to the given binary classes of weather 

overlooking the complexity of the addressed issue. Based on the previous methods, 

(Guerra et al., 2018) proposed a framework relying on super-pixel masks. CNN and SVM 

classifiers to recognise three weather classes, rain, fog, and snow.  Whereas this model 

shows promising in recognising more weather classes, as it only views weather conditions 

as a single class, not considering the simultaneous occurrence of two or more classes in 

an image. To this end, to tackle the combination issues of the presence of many class of 

weather, (Zhao et al., 2019) implemented a CNN based-model that includes an attention-

wise-layer to enable the model to infer more than a class for a given time depending on 

the characteristics of the input image. However, this model shows multiple weather 

conditions and the presence  of other weather conditions(sunny, cloudy, foggy, rainy, and 

snowy), yet it overlooks the dynamics of visual conditions as regards time of the day that 

could influence weather recognition accuracy. 

 It is important to begin by examining the main properties characterising weather images, 

which makes it recognizable in images. These graphical effects produced by images 

seem complicated, the appearance is influenced by numerous dynamics, for example 

camera type, and the settings of the camera. In the image processing field, there are few 

works addressing weather recognition from images.  Image processing techniques were 

used by (Sudheer et al., 2000), according to their work, they measured drop sizes from 

an irrigation spray system, Images were captured by high-speed cameras. A rainy 

condition being dynamic, is categorised in a group of randomly dispersed drops of water, 

of various shapes and sizes with high velocities (Garg et al., 2004) the visibility of rain 

from images is determined by the droplet dispersal and speeds, the brightness of the 
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environment and background scenes are the camera’s essential factors, such as 

coverage time and field depth, which rises when the droplet is bigger in size and reduces 

with the illumination of the background scenes (Garg & Nayar, 2005). (Yan et al., 2009), 

employed another type of classifier to recognise images captured by the vision system in 

automobiles. They based their approach using a robust algorithm frequently used in 

pattern recognition called real AdaBoost, which distinguished between sunny, rainy, and 

cloudy weather conditions. Their dataset contained two thousand-five hundred images 

captured from video recorder in car systems showing cities, streets, or highways. The 

features examined were, saturation, brightness, hue, and the amplitude of gradient. In the 

domain of image processing there are various works that addressed rain recognition, 

(Bossu et al., 2011), the authors here, collected images by video cameras, in their work 

they recognised the existence of rain or snow in the images. According to the authors, 

they used a mixture model to isolate the foreground from the background for them to 

recognise active conditions such as rain from the foreground, potential drops of rain were 

also selected.  

(Chen et al., 2012) used support vector machine to categorise image features in overcast, 

sunny and cloudy. Their work involved the pre-processing phase which preceded the real 

classification. In which, the sky region was removed at the beginning of an image input, 

according to the work done by (Krizhevsky et al., 2012), two-classifier were used to 

recognise images from the sun and the cloud, earlier trained on the ImageNet dataset. 

The image processing method was used by (Sawant et al., 2013), to measure rainfall and 

the raindrop size. The authors employed the cameras for taking high-quality images which 

they applied several data conversion. The RGB images were converted to gray ones 

where threshold technique was applied to isolate the foreground from the background, 

they obtained two images. The revolution was targeted at envisaging drops of rain on the 

foreground, to recognise and compute its size. 

Few applications of deep learning have been found in the weather recognition field. A 

popular deep learning algorithm like convolutional neural networks (CNNs), was used by 

(Wang et al., 2016)  to envisage three-dimensional maps of snow concentration in satellite 

images. This approach was also employed by (Liu et al, 2016, Mahesh et al, 2018 & 

Kunkel et al, 2018), who employed convolutional neural networks to discriminate features 
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such as synoptic fronts. atmospheric rivers, and tropical cyclones. (Liu et al., 2014) 

presented a model based on a deep learning, the authors applied a deep neural network 

(DNN) in their work to process huge datasets of environmental records of almost 30 years. 

Lately, the LSTM and deep neural network was developed for precipitation now casting 

and implemented by (Shi et al., 2015). They trained it on the 2-D radar map time series, 

on various assessment metrics, their system outperformed the current state-of-the-art 

precipitation now casting.  

A multitask deep fully connected neural network was employed by (Iglesias et al., 2015) 

for forecasting temperature based on past data.  The authors proved that neural network 

method is more improved than linear and logistic regression and could possibly improve 

the performance of forecasting extreme heat waves. These studies showed that neural 

networks are a generative method and can be applied on various weather problems. A 

GoogleNet architecture was used to recognise four classes of weather such as sunny, 

rainstorm (Szegedy et al., 2015). 

In another  research done by (Krizhevsky et al.,2012), the researchers used convolutional 

neural networks for classifying images, with the help of the computing power required for 

training and general performance. The outcome of the work showed the capabilities of 

the classifier through an in- built feature extraction based on supervised learning, as an 

alternative to the manual feature extraction used in the other applications of machine 

learning. 

(Mohamed Elhoseiny, 2015) developed another network based on Krizhevsky’s work by 

using convolutional neural networks (CNNs). The researcher classified images between 

two likely groups. The two-class weather work done by Mohamed was further extended 

by (Lu et al., 2017), by adding convolutional neural network features used by (Elhoseiny). 

Also, (Zhu et al., 2017), explored the GoogleNet architecture implementation which has 

proven successful in image task classification, proposed by (Szegedy et al., 2015), the 

application of the CNNs had extra layers than its equals at the time it was proposed, a 

better result was achieved in the research done by (Zhu). 

Another framework called region selection and concurrency model (RSCM) was 

recommended by (Di Lin et al., 2017), regional cues were used to estimate the weather 
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condition. This study will be based on the pipeline used by Elhoseiny’s work to solve the 

weather recognition problem from images, since CNN architecture has a greater 

advantage in terms of accuracy in the image recognition task.  An Artificial neural 

networks having more than one hidden layer, is called a deep neural network (DNN) as 

can be seen in the image below. 

 

Figure 2.1: Deep neural network  (Source: Zixiang Ma, 2019) 

2.4.1 THE TAXONOMY OF SEVERAL TYPICAL WEATHER RECOGNITION  
          USING DEEP LEARNING APPROACHES 
 

 

Figure 2.2: the taxonomy of several typical weather recognition approaches 

DEEP LEARNING 
ARCHITECTURE

Supervised Learning

Convolutional Neural 
Network

Recurrent Neural Network

Long term-short Memory

Gated Recurrent Unit

Unsupervised Learning

Self Organizing map

Auto-encoders

Restricted Boltzmann machines

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FAn-example-of-a-deep-neural-network-architecture-the-input-layer-with-5-inputs-15_fig2_332561685&psig=AOvVaw1WEcVEGZSW3k35gmIZeQi1&ust=1594076113320000&source=images&cd=vfe&ved=2ahUKEwjvvY21mrfqAhWQw4UKHbAdD28Qr4kDegUIARCjAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FAn-example-of-a-deep-neural-network-architecture-the-input-layer-with-5-inputs-15_fig2_332561685&psig=AOvVaw1WEcVEGZSW3k35gmIZeQi1&ust=1594076113320000&source=images&cd=vfe&ved=2ahUKEwjvvY21mrfqAhWQw4UKHbAdD28Qr4kDegUIARCjAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FAn-example-of-a-deep-neural-network-architecture-the-input-layer-with-5-inputs-15_fig2_332561685&psig=AOvVaw1WEcVEGZSW3k35gmIZeQi1&ust=1594076113320000&source=images&cd=vfe&ved=2ahUKEwjvvY21mrfqAhWQw4UKHbAdD28Qr4kDegUIARCjAQ
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2.4.1.1 SUPERVISED OR DISCRIMINATIVE LEARNING 

 

Supervised learning technique is an approach for creating a machine by using  a 

computer algorithm to train it on input data that has been labelled for a particular output. 

The training of the model is done until it can detect the essential patterns and relationships 

between the input data and the output labels, thus, producing  accurate labelling results 

when presented with data it has never seen before. Supervised learning aims to make 

sense of data to have a background about it. Supervised learning architectures include, 

Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), long term- 

short memory(LTSM) and Gated recurrent unit (GRU) as seen in Figure 2.2 

 

2.4.1.2 CONVOLUTIONAL NEURAL NETWORKS (CNNs)  

CNNs is a family of Deep Neural Networks which are capable of  distinguishing and 

characterising specific points in images and are widely used for analysing  real images. Its  

application areas include image classification, computer vision and image analysis. CNN 

models consist of three types  of layers or building blocks: convolution, pooling, and fully 

connected layer. The first two layers, convolution, and pooling, performs extraction of 

features, while a fully connected layer helps in  mapping of filtered features  or extracted 

features into the final output. CNN depends mostly on the convolutional layer. CNNs are 

very suitable for image processing since the features can appear anywhere in the image. 

A feature extractor is easily used to  apply  each pixel region of the image. The processing of one 

layer in a CNN model is passed on to the next layer, which results in more complex features.  The 

training is done using parameters to reduce the differences between the real and predicted 

outcome by employing output algorithms such as gradient descent. With respect to image 

processing, using deep learning methods, the convolutional neural network is one of the 

popular approach among other approaches (Goodfellow et al., 2016). According to 

(Elhoseiny et al., 2015), convolutional neural networks (CNNs) have been able to classify 

weather in images as cloudy or sunny weather.  

(Kamavisdar et al., 2013). However, the task of weather recognition from images comes 

with a level of difficulty  for  an automated system.  Since understanding image 
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characteristics from pixel value is insignificant due to several changes the image could be 

exposed to. 

 

2.4.1.3 RECURRENT NEURAL NETWORK (RNN) 

Recurrent Neural Network (RNN) is another famous neural network, that uses time-series 

data and put the output from the previous phase as input to the current phase (Dupond 

S. A,2019). Like CNN, recurrent networks usually learn from the training inputs, and  they 

standout due to their “MEMORY”, that enables them to effect current input and output 

through from the previous input. Different from typical DNN, which assumes that input 

and output does not depend on one another, the output of RNN is dependent on previous 

elements within a sequence. Though, a typical recurrent network have a vanishing 

gradient problem, which makes learning from a long data sequence challenging. Long 

short-term memory (LSTM) is a common form of RNN architecture. An illustration of RNN 

can be seen in Figure 2.4 

 

2.4.1.4 AUTOENCODERS  

Autoencoder is a common unsupervised learning technique in which neural networks are 

used for learning representations. Usually, autoencoders  work very well with high 

dimensional data, and the  reduction in  dimension describes how a set of data is 

represented.  

Autoencoder is made up of three parts, which includes, Encoder, code, and decoder. The 

encoder flattens the input and generates the code, which the decoder then uses to 

reconstruct the input. Autoencoders are mostly used to learn generative data models. 

Autoencoders are broadly used in many unsupervised learning tasks, such as, feature 

extraction and generative modelling. 
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Figure 2.3: A demonstration of deep learning-based, auto encoder algorithm. (Source: 

Standford.edu) 

An auto-encoder deep learning-based algorithm with three layers as depicted in 

Figure.1.4. Above, illustrates that Layer L1 is the input layer, L2 the hidden, and L3 the 

output layer, is used to represent the information 𝑥 in layer L1, so that the output 𝑥̂ in L3 

can approximate the raw data𝑥. For each layer, an auto-encoder is used to train the 

features in the layer, then, the layers are combined. Particularly, in each layer of the 

training process, the vector input must pass via three layers, the hidden layer vectors, L2, 

is taken to be the representations of the input vectors and is used to rebuild the input 

vectors. The loss function of auto-encoder is shown as. 

J(W,b) =[
1

𝑚
∑ (

1

2
∥ ℎ𝑤, 𝑏(𝑥(𝑖)) − 𝑥(𝑖) ∥2)

𝑚

𝑖=1
]                                                                        (2.1) 

Here,  𝑚  is the number of samples for training, the auto-encoder objective is to minimise 

equation1.4 to ensure that the outputℎ𝑤, 𝑏(𝑥(𝑖)) can estimate the raw data 𝑥(𝑖) as much as 

possible. 

 

 

 

 

 

 

 

 

https://www.google.com/url?sa=i&url=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Funsupervised%2FAutoencoders%2F&psig=AOvVaw1bKKKqfJblpVEHNAiG1oWq&ust=1594070147542000&source=images&cd=vfe&ved=0CHcQr4kDahcKEwjI-OCuhLfqAhUAAAAAHQAAAAAQAg
https://www.google.com/url?sa=i&url=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Funsupervised%2FAutoencoders%2F&psig=AOvVaw1bKKKqfJblpVEHNAiG1oWq&ust=1594070147542000&source=images&cd=vfe&ved=0CHcQr4kDahcKEwjI-OCuhLfqAhUAAAAAHQAAAAAQAg
https://www.google.com/url?sa=i&url=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Funsupervised%2FAutoencoders%2F&psig=AOvVaw1bKKKqfJblpVEHNAiG1oWq&ust=1594070147542000&source=images&cd=vfe&ved=0CHcQr4kDahcKEwjI-OCuhLfqAhUAAAAAHQAAAAAQAg
https://www.google.com/url?sa=i&url=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Funsupervised%2FAutoencoders%2F&psig=AOvVaw1bKKKqfJblpVEHNAiG1oWq&ust=1594070147542000&source=images&cd=vfe&ved=0CHcQr4kDahcKEwjI-OCuhLfqAhUAAAAAHQAAAAAQAg
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Table 2.1 Typical weather recognition approaches with their strengths and weaknesses 

APPROACH              STRENGHTS                                                                  WEAKNESSES 

                                                                                     CNN              Effective for image processing                       Highly computational  

                      high in accuracy rate                                      Struggles with small dataset. 

                      uses automated feature extraction. 

                      handles large datasets                                                 

 

RNN              Suitable for time series data                           Gradients vanishing problems. 

                      used with convolutional layers to                    Training is a tough task 

                      extend the pixel region 

         

AUTOEN-      Earn features automatically                           Computationally expensive 

CODERS       from the input data. 

                      capable of learning complex                           Prone to overfitting 

                      and abstract features                                         

 

 

2.5 CNN ARCHITECTURE 

 

The basic parts of a CNN design are as follows: 

A convolutional layer which separates and recognises the different points of the image for 

feature extraction, a pooling layer which is used to reduce the dimension of the input, and 

a fully connected layer which uses the output from the convolutional layer and recognises 

the class to which the image belongs. Section 2.4.2 explains the basic parts of a CNN 

architecture in more detail. Figure 2.3 shows an example of a CNN classification pipeline  

(Yosinski et al., 2014). When the layers increase in number, the network becomes more 

specialised in recognising features which is theoretical and interrelated to the actual target 

task (Clune et al., 2014). 

Nowadays, convolutional neural networks have displayed great performance in a range 

of computer vision tasks, such as image classification (Krizhevsky., 2012) object detection 
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(Ren et al., 2015), semantic segmentation (Gkioxari et al., 2017), etcetera. Many 

exceptional architectures of CNNs are proposed as well as AlexNet (Krizhevsky et al., 

2012) used a convolutional neural network (CNN) recently for image classification to 

implement a distinctive architecture of CNNs for image classification. The authors’ 

suggestion pointed out the abilities of an image classifier with an in-built feature extraction 

based on supervised learning, rather than manually extracting features as previously used 

in other machine learning applications. 

 (Simonyan & Zisserman, 2014) employed VGGNet and ResNet (He and Zhang, 2016),  

which outperformed the conventional methods with a large gap. Motivated by the great 

success of CNNs, a few works attempted to apply CNNs for weather recognition task. 

(Elhoseiny et al., 2015) fine-tuned AlexNet directly (Krizhevsky, 2012) in a two-class 

weather classification dataset image. 

 

Figure 2.4: The illustration of CNN and RNN approach for multi-label weather recognition. 
(Source: Bin Zhao, 2019) 
 
Here, CNN was used for extracting the features from the images and the convolutional 

LSTM was used to predict weather class. At every stage, the channel wise attention model 

was utilised for recalibration of the feature responses.  

In the weather recognition domain, convolutional neural networks were employed by 

(Elhoseiny et al., 2015) and (Ziqi et al., 2016).  They produced a model built on Krizhevsky 

et al work.  For categorising images between two possible classes. (Lu et al., 2017) 

extended their work of two-class weather recognition by adding CNN features used by 

Elhoseiny. Likewise, (Zhu et al., 2016) discovered an implementation that has proven 

successful for the task of image classification. The architecture known as GoogLeNet, 

https://arxiv.org/abs/1904.10709
https://www.groundai.com/project/a-cnn-rnn-architecture-for-multi-label-weather-recognition/
https://www.groundai.com/project/a-cnn-rnn-architecture-for-multi-label-weather-recognition/
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proposed in (Szegedy eta l., 2015). Thus, CNNs have additional layers than its 

contemporaries as at the time of its proposal, it achieved better results in the experiments 

performed by (Ziqiet al., 2016).  (Di Lin et al., 2017) recommended a deep learning 

framework named region selection and concurrency model (RSCM) which used regional 

cues to predict the weather condition.  

(Lu et al., 2014), then achieved a better result. (Lu et al., 2017) joined the hand-crafted 

weather features with CNNs extracted features, and further improved the classification 

performance. Whereas as deliberated in (Lu et al., 2017), there was no sort of limitations 

in the weather classes. Many weather conditions may appear concurrently. Hence, the 

above approaches suffered from loss of information when treated as a single class 

recognition problem. (Li et al., 2017). 

                      

Figure 2.5: The pipeline of CNN Image classification. (Source: Kaggle) 

 
2.5.1 THE CONVOLUTIONAL LAYER 

For a convolutional neural network, its main building block is the Convolutional Layer. 

The layer parameter is a learnable filter, and the three-dimensional matrix in 

mathematical values, with respect to size.  Equation 2.2 shows the output of the 𝑖𝑡ℎ 

filter, denoted by  𝑦𝑖
𝑙, for a convolutional layer 𝑙 with a total number of C filters. 

                              𝑦𝑖
𝑙 = 𝛿 (∑ 𝑓𝑖

𝑖, 𝑗
𝐶𝑙−1

𝑗=1
∗ 𝑦𝑖

𝑙−1 + 𝑏𝑙)                                                           (2.2) 

𝑏𝑙 the bias vector of layer 𝑙, 𝑓𝑖
𝑖, 𝑗  the filters of the conv layer 𝑙 connected to the 𝑗𝑡ℎ feature 

map of layer 𝑙 − 1, and 𝛿 is the activation function. The parameters 𝑓𝑖
𝑖, 𝑗  refined by the 

network are updated by back-propagation. That way, the network learns several forms of 

filter specialised in resolving the task. 

https://www.kaggle.com/code/abhinand05/in-depth-guide-to-convolutional-neural-networks/notebook
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.kaggle.com%2Fabhinand05%2Fin-depth-guide-to-convolutional-neural-networks&psig=AOvVaw3mhm6vi7OLrdy_x22xvFfd&ust=1594753677135000&source=images&cd=vfe&ved=2ahUKEwjK4NrE9srqAhVR-YUKHXqFBzgQr4kDegUIARCvAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.kaggle.com%2Fabhinand05%2Fin-depth-guide-to-convolutional-neural-networks&psig=AOvVaw3mhm6vi7OLrdy_x22xvFfd&ust=1594753677135000&source=images&cd=vfe&ved=2ahUKEwjK4NrE9srqAhVR-YUKHXqFBzgQr4kDegUIARCvAQ
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2.5.2 THE POOLING LAYER 

This layer is next to the convolutional layer, its major function is to reduce the three- 

dimensional input size.  Usually, this layer consists of a filter which slides, through a fixed 

value of strides, through the input layer to produce the output (Goodfellow et al., 2016). 

The filter can perform different functions, the common ones include. 

➢ The max pooling: This uses the maximum values of the input within the filter size. 

It can also return the maximum input within a rectangular area. 

➢ The average Pooling: This takes the average values of the input contained in the 

filter sizes. 

 

2.5.3 THE FULLY CONNECTED LAYER 

Generally, CNN has a minimum of one Fully Connected (FC) layer, usually positioned 

before the network output, its main purpose is for parameter learning. To assign the input 

layer to the corresponding output, its output 𝑦𝑙  for the FC layer 𝑙  is presented in the 

equation below. 

                                   𝑦1 = 𝑠(𝑦𝑙−1 ∗ 𝑊𝑙 + 𝑏𝑙)                                                                        (2.3)

 

𝑤𝑙 is the weight, while𝑏𝑙 is the bias vector of layer 𝑙 , and 𝑠  is the activation function. 

Different from the convolutional layers, fully connected layers (FC) does not support 

parameter sharing. As a result, there is a considerable rise in the parameters to be learnt 

in a convolutional neural network (CNN). 

 

2.5.4 ACTIVATION FUNCTION 

 For non-linearity to be introduced into the network, so it could help in learning additional 

complex functions, activation function is used. Several functions for activation are 

available, though, the common and general one such as, the ReLU, is seen in Figure 2.6 

it is a function which the threshold of the activation is set to zero (0). This is explained in 

the equation below. While the softmax activation for the classifier is displayed in Figure 

2.7. 

δ(z)= max(0,z)                                                                                                                                        (2.4) 
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The Relu activation function can be seen from Figure 2.6. The description is seen from 

equation 2.5, 𝑧 is a vector of the input to the output layer, and 𝑗 = 1,,𝑘 indexes the output 

neurons, with 𝑘  number of classes. This value associated to each output neuron, 

equivalent to the probability that the input signal belongs to the class representing it, and 

this is limited between 0 and 1. Therefore, the sum of all the output value is limited to 1.  

𝑎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
𝑘=1

                                                                                                                                   (2.5) 

 

 

            

Figure 2.6: The activation Function of ReLu    Figure 2.7: The Softmax activation     

                                                                          Function(Source: Hossam Sultan, 2019) 

 

2.6 TECHNIQUES FOR REDUCING OVERFITTING  

For networks that contain many hidden layers such as DNNs, Figure 2.8 shows an 

example of deep neural network overfitting is a huge problem. Overfitting occurs when 

the model fits too well as compared to the training dataset. Thus, it becomes difficult for 

the model to generalise to new samples that were not in the training dataset. Example of 

an overfitting network is demonstrated in Figure 2.9 

To deal with this problem, various methods have been proposed such as regularization, 

which is the method that presents the loss function penalty, regularization helps to limit 

the growth of attaining a steadier model.  

L2  regularization: This is the most generally used regularization method. It adds squared 

mean. This implementation can be seen in equation 2.6. 

𝐿 = 𝐿 +  𝜆 ∗ Ѳ2                                                                                                                                                                                                (2.6)  

https://www.researchgate.net/figure/ReLU-activation-function_fig7_333411007
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Here,Ѳ2, the L2 mean of the parameter, and λ as the regularization influence on the input 

that decides the input of term 𝑊2 in the cost function. 

 

Figure 2.8: A deep neural network                   Figure 2.9: Example of overfitting                   

(Source: Tena Belinic, 2018) 

 

❖ Dropout: At every iteration, it randomly selects some nodes and remove them with 

all their incoming and outgoing connections as seen in the diagram below. Since, 

the unit and the connections are dropped randomly, given the possibility of model, 

while processing to inhibit it from adjusting so much.  Hence encourages every 

unseen unit to produce good features with no dependence on others to amend its 

errors (Srivastava et al., 2014). 

 

Figure 2.10: A neural network before dropout  Figure 2.11: ANN after applying dropout.    

(Source: Zong-Sheng Wang, 2020) 

❖ Batch Normalization: This method regularizes the model and reduces the necessity 

in dropout (Srivastava et al., 2014). To function, there is need for the mini-batch 

size. Thus, inappropriate for Stochastic Gradient Descent algorithm. Equation 2.7 

describes the mathematical expression of batch normalization approach. 

µ𝐵  =  
1

𝑁
 ∗ ∑ 𝑥

𝑁

𝑖−1

                                                                                                                       (2.7) 

https://krakensystems.co/blog/2018/dive-in-deep-learning
https://www.researchgate.net/figure/Dropout-Strategy-a-A-standard-neural-network-b-Applying-dropout-to-the-neural_fig3_340700034
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❖ Data Augmentation: It is the easiest method to reduce overfitting. This method is 

used for increasing the size of the training dataset by transforming the images such 

ac, rotating, flipping, scaling, and shifting. All transformations done using this 

technique is known as data augmentation. Which generally provides a big increase 

for improving the accuracy of the model. 

❖ Early stopping: training a neural network is usually faced with the problem of number 

of epochs train. The use of large epochs possibly leads to overfitting of the training 

dataset, while very little epochs could produce  an underfit model. Early stopping is 

a technique that enables you to indicate a randomly huge number of training epochs 

Then stops the training as soon as the model performance stops to improve on the 

validation set 
 

2.7 THE DIFFERENT VARIANTS OF  CNN APPROACHES  

Convolutional neural networks (CNN) are now widely used in resolving computer vision 

glitches at present. Since it emerged as the frontrunner architecture of the previous year’s 

ImageNet Large Scale Visual Recognition Challenges (ILSVRCs), (Deng et al., 2009). 

The challenge involves evaluation of processes to detect objects, and image classification 

including the recognition of a thousand classes of image. Firstly, Alex-net won the CNN 

ILSVRCs competition. Hence, making it more widespread architecture (Krizhevsky et al., 

2012) in 2012.  

2.7.1 LENET  

LeNet is possibly the least complicated engineering model. Which consist of two 

convolutional layers and three fully connected layers . The additional sampling layer is the 

average pooling layer which  trains loads as weights. The model uses about 60,000 

parameters for training. This model has developed into the typical method of stacking a 

convolutional layer with activation function, and the pooling layer is implemented by 

finalising it  with at least one fully connected layer. 
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Figure 2.12: LeNet architecture (Source:  Gerard Pons, 2017) 

2.7.2 ALEXNET 

The AlexNet architecture is made of a total of eight layers, with  five convolutional layers  and three  

fully connected layers. A few more layers are stacked on the LeNet model to form AlexNet 

All the layers including the dropouts’ ones are displayed in Figure 2.10, uses ReLU as 

activation function. Also, it uses SoftMax to classify images. In CNN structure, the GPU 

solves the calculation problem. AlexNet by (Krizhevsky et al., 2012),has become the 

building block of utilizing DNN approach. Fig. 2.13 shows AlexNet architecture. Thus, 

obtaining an error rate of 15.6%, this error rate is needed for classifying any image within 

the closest five classes (top 5).  

 

 

Figure 2.13: Alex-net architecture. (Source: Huafeng Wang, 2015) 

 

In the subsequent years. AlexNet was enhanced by the authors of (Zeiler & Fergus,2014) 

changing the factors, and achieved o 11.2% top-5 error rate in 2014, 

https://www.researchgate.net/profile/Gerard-Pons-3?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoiX2RpcmVjdCJ9fQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FAlexNet-Architecture-To-be-noted-is-copied-2_fig1_300412100&psig=AOvVaw00AmIoIluKti95PcXxNx2H&ust=1594244843908000&source=images&cd=vfe&ved=2ahUKEwi_n4_-jrzqAhVD0RoKHS8oCz8Qr4kDegQIARAo
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2.7.3 VGG-16 

The model VGG-16 was developed by Visual Geometry Group (VGG) it is the traditionally 

used convolutional neural network design. Which relies on the study of how to build a 

perceptive model.  VGG-16  uses a small 3 x 3 channels. The model is made up of thirteen 

convolutional and three fully connected layers and uses the  ReLu function like  AlexNet . 

Additional layers are stacked on AlexNet to form the VGG model. It contains about 138 

million parameters and uses storage space of  about 500MB . The developers  also intend 

to build a deeper variation, VGG-19. 

 
 VGGNet (Simonyan & Zisserman, 2014) although, this did not lead to winning the 

competition, but indicated that, it can decrease the number of factors, needed to increase 

the depth of the network at the same time. Hence, it attained an excellent performance 

more than the Alex-net architecture by 7.3%. The VGGNet architecture contained more 

convolutional layers than AlexNet, it has exactly thirteen convolutional layers, which were 

small as regards filter dimensions, hence, causes a decrease in parameters, and 

however, they were capable of learning new high-level features than earlier CNNs. A 

different approach that was important, won as the champion of the ImageNet challenge 

2014 with an error rate of 6.7%, which is GoogleNet (Szegedy et al., 2015). 

 

2.7.4 GOOGLENET 

After VGG-16 was developed, Google gave rise to GoogleNet, which was another 

champion of ILSVRC-2014 with a higher accuracy rate than its predecessors. Different 

from the previous networks, GoogleNet has a different architecture. Firstly, other networks 

such as VGG-16 have convolutional layers stacked one over the other but, GoogleNet 

organised the convolutional and pooling layers in a similar way to extract features using 

different sizes of kernel. GoogleNet is famous for its use of the Inception module, which 

consists of multiple similar convolutional layers with different filter sizes, and a pooling 

layer. The design allows the network to learn features at multiple scales and resolutions, 

while keeping the computational cost manageable. GoogleNet was built based on the 

ideas of previous convolutional neural networks, such as LeNet, which was one of the first 
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successful applications of deep learning in computer vision. However, GoogleNet is much 

deeper and more complex than LeNet 

 The aim was to increase the depth of the network and to achieve a higher performance 

rate as compared to previous winners of the ImageNet classification challenge.  

 

2.7.5 RESNET-50  

Based on previous CNN, the Resnet-50 was faced with the problem of gradually expanding 

layers and thus, led to better performances. Though, with the  expansion of the network, 

accuracy became saturated  and later on reduced rapidly. Microsoft Researchers tried to 

fix the issue with ResNet-50 by using deep residual learning framework, by using residual 

blocks and identity blocks . The idea is to add a shot cut or a skip connection by allowing 

a swift flow of information from one layer to another. 

 

2.8 CHAPTER CONCLUSION  
 
So far, the chapter explained the related details about the traditional method of weather 

recognition, and the machine learning models was also presented. Then various 

taxonomy of deep learning together with their strengths and weaknesses models were 

explored. Various work reviewed were very useful for an enriched understanding of the 

challenges the target task involves and helped in making an informed decision about the 

approach suitable for the task at hand. Based on the literature reviewed on CNN, they 

have shown to be very successful in image recognition particularly, deeper architectures 

such as Resnet. 
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CHAPTER 3 

RESEARCH DESIGN AND METHODOLOGY 

3.1 CHAPTER OVERVIEW 

 

This section covers the details of the dataset used such as the  data collection and design 

the details about the preprocessed  and augmented images are also presented. To 

implement augmentation in the training phase, the Augmentor library is used, 

augmentation is done on the four classes of images for every batch. An introduction to 

ResNet and the hyperparameters for training and optimisation methods are also given in 

detail. 

3.2 DATA DESIGN 

To achieve the aim of training a network which can recognise different weather conditions, 

thus, it is very necessary to make available the images for training, which should meet 

specific requirements as follows. 

❖ Different Weather Conditions: In every region, the weather changes. It is 

essential that the images contain various weather phenomena noticeable at 

various  times. This will ensure that the network learns the difference in the various 

weather images. 

❖ High-Quality Images: High-Quality Images: It involves high-resolution images that 

have good clarity as well as detail. This is because low-quality images might 

introduce noise hence complicating learning for the network. 

❖ Variety of Scenes: The dataset comprises of variety of images taken on various 

scenic including cities, countryside and hillsides thus allowing the network to easily 

adjust to different environments 

❖ .Annotated Images: The images must be labeled according to the different 

weather conditions . This annotated data is very important in supervised learning 

where the network is trained on examples that are already marked. 

❖ Data Augmentation: Data augmentation techniques that has been employed 

include the following; rotating, scaling, flipping; adding noise etc.  to increase the 

generated training data size hence increasing network capacity for learning. 
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According to these criteria, a solid dataset has been prepared which will allow effective 

training and recognition of various weather patterns present in the images. 

3.2.1 DATA COLLECTION 

A dataset of small amount of weather images from various scenes named “Multi-Weather 

Dataset2” is used in weather recognition in this study. Table 3.1 shows the details of this 

dataset. The data set comprises of 5000 images in total. The images have totally different 

backgrounds and cover majority of the adverse weather grouped into four classes: Rainy 

days, sunny days, foggy days, and cloudy days. The images in each class are grouped 

as the training and validation set, using four (4,000) thousand image data set for training 

and (1,000) thousand for validation and testing. The 80/20 rule principle was applied by 

allocating 80% of the data for training and 20% for validation/testing. 

The dataset is distributed in the following format ; 

❖ Training set: 80% 

❖ Validation set: 10% 

❖ Testing set: 10% 

Table 3.1 details of multi-weather dataset2 

CATEGORY                         TRAINING                                        TESTING 

                                                                                                   Sunny                                      1500                                                      270 

Rainy                                       1000                                                      250 

Cloudy                                     1000                                                      249 

Foggy                                      1500                                                      231 

Total                                        4000                                                     1000 
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Figure 3.1: images per class 

 

From the image data, the quantity of training images is more than the testing 

set with a huge amount. Most of the training images make up about 80% of the 

data.  In figure 3.1 some examples of the training images are higher than the 

testing one as shown figure 3.1 above. 

Deep learning methods typically need huge amounts of datasets to prevent overfitting 

of the network model. As a result of this condition, data augmentation method of some 

sort was used for the image training in “dataset2” in this study. To begin with, the image 

block with size (224×224) intercepted unevenly from the original image. Also, the image 

is cropped, rotated, flipped, translated, and enlarged. Lastly, different kinds of images 

are generated, as shown in Figure 3.2. Particularly, Image Data Generator function 

embedded in the Keras API generated the weather images, followed by stochastic 

conversion for each of the training epochs, parameters such as rotation range, width 

shift, and shear range were set . This method is adopted for the model not to have two 

matching images, since it is important for the prevention of overfitting, therefore, 

enhancing the generalisation, as well as the robustness of the network. To validate the 

effectiveness of hyperparameter optimisation for the weather recognition task, a 

comparison experimentation without hyperparameter optimisation or with 

hyperparameter optimisation  is demonstrated in chapter 5. 
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Figure 3.2: The four samples of the Dataset. (a) Sunny. (b) Rainy. (c) Cloudy. (d) Foggy. 

 

3.2.2 IMAGE PREPROCESSING  

  In this section, the preprocessing techniques used for the input images are described.  

The images used for the training phase were scaled, primarily the aspect ratio of the 

images were distorted and randomly cropped, which covers between 10%-90% of the 

misleading image, was taken. The cropped edges of the image was rescaled to size 224 

and the Color jitter was applied, such as random brightness, contrast and saturation of 

the images. Then, Color normalization was applied by deducting from each image the 

mean dimension, then calculated all through the entire set. Lastly, the images are 

horizontally flipped on 80% of the images chosen randomly. 

3.2.3 IMAGE SCALING  

The main limitation in building the model in this work was the necessity to resize the 

different images in the dataset to an equal dimension. The dimensions of the images was 

set to (256 x 256 pixels) therefore, the aspect ratio of the images was maintained, (in 

width and height). This research used the Augmentor library in keras python for the pre-

processing of the image as explained in section 3.1.1. The Augmentor library was used 

for analysis the images in the dataset directories, by resizing and saving to the required 

dimension, in a new directory to form the new dataset. Normally, pre-processing the 
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image is important to speeding up the training process, thus, improving image features 

by eliminating undesirable distortions. 

data augmentation technique is effectively used by adding new data points to the original 

image which is transformed by cropping and flipping the original image, as depicted in 

Figure 3.3. 

 

 

 

Figure 3.3: Data augmentation result. 

 

3.3 RESIDUAL NETWORKS  

In all the reviewed CNN architectures in Section 2.5, ResNet has shown to be the best in 

performance in the domain of image classification. The results of ResNet is attributed to 

the manner it is organised, which enabled it to attain a deep architecture of a lesser 

number of parameters (Zhang et al., 2015). ResNet  uses the concept of residual learning 

(Ren et al., 2015). These novelists suggested a deep residual learning background whose 

method is driven by the idea of the VGGNet (Simonyan & Zisserman, 2014).The 
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innovation in their model was the additional shortcut connections of each layer, depicted 

in Figure 3.4. The architecture allowed the layers to learn a residual mapping that is, 

properly representing the desired fundamental mapping between few fixed layers as seen 

in Figure 3.4. 

Here, 𝐻(𝑥), allows the fixed layers to fit into a different portion,𝐹(𝑥):=𝐻(𝑥) − 𝑥, this is 

written as 𝐻(𝑥)  :=  𝐹(𝑥) + 𝑥 . The latter formula can be realized by using shortcut 

connections to skip some other layers. 

 

Figure 3.4: A residual Unit (Source: Connor Shorten, 2019) 
 

The main idea of ResNet (Zhang et al., 2015) being the residual block, which addresses 

the vanishing gradient problem by introducing skip connections or shortcuts, allowing the 

network to learn residual mappings instead of directly learning the desired mappings. 

which is shown in Fig. 3.4 is a technique used to combine input and output by learning 

the difference between input and output. The middle layer can easily be optimised for 

deep neural networks, and the accuracy is improved due to the increased network depth. 

 

3.3.1 RESIDUAL NETWORK ARCHITECTURE  

The Resnet architecture has different units, known as residual units. Made up of blocks, 

which are simulated so many times, through the entire network. The depth of the 

architecture depends on the amount of reiteration of the blocks within a Resnet unit. 

Figure 3.5 depicts the basic architecture, the main foundation comprising of the Resnet 

units can be seen. They are composed of series of convolutional layers, typically made 

up of (3) x (3) filter.  Resnet has additional   layers, including, the Pooling layer, placed 

from the start of the design, the average layer is positioned lastly.  Both are used for 

https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4
https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4
https://towardsdatascience.com/introduction-to-resnets-c0a830a288a4
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sharing the size of their input  while the fully connected layer (FC) and the Softmax 

function is used for classification. 

This research has adopted the simplified model, ResNet-15 based on residual network 

50 (Resnet 50), inspired as per the little number of factors for training in comparison with 

the other variations. In Table 3.2 the structure of the architecture ResNet-15 is described. 

For this architecture, each ResNet unit is made up of two blocks. The blocks perform 

Identity mapping through their shortcut referred to as "Identity", while the one performing 

the convolution task is called "Studyion". 

 

Figure 3.5: A basic Resnet Representation. (Source: Akihiro FUJII, 2020) 
 
            Table 3.2 The Resnet structure 
 

MODULES            STRUCTURE          OUTPUT DIMENSION 
                                                                           
1                           Identity                          56x56x64 
                             Identity 
 
2                           Identity                           28x28x128 

 Studyion 
 

3                           Identity                          14x14x256 
 Studyion 

4                           Identity                           7X7X512 
 Studyion 
 

 
 
 

https://medium.com/analytics-vidhya/assemble-resnet-that-is-5-times-faster-with-the-same-accuracy-as-efficientnet-b6-autoaugment-c752f1835c38
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The designs are improved further in the subsequent work, (He et al., 2016). In which the 

authors only aimed for enhancing the performance, also understanding better the conduct 

of the network when trivial changes must be made.  

                       

(a) Original        (b) Full pre-activation 

Figure 3.6: Full Resnet pre-activation. (Source: JaIFaizy Shaikh, 2017) 

 

The main differences between ResNet – 50 and ResNet – 15 are as follows. 

 

Table 3.3 The differences between ResNet-50 and ResNet-15 

RENET-50 RESNET-15 

Adds the second non-linearity after the 

addition operation is done between 

the x and F(x). as seen in figure 3.4 

Uses Batch Normalization and ReLU 

activation for the input before  multiplying 

with the weight matrix .as seen in figure 3.6 

The addition operation output goes from 

ReLU activation, and it is then transferred to 

the next block as the input as seen in figure 

3.6 

 Removes the last non-linearity, hence, 

paves the path of the input to output by 

using identity connection. 

Performs the convolution together with 

Batch Normalization and ReLU activation 

Uses the second non-linearity as an 

identity mapping by performing the  

addition output operation between the 

identity mapping and the residual 

mapping,  then passes  it  to the next block 

for further processing 

  

https://www.analyticsvidhya.com/blog/2017/08/10-advanced-deep-learning-architectures-data-scientists/
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3.4 RESNET METHOD   

Here the first stage is to decide which CNN approach to use. A ResNet model is 

an enhanced version of CNN that minimizes distortion that happens in deeper and 

more complex networks by adding shortcuts between layers. bottleneck blocks are also 

utilized allow  a faster training of ResNet. Because of these factors. This research 

has decided to choose optimising ResNet to improve its accuracy. ResNet-50 has a conv 

layer size of (7×7), a max pooling layer size of (3×3), and series of residual modules. The 

residual modules has two simple modes, which are shown in Figure 3.6 (a)whose input 

and output are of the same dimension, for them to be connected. Figure 3.6(b), where the 

ConvBlock input and output are of different dimensions, for this reason, they cannot be 

joined in together, also, the purpose was to alter the dimension of the feature vector by 

the convolutional layer of size (1×1). Lastly, the classification and recognition of the 

weather from images are done through the fully connected layer and the Softmax 

classifier. 

Built based on ResNet-50, ResNet-15 is simplified and enhanced version. First, the size 

of the conv layer (7×7) and the max pooling layer with size (3×3) in ResNet-50 is reserved. 

Lastly, four Convolutional blocks (CB) of the first level in four group of residual module is 

reserved too, also, the stride parameter of the first group of the residual module changes 

from 1 to 2, while the other identity block (IB) are removed. At this point, the average 

pooling layer changes into a fully connected layer with 512 dimensions, while the dropout 

layer is then added after the fully connected layer. Lastly, the Softmax classifier remains 

unchanged. ResNet-15 architecture is shown in figure 3.5 the rectangular box and curved 

arrow in the figure represents the four groups of residual modules. Considering that, the 

number of parameters of the network model should be equivalent to the size of the 

dataset, in this study, the number of convolutional kernel is properly adjusted to reduce 

the number of parameters of the network model.  
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(a)   (b) 

 Figure 3.7: The two simple modes of residual module. (a) Identity block. (b)  

Convolutional block. (Source: Leandro Aparecido Passos Júnior, 2018) 

 

 

Figure 3.8: ResNet-15 Architecture. (Source: Sai Kumar Basaveswara, 2019) 

 

Below are the major benefits of ResNet over the earlier winners of ILSVRC, such as 

AlexNet and VGGNet, as measured in terms of the following. 

1.) ACCURACY: Due to its accuracy, it obtained the best performance ever achieved in 

ILSVRC. 

2.)  SPEED: training speed is highly accelerated with Resnet. 

3.) DEPTH OF NETWORK: Increases the network depth without additional parameters. 

Thus, enables the model to learn more complex and abstract features, without 

necessarily increasing the training dataset size respectively. 

4.)  VANISHING POINT: It reduces the influence caused by the vanishing gradient 

problem, which usually leads to saturation and the reduction in the accuracy, whenever 

the network increases in depth. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FBottleneck-Blocks-for-ResNet-50-left-identity-shortcut-right-projection-shortcut_fig1_324111792&psig=AOvVaw1tTX-zNk3f4hT0UvvXskLy&ust=1596747489016000&source=images&cd=vfe&ved=2ahUKEwjEuaaI-oTrAhWCwYUKHZ-BAykQr4kDegUIARCjAQ
https://www.google.com/url?sa=i&url=https%3A%2F%2Ftowardsdatascience.com%2Fcnn-architectures-a-deep-dive-a99441d18049&psig=AOvVaw00gIwj7LxUhGBstYqjUR43&ust=1599764290399000&source=images&cd=vfe&ved=2ahUKEwjwnabD4NzrAhULORQKHeGEBTEQr4kDegUIARDrAQ
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Figure 3.9: The flowchart of the proposed Resnet-15 method  

3.5 HYPERPARAMETER OPTIMISATION 

Hyperparameter optimisation is the process of finding the best combination of 

hyperparameters for a deep learning model to achieve optimal performance. 

Hyperparameters are parameters that are set before the learning process begins and 

influences the behavior and performance of the model. 

The ResNet-15 configurations were optimised in this research, by fine- tuning their 

hyperparameters to obtain the best architecture for classifying the dataset. 

Choosing the appropriate model hyperparameter values improves the accuracy of the 

network model. Instead of using the complete training set, this research used small 

batches of training data to compute the gradient and update the weight matrix 

in Stochastic Gradient Descent (SGD), which is a straightforward modification to the 
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standard gradient descent algorithm. This change makes update noisier, but it 

also enables the gradient to move one step further for each batch as opposed to one 

step for each epoch—which eventually speeds up convergence without 

compromising loss or recognition accuracy. When it comes to training deep 

neural networks, SGD is possibly the most significant optimiser for hyperparameter 

optimisation . SGD is also easy to implement. 

 ResNet-50, AlexNet, ResNet-18,GoogleNet,VGG16 and ResNet-15 were evaluated to 

determine the accuracy using the selected dataset. Next, the ResNet model was 

optimised using the random search  optimisation method  by using keras tuner library, 

with 40 epochs for the model. The next step involved training the ResNet model 

to optimise  the following hyperparameters.  

❖ Number of dense layers: This is the number of layers in the fully connected layer. 

❖ Dropout rate: This is a regularization technique that prevents the network from 

over-fitting,  during training, some neurons in the hidden layer are dropped at 

random. 

❖ Momentum: Used to speed up gradient descent algorithm, to achieve quicker 

convergence. 

❖ Learning rate: A crucial hyperparameter that controls the rate of the step in each 

iteration. It will take a while to converge if the learning rate is too low, and it may 

diverge if it is too high. 

❖ Batch size: the number of images processed at once, reduction in speed occurs 

when the mini-batch size is too large, and slow convergence occurs when it is 

too small. 

3.5.1 HYPERPARAMETER SETUP 

This research utilised a Resnet architecture implemented by keras library with python, 

and the hyperparameters and the ranges used for training the architecture are shown 

below. 

The configurations of hyperparameters ranges used for the optimisers are displayed in 

table 3.4 
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Table 3.4: Hyperparameter configuration  range 

Hyperparameters Ranges 

Number  of dense layers                                                   

Batch size 

Learning rate 

momentum 

Dropout 

Min:32,max:512,step:32 

16, 32, 64 

0.01, 0.001, 0.0001 

0.1, 0.9 

0.3-0.9 

 

 

3.6 CHAPTER CONCLUSION 

 

This chapter emphases the steps taken for the progress of the research experiment. The 

programming language suitable for this research work is explained and the python 

libraries and framework used is described. The data collection that meets some specific 

requirements was covered. 

The flowchart diagram of the methodology which shows the general flow for each step 

taken during the experiment was presented. The image preprocessing to help reduce 

inconsistencies in the dataset was presented, which helped to reduce computational time 

of the experiment. Finally, the training method  and the hyperparameter ranges were 

obtained. 
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CHAPTER 4 

SYSTEM DESIGN AND IMPLEMENTATION 

 

4.1 CHAPTER OVERVIEW 

This section describes in detail  the configuration and setup of experimental tools  used,  

and the choice of the framework for the proposed system and its related information. 

Python programming language is the best choice for this research work due to its 

flexibility, it is extendable and has a huge number of libraries. Section 4.2.1  explains the 

python libraries used . 

4.2 CONFIGURATION AND SETUP OF EXPERIMENTAL TOOLS  

   4.2.1    PYTHON LIBRARIES   

1) Augmentor library: To implement augmentation in the training phase, the 

Augmentor library is used, augmentation is done on the four classes of images for 

every batch. Images produced by augmentations are removed automatically by 

cropping, flipping, rotation, random erase and resizing the image.  

2) NumPy: Used for scientific computing, it worked effectively on multidimensional 

data arrays and   matrices. 

3) Matplotlib: the matplotlib’s pyplot API is used for creating the charts and graphs 

4) Keras tuner: A library called Keras Tuner was used to fine-tune the deep learning 

neural network hyperparameters, which helped in selecting the best values 

for the models’ implementation in keras TensorFlow. 

  4.2.2  SYSTEM CONFIGURATION 

❖ All experiments were done using the following system configurations. 

❖ Dell Core i5 

❖ 2.4GHz CPU  

❖ 8GB  memory (RAM) 

❖ Hard-disk size:  500GB 
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     4.3  FEATURE EXTRACTION AND SELECTION 

Choosing the appropriate features or point of interest from image related task is crucial 

for any effective computer vision problem. Machine learning becomes more accurate 

and efficient with the help of feature extraction. In this study, the feature extraction and 

selection was done through image preprocessing techniques to reduce unwanted data, 

enhance learning rate and improve model accuracy. The preprocessing technique was 

used to identify the features in the images, such as shape, or edges, then resize the 

images to 224x224, and color jitter such as erratic contrast, brightness, and saturation 

was added. Then, each image's mean dimension was subtracted to apply color 

normalization. 

      4.4  MODEL DESIGN AND SELECTION 

     The design of the model was implemented by keras library with python, and the          

     parameters  used for training the architecture are shown below. 

❖ Regularization method: L2 regularization 

L2 regularization was applied during the training phase of the network, which 

helped to generalise the model better by reducing the complexity of the learned 

parameters, thus improving the model's ability to generalise to unseen data. 

❖ Loss function: Cross-entropy 

Cross-entropy loss was used for training the classification models. Which is more 

effective because it was  combined with Softmax activation in the output layer for 

the multi-class classification task.  

❖ Method of optimisation: Random search and hyperband  

Random search and hyperband  algorithm optimisation methods were used to 

search through a large hyperparameter space, including learning rates, batch 

sizes, momentum, dropout number of dense layers. Random search optimisation 

method was used to explore the space randomly, while the hyperband algorithm 

combines random search with adaptive resource allocation to focus on the best 

configurations. 
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❖ Activation:Relu and sigmoid 

ReLU (Rectified Linear Unit) is a popular activation function which was used in the 

hidden layers of the deep neural network. It helped to mitigate the vanishing 

gradient problem and accelerates convergence during training.  

Sigmoid activation was used in the output layer for the classification task.  

❖ Optimiser: SGD and Adam 

Stochastic Gradient Descent (SGD) is a fundamental optimisation algorithm that 

was used to update the parameters based on the gradients of the loss with respect 

to those parameters.  

Adam (Adaptive Moment Estimation) is an adaptive optimisation algorithm which 

was combined with momentum methods, to ensure robustness and effectiveness 

of the network. 

 

The initial learning rate (lr) is 0.01 and updated during every epoch. The training 

momentum is 0.9, and the weight decay set to 0.0001 and the batch size is fixed at 64, 

then the network training was done for 40 epochs. For the training of the network model, 

image input samples with dimensions were used. 

Model selection was done on the 5000 images  for the four weather classes, rainy, sunny, 

foggy, and cloudy. Using a cross validation procedure,  (80%) is used as the training 

dataset and (20%) is used as the Test set. During the testing phase, the network is tested 

on unseen data. The learning curve is plotted, which is made up of the network accuracy 

over the reiterations of the training and the testing phase, the loss value of the validation 

over the iterations to check its tendency was also used for the model selection.  

To validate the approach used in this study, the ResNet-15 is built based on python. 

ResNet-15 is mainly trained on the training set of “DATASET-2”.  The validation set of 

images are fed into the training model for recognition purposes, then, the classification 

result is displayed into one of the four weather conditions, such as rainy, sunny, foggy, 

and cloudy. Lastly, in line with the recognition results of the images,  the accuracy of 

recognition is computed, and the confusion matrix of weather recognition is established, 

as can be seen in Figure 4.1(f). The recognition accuracy of each class is represented by 
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the values on the slope of the confusion matrix respectively. As depicted in Figure 4.1(f), 

the recognition accuracy of the weather conditions is 97.89% rainy, 94.61% sunny, 

95.73% cloudy, and 96.92% foggy.  

Lastly, to know which image category the network performs best, the confusion matrix is 

calculated. as seen in figure 4.1. 

 

 

Figure 4.1: The Confusion matrix of various approaches. (a) AlexNet. (b) VGG16. (c) 

GoogleNet. (d) ResNet-50. (e) ResNet-18. (f ) ResNet-15. 

4.5 HYPERPARAMETER TUNING USING KERAS TUNER 

Firstly, the necessary libraries and modules are imported, including TensorFlow, and the 

Keras Tuner library. Then the dataset2 was loaded and pre-processed to normalize the 

pixel values between 0 and 1. The build_model function was defined, which takes in a 

hyperparameter object (hp) as an argument. Inside the function, the model architecture 
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was defined and the hyperparameters to be tuned. The hyperparameters tuned are the 

number of units in the first dense layer, batch size, dropout, momentum, and the learning 

rate for the optimiser. The model was compiled with the hyperparameters specified in the 

build_model function. Then, an instance of the Random Search  tuner was created, with 

the model-building function and setting the objective is to maximise validation accuracy.  

The tuner performed the hyperparameter search using tuner. Search(), with  the training  

data, and 40 number of epochs, with a 0.2  validation split. 

The best hyperparameters were retrieved using tuner.get_best_hyperparameters() 

function. Then, the model was built with the best hyperparameters using 

tuner.hypermodel.build() function. The model was trained using model.fit() on the training 

data with 40 number of epochs and validation split of 0.2. The model's performance was 

evaluated on the test set using model.evaluate() function, and the test accuracy recorded. 

The Hyperband optimisation algorithm  was used to rapidly converge the model. In 

searching for the optimal hyperparameters, the early stop was applied to monitor the 

model. In this study  a search space for each hyperparameter using `’hp.uniform’` and  

“hp.choice” functions from the Keras tuner library is defined. 

The objective function evaluates the model with a specific set of hyperparameters, trains 

it on the training data, and evaluates its performance on the validation data  The loss 

value is then returned to be minimised. Additionally, the params dictionary containing the 

tuned hyperparameters is also returned. The best chosen hyperparameters are then 

recorded as seen in table 4.1 

 

Table 4.1. Optimal combination of hyperparameters selected by ResNet-15 tuned with 

random search optimisation 

 

Hyperparameters Optimum value 

Number  of dense layers                                                   

Batch size 

Learning rate 

momentum 

Dropout 

32 

32 

0.001 

0.9 

0.4 
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As seen from table 4.1, the model performs better at 32 number of dense layers in the 

network to prevent its capacity to learn complex patterns from data, as compared to the 

initial range of values in table 3.4. At batch size 32,  the number of samples processed by 

the model in each training iteration was better. A larger batch size could have led to faster 

training times, as the model updates its weights less frequently. However, smaller batch 

sizes such as 32,  yields better generalisation, as it allowed the model to explore more 

diverse examples in each iteration. At 0.001 learning rate, it was able to determine the 

size of the step the model took during gradient descent while updating its weights. A 

higher learning rate  could lead to faster convergence. While a lower learning rate result 

in slower convergence, the optimum learning rate at 0.001 was able to converge to a more 

stable solution. At 0.9 momentum, this parameter was used to accelerate the gradient 

descent in the relevant direction, which helped the model to navigate through flat regions 

more efficiently. With the momentum at 0.9,  the model was also able to converge faster. 

While dropout regularization technique was used to prevent overfitting by randomly setting 

a fraction of input units to zero during training. This helped the model learn more robust 

features and reducing dependence on specific neurons. The dropout rate was used to 

determine the fraction of units that were dropped during training. An optimum dropout rate 

of 0.4 was more effective in preventing overfitting while also achieving faster 

convergence. 

 

4.6. OPTIMISATION METHOD  

4.6.1 RANDOM SEARCH OPTIMISATION 

RANDOM SEARCH: A basic optimisation method that creates a grid of points 

by conducting independent trials for each. The points are chosen  randomly, and a range 

of search values are defined for each hyperparameter, as opposed to a set of points. 

For hyperparameter optimisation, randomized trials are easier to implement and more 

effective than grid-search. In this study, the Random Search tuner was used to randomly 

search the hyperparameter space for 30 maximum number of trials. The hyperparameters 

being tuned are the number of units in the first dense layer, batch size, dropout, 

momentum, and the learning rate for the optimiser. Unlike grid search, random search 
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selects hyperparameter values randomly from a predefined distribution. By sampling a 

diverse range of values, it can be more efficient than grid search, especially when a few 

hyperparameters have a significant impact on model performance. 

HYPERBAND ALGORITHM: A hyperparameter optimisation algorithm used in this study 

to  swiftly converge  the model through early stopping. 

❖ Momentum: This method helps to speed up gradient descent algorithm, to achieve 

quicker convergence. The momentum increases in dimension whose gradient point 

is equal but decreases updates for dimensions whose gradient changes direction. 

In equation 4.2 and 4.3, the mathematical expressions for Momentum update rule 

are given. 

 

𝑣𝑡 = 𝑚 ∗ 𝑣𝑡−1 − 𝔶 ∗ ∇⊖𝐿(⊖𝑡−1)                                                                                           (4.2) 

 

⊖𝑡 =⊖𝑡−1 + 𝑣𝑡                                                                                                                            (4.3) 

 

𝑣,  The variable for momentum at time 𝑡, initialised to zero from the start, and 𝑚 ∈ 

[0, 1] is the coefficient, needed for reducing the speed and fluctuations of the 

systems. 

ADAM: A stochastic optimisation method whose most useful nature of  optimisation is 

its adaptive learning rate. It was used in this research to calculate the adaptive learning 

rates for different parameters. 

4.7 SYSTEM DEVELOPMENT LIFE CYCLE  

 The system development life cycle of a machine learning model is quite  different  

     from the conventional software development life cycle. During this research, the   

     following MLSDLC (Machine learning software development life cycle) was   

     followed. 

1) Scope planning: This phase involves evaluating the scope of machine learning and  

 how to improve the current system 

2) Data preparation: This phase involves the data collection and design, and image  

preprocessing 
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3) Model design: This phase involves the model architecture, experiments involving  

the data training, data validation training and test data training. Which finally led to 

the selection of the best model     

4) Evaluating the model: After the final version of the model, various metrics were 

tested on the test set  to detect errors in the recognition and results are compared  

Model deployment: This phase ensures that specifications of the hardware  

 requirements are met before being used by the new system. 

5) Monitoring: After evaluating the model, constant monitoring is needed to improve 

the new system. 

 

 

4.8 CHAPTER CONCLUSION 

This chapter has covered in detail the experimental setup and system configurations, 

including the choice for the selection of the framework used in this research. The feature 

selection and extraction was given in detail, while the model design and selection is also 

explained. The hyperparameter optimisation  was presented, detailing the various steps 

taken to optimise the hyperparameters, then finally the machine learning development life 

cycle followed during the research, was also presented. 
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CHAPTER 5 

EXPERIMENTAL RESULTS AND ANALYSIS 

 

5.1 CHAPTER OVERVIEW 

This chapter deals with the experiments done in the research. Thus, to evaluate the 

recommended approach, a medium size dataset was obtained which was augmented. 

Lastly, the metrics for evaluation, comparison methods and experimental results are 

presented respectively. 

As already described in chapter 3, the architecture was built based on the ResNet-50 

method to optimise ResNet-15, the two architectures were acted upon, by applying the 

enhancements such as, added dropout layers, eliminating some residual parts, also on 

the hyper parameters, such as, the value of the regularization strength. The subsequent 

section gives more details of the experimental settings,  The results obtained by the two 

approaches for without and with hyperparameter optimisation are given in Section 5.4, 

section 5.5 gives the comparison of various approaches or techniques to optimise the 

ResNet architecture. 

5.2 RESNET-15 EXPERIMENTAL METHOD  

Firstly, the images are fed into the model and the convolutional layers of  the network 

model are used for extracting the features from the images. Figure 5.1 demonstrates the 

pictorial extraction of feature maps from each group of the convolutional layers. The 

deeper the network, the less the pixel number of feature map showing further abstract 

features. Here, the weather features extracted  from the former layer becomes the 

shortest route to the next layer through the four sets of residual modules to avoid the loss 

of significant features in the transmission process using the deep convolutional layers. 

Lastly, the weather images are classified and recognised through the fully connected layer 

and Softmax classifier. Figure 5.1 below shows the image of the feature maps from four    

convolutional layers of the model and the recognition results respectively. 
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Figure 5.1: Image of the feature maps from four convolutional layers of ResNet-15     

                    together with the recognition results. 

 

5.3 EXPERIMENTAL RESULTS.  

To validate the approach used in this study, the ResNet-15 is built based on python. 

ResNet-15 is mainly trained on the training set of “DATASET-2” then after training the 

model was saved and the validation set of images are fed into the training model for 

recognition purposes, then, the classification result is displayed into one of the four 

weather conditions, such as rainy, sunny, foggy, and cloudy. Lastly, in line with   the 

recognition results of one thousand (1000) images, then the accuracy of recognition is 

computed, also, the confusion matrix of weather recognition is established, as can be 

seen in Figure 4.1(f). The recognition accuracy of each class is represented by the values 

on the slope of the confusion matrix respectively. As depicted in Figure 4.1(f), the 

recognition accuracy of the weather conditions is 97.89% rainy, 94.61% sunny, 95.73% 

cloudy, and 96.92% foggy 

Without adding any additional parameters, the accuracy increased as the network depth 

increased and the rate of convergence of the residual network model was optimised. 

Hence, adding residual modules resolved the issues since deepening the 

network caused the gradient to vanish and the most important features that the 

convolutional layer had extracted were  lost. Furthermore, computation got harder as 

depth increased. Thus, it became necessary  to determine the difference  between the 
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computational complexity and the model's performance.  To achieve this with ResNet-15, 

experiments were run  by stacking four or five residual modules. The ResNet-15 

network configuration consists of four primary sets of residual modules, while the max-

pooling layer focuses on extracting the feature maps and the average pooling 

layer extracts the background features, the pooling layer is used to extract significant 

features from the entire image. In this case, the procedure maintains crucial features in 

addition to merely reducing the amount of data processing.  

Several combinations of maxpooling and average pooling were used in this 

study, which was conducted as experiments for comparison. The highest recognition 

accuracy was attained by the experimental results that combined the max-pooling 

layer added after the first convolutional layer and a fully connected layer with dimension 

(512) added before the Softmax classifier. To prevent overfitting, a dropout layer 

is also added in the middle of the fully connected layer and the Softmax classifier. This 

layer randomly discards a small amount of the fully connected layer's image. The trained 

model is compared with different dropout rates ranging from 0.3 to 0.9. The experimental 

results are displayed in Figure 5.2, where the model's recognition accuracy was at its 

highest when the dropout rate was set to 0.3. Using dropout as a regularization method 

has proven to improve model accuracy and combat overfitting. To prevent the loss of 

deeper levels of weather features from the convolutional layers, four more group of 

residual modules are added to the ResNet-15. Features from the  images of the previous 

layer from to form the shortest route to the next layer, through the residual modules. 

Hence, its speeds up the rate of convergence of the network model. Thereby enhancing 

the recognition accuracy and at the same time, solves the vanishing gradient problem 

which was triggered by the increase in depth of the network. 
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Figure 5.2: Comparing accuracy of different dropout rates. 

Hence, the average accuracy of the weather recognition is 96.28%. As a result of that, 

ResNet-15 performed greatly to achieve the task of weather recognition from still images. 

Figure 5.3(a) shows the weather types that are accurately identified, the recognizable 

weather features such as heavy fog, level-ground, dark cloud, also, the sky blue enables 

weather images to be successfully recognised for a foggy day, rainy day, cloudy day, and 

sunny day, respectively. Additionally, fog reduces brightness, while rain will make the 

roads level-up, in most cases, not favorable for the traffic and can lead to road accidents 

and traffic-jams. Also, it becomes important to recognise severe weather conditions in 

real time, so that severe road accidents can be avoided effectively, and driving efficacy 

could be boosted.  

Nevertheless, because of the difficulty in recognising the weather, it is not all the weather 

images that can be accurately recognised, since some related information in the weather 

images are quite difficult. The cause could be ascribed to “ambiguity” since there is no 

clear limit among the different weather classes. Additionally, at times weather recognition 

becomes a difficult process, due to other components in most images. This might be a 

multi-class task (Zhao et al., 2018, Lin et al., 2017), this can be summed up as 
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incompleteness. For that reason, different images cannot be recognised accurately as 

presented in Figure 5.3(b). For example, a hazy sky and background features fit into foggy 

weather, however, at times they are finally mis-recognised as snowy weather due to snow 

white cover on the street. At times, regardless of snow cover on the street, the presence 

of sky blue makes the image mis-recognised for sunny weather. Occasionally, the image 

is mis-recognised as foggy weather because of the difficult background features such as 

streaks of water, dark clouds, and grayish sky. Various images are very difficult to 

recognise correctly even when done manually, also the classes of the dataset may contain 

errors. In addition, the cleanliness of a dataset is also very significant as a characteristic 

for image classification. This implies that it should not be less than the size of the datasets 

(Mishkin et al., 2017). Hence, it ensures the important measures for enhancing the 

accuracy of weather recognition, by picking out the errors in the dataset labels, also, by 

removing the weather images with ambiguous labels. 

 

Figure 5.3(a): Examples of  correct recognition results and (b) examples of incorrect 

recognition results.  
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5.4 IMPACT OF HYPERPARAMETER OPTIMISATION 

In this study, to validate the efficiency of hyperparameter optimisation for weather 

recognition task, the “Dataset-2” training images with and without no hyperparameter 

tuning were input into the ResNet-15 model. Then, validation is done on the test images, 

the curves for accuracy and loss on the test set is displayed from Figure 5.4(a), from the 

curves, the blue curves represent the train loss on the train data, while the orange dashed 

curves represent the validation loss, and the green dashed cure represents the validation 

accuracy without hyperparameter tuning. In Figure 5.4(b), from the curves, the blue 

curves represent the train loss on the train data, while the orange dashed curves 

represent the validation loss, and the green dashed curve represents the validation 

accuracy with hyperparameter tuning. Table 5.1. Shows the experimental results of the 

two methods. We can observe from the  graphs below that after the first epoch, the 

training loss reaches 1.25. After 10 epochs, accuracy reaches approximately 72%. 

We can compare the outcomes of not optimising the hyperparameters to those with 

hyperparameter optimisation using  this result as a baseline.. The optimiser 

was successful in reaching a loss of about 0.66 after one epoch. Approximately 

96% accuracy was reached after 5 epochs. We can observe from this experiment that 

optimising the hyperparameters performs better in this case more quickly and accurately. 

With this experiment, you can quickly see that optimising the hyperparameter is an 

effective way to develop a good deep learning model. From the results above, it is obvious 

that  there is an increase of about 24% for ResNet-15 with hyperparameter tuning. It can 

be observed from the curves, that  with hyperparameter tuning, the model is a perfect fit. 

In ResNet-15 , at approximately epoch 40. Thus, the test or validation set accuracy 

stopped increasing. In this study, the accuracy and training loss of a Deep 

Learning model can both be improved by optimising the hyperparameters.         
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(a)   (b) 

Figure 5.4:  Accuracy curve comparison. (a) Curves of accuracy for ResNet-15 without 

hyperparameter optimisation. (b) Accuracy curves of ResNet-15 with hyperparameter 

optimisation. 

Table 5.1: Recognition accuracy of two approaches without and with hyperparameter 
optimisation. 

Resnet-15         without hyperparameter Opt          with hyperparameter Opt  

Val acc                                   72%                                 96% 

Train loss                               1.16                                 0.66                                 

Val loss                                   1.17                                0.66 

 

 To validate the efficiency of the residual module for weather recognition task, the residual 

modules were used to form a Fifteen-layer (15-layer) convolutional neural network known 

as 15-layers conv network. The accuracy curves of the validation or test data is presented 

in Figure 5.4. The recognition accuracy of 15-layer conv network is about 96% with 
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hyperparameter optimisation, and that of the recognition accuracy of ResNet-15 without 

hyperparameter optimisation is 72%, which is enhanced by about 24% . 

5.5 ACCURACY COMPARISON TO OTHER METHODS 

Before training the models, image preprocessing was done by resizing images to a 

consistent size, normalizing pixel values, and splitting the dataset into training, validation, 

and testing sets according to the 80/20 rule. Each model was trained using the training 

set with the appropriate hyperparameters such as learning rate, dropout, batch size, 

number  of dense layers, momentum, and  the optimiser . Data augmentation techniques 

such as random rotations, flips, and crops to was applied to the images to enhance model 

generalisation. After each training epoch, the models' performance was evaluated  using 

the validation set to monitor metrics such as accuracy, and loss to assess how well each 

model generalizes to unseen data and to detect overfitting. Hyperparameters fine-tuning 

was done based on validation set performance to adjust learning rates, regularization 

techniques, and model architectures as needed to improve model accuracy and 

generalisation. 

When training and hyperparameter tuning was complete, the final evaluation of the 

models' performance was done using the testing set, to calculate metrics like accuracy, 

and confusion matrix to assess how well each model performs on completely unseen 

data. The performance Comparison of ResNet-50, AlexNet, ResNet-18, GoogleNet, 

VGG16, and ResNet-15 based on their accuracy, computational efficiency, and 

robustness was done. To analyse any patterns or insights gained from model 

comparisons to understand which architecture performs best for the given dataset and 

task. By following these approaches, the models were systematically evaluated to 

determine the accuracy of deep learning models using the selected dataset2, leading to 

informed decisions on model selection, hyperparameter tuning, and optimisation. 

ResNet-15 hyperparameters are optimised through random search optimisation and 

tested on a test dataset. The results show that ResNet-15 Random search has a higher 

recognition accuracy than ResNet50, Resnet18, AlexNet, GoogleNet, and 

VGG16 when applied to the selected dataset. To assess the performance of weather 

recognition using ResNet-15, the recognition performance of ResNet-15 on “Dataset-2” 
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is being compared to the other approaches such as, AlexNet, VGG16, GoogleNet, 

ResNet-50, and ResNet-18. Figure 5.5 illustrates the accuracy curves of several 

approaches, as can be seen from the curves, the various colored curves signifies different 

approaches. As depicted from the curves, ResNet-15 which is the recommended 

approach in this study outperformed the other approaches in terms of accuracy. 

Therefore, it can be said that random search hyperparameter tuning for the residual 

network produces an accuracy rate that is higher than that of some earlier 

versions of residual networks. Results for Dataset 2 were found to be better with ResNet 

15 than with ResNet 50 when comparing the ResNet random search optimisation and 

other techniques. The training took place for 40 epochs. And it obvious that Resnet-15 

surpasses all the other deep learning techniques. Not only does the training converge 

very fast, but also the loss function is much lower than the other  deep learning techniques. 

 

  

   Figure 5.5: Accuracy curves of several methods (a)Training accuracy (b) Training   

   Loss curve 
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                (c) Validation accuracy .(d) Test accuracy 

ResNet- was tested on the selected dataset-2 to obtain the accuracy on the test data,  it 

obtained 98% training accuracy, 92% validation accuracy and a test accuracy of 93%. 

Hyperband optimisation method was done on the ResNet with 40 maximum number of 

trials, and 40. The model was then  trained using the hyperparameter configuration 

displayed in Table 3.4. Selecting the best combination of hyperparameters chosen by 

ResNet-15 network was tuned.  From the recognition accuracies of different approaches, 

a chart is drawn as displayed in figure 5.5, it can be observed that ResNet-15 

recommended in this study obtained the highest recognition accuracy, the next in 

accuracy to Resnet-15 is the ResNet18, VGG16, GoogleNet, AlexNet, and ResNet50 

respectively. The confusion matrices of various network models are depicted in Figure 

4.1. 
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Table 5.2: Recognition accuracy of various approaches 

Approach                           Train (%)                              Validation(%)                         Test (%)              

AlexNet                              92.03                                      84.00                                      85.01 

VGG16                               97.01                                      86.00                                      87.06 

GoogleNet                          92.00                                      86.04                                      84.25 

ResNet-50                          90.01                                      79.00                                       80.05 

ResNet-18                          97.00                                      88.00                                       89.00 

ResNet-15                          98.09                                      92.01                                       93.03 

 

 

Figure 5.6: Comparison of average recognition accuracy 

Table 5.2 shows the experimental results of different approaches based on the training 

accuracy, validation accuracy, and test accuracy. From the experimental results, Resnet-

15 shows the highest level of accuracy, thus, the model is highly superior to other 

approaches in recognition speed and model size and can broadly be useful to a wide 

range of fields. 

 

87.75% 85.95% 88.12% 87.41% 89.96% 96.28%

0

20

40

60

80

100

120

AlexNet VGG16 GoogleNet ResNet-50 ResNet-18 ResNet-15

Accuracy comparison



64 
 

5.6 CHAPTER CONCLUSION 

This study mainly aimed at the task of weather recognition using a ResNet-15 technique, 

to recognise the presence of the weather condition from images, the optimised 

hyperparameter was able to do the feature extraction  and the fully connected layer was 

capable of  recognising the images. Evaluating from an intensive experiment shows that 

the ResNet-15 model attains a desired result on the Dataset-2. The simplified model 

recognition accuracy achieved 97.09%, Thus, this approach is much better as compared 

to the conventional network model such as ResNet-50 in terms of recognition accuracy, 

recognition speed, and size of the model. Hence, the recommended model in this study 

ResNet-15 can generally meet-up with the necessities of real-world application, also, it 

can be extensively used in other fields or domains of life. The dataset is currently grouped 

into four classes of weather conditions. Experiments also shows  that the effects of 

hyperparameter  optimisation has a great impact  on the model’s  accuracy, performance, 

and robustness.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

6.1 CHAPTER OVERVIEW 

This chapter is a summary of the entire research done to accomplish the research goals 

and objectives, it also presents the limitations of the research and provides 

recommendation for future work. 

 

6.2 CONCLUSION 

In conclusion, tuning hyperparameters in line with the objectives of optimisation plays a 

crucial role in enhancing the performance, efficiency, and generalizability of deep 

Learning models. 

The following contributions are provided by this research. 

❖ Improving the model’s overall performance through enhanced accuracy and 

reducing loss accuracy, which has also improved the quality of recognitions is one 

of the benefits associated with optimising the hyperparameters of the model. It is 

necessary  to get improved outcomes and come up with well-informed decisions 

from results achieved in the model’s output. 

❖ Also reducing the training time has led to faster experimentation, it has also 

become important for this purpose, to tune the hyperparameters of the model. 

❖ Hyperparameter optimisation has enhanced the model's generalisation capability. 

by finding the right combination of hyperparameters, hence preventing overfitting , 

leading to improved performance on unseen data. In addition to the above, data 

augmentation experiments done on Resnet-15 , resulted in more capable models, 

during  the experiments, the augmentation method  created  variants of the images, 

by improving the capability of fitting the models to generalise what has been learnt 

to new images. It significantly reduced the overfitting problem 

❖ The process became more efficient by automating search for hyperparameters; it 

also became more effective using random searches, it was able to select the best 
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hyperparameters. Automating hyperparameter tuning made it easier to explore 

hyperparameter search space reducing manual intervention while improving 

productivity. These optimal hyperparameters were chosen using random search 

optimisation method for  ResNet-15 that fits the selected dataset obtained 

98% training accuracy, 92%  validation accuracy, and 93% test accuracy 

Conclusively, this research presents a different perception into the optimisation of deep 

learning models for resolving the challenges around weather recognition from still images. 

Since random search optimisation has not been widely used with ResNet for weather 

recognition application, this study leads to new optimised ResNet-15 model. 

 

6.3 LIMITATIONS 

In this study there are  limitations, some methods which might have facilitated in attaining 

good results were not experimented. An example, this study did not use the freezing layer 

method used in a transfer learning, which in the case of this study was not used. At the 

point of training the network it was understood that it was not useful due to the high 

computational time involved. 

 One more limitation of this study was recognised in the dataset. The dataset presented 

various distorted images that could have contributed to reduce the performance such as 

unclear labelled images, noisy images, and murky images. Lastly, this study focused on 

ResNet-15 using hyperparameter optimisation and without hyperparameter optimisation. 

Hence, accuracy of the recognitions are compared with or without hyperparameter  

optimisation.  

6.4 FUTURE WORK 

It wouldbe intriguing to investigateadditional optimisation methods for image-

based weather recognition in the future. From the result of this study, I would make a 

recommendation for future work, I recommend refining the dataset content by disposing 

images that do not have useful information to the task, such as the noisy ones. It is also 

sensible to examine the impact of the results when the size of classes to recognise 

increases. For example, based on the dataset, the number of images for each class that 
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represents the best ones could be identified. Perhaps, this can enhance performances.  

Then, the class extension as regards the weather conditions characterized by each class 

could be lessened, therefore it makes it easier for the recognition of such classes, this 

can prevent the occurrence of different features showing the exact weather condition in a 

single class.  

Perhaps a different type of input such as video can be applied, such that some dynamic 

images can be captured properly and possibly easier to recognise. Thus, since this study 

used feature visualization, it would be worthwhile to gain an additional understanding by 

exploring other means rather than feature visualization, to know how likely to identify the 

features which permits discrimination between the different classes. 

Lastly, for future work, the severe weather conditions could be split into more sections. 

Particularly, heavy, light rain, and moderate rain. Besides, the model is only used to 

recognise the weather conditions from different backgrounds during the daytime. I 

suggest the approach could generally be used to recognise weather conditions at 

nighttime through future research and development. 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 
 

REFERENCES 

• Ajayi, Gbeminiyi (2018), “Multi-class Weather Dataset for Image Classification”, 

Mendeley Data,  

• Akihiro. F. (2020). Assemble-ResNet that is 5 times faster with the same accuracy 

as EfficientNet B6  AutoAugment.  Published in Analytics Vidhya. 

• Aszemi. N.M and P.D.D. (2019),  Dominic, Hyperparameter optimisation in 

convolutional neural network using genetic algorithms, Int J Adv Computer Sci Appl 

10 269–278. https://doi.org/10.14569/ijacsa.2019.0100638 

• Bengio. Y. (2009) Learning deep architectures for AI , Foundations, and trends R 

In Machine Learning 2. 

• Bossu. J, Hautière. N and Tarel. J.P. (2011) Rain or snow detection in image 

sequences through use of a histogram of orientation of streaks, international 

journal of computer vision 93, 348. 

• Bronte. S, Bergasa. L. M , Alcantarilla, P. F. (2009) Fog detection system based 

on computer vision techniques, 12th International IEEE Conference on Intelligent 

Transportation Systems, pp. 1–6. 

• Brown, D.  (2021) "We show that camera data can be efficiently processed using 

computer vision techniques for weather pattern recognition, reducing the overall 

cost of weather monitoring systems." 

• Cai. Y, Huafeng. W, Pan. H,  Weifeng.  L , Zhang, Y. (2015). Deep Learning for 

Image Retrieval: What Works and What Doesn't. DO  - 

10.1109/ICDMW.2015.121. 

• Cewu Lu, Lin Di, Jiaya Jia, and Chi-Keung Tang,(2014) “Two-class weather 

classification,” in Proceedings of the IEEE Conference on Computer Vision and 

Pattern Recognition, pp. 3718–3725. 

• Chen .H , Ding. G,  Zhao. S, Han. J. (2018) Temporal-difference learning with 

sampling baseline for image captioning, in: Proceedings of the Thirty-Second 

AAAI Conference on Artificial Intelligence. 



69 
 

• Christian S, Wei. L, Yangqing. J, Pierre , Scott. R, Dragomir . A, Dumitru. E, 

Vincent. V, Andrew. R.(2015) “Going deeper with convolutions,” Cvpr. 

• Connor. S,( 2019). Introduction to ResNet. Published in towards data science. 

• Davison. A, Ganau. S, Marti. J, Sentís. M, Pons. G, Yap. M, Zwiggelaar. 

R.(2017).  Automated Breast Ultrasound Lesions Detection Using Convolutional 

Neural Networks. IEEE Journal of Biomedical and Health Informatics. DO  - 

10.1109/JBHI.2017.2731873. 

• Deng. J, Dong. W, Socher. R, Li. L.J,  Li. K and Fei-Fei. L. (2009) ImageNet: A 

large-scale hierarchical image database, in Computer Vision and Pattern 

Recognition, 2009.CVPR2009.IEEEConference on (IEEE, pp. 248–255.  

• Derpanis. K. G. Lecce. M.  Daniilidis. K.  Wildes. R. P. (2012) Dynamic scene 

understanding: The role of orientation features in space and time in scene 

classification, in: IEEE Conference on Computer Vision and Pattern Recognition, 

pp. 1306–1313. 

• Di Lin, Cewu Lu, Hui Huang, and Jiaya Jia. (2017) “Rscm: Region selection and 

concurrency model for multi-class weather recognition,” IEEE Transactions on 

Image Processing, vol. 26, no. 9, pp. 4154–4167. 

• Dupond S. A thorough review on the current advance of neural network 

structures. Annu Rev Control. 2019;14:200–30. 

• Elhoseiny. M. Huang. S, Elgammal. A. (2015) Weather classification with deep 

convolutional neural networks, in: Image Processing (ICIP), 2015 IEEE 

International Conference on, pp. 3349–3353. 

• Gallen. R, Cord.  A, Hautire. N, Aubert. D. (2011) Towards night fog detection 

through use of in-vehicle multipurpose cameras, in: Intelligent Vehicles 

Symposium (IV), IEEE, 2011, pp. 399–404. 

• Garg. K, and Nayar. S. K. (2004) Detection and removal of rain from videos, in 

Computer Vision and Pattern Recognition, CVPR Proceedings of the 2004 IEEE 

Computer Society Conference on, Vol. 1 (IEEE, 2004) pp. I–528.  



70 
 

• Garg. K, and Nayar. S. K. (2005). When does a camera see rain? in Computer 

Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, Vol. 2, pp. 

1067–1074. 

• Goodfellow, I, Bengio, Y and Courville, A. (2016) Deep learning MIT Press. 

• Gu. J,  Wang, Z, Kuen, J ,Ma, L,  Shahroudy. A, Shuai, B, Liu, T, Wang, X and  

Wang. G.(2015) Recent advances in convolutional neural networks, arXiv 

preprint arXiv:1512.07108.  

• G´abor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation 

in neural language models. arXiv preprint arXiv:1707.05589, 2017 

• Garcia, E. (2017) "Our analysis indicates that cameras have lower maintenance 

costs compared to sensor devices for weather monitoring, contributing to their 

cost-effectiveness." 

• Hauti´ere. N, Tarel. J.P, Lavenant. J, Aubert. D. (2006)Automatic fog detection 

and estimation of visibility distance through use of an on-board camera, Machine 

Vision, and Applications 17 (1)  8–20. 

• He, K, Zhang, X, Ren, S and Sun, J.(2015) Deep residual learning for image 

recognition, arXiv preprint arXiv:1512.03385 (2015). Used twice. 

• He. K, Zhang. X,  Ren. S and Sun. J.(2016) Identity mappings in deep residual 

networks, in European Conference on Computer Vision pp. 630–645. 

• He. K, Zhang. X, Ren. S and Sun. J. ( 2016)“Deep residual learning for image 

recognition,” in Proceedings of the 2016 IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), pp. 770–778, IEEE, Las Vegas, NV, USA. 

• He. K,Gkioxari. G, Dollr.P, Girshick. R.(2017) Maskr-CNN, in IEEE International 

Conference on Computer Vision (ICCV), pp. 2980–2988. 

• JalFaizy.  S. (2017).  “Advanced deep learning architectures”. Published in 

Analytics Vidhya 



71 
 

• Jindal. A, Dua. A , Kaur. K, Singh. M, Kumar. N and Mishra. S.(2016) “Decision 

tree and SVM-based data analytics for the detection in smart grid, ”IEEE 

Transactions on Industrial Informatics, vol. 12, no. 3, pp. 1005–1016. 

• Johnson, B, (2020)  “Our cost analysis reveals that cameras are more cost-

effective for weather monitoring compared to specialized sensor devices due to 

economies of scale and lower production costs." 

• Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.(2015) "Deep Residual 

Learning for Image Recognition" Computer Vision and Pattern Recognition 

(cs.CV).  

• Kamavisdar. P, Saluja, S and Agrawal, S. (2013) “A survey on image 

classification approaches and techniques, International Journal of Advanced 

Research in Computer and Communication Engineering 2, 1005”.  

• Karayiannis. N.  And Venetsanopoulos, A. N. (2013) “Artificial neural networks: 

learning algorithms, performance evaluation, and applications”, Vol. 209 Springer 

Science & Business Media. 

• Kingma, D. P, Ba. J and Adam: “A method for stochastic optimisation”, CoRR 

abs/1412.6980. 

• Krizhevsky.  A, Sutskever, I and  Hinton, G.E . (2012)“ImageNet classification 

with deep convolutional neural networks,” in Advances in neural information 

processing systems, pp. 1097–1105. 

• Krizhevsky. A, Sutskever, I and Hinton, G.E. (2017) “ImageNet classification with 

deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, 

pp. 84–90. 

• Kurihata.H,Takahashi.T,Mekada.Y,Ide.I,Murase.H,Tamatsu.Y,Miyahara.T.(2005), 

“Rainy weather recognition from in-vehicle camera images for driver assistance”, 

in: IEEE Proceedings. Intelligent Vehicles Symposium, pp. 205–210. 

• Kurihata.H,Takahashi.T,Mekada.Y,Ide.I,Murase.H,Tamatsu.Y,Miyahara.T.(2006) 

“Rain drop detection from in-vehicle video camera images for rainfall judgment”, 

in: First International Conference on Innovative Computing, Information and 

Control - Volume I (ICICIC’06), Vol. 2, pp. 544–547. 



72 
 

• Leandro .P. (2018). “ Parkinson Disease Identification Using Residual Networks and 

Optimum-Path Forest”. DO  - 10.1109/SACI.2018.8441012 

• Lee. J,  Kim. S,  Chang. S ,Zong-Sheng. W.(2020) “Efficient Chaotic Imperialist 

Competitive Algorithm with Dropout Strategy for Global Optimisation”. DO  - 

10.3390/sym12040635. VL  - 12. 

• Li. Q, Kong, Y and Xia, S.M. (2014) “A method of weather recognition based on 

outdoor images,” in Proceedings of International Conference on Computer Vision 

Theory and Applications (VISAPP), IEEE, Lisbon, Portugal, pp. 510–516. 

• Lin. D, Lu, C, Huang, H and Jia, J.(2017) “RSCM: region selection and 

concurrency model for multi-class weather recognition,” IEEE Transactions on 

Image Processing, vol. 26, no. 9, pp. 4154–4167. 

• Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and A meet 

Talwalkar. “Hyperband a novel bandit-based approach to hyperparameter 

optimisation”. arXiv preprint arXiv:1603.06560, 18(1):6765–6816, 2016. 

• Lu, C, Lin, D, Jia, J and Tang, C. K. (2014) “Two-class weather classification”, in: 

Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern 

Recognition, CVPR ’14, 2014, pp. 3718–3725. 

• Lu, C, Lin, D, Jia, J and Tang, C. K. (2017) “Two-class weather classification,” 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, 

pp. 2510–2524.  

• Michael, N.(2005) “Artificial intelligence a guide to intelligent systems”, ISBN 

321204662.  

• Mishkin, D, Sergievskiy, N and Matas, J. (2017) “Systematic evaluation of 

convolution neural network advances on the ImageNet,” Computer Vision and 

Image Understanding, vol. 161, pp. 11–19. 

• Narasimhan, S. G.  Wang, C and Nayar, S. K. (2002) “All the images of an 

outdoor scene,” in Computer Vision-ECCV 2002, pp. 148–162, Springer, Berlin, 

Germany. 

• Pavlic, M, Belzner, H,  Rigoll, G, Ili, S.(2012)  “Image based fog detection in 

vehicles, in: Intelligent Vehicles Symposium”  (IV), IEEE, 2012, pp. 1132–1137. 



73 
 

• Pavlic, M, Rigoll, G, Ilic, S. (2013) “Classification of images in fog and fog-free 

scenes for use in vehicles”, in IEEE Intelligent Vehicles Symposium (IV), Gold 

Coast City, Australia, June 23-26, pp. 481–486. 

• Qian, X, Patton, E.W.  Swaney, J, Xing, Q and Zeng, T. (2018) “Machine learning 

on cataracts classification using Squeeze Net, “in Proceedings of the 2018 4th 

International Conference on Universal Village (UV), pp.1–3, IEEE, Boston, MA, 

USA. 

• Ren, S, He, K, Girshick, R,  Sun, J. (2015) “Faster R-CNN: Towards real-time 

object detection with region proposal networks”, in: Advances in Neural 

Information Processing Systems (NIPS). 

• Roser, M,  Moosmann, F.(2008) “Classification of weather situations on single 

color images”, in: Intelligent Vehicles Symposium, IEEE, 2008, pp. 798–803. 

• Ruder, S. (2016). “An overview of gradient descent optimisation algorithms”, 

arXiv preprint arXiv:1609.04747. 

• Sai Kumar .B. (2019). “CNN Architectures, a Deep dive. Published in towards 

Data Science” 

• Sawant, S and Ghonge, P. (2013) “Estimation of rain drop analysis using image 

processing”, International Journal of Science and Research (IJSR).  

• Shen, L, Tan, P. (2009) “Photometric stereo and weather estimation using 

internet images”, in Computer Vision and Pattern Recognition, IEEE Conference 

on, pp. 1850–1857. 

• Simonyan, K, Zisserman, A. (2014) “Very deep convolutional networks for large-

scale image recognition”, arXiv preprint arXiv:1409.1556.  

• Simonyan, K, Zisserman, A. “Very deep convolutional networks for large-scale 

image recognition”, CoRR abs/1409.1556. 

• Smith, A,  (2019) “Cameras offer a versatile solution for weather recognition in 

smart agriculture due to their ability to capture visual data on cloud cover, 

precipitation, and other atmospheric phenomena.” 

• Song, H, Chen, Y, Gao, Y.(2015) “Weather Condition Recognition Based on 

Feature Extraction and K-NN,”  Springer Berlin Heidelberg, 2014, pp. 199–210. 



74 
 

• Srivastava, N, Hinton, G.E, Krizhevsky, A, Sutskever, I and Salakhutdinov, R. 

(2014) “Dropout: a simple way to prevent neural networks from overfitting.” 

Journal of Machine Learning Research 15. 

• Sudheer, K and Panda, R.(2000) “Digital image processing for determining drop 

sizes from irrigation spray nozzles, Agricultural Water Management”. 45, 159. 

• Sultan. H, (2019). “Multi-Classification of Brain Tumor Images Using Deep Neural 

Network.” DO  - 10.1109/ACCESS.2019.2919122. IEEE Access, VL  - PP. 

• Szegedy, Liu, W, Jia, Y,  Sermanet, P, Reed, S,  Anguelov, D, Erhan, D,  

Vanhoucke, V and Rabinovich, A.(2015)  “Going deeper with convolutions” ,in 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition pp. 1–9.  

• Tang, P, Wang, H, and Kwong, S. (2017) G-MS2F: “GoogleNet based multi-stage 

feature fusion of deep CNN for scene recognition,” Neurocomputing, vol. 225, pp. 

188–197. 

• Tena .B. (2018). “Your first dive into deep learning.  

• Williams, C. (2018) "Our study demonstrates the cost savings of integrating 

weather recognition cameras with existing surveillance systems, minimizing 

additional infrastructure costs." 

• Xia, J., Xuan, D., Tan, L. and Xing, L., 2020. ResNet15: weather recognition on 

traffic road with deep convolutional neural network. Advances in Meteorology, 

2020, pp.1-11. 

• Xiaoqiang. L,  Xuelong. L,  Zhao. B, Zhigang. W.(2019)  “A CNN-RNN 

Architecture for Multi-Label Weather Recognition.”  Computer Vision and Pattern 

Recognition (cs.CV); Artificial Intelligence (cs.AI).  arXiv:1904.10709. 

• Yan, X Luo, Y, Zheng, X. (2009) “Weather recognition based on images captured 

by vision system in vehicle,” in: Proceedings of the 6th International Symposium 

on Neural Networks: Advances in Neural Networks-Part III,ISNN2009, Springer 

Verlag, pp. 390–398. 



75 
 

• Yosinski, J, Clune, J, Bengio, Y and Lipson , H.(2004)  “How transferable are 

features in deep neural networks? in Advances in neural information processing 

systems pp. 3320–3328.  

• Zeiler, M. D and Fergus, R.(2014)  “Visualizing and understanding convolutional 

networks, “in European conference on computer vision Springer, pp. 818–833.   

• Zhao, B, Li, X. Lu, X and Wang, Z. (2018) “A CNN-RNN architecture for multi-

label weather recognition,” Neurocomputing, vol. 322, pp. 47–57, 2018.  

• Zhang, Z, Ma, H. (2015) “multi-class weather classification on single images,” in: 

Image Processing (ICIP), IEEE International Conference on, pp.4396–4400. 

• Zhang, Z and Huadong Ma. (2015) “multi-class weather classification on single 

images,” in Image Processing (ICIP), IEEE International Conference on. IEEE, 

pp. 4396–4400. 

• Zhang, Z, Ma, H. Fu, C, Zhang. (2016)  “Scene-free multi-class weather 

classification on single images,” Neurocomputing 207 365 – 373. 

• Zhao, X, Liu, P, Liu, J, Tang, X. (2011) “A time, space and color-based 

classification of different weather conditions”, in: Visual Communications and 

Image Processing (VCIP), IEEE, pp. 1–4. 

• Zhu, Z ,Zhuo, L. Qu, P, Zhou, K and Zhang, J.(2016)  “Extreme weather 

recognition using convolutional neural networks”, in Multimedia (ISM),IEEE 

International Symposium on IEEE, pp. 621–625.  

• Ziqi Zhu, Zhuo, Li, Panling Qu, Kailong  Zhou, and Jing Zhang.(2016) “Extreme 

weather recognition using convolutional neural networks,” in Multimedia 

(ISM),IEEE International Symposium on. IEEE, pp. 621– 625. 

• Zixiang .M. (2019).  “A Wi-Fi RSSI ranking fingerprint positioning system and its 

application to indoor activities of daily living recognition.”  International Journal of 

Distributed Sensor Networks, VL  - 15. 

 

 

 

 



76 
 

Appendix A: Sample python source codes 

A1: Listing one 

DETAILED DESCRIPTION: This code section describes the main procedure used for 

loading and plotting the first eight photos of rainy image in a single figure. The code runs 

the example created in a figure showing the first eight photos of rain, shine, cloudy and 

foggy images respectively in the dataset. 

# plot rainy photos from the rain dataset 
from matplotlib import pyplot 
from matplotlib.image import imread 
# define location of dataset 
folder = 'train/' 
# plot first few images 
for i in range(8): 
# define subplot 
pyplot.subplot(350 + 1 + i) 
# define filename 
filename = folder + 'rain.' + str(i) + '.jpg' 
# load image pixels 
image = imread(filename) 
# plot raw pixel data 
pyplot.imshow(image) 
# show the figure 
pyplot.show() 
 
# plot shine photos from the shine dataset 
from matplotlib import pyplot 
from matplotlib.image import imread 
# define location of dataset 
folder = 'train/' 
# plot first few images 
for i in range(8): 
# define subplot 
pyplot.subplot(350 + 1 + i) 
# define filename 
filename = folder + 'shine.' + str(i) + '.jpg' 
# load image pixels 
image = imread(filename) 
# plot raw pixel data 
pyplot.imshow(image) 
# show the figure 
pyplot.show() 
 
# plot cloudy photos from the cloudy dataset 
from matplotlib import pyplot 
from matplotlib.image import imread 
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# define location of dataset 
folder = 'train/' 
# plot first few images 
for i in range(8): 
# define subplot 
pyplot.subplot(350 + 1 + i) 
# define filename 
filename = folder + 'cloudy.' + str(i) + '.jpg' 
# load image pixels 
image = imread(filename) 
# plot raw pixel data 
pyplot.imshow(image) 
# show the figure 
pyplot.show() 
 
 
# plot foggy photos from the cloudy dataset 
from matplotlib import pyplot 
from matplotlib.image import imread 
# define location of dataset 
folder = 'train/' 
# plot first few images 
for i in range(8): 
# define subplot 
pyplot.subplot(350 + 1 + i) 
# define filename 
filename = folder + 'foggy.' + str(i) + '.jpg' 
# load image pixels 
image = imread(filename) 
# plot raw pixel data 
pyplot.imshow(image) 
# show the figure 
pyplot.show() 

 
 

Appendix A: Sample python source codes 

A2: Listing Two, image resizing. 

DETAILED DESCRIPTION: The code in this section below uses the Keras image 

processing API to load all photos in the training dataset and reshapes them to 256×256 

square photos. The label is also determined for each photo based on the filenames.  

 
 
# load rainy, sunny, cloudy, and foggy dataset, reshape and save to a new 
file 
from os import listdir 
from numpy import as array 
from numpy import save 
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from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
# define location of dataset 
folder = 'train/' 
photos, labels = list(), list() 
# Itemize files in the directory 
for file in listdir(folder): 
# define class 
output = 0.0 
if file.starts with('shine'): 
output = 1.0 
# Load image 
photo = load_img(folder + file, target_size=(256, 256)) 
# convert to numpy array 
photo = img_to_array(photo) 
# store 
photos.append(photo) 
labels.append(output) 
# convert to a numpy arrays 
photos = as array(photos) 
labels = as array(labels) 
print(photos.shape, labels.shape) 
# save the reshaped photos 
save(rainy_sunny_cloudy_and_foggy_photos.npy', photos) 
 
save('rain_vs_shine_cloudy_vs_foggy_labels.npy', labels) 
 
 

Appendix A: Sample python source codes 

A3: Listing Three 

DETAILED DESCRIPTION: The code in this section below randomly holds back 20% 

of the images into the test and 80% into train dataset. This is done 
consistently by fixing the seed for the pseudorandom number generator so 
that it can get the same split of data each time the code is run. 

# Organize the dataset into a very useful structure 
from os import makedirs 
from os import listdir 
from shutil import copyfile 
from random import seed 
from random import random 
# create directories 
dataset_home = 'dataset_ rainy_sunny_cloudy_and_foggy/' 
subdirs = [ 'train/', 'test/' ] 
for subdir in subdirs: 
# create label subdirectories 
labeldirs = ['rainy/', 'sunny/'] 
for labldir in labeldirs: 
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newdir = dataset_home + subdir + labldir 
makedirs(newdir, exist_ok= True) 
# seed random number generator 
seed(1) 
# define ratio of pictures to use for validation 
val_ratio = 0.20 
# copy training dataset images into subdirectories 
src_directory = 'train/' 
for file in listdir(src_directory): 
src = src_directory + '/' + file 
dst_dir = 'train/' 
If random() < val_ratio: 
dst_dir = 'test/' 
If file.startswith('shine'): 
dst = dataset_home + dst_dir + 'sunny/' + file 
copyfile(src, dst) 
el if file.startswith('rain'): 
dst = dataset_home + dst_dir + 'rainy/' + file 
copyfile(src, dst) 
 

 

Appendix A: Sample python source codes 

A4: Listing Four 

DETAILED DESCRIPTION: The code in this section uses the Image Data Generator in 

keras   to train the dataset which is augmented with small (20%) random horizontal and 

vertical shifts and random horizontal flips that create a mirror image of a photo. Photos in 

both the train and test steps will have their pixel values scaled in the same way. 

# baseline model with data augmentation for the rain,shine,cloudy and foggy 
dataset 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimisers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
  
# define the CNN model 
def define_model(): 
model = Sequential() 
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model.add(Conv2D(32, (3, 3), activation='relu', 
kernel_initializer='he_uniform',     padding='same', input_shape=(256, 256, 
3))) 
model.add(MaxPooling2D((2, 2))) 
model.add(Conv2D(64, (3, 3), activation='relu', 
kernel_initializer='he_uniform', padding='same')) 
model.add(MaxPooling2D((2, 2))) 
model.add(Conv2D(128, (3, 3), activation='relu', 
kernel_initializer='he_uniform', padding='same')) 
model.add(MaxPooling2D((2, 2))) 
model.add(Flatten()) 
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform')) 
model.add(Dense(4, activation='softmax')) 
# compile model 
opt = SGD(lr=0.001, momentum=0.9) 
model.compile(optimiser=opt, loss='categorical_crossentropy', 
metrics=['accuracy']) 
return model 
  
# plot diagnostic learning curves 
def summarize_diagnostics(history): 

# plot loss 
pyplot.subplot(214) 
pyplot.title('Loss') 
pyplot.plot(history.history['loss'], color='blue', label='train') 
pyplot.plot(history.history['val_loss'], color='orange', label='validation') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('loss') 
pyplot.legend(loc='lower right') 
pyplot.show() 

 
# plot accuracy 
pyplot.subplot(215) 
pyplot.title('Classification Accuracy') 
pyplot.plot(history.history['accuracy'], color='blue', label='train') 
pyplot.plot(history.history['val_accuracy'], color='orange', 
label='validation') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('Accuracy') 
pyplot.legend(loc='lower right') 
pyplot.show() 

# save plot to file 
filename = sys.argmt[0].split('/')[-1] 
pyplot.savefig(filename + '_plot.png') 
pyplot.close() 
 
 
# define model 
model = define_model() 
# create data generators 
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train_datagen = ImageDataGenerator(rescale=1.0/255.0, 
width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True) 
test_datagen = ImageDataGenerator(rescale=1.0/255.0) 
# prepare iterators 
train_it = train_datagen.flow_from_directory('dataset_ 
rainy_sunny_cloudy_and_foggy/', 
train/', 
class_mode='categorical', batch_size=64, target_size=(256, 256)) 
test_it = test_datagen.flow_from_directory('dataset_rainy_vs_sunny/test/', 
class_mode='categorical', batch_size=64, target_size= (256, 256)) 
# fit model 
history = model.fit_generator(train_it, steps_per_epoch=len(train_it), 
validation_data=test_it, validation_steps=len(test_it), epochs=100, 
verbose=0) 
# evaluate model 
_, acc = model.evaluate_generator(test_it, steps=len(test_it), verbose=0) 
print('> %.3f ' % (acc * 100.0)) 
# learning curves 
summarize_diagnostics(history) 
  
 

 

Appendix A: Sample python source codes 

A5: Listing Five 

DETAILED DESCRIPTION: This code in this section defines the baseline model with the 
addition of Dropout. In this case, a dropout of 20% is applied after each ResNet15 block, with 
a larger dropout rate of 50% applied after the fully connected layer in the classifier part of the 
model. 
 
# baseline model with dropout for the rain and shine dataset 
import sys 
from matplotlib import pyplot 
from keras.utils import to_categorical 
from keras.models import Sequential 
from keras.layers import Conv2D 
from keras.layers import MaxPooling2D 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimisers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
  
# define the CNN model 
def define_model(): 
model = Sequential() 
model.add(Conv2D(32, (3, 3), activation='relu', 
kernel_initializer='he_uniform',     padding='same', input_shape=(256, 256, 
3))) 
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model.add(MaxPooling2D((2, 2))) 
model.add(Dropout(0.2)) 

model.add(Conv2D(64, (3, 3), activation='relu', 
kernel_initializer='he_uniform', padding='same')) 
model.add(MaxPooling2D((2, 2))) 

model.add(Dropout(0.3)) 
 
model.add(Conv2D(128, (3, 3), activation='relu', 
kernel_initializer='he_uniform', padding='same')) 
model.add(MaxPooling2D((2, 2))) 

model.add(Dropout(0.3)) 
model.add(Flatten()) 
model.add(Dense(256, activation='relu', kernel_initializer='he_uniform')) 
model.add(Dropout(0.5)) 

model.add(Dense(4, activation='softmax')) 
# compile model 
opt = SGD(lr=0.001, momentum=0.9) 
model.compile(optimiser=opt, loss='categorical_crossentropy', 
metrics=['accuracy']) 
return model 
  
# plot diagnostic learning curves 
def summarise_diagnostics(history): 
# plot loss 
pyplot.subplot(214) 
pyplot.title('Cross Entropy Loss') 
pyplot.plot(history.history['loss'], color='blue', label='train') 
pyplot.plot(history.history['val_loss'], color='orange', label='validation') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('loss') 
pyplot.legend(loc='lower right') 
pyplot.show() 

# plot accuracy 
pyplot.subplot(215) 
pyplot.title('Classification Accuracy') 
pyplot.plot(history.history['accuracy'], color='blue', label='train') 
pyplot.plot(history.history['val_accuracy'], color='orange', 
label='validation') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('Accuracy') 
pyplot.legend(loc='lower right') 
pyplot.show() 

# save plot to file 
filename = sys.argmt[0].split('/')[-1] 
pyplot.savefig(filename + '_plot.png') 
pyplot.close() 
  
# define model 
model = define_model() 
# create data generators 
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train_datagen = ImageDataGenerator(rescale=1.0/255.0, 
width_shift_range=0.1, height_shift_range=0.1, horizontal_flip=True) 
test_datagen = ImageDataGenerator(rescale=1.0/255.0) 
# prepare iterators 
train_it = train_datagen.flow_from_directory('dataset_rainy_vs_sunny/train/', 
class_mode='categorical', batch_size=64, target_size=(256, 256)) 
test_it = test_datagen.flow_from_directory('dataset_ 
rainy_sunny_cloudy_and_foggy/', 
test/', 
class_mode='categorical', batch_size=64, target_size=(256, 256)) 
# fit model 
history = model.fit_generator(train_it, steps_per_epoch=len(train_it), 
validation_data=test_it, validation_steps=len(test_it), epochs=100, 
verbose=0) 
# evaluate model 
_, acc = model.evaluate_generator(test_it, steps=len(test_it), verbose=0) 
print('> %.3f ' % (acc * 100.0)) 
# learning curves 
summarize_diagnostics(history) 
 
 

 Appendix A: Sample python source codes 

A6: Listing six 

DETAILED DESCRIPTION: The code here describes how the final model is typically fit on 

all available data, such as the combination of all train and test datasets. 

# save the final model to file 
from keras.applications.ResNet15 import ResNet15 
from keras.models import Model 
from keras.layers import Dense 
from keras.layers import Flatten 
from keras.optimisers import SGD 
from keras.preprocessing.image import ImageDataGenerator 
  
# define the CNN model 
def define_model(): 
# load model 
model = ResNet15(include_top=False, input_shape=(224, 224, 3)) 
# mark loaded layers as not trainable 
for layer in model.layers: 
layer.trainable = False 
# add new classifier layers 
flat1 = Flatten()(model.layers[-1].output) 
class1 = Dense(128, activation='relu', 
kernel_initializer='he_uniform')(flat1) 
output = Dense(4, activation='softmax') 
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# define new model 
model = Model(inputs=model.inputs, outputs=output) 
# compile model 
opt = SGD(lr=0.001, momentum=0.9) 
model.compile(optimiser=opt, loss='categorical_crossentropy', 
metrics=['accuracy']) 
return model 
  
# define model 
model = define_model() 
# create data generator 
datagen = ImageDataGenerator(featurewise_center=True) 
# specify dataset2 mean values for centering 
datagen.mean = [133.68, 118.879, 104.939] 
# prepare iterator 
train_it = datagen.flow_from_directory 
('finalise_rainy_sunny_cloudy_and_foggy/', 
class_mode='categorical', batch_size=64, target_size=(224, 224)) 
# fit model 
model.fit_generator(train_it, steps_per_epoch=len(train_it), epochs=20, 
verbose=0) 
 
 

Appendix A: Sample python source codes 

A7: Listing seven 

DETAILED DESCRIPTION: The code here describes how to use the saved model 

to make a recognition on new images. The model assumes that new images 

are color and they have been segmented so that one image contains at 

least one rainy or sunny, and cloudy or foggy. 

# make a recognition for a new image. 
from keras.preprocessing.image import load_img 
from keras.preprocessing.image import img_to_array 
from keras.models import load_model 
  
# load and prepare the image 
def load_image(filename): 
# load the image 
img = load_img(filename, target_size=(224, 224)) 
# convert to array 
img = img_to_array(img) 
# reshape into a single sample with 3 channels 
img = img.reshape(1, 224, 224, 3) 
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# center pixel data 
img = img.astype('float32') 
img = img - [133.68, 118.879, 104.939] 
return img 
  
# load an image and predict the class 
def run_example(): 
# load the image 
img = load_image ('dataset2_image.jpg') 
# predict the class 
result = model.predict(img) 
print(result[0]) 
  

 

 

Appendix A: Sample python source codes 

A8: Listing Eight 

DETAILED DESCRIPTION: The code describes the experiment showing the impact of no 

hyperparameter optimisation and with hyperparameter optimisation. 

 

EFFECTS WITHOUT HYPERPARAMETER USING SGD OPTIMISATION 

import matplotlib.pyplot as pltmodel = tf.keras.models.Sequential 
    tf.keras.layers.Flatten(input_shape=(28, 28)), 
    tf.keras.layers.Dense(128, activation='relu'), 
    tf.keras.layers.Dropout(0.2), 
    tf.keras.layers.Dense(4, activation='softmax') 

sgd = tf.keras.optimisers.SGD(lr=0.01, decay=1e-6, momentum=0.0, 
nesterov=True) 
model.compile(optimiser=sgd, 
              loss='categorical_crossentropy', 
              metrics=['accuracy'])history = model.fit(x_train, y_train, 
epochs=40) 
model.evaluate(x_test, y_test, verbose=2)# Plot training & validation 

accuracy values 
plt.plot(history.history['acc']) 
plt.title('Model accuracy') 
plt.ylabel('Accuracy') 
plt.xlabel('Epoch') 
plt.legend(['Train loss', 'Val loss', ‘Val acc], loc='upper right') 
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plt.show()# Plot train loss, Validation loss & validation accuracy values 

plt.plot(history.history['loss']) 

# plot accuracy 
pyplot.subplot(215) 
pyplot.title('Classification Accuracy') 
pyplot.plot(history.history['Val acc'], color='green',  
pyplot.plot(history.history['train loss, color=’blue'], 
pyplot.plot(history.history['val loss, color=’oranges'],  

pyplot.xlabel('Epochs') 
pyplot.legend(loc='upper right') 
pyplot.show() 

 

 

EFFECTS WITH HYPERPARAMETER USING SGD OPTIMISATION 

import matplotlib.pyplot as pltmodel = tf.keras.models.Sequential 
    tf.keras.layers.Flatten(input_shape=(28, 28)), 
    tf.keras.layers.Dense(128, activation='relu'), 
    tf.keras.layers.Dropout(0.2), 
    tf.keras.layers.Dense(4, activation='softmax') 
sgd = tf.keras.optimisers.SGD(lr=0.01, decay=1e-6, momentum=0.9, 
nesterov=True) 
model.compile(optimiser=sgd, 
              loss='sparse_categorical_crossentropy', 
              metrics=['accuracy'])history = model.fit(x_train, y_train, 
epochs=40) 
model.evaluate(x_validation, y_validation, verbose=2)# Plot train loss, 
validation accuracy & validation loss values 
plt.plot(history.history['acc',’loss’]) 
plt.xlabel('Epoch') 
plt.legend(['Train loss', 'Val loss', Val acc], loc='upper right') 
plt.show()# Plot train loss, validation loss & validation accuracy values 
# plot accuracy 
pyplot.subplot(215) 
pyplot.title('Classification Accuracy') 
pyplot.plot(history.history['Val acc'], color='green',  
pyplot.plot(history.history['train loss, color=’blue'], 
pyplot.plot(history.history['val loss, color=’orange'], 

pyplot.xlabel('Epochs') 
pyplot.legend(loc='lower right') 
pyplot.show() 

 

plt.xlabel('Epoch') 
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plt.legend(['Train loss', 'Val loss', ’val acc], loc='upper right') 

plt.show() 

 

Appendix A: Sample python source codes 

A9: Listing Nine 

DETAILED DESCRIPTION: The code describes the development of the model using 

keras tuner for tuning the hyperparameters. 

HYPERPARAMETER OPTIMISATION WITH KERAS TUNER 

#Prepare the dataset 
 
From tensorflow import keras # importing keras 
(x_train, y_train), (x_test, y_test) = 
keras.datasets.dataset2.load_data() # loading the data using keras 
datasets api 
x_train = x_train.astype('float32') / 255.0 # normalize the training 
images 
x_test = x_test.astype('float32') / 255.0 # normalize the testing 
images 

# Develop the baseline model  
 
model1 = keras.Sequential() 
model1.add(keras.layers.Flatten(input_shape=(28, 28))) # flattening 28 
x 28  
model1.add(keras.layers.Dense(units=512, activation='relu', 
name='dense_1')) # you have 512 neurons with relu activation 
model1.add(keras.layers.Dropout(0.3)) # added a dropout layer with the 
rate of 0.3 
model1.add(keras.layers.Dense(4, activation='softmax')) # output layer, 
total of 4 classes 

# Compile and train the model  
 
model1.compile(optimiser=keras.optimisers.Adam(learning_rate=0.001), 
            loss=keras.losses.CategoricalCrossentropy(), 
            metrics=['accuracy']) 
model1.fit(x_train, y_train, epochs=40, validation_split=0.2) 
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 #Evaluate the model  
 
model1_eval = model.evaluate(img_test, label_test, return_dict=True) 
# plot diagnostic learning curves 
def summarize_diagnostics(history): 
# plot accuracy 
pyplot.subplot(215) 
pyplot.title('Training Accuracy') 
pyplot.plot(history.history['Accuracy'], 
pyplot.plot(history.history['Alexnet'], color='blue',  
pyplot.plot(history.history['ResNet-15'],color='orange',  
pyplot.plot(history.history['ResNet-50'],color='green', 
pyplot.plot(history.history['gooleNet'],color='tangerine', 
pyplot.plot(history.history['ResNet-18'],color='purple', 
pyplot.plot(history.history['VGG16'], color='brown', 
label='train') 

pyplot.xlabel('Epoch') 
pyplot.ylabel('Training Accuracy') 
pyplot.legend(loc='lower right') 
pyplot.show() 

# plot loss 
pyplot.subplot(215) 
pyplot.title('Training loss') 
pyplot.plot(history.history['loss'],  
pyplot.plot(history.history['Alexnet'], color='blue',  
pyplot.plot(history.history['ResNet-15'], color='orange',  
pyplot.plot(history.history['ResNet-50'], color='green', 
pyplot.plot(history.history['gooleNet'], color='tangerine', 
pyplot.plot(history.history['ResNet-18'], color='purple', 
pyplot.plot(history.history['VGG16'], color='brown', 
 
label='Training loss') 
pyplot.plot(history.history['Training_loss'],  
label='loss') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('Training loss') 
pyplot.legend(loc='upper right') 
pyplot.show() 

 
 
# plot accuracy 
pyplot.subplot(215) 
pyplot.title('Validation Accuracy') 
pyplot.plot(history.history['accuracy'],  
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pyplot.plot(history.history['Alexnet'], color='blue',  
pyplot.plot(history.history['ResNet-15'], color='orange',  
pyplot.plot(history.history['ResNet-50'], color='green', 
pyplot.plot(history.history['gooleNet'], color='tangerine', 
pyplot.plot(history.history['ResNet-18'], color='purple', 
pyplot.plot(history.history['VGG16'], color='brown', 
 
label='Validation') 
pyplot.plot(history.history['val_accuracy'],  
label='Validation') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('Validation Accuracy') 
pyplot.legend(loc='lower right') 
pyplot.show() 

 
 # plot accuracy 
pyplot.subplot(215) 
pyplot.title('Test Accuracy') 
pyplot.plot(history.history['accuracy'],  
pyplot.plot(history.history['Alexnet'], color='blue',  
pyplot.plot(history.history['ResNet-15'], color='orange',  
pyplot.plot(history.history['ResNet-50'], color='green', 
pyplot.plot(history.history['gooleNet'], color='tangerine', 
pyplot.plot(history.history['ResNet-18'], color='purple', 
pyplot.plot(history.history['VGG16'], color='brown', 
 
label='Test') 
pyplot.plot(history.history['val_accuracy'],  
label='Test') 

pyplot.xlabel('Epochs') 
pyplot.ylabel('Test Accuracy') 
pyplot.legend(loc='lower right') 
pyplot.show() 

 
# save plot to file 
filename = sys.keras[0].split('/')[-1] 
pyplot.savefig(filename + '_plot.png') 
pyplot.close() 

Tuning the model using Keras Tuner  

import tensorflow as tf 
from tensorflow import keras 
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import keras_tuner as kt 
from tensorflow.keras import layers 
from kerastuner.tuners import RandomSearch 
# Load and preprocess the dataset2 
(x_train, y_train), (x_test, y_test) = 
tf.keras.datasets.dataset2.load_data() 
x_train, x_test = x_train / 255.0, x_test / 255.0  # Normalize pixel 

values to between 0 and 1 

# Define the model-building function for Keras Tuner 
def build_model(hp) 
    model = keras.Sequential() 
 
    # Tune the number of units in the first dense layer 
    hp_units = hp.Int('units', min_value=32, max_value=512, step=32) 
    model.add(layers.Flatten(input_shape=(28, 28))) 
    model.add(layers.Dense(units=hp_units, activation='relu')) 
    model.add(layers.Dropout(0.3)) 
 
model.add(layers.Dense(10, activation='softmax')) 
 
    # Tune the learning rate for the optimiser 
    hp_learning_rate = hp.Choice('learning_rate', values=[0.01, 0.001, 
0.0001])   
 
model.compile(optimiser=keras.optimisers.Adam(learning_rate=hp_learning
_rate), 
                  loss='categorical_crossentropy', 
                  metrics=['accuracy']) 
 
    return model 

tuner = 
kt.Hyperband(model_builder,objective='val_accuracy',max_epochs=3,  
stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 
patience=5) 
tuner.search(x _train, y _train, epochs=2, validation_split=0.2, 
callbacks=[stop_early]) 
 
 
# Instantiate the RandomSearch tuner and perform hyperparameter tuning 
tuner = RandomSearch( 
    build_model, 
    objective='val_accuracy', 
    max_trials=30,   
    directory='my_tuning_directory',   
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    study_name='dataset2_tuning') 
 
tuner.search(x_train, y_train, epochs=5, validation_split=0.2) 
 
# Get the best hyperparameters 
best_hps = tuner.get_best_hyperparameters(num_trials=1)[0] 
 
# Build the model with the best hyperparameters 
model = tuner.hyperband.build(best_hps) 
 
# Train the model 
model.fit(x_train, y_train, epochs=10, validation_split=0.2) 
 
# Get the best hyperparameters 

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', 
patience=5) 
# Perform hypertuning 
tuner.search(x_train, y_train, epochs=10, validation_split=0.2, 
callbacks=[stop_early]) 
best_hp=tuner.get_best_hyperparameters()[0] 
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0] 
print(f"BEST num neurons for Dense Layer : {best_hps.get('units')}") 
print(f"BEST learning_rate : {best_hps.get('learning_rate')}") 
print(f"BEST dropout rate : {best_hps.get('dropout rate')}") 
print(f"BEST momentum : {best_hps.get('momentum')}") 
print(f"BEST batch size : {best_hps.get('batch size')}") 

 
 
# Build the model with the best hyperparameters 
model = tuner.hypermodel.build(best_hps) 
 
# Train the model 
model.fit(x_train, y_train, epochs=10, validation_split=0.2) 
 
# Evaluate the model on the test set 
train_accuracy, train_loss, validation_accuraccy,test_accuracy = 
model.evaluate(x_test, y_test, verbose=2) 

print(Test Accuracy: {test_accuracy*100:.2f}%") 

#Rebuild and Train the Model with the best  hyperparameters  
# Build the model with the best hyperparameters 
h_model = tuner.hypermodel.build(best_hps) 
h_model.summary() 
h_model.fit(x_train, x_test, epochs=10, validation_split=0.2) 
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#evaluate the model,  

h_eval_dict = h_model.evaluate(img_test, label_test, return_dict=True) 
tuner.search(x_train, y_train, epochs=40, validation_split=0.2, 
callbacks=[stop_early]) 

best_hp=tuner.get_best_hyperparameters()[0]  

 #Rebuild and Train the Model with the best  hyperparameters  
# Build the model with the best hyperparameters 
h_model = tuner.hypermodel.build(best_hps) 
h_model.summary() 
h_model.fit(x_train, x_test, epochs=40, validation_split=0.2) 

#evaluate the model,  

h_eval_dict = h_model.evaluate(img_test, label_test, return_dict=True) 
#tune the hyperparameters of momentum, batch size, and dropout using 
Keras tuner library: 

import numpy as np 

from keras.models import Sequential 
from keras.layers import Dense, Dropout 

from keras.optimisers import SGD 
 
# Define the search space for hyperparameters 

space = { 
'momentum': hp.uniform('momentum', 0.1, 0.9), 
'batch_size': hp.choice('batch_size', [16, 32, 64]), 

'dropout': hp.uniform('dropout', 0.0, 0.9) 
} 

# Define the objective function to minimize (training loss) 
def objective(params): 
model = Sequential() 

model.add(Dense(64, input_dim=100, activation='relu')) 
model.add(Dropout(params['dropout'])) 

model.add(Dense(1, activation='sigmoid')) 
 

optimiser = SGD(lr=0.01, momentum=params['momentum']) 

model.compile(loss='binary_crossentropy', optimiser=optimiser, 
metrics=['accuracy']) 
 

# Train the model with the given hyperparameters 
history = model.fit(X_train, y_train, epochs=10, 

batch_size=params['batch_size'], validation_split=0.2, verbose=0) 
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# Evaluate the model on validation data 

loss, accuracy = model.evaluate(X_val, y_val, verbose=0) 
 

# Return the tuned hyperparameters and the validation loss 
return {'loss': loss, 'status': STATUS_OK, 'params': params} 
# Use hyperband (HB) algorithm for optimisation 

best_hyperparams = hb(objective, space, algo=hb.suggest, max_evals=10, 
trials=trials)print(best_hyperparams) 
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